Gross, H.N.,
Schott, J.R.,
Application of Spectral Mixture Analysis and Image Fusion Techniques
for Image Sharpening,
RSE(63), No. 2, February 1998, pp. 85-94.
9801
BibRef
Ballester, C.[Coloma],
Caselles, V.[Vicent],
Igual, L.[Laura],
Verdera, J.[Joan],
Rougé, B.[Bernard],
A Variational Model for P+XS Image Fusion,
IJCV(69), No. 1, August 2006, pp. 43-58.
Springer DOI
0606
Increase resolution using pan image and lower resolution multi-spectral
iamge.
BibRef
Aiazzi, B.[Bruno],
Alparone, L.[Luciano],
Baronti, S.[Stefano],
Garzelli, A.,
Selva, M.[Massimo],
MTF-tailored Multiscale Fusion of High-resolution MS and Pan Imagery,
PhEngRS(72), No. 5, May 2006, pp. 591-596.
WWW Link.
0610
A multiresolution framework for merging a multispectral image having
an arbitrary number of bands with a higher-resolution
panchromatic observation.
BibRef
Garzelli, A.[Andrea],
Nencini, F.[Filippo],
Panchromatic sharpening of remote sensing images using a multiscale
Kalman filter,
PR(40), No. 12, December 2007, pp. 3568-3577.
Elsevier DOI
0709
Pan-sharpening; Multiresolution image fusion; "A trous" wavelet transform;
Multiscale Kalman filter
BibRef
Garzelli, A.,
Nencini, F.,
Capobianco, L.,
Optimal MMSE Pan Sharpening of Very High Resolution Multispectral
Images,
GeoRS(46), No. 1, January 2008, pp. 228-236.
IEEE DOI
0712
BibRef
Garzelli, A.,
Pansharpening of Multispectral Images Based on Nonlocal Parameter
Optimization,
GeoRS(53), No. 4, April 2015, pp. 2096-2107.
IEEE DOI
1502
geophysical image processing
BibRef
Aiazzi, B.[Bruno],
Alparone, L.[Luciano],
Baronti, S.[Stefano],
Pippi, I.[Ivan],
Selva, M.[Massimo],
Generalized Laplacian Pyramid-Based Fusion of MS + P Image Data with
Spectral Distortion Minimization,
PCV02(B: 3).
0305
BibRef
Aiazzi, B.,
Baronti, S.,
Selva, M.,
Improving Component Substitution Pansharpening Through Multivariate
Regression of MS+Pan Data,
GeoRS(45), No. 10, October 2007, pp. 3230-3239.
IEEE DOI
0711
BibRef
Shah, V.P.,
Younan, N.H.,
King, R.L.,
An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach
and Contourlets,
GeoRS(46), No. 5, May 2008, pp. 1323-1335.
IEEE DOI
0804
BibRef
Fasbender, D.,
Radoux, J.,
Bogaert, P.,
Bayesian Data Fusion for Adaptable Image Pansharpening,
GeoRS(46), No. 6, June 2008, pp. 1847-1857.
IEEE DOI
0711
BibRef
Lee, J.,
Lee, C.,
Fast and Efficient Panchromatic Sharpening,
GeoRS(48), No. 1, January 2010, pp. 155-163.
IEEE DOI
1001
BibRef
Mahyari, A.G.[A. Golibagh],
Yazdi, M.,
Panchromatic and Multispectral Image Fusion Based on Maximization of
Both Spectral and Spatial Similarities,
GeoRS(49), No. 6, June 2011, pp. 1976-1985.
IEEE DOI
1106
BibRef
Choi, K.,
Kim, C.,
Kang, M.H.,
Ra, J.B.,
Resolution Improvement of Infrared Images Using Visible Image
Information,
SPLetters(18), No. 10, October 2011, pp. 611-614.
IEEE DOI
1109
BibRef
Li, S.,
Yang, B.,
A New Pan-Sharpening Method Using a Compressed Sensing Technique,
GeoRS(49), No. 2, February 2011, pp. 738-746.
IEEE DOI
1102
BibRef
Saeedi, J.[Jamal],
Faez, K.[Karim],
A new pan-sharpening method using multiobjective particle swarm
optimization and the shiftable contourlet transform,
PandRS(66), No. 3, May 2011, pp. 365-381.
Elsevier DOI
1103
Pan-sharpening; Shiftable contourlet transform; Multiobjective
particle swarm optimization
BibRef
Massip, P.,
Blanc, P.,
Wald, L.,
A Method to Better Account for Modulation Transfer Functions in
ARSIS-Based Pansharpening Methods,
GeoRS(50), No. 3, March 2012, pp. 800-808.
IEEE DOI
1203
BibRef
Zhang, L.P.[Liang-Pei],
Shen, H.F.[Huan-Feng],
Gong, W.[Wei],
Zhang, H.Y.[Hong-Yan],
Adjustable Model-Based Fusion Method for Multispectral and Panchromatic
Images,
SMC-B(42), No. 6, December 2012, pp. 1693-1704.
IEEE DOI
1212
BibRef
Gao, F.,
Kustas, W.,
Anderson, M.,
A Data Mining Approach for Sharpening Thermal Satellite Imagery over
Land,
RS(4), No. 11, November 2012, pp. 3287-3319.
DOI Link
1211
BibRef
Johnson, B.,
Tateishi, R.,
Hoan, N.,
Satellite Image Pansharpening Using a Hybrid Approach for Object-Based
Image Analysis,
IJGI(1), No. 3, 2012, pp. 228-241.
DOI Link
1211
BibRef
Ellmauthaler, A.[Andreas],
Pagliari, C.L.[Carla L.],
da Silva, E.A.B.[Eduardo A.B.],
Multiscale Image Fusion Using the Undecimated Wavelet Transform With
Spectral Factorization and Nonorthogonal Filter Banks,
IP(22), No. 3, March 2013, pp. 1005-1017.
IEEE DOI
1302
BibRef
Ellmauthaler, A.[Andreas],
da Silva, E.A.B.[Eduardo A.B.],
Pagliari, C.L.[Carla L.],
Neves, S.R.[Sergio R.],
Infrared-visible image fusion using the undecimated wavelet transform
with spectral factorization and target extraction,
ICIP12(2661-2664).
IEEE DOI
1302
BibRef
Alidoost, F.[Fakhereh],
Mobasheri, M.R.[Mohammad R.],
Abkar, A.A.[Ali A.],
Introducing a Method for Spectral Enrichment of the High Spatial
Resolution Images,
PFG(2013), No. 1, 2013, pp. 31-41.
DOI Link
1303
BibRef
Ribeiro Sales, M.H.,
Souza, C.M.,
Kyriakidis, P.C.,
Fusion of MODIS Images Using Kriging With External Drift,
GeoRS(51), No. 4, April 2013, pp. 2250-2259.
IEEE DOI
1304
Different bands of MODIS have different resolutions.
BibRef
Zhu, X.X.[Xiao Xiang],
Bamler, R.[Richard],
A Sparse Image Fusion Algorithm With Application to Pan-Sharpening,
GeoRS(51), No. 5, May 2013, pp. 2827-2836.
IEEE DOI
1305
See also Super-Resolution Power and Robustness of Compressive Sensing for Spectral Estimation With Application to Spaceborne Tomographic SAR.
BibRef
Fang, F.M.[Fa-Ming],
Li, F.[Fang],
Shen, C.M.[Chao-Min],
Zhang, G.X.[Gui-Xu],
A Variational Approach for Pan-Sharpening,
IP(22), No. 7, 2013, pp. 2822-2834.
IEEE DOI best pan-sharpened result; split Bregman algorithm;
variational approach
1307
BibRef
Tang, S.Z.[Si-Zhang],
Fang, F.M.[Fa-Ming],
Zhang, G.X.[Gui-Xu],
Variational approach for multi-source image fusion,
IET-IPR(9), No. 2, 2015, pp. 134-141.
DOI Link
1503
gradient methods
BibRef
Unni, R.K.[Ravi Krishnan],
Jiji, C.V.,
Fusion of Multispectral and Panchromatic Images Based on the
Nonsubsampled Contourlet Transform,
IJIG(13), No. 03, 2013, pp. 1350010.
DOI Link
1309
BibRef
Aiazzi, B.[Bruno],
Baronti, S.[Stefano],
Selva, M.[Massimo],
Alparone, L.[Luciano],
Bi-cubic interpolation for shift-free pan-sharpening,
PandRS(86), No. 1, 2013, pp. 65-76.
Elsevier DOI
1312
Digital filtering
BibRef
Kang, X.,
Li, S.,
Benediktsson, J.A.,
Pansharpening With Matting Model,
GeoRS(52), No. 8, August 2014, pp. 5088-5099.
IEEE DOI
1403
Image coding
See also Spectral-Spatial Hyperspectral Image Classification With Edge-Preserving Filtering.
BibRef
Li, X.,
Ling, F.,
Du, Y.,
Zhang, Y.,
Spatially Adaptive Superresolution Land Cover Mapping With
Multispectral and Panchromatic Images,
GeoRS(52), No. 5, May 2014, pp. 2810-2823.
IEEE DOI
1403
Panchromatic (PAN) image
BibRef
Ling, F.,
Li, X.,
Xiao, F.,
Du, Y.,
Superresolution Land Cover Mapping Using Spatial Regularization,
GeoRS(52), No. 7, July 2014, pp. 4424-4439.
IEEE DOI
1403
Data models
BibRef
Buades, A.[Antoni],
Coll, B.[Bartomeu],
Duran, J.[Joan],
Sbert, C.[Catalina],
Implementation of Nonlocal Pansharpening Image Fusion,
IPOL(2014), No. 2014, pp. 1-15.
DOI Link
1404
Code, Pansharpening.
See also Nonlocal Variational Model for Pansharpening Image Fusion, A.
BibRef
Duran, J.[Joan],
Buades, A.[Antoni],
Coll, B.[Bartomeu],
Sbert, C.[Catalina],
A Nonlocal Variational Model for Pansharpening Image Fusion,
SIIMS(7), No. 2, 2014, pp. 761-796.
DOI Link
1405
See also Implementation of Nonlocal Pansharpening Image Fusion.
BibRef
Johnson, B.[Brian],
Effects of Pansharpening on Vegetation Indices,
IJGI(3), No. 2, 2014, pp. 507-522.
DOI Link
1405
BibRef
Aly, H.A.,
Sharma, G.,
A Regularized Model-Based Optimization Framework for Pan-Sharpening,
IP(23), No. 6, June 2014, pp. 2596-2608.
IEEE DOI
1406
Image sensors
BibRef
Aslantas, V.,
Bendes, E.,
Kurban, R.,
Toprak, A.N.,
New optimised region-based multi-scale image fusion method for
thermal and visible images,
IET-IPR(8), No. 5, May 2014, pp. 289-299.
DOI Link
1407
BibRef
Saeidi, V.,
Pradhan, B.,
Idrees, M.O.,
Latif, Z.A.[Z. Abd],
Fusion of Airborne LiDAR With Multispectral SPOT 5 Image for
Enhancement of Feature Extraction Using Dempster-Shafer Theory,
GeoRS(52), No. 10, October 2014, pp. 6017-6025.
IEEE DOI
1407
Accuracy
BibRef
Wang, P.,
Gao, F.,
Masek, J.G.,
Operational Data Fusion Framework for Building Frequent Landsat-Like
Imagery,
GeoRS(52), No. 11, November 2014, pp. 7353-7365.
IEEE DOI
1407
Clouds
BibRef
Xu, Q.,
Li, B.,
Zhang, Y.,
Ding, L.,
High-Fidelity Component Substitution Pansharpening by the Fitting of
Substitution Data,
GeoRS(52), No. 11, November 2014, pp. 7380-7392.
IEEE DOI
1407
Image fusion
BibRef
Yang, J.H.[Jing-Hui],
Zhang, J.X.[Ji-Xian],
Huang, G.M.[Guo-Man],
A Parallel Computing Paradigm for Pan-Sharpening Algorithms of
Remotely Sensed Images on a Multi-Core Computer,
RS(6), No. 7, 2014, pp. 6039-6063.
DOI Link
1408
BibRef
Liu, Q.J.[Qing-Jie],
Wang, Y.H.[Yun-Hong],
Zhang, Z.X.[Zhao-Xiang],
Liu, L.[Lining],
Pan-sharpening based on weighted red black wavelets,
IET-IPR(8), No. 8, August 2014, pp. 477-488.
DOI Link
1410
BibRef
Earlier:
Pan-sharpening using weighted red-black wavelet,
ICPR12(1908-1911).
WWW Link.
1302
BibRef
Earlier: A1, A4, A2, A3:
Locally linear embedding based example learning for pan-sharpening,
ICPR12(1928-1931).
WWW Link.
1302
image fusion
BibRef
Dong, W.H.[Wei-Hua],
Li, X.[Xian'en],
Lin, X.G.[Xiang-Guo],
Li, Z.L.[Zhi-Lin],
A Bidimensional Empirical Mode Decomposition Method for Fusion of
Multispectral and Panchromatic Remote Sensing Images,
RS(6), No. 9, 2014, pp. 8446-8467.
DOI Link
1410
BibRef
He, X.[Xiyan],
Condat, L.,
Bioucas-Dias, J.M.,
Chanussot, J.,
Xia, J.[Junshi],
A New Pansharpening Method Based on Spatial and Spectral Sparsity
Priors,
IP(23), No. 9, September 2014, pp. 4160-4174.
IEEE DOI
1410
geophysical image processing
BibRef
Vivone, G.[Gemine],
Simőes, M.[Miguel],
Dalla Mura, M.[Mauro],
Restaino, R.[Rocco],
Bioucas-Dias, J.M.[José M.],
Licciardi, G.A.[Giorgio A.],
Chanussot, J.[Jocelyn],
Pansharpening Based on Semiblind Deconvolution,
GeoRS(53), No. 4, April 2015, pp. 1997-2010.
IEEE DOI
1502
Gaussian processes
BibRef
Picone, D.,
Condat, L.,
Cotte, F.,
Dalla Mura, M.[Mauro],
Image Fusion and Reconstruction of Compressed Data: A Joint Approach,
ICIP18(878-882)
IEEE DOI
1809
Image coding, Optical imaging, Spatial resolution,
Image reconstruction, Optical sensors, Image fusion, Image fusion,
optical devices
BibRef
Palsson, F.[Frosti],
Sveinsson, J.R.[Johannes R.],
Ulfarsson, M.O.[Magnus O.],
Benediktsson, J.A.,
Model-Based Fusion of Multi- and Hyperspectral Images Using PCA and
Wavelets,
GeoRS(53), No. 5, May 2015, pp. 2652-2663.
IEEE DOI
1502
data reduction
BibRef
Palsson, F.[Frosti],
Sveinsson, J.R.[Johannes R.],
Ulfarsson, M.O.[Magnus O.],
Sentinel-2 Image Fusion Using a Deep Residual Network,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Kallel, A.,
MTF-Adjusted Pansharpening Approach Based on Coupled Multiresolution
Decompositions,
GeoRS(53), No. 6, June 2015, pp. 3124-3145.
IEEE DOI
1503
discrete wavelet transforms
BibRef
Shi, C.[Cheng],
Liu, F.[Fang],
Li, L.L.[Ling-Ling],
Jiao, L.C.[Li-Cheng],
Duan, Y.P.[Yi-Ping],
Wang, S.[Shuang],
Learning Interpolation via Regional Map for Pan-Sharpening,
GeoRS(53), No. 6, June 2015, pp. 3417-3431.
IEEE DOI
1503
geophysical image processing
BibRef
Abdullah, S.M.U.,
Rehman, N.U.,
Khan, M.M.,
Mandic, D.P.,
A Multivariate Empirical Mode DecompositionBased Approach to
Pansharpening,
GeoRS(53), No. 7, July 2015, pp. 3974-3984.
IEEE DOI
1503
Context
BibRef
Yin, H.T.[Hai-Tao],
Li, S.T.[Shu-Tao],
Pansharpening With Multiscale Normalized Nonlocal Means Filter:
A Two-Step Approach,
GeoRS(53), No. 10, October 2015, pp. 5734-5745.
IEEE DOI
1509
filters
BibRef
Shu, Y.[Yang],
Tang, H.[Hong],
Li, J.[Jing],
Mao, T.[Ting],
He, S.[Shi],
Gong, A.[Adu],
Chen, Y.H.[Yun-Hao],
Du, H.Y.[Hong-Yue],
Object-Based Unsupervised Classification of VHR Panchromatic
Satellite Images by Combining the HDP and IBP on Multiple Scenes,
GeoRS(53), No. 11, November 2015, pp. 6148-6162.
IEEE DOI
1509
Bayes methods
BibRef
Bostater, C.[Charles],
Optimal spectral image fusion for detection of shoreline targets,
SPIE(Newsroom), November 10, 2015
DOI Link
1512
Spectral-spatial sharpening of images is achieved by numerically
embedding line targets in obtained imagery, and by minimizing the
differences between high-spatial-resolution and observed spectral
signatures.
BibRef
Yokoya, N.[Naoto],
Texture-Guided Multisensor Superresolution for Remotely Sensed Images,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Lottering, R.[Romano],
Mutanga, O.[Onisimo],
Optimising the spatial resolution of WorldView-2 pan-sharpened
imagery for predicting levels of Gonipterus scutellatus defoliation
in KwaZulu-Natal, South Africa,
PandRS(112), No. 1, 2016, pp. 13-22.
Elsevier DOI
1602
Gonipterus scutellatus
BibRef
Li, H.[Hui],
Jing, L.H.[Lin-Hai],
Wang, L.M.[Li-Ming],
Cheng, Q.M.[Qiu-Ming],
Improved Pansharpening with Un-Mixing of Mixed MS Sub-Pixels near
Boundaries between Vegetation and Non-Vegetation Objects,
RS(8), No. 2, 2016, pp. 83.
DOI Link
1603
BibRef
Zhang, H.K.[Hankui K.],
Roy, D.P.[David P.],
Computationally Inexpensive Landsat 8 Operational Land Imager (OLI)
Pansharpening,
RS(8), No. 3, 2016, pp. 180.
DOI Link
1604
BibRef
Yan, L.[Lin],
Roy, D.P.[David P.],
Zhang, H.[Hankui],
Li, J.[Jian],
Huang, H.Y.[Hai-Yan],
An Automated Approach for Sub-Pixel Registration of Landsat-8
Operational Land Imager (OLI) and Sentinel-2 Multi Spectral
Instrument (MSI) Imagery,
RS(8), No. 6, 2016, pp. 520.
DOI Link
1608
BibRef
Hou, L.[Likun],
Zhang, X.Q.[Xiao-Qun],
Pansharpening Image Fusion Using Cross-Channel Correlation: A
Framelet-Based Approach,
JMIV(55), No. 1, May 2016, pp. 36-49.
WWW Link.
1604
BibRef
Ghahremani, M.,
Ghassemian, H.,
A Compressed-Sensing-Based Pan-Sharpening Method for Spectral
Distortion Reduction,
GeoRS(54), No. 4, April 2016, pp. 2194-2206.
IEEE DOI
1604
Dictionaries
BibRef
Liu, P.,
Xiao, L.,
Zhang, J.,
Naz, B.,
Spatial-Hessian-Feature-Guided Variational Model for Pan-Sharpening,
GeoRS(54), No. 4, April 2016, pp. 2235-2253.
IEEE DOI
1604
Algorithm design and analysis
BibRef
Zhu, X.X.,
Grohnfeldt, C.,
Bamler, R.,
Exploiting Joint Sparsity for Pansharpening: The J-SparseFI Algorithm,
GeoRS(54), No. 5, May 2016, pp. 2664-2681.
IEEE DOI
1604
compressed sensing
BibRef
Restaino, R.,
Vivone, G.,
Dalla Mura, M.,
Chanussot, J.,
Fusion of Multispectral and Panchromatic Images Based on
Morphological Operators,
IP(25), No. 6, June 2016, pp. 2882-2895.
IEEE DOI
1605
Algorithm design and analysis
BibRef
Frantz, D.,
Stellmes, M.,
Röder, A.,
Udelhoven, T.,
Mader, S.,
Hill, J.,
Improving the Spatial Resolution of Land Surface Phenology by Fusing
Medium- and Coarse-Resolution Inputs,
GeoRS(54), No. 7, July 2016, pp. 4153-4164.
IEEE DOI
1606
Earth
BibRef
Masi, G.[Giuseppe],
Cozzolino, D.[Davide],
Verdoliva, L.[Luisa],
Scarpa, G.[Giuseppe],
Pansharpening by Convolutional Neural Networks,
RS(8), No. 7, 2016, pp. 594.
DOI Link
1608
BibRef
Mao, T.,
Tang, H.,
Wu, J.,
Jiang, W.,
He, S.,
Shu, Y.,
A Generalized Metaphor of Chinese Restaurant Franchise to Fusing Both
Panchromatic and Multispectral Images for Unsupervised Classification,
GeoRS(54), No. 8, August 2016, pp. 4594-4604.
IEEE DOI
1608
geophysical image processing
BibRef
Lu, H.Y.[Hong-Yang],
Wei, J.B.[Jing-Bo],
Wang, L.[Lizhe],
Liu, P.[Peng],
Liu, Q.[Qiegen],
Wang, Y.H.[Yu-Hao],
Deng, X.H.[Xiao-Hua],
Reference Information Based Remote Sensing Image Reconstruction with
Generalized Nonconvex Low-Rank Approximation,
RS(8), No. 6, 2016, pp. 499.
DOI Link
1608
BibRef
Wang, Q.M.[Qun-Ming],
Shi, W.Z.[Wen-Zhong],
Atkinson, P.M.[Peter M.],
Area-to-point regression kriging for pan-sharpening,
PandRS(114), No. 1, 2016, pp. 151-165.
Elsevier DOI
1604
See also Spatiotemporal Subpixel Mapping of Time-Series Images.
See also Allocating Classes for Soft-Then-Hard Subpixel Mapping Algorithms in Units of Class. Downscaling
BibRef
Restaino, R.[Rocco],
Mura, M.D.[Mauro Dalla],
Vivone, G.[Gemine],
Chanussot, J.[Jocelyn],
Context-Adaptive Pansharpening Based on Image Segmentation,
GeoRS(55), No. 2, February 2017, pp. 753-766.
IEEE DOI
1702
BibRef
Earlier: A1, A3, A2, A4:
A Pansharpening Algorithm Based on Morphological Filters,
ISMM15(98-109).
Springer DOI
1506
BibRef
Earlier: A1, A3, A1, A4:
Context-Adaptive Pansharpening Based on Binary Partition Tree
Segmentation,
ICIP14(3924-3928)
IEEE DOI
1502
Laplace equations.
Estimation
See also Binary Partition Trees-Based Robust Adaptive Hyperspectral RX Anomaly Detection.
BibRef
Gajbhar, S.S.[Shrishail S.],
Joshi, M.V.[Manjunath V.],
Design of complex adaptive multiresolution directional filter bank and
application to pansharpening,
SIViP(11), No. 2, February 2017, pp. 259-266.
WWW Link.
1702
BibRef
Zhang, K.,
Wang, M.,
Yang, S.,
Multispectral and Hyperspectral Image Fusion Based on Group Spectral
Embedding and Low-Rank Factorization,
GeoRS(55), No. 3, March 2017, pp. 1363-1371.
IEEE DOI
1703
Correlation
BibRef
Duran, J.,
Buades, A.,
Coll, B.,
Sbert, C.,
Blanchet, G.,
A survey of pansharpening methods with a new band-decoupled
variational model,
PandRS(125), No. 1, 2017, pp. 78-105.
Elsevier DOI
1703
Remote sensing
BibRef
Yang, Y.[Yong],
Wan, W.G.[Wei-Guo],
Huang, S.Y.[Shu-Ying],
Lin, P.[Pan],
Que, Y.[Yue],
A Novel Pan-Sharpening Framework Based on Matting Model and
Multiscale Transform,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Xie, B.[Bin],
Zhang, H.K.[Hankui K.],
Huang, B.[Bo],
Revealing Implicit Assumptions of the Component Substitution
Pansharpening Methods,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Yin, H.,
A Joint Sparse and Low-Rank Decomposition for Pansharpening of
Multispectral Images,
GeoRS(55), No. 6, June 2017, pp. 3545-3557.
IEEE DOI
1706
Dictionaries, Distortion, Frequency response, Satellites,
Sparse matrices, Spatial resolution, Details injection (DI),
low-rank decomposition, multispectral image,
panchromatic (PAN) image, pansharpening, sparse, decomposition
BibRef
Grochala, A.[Aleksandra],
Kedzierski, M.[Michal],
A Method of Panchromatic Image Modification for Satellite Imagery
Data Fusion,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Rahaman, K.R.[Khan Rubayet],
Hassan, Q.K.[Quazi K.],
Ahmed, M.R.[M. Razu],
Pan-Sharpening of Landsat-8 Images and Its Application in Calculating
Vegetation Greenness and Canopy Water Contents,
IJGI(6), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Li, Z.B.[Zhong-Bin],
Zhang, H.K.[Hankui K.],
Roy, D.P.[David P.],
Yan, L.[Lin],
Huang, H.Y.[Hai-Yan],
Li, J.[Jian],
Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) of the 30-m
Reflective Wavelength Bands to Sentinel-2 20-m Resolution,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Alparone, L.,
Garzelli, A.,
Vivone, G.,
Intersensor Statistical Matching for Pansharpening:
Theoretical Issues and Practical Solutions,
GeoRS(55), No. 8, August 2017, pp. 4682-4695.
IEEE DOI
1708
Histograms, Instruments, Multiresolution analysis, Remote sensing,
Satellites, Spatial resolution,
multisensor systems, optical transfer functions,
BibRef
Brodu, N.[Nicolas],
Super-Resolving Multiresolution Images With Band-Independent Geometry
of Multispectral Pixels,
GeoRS(55), No. 8, August 2017, pp. 4610-4617.
IEEE DOI
1708
Data models, Earth, Geometry, Remote sensing, Satellites,
Spatial resolution, Image enhancement, image resolution,
multispectral imaging.
BibRef
Choi, J.[Jaewan],
Kim, G.[Guhyeok],
Park, N.[Nyunghee],
Park, H.[Honglyun],
Choi, S.[Seokkeun],
A Hybrid Pansharpening Algorithm of VHR Satellite Images that Employs
Injection Gains Based on NDVI to Reduce Computational Costs,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Park, H.[Honglyun],
Choi, J.[Jaewan],
Park, N.[Nyunghee],
Choi, S.[Seokkeun],
Sharpening the VNIR and SWIR Bands of Sentinel-2A Imagery through
Modified Selected and Synthesized Band Schemes,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Saxena, N.[Nidhi],
Sharma, K.K.[Kamalesh K.],
Pansharpening approach using Hilbert vibration decomposition,
IET-IPR(11), No. 12, Decmeber 2017, pp. 1152-1162.
DOI Link
1712
BibRef
Zheng, Y.[Yalan],
Dai, Q.L.[Qin-Ling],
Tu, Z.G.[Zhi-Gang],
Wang, L.G.[Lei-Guang],
Guided Image Filtering-Based Pan-Sharpening Method:
A Case Study of GaoFen-2 Imagery,
IJGI(6), No. 12, 2017, pp. xx-yy.
DOI Link
1801
BibRef
Vivone, G.,
Restaino, R.,
Chanussot, J.,
A Regression-Based High-Pass Modulation Pansharpening Approach,
GeoRS(56), No. 2, February 2018, pp. 984-996.
IEEE DOI
1802
image fusion, image resolution, remote sensing, GeoEye-1 sensors,
PAN image, Ple´iades sensors, WorldView-2 sensors,
remote sensing
BibRef
Qu, J.H.[Jia-Hui],
Lei, J.[Jie],
Li, Y.S.[Yun-Song],
Dong, W.Q.[Wen-Qian],
Zeng, Z.Y.[Zhi-Yong],
Chen, D.[Dunyu],
Structure Tensor-Based Algorithm for Hyperspectral and Panchromatic
Images Fusion,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Xie, W.Y.[Wei-Ying],
Jiang, T.[Tao],
Li, Y.S.[Yun-Song],
Jia, X.P.[Xiu-Ping],
Lei, J.[Jie],
Structure Tensor and Guided Filtering-Based Algorithm for
Hyperspectral Anomaly Detection,
GeoRS(57), No. 7, July 2019, pp. 4218-4230.
IEEE DOI
1907
Anomaly detection, Hyperspectral imaging, Correlation,
Adaptive weighting, anomaly detection,
structure tensor (ST)
BibRef
Dong, W.Q.[Wen-Qian],
Xiao, S.[Song],
Li, Y.S.[Yun-Song],
Qu, J.H.[Jia-Hui],
Hyperspectral Pansharpening Based on Intrinsic Image Decomposition
and Weighted Least Squares Filter,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Liu, P.,
Xiao, L.,
Li, T.,
A Variational Pan-Sharpening Method Based on Spatial Fractional-Order
Geometry and Spectral-Spatial Low-Rank Priors,
GeoRS(56), No. 3, March 2018, pp. 1788-1802.
IEEE DOI
1804
geophysical image processing, image fusion, image resolution,
image texture, optimisation, remote sensing,
weighted nuclear norm (WNN)
BibRef
Qu, J.H.[Jia-Hui],
Li, Y.S.[Yun-Song],
Dong, W.Q.[Wen-Qian],
Fusion of hyperspectral and panchromatic images using an average
filter and a guided filter,
JVCIR(52), 2018, pp. 151-158.
Elsevier DOI
1804
Hyperspectral (HS) image, Panchromatic (PAN) image,
Guided filter, Average filter, Component substitution (CS)
BibRef
Dong, W.Q.[Wen-Qian],
Xiao, S.[Song],
Qu, J.H.[Jia-Hui],
Fusion of hyperspectral and panchromatic images with guided filter,
SIViP(12), No. 7, October 2018, pp. 1369-1376.
WWW Link.
1809
BibRef
Xing, Y.,
Wang, M.,
Yang, S.,
Zhang, K.,
Pansharpening With Multiscale Geometric Support Tensor Machine,
GeoRS(56), No. 5, May 2018, pp. 2503-2517.
IEEE DOI
1805
Distortion, Image color analysis, Spatial resolution,
Support vector machines, Tensile stress, Transforms,
pansharpening
BibRef
Vivone, G.,
Restaino, R.,
Chanussot, J.,
Full Scale Regression-Based Injection Coefficients for Panchromatic
Sharpening,
IP(27), No. 7, July 2018, pp. 3418-3431.
IEEE DOI
1805
Closed-form solutions, Estimation, Iterative methods,
Multiresolution analysis, Satellites, Spatial resolution,
remote sensing
BibRef
Zhang, Z.Y.[Zi-Yao],
Huang, T.Z.[Ting-Zhu],
Deng, L.J.[Liang-Jian],
Huang, J.[Jie],
Zhao, X.L.[Xi-Le],
Zheng, C.C.[Chao-Chao],
A Framelet-Based Iterative Pan-Sharpening Approach,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Dong, W.Q.[Wen-Qian],
Xiao, S.[Song],
Li, Y.X.[Yong-Xu],
Hyperspectral pansharpening based on guided filter and Gaussian
filter,
JVCIR(53), 2018, pp. 171-179.
Elsevier DOI
1805
Hyperspectral image, Panchromatic image, Image fusion, Guided filter
BibRef
Saxena, N.[Nidhi],
Sharma, K.K.[Kamalesh K.],
Pansharpening scheme using filtering in two-dimensional discrete
fractional Fourier transform,
IET-IPR(12), No. 6, June 2018, pp. 1013-1019.
DOI Link
1805
BibRef
Zhao, C.,
Gao, X.,
Emery, W.J.,
Wang, Y.,
Li, J.,
An Integrated Spatio-Spectral-Temporal Sparse Representation Method
for Fusing Remote-Sensing Images With Different Resolutions,
GeoRS(56), No. 6, June 2018, pp. 3358-3370.
IEEE DOI
1806
Data integration, Image fusion, MODIS, Remote sensing, Sensors,
Spatial resolution, Heterogeneous land surface monitoring,
temporal features
BibRef
Ping, B.[Bo],
Meng, Y.S.[Yun-Shan],
Su, F.Z.[Fen-Zhen],
An Enhanced Linear Spatio-Temporal Fusion Method for Blending Landsat
and MODIS Data to Synthesize Landsat-Like Imagery,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Deng, L.J.,
Vivone, G.,
Guo, W.,
Dalla Mura, M.,
Chanussot, J.,
A Variational Pansharpening Approach Based on Reproducible Kernel
Hilbert Space and Heaviside Function,
IP(27), No. 9, September 2018, pp. 4330-4344.
IEEE DOI
1807
BibRef
Earlier:
ICIP17(535-539)
IEEE DOI
1803
Hilbert spaces, geophysical image processing, image fusion,
image resolution, optimisation, remote sensing,
sparse model.
Distortion, Image edge detection, Kernel, Multiresolution analysis,
Sensors, Spatial resolution
BibRef
Cui, J.T.[Jin-Tian],
Zhang, X.[Xin],
Luo, M.Y.[Mu-Ying],
Combining Linear Pixel Unmixing and STARFM for Spatiotemporal Fusion
of Gaofen-1 Wide Field of View Imagery and MODIS Imagery,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Garzelli, A.[Andrea],
Aiazzi, B.[Bruno],
Alparone, L.[Luciano],
Lolli, S.[Simone],
Vivone, G.[Gemine],
Multispectral Pansharpening with Radiative Transfer-Based
Detail-Injection Modeling for Preserving Changes in Vegetation Cover,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Scarpa, G.,
Vitale, S.,
Cozzolino, D.,
Target-Adaptive CNN-Based Pansharpening,
GeoRS(56), No. 9, September 2018, pp. 5443-5457.
IEEE DOI
1809
Training, Sensors, Spatial resolution, Transforms, Protocols,
Remote sensing, Convolutional neural networks (CNN),
Urban areas
BibRef
Ciotola, M.[Matteo],
Scarpa, G.[Giuseppe],
Fast Full-Resolution Target-Adaptive CNN-Based Pansharpening
Framework,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
He, G.Q.[Gui-Qing],
Xing, S.Y.[Si-Yuan],
Xia, Z.Q.A.[Zhao-Qi-Ang],
Huang, Q.Q.[Qing-Qing],
Fan, J.P.[Jian-Ping],
Panchromatic and multi-spectral image fusion for new satellites based
on multi-channel deep model,
RealTimeIP(14), No. 1, January 2018, pp. 933-946.
Springer DOI
1809
BibRef
Zhong, D.T.[De-Tang],
Zhou, F.[Fuqun],
A Prediction Smooth Method for Blending Landsat and Moderate
Resolution Imagine Spectroradiometer Images,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Lee, J.[Jacky],
Cardille, J.A.[Jeffrey A.],
Coe, M.T.[Michael T.],
BULC-U: Sharpening Resolution and Improving Accuracy of
Land-Use/Land-Cover Classifications in Google Earth Engine,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Xing, Y.H.[Ying-Hui],
Wang, M.[Min],
Yang, S.Y.[Shu-Yuan],
Jiao, L.C.[Li-Cheng],
Pan-sharpening via deep metric learning,
PandRS(145), 2018, pp. 165-183.
Elsevier DOI
1810
Pan-sharpening, Deep metric learning,
Stacked Sparse AutoEncoders, Geometric multi-manifold embedding
BibRef
Gogineni, R.[Rajesh],
Chaturvedi, A.[Ashvini],
Sparsity inspired pan-sharpening technique using multi-scale learned
dictionary,
PandRS(146), 2018, pp. 360-372.
Elsevier DOI
1812
Pan-sharpening, Sparse representation, Dictionary learning,
Wavelet transform, Multi-scale learned dictionary
BibRef
Vivone, G.,
Addesso, P.,
Restaino, R.,
Dalla Mura, M.,
Chanussot, J.,
Pansharpening Based on Deconvolution for Multiband Filter Estimation,
GeoRS(57), No. 1, January 2019, pp. 540-553.
IEEE DOI
1901
Iron, Sensors, Feature extraction, Deconvolution, Spatial resolution,
Image sensors, Estimation, Deconvolution, image fusion,
remote sensing
BibRef
Zhang, K.[Kai],
Wang, M.[Min],
Yang, S.Y.[Shu-Yuan],
Jiao, L.C.[Li-Cheng],
Convolution Structure Sparse Coding for Fusion of Panchromatic and
Multispectral Images,
GeoRS(57), No. 2, February 2019, pp. 1117-1130.
IEEE DOI
1901
Image coding, Convolution, Dictionaries, Image fusion, Correlation,
Image restoration, Image resolution,
structure sparsity
BibRef
Xing, Y.H.[Ying-Hui],
Yang, S.Y.[Shu-Yuan],
Feng, Z.X.[Zhi-Xi],
Jiao, L.C.[Li-Cheng],
Dual-Collaborative Fusion Model for Multispectral and Panchromatic
Image Fusion,
GeoRS(60), 2022, pp. 1-15.
IEEE DOI
2112
Feature extraction, Image fusion, Task analysis, Collaboration,
Image reconstruction, Remote sensing, Spatial resolution, remote sensing
BibRef
Xing, Y.H.[Ying-Hui],
Yang, S.Y.[Shu-Yuan],
Zhang, Y.[Yan],
Zhang, Y.N.[Yan-Ning],
Learning Spectral Cues for Multispectral and Panchromatic Image
Fusion,
IP(31), 2022, pp. 6964-6975.
IEEE DOI
2212
Feature extraction, Image fusion, Pansharpening, Task analysis,
Spatial resolution, Remote sensing, Modulation, Image fusion,
generative adversarial networks
BibRef
Paris, C.,
Bioucas-Dias, J.,
Bruzzone, L.,
A Novel Sharpening Approach for Superresolving Multiresolution
Optical Images,
GeoRS(57), No. 3, March 2019, pp. 1545-1560.
IEEE DOI
1903
geophysical image processing, image colour analysis,
image denoising, image resolution, image sequences, superresolution
BibRef
Choi, J.[Jaewan],
Park, H.[Honglyun],
Seo, D.[Doochun],
Pansharpening Using Guided Filtering to Improve the Spatial Clarity
of VHR Satellite Imagery,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Xia, H.P.[Hai-Ping],
Chen, Y.H.[Yun-Hao],
Quan, J.L.[Jin-Ling],
Li, J.[Jing],
Object-Based Window Strategy in Thermal Sharpening,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Liu, J.[Junmin],
Ma, J.[Jing],
Fei, R.R.[Rong-Rong],
Li, H.R.[Hui-Rong],
Zhang, J.S.[Jiang-She],
Enhanced Back-Projection as Postprocessing for Pansharpening,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Luo, X.[Xukun],
Yin, J.[Jihao],
Luo, X.Y.[Xiao-Yan],
Jia, X.P.[Xiu-Ping],
A Novel Adversarial Based Hyperspectral and Multispectral Image
Fusion,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Zhang, K.[Kai],
Zhang, F.[Feng],
Yang, S.Y.[Shu-Yuan],
Fusion of Multispectral and Panchromatic Images via Spatial Weighted
Neighbor Embedding,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Ye, F.[Fei],
Guo, Y.[Yecai],
Zhuang, P.X.[Pei-Xian],
Pan-sharpening via a gradient-based deep network prior,
SP:IC(74), 2019, pp. 322-331.
Elsevier DOI
1904
Pan-sharpening, Model-based optimization,
Convolutional neural network, Gradient-based prior
BibRef
Qu, J.H.[Jia-Hui],
Li, Y.S.[Yun-Song],
Du, Q.[Qian],
Dong, W.Q.[Wen-Qian],
Xi, B.[Bobo],
Hyperspectral Pansharpening Based on Homomorphic Filtering and
Weighted Tensor Matrix,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Yin, H.,
PAN-Guided Cross-Resolution Projection for Local Adaptive Sparse
Representation- Based Pansharpening,
GeoRS(57), No. 7, July 2019, pp. 4938-4950.
IEEE DOI
1907
Spatial resolution, Image reconstruction, Dictionaries,
Signal resolution, Image sensors, Sensors, sparse representation
BibRef
Wang, J.,
Yang, X.,
Zhu, R.,
Random Walks for Pansharpening in Complex Tight Framelet Domain,
GeoRS(57), No. 7, July 2019, pp. 5121-5134.
IEEE DOI
1907
Transforms, Hidden Markov models, Image fusion, Spatial resolution,
Probability, Computational modeling, Image edge detection, random walks (RWs)
BibRef
Li, W.[Wei],
Jiang, J.[Jiale],
Guo, T.[Tai],
Zhou, M.[Meng],
Tang, Y.[Yining],
Wang, Y.[Ying],
Zhang, Y.[Yu],
Cheng, T.[Tao],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Yao, X.[Xia],
Generating Red-Edge Images at 3 M Spatial Resolution by Fusing
Sentinel-2 and Planet Satellite Products,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Zhang, Y.,
Liu, C.,
Sun, M.,
Ou, Y.,
Pan-Sharpening Using an Efficient Bidirectional Pyramid Network,
GeoRS(57), No. 8, August 2019, pp. 5549-5563.
IEEE DOI
1908
geophysical image processing, geophysical techniques,
image resolution, remote sensing, pan-sharpened image, remote sensing
BibRef
Gewali, U.B.[Utsav B.],
Monteiro, S.T.[Sildomar T.],
Saber, E.[Eli],
Spectral Super-Resolution with Optimized Bands,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Shen, H.,
Jiang, M.,
Li, J.,
Yuan, Q.,
Wei, Y.,
Zhang, L.,
Spatial-Spectral Fusion by Combining Deep Learning and Variational
Model,
GeoRS(57), No. 8, August 2019, pp. 6169-6181.
IEEE DOI
1908
convolutional neural nets, feature extraction,
geophysical image processing, image classification, image fusion,
spatial-spectral fusion
BibRef
Ulfarsson, M.O.,
Palsson, F.,
Mura, M.D.[M. Dalla],
Sveinsson, J.R.,
Sentinel-2 Sharpening Using a Reduced-Rank Method,
GeoRS(57), No. 9, September 2019, pp. 6408-6420.
IEEE DOI
1909
Spatial resolution, Image sensors, Optimization, Thermal sensors,
Remote sensing, Cyclic descent (CD), data fusion, image sharpening,
superresolution
BibRef
Vivone, G.,
Robust Band-Dependent Spatial-Detail Approaches for Panchromatic
Sharpening,
GeoRS(57), No. 9, September 2019, pp. 6421-6433.
IEEE DOI
1909
Sensors, Spatial resolution, Multiresolution analysis, Estimation,
Benchmark testing, Wavelet transforms, robust regression
BibRef
Hu, J.[Jie],
He, Z.[Zhi],
Wu, J.[Jiemin],
Deep Self-Learning Network for Adaptive Pansharpening,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Vivone, G.[Gemine],
Alparone, L.[Luciano],
Garzelli, A.[Andrea],
Lolli, S.[Simone],
Fast Reproducible Pansharpening Based on Instrument and Acquisition
Modeling: AWLP Revisited,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Li, K.,
Xie, W.,
Du, Q.,
Li, Y.,
DDLPS: Detail-Based Deep Laplacian Pansharpening for Hyperspectral
Imagery,
GeoRS(57), No. 10, October 2019, pp. 8011-8025.
IEEE DOI
1910
geophysical image processing, hyperspectral imaging,
image colour analysis, image filtering, image resolution, Sylvester equation
BibRef
Jing, Y.H.[Ying-Hong],
Shen, H.F.[Huan-Feng],
Li, X.H.[Xing-Hua],
Guan, X.O.[Xia-Obin],
A Two-Stage Fusion Framework to Generate a Spatio-Temporally
Continuous MODIS NDSI Product over the Tibetan Plateau,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Liu, P.F.[Peng-Fei],
Pansharpening with transform-based gradient transferring model,
IET-IPR(13), No. 13, November 2019, pp. 2614-2622.
DOI Link
1911
BibRef
Mao, T.[Ting],
Tang, H.[Hong],
Huang, W.[Wei],
Unsupervised Classification of Multispectral Images Embedded With a
Segmentation of Panchromatic Images Using Localized Clusters,
GeoRS(57), No. 11, November 2019, pp. 8732-8744.
IEEE DOI
1911
Image segmentation, Spatial resolution, Remote sensing,
Image color analysis, Spatial coherence, Fuses, unsupervised classification
BibRef
Li, Z.Q.[Zhi-Qiang],
Cheng, C.Q.[Cheng-Qi],
A CNN-Based Pan-Sharpening Method for Integrating Panchromatic and
Multispectral Images Using Landsat 8,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Wang, D.[Dong],
Li, Y.[Ying],
Ma, L.[Li],
Bai, Z.[Zongwen],
Chan, J.C.W.[Jonathan Cheung-Wai],
Going Deeper with Densely Connected Convolutional Neural Networks for
Multispectral Pansharpening,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
He, G.[Gang],
Zhong, J.P.[Jia-Ping],
Lei, J.[Jie],
Li, Y.S.[Yun-Song],
Xie, W.Y.[Wei-Ying],
Hyperspectral Pansharpening Based on Spectral Constrained Adversarial
Autoencoder,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
See also Autoencoder and Adversarial-Learning-Based Semisupervised Background Estimation for Hyperspectral Anomaly Detection.
BibRef
Yilmaz, C.S.[Cigdem Serifoglu],
Yilmaz, V.[Volkan],
Gungor, O.[Oguz],
Shan, J.[Jie],
Metaheuristic pansharpening based on symbiotic organisms search
optimization,
PandRS(158), 2019, pp. 167-187.
Elsevier DOI
1912
Pansharpening, Symbiotic organisms search,
Synthetic variable ratio, Metaheuristic algorithms, Image fusion
BibRef
Dong, W.Q.[Wen-Qian],
Xiao, S.[Song],
Qu, J.H.[Jia-Hui],
Local model-based hyperspectral pansharpening algorithm via
optimization constraint equation and sliding window,
JOSA-A(36), No. 11, November 2019, pp. 1917-1925.
DOI Link
1912
Image enhancement, Image fusion, Image processing,
Image quality, Spatial filtering, Spatial resolution
BibRef
Khateri, M.[Mohammad],
Shabanzade, F.[Fahim],
Mirzapour, F.[Fardin],
Regularised IHS-based pan-sharpening approach using spectral
consistency constraint and total variation,
IET-IPR(14), No. 1, January 2020, pp. 94-104.
DOI Link
1912
BibRef
Wang, Q.,
Shi, W.,
Atkinson, P.M.,
Information Loss-Guided Multi-Resolution Image Fusion,
GeoRS(58), No. 1, January 2020, pp. 45-57.
IEEE DOI
2001
Spatial resolution, Image fusion, Remote sensing, Earth, Coherence,
Predictive models, Downscaling, information loss (IL)
BibRef
Xu, Y.,
Wu, Z.,
Chanussot, J.,
Comon, P.,
Wei, Z.,
Nonlocal Coupled Tensor CP Decomposition for Hyperspectral and
Multispectral Image Fusion,
GeoRS(58), No. 1, January 2020, pp. 348-362.
IEEE DOI
2001
Spatial resolution, Hyperspectral imaging, Sparse matrices,
Matrix decomposition, nonlocal tensor
BibRef
Vitale, S.[Sergio],
Scarpa, G.[Giuseppe],
A Detail-Preserving Cross-Scale Learning Strategy for CNN-Based
Pansharpening,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Jia, D.[Duo],
Song, C.Q.[Chang-Qing],
Cheng, C.X.[Chang-Xiu],
Shen, S.[Shi],
Ning, L.X.[Li-Xin],
Hui, C.[Chun],
A Novel Deep Learning-Based Spatiotemporal Fusion Method for
Combining Satellite Images with Different Resolutions Using a
Two-Stream Convolutional Neural Network,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Jia, D.[Duo],
Cheng, C.X.[Chang-Xiu],
Song, C.Q.[Chang-Qing],
Shen, S.[Shi],
Ning, L.X.[Li-Xin],
Zhang, T.Y.[Tian-Yuan],
A Hybrid Deep Learning-Based Spatiotemporal Fusion Method for
Combining Satellite Images with Different Resolutions,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
1806
BibRef
Yang, Y.[Yong],
Tu, W.[Wei],
Huang, S.Y.[Shu-Ying],
Lu, H.Y.[Hang-Yuan],
PCDRN: Progressive Cascade Deep Residual Network for Pansharpening,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Huang, W.[Wei],
Feng, J.J.[Jing-Jing],
Wang, H.[Hua],
Sun, L.[Le],
A New Architecture of Densely Connected Convolutional Networks for
Pan-Sharpening,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Phinzi, K.[Kwanele],
Abriha, D.[Dávid],
Bertalan, L.[László],
Holb, I.[Imre],
Szabó, S.[Szilárd],
Machine Learning for Gully Feature Extraction Based on a
Pan-Sharpened Multispectral Image: Multiclass vs. Binary Approach,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Jiang, M.H.[Meng-Hui],
Shen, H.F.[Huan-Feng],
Li, J.[Jie],
Yuan, Q.Q.[Qiang-Qiang],
Zhang, L.P.[Liang-Pei],
A differential information residual convolutional neural network for
pansharpening,
PandRS(163), 2020, pp. 257-271.
Elsevier DOI
2005
Pansharpening, RCNN, Differential information mapping, Auxiliary gradient
BibRef
Huang, W.[Wei],
Fei, X.[Xuan],
Feng, J.J.[Jing-Jing],
Wang, H.[Hua],
Liu, Y.[Yan],
Huang, Y.[Yao],
Pan-sharpening via multi-scale and multiple deep neural networks,
SP:IC(85), 2020, pp. 115850.
Elsevier DOI
2005
Deep neural network (DNN), Residual compensation,
Multispectral image, Pan-sharpening
BibRef
Kim, Y.[Yeseul],
Kyriakidis, P.C.[Phaedon C.],
Park, N.W.[No-Wook],
A Cross-Resolution, Spatiotemporal Geostatistical Fusion Model for
Combining Satellite Image Time-Series of Different Spatial and
Temporal Resolutions,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Fu, S.P.[Shi-Peng],
Meng, W.H.[Wei-Hua],
Jeon, G.G.[Gwang-Gil],
Chehri, A.[Abdellah],
Zhang, R.Z.[Rong-Zhu],
Yang, X.M.[Xiao-Min],
Two-Path Network with Feedback Connections for Pan-Sharpening in
Remote Sensing,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Liu, C.[Chi],
Zhang, Y.J.[Yong-Jun],
Wang, S.G.[Shu-Gen],
Sun, M.W.[Ming-Wei],
Ou, Y.J.[Yang-Jun],
Wan, Y.[Yi],
Liu, X.[Xiu],
Band-Independent Encoder-Decoder Network for Pan-Sharpening of Remote
Sensing Images,
GeoRS(58), No. 7, July 2020, pp. 5208-5223.
IEEE DOI
2006
Decoding, Image resolution, Task analysis, Remote sensing,
Feature extraction, Sensors, Transforms, Band-independent, pan-sharpening
BibRef
Xu, S.,
Amira, O.,
Liu, J.,
Zhang, C.,
Zhang, J.,
Li, G.,
HAM-MFN: Hyperspectral and Multispectral Image Multiscale Fusion
Network With RAP Loss,
GeoRS(58), No. 7, July 2020, pp. 4618-4628.
IEEE DOI
2006
Feature extraction, Distortion, Tensors, Neural networks,
Laplace equations, Spatial resolution, Angle loss,
multispectral image (MSI)
BibRef
Wang, X.,
Mu, Z.,
Song, R.,
Tao, J.,
Song, C.,
A Hyperspectral Image NSST-HMF Model and Its Application in
HS-Pansharpening,
GeoRS(58), No. 7, July 2020, pp. 4803-4817.
IEEE DOI
2006
Hidden Markov models, Spatial resolution, Transforms, Correlation,
Predictive models, Remote sensing,
spatial-spectral collaborate correlation
BibRef
Addesso, P.,
Vivone, G.,
Restaino, R.,
Chanussot, J.,
A Data-Driven Model-Based Regression Applied to Panchromatic
Sharpening,
IP(29), 2020, pp. 7779-7794.
IEEE DOI
2007
Multivariate linear regression, injection models, pansharpening,
image fusion, remote sensing
BibRef
Vivone, G.,
Marano, S.,
Chanussot, J.,
Pansharpening: Context-Based Generalized Laplacian Pyramids by Robust
Regression,
GeoRS(58), No. 9, September 2020, pp. 6152-6167.
IEEE DOI
2008
Robustness, Spatial resolution, Estimation,
Multiresolution analysis, Discrete wavelet transforms, robust regression
BibRef
Tian, X.,
Chen, Y.,
Yang, C.,
Gao, X.,
Ma, J.,
A Variational Pansharpening Method Based on Gradient Sparse
Representation,
SPLetters(27), 2020, pp. 1180-1184.
IEEE DOI
2007
Pansharpening, variational model, gradient sparse representation, remote sensing
BibRef
Dong, W.,
Liang, J.,
Xiao, S.,
Saliency Analysis and Gaussian Mixture Model-Based Detail Extraction
Algorithm for Hyperspectral Pansharpening,
GeoRS(58), No. 8, August 2020, pp. 5462-5476.
IEEE DOI
2007
Bayes methods, Spatial resolution, Principal component analysis,
Distortion, Remote sensing, Data mining, Detail extraction, saliency analysis
BibRef
Zhou, C.S.[Chang-Sheng],
Zhang, J.S.[Jiang-She],
Liu, J.M.[Jun-Min],
Zhang, C.X.[Chun-Xia],
Fei, R.R.[Rong-Rong],
Xu, S.[Shuang],
PercepPan: Towards Unsupervised Pan-Sharpening Based on Perceptual
Loss,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Li, Z.B.[Zhong-Bin],
Zhang, H.K.[Hankui K.],
Roy, D.P.[David P.],
Yan, L.[Lin],
Huang, H.Y.[Hai-Yan],
Sharpening the Sentinel-2 10 and 20 m Bands to Planetscope-0 3 m
Resolution,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Liu, J.M.[Jun-Min],
Feng, Y.Q.[Yun-Qiao],
Zhou, C.S.[Chang-Sheng],
Zhang, C.X.[Chun-Xia],
PWNet: An Adaptive Weight Network for the Fusion of Panchromatic and
Multispectral Images,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Wang, K.D.[Kai-Dong],
Wang, Y.[Yao],
Zhao, X.L.[Xi-Le],
Chan, J.C.W.[Jonathan Cheung-Wai],
Xu, Z.B.[Zong-Ben],
Meng, D.Y.[De-Yu],
Hyperspectral and Multispectral Image Fusion via Nonlocal Low-Rank
Tensor Decomposition and Spectral Unmixing,
GeoRS(58), No. 11, November 2020, pp. 7654-7671.
IEEE DOI
2011
Tensile stress, Image fusion, Sparse matrices, Spatial resolution,
Correlation, Imaging, Machine learning, Hyperspectral (HS) image,
spectral unmixing
BibRef
Kong, X.Y.[Xiang-Yang],
Zhao, Y.Q.[Yong-Qiang],
Chan, J.C.W.[Jonathan Cheung-Wai],
Xue, J.[Jize],
Hyperspectral Image Restoration via Spatial-Spectral Residual Total
Variation Regularized Low-Rank Tensor Decomposition,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Bu, Y.Y.[Yuan-Yang],
Zhao, Y.Q.[Yong-Qiang],
Xue, J.Z.[Ji-Ze],
Chan, J.C.W.[Jonathan Cheung-Wai],
Kong, S.G.[Seong G.],
Yi, C.[Chen],
Wen, J.H.[Jin-Huan],
Wang, B.L.[Bing-Lu],
Hyperspectral and Multispectral Image Fusion via Graph
Laplacian-Guided Coupled Tensor Decomposition,
GeoRS(59), No. 1, January 2021, pp. 648-662.
IEEE DOI
2012
Tensile stress, Matrix decomposition, Sparse matrices,
Laplace equations, Manifolds, Hyperspectral imaging,
manifold structure
BibRef
Xie, Q.[Qi],
Zhou, M.H.[Ming-Hao],
Zhao, Q.[Qian],
Xu, Z.B.[Zong-Ben],
Meng, D.Y.[De-Yu],
MHF-Net: An Interpretable Deep Network for Multispectral and
Hyperspectral Image Fusion,
PAMI(44), No. 3, March 2022, pp. 1457-1473.
IEEE DOI
2202
Training, Hyperspectral imaging, Task analysis,
Network architecture, Testing, Sensors, generalization
BibRef
Zhang, B.[Bihui],
Cao, X.Y.[Xiang-Yong],
Meng, D.Y.[De-Yu],
A Deep Unfolding Network for Multispectral and Hyperspectral Image
Fusion,
RS(16), No. 21, 2024, pp. 3979.
DOI Link
2411
BibRef
Xie, Q.[Qi],
Zhou, M.H.[Ming-Hao],
Zhao, Q.[Qian],
Meng, D.Y.[De-Yu],
Zuo, W.M.[Wang-Meng],
Xu, Z.B.[Zong-Ben],
Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net,
CVPR19(1585-1594).
IEEE DOI
2002
BibRef
Zheng, Y.X.[Yu-Xuan],
Li, J.J.[Jiao-Jiao],
Li, Y.S.[Yun-Song],
Guo, J.[Jie],
Wu, X.Y.[Xian-Yun],
Chanussot, J.[Jocelyn],
Hyperspectral Pansharpening Using Deep Prior and Dual Attention
Residual Network,
GeoRS(58), No. 11, November 2020, pp. 8059-8076.
IEEE DOI
2011
Spatial resolution, Hyperspectral imaging, Bayes methods,
Deep hyperspectral prior (DHP),
hyperspectral (HS) pansharpening
BibRef
Constans, Y.,
Fabre, S.,
Seymour, M.,
Crombez, V.,
Briottet, X.,
Deville, Y.,
Fusion of Hyperspectral and Panchromatic Data By Spectral Unmixing In
The Reflective Domain,
ISPRS20(B3:567-574).
DOI Link
2012
BibRef
Restaino, R.,
Vivone, G.,
Addesso, P.,
Chanussot, J.,
Hyperspectral Sharpening Approaches Using Satellite Multiplatform
Data,
GeoRS(59), No. 1, January 2021, pp. 578-596.
IEEE DOI
2012
Spatial resolution, Sensors, Satellites, Image sensors,
Hyperspectral sensors, Hyperion data,
remote sensing
BibRef
Xie, W.,
Cui, Y.,
Li, Y.,
Lei, J.,
Du, Q.,
Li, J.,
HPGAN: Hyperspectral Pansharpening Using 3-D Generative Adversarial
Networks,
GeoRS(59), No. 1, January 2021, pp. 463-477.
IEEE DOI
2012
Generators, Generative adversarial networks, Spatial resolution,
Bayes methods, Data models,
3-D high-frequency block
BibRef
Zhang, H.[Hao],
Ma, J.Y.[Jia-Yi],
GTP-PNet: A residual learning network based on gradient
transformation prior for pansharpening,
PandRS(172), 2021, pp. 223-239.
Elsevier DOI
2101
Pansharpening, Gradient transformation prior, Deep learning,
Image fusion, Remote sensing
BibRef
Chen, B.[Bin],
Li, J.[Jing],
Jin, Y.F.[Yu-Fang],
Deep Learning for Feature-Level Data Fusion: Higher Resolution
Reconstruction of Historical Landsat Archive,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Li, W.S.[Wei-Sheng],
Liang, X.S.[Xue-Song],
Dong, M.L.[Mei-Lin],
MDECNN: A Multiscale Perception Dense Encoding Convolutional Neural
Network for Multispectral Pan-Sharpening,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Hu, J.W.[Jian-Wen],
Hu, P.[Pei],
Kang, X.D.[Xu-Dong],
Zhang, H.[Hui],
Fan, S.S.[Shao-Sheng],
Pan-Sharpening via Multiscale Dynamic Convolutional Neural Network,
GeoRS(59), No. 3, March 2021, pp. 2231-2244.
IEEE DOI
2103
Convolution, Feature extraction, Spatial resolution, Standards,
Image reconstruction, Convolutional neural networks,
weight generation network
BibRef
Alparone, M.,
Nunziata, F.,
Estatico, C.,
Migliaccio, M.,
A Multichannel Data Fusion Method to Enhance the Spatial Resolution
of Microwave Radiometer Measurements,
GeoRS(59), No. 3, March 2021, pp. 2213-2221.
IEEE DOI
2103
Spatial resolution, Microwave radiometry, Microwave measurement,
Frequency measurement, Kernel, Microwave imaging,
resolution enhancement
BibRef
Wang, W.Q.[Wen-Qing],
Zhou, Z.Q.[Zhi-Qiang],
Liu, H.[Han],
Xie, G.[Guo],
MSDRN: Pansharpening of Multispectral Images via Multi-Scale Deep
Residual Network,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Ozcelik, F.,
Alganci, U.,
Sertel, E.,
Unal, G.,
Rethinking CNN-Based Pansharpening:
Guided Colorization of Panchromatic Images via GANs,
GeoRS(59), No. 4, April 2021, pp. 3486-3501.
IEEE DOI
2104
Task analysis, Spatial resolution, Training, Standards, Sensors,
Multiresolution analysis, AI, colorization,
super-resolution (SR)
BibRef
Qu, Y.,
Baghbaderani, R.K.,
Qi, H.,
Kwan, C.,
Unsupervised Pansharpening Based on Self-Attention Mechanism,
GeoRS(59), No. 4, April 2021, pp. 3192-3208.
IEEE DOI
2104
Spatial resolution, Image reconstruction, Sensors, Satellites,
Image segmentation, Machine learning, Attention mechanism,
unsupervised deep learning
BibRef
Alcaras, E.[Emanuele],
Parente, C.[Claudio],
Vallario, A.[Andrea],
Automation of Pan-Sharpening Methods for Pléiades Images Using GIS
Basic Functions,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Xu, H.[Han],
Ma, J.Y.[Jia-Yi],
Shao, Z.F.[Zhen-Feng],
Zhang, H.[Hao],
Jiang, J.J.[Jun-Junb],
Guo, X.J.[Xiao-Jie],
SDPNet: A Deep Network for Pan-Sharpening With Enhanced Information
Representation,
GeoRS(59), No. 5, May 2021, pp. 4120-4134.
IEEE DOI
2104
Feature extraction, Spatial resolution,
Information representation, Data mining, Satellites, Training,
pan-sharpening
BibRef
Liu, Q.[Qin],
Han, L.T.[Le-Tong],
Tan, R.[Rui],
Fan, H.F.[Hong-Fei],
Li, W.Q.[Wei-Qi],
Zhu, H.M.[Hong-Ming],
Du, B.[Bowen],
Liu, S.[Sicong],
Hybrid Attention Based Residual Network for Pansharpening,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Peng, J.Y.[Jin-Ye],
Liu, L.[Lu],
Wang, J.[Jun],
Zhang, E.[Erlei],
Zhu, X.[Xuan],
Zhang, Y.Q.[Yong-Qin],
Feng, J.[Jie],
Jiao, L.C.[Li-Cheng],
PSMD-Net: A Novel Pan-Sharpening Method Based on a Multiscale Dense
Network,
GeoRS(59), No. 6, June 2021, pp. 4957-4971.
IEEE DOI
2106
Feature extraction, Spatial resolution, Image reconstruction,
Kernel, Frequency modulation, Remote sensing, residual learning
BibRef
Benzenati, T.[Tayeb],
Kallel, A.[Abdelaziz],
Kessentini, Y.[Yousri],
Two Stages Pan-Sharpening Details Injection Approach Based on Very
Deep Residual Networks,
GeoRS(59), No. 6, June 2021, pp. 4984-4992.
IEEE DOI
2106
Spatial resolution, Signal resolution,
Estimation, Task analysis, Convolutional neural networks (CNNs),
residual learning
BibRef
Li, W.S.[Wei-Sheng],
Xiang, M.H.[Ming-Hao],
Liang, X.S.[Xue-Song],
MDCwFB: A Multilevel Dense Connection Network with Feedback
Connections for Pansharpening,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Li, W.S.[Wei-Sheng],
Xiang, M.H.[Ming-Hao],
Liang, X.S.[Xue-Song],
A Dense Encoder-Decoder Network with Feedback Connections for
Pan-Sharpening,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhang, L.P.[Li-Ping],
Li, W.S.[Wei-Sheng],
Huang, H.F.[He-Fengo],
Lei, D.J.[Da-Jiang],
A Pansharpening Generative Adversarial Network with Multilevel
Structure Enhancement and a Multistream Fusion Architecture,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Wu, Y.Y.[Yuan-Yuan],
Huang, M.X.[Meng-Xing],
Li, Y.C.[Yu-Chun],
Feng, S.L.[Si-Ling],
Wu, D.[Di],
A Distributed Fusion Framework of Multispectral and Panchromatic
Images Based on Residual Network,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Xie, Y.C.[Yu-Chen],
Wu, W.[Wei],
Yang, H.P.[Hai-Ping],
Wu, N.[Ning],
Shen, Y.[Ying],
Detail Information Prior Net for Remote Sensing Image Pansharpening,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Deng, L.J.[Liang-Jian],
Vivone, G.[Gemine],
Jin, C.[Cheng],
Chanussot, J.[Jocelyn],
Detail Injection-Based Deep Convolutional Neural Networks for
Pansharpening,
GeoRS(59), No. 8, August 2021, pp. 6995-7010.
IEEE DOI
2108
Spatial resolution,
Convolutional neural networks, Multiresolution analysis,
remote sensing
BibRef
Xu, H.[Han],
Le, Z.L.[Zhu-Liang],
Huang, J.[Jun],
Ma, J.Y.[Jia-Yi],
A Cross-Direction and Progressive Network for Pan-Sharpening,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Smadi, A.A.L.[Ahmad A.L.],
Yang, S.Y.[Shu-Yuan],
Mehmood, A.[Atif],
Abugabah, A.[Ahed],
Wang, M.[Min],
Bashir, M.[Muzaffar],
Smart pansharpening approach using kernel-based image filtering,
IET-IPR(15), No. 11, 2021, pp. 2629-2642.
DOI Link
2108
BibRef
Addesso, P.[Paolo],
Restaino, R.[Rocco],
Vivone, G.[Gemine],
An Improved Version of the Generalized Laplacian Pyramid Algorithm
for Pansharpening,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Xie, G.Q.[Guang-Qi],
Wang, M.[Mi],
Zhang, Z.Q.[Zhi-Qi],
Xiang, S.[Shao],
He, L.X.[Lu-Xiao],
Near Real-Time Automatic Sub-Pixel Registration of Panchromatic and
Multispectral Images for Pan-Sharpening,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhang, Y.H.[Yi-Hang],
Atkinson, P.M.[Peter M.],
Ling, F.[Feng],
Foody, G.M.[Giles M.],
Wang, Q.[Qunming],
Ge, Y.[Yong],
Li, X.D.[Xiao-Dong],
Du, Y.[Yun],
Object-Based Area-to-Point Regression Kriging for Pansharpening,
GeoRS(59), No. 10, October 2021, pp. 8599-8614.
IEEE DOI
2109
Satellites, Sensors, Image segmentation, Image sensors,
Spatial resolution, Optical sensors, Bandwidth, Downscaling,
segmentation
BibRef
Huang, W.W.[Wei-Wei],
Zhang, Y.[Yan],
Zhang, J.W.[Jian-Wei],
Zheng, Y.H.[Yu-Hui],
Convolutional Neural Network for Pansharpening with Spatial Structure
Enhancement Operator,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Zhang, L.[Libao],
Zhang, J.[Jue],
Ma, J.[Jie],
Jia, X.P.[Xiu-Ping],
SC-PNN: Saliency Cascade Convolutional Neural Network for
Pansharpening,
GeoRS(59), No. 11, November 2021, pp. 9697-9715.
IEEE DOI
2111
Pansharpening, Remote sensing, Spatial resolution,
Image restoration, Convolution, Task analysis, Proposals, saliency analysis
BibRef
Long, J.[Jian],
Peng, Y.X.[Yuan-Xi],
Blind Fusion of Hyperspectral Multispectral Images Based on Matrix
Factorization,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Lin, H.[Hong],
Li, J.[Jun],
Peng, Y.Y.X.[Yuan-Yan-Xi],
Zhou, T.[Tong],
Long, J.[Jian],
Gui, J.L.[Jia-Lin],
Correlation Matrix-Based Fusion of Hyperspectral and Multispectral
Images,
RS(15), No. 14, 2023, pp. 3643.
DOI Link
2307
BibRef
Gastineau, A.[Anaďs],
Aujol, J.F.[Jean-François],
Berthoumieu, Y.[Yannick],
Germain, C.[Christian],
Generative Adversarial Network for Pansharpening With Spectral and
Spatial Discriminators,
GeoRS(60), 2022, pp. 1-11.
IEEE DOI
2112
Spatial resolution, Pansharpening,
Generative adversarial networks, Vegetation mapping, Satellites,
remote sensing
BibRef
Tian, X.[Xin],
Chen, Y.R.[Yue-Rong],
Yang, C.C.[Chang-Cai],
Ma, J.Y.[Jia-Yi],
Variational Pansharpening by Exploiting Cartoon-Texture Similarities,
GeoRS(60), 2022, pp. 1-16.
IEEE DOI
2112
Pansharpening, Spatial resolution, Remote sensing, Optimization,
Vegetation mapping, TV, Satellites,
total variation (TV)
BibRef
Ma, W.P.[Wen-Ping],
Shen, J.C.[Jian-Chao],
Zhu, H.[Hao],
Zhang, J.[Jun],
Zhao, J.L.[Ji-Liang],
Hou, B.[Biao],
Jiao, L.C.[Li-Cheng],
A Novel Adaptive Hybrid Fusion Network for Multiresolution Remote
Sensing Images Classification,
GeoRS(60), 2022, pp. 1-17.
IEEE DOI
2112
Feature extraction, Spatial resolution, Pansharpening, Data mining,
Remote sensing, Fuses, Data integration, Data difference reduction,
remote sensing
BibRef
Wang, Y.[Yulei],
Zhu, Q.Y.[Qing-Yu],
Shi, Y.[Yao],
Song, M.P.[Mei-Ping],
Yu, C.Y.[Chun-Yan],
A Spatial-Enhanced LSE-SFIM Algorithm for Hyperspectral and
Multispectral Images Fusion,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Constans, Y.[Yohann],
Fabre, S.[Sophie],
Seymour, M.[Michael],
Crombez, V.[Vincent],
Deville, Y.[Yannick],
Briottet, X.[Xavier],
Hyperspectral Pansharpening in the Reflective Domain with a Second
Panchromatic Channel in the SWIR II Spectral Domain,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Lu, H.Y.[Hang-Yuan],
Yang, Y.[Yong],
Huang, S.Y.[Shu-Ying],
Tu, W.[Wei],
Wan, W.G.[Wei-Guo],
A Unified Pansharpening Model Based on Band-Adaptive Gradient and
Detail Correction,
IP(31), 2022, pp. 918-933.
IEEE DOI
2201
Pansharpening, Adaptation models, Wavelet transforms, Distortion,
Spatial resolution, Satellites, Optimization, Pansharpening,
parameter transfer
BibRef
Gogineni, R.[Rajesh],
Sangani, D.J.[Dhara J.],
A Two-Stage PAN-Sharpening Algorithm Based on Sparse Representation for
Spectral Distortion Reduction,
IJIG(22), No. 1 2022, pp. 2250007.
DOI Link
2202
BibRef
Li, S.[Sijia],
Guo, Q.[Qing],
Li, A.[An],
Pan-Sharpening Based on CNN+ Pyramid Transformer by Using
No-Reference Loss,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Jin, Z.R.[Zi-Rong],
Zhuo, Y.W.[Yu-Wei],
Zhang, T.J.[Tian-Jing],
Jin, X.X.[Xiao-Xu],
Jing, S.Q.[Shuai-Qi],
Deng, L.J.[Liang-Jian],
Remote Sensing Pansharpening by Full-Depth Feature Fusion,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wu, X.[Xiao],
Huang, T.Z.[Ting-Zhu],
Deng, L.J.[Liang-Jian],
Zhang, T.J.[Tian-Jing],
Dynamic Cross Feature Fusion for Remote Sensing Pansharpening,
ICCV21(14667-14676)
IEEE DOI
2203
Visualization, Art, Convolution, Semantics, Neural networks,
Pansharpening, Image and video synthesis,
Machine learning architectures and formulations
BibRef
Zhao, R.[Rui],
Du, S.H.[Shi-Hong],
Spectral-Spatial Residual Network for Fusing Hyperspectral and
Panchromatic Remote Sensing Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Zhao, R.[Rui],
Du, S.H.[Shi-Hong],
An Encoder-Decoder with a Residual Network for Fusing
Hyperspectral and Panchromatic Remote Sensing Images,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Liu, X.[Xuan],
Tang, P.[Ping],
Jin, X.[Xing],
Zhang, Z.[Zheng],
From Regression Based on Dynamic Filter Network to Pansharpening by
Pixel-Dependent Spatial-Detail Injection,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Wang, Y.[Yazhen],
Liu, G.J.[Guo-Jun],
Zhang, R.[Rui],
Liu, J.[Junmin],
A Two-Stage Pansharpening Method for the Fusion of Remote-Sensing
Images,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Wu, Y.Y.[Yuan-Yuan],
Feng, S.L.[Si-Ling],
Lin, C.[Cong],
Zhou, H.J.[Hai-Jie],
Huang, M.X.[Meng-Xing],
A Three Stages Detail Injection Network for Remote Sensing Images
Pansharpening,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Zhang, F.[Feng],
Zhang, K.[Kai],
Sun, J.[Jiande],
Multiscale Spatial-Spectral Interaction Transformer for
Pan-Sharpening,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Jin, Q.[Qi],
Xu, E.[Erqi],
Zhang, X.[Xuqing],
A Fusion Method for Multisource Land Cover Products Based on
Superpixels and Statistical Extraction for Enhancing Resolution and
Improving Accuracy,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Li, K.[Kun],
Zhang, W.[Wei],
Yu, D.[Dian],
Tian, X.[Xin],
HyperNet: A deep network for hyperspectral, multispectral, and
panchromatic image fusion,
PandRS(188), 2022, pp. 30-44.
Elsevier DOI
2205
Image fusion, Deep network, Sharpening, Multi-scale structural similarity index
BibRef
Yin, J.[Junru],
Qu, J.T.[Jian-Tao],
Chen, Q.Q.[Qi-Qiang],
Ju, M.[Ming],
Yu, J.[Jun],
Differential Strategy-Based Multi-Level Dense Network for
Pansharpening,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Saxena, N.[Nidhi],
Saxena, G.[Gaurav],
Khare, N.[Neelu],
Rahman, M.H.[Md Habibur],
Pansharpening scheme using spatial detail injection-based
convolutional neural networks,
IET-IPR(16), No. 9, 2022, pp. 2297-2307.
DOI Link
2206
BibRef
Zhang, E.[Erlei],
Fu, Y.H.[Yi-Hao],
Wang, J.[Jun],
Liu, L.[Lu],
Yu, K.[Kai],
Peng, J.Y.[Jin-Ye],
MSAC-Net: 3D Multi-Scale Attention Convolutional Network for
Multi-Spectral Imagery Pansharpening,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Pan, Y.T.[Yue-Tao],
Liu, D.F.[Dan-Feng],
Wang, L.G.[Li-Guo],
Benediktsson, J.A.[Jón Atli],
Xing, S.S.[Shi-Shuai],
A Pan-Sharpening Method with Beta-Divergence Non-Negative Matrix
Factorization in Non-Subsampled Shear Transform Domain,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Arienzo, A.[Alberto],
Alparone, L.[Luciano],
Garzelli, A.[Andrea],
Lolli, S.[Simone],
Advantages of Nonlinear Intensity Components for Contrast-Based
Multispectral Pansharpening,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Huang, W.[Wei],
Ju, M.[Ming],
Zhao, Z.[Zhuobing],
Wu, Q.G.[Qing-Gang],
Tian, E.[Erlin],
Local-Global Based High-Resolution Spatial-Spectral Representation
Network for Pansharpening,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Yin, J.[Junru],
Qu, J.T.[Jian-Tao],
Sun, L.[Le],
Huang, W.[Wei],
Chen, Q.Q.[Qi-Qiang],
A Local and Nonlocal Feature Interaction Network for Pansharpening,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Nie, Z.[Zihao],
Chen, L.H.[Li-Hui],
Jeon, S.[Seunggil],
Yang, X.M.[Xiao-Min],
Spectral-Spatial Interaction Network for Multispectral Image and
Panchromatic Image Fusion,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Peng, X.L.[Xian-Lin],
Fu, Y.H.[Yi-Hao],
Peng, S.L.[Sheng-Lin],
Ma, K.[Kai],
Liu, L.[Lu],
Wang, J.[Jun],
SSML: Spectral-Spatial Mutual-Learning-Based Framework for
Hyperspectral Pansharpening,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Su, H.[Haonan],
Jin, H.Y.[Hai-Yan],
Sun, C.[Ce],
Deep Pansharpening via 3D Spectral Super-Resolution Network and
Discrepancy-Based Gradient Transfer,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Li, W.S.[Wei-Sheng],
He, M.L.[Mao-Lin],
Xiang, M.H.[Ming-Hao],
Double-Stack Aggregation Network Using a Feature-Travel Strategy for
Pansharpening,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Huang, S.[Sihan],
Messinger, D.[David],
An Unsupervised Cascade Fusion Network for Radiometrically-Accurate
Vis-NIR-SWIR Hyperspectral Sharpening,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Liu, X.[Xu],
Li, L.L.[Ling-Ling],
Liu, F.[Fang],
Hou, B.[Biao],
Yang, S.Y.[Shu-Yuan],
Jiao, L.C.[Li-Cheng],
GAFnet: Group Attention Fusion Network for PAN and MS Image
High-Resolution Classification,
Cyber(52), No. 10, October 2022, pp. 10556-10569.
IEEE DOI
2209
Feature extraction, Task analysis, Spatial resolution, Satellites,
Indexes, Image fusion, Data mining, Classification, deep learning,
group spatial-spectral attention
BibRef
Wang, X.H.[Xiang-Hai],
Mu, Z.H.[Zhen-Hua],
Bai, S.F.[Shi-Fu],
Feng, Y.N.[Yi-Ning],
Song, R.X.[Ruo-Xi],
MS-Pansharpening Algorithm Based on Dual Constraint Guided Filtering,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Yang, X.F.[Xiao-Fei],
Nie, R.[Rencan],
Zhang, G.[Gucheng],
Chen, L.P.[Lu-Ping],
Li, H.[He],
DPAFNet: A Multistage Dense-Parallel Attention Fusion Network for
Pansharpening,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, W.Q.[Wen-Qing],
Zhou, Z.Q.[Zhi-Qiang],
Zhang, X.Q.[Xiao-Qiao],
Lv, T.[Tu],
Liu, H.[Han],
Liang, L.[Lili],
DiTBN: Detail Injection-Based Two-Branch Network for Pansharpening of
Remote Sensing Images,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Feng, Y.T.[Yu-Ting],
Jin, X.[Xin],
Jiang, Q.[Qian],
Wang, Q.L.[Quan-Li],
Liu, L.[Lin],
Yao, S.W.[Shao-Wen],
MPFINet: A Multilevel Parallel Feature Injection Network for
Panchromatic and Multispectral Image Fusion,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhou, M.[Man],
Yan, K.Y.[Ke-Yu],
Pan, J.S.[Jin-Shan],
Ren, W.Q.[Wen-Qi],
Xie, Q.[Qi],
Cao, X.Y.[Xiang-Yong],
Memory-Augmented Deep Unfolding Network for Guided Image
Super-resolution,
IJCV(131), No. 1, January 2023, pp. 215-242.
Springer DOI
2301
BibRef
Yang, G.[Gang],
Zhou, M.[Man],
Yan, K.Y.[Ke-Yu],
Liu, A.[Aiping],
Fu, X.Y.[Xue-Yang],
Wang, F.[Fan],
Memory-augmented Deep Conditional Unfolding Network for Pansharpening,
CVPR22(1778-1787)
IEEE DOI
2210
Learning systems, Degradation, Deep learning, Neural networks,
Pansharpening, Search problems, Photogrammetry and remote sensing
BibRef
Shen, K.Q.[Kang-Qing],
Yang, X.Y.[Xiao-Yuan],
Lolli, S.[Simone],
Vivone, G.[Gemine],
A continual learning-guided training framework for pansharpening,
PandRS(196), 2023, pp. 45-57.
Elsevier DOI
2302
Continual learning, Convolutional neural networks,
Deep learning, Pansharpening, Image fusion, Remote sensing
BibRef
Wu, J.[Jingan],
Lin, L.P.[Liu-Peng],
Zhang, C.[Chi],
Li, T.[Tongwen],
Cheng, X.[Xiao],
Nan, F.[Fang],
Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands:
A hierarchical fusion network,
PandRS(196), 2023, pp. 16-31.
Elsevier DOI
2302
Sentinel-2, Image sharpening, Image fusion, Convolutional neural network
BibRef
Sangani, D.J.[Dhara J.],
Thakker, R.A.[Rajesh A.],
Panchal, S.D.,
Gogineni, R.[Rajesh],
Pan-Sharpening for Spectral Details Preservation Via Convolutional
Sparse Coding in Non-Subsampled Shearlet Space,
IJIG(23), No. 2 2023, pp. 2350013.
DOI Link
2303
BibRef
Jian, L.H.[Li-Hua],
Wu, S.[Shaowu],
Chen, L.H.[Li-Hui],
Vivone, G.[Gemine],
Rayhana, R.[Rakiba],
Zhang, D.[Di],
Multi-Scale and Multi-Stream Fusion Network for Pansharpening,
RS(15), No. 6, 2023, pp. 1666.
DOI Link
2304
BibRef
Wei, X.X.[Xing-Xing],
Yuan, M.[Maoxun],
Adversarial pan-sharpening attacks for object detection in remote
sensing,
PR(139), 2023, pp. 109466.
Elsevier DOI
2304
Adversarial pan-sharpening, Remote sensing, Object detection
BibRef
Lu, H.Y.[Hang-Yuan],
Yang, Y.[Yong],
Huang, S.Y.[Shu-Ying],
Chen, X.L.[Xiao-Long],
Su, H.F.[Hong-Fu],
Tu, W.[Wei],
Intensity mixture and band-adaptive detail fusion for pansharpening,
PR(139), 2023, pp. 109434.
Elsevier DOI
2304
Pansharpening, Intensity mixture, Band-adaptive detail fusion,
Point spread function
BibRef
Liu, P.F.[Peng-Fei],
Pansharpening With Spatial Hessian Non-Convex Sparse and Spectral
Gradient Low Rank Priors,
IP(32), 2023, pp. 2120-2131.
IEEE DOI
2304
Pansharpening, Laplace equations, Degradation, Spatial resolution,
Satellites, Image fusion, Analytical models, Pansharpening,
spectral gradient low rank
BibRef
Zhang, X.F.[Xue-Feng],
Dai, X.B.[Xia-Bing],
Zhang, X.M.[Xue-Min],
Hu, Y.C.[Yu-Chen],
Kang, Y.D.[Ying-Dong],
Jin, G.[Guang],
Improved Generalized IHS Based on Total Variation for Pansharpening,
RS(15), No. 11, 2023, pp. 2945.
DOI Link
2306
BibRef
Wang, T.T.[Ting-Ting],
Fang, F.M.[Fa-Ming],
Zheng, H.[Hao],
Zhang, G.X.[Gui-Xu],
FrMLNet: Framelet-Based Multilevel Network for Pansharpening,
Cyber(53), No. 7, July 2023, pp. 4594-4605.
IEEE DOI
2307
Pansharpening, Spatial resolution, Task analysis,
Image reconstruction, Feature extraction, Sensors,
spectral and spatial preservation
BibRef
He, J.[Jiang],
Yuan, Q.Q.[Qiang-Qiang],
Li, J.[Jie],
Xiao, Y.[Yi],
Zhang, L.P.[Liang-Pei],
A self-supervised remote sensing image fusion framework with
dual-stage self-learning and spectral super-resolution injection,
PandRS(204), 2023, pp. 131-144.
Elsevier DOI
2310
Pan-sharpening, Unsupervised fusion, Spectral super-resolution,
Multispectral images, Self-learning, Remote sensing
BibRef
Tao, J.Z.[Jing-Zhe],
Ni, W.H.[Wei-Han],
Song, C.M.[Chuan-Ming],
Wang, X.H.[Xiang-Hai],
FSSBP: Fast Spatial-Spectral Back Projection Based on Pan-Sharpening
Iterative Optimization,
RS(15), No. 18, 2023, pp. 4543.
DOI Link
2310
BibRef
Zhang, H.[Hao],
Ma, J.Y.[Jia-Yi],
STP-SOM: Scale-Transfer Learning for Pansharpening via Estimating
Spectral Observation Model,
IJCV(131), No. 12, December 2023, pp. 3226-3251.
Springer DOI
2311
BibRef
Qu, J.[Jiahui],
Dong, W.Q.[Wen-Qian],
Li, Y.S.[Yun-Song],
Hou, S.X.[Shao-Xiong],
Du, Q.[Qian],
An Interpretable Unsupervised Unrolling Network for Hyperspectral
Pansharpening,
Cyber(53), No. 12, December 2023, pp. 7943-7956.
IEEE DOI
2312
BibRef
Wang, J.[Jing],
Miao, J.Q.[Jia-Qing],
Li, G.[Gaoping],
Tan, Y.[Ying],
Yu, S.C.[Shi-Cheng],
Liu, X.G.[Xiao-Guang],
Zeng, L.[Li],
Li, G.[Guibing],
Pan-Sharpening Network of Multi-Spectral Remote Sensing Images Using
Two-Stream Attention Feature Extractor and Multi-Detail Injection
(TAMINet),
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Huang, B.[Bo],
Li, X.F.[Xiong-Fei],
Zhang, X.L.[Xiao-Li],
Triple-loss driven generative adversarial network for pansharpening,
IET-IPR(18), No. 1, 2024, pp. 211-232.
DOI Link
2401
image fusion, neural nets, remote sensing
BibRef
Zhang, Z.Q.[Zhi-Qi],
Xu, J.[Jun],
Wang, X.H.[Xin-Hui],
Xie, G.Q.[Guang-Qi],
Wei, L.[Lu],
Multiscale Fusion of Panchromatic and Multispectral Images Based on
Adaptive Iterative Filtering,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Yang, G.[Gang],
Cao, X.Y.[Xiang-Yong],
Xiao, W.Z.[Wen-Zhe],
Zhou, M.[Man],
Liu, A.[Aiping],
Chen, X.[Xun],
Meng, D.Y.[De-Yu],
PanFlowNet: A Flow-Based Deep Network for Pan-sharpening,
ICCV23(16811-16821)
IEEE DOI
2401
BibRef
Li, H.[Hui],
Jing, L.H.[Lin-Hai],
Dou, C.Y.[Chang-Yong],
Ding, H.F.[Hai-Feng],
A Comprehensive Assessment of the Pansharpening of the Nighttime
Light Imagery of the Glimmer Imager of the Sustainable Development
Science Satellite 1,
RS(16), No. 2, 2024, pp. 245.
DOI Link
2402
BibRef
Shi, K.[Keli],
Liu, Z.Q.[Zhi-Qiang],
Zhang, W.X.[Wei-Xiong],
Tang, P.[Ping],
Zhang, Z.[Zheng],
Enhancing Satellite Image Sequences through Multi-Scale Optical
Flow-Intermediate Feature Joint Network,
RS(16), No. 2, 2024, pp. 426.
DOI Link
2402
BibRef
Yu, D.[Dian],
Zhang, W.[Wei],
Xu, M.Z.[Ming-Zhu],
Tian, X.[Xin],
Jiang, H.[Hao],
Unified Interpretable Deep Network for Joint Super-Resolution and
Pansharpening,
RS(16), No. 3, 2024, pp. 540.
DOI Link
2402
BibRef
Gao, Y.[Yi],
Qin, M.J.[Meng-Jiao],
Wu, S.[Sensen],
Zhang, F.[Feng],
Du, Z.H.[Zhen-Hong],
GSA-SiamNet: A Siamese Network with Gradient-Based Spatial Attention
for Pan-Sharpening of Multi-Spectral Images,
RS(16), No. 4, 2024, pp. 616.
DOI Link
2402
BibRef
Wang, J.M.[Jia-Ming],
Zhou, Q.[Qiang],
Huang, X.[Xiao],
Zhang, R.Q.[Rui-Qian],
Chen, X.T.[Xi-Tong],
Lu, T.[Tao],
Pan-sharpening via intrinsic decomposition knowledge distillation,
PR(149), 2024, pp. 110247.
Elsevier DOI
2403
Knowledge distillation, Pan-sharpening, Intrinsic decomposition, Image fusion
BibRef
Modak, S.[Sourav],
Heil, J.[Jonathan],
Stein, A.[Anthony],
Pansharpening Low-Altitude Multispectral Images of Potato Plants
Using a Generative Adversarial Network,
RS(16), No. 5, 2024, pp. 874.
DOI Link
2403
BibRef
Alparone, L.[Luciano],
Arienzo, A.[Alberto],
Garzelli, A.[Andrea],
Spatial Resolution Enhancement of Vegetation Indexes via Fusion of
Hyperspectral and Multispectral Satellite Data,
RS(16), No. 5, 2024, pp. 875.
DOI Link
2403
BibRef
Zhang, Z.C.[Zhi-Cheng],
Ao, Z.[Zurui],
Wu, W.[Wei],
Wang, Y.D.[Yi-Dan],
Xin, Q.C.[Qin-Chuan],
Developing a Multi-Scale Convolutional Neural Network for
Spatiotemporal Fusion to Generate MODIS-like Data Using AVHRR and
Landsat Images,
RS(16), No. 6, 2024, pp. 1086.
DOI Link
2403
BibRef
Cheng, Q.[Qing],
Xie, R.X.[Rui-Xiang],
Wu, J.[Jingan],
Ye, F.[Fan],
Deep Learning-Based Spatiotemporal Fusion Architecture of Landsat 8
and Sentinel-2 Data for 10 m Series Imagery,
RS(16), No. 6, 2024, pp. 1033.
DOI Link
2403
BibRef
Sun, Q.[Qian],
Sun, Y.[Yu],
Pan, C.S.[Cheng-Sheng],
AIDB-Net: An Attention-Interactive Dual-Branch Convolutional Neural
Network for Hyperspectral Pansharpening,
RS(16), No. 6, 2024, pp. 1044.
DOI Link
2403
BibRef
Han, Y.F.[Yi-Fei],
Chi, H.[Hong],
Huang, J.L.[Jin-Liang],
Gao, X.[Xinyi],
Zhang, Z.Y.[Zhi-Yu],
Ling, F.[Feng],
TemPanSharpening: A multi-temporal Pansharpening solution based on
deep learning and edge extraction,
PandRS(211), 2024, pp. 406-424.
Elsevier DOI
2405
Multi-temporal Pansharpening, Deep learning,
Canny edge detector, Residual-in-residual dense block (RRDB),
Convolutional block attention module (CBAM)
BibRef
Huang, B.[Bo],
Li, X.[Xiongfei],
Zhang, X.L.[Xiao-Li],
SWPanGAN: A hybrid generative adversarial network for pansharpening,
IET-IPR(18), No. 8, 2024, pp. 1950-1966.
DOI Link
2406
generative adversarial network, pansharpening,
remote sensing images, transformer
BibRef
Chen, Y.X.[Ying-Xia],
Li, Y.Q.[Yu-Qi],
Wang, T.T.[Ting-Ting],
Chen, Y.[Yan],
Fang, F.[Faming],
DPDU-Net: Double Prior Deep Unrolling Network for Pansharpening,
RS(16), No. 12, 2024, pp. 2141.
DOI Link
2406
BibRef
Zini, S.[Simone],
Barbato, M.P.[Mirko Paolo],
Piccoli, F.[Flavio],
Napoletano, P.[Paolo],
Deep Learning Hyperspectral Pansharpening on Large-Scale PRISMA
Dataset,
RS(16), No. 12, 2024, pp. 2079.
DOI Link
2406
BibRef
Jin, X.[Xin],
Feng, Y.T.[Yu-Ting],
Jiang, Q.[Qian],
Miao, S.F.[Sheng-Fa],
Chu, X.[Xing],
Zheng, H.Q.[Huang-Qimei],
Wang, Q.Q.[Qian-Qian],
UPGAN: An Unsupervised Generative Adversarial Network Based on
U-Shaped Structure for Pansharpening,
IJGI(13), No. 7, 2024, pp. 222.
DOI Link
2408
BibRef
Wang, S.Y.[Shi-Ying],
Zou, X.C.[Xue-Chao],
Li, K.[Kai],
Xing, J.L.[Jun-Liang],
Cao, T.F.[Teng-Fei],
Tao, P.[Pin],
Towards Robust Pansharpening: A Large-Scale High-Resolution
Multi-Scene Dataset and Novel Approach,
RS(16), No. 16, 2024, pp. 2899.
DOI Link
2408
BibRef
Liu, D.F.[Dan-Feng],
Wang, E.[Enyuan],
Wang, L.G.[Li-Guo],
Benediktsson, J.A.[Jón Atli],
Wang, J.Y.[Jian-Yu],
Deng, L.[Lei],
Pansharpening Based on Multimodal Texture Correction and Adaptive
Edge Detail Fusion,
RS(16), No. 16, 2024, pp. 2941.
DOI Link
2408
BibRef
Ciotola, M.[Matteo],
Guarino, G.[Giuseppe],
Scarpa, G.[Giuseppe],
An Unsupervised CNN-Based Pansharpening Framework with
Spectral-Spatial Fidelity Balance,
RS(16), No. 16, 2024, pp. 3014.
DOI Link
2408
BibRef
Ke, C.J.[Cheng-Jie],
Zhang, Z.Y.[Zhi-Yuan],
Zhang, W.[Wei],
Chen, J.[Jun],
Tian, X.[Xin],
Kernel-guided injection deep network for blind fusion of
multispectral and panchromatic images,
PR(157), 2025, pp. 110889.
Elsevier DOI
2409
Image fusion, Blind fusion, Detail injection, Deep learning
BibRef
Perretta, M.[Miriam],
Delogu, G.[Gabriele],
Funsten, C.[Cassandra],
Patriarca, A.[Alessio],
Caputi, E.[Eros],
Boccia, L.[Lorenzo],
Testing the Impact of Pansharpening Using PRISMA Hyperspectral Data:
A Case Study Classifying Urban Trees in Naples, Italy,
RS(16), No. 19, 2024, pp. 3730.
DOI Link
2410
BibRef
Xing, Y.H.[Ying-Hui],
Qu, L.T.[Li-Tao],
Zhang, S.Z.[Shi-Zhou],
Zhang, K.[Kai],
Zhang, Y.N.[Yan-Ning],
Bruzzone, L.[Lorenzo],
CrossDiff: Exploring Self-SupervisedRepresentation of Pansharpening
via Cross-Predictive Diffusion Model,
IP(33), 2024, pp. 5496-5509.
IEEE DOI Code:
WWW Link.
2410
Pansharpening, Diffusion models, Feature extraction,
Spatial resolution, Training, Noise reduction, Transformers,
denoising diffusion probabilistic model
BibRef
Tagami, R.[Rina],
Kobayashi, H.[Hiroki],
Akizuki, S.[Shuichi],
Hashimoto, M.[Manabu],
Reliable Image Matching Using Optimal Combination of Color and
Intensity Information Based on Relationship with Surrounding Objects,
IEICE(E108-D), No. 10, October 2024, pp. 1312-1321.
WWW Link.
2410
BibRef
Zhang, Z.H.[Zhen-Hua],
Zhang, S.[Shenfu],
Meng, X.C.[Xiang-Chao],
Chen, L.[Liang],
Shao, F.[Feng],
Perceptual Quality Assessment for Pansharpened Images Based on Deep
Feature Similarity Measure,
RS(16), No. 24, 2024, pp. 4621.
DOI Link
2501
BibRef
Cui, Y.C.[Yong-Chuan],
Liu, P.[Peng],
Ma, Y.[Yan],
Chen, L.[Lajiao],
Xu, M.Z.[Meng-Zhen],
Guo, X.Y.[Xing-Yan],
Pansharpening via predictive filtering with element-wise feature
mixing,
PandRS(219), 2025, pp. 22-37.
Elsevier DOI Code:
WWW Link.
2501
Pansharpening, Image fusion, Predictive filtering, Deep learning
BibRef
Restaino, R.[Rocco],
Pansharpening Techniques: Optimizing the Loss Function for
Convolutional Neural Networks,
RS(17), No. 1, 2025, pp. 16.
DOI Link
2501
BibRef
Wen, X.[Xincan],
Ma, H.B.[Hong-Bing],
Li, L.L.[Liang-Liang],
A Three-Branch Pansharpening Network Based on Spatial and Frequency
Domain Interaction,
RS(17), No. 1, 2025, pp. 13.
DOI Link
2501
BibRef
Zhang, J.[Jie],
Cao, K.[Ke],
Yan, K.Y.[Ke-Yu],
Lin, Y.L.[Yun-Long],
He, X.[Xuanhua],
Wang, Y.Y.[Ying-Ying],
Li, R.[Rui],
Xie, C.J.[Cheng-Jun],
Zhang, J.[Jun],
Zhou, M.[Man],
Frequency Decoupled Domain-Irrelevant Feature Learning for
Pan-Sharpening,
CirSysVideo(35), No. 2, February 2025, pp. 1237-1250.
IEEE DOI
2502
Representation learning, Frequency-domain analysis,
Feature extraction, Data mining, Training, Spatial resolution,
amplitude spectrums
BibRef
Sangani, D.J.[Dhara J.],
Thakker, R.A.[Rajesh A.],
Panchal, S.D.,
Gogineni, R.[Rajesh],
Remote Sensing Pansharpening with TV-H-1 Decomposition and PSO-Based
Adaptive Weighting Method,
IJIG(25), No. 1, Januaury 2025, pp. 2450061.
DOI Link
2502
BibRef
Ebrahimy, H.[Hamid],
Yu, T.[Tong],
Zhang, Z.[Zhou],
Developing a spatiotemporal fusion framework for generating daily UAV
images in agricultural areas using publicly available satellite data,
PandRS(220), 2025, pp. 413-427.
Elsevier DOI
2502
Agricultural monitoring, Time series, Harmonized Landsat and Sentinel-2,
Unmanned aerial vehicle, Temporal resolution
BibRef
Wang, Q.M.[Qun-Ming],
Ma, W.J.[Wen-Jing],
Liu, S.[Sicong],
Tong, X.H.[Xiao-Hua],
Atkinson, P.M.[Peter M.],
Data fidelity-oriented spatial-spectral fusion of CRISM and CTX
images,
PandRS(220), 2025, pp. 172-191.
Elsevier DOI
2502
Compact Reconnaissance Imaging Spectrometer for Mars (CRISM),
Context Camera (CTX), Downscaling, Spatial-spectral fusion,
Area-to-point kriging (ATPK)
BibRef
Armannsson, S.E.[Sveinn E.],
Ulfarsson, M.O.[Magnus O.],
Sigurdsson, J.[Jakob],
A Learned Reduced-Rank Sharpening Method for Multiresolution
Satellite Imagery,
RS(17), No. 3, 2025, pp. 432.
DOI Link
2502
BibRef
Lu, H.Y.[Hang-Yuan],
Yang, Y.[Yong],
Huang, S.Y.[Shu-Ying],
Liu, R.[Rixian],
Guo, H.M.[Hui-Min],
MSAN: Multiscale self-attention network for pansharpening,
PR(162), 2025, pp. 111441.
Elsevier DOI
2503
Pansharpening, Multiscale, Self-attention, Swin Transformer
BibRef
Duan, Y.[Yule],
Wu, X.[Xiao],
Deng, H.Y.[Hao-Yu],
Deng, L.J.[Liang-Jian],
Content-Adaptive Non-Local Convolution for Remote Sensing
Pansharpening,
CVPR24(27738-27747)
IEEE DOI Code:
WWW Link.
2410
Learning systems, Visualization, Limiting, Convolution,
Source coding, Pansharpening, Network architecture
BibRef
Zhou, M.[Man],
Huang, J.[Jie],
Zheng, N.[Naishan],
Li, C.Y.[Chong-Yi],
Learned Image Reasoning Prior Penetrates Deep Unfolding Network for
Panchromatic and Multi-Spectral Image Fusion,
ICCV23(12364-12373)
IEEE DOI Code:
WWW Link.
2401
BibRef
Zhu, Z.[Zeyu],
Cao, X.Y.[Xiang-Yong],
Zhou, M.[Man],
Huang, J.H.[Jun-Hao],
Meng, D.Y.[De-Yu],
Probability-based Global Cross-modal Upsampling for Pansharpening,
CVPR23(14039-14048)
IEEE DOI
2309
BibRef
Li, Y.[Yan],
Li, J.M.[Jian-Min],
Du, X.F.[Xiao-Feng],
Huang, Y.[Yibo],
Lei, J.[Jian],
An Improved Method for Pan-Sharpening Based on Pan-GAN,
ICIVC22(282-286)
IEEE DOI
2301
Training, Visualization, Feature extraction,
Generative adversarial networks, Generators, Data mining,
Generative adversarial network
BibRef
Zhong, S.W.[Sheng-Wei],
Zhang, Y.[Ye],
Fusion of Multispectral and Panchromatic Images Based on a Novel
Inter-Band Structure Model,
ICIP15(457-461)
IEEE DOI
1512
ARSIS Concept
BibRef
Yan, K.Y.[Ke-Yu],
Zhou, M.[Man],
Zhang, L.[Li],
Xie, C.J.[Cheng-Jun],
Memory-Augmented Model-Driven Network for Pansharpening,
ECCV22(XIX:306-322).
Springer DOI
2211
BibRef
Tan, J.T.[Jiang-Tong],
Huang, J.[Jie],
Zheng, N.[Naishan],
Zhou, M.[Man],
Yan, K.Y.[Ke-Yu],
Hong, D.F.[Dan-Feng],
Zhao, F.[Feng],
Revisiting Spatial-Frequency Information Integration from a
Hierarchical Perspective for Panchromatic and Multi-Spectral Image
Fusion,
CVPR24(25922-25931)
IEEE DOI Code:
WWW Link.
2410
Codes, Fuses, Superresolution, Space exploration,
Pattern recognition, Image fusion, Pan-sharpening
BibRef
Zhou, M.[Man],
Huang, J.[Jie],
Yan, K.Y.[Ke-Yu],
Yu, H.[Hu],
Fu, X.Y.[Xue-Yang],
Liu, A.P.[Ai-Ping],
Wei, X.[Xian],
Zhao, F.[Feng],
Spatial-Frequency Domain Information Integration for Pan-Sharpening,
ECCV22(XVIII:274-291).
Springer DOI
2211
BibRef
Sun, Y.[Yi],
Zhang, Y.L.[Yuan-Lin],
Yuan, Y.[Yuan],
Adaptive Detail Injection-Based Feature Pyramid Network for
Pan-Sharpening,
ICIP22(1646-1650)
IEEE DOI
2211
Adaptation models, Adaptive systems, Codes, Distortion, Image fusion,
Pan-sharpening, image fusion, detail injection, feature pyramid,
detail perception
BibRef
Bandara, W.G.C.[Wele Gedara Chaminda],
Patel, V.M.[Vishal M.],
HyperTransformer: A Textural and Spectral Feature Fusion Transformer
for Pansharpening,
CVPR22(1757-1767)
IEEE DOI
2210
Codes, Fuses, Pansharpening, Feature extraction, Transformers,
Extraterrestrial measurements, Photogrammetry and remote sensing
BibRef
Zhou, M.[Man],
Yan, K.Y.[Ke-Yu],
Huang, J.[Jie],
Yang, Z.[Zihe],
Fu, X.[Xueyang],
Zhao, F.[Feng],
Mutual Information-driven Pan-sharpening,
CVPR22(1788-1798)
IEEE DOI
2210
Satellites, Redundancy, Pansharpening, Minimization,
Pattern recognition, Mutual information, Photogrammetry and remote sensing
BibRef
Gao, J.H.[Jian-Hao],
Li, J.[Jie],
Su, X.[Xin],
Jiang, M.H.[Meng-Hui],
Yuan, Q.Q.[Qiang-Qiang],
Deep Image Interpolation:
A Unified Unsupervised Framework for Pansharpening,
NTIRE22(608-617)
IEEE DOI
2210
Training, Deep learning, Interpolation, Satellites, Neural networks,
Data integration, Pansharpening
BibRef
Wang, Y.J.[Ya-Jie],
Xie, Y.Y.[Yan-Yan],
Wu, Y.Y.[Yan-Yan],
Liang, K.[Kai],
Qiao, J.L.[Ji-Lin],
An Unsupervised Multi-scale Generative Adversarial Network for Remote
Sensing Image Pan-Sharpening,
MMMod22(II:356-368).
Springer DOI
2203
BibRef
Wang, J.M.[Jia-Ming],
Shao, Z.F.[Zhen-Feng],
Huang, X.[Xiao],
Lu, T.[Tao],
Zhang, R.Q.[Rui-Qian],
Ma, J.Y.[Jia-Yi],
Pan-Sharpening Via High-Pass Modification Convolutional Neural
Network,
ICIP21(1714-1718)
IEEE DOI
2201
Image edge detection, Neural networks, Distortion,
Image restoration, Convolutional neural networks,
deep neural networks
BibRef
Xu, S.[Shuang],
Zhang, J.S.[Jiang-She],
Zhao, Z.X.[Zi-Xiang],
Sun, K.[Kai],
Liu, J.[Junmin],
Zhang, C.X.[Chun-Xia],
Deep Gradient Projection Networks for Pan-sharpening,
CVPR21(1366-1375)
IEEE DOI
2111
Image resolution, Satellites, Stacking, Neural networks, Tools,
Iterative algorithms
BibRef
Lee, J.[Jaehyup],
Seo, S.[Soomin],
Kim, M.C.[Mun-Churl],
SIPSA-Net: Shift-Invariant Pan Sharpening with Moving Object
Alignment for Satellite Imagery,
CVPR21(10161-10169)
IEEE DOI
2111
Visualization, Satellites, Image edge detection,
Merging, Feature extraction, Probabilistic logic
BibRef
Fang, S.,
Wang, X.,
Zhang, J.,
Cao, Y.,
Pan-Sharpening Based On Parallel Pyramid Convolutional Neural Network,
ICIP20(453-457)
IEEE DOI
2011
Spatial resolution, Satellites, Feature extraction, Remote sensing,
Correlation, Distortion, parallel pyramid network, pan-sharpening,
learning-based
BibRef
Bello, J.L.G.,
Seo, S.,
Kim, M.,
Pan-Sharpening With Color-Aware Perceptual Loss And Guided
Re-Colorization,
ICIP20(908-912)
IEEE DOI
2011
Image color analysis, Task analysis, Spatial resolution,
Satellites, Training, Network architecture, Pan-sharpening,
satellite imagery.
BibRef
Takeyama, S.,
Ono, S.,
Compressed Hyperspectral Pansharpening,
ICIP20(2855-2859)
IEEE DOI
2011
Spatial resolution, Image coding, Hyperspectral imaging,
Energy resolution, hyperspectral pansharpening,
primal-dual splitting
BibRef
Rui, X.,
Cao, Y.,
Kang, Y.,
Song, W.,
Ba, R.,
Maskpan: Mask Prior Guided Network For Pansharpening,
ICIP20(853-857)
IEEE DOI
2011
Indexes, Visualization, Economic indicators, pansharpening,
mask prior, feature fusion, attention mechanism, semantic segmentation
BibRef
Gastineau, A.,
Aujol, J.F.,
Berthoumieu, Y.,
Germain, C.,
A Residual Dense Generative Adversarial Network For Pansharpening
With Geometrical Constraints,
ICIP20(493-497)
IEEE DOI
2011
Generators, Spatial resolution,
Generative adversarial networks, Geometry, Satellites,
remote sensing
BibRef
Zhang, L.B.[Li-Bao],
Zhu, W.N.[Wan-Ning],
Sun, Y.[Yang],
Pan-Sharpening Based On Joint Saliency Detection For Multiple Remote
Sensing Images,
ICIP20(1093-1097)
IEEE DOI
2011
Sun, Indexes, Hafnium, Remote sensing image, pan-sharpening,
joint saliency analysis, co-clustering, compensation strategy
BibRef
Fu, X.Y.[Xue-Yang],
Lin, Z.H.[Zi-Huang],
Huang, Y.[Yue],
Ding, X.H.[Xing-Hao],
A Variational Pan-Sharpening With Local Gradient Constraints,
CVPR19(10257-10266).
IEEE DOI
2002
BibRef
Dadras Javan, F.,
Mortazavi, F.S.,
Moradi, F.,
Toosi, A.,
New Hybrid Pan-sharpening Method Based On Type-1 Fuzzy-DWT Strategy,
SMPR19(247-254).
DOI Link
1912
BibRef
Yoo, J.,
Kim, J.,
Enhancing Denoised Image Via Fusion With a Noisy Image,
ICIP19(1790-1794)
IEEE DOI
1910
Image denoising, texture, PCA, sparsity, cost optimization
BibRef
Zhang, L.,
Zhang, J.,
Lyu, X.,
Ma, J.,
A New Pansharpening Method Using Objectness Based Saliency Analysis
and Saliency Guided Deep Residual Network,
ICIP19(4529-4533)
IEEE DOI
1910
Image fusion, pansharpening, deep residual network, saliency,
normalized mean square error
BibRef
Zhou, L.,
Luo, X.,
Yin, J.,
Shi, X.,
Spectral Diversity Enhancement for Pansharpening,
ICIP18(1867-1871)
IEEE DOI
1809
Interpolation, Indexes, Spatial resolution, Dictionaries,
Remote sensing, Distortion, Optimization, pansharpening,
sparse representation
BibRef
Bakioglu, O.B.,
Topan, H.,
Özendi, M.,
Cam, A.,
Pansharpening of Rasat And GÖktÜrk-2 Images Via High Pass Filter,
GeoAdvances17(27-29).
DOI Link
1805
BibRef
Yang, J.,
Fu, X.,
Hu, Y.,
Huang, Y.,
Ding, X.,
Paisley, J.,
PanNet: A Deep Network Architecture for Pan-Sharpening,
ICCV17(1753-1761)
IEEE DOI
1802
high-pass filters, image filtering, image reconstruction,
neural nets, PanNet architecture, deep network architecture,
Training
BibRef
Khademi, G.,
Ghassemian, H.,
A multi-objective component-substitution-based pansharpening,
IPRIA17(248-252)
IEEE DOI
1712
genetic algorithms, image resolution, sorting, spectral analysis,
CS based pansharpening method, CS-based fusion methods, ERGAS,
pansharpening
BibRef
Azarang, A.,
Ghassemian, H.,
A new pansharpening method using multi resolution analysis framework
and deep neural networks,
IPRIA17(1-6)
IEEE DOI
1712
geophysical image processing, image coding, image fusion,
image reconstruction, image resolution,
multi resolution analysis
BibRef
Lin, H.W.[Hong-Wen],
Zhang, A.Q.[An-Qing],
Fusion of hyperspectral and panchromatic images using improved HySure
method,
ICIVC17(489-493)
IEEE DOI
1708
Correlation, Distortion, Hyperspectral imaging, Indexes,
Spatial resolution, fusion, hyperspectral image,
improved HySure method, pansharpening
BibRef
Palubinskas, G.,
Pan-sharpening Approaches Based On Unmixing Of Multispectral Remote
Sensing Imagery,
ISPRS16(B7: 693-702).
DOI Link
1610
BibRef
Vaiopoulos, A.D.,
Karantzalos, K.,
Pansharpening On The Narrow Vnir And Swir Spectral Bands Of Sentinel-2,
ISPRS16(B7: 723-730).
DOI Link
1610
BibRef
Agrafiotis, P.,
Georgopoulos, A.,
Karantzalos, K.,
The Effect Of Pansharpening Algorithms On The Resulting Orthoimagery,
ISPRS16(B7: 625-630).
DOI Link
1610
BibRef
Zhang, J.X.,
Yang, J.H.,
Reinartz, P.,
The Optimized Block-regression-based Fusion Algorithm For Pansharpening
Of Very High Resolution Satellite Imagery,
ISPRS16(B7: 739-746).
DOI Link
1610
BibRef
Lazaridou, M.A.,
Karagianni, A.C.,
Landsat 8 Multispectral And Pansharpened Imagery Processing On The
Study Of Civil Engineering Issues,
ISPRS16(B8: 941-945).
DOI Link
1610
BibRef
Duran, J.,
Buades, A.,
Coll, B.,
Sbert, C.,
Blanchet, G.,
Pansharpening by a nonlocal channel-decoupled variational method,
ICIP16(4339-4343)
IEEE DOI
1610
Minimization
BibRef
Karoui, M.S.,
Boukerch, I.,
Djerriri, K.,
Joint spatial variables nonnegative matrix factorization using
constrained gradient method to pansharpen multispectral images,
IVMSP16(1-5)
IEEE DOI
1608
Convergence
BibRef
Jiang, Y.,
Ding, X.H.[Xing-Hao],
Zeng, D.,
Huang, Y.[Yue],
Paisley, J.[John],
Pan-Sharpening with a Hyper-Laplacian Penalty,
ICCV15(540-548)
IEEE DOI
1602
Image reconstruction
BibRef
Xie, J.[Jin],
Huang, Y.[Yue],
Paisley, J.[John],
Ding, X.H.[Xing-Hao],
Zhang, X.P.[Xiao-Ping],
Pan-sharpening based on nonparametric Bayesian adaptive dictionary
learning,
ICIP13(2039-2042)
IEEE DOI
1402
compressed sensing
BibRef
Mwangi, G.[Gerald],
Fieguth, P.W.[Paul W.],
Garbe, C.S.[Christoph S.],
Thermography spatial resolution enhancement by non-rigid registration
with visible imagery,
ICIP15(2542-2546)
IEEE DOI
1512
BibRef
Jiang, Y.Y.[Yi-Yong],
Chen, L.Q.[Li-Qin],
Wang, W.[Wei],
Ding, X.H.[Xing-Hao],
Huang, Y.[Yue],
A compressed sensing-based pan-sharpening using joint data fidelity
and blind blurring kernel estimation,
ICIP14(5042-5046)
IEEE DOI
1502
Estimation
BibRef
Tierney, S.,
Gao, J.B.[Jun-Bin],
Guo, Y.[Yi],
Affinity Pansharpening and Image Fusion,
DICTA14(1-8)
IEEE DOI
1502
hyperspectral imaging
BibRef
Lee, M.H.[Min-Haeng],
Choi, M.J.[Myung-Jin],
Tai, Y.W.[Yu-Wing],
Robust pan-sharpening via color samples relocation and edge aware
interpolation,
ICIP14(4607-4611)
IEEE DOI
1502
Equations
BibRef
Peng, J.,
A non-parameterized method for co-registration of panchromatic and
multispectral images,
Thematic14(141-146).
DOI Link
1404
BibRef
Upla, K.P.,
Gajjar, P.P.,
Joshi, M.V.,
Pan-sharpening based on Non-subsampled Contourlet Transform detail
extraction,
NCVPRIPG13(1-4)
IEEE DOI
1408
artificial satellites
BibRef
Yamaguchi, M.[Masahiro],
Optics and Computational Methods for Hybrid Resolution Spectral Imaging,
CCIW15(23-32).
Springer DOI
1504
BibRef
Nakazaki, K.[Keiichiro],
Murakami, Y.[Yuri],
Yamaguchi, M.[Masahiro],
Hybrid-Resolution Spectral Imaging System Using Adaptive
Regression-Based Reconstruction,
ICISP14(142-150).
Springer DOI
1406
BibRef
Rajabi, R.,
Ghassemian, H.,
Fusion of Hyperspectral and Panchromatic Images Using Spectral Unmixing
Results,
SMPR13(333-336).
DOI Link
1311
BibRef
Xue, X.,
Wang, J.P.,
Wang, H.,
Xiang, F.,
A High-Efficiency Fusion Method of Multi-Spectral Image and
Panchromatic Image,
IWIDF13(149-152).
DOI Link
1311
BibRef
Maurer, T.,
How to Pan-Sharpen Images Using the Gram-Schmidt Pan-Sharpen Method: A
Recipe,
Hannover13(239-244).
DOI Link
1308
BibRef
Khuon, T.,
Rand, R.,
Adaptive automatic object recognition in single and multi-modal
sensor data,
AIPR14(1-8)
IEEE DOI
1504
feature extraction
BibRef
Licciardi, G.A.,
Khan, M.M.,
Chanussot, J.,
Fusion of hyperspectral and panchromatic images: A hybrid use of
indusion and nonlinear PCA,
ICIP12(2133-2136).
IEEE DOI
1302
BibRef
Chisense, C.,
Engels, J.,
Hahn, M.,
Gülch, E.,
Pansharpening Of Hyperspectral Images In Urban Areas,
ISPRS12(XXXIX-B7:387-392).
DOI Link
1209
BibRef
Luo, B.[Bin],
Khan, M.M.[Muhammad Murtaza],
Bienvenu, T.[Thibaut],
Chanussot, J.[Jocelyn],
Pansharpening with a decision fusion based on the local size
information,
ICIP10(1977-1980).
IEEE DOI
1009
BibRef
Renza, D.[Diego],
Martinez, E.[Estibaliz],
Arquero, A.[Agueda],
Sanchez, J.[Javier],
Pansharpening of High and Medium Resolution Satellite Images Using
Bilateral Filtering,
CIARP10(311-318).
Springer DOI
1011
See also Automatic Image Segmentation Optimized by Bilateral Filtering.
BibRef
Liu, L.[Lining],
Wang, Y.D.[Yi-Ding],
Wang, Y.H.[Yun-Hong],
Yu, H.Y.[Hai-Yan],
Pan-Sharpening Using an Adaptive Linear Model,
ICPR10(4512-4515).
IEEE DOI
1008
BibRef
Zaveri, T.[Tanish],
Zaveri, M.[Mukesh],
A Novel Multimodality Image Fusion Method Using Region Consistency Rule,
PReMI09(321-326).
Springer DOI
0912
BibRef
Zaveri, T.[Tanish],
Zaveri, M.[Mukesh],
A Novel Hybrid Pansharpening Method Using Contourlet Transform,
PReMI09(363-368).
Springer DOI
0912
BibRef
Khan, M.M.[Muhammad Murtaza],
Chanussot, J.[Jocelyn],
Alparone, L.[Luciano],
Pansharpening of Hyperspectral images using spatial distortion
optimization,
ICIP09(2853-2856).
IEEE DOI
0911
BibRef
Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Evaluation, Quality Assissment Pansharpening .