Perbet, F.[Frank],
Stenger, B.[Bjorn],
Maki, A.[Atsuto],
Homogeneous Superpixels from Markov Random Walks,
IEICE(E95-D), No. 7, July 2012, pp. 1740-1748.
WWW Link.
1208
BibRef
Achanta, R.[Radhakrishna],
Shaji, A.[Appu],
Smith, K.[Kevin],
Lucchi, A.[Aurelien],
Fua, P.[Pascal],
Süsstrunk, S.[Sabine],
SLIC Superpixels Compared to State-of-the-Art Superpixel Methods,
PAMI(34), No. 11, November 2012, pp. 2274-2282.
IEEE DOI
1209
Look at 4 methods or image boundary, speed, efficience, segmentation
performance. SLIC: Simple linear iterative clustering.
See also Are spatial and global constraints really necessary for segmentation?. For an implementation:
See also Bilateral K-Means for Superpixel Computation (the SLIC Method).
BibRef
Achanta, R.[Radhakrishna],
Süsstrunk, S.[Sabine],
Superpixels and Polygons Using Simple Non-iterative Clustering,
CVPR17(4895-4904)
IEEE DOI
1711
Clustering algorithms, Estimation, Image color analysis,
Image segmentation, Iterative algorithms, Memory management,
Partitioning, algorithms
BibRef
Liu, B.,
Hu, H.,
Wang, H.,
Wang, K.,
Liu, X.,
Yu, W.,
Superpixel-Based Classification With an Adaptive Number of Classes for
Polarimetric SAR Images,
GeoRS(51), No. 2, February 2013, pp. 907-924.
IEEE DOI
1302
BibRef
Liu, B.,
Zhang, Z.,
Liu, X.,
Yu, W.,
Representation and Spatially Adaptive Segmentation for PolSAR Images
Based on Wedgelet Analysis,
GeoRS(53), No. 9, September 2015, pp. 4797-4809.
IEEE DOI
1506
Approximation methods
BibRef
Tighe, J.[Joseph],
Lazebnik, S.[Svetlana],
Superparsing,
IJCV(101), No. 2, January 2013, pp. 329-349.
WWW Link.
1302
BibRef
Earlier:
Understanding scenes on many levels,
ICCV11(335-342).
IEEE DOI
1201
BibRef
Earlier:
SuperParsing: Scalable Nonparametric Image Parsing with Superpixels,
ECCV10(V: 352-365).
Springer DOI
1009
Semantic labels in segmentation. Both basic level and detail level
BibRef
Tighe, J.[Joseph],
Lazebnik, S.[Svetlana],
Finding Things: Image Parsing with Regions and Per-Exemplar Detectors,
CVPR13(3001-3008)
IEEE DOI
1309
computer vision
BibRef
Tighe, J.[Joseph],
Niethammer, M.[Marc],
Lazebnik, S.[Svetlana],
Scene Parsing with Object Instance Inference Using Regions and
Per-exemplar Detectors,
IJCV(112), No. 2, April 2015, pp. 150-171.
Springer DOI
1504
BibRef
Earlier:
Scene Parsing with Object Instances and Occlusion Ordering,
CVPR14(3748-3755)
IEEE DOI
1409
BibRef
Wang, P.[Peng],
Zeng, G.[Gang],
Gan, R.[Rui],
Wang, J.D.[Jing-Dong],
Zha, H.B.[Hong-Bin],
Structure-Sensitive Superpixels via Geodesic Distance,
IJCV(103), No. 1, May 2013, pp. 1-21.
Springer DOI
1305
BibRef
Earlier: A2, A1, A4, A3, A5:
ICCV11(447-454).
IEEE DOI
1201
BibRef
Liu, M.Y.[Ming-Yu],
Tuzel, O.[Oncel],
Ramalingam, S.[Srikumar],
Chellappa, R.[Rama],
Entropy-Rate Clustering: Cluster Analysis via Maximizing a Submodular
Function Subject to a Matroid Constraint,
PAMI(36), No. 1, 2014, pp. 99-112.
IEEE DOI
1312
BibRef
Earlier:
Entropy rate superpixel segmentation,
CVPR11(2097-2104).
IEEE DOI
1106
Clustering.
BibRef
Vemulapalli, R.,
Tuzel, O.[Oncel],
Liu, M.Y.[Ming-Yu],
Deep Gaussian Conditional Random Field Network:
A Model-Based Deep Network for Discriminative Denoising,
CVPR16(4801-4809)
IEEE DOI
1612
BibRef
Vemulapalli, R.,
Tuzel, O.[Oncel],
Liu, M.Y.[Ming-Yu],
Chellappa, R.,
Gaussian Conditional Random Field Network for Semantic Segmentation,
CVPR16(3224-3233)
IEEE DOI
1612
BibRef
Xu, L.F.[Lin-Feng],
Zeng, L.Y.[Liao-Yuan],
Wang, Z.N.[Zheng-Ning],
Saliency-based superpixels,
SIViP(8), No. 1, January 2014, pp. 181-190.
Springer DOI
1402
BibRef
Tian, Z.Q.[Zhi-Qiang],
Zheng, N.N.[Nan-Ning],
Xue, J.R.[Jian-Ru],
Lan, X.G.[Xu-Guang],
Li, C.[Ce],
Zhou, G.[Gang],
Video object segmentation with shape cue based on spatiotemporal
superpixel neighbourhood,
IET-CV(8), No. 1, February 2014, pp. 16-25.
DOI Link
1404
image segmentation
BibRef
Xie, Y.R.[Yu-Rui],
Xu, L.F.[Ling-Feng],
Wang, Z.N.[Zheng-Ning],
Automated co-superpixel generation via graph matching,
SIViP(8), No. 4, May 2014, pp. 753-763.
WWW Link.
1404
BibRef
Shen, J.B.[Jian-Bing],
Du, Y.F.[Yun-Fan],
Wang, W.G.[Wen-Guan],
Li, X.L.[Xue-Long],
Lazy Random Walks for Superpixel Segmentation,
IP(23), No. 4, April 2014, pp. 1451-1462.
IEEE DOI
1404
image segmentation
BibRef
Peng, J.T.[Jian-Teng],
Shen, J.B.[Jian-Bing],
Li, X.L.[Xue-Long],
High-Order Energies for Stereo Segmentation,
Cyber(46), No. 7, July 2016, pp. 1616-1627.
IEEE DOI
1606
Computer vision
BibRef
Dong, X.P.[Xing-Ping],
Shen, J.B.[Jian-Bing],
Shao, L.,
Van Gool, L.J.[Luc J.],
Sub-Markov Random Walk for Image Segmentation,
IP(25), No. 2, February 2016, pp. 516-527.
IEEE DOI
1601
BibRef
Earlier: A1, A2, A4, Only:
Segmentation Using SubMarkov Random Walk,
EMMCVPR15(237-248).
Springer DOI
1504
Algorithm design and analysis
BibRef
Schick, A.[Alexander],
Fischer, M.[Mika],
Stiefelhagen, R.[Rainer],
An evaluation of the compactness of superpixels,
PRL(43), No. 1, 2014, pp. 71-80.
Elsevier DOI
1404
BibRef
Earlier:
Measuring and evaluating the compactness of superpixels,
ICPR12(930-934).
WWW Link.
1302
Award, ICPR.
BibRef
Earlier: A1, A3, Only:
Evaluating image segments by applying the description length to sets of
superpixels,
ITCVPR11(1394-1401).
IEEE DOI
1201
Superpixel segmentation
BibRef
Fu, H.,
Cao, X.,
Tang, D.,
Han, Y.,
Xu, D.,
Regularity Preserved Superpixels and Supervoxels,
MultMed(16), No. 4, June 2014, pp. 1165-1175.
IEEE DOI
1407
Accuracy
BibRef
Morerio, P.,
Georgiu, G.C.,
Marcenaro, L.,
Regazzoni, C.S.,
Optimizing Superpixel Clustering for Real-Time Egocentric-Vision
Applications,
SPLetters(22), No. 4, April 2015, pp. 469-473.
IEEE DOI
1411
belief networks
BibRef
Fan, Q.A.[Qi-Ang],
Qi, C.[Chun],
Two-stage salient region detection by exploiting multiple priors,
JVCIR(25), No. 8, 2014, pp. 1823-1834.
Elsevier DOI
1411
Superpixel isolation
BibRef
Zhu, L.[Lei],
Klein, D.A.,
Frintrop, S.,
Cao, Z.G.[Zhi-Guo],
Cremers, A.B.,
A Multisize Superpixel Approach for Salient Object Detection Based on
Multivariate Normal Distribution Estimation,
IP(23), No. 12, December 2014, pp. 5094-5107.
IEEE DOI
1412
normal distribution
BibRef
Buyssens, P.[Pierre],
Gardin, I.[Isabelle],
Ruan, S.[Su],
El Moataz, A.[Abderrahim],
Eikonal-based region growing for efficient clustering,
IVC(32), No. 12, 2014, pp. 1045-1054.
Elsevier DOI
1412
Superpixels
BibRef
Buyssens, P.[Pierre],
Lezoray, O.[Olivier],
Multivalued label diffusion for semi-supervised segmentation,
ICIP15(3275-3279)
IEEE DOI
1512
Diffusion
BibRef
Buyssens, P.,
Toutain, M.,
El Moataz, A.,
Lezoray, O.,
Eikonal-based vertices growing and iterative seeding for efficient
graph-based segmentation,
ICIP14(4368-4372)
IEEE DOI
1502
Clustering algorithms
BibRef
Tian, X.L.[Xiao-Lin],
Jiao, L.C.[Li-Cheng],
Yi, L.[Long],
Guo, K.[Kaiwu],
Zhang, X.H.[Xiao-Hua],
The image segmentation based on optimized spatial feature of
superpixel,
JVCIR(26), No. 1, 2015, pp. 146-160.
Elsevier DOI
1502
Image segmentation
BibRef
Tian, X.L.[Xiao-Lin],
Jiao, L.C.[Li-Cheng],
Zheng, X.L.[Xiao-Li],
Zhang, X.H.[Xiao-Hua],
Inter-frame constrained coding based on superpixel for tracking,
VC(31), No. 5, May 2015, pp. 701-715.
WWW Link.
1505
BibRef
van den Bergh, M.[Michael],
Boix, X.[Xavier],
Roig, G.[Gemma],
Van Gool, L.J.[Luc J.],
SEEDS: Superpixels Extracted Via Energy-Driven Sampling,
IJCV(111), No. 3, February 2015, pp. 298-314.
Springer DOI
1503
BibRef
Earlier:
Insert A4:
de Capitani, B.[Benjamin],
ECCV12(VII: 13-26).
Springer DOI
1210
BibRef
van den Bergh, M.[Michael],
Roig, G.[Gemma],
Boix, X.[Xavier],
Manen, S.[Santiago],
Van Gool, L.J.[Luc J.],
Online Video SEEDS for Temporal Window Objectness,
ICCV13(377-384)
IEEE DOI
1403
Super pixels.
BibRef
Tasli, H.E.[H. Emrah],
Cigla, C.[Cevahir],
Alatan, A.A.[A. Aydin],
Convexity constrained efficient superpixel and supervoxel extraction,
SP:IC(33), No. 1, 2015, pp. 71-85.
Elsevier DOI
1504
Superpixel
BibRef
Machairas, V.[Vaia],
Faessel, M.,
Cardenas-Pena, D.,
Chabardes, T.,
Walter, T.,
Décencière, E.[Etienne],
Waterpixels,
IP(24), No. 11, November 2015, pp. 3707-3716.
IEEE DOI
1509
BibRef
Earlier: A1, A6, A5, Only:
Waterpixels: Superpixels based on the watershed transformation,
ICIP14(4343-4347)
IEEE DOI
1502
image segmentation.
Art
See also Watervoxels.
BibRef
Cettour-Janet, P.[Pierre],
Cazorla, C.[Clément],
Machairas, V.[Vaia],
Delannoy, Q.[Quentin],
Bednarek, N.[Nathalie],
Rousseau, F.[François],
Décencière, E.[Etienne],
Passat, N.[Nicolas],
Watervoxels,
IPOL(9), 2019, pp. 317-328.
DOI Link
1911
Code, Segmentation. Voxels, derived from waterpixels which were drived from superpixels.
See also Waterpixels.
BibRef
Tasli, H.E.[H. Emrah],
Sicre, R.[Ronan],
Gevers, T.[Theo],
SuperPixel based mid-level image description for image recognition,
JVCIR(33), No. 1, 2015, pp. 301-308.
Elsevier DOI
1512
BibRef
Earlier: A2, A1, A3:
SuperPixel Based Angular Differences as a Mid-level Image Descriptor,
ICPR14(3732-3737)
IEEE DOI
1412
Color
BibRef
Sicre, R.[Ronan],
Jurie, F.[Frédéric],
Discriminative part model for visual recognition,
CVIU(141), No. 1, 2015, pp. 28-37.
Elsevier DOI
1512
BibRef
Earlier:
Discovering and Aligning Discriminative Mid-level Features for Image
Classification,
ICPR14(1975-1980)
IEEE DOI
1412
Boats
BibRef
Saranathan, A.M.,
Parente, M.,
Uniformity-Based Superpixel Segmentation of Hyperspectral Images,
GeoRS(54), No. 3, March 2016, pp. 1419-1430.
IEEE DOI
1603
Approximation methods
BibRef
Wang, X.[Xiang],
Ma, H.M.[Hui-Min],
Chen, X.Z.[Xiao-Zhi],
Geodesic weighted Bayesian model for saliency optimization,
PRL(75), No. 1, 2016, pp. 1-8.
Elsevier DOI
1604
BibRef
And:
Salient object detection via fast R-CNN and low-level cues,
ICIP16(1042-1046)
IEEE DOI
1610
BibRef
Earlier:
Geodesic weighted Bayesian model for salient object detection,
ICIP15(397-401)
IEEE DOI
1512
Bayesian framework; Salient object detection; geodesic weight; superpixel
BibRef
Wang, X.[Xiang],
Ma, H.M.[Hui-Min],
Chen, X.Z.[Xiao-Zhi],
You, S.,
Edge Preserving and Multi-Scale Contextual Neural Network for Salient
Object Detection,
IP(27), No. 1, January 2018, pp. 121-134.
IEEE DOI
1712
edge detection, image colour analysis, neural nets,
object detection, CNN based methods, RGB-D saliency detection,
object mask
BibRef
Choi, K.S.[Kang-Sun],
Oh, K.W.[Ki-Won],
Subsampling-based acceleration of simple linear iterative clustering
for superpixel segmentation,
CVIU(146), No. 1, 2016, pp. 1-8.
Elsevier DOI
1604
Superpixels
BibRef
Peng, J.,
Shen, J.,
Yao, A.,
Li, X.,
Superpixel Optimization Using Higher Order Energy,
CirSysVideo(26), No. 5, May 2016, pp. 917-927.
IEEE DOI
1605
Clustering algorithms
BibRef
Shen, J.,
Hao, X.,
Liang, Z.,
Liu, Y.,
Wang, W.,
Shao, L.,
Real-Time Superpixel Segmentation by DBSCAN Clustering Algorithm,
IP(25), No. 12, December 2016, pp. 5933-5942.
IEEE DOI
1612
distance measurement
BibRef
Zhang, Y.X.[Yong-Xia],
Ma, L.[Long],
Zhou, Y.F.[Yuan-Feng],
Zhang, C.M.[Cai-Ming],
Automatic superpixel generation algorithm based on a quadric error
metric in 3D space,
SIViP(11), No. 3, March 2017, pp. 471-478.
Springer DOI
1702
BibRef
Csillik, O.[Ovidiu],
Fast Segmentation and Classification of Very High Resolution Remote
Sensing Data Using SLIC Superpixels,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Wang, M.[Murong],
Liu, X.B.[Xia-Bi],
Gao, Y.X.[Yi-Xuan],
Ma, X.[Xiao],
Soomro, N.Q.[Nouman Q.],
Superpixel segmentation: A benchmark,
SP:IC(56), No. 1, 2017, pp. 28-39.
Elsevier DOI
1706
Survey, Superpixel Segmentation. Superpixel
BibRef
Zhang, Y.,
Li, X.,
Gao, X.,
Zhang, C.,
A Simple Algorithm of Superpixel Segmentation With Boundary
Constraint,
CirSysVideo(27), No. 7, July 2017, pp. 1502-1514.
IEEE DOI
1707
Algorithm design and analysis, Clustering algorithms,
Complexity theory, Distance measurement, Image edge detection,
Image segmentation, Shape, Image preprocessing, image segmentation,
oversegmentation, superpixel
BibRef
Guo, Y.,
Jia, X.,
Paull, D.,
Superpixel-Based Adaptive Kernel Selection for Angular Effect
Normalization of Remote Sensing Images With Kernel Learning,
GeoRS(55), No. 8, August 2017, pp. 4262-4271.
IEEE DOI
1708
Dictionaries, Image segmentation, Kernel, Land surface,
Remote sensing, Satellites, Scattering, Adaptive kernel selection,
bidirectional reflectance, image normalization, kernel, learning
BibRef
Guo, Y.,
Jia, X.,
Paull, D.,
Effective Sequential Classifier Training for SVM-Based Multitemporal
Remote Sensing Image Classification,
IP(27), No. 6, June 2018, pp. 3036-3048.
IEEE DOI
1804
Australia, Data mining, Market research, Remote sensing, Sensors,
Support vector machines, Training, Multitemporal, classification,
support vector machines
BibRef
Zhang, Q.A.[Qi-Ang],
Liu, Y.[Yi],
Zhu, S.Y.[Si-Yang],
Han, J.G.[Jun-Gong],
Salient object detection based on super-pixel clustering and unified
low-rank representation,
CVIU(161), No. 1, 2017, pp. 51-64.
Elsevier DOI
1708
Salient object detection.
BibRef
Wang, X.Y.[Xuan-Yin],
Wu, C.W.[Chang-Wei],
Xiang, K.[Ke],
Chen, W.[Wen],
Efficient local and global contour detection based on superpixels,
JVCIR(48), No. 1, 2017, pp. 77-87.
Elsevier DOI
1708
Contour detection
BibRef
Wang, X.Y.[Xuan-Yin],
Wu, C.W.[Chang-Wei],
Xiang, K.[Ke],
Xiang, S.W.[Sen-Wei],
Chen, W.[Wen],
An experimental comparison of superpixels detection methods for contour
detection,
MVA(29), No. 4, May 2018, pp. 677-687.
Springer DOI
WWW Link.
1805
BibRef
Yang, J.F.[Jin-Fu],
Wang, Y.[Ying],
Wang, G.H.[Guang-Hui],
Li, M.G.[Min-Gai],
Salient Object Detection Based on Global Multi-Scale Superpixel
Contrast,
IET-CV(11), No. 8, December 2017, pp. 710-716.
DOI Link
1712
BibRef
Wu, S.,
Nakao, M.,
Matsuda, T.,
SuperCut: Superpixel Based Foreground Extraction With Loose Bounding
Boxes in One Cutting,
SPLetters(24), No. 12, December 2017, pp. 1803-1807.
IEEE DOI
1712
Haar transforms, feature extraction, image segmentation,
interactive systems, wavelet transforms, Haar-wavelet feature,
interactive image segmentation
BibRef
Zhou, Y.,
Pan, X.,
Wang, W.,
Yin, Y.,
Zhang, C.,
Superpixels by Bilateral Geodesic Distance,
CirSysVideo(27), No. 11, November 2017, pp. 2281-2293.
IEEE DOI
1712
Clustering algorithms, Computer science, Image color analysis,
Image segmentation, Level measurement,
superpixel
BibRef
Linares, O.A.C.[Oscar A.C.],
Botelho, G.M.[Glenda Michele],
Rodrigues, F.A.[Francisco Aparecido],
Santo Batista Neto, J.D.[João Do_Espirito],
Segmentation of large images based on super-pixels and community
detection in graphs,
IET-IPR(11), No. 12, Decmeber 2017, pp. 1219-1228.
DOI Link
1712
BibRef
Belizario, I.V.[Ivar Vargas],
Linares, O.C.[Oscar Cuadros],
Santo Batista Neto, J.D.[João Do_Espirito],
Automatic image segmentation based on label propagation,
IET-IPR(15), No. 11, 2021, pp. 2532-2547.
DOI Link
2108
BibRef
Stutz, D.[David],
Hermans, A.[Alexander],
Leibe, B.[Bastian],
Superpixels: An evaluation of the state-of-the-art,
CVIU(166), No. 1, 2018, pp. 1-27.
Elsevier DOI
1712
Survey, Superpixels. Superpixels
BibRef
Gong, Y.J.,
Zhou, Y.,
Differential Evolutionary Superpixel Segmentation,
IP(27), No. 3, March 2018, pp. 1390-1404.
IEEE DOI
1801
Algorithm design and analysis, Clustering algorithms,
Computational complexity, Image segmentation, Optimization,
seeding
BibRef
Liu, Y.J.,
Yu, M.J.,
Li, B.J.,
He, Y.,
Intrinsic Manifold SLIC: A Simple and Efficient Method for Computing
Content-Sensitive Superpixels,
PAMI(40), No. 3, March 2018, pp. 653-666.
IEEE DOI
1802
Clustering algorithms, Euclidean distance, Image color analysis,
Image segmentation, Iterative methods, Manifolds, Time complexity,
image segmentation
BibRef
Liu, Y.J.,
Yu, C.C.,
Yu, M.J.,
He, Y.,
Manifold SLIC: A Fast Method to Compute Content-Sensitive Superpixels,
CVPR16(651-659)
IEEE DOI
1612
BibRef
Sima, H.,
Guo, P.,
Zou, Y.,
Wang, Z.,
Xu, M.,
Bottom-Up Merging Segmentation for Color Images With Complex Areas,
SMCS(48), No. 3, March 2018, pp. 354-365.
IEEE DOI
1802
Color, Computational modeling, Feature extraction,
Image color analysis, Image segmentation, Merging, Tensile stress,
superpixels
BibRef
Ban, Z.H.[Zhi-Hua],
Liu, J.G.[Jian-Guo],
Fouriaux, J.[Jeremy],
GLSC: LSC superpixels at over 130 FPS,
RealTimeIP(14), No. 3, March 2018, pp. 605-616.
WWW Link.
1804
BibRef
Meng, F.,
Li, H.,
Wu, Q.,
Luo, B.,
Huang, C.,
Ngan, K.N.,
Globally Measuring the Similarity of Superpixels by Binary Edge Maps
for Superpixel Clustering,
CirSysVideo(28), No. 4, April 2018, pp. 906-919.
IEEE DOI
1804
Distribution functions, Graphical models,
Image color analysis, Image edge detection, Image segmentation,
global similarity measurement
BibRef
Xiao, X.,
Zhou, Y.,
Gong, Y.J.,
Content-Adaptive Superpixel Segmentation,
IP(27), No. 6, June 2018, pp. 2883-2896.
IEEE DOI
1804
image resolution, image segmentation, image texture,
iterative methods, CAS, discriminability measure,
superpixel
BibRef
Xu, L.[Li],
Luo, B.[Bing],
Pei, Z.[Zheng],
Weak Boundary Preserved Superpixel Segmentation Based on Directed
Graph Clustering,
SP:IC(65), 2018, pp. 231-239.
Elsevier DOI
1805
Superpixel segmentation, Directed graph clustering, K-NN graph,
Integer programming
BibRef
Ibrahim, A.[Abdelhameed],
Tharwat, A.[Alaa],
Gaber, T.[Tarek],
Hassanien, A.E.[Aboul Ella],
Optimized superpixel and AdaBoost classifier for human thermal face
recognition,
SIViP(12), No. 4, May 2018, pp. 711-719.
WWW Link.
1805
BibRef
Zhao, Q.,
Dai, F.,
Ma, Y.,
Wan, L.,
Zhang, J.,
Zhang, Y.,
Spherical Superpixel Segmentation,
MultMed(20), No. 6, June 2018, pp. 1406-1417.
IEEE DOI
1805
Algorithm design and analysis, Clustering algorithms, Geometry,
Image color analysis, Image segmentation, Shape,
spherical image
BibRef
Ban, Z.,
Liu, J.,
Cao, L.,
Superpixel Segmentation Using Gaussian Mixture Model,
IP(27), No. 8, August 2018, pp. 4105-4117.
IEEE DOI
1806
Computational complexity, Covariance matrices, Erbium,
Feature extraction, Image color analysis, Image segmentation,
parallel algorithms
BibRef
Giraud, R.[Rémi],
Ta, V.T.[Vinh-Thong],
Papadakis, N.[Nicolas],
Robust superpixels using color and contour features along linear path,
CVIU(170), 2018, pp. 1-13.
Elsevier DOI
1806
BibRef
Earlier:
SCALP: Superpixels with Contour Adherence using Linear Path,
ICPR16(2374-2379)
IEEE DOI
1705
Superpixels, Linear path, Segmentation, Contour detection.
Clustering algorithms, Image color analysis, Image segmentation,
Measurement, Scalp, Shape, Standards
BibRef
Sultani, W.,
Mokhtari, S.,
Yun, H.B.,
Automatic Pavement Object Detection Using Superpixel Segmentation
Combined With Conditional Random Field,
ITS(19), No. 7, July 2018, pp. 2076-2085.
IEEE DOI
1807
Feature extraction, Histograms, Image segmentation,
Object detection, Shape, Support vector machines,
superpixel segmentation
BibRef
Huang, C.,
Wang, W.,
Wang, W.,
Lin, S.,
Lin, Y.,
USEAQ: Ultra-Fast Superpixel Extraction via Adaptive Sampling From
Quantized Regions,
IP(27), No. 10, October 2018, pp. 4916-4931.
IEEE DOI
1808
feature extraction, image colour analysis, image representation,
image segmentation, sampling methods,
joint spatial and color quantizations
BibRef
Wei, X.,
Yang, Q.,
Gong, Y.,
Ahuja, N.,
Yang, M.,
Superpixel Hierarchy,
IP(27), No. 10, October 2018, pp. 4838-4849.
IEEE DOI
1808
edge detection, image segmentation,
superpixel segmentation hierarchy, Boruvka algorithm
BibRef
Fu, Z.L.[Zhong-Liang],
Sun, Y.J.[Yang-Jie],
Fan, L.[Liang],
Han, Y.T.[Yu-Tao],
Multiscale and Multifeature Segmentation of High-Spatial Resolution
Remote Sensing Images Using Superpixels with Mutual Optimal Strategy,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Cong, L.[Lin],
Ding, S.F.[Shi-Fei],
Wang, L.J.[Li-Juan],
Zhang, A.J.[Ai-Juan],
Jia, W.K.[Wei-Kuan],
Image segmentation algorithm based on superpixel clustering,
IET-IPR(12), No. 11, November 2018, pp. 2030-2035.
DOI Link
1810
BibRef
And:
Corrigendum:
IET-IPR(13), No. 11, 19 September 2019, pp. 2029-2029.
DOI Link
1909
BibRef
Ding, S.F.[Shi-Fei],
Wang, L.J.[Li-Juan],
Cong, L.[Lin],
Super-pixel image segmentation algorithm based on adaptive equalisation
feature parameters,
IET-IPR(14), No. 17, 24 December 2020, pp. 4461-4467.
DOI Link
2104
BibRef
Fan, J.Y.[Jia-Yuan],
Chen, T.[Tao],
Lu, S.J.[Shi-Jian],
Superpixel Guided Deep-Sparse-Representation Learning for
Hyperspectral Image Classification,
CirSysVideo(28), No. 11, November 2018, pp. 3163-3173.
IEEE DOI
1811
Feature extraction, Encoding, Image segmentation,
Principal component analysis, Support vector machines,
sparse representation
BibRef
Mendonça, M.[Marcelo],
Oliveira, L.[Luciano],
ISEC: Iterative over-segmentation via edge clustering,
IVC(80), 2018, pp. 45-57.
Elsevier DOI
1812
Superpixels, Video object segmentation
BibRef
Liu, H.[Han],
Li, J.[Jun],
He, L.[Lin],
Wang, Y.[Yu],
Superpixel-Guided Layer-Wise Embedding CNN for Remote Sensing Image
Classification,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Li, W.M.[Wen-Mei],
Chen, H.H.[Huai-Huai],
Liu, Q.[Qing],
Liu, H.Y.[Hai-Yan],
Wang, Y.[Yu],
Gui, G.[Guan],
Attention Mechanism and Depthwise Separable Convolution Aided 3DCNN
for Hyperspectral Remote Sensing Image Classification,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Ma, F.[Fei],
Gao, F.[Fei],
Sun, J.P.[Jin-Ping],
Zhou, H.Y.[Hui-Yu],
Hussain, A.[Amir],
Weakly Supervised Segmentation of SAR Imagery Using Superpixel and
Hierarchically Adversarial CRF,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Ma, F.[Fei],
Gao, F.[Fei],
Sun, J.P.[Jin-Ping],
Zhou, H.Y.[Hui-Yu],
Hussain, A.[Amir],
Attention Graph Convolution Network for Image Segmentation in Big SAR
Imagery Data,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Wang, W.[Wei],
Xiang, D.L.[De-Liang],
Ban, Y.F.[Yi-Fang],
Zhang, J.[Jun],
Wan, J.W.[Jian-Wei],
Superpixel-Based Segmentation of Polarimetric SAR Images through
Two-Stage Merging,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Xu, L.[Li],
Luo, B.[Bing],
Kong, M.M.[Ming-Ming],
Li, B.[Bo],
Pei, Z.[Zheng],
Fast Superpixel Segmentation via Boundary Sampling and Interpolation,
IEICE(E102-D), No. 4, April 2019, pp. 871-874.
WWW Link.
1904
BibRef
Reso, M.[Matthias],
Jachalsky, J.[Jörn],
Rosenhahn, B.[Bodo],
Ostermann, J.[Jörn],
Occlusion-Aware Method for Temporally Consistent Superpixels,
PAMI(41), No. 6, June 2019, pp. 1441-1454.
IEEE DOI
1905
BibRef
Earlier:
Temporally Consistent Superpixels,
ICCV13(385-392)
IEEE DOI
1403
Image segmentation, Image color analysis, Streaming media,
Histograms, Optical propagation, Shape, Optimization,
superpixels.
over-segmentation; supervoxel; tracking; video segmentation
BibRef
Zhou, X.[Xianen],
Wang, Y.N.[Yao-Nan],
Zhu, Q.[Qing],
Xiao, C.Y.[Chang-Yan],
Lu, X.[Xiao],
SSG: superpixel segmentation and GrabCut-based salient object
segmentation,
VC(35), No. 3, March 2019, pp. 385-398.
WWW Link.
1906
BibRef
Sun, G.D.[Guo-Dong],
Lin, K.[Kai],
Wang, J.H.[Jun-Hao],
Zhang, Y.[Yang],
An Enhanced Affinity Graph for Image Segmentation,
IEICE(E102-D), No. 5, May 2019, pp. 1073-1080.
WWW Link.
1906
Oversegment then combine.
BibRef
Qian, X.[Xin],
Li, X.M.[Xue-Mei],
Zhang, C.M.[Cai-Ming],
Weighted superpixel segmentation,
VC(35), No. 6-8, June 2018, pp. 985-996.
WWW Link.
1906
BibRef
Xie, F.[Fuding],
Lei, C.[Cunkuan],
Yang, J.[Jun],
Jin, C.[Cui],
An Effective Classification Scheme for Hyperspectral Image Based on
Superpixel and Discontinuity Preserving Relaxation,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Pan, X.,
Zhou, Y.,
Chen, Z.,
Zhang, C.,
Texture Relative Superpixel Generation With Adaptive Parameters,
MultMed(21), No. 8, August 2019, pp. 1997-2011.
IEEE DOI
1908
greedy algorithms, image colour analysis, image resolution,
image texture, neural nets, optimisation,
neural network
BibRef
Wang, M.[Murong],
Liu, X.B.[Xia-Bi],
Soomro, N.Q.[Nouman Q.],
Han, G.[Guanhui],
Liu, W.H.[Wei-Hua],
Content-sensitive superpixel segmentation via self-organization-map
neural network,
JVCIR(63), 2019, pp. 102572.
Elsevier DOI
1909
Superpixel segmentation, Content sensitive,
Self-Organization Map (SOM), Clustering
BibRef
Zhu, H.,
Zhang, Q.,
Wang, Q.,
Li, H.,
4D Light Field Superpixel and Segmentation,
IP(29), No. 1, 2020, pp. 85-99.
IEEE DOI
1910
cameras, image colour analysis, image resolution,
image restoration, image segmentation,
effective label ratio
BibRef
Li, H.,
Kwong, S.,
Chen, C.,
Jia, Y.,
Cong, R.,
Superpixel Segmentation Based on Square-Wise Asymmetric Partition and
Structural Approximation,
MultMed(21), No. 10, October 2019, pp. 2625-2637.
IEEE DOI
1910
approximation theory, image resolution, image segmentation,
object detection, object tracking, optimisation, semantic networks,
combinatorial optimization
BibRef
Liang, M.M.[Miao-Miao],
Jiao, L.C.[Li-Cheng],
Meng, Z.[Zhe],
A Superpixel-Based Relational Auto-Encoder for Feature Extraction of
Hyperspectral Images,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Wang, P.Y.[Peng-Yu],
Zhu, H.Q.[Hong-Qing],
Chen, N.[Ning],
UMMS: Efficient Superpixel Segmentation Driven by a Mixture of
Spatially Constrained Uniform Distribution,
IEICE(E103-D), No. 1, January 2020, pp. 181-185.
WWW Link.
2001
BibRef
Kang, X.J.[Xue-Jing],
Zhu, L.[Lei],
Ming, A.[Anlong],
Dynamic Random Walk for Superpixel Segmentation,
IP(29), 2020, pp. 3871-3884.
IEEE DOI
2002
BibRef
Earlier: A2, A1, A3:
Plus
Zhang, X.S.[Xue-Song],
ACCV18(VI:540-554).
Springer DOI
1906
Random walk, image segmentation, superpixel segmentation,
weighted random walk entropy
BibRef
Gaur, U.[Utkarsh],
Manjunath, B.S.,
Superpixel Embedding Network,
IP(29), 2020, pp. 3199-3212.
IEEE DOI
2002
Superpixel, embedding, convolutional neural networks
BibRef
Singh, N.K.[Nongmeikapam Kishorjit],
Singh, N.J.[Ningthoujam Johny],
Kumar, W.K.[Wahengbam Kanan],
Image classification using SLIC superpixel and FAAGKFCM image
segmentation,
IET-IPR(14), No. 3, 28 February 2020, pp. 487-494.
DOI Link
2002
BibRef
Zhao, L.[Li],
Li, Z.H.[Zhi-Hui],
Men, C.G.[Chao-Guang],
Liu, Y.M.[Yong-Mei],
Superpixels extracted via region fusion with boundary constraint,
JVCIR(66), 2020, pp. 102743.
Elsevier DOI
2003
Superpixel, Initial segmentation, Edge closing,
Gaussian belief propagation, Region fusion
BibRef
Wang, H.,
Shen, J.,
Yin, J.,
Dong, X.,
Sun, H.,
Shao, L.,
Adaptive Nonlocal Random Walks for Image Superpixel Segmentation,
CirSysVideo(30), No. 3, March 2020, pp. 822-834.
IEEE DOI
2003
Image segmentation, Image color analysis, Shape, Merging,
Clustering algorithms, Entropy, Lattices,
superpixel
BibRef
Luo, B.[Bing],
Xiong, J.[Junkai],
Xu, L.[Li],
Pei, Z.[Zheng],
Superpixel Segmentation Based on Global Similarity and Contour Region
Transform,
IEICE(E103-D), No. 3, March 2020, pp. 716-719.
WWW Link.
2003
BibRef
Liu, S.C.[Si-Cong],
Hu, Q.[Qing],
Tong, X.H.[Xiao-Hua],
Xia, J.S.[Jun-Shi],
Du, Q.[Qian],
Samat, A.[Alim],
Ma, X.L.[Xiao-Long],
A Multi-Scale Superpixel-Guided Filter Feature Extraction and
Selection Approach for Classification of Very-High-Resolution
Remotely Sensed Imagery,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Xiang, D.L.[De-Liang],
Wang, W.[Wei],
Tang, T.[Tao],
Guan, D.D.[Dong-Dong],
Quan, S.N.[Si-Nong],
Liu, T.[Tao],
Su, Y.[Yi],
Adaptive Statistical Superpixel Merging With Edge Penalty for PolSAR
Image Segmentation,
GeoRS(58), No. 4, April 2020, pp. 2412-2429.
IEEE DOI
2004
Edge penalty, homogeneity measurement (HoM), image segmentation,
polarimetric synthetic aperture radar (PolSAR),
superpixel merging
BibRef
Xiang, D.L.[De-Liang],
Zhang, F.[Fan],
Zhang, W.[Wei],
Tang, T.[Tao],
Guan, D.D.[Dong-Dong],
Zhang, L.[Liang],
Su, Y.[Yi],
Fast Pixel-Superpixel Region Merging for SAR Image Segmentation,
GeoRS(59), No. 11, November 2021, pp. 9319-9335.
IEEE DOI
2111
Image edge detection, Radar polarimetry, Merging,
Image segmentation, Detectors, Speckle, Feature extraction,
synthetic aperture radar (SAR) image segmentation
BibRef
Kurlin, V.[Vitaliy],
Muszynski, G.[Grzegorz],
Persistence-based resolution-independent meshes of superpixels,
PRL(131), 2020, pp. 300-306.
Elsevier DOI
2004
Edge detection, Polygonal meshes, Persistent homology
BibRef
León-López, K.M.[Kareth M.],
Fuentes, H.A.[Henry Arguello],
Online Tensor Sparsifying Transform Based on Temporal Superpixels
From Compressive Spectral Video Measurements,
IP(29), 2020, pp. 5953-5963.
IEEE DOI
2005
Tensile stress, Transforms, Image reconstruction, Image coding,
Sensors, Computational modeling, Gray-scale, Sparse representation,
spectral imaging
BibRef
Liu, L.,
Wang, Y.,
Peng, J.,
Zhang, L.,
Zhang, B.,
Cao, Y.,
Latent Relationship Guided Stacked Sparse Autoencoder for
Hyperspectral Imagery Classification,
GeoRS(58), No. 5, May 2020, pp. 3711-3725.
IEEE DOI
2005
Feature learning, hyperspectral image (HSI) classification,
latent relationship, superpixels constraint
BibRef
Zhao, Y.F.[Yi-Fei],
Su, F.Z.[Fen-Zhen],
Yan, F.Q.[Feng-Qin],
Novel Semi-Supervised Hyperspectral Image Classification Based on a
Superpixel Graph and Discrete Potential Method,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Zhang, J.M.[Jian-Mei],
Wang, P.Y.[Peng-Yu],
Gong, F.Y.[Fei-Yang],
Zhu, H.Q.[Hong-Qing],
Chen, N.[Ning],
Content-Based Superpixel Segmentation and Matching Using Its Region
Feature Descriptors,
IEICE(E103-D), No. 8, August 2020, pp. 1888-1900.
WWW Link.
2008
BibRef
Wang, Y.F.[Yu-Feng],
Ding, W.R.[Wen-Rui],
Zhang, B.C.[Bao-Chang],
Li, H.G.[Hong-Guang],
Liu, S.[Shuo],
Superpixel Labeling Priors and MRF for Aerial Video Segmentation,
CirSysVideo(30), No. 8, August 2020, pp. 2590-2603.
IEEE DOI
2008
Streaming media, Motion segmentation, Image segmentation, Labeling,
Task analysis, Metadata, Probabilistic logic, Video segmentation,
Markov random field
BibRef
Condori, M.A.T.[Marcos A.T.],
Cappabianco, F.A.M.[Fábio A.M.],
Falcão, A.X.[Alexandre X.],
Miranda, P.A.V.[Paulo A.V.],
An extension of the differential image foresting transform and its
application to superpixel generation,
JVCIR(71), 2020, pp. 102748.
Elsevier DOI
2009
Image foresting transform, Superpixels, Differential image foresting transform
BibRef
Wu, C.[Chong],
Zhang, L.[Le],
Zhang, H.W.[Hou-Wang],
Yan, H.[Hong],
Superpixel Based Hierarchical Segmentation for Color Image,
IEICE(E103-D), No. 10, October 2020, pp. 2246-2249.
WWW Link.
2010
BibRef
Wang, K.[Kai],
Li, L.[Liang],
Zhang, J.W.[Jia-Wan],
End-to-end trainable network for superpixel and image segmentation,
PRL(140), 2020, pp. 135-142.
Elsevier DOI
2012
Image segmentation, Superpixel, Deep learning
BibRef
Wang, G.[Gang],
Chen, Y.G.[Yong-Guang],
Gao, M.[Min],
Yang, S.C.[Suo-Chang],
Feng, F.Q.[Fu-Qiang],
de Baets, B.[Bernard],
Boundary detection using unbiased sparseness-constrained
colour-opponent response and superpixel contrast,
IET-IPR(14), No. 13, November 2020, pp. 2976-2986.
DOI Link
2012
BibRef
Ma, D.,
Zhou, Y.,
Xin, S.,
Wang, W.,
Convex and Compact Superpixels by Edge- Constrained Centroidal Power
Diagram,
IP(30), 2021, pp. 1825-1839.
IEEE DOI
2101
Image segmentation, Shape, Image edge detection,
Clustering algorithms, Image color analysis, Image coding, Erbium,
optimization
BibRef
Zhang, J.C.[Jian-Chao],
Aviles-Rivero, A.I.[Angelica I.],
Heydecker, D.[Daniel],
Zhuang, X.S.[Xiao-Sheng],
Chan, R.[Raymond],
Schönlieb, C.B.[Carola-Bibiane],
Dynamic spectral residual superpixels,
PR(112), 2021, pp. 107705.
Elsevier DOI
2102
Superpixels, K-means, Spectral residual, Segmentation
BibRef
Peng, H.K.[Han-Kui],
Aviles-Rivero, A.I.[Angelica I.],
Schönlieb, C.B.[Carola-Bibiane],
HERS Superpixels: Deep Affinity Learning for Hierarchical Entropy
Rate Segmentation,
WACV22(72-81)
IEEE DOI
2202
Deep learning, Visualization, Entropy,
Real-time systems, Feeds, Task analysis, Image Processing
BibRef
Ji, S.[Sifan],
Zhu, H.Q.[Hong-Qing],
Wang, P.Y.[Peng-Yu],
Ling, X.F.[Xiao-Feng],
Image clustering algorithm using superpixel segmentation and
non-symmetric Gaussian-Cauchy mixture model,
IET-IPR(14), No. 16, 19 December 2020, pp. 4132-4143.
DOI Link
2103
BibRef
Liu, C.X.[Cai-Xia],
Pang, M.Y.[Ming-Yong],
Zhao, R.B.[Rui-Bin],
Novel superpixel-based algorithm for segmenting lung images via
convolutional neural network and random forest,
IET-IPR(14), No. 16, 19 December 2020, pp. 4340-4348.
DOI Link
2103
BibRef
Li, C.[Cheng],
Guo, B.L.[Bao-Long],
Liao, N.N.[Nan-Nan],
Gong, J.L.[Jiang-Lei],
Han, X.D.[Xiao-Dong],
Hou, S.W.[Shu-Wei],
Chen, Z.J.[Zhi-Jie],
He, W.P.[Wang-Peng],
CONIC: Contour Optimized Non-Iterative Clustering Superpixel
Segmentation,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Zhang, Y.X.[Yong-Xia],
Guo, Q.[Qiang],
Zhang, Y.S.[Yong-Sheng],
Zhang, C.M.[Cai-Ming],
Fast and robust superpixel generation method,
IET-IPR(14), No. 17, 24 December 2020, pp. 4543-4553.
DOI Link
2104
BibRef
Song, R.[Rui],
Sun, W.W.[Wei-Wei],
Du, Q.[Qian],
Multiscale Context-Aware Ensemble Deep KELM for Efficient
Hyperspectral Image Classification,
GeoRS(59), No. 6, June 2021, pp. 5114-5130.
IEEE DOI
2106
Feature extraction, Kernel, Training, Hyperspectral imaging,
Task analysis, Nonhomogeneous media,
superpixel segmentation
BibRef
Mukherjee, A.[Aritra],
Sarkar, S.[Soumik],
Saha, S.K.[Sanjoy K.],
Segmentation of natural images based on super pixel and graph merging,
IET-CV(15), No. 1, 2021, pp. 1-11.
DOI Link
2106
BibRef
Wilms, C.[Christian],
Frintrop, S.[Simone],
DeepFH segmentations for superpixel-based object proposal refinement,
IVC(114), 2021, pp. 104263.
Elsevier DOI
2109
BibRef
Earlier:
Superpixel-based Refinement for Object Proposal Generation,
ICPR21(4965-4972)
IEEE DOI
2105
Object proposals, Image segmentation, Superpixels.
Image segmentation, Statistical analysis,
Measurement uncertainty, Object segmentation, Feature extraction,
Proposals
BibRef
Yuan, Y.[Ye],
Zhang, W.[Wei],
Yu, H.[Hai],
Zhu, Z.L.[Zhi-Liang],
Superpixels With Content-Adaptive Criteria,
IP(30), 2021, pp. 7702-7716.
IEEE DOI
2109
Image color analysis, Shape, Image segmentation,
Clustering algorithms, Visualization, Topology, Shape measurement,
boundary refinement
BibRef
Li, D.[Dan],
Kong, F.Q.[Fang-Qiang],
Liu, J.H.[Jia-Hang],
Wang, Q.[Qiang],
Superpixel-Based Multiple Statistical Feature Extraction Method for
Classification of Hyperspectral Images,
GeoRS(59), No. 10, October 2021, pp. 8738-8753.
IEEE DOI
2109
Feature extraction, Training, Kernel, Data mining, Manifolds,
Covariance descriptor, sparse representation (SR) classifier
BibRef
Chuchvara, A.[Aleksandra],
Gotchev, A.[Atanas],
Efficient Image-Warping Framework for Content-Adaptive Superpixels
Generation,
SPLetters(28), 2021, pp. 1948-1952.
IEEE DOI
2110
Image segmentation, Optimization, Transforms,
Signal processing algorithms, Image edge detection, GPU
BibRef
Yin, J.J.[Jun-Jun],
Wang, T.[Tao],
Du, Y.L.[Yan-Lei],
Liu, X.[Xiyun],
Zhou, L.J.[Liang-Jiang],
Yang, J.[Jian],
SLIC Superpixel Segmentation for Polarimetric SAR Images,
GeoRS(60), 2022, pp. 1-17.
IEEE DOI
2112
Radar polarimetry, Image segmentation, Synthetic aperture radar,
Clustering algorithms, Scattering, Iterative methods,
synthetic aperture radar (SAR)
BibRef
Wang, N.N.[Nan-Nan],
Zhang, Y.X.[Yong-Xia],
Adaptive and fast image superpixel segmentation approach,
IVC(116), 2021, pp. 104315.
Elsevier DOI
2112
Image processing, Superpixels, Linear path, LBP, Contour density
BibRef
Zhao, C.H.[Chun-Hui],
Qin, B.[Boao],
Feng, S.[Shou],
Zhu, W.X.[Wen-Xiang],
Multiple Superpixel Graphs Learning Based on Adaptive Multiscale
Segmentation for Hyperspectral Image Classification,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Zhao, C.H.[Chun-Hui],
Qin, B.[Boao],
Feng, S.[Shou],
Zhu, W.X.[Wen-Xiang],
Sun, W.W.[Wei-Wei],
Li, W.[Wei],
Jia, X.P.[Xiu-Ping],
Hyperspectral Image Classification with Multi-Attention Transformer
and Adaptive Superpixel Segmentation-Based Active Learning,
IP(32), 2023, pp. 3606-3621.
IEEE DOI
2307
Transformers, Training, Feature extraction, Hyperspectral imaging,
Convolutional neural networks, Task analysis, Convolution,
adoptive superpixel segmentation
BibRef
Liu, J.F.[Jia-Fei],
Wang, Q.S.[Qing-Song],
Cheng, J.[Jianda],
Xiang, D.L.[De-Liang],
Jing, W.B.[Wen-Bo],
Multitask Learning-Based for SAR Image Superpixel Generation,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Yi, S.[Sheng],
Ma, H.M.[Hui-Min],
Wang, X.[Xiang],
Hu, T.Y.[Tian-Yu],
Li, X.[Xi],
Wang, Y.[Yu],
Weakly-supervised semantic segmentation with superpixel guided local
and global consistency,
PR(124), 2022, pp. 108504.
Elsevier DOI
2203
Weakly supervised condition, Semantic segmentation,
Pixel-level affinity, Superpixel
BibRef
Yang, X.[Xuan],
Chen, Z.C.[Zheng-Chao],
Zhang, B.[Bing],
Li, B.P.[Bai-Peng],
Bai, Y.Q.[Yong-Qing],
Chen, P.[Pan],
A Block Shuffle Network with Superpixel Optimization for Landsat
Image Semantic Segmentation,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Liu, T.[Tianli],
Dai, F.[Fang],
Guo, W.[Wenyan],
Zhao, F.Q.[Feng-Qun],
Wang, J.F.[Jun-Feng],
Wang, X.X.[Xiao-Xia],
Superpixel segmentation algorithm based on local network modularity
increment,
IET-IPR(16), No. 7, 2022, pp. 1822-1830.
DOI Link
2205
BibRef
Mu, C.H.[Cai-Hong],
Dong, Z.D.[Zhi-Dong],
Liu, Y.[Yi],
A Two-Branch Convolutional Neural Network Based on Multi-Spectral
Entropy Rate Superpixel Segmentation for Hyperspectral Image
Classification,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Gay, R.[Robin],
Lecoutre, J.[Jérémie],
Menouret, N.[Nicolas],
Morillon, A.[Arthur],
Monasse, P.[Pascal],
Bilateral K-Means for Superpixel Computation (the SLIC Method),
IPOL(12), 2022, pp. 72-91.
DOI Link
2205
Code, Superpixel.
Code, SLIC. SLIC: Simple linear iterative clustering.
See also SLIC Superpixels Compared to State-of-the-Art Superpixel Methods.
BibRef
Yan, T.M.[Ting-Man],
Huang, X.L.[Xiao-Lin],
Zhao, Q.F.[Qun-Fei],
Hierarchical Superpixel Segmentation by Parallel CRTrees Labeling,
IP(31), 2022, pp. 4719-4732.
IEEE DOI
2207
Labeling, Forestry, Image segmentation, Graphics processing units,
Clustering algorithms, Prediction algorithms, Vegetation,
parallel algorithm
BibRef
Ouyang, C.[Cheng],
Biffi, C.[Carlo],
Chen, C.[Chen],
Kart, T.[Turkay],
Qiu, H.Q.[Hua-Qi],
Rueckert, D.[Daniel],
Self-Supervised Learning for Few-Shot Medical Image Segmentation,
MedImg(41), No. 7, July 2022, pp. 1837-1848.
IEEE DOI
2207
BibRef
Earlier:
Self-supervision with Superpixels: Training Few-shot Medical Image
Segmentation Without Annotation,
ECCV20(XXIX: 762-780).
Springer DOI
2010
Image segmentation, Biomedical imaging, Training, Prototypes,
Task analysis, Semantics, Annotations, Self-supervised learning,
representation learning.
BibRef
Pan, X.[Xiao],
Zhou, Y.F.[Yuan-Feng],
Zhang, Y.F.[Yun-Feng],
Zhang, C.M.[Cai-Ming],
Fast Generation of Superpixels With Lattice Topology,
IP(31), 2022, pp. 4828-4841.
IEEE DOI
2208
Lattices, Topology, Clustering algorithms, Image segmentation,
Partitioning algorithms, Task analysis, Deep learning, Superpixels,
deep learning
BibRef
Liao, N.N.[Nan-Nan],
Guo, B.[Baolong],
Li, C.[Cheng],
Liu, H.[Hui],
Zhang, C.Y.[Chao-Yan],
BACA: Superpixel Segmentation with Boundary Awareness and Content
Adaptation,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Deng, J.H.[Jie-Hang],
Chen, H.M.[Hao-Min],
Yuan, Z.M.[Zhong-Ming],
Gu, G.S.[Guo-Sheng],
Xu, S.[Shihe],
Weng, S.W.[Shao-Wei],
Wang, H.[Hao],
An enhanced image quality assessment by synergizing superpixels and
visual saliency,
JVCIR(88), 2022, pp. 103610.
Elsevier DOI
2210
Full reference, Image quality assessment, Visual saliency,
Superpixel segmentation, Limitations, Complementary
BibRef
Deng, J.[Jie],
Wang, W.[Wei],
Quan, S.N.[Si-Nong],
Zhan, R.H.[Rong-Hui],
Zhang, J.[Jun],
Hierarchical Superpixel Segmentation for PolSAR Images Based on the
Boruvka Algorithm,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Ye, P.J.[Pan-Jian],
Han, C.H.[Chen-Hua],
Zhang, Q.Z.[Qi-Zhong],
Gao, F.R.[Fa-Rong],
Yang, Z.Y.[Zhang-Yi],
Wu, G.H.[Guang-Hai],
An Application of Hyperspectral Image Clustering Based on
Texture-Aware Superpixel Technique in Deep Sea,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Liu, Q.[Qiang],
Lu, X.[Xiao],
Dong, Q.[Qiulei],
Zhang, Y.Y.[Yang-Yong],
Wang, H.X.[Hai-Xia],
SG-SRNs: Superpixel-Guided Scene Representation Networks,
SPLetters(29), 2022, pp. 2038-2042.
IEEE DOI
2210
Image segmentation, Task analysis, Image color analysis,
Image reconstruction, Distortion, Scene representation networks,
superpixel regularization
BibRef
Yu, H.[Hang],
Jiang, H.R.[Hao-Ran],
Liu, Z.H.[Zhi-Heng],
Zhou, S.P.[Sui-Ping],
Yin, X.J.[Xiang-Jie],
EDTRS: A Superpixel Generation Method for SAR Images Segmentation
Based on Edge Detection and Texture Region Selection,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Ng, T.C.[Tsz Ching],
Choy, S.K.[Siu Kai],
Lam, S.Y.[Shu Yan],
Yu, K.W.[Kwok Wai],
Fuzzy Superpixel-based Image Segmentation,
PR(134), 2023, pp. 109045.
Elsevier DOI
2212
Fuzzy algorithm, Graph theory, Mean-shift, Segmentation, Superpixel
BibRef
Zhang, Y.S.[Yong-Sheng],
Zhang, Y.X.[Yong-Xia],
Fan, L.W.[Lin-Wei],
Wang, N.N.[Nan-Nan],
Fast and accurate superpixel segmentation algorithm with a guidance
image,
IVC(129), 2023, pp. 104596.
Elsevier DOI
2301
Image segmentation, Superpixel, Real-time, Guidance image, Accurate
BibRef
Zhou, P.[Pei],
Kang, X.J.[Xue-Jing],
Ming, A.[Anlong],
Vine Spread for Superpixel Segmentation,
IP(32), 2023, pp. 878-891.
IEEE DOI
2301
Image segmentation, Image color analysis, Shape, Soil,
Feature extraction, Task analysis, Physiology, vine spread
BibRef
Li, M.[Meilin],
Zou, H.X.[Huan-Xin],
Qin, X.X.[Xian-Xiang],
Dong, Z.[Zhen],
Sun, L.[Li],
Wei, J.[Juan],
Superpixel Generation for Polarimetric SAR Images with Adaptive Size
Estimation and Determinant Ratio Test Distance,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Xu, Y.Y.[Yun-Yang],
Gao, X.F.[Xi-Feng],
Zhang, C.M.[Cai-Ming],
Tan, J.C.[Jian-Chao],
Li, X.M.[Xue-Mei],
High Quality Superpixel Generation Through Regional Decomposition,
CirSysVideo(33), No. 4, April 2023, pp. 1802-1815.
IEEE DOI
2304
Image segmentation, Image edge detection, Image color analysis,
Shape, Clustering algorithms, Task analysis, Merging, saliency detection
BibRef
Dornaika, F.,
Sun, D.,
Hammoudi, K.,
Charafeddine, J.,
Cabani, A.,
Zhang, C.,
Object-centric Contour-aware Data Augmentation Using Superpixels of
Varying Granularity,
PR(139), 2023, pp. 109481.
Elsevier DOI
2304
Data augmentation, Cutmix, Object-centric Contour-aware,
Discriminative regions, Attention, Superpixels
BibRef
Sun, L.M.[Li-Min],
Ma, D.Y.[Dong-Yang],
Pan, X.[Xiao],
Zhou, Y.F.[Yuan-Feng],
Weak-Boundary Sensitive Superpixel Segmentation Based on Local
Adaptive Distance,
CirSysVideo(33), No. 5, May 2023, pp. 2302-2316.
IEEE DOI
2305
Image segmentation, Clustering algorithms, Feature extraction,
Standards, Task analysis, Partitioning algorithms,
morphology dilation
BibRef
Giraud, R.[Rémi],
Borba-Pinheiro, R.[Rodrigo],
Berthoumieu, Y.[Yannick],
Generalization of the shortest path approach for superpixel
segmentation of omnidirectional images,
PR(142), 2023, pp. 109673.
Elsevier DOI
2307
3D Spherical images, Superpixels, Unsupervised segmentation, Shape regularity
BibRef
Zeyu, X.[Xie],
Xiao, L.[Luo],
Defang, Z.[Zhao],
Xinyu, C.[Chen],
Fuzzy C-means clustering algorithm based on superpixel merging and
multi-feature adaptive fusion measurement,
IET-IPR(18), No. 1, 2024, pp. 140-153.
DOI Link
2401
image segmentation, fuzzy set theory
BibRef
Li, H.[Hua],
Liang, J.[Junyan],
Wu, R.Q.[Rui-Qi],
Cong, R.[Runmin],
Wu, W.H.[Wen-Hui],
Kwong, S.T.W.[Sam Tak Wu],
Stereo Superpixel Segmentation via Decoupled Dynamic
Spatial-Embedding Fusion Network,
MultMed(26), 2024, pp. 367-378.
IEEE DOI
2402
Image segmentation, Feature extraction, Task analysis,
Image color analysis, Computer science, Collaboration,
spatiality embedding
BibRef
Huang, S.L.[Shi-Luo],
Liu, Z.[Zheng],
Jin, W.[Wei],
Mu, Y.[Ying],
Superpixel-based multi-scale multi-instance learning for
hyperspectral image classification,
PR(149), 2024, pp. 110257.
Elsevier DOI
2403
Multi-instance learning (MIL),
Hyperspectral image (HSI) classification, Superpixel
BibRef
Chu, B.[Boce],
Zhang, M.X.[Meng-Xuan],
Ma, K.[Kun],
Liu, L.[Long],
Wan, J.W.[Jun-Wei],
Chen, J.[Jinyong],
Chen, J.[Jie],
Zeng, H.C.[Hong-Cheng],
Multiobjective Evolutionary Superpixel Segmentation for PolSAR Image
Classification,
RS(16), No. 5, 2024, pp. 854.
DOI Link
2403
BibRef
Xu, S.[Sen],
Wei, S.[Shikui],
Ruan, T.[Tao],
Zhao, Y.[Yao],
Training Superpixel Network Only Once,
SPLetters(31), 2024, pp. 1284-1288.
IEEE DOI
2405
Training, Semantics, Image color analysis,
Classification algorithms, Image reconstruction, Seals, superpixel
BibRef
Barcelos, I.B.[Isabela Borlido],
de Castro-Belem, F.[Felipe],
de Melo-Joao, L.[Leonardo],
do Patrocinio, Z.K.G.[Zenilton K. G.],
Falcao, A.X.[Alexandre Xavier],
Ferzoli-Guimaraes, S.J.[Silvio Jamil],
A Comprehensive Review and New Taxonomy on Superpixel Segmentation,
Surveys(56), No. 8, April 2024, pp. 200.
DOI Link
2405
Survey, Segmentation.
Survey, Superpixel Segmentation. Superpixel, image segmentation, survey, image processing
BibRef
Xu, S.[Sen],
Wei, S.[Shikui],
Ruan, T.[Tao],
Zhao, Y.[Yao],
ESNet: An Efficient Framework for Superpixel Segmentation,
CirSysVideo(34), No. 7, July 2024, pp. 5389-5399.
IEEE DOI
2407
Feature extraction, Generators, Image segmentation,
Computer architecture, Clustering algorithms, Task analysis,
deep clustering
BibRef
Zhao, T.[Teng],
Du, X.P.[Xiao-Ping],
Xu, C.[Chen],
Jian, H.D.[Hong-Deng],
Pei, Z.P.[Zhi-Peng],
Zhu, J.J.[Jun-Jie],
Yan, Z.Z.[Zhen-Zhen],
Fan, X.T.[Xiang-Tao],
SPT-UNet: A Superpixel-Level Feature Fusion Network for Water
Extraction from SAR Imagery,
RS(16), No. 14, 2024, pp. 2636.
DOI Link
2408
BibRef
Dang, Y.Y.[Yuan-Yuan],
Wei, J.[Junheng],
Zhang, L.J.[Li-Jie],
Zhong, Z.[Zhaohao],
LDFUNet: Large-Kernel Convolution and Dynamic Fusion Network for
Superpixel Segmentation,
CVIDL23(144-147)
IEEE DOI
2403
Deep learning, Image segmentation, Costs, Convolution, Fuses,
Heuristic algorithms, Feature extraction, dynamic fusion
BibRef
Cosma, R.A.[Radu A.],
Knobel, L.[Lukas],
van der Linden, P.[Putri],
Knigge, D.M.[David M.],
Bekkers, E.J.[Erik J.],
Geometric Superpixel Representations for Efficient Image
Classification with Graph Neural Networks,
VIPriors23(109-118)
IEEE DOI
2401
BibRef
Eliasof, M.[Moshe],
Ben Zikri, N.[Nir],
Treister, E.[Eran],
Rethinking Unsupervised Neural Superpixel Segmentation,
ICIP22(3500-3504)
IEEE DOI
2211
Image segmentation, Convolution, Image edge detection,
Linear programming, Convolutional neural networks, Proposals, Deep Learning
BibRef
Wang, Y.X.[Ya-Xiong],
Wei, Y.C.[Yun-Chao],
Qian, X.M.[Xue-Ming],
Zhu, L.[Li],
Yang, Y.[Yi],
AINet: Association Implantation for Superpixel Segmentation,
ICCV21(7058-7067)
IEEE DOI
2203
Convolutional codes, Image segmentation, Convolution, Implants,
Jitter, Benchmark testing, Segmentation, grouping and shape,
Vision applications and systems
BibRef
Wang, X.H.[Xue-Hui],
Zhao, Q.Y.[Qing-Yun],
Fan, L.[Lei],
Zhao, Y.[Yuzhi],
Wang, T.T.[Tian-Tian],
Yan, Q.[Qiong],
Chen, L.[Long],
Semasuperpixel: A Multi-Channel Probability-Driven Superpixel
Segmentation Method,
ICIP21(1859-1863)
IEEE DOI
2201
Image segmentation, Statistical analysis, Image color analysis,
Heuristic algorithms, Semantics, Measurement uncertainty,
Image processing
BibRef
Yu, Y.[Yue],
Yang, Y.[Yang],
Liu, K.Z.[Ke-Zhao],
Edge-Aware Superpixel Segmentation with Unsupervised Convolutional
Neural Networks,
ICIP21(1504-1508)
IEEE DOI
2201
Image segmentation, Image edge detection, Predictive models,
Prediction algorithms, Convolutional neural networks,
Unsupervised Convolutional Neural Networks
BibRef
Cai, L.[Lile],
Xu, X.[Xun],
Liew, J.H.[Jun Hao],
Foo, C.S.[Chuan Sheng],
Revisiting Superpixels for Active Learning in Semantic Segmentation
with Realistic Annotation Costs,
CVPR21(10983-10992)
IEEE DOI
2111
Deep learning, Costs, Annotations,
Atmospheric measurements, Semantics, Benchmark testing
BibRef
Zhu, L.[Lei],
She, Q.[Qi],
Zhang, B.[Bin],
Lu, Y.[Yanye],
Lu, Z.L.[Zhi-Lin],
Li, D.[Duo],
Hu, J.[Jie],
Learning the Superpixel in a Non-iterative and Lifelong Manner,
CVPR21(1225-1234)
IEEE DOI
2111
Image segmentation, Convolution, Neural networks, Manuals,
Benchmark testing, Pattern recognition, Finite element analysis
BibRef
Hartley, T.[Thomas],
Sidorov, K.[Kirill],
Willis, C.[Christopher],
Marshall, D.[David],
SWAG-V: Explanations for Video using Superpixels Weighted by Average
Gradients,
WACV22(1576-1585)
IEEE DOI
2202
BibRef
Earlier:
SWAG: Superpixels Weighted by Average Gradients for Explanations of
CNNs,
WACV21(423-432)
IEEE DOI
2106
Measurement, Surveillance, Medical services,
Computer architecture, Network architecture, Videos,
Privacy and Ethics in Vision Action and Behavior Recognition.
Measurement, Knowledge engineering,
Image analysis, Surveillance, Autonomous vehicles
BibRef
Li, X.P.[Xiao-Peng],
Xiong, J.L.[Jun-Lin],
Content-Sensitive Superpixels Based on Adaptive Regrowth,
ICPR21(1737-1743)
IEEE DOI
2105
Sensitivity, Shape, Image edge detection, Semantics,
Benchmark testing, Pattern recognition, Standards
BibRef
Giraud, R.[Rémi],
Pinheiro, R.B.[Rodrigo Borba],
Berthoumieu, Y.[Yannick],
Generalized Shortest Path-based Superpixels for Accurate Segmentation
of Spherical Images,
ICPR21(2650-2656)
IEEE DOI
2105
Measurement, Image segmentation, Shape, Redundancy, Pipelines, Regularity
BibRef
Lin, Q.H.[Qing-Hong],
Zhong, W.C.[Wei-Chan],
Lu, J.L.[Jiang-Lin],
Deep Superpixel Cut for Unsupervised Image Segmentation,
ICPR21(8870-8876)
IEEE DOI
2105
Deep learning, Backpropagation, Image segmentation, Annotations,
Clustering methods, Clustering algorithms, Partitioning algorithms
BibRef
Azevedo, M.J.C.E.[Marcos J. C. E.],
Mello, C.A.B.[Carlos A. B.],
Improvements on the Superpixel Hierarchy Algorithm with Applications to
Image Segmentation and Saliency Detection,
ISVC20(I:182-193).
Springer DOI
2103
BibRef
Huang, J.Y.[Jin-Yu],
Ding, J.J.[Jian-Jiun],
Generic Image Segmentation in Fully Convolutional Networks by
Superpixel Merging Map,
ACCV20(I:723-737).
Springer DOI
2103
BibRef
Li, M.,
Zou, H.,
Ma, Q.,
Sun, J.,
Cao, X.,
Qin, X.,
Superpixel Segmentation for Polsar Images Based on Hexagon
Initialization and Edge Refinement,
ISPRS20(B2:1225-1232).
DOI Link
2012
BibRef
Zhang, H.,
Wu, C.,
Zhang, L.,
Zheng, H.,
A Novel Centroid Update Approach For Clustering-Based Superpixel
Methods And Superpixel-Based Edge Detection,
ICIP20(693-697)
IEEE DOI
2011
Image edge detection, Image color analysis, Noise measurement,
Colored noise, Silicon, Gaussian noise, Image segmentation,
superpixel segmentation
BibRef
An, J.Q.[Jian-Qiao],
Shi, Y.C.[Yu-Cheng],
Han, Y.H.[Ya-Hong],
Sun, M.J.[Mei-Jun],
Tian, Q.[Qi],
Extract and Merge: Superpixel Segmentation with Regional Attributes,
ECCV20(XXX: 155-170).
Springer DOI
2010
BibRef
Yang, F.,
Sun, Q.,
Jin, H.,
Zhou, Z.,
Superpixel Segmentation With Fully Convolutional Networks,
CVPR20(13961-13970)
IEEE DOI
2008
Convolution, Task analysis, Image segmentation, Benchmark testing,
Feature extraction, Neural networks, Computer architecture
BibRef
Ye, Z.,
Yi, R.,
Yu, M.,
Liu, Y.,
He, Y.,
Fast Computation of Content-Sensitive Superpixels and Supervoxels
Using Q-Distances,
ICCV19(3769-3778)
IEEE DOI
2004
computational complexity, computational geometry, graph theory,
image segmentation, video signal processing, video applications
BibRef
Khan, N.,
Zhang, Q.,
Kasser, L.,
Stone, H.,
Kim, M.H.,
Tompkin, J.,
View-Consistent 4D Light Field Superpixel Segmentation,
ICCV19(7810-7818)
IEEE DOI
2004
image colour analysis, image segmentation, pattern clustering,
EPI spaces, occlusion-aware clustering, Robustness
BibRef
Uziel, R.,
Ronen, M.,
Freifeld, O.,
Bayesian Adaptive Superpixel Segmentation,
ICCV19(8469-8478)
IEEE DOI
2004
Code, Segmentation.
WWW Link. Bayes methods, image colour analysis, image representation,
image segmentation, mixture models, nonparametric statistics,
Image color analysis
BibRef
Ye, L.,
Zhu, L.,
Kang, X.,
Ming, A.,
Adaptive Occlusion Boundary Extraction for Depth Inference,
ICIP19(4025-4029)
IEEE DOI
1910
occlusion boundary extraction, superpixel segmentation,
cost-sensitive boosting classification, depth inference
BibRef
Wu, C.,
Zhang, L.,
Zhang, H.,
Yan, H.,
Improved Superpixel-Based Fast Fuzzy C-Means Clustering for Image
Segmentation,
ICIP19(1455-1459)
IEEE DOI
1910
Superpixel, color image segmentation, Fuzzy SLIC, SFFCM
BibRef
Giraud, R.,
Ta, V.,
Papadakis, N.,
Berthoumieu, Y.,
Texture-Aware Superpixel Segmentation,
ICIP19(1465-1469)
IEEE DOI
1910
Superpixels, Texture, Patch, Segmentation
BibRef
Chuchvara, A.,
Gotchev, A.,
Content-Adaptive Superpixel Segmentation Via Image Transformation,
ICIP19(1505-1509)
IEEE DOI
1910
Superpixel, image segmentation
BibRef
de Almeida, C.S.J.[Carolina Stephanie Jerônimo],
Cousty, J.[Jean],
Perret, B.[Benjamin],
Patrocínio, Jr., Z.K.G.[Zenilton Kleber G.],
Guimarães, S.J.F.[Silvio Jamil F.],
Label Propagation Guided by Hierarchy of Partitions for Superpixel
Computation,
CIAP19(II:3-13).
Springer DOI
1909
BibRef
de Gregorio, D.[Daniele],
Palli, G.[Gianluca],
di Stefano, L.[Luigi],
Let's Take a Walk on Superpixels Graphs:
Deformable Linear Objects Segmentation and Model Estimation,
ACCV18(II:662-677).
Springer DOI
1906
BibRef
Derksen, D.,
Inglada, J.,
Michel, J.,
Scaling Up SLIC Superpixels Using a Tile-Based Approach,
GeoRS(57), No. 5, May 2019, pp. 3073-3085.
IEEE DOI
1905
geophysical image processing, geophysical techniques,
image segmentation, remote sensing, tile-based approach,
superpixel segmentation
BibRef
Tu, W.,
Liu, M.,
Jampani, V.,
Sun, D.,
Chien, S.,
Yang, M.,
Kautz, J.,
Learning Superpixels with Segmentation-Aware Affinity Loss,
CVPR18(568-576)
IEEE DOI
1812
Image segmentation, Image edge detection, Feature extraction,
Erbium, Clustering algorithms, Task analysis, Seals
BibRef
Davydow, A.,
Nikolenko, S.,
Land Cover Classification with Superpixels and Jaccard Index
Post-Optimization,
DeepGlobe18(280-2804)
IEEE DOI
1812
Indexes, Training, Satellites, Task analysis, Image segmentation, Standards
BibRef
Wei, Y.,
Chang, M.,
Ying, Y.,
Lim, S.N.,
Lyu, S.,
Explain Black-box Image Classifications Using Superpixel-based
Interpretation,
ICPR18(1640-1645)
IEEE DOI
1812
Visualization, Image color analysis, Handheld computers,
Histograms, Probabilistic logic, Birds, Neural networks
BibRef
Jampani, V.[Varun],
Sun, D.[Deqing],
Liu, M.Y.[Ming-Yu],
Yang, M.H.[Ming-Hsuan],
Kautz, J.[Jan],
Superpixel Sampling Networks,
ECCV18(VII: 363-380).
Springer DOI
1810
BibRef
Leblond, A.[Antoine],
Kauffmann, C.[Claude],
RAIC: Robust Adaptive Image Clustering,
ICIP18(3678-3682)
IEEE DOI
1809
Image segmentation, Clustering algorithms, Robustness,
Image edge detection, Image reconstruction, Object segmentation,
BibRef
Maierhofer, G.,
Heydecker, D.,
Aviles-Rivero, A.I.,
Alsaleli, S.M.,
Schonlieb, C.B.,
Peekaboo-Where are the Objects? Structure Adjusting Superpixels,
ICIP18(3693-3697)
IEEE DOI
1809
Image segmentation, Clustering algorithms, Heuristic algorithms,
Image color analysis, Measurement, Visualization, Image texture analysis
BibRef
Suzuki, T.,
Akizuki, S.,
Kato, N.,
Aoki, Y.,
Superpixel Convolution for Segmentation,
ICIP18(3249-3253)
IEEE DOI
1809
Convolution, Kernel, Convolutional neural networks, Task analysis,
Image segmentation, Spatial resolution,
Saliency Object Detection
BibRef
Zhang, L.,
Wang, Y.,
Sun, Y.,
Salient Target Detection Based on the Combination of Super-Pixel and
Statistical Saliency Feature Analysis for Remote Sensing Images,
ICIP18(2336-2340)
IEEE DOI
1809
Feature extraction, Image segmentation, Remote sensing, Histograms,
Image color analysis, Interference, Analytical models,
thresholding
BibRef
Luengo, I.[Imanol],
Basham, M.[Mark],
French, A.[Andrew],
SMURFS: Superpixels from Multi-scale Refinement of Super-regions,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Zhang, N.,
Zhang, L.,
SSGD: Superpixels using the Shortest Gradient Distance,
ICIP17(3869-3873)
IEEE DOI
1803
Clustering algorithms, Euclidean distance,
Image color analysis, Image edge detection, Image segmentation,
shortest gradient distance
BibRef
Wilms, C.[Christian],
Frintrop, S.[Simone],
Edge Adaptive Seeding for Superpixel Segmentation,
GCPR17(333-344).
Springer DOI
1711
BibRef
Yeo, D.,
Son, J.,
Han, B.,
Han, J.H.,
Superpixel-Based Tracking-by-Segmentation Using Markov Chains,
CVPR17(511-520)
IEEE DOI
1711
Absorption, Image segmentation, Markov processes,
Support vector machines, Target tracking, Transient, analysis
BibRef
Zhu, H.,
Zhang, Q.,
Wang, Q.,
4D Light Field Superpixel and Segmentation,
CVPR17(6709-6717)
IEEE DOI
1711
Image color analysis, Image segmentation, Imaging,
Lenses, Measurement,
BibRef
Lo, C.K.,
Chang, L.W.,
Unsupervised image segmentation using defocus map and superpixel
grouping,
MVA17(141-144)
DOI Link
1708
Computer science, Estimation, Image color analysis,
Image edge detection, Image segmentation, Organizations, Silicon
BibRef
Wang, X.,
Zhou, Y.[Yun],
Ning, C.,
An improved superpixel-based saliency detection method,
ICIVC17(710-714)
IEEE DOI
1708
Bayes methods, Iterative methods, Sun, center-surrounding,
normalized cut, saliency detection, sparse representation, superpixel
BibRef
Mikesell, D.[Derek],
Hicks, I.V.[Illya V.],
Image Segmentation via Weighted Carving Decompositions,
IWCIA17(268-279).
Springer DOI
1706
BibRef
Huang, C.R.[Chun-Rong],
Wang, W.A.,
Lin, S.Y.[Szu-Yu],
Lin, Y.Y.[Yen-Yu],
USEQ: Ultra-fast superpixel extraction via quantization,
ICPR16(1965-1970)
IEEE DOI
1705
Computational efficiency, Estimation, Image color analysis,
Image segmentation, Iterative methods, Optimization,
Quantization (signal), image segmentation, superpixel
BibRef
Rubio, A.,
Yu, L.L.[Long-Long],
Simo-Serra, E.,
Moreno-Noguer, F.,
BASS: Boundary-Aware Superpixel Segmentation,
ICPR16(2824-2829)
IEEE DOI
1705
Clustering algorithms, Image color analysis,
Image edge detection, Image segmentation, Measurement, Standards
BibRef
Agoes, A.S.[Ali Suryaperdana],
Hu, Z.C.[Zhen-Cheng],
Matsunaga, N.[Nobutomo],
DSLIC: A Superpixel Based Segmentation Algorithm for Depth Image,
3DModelApp16(II: 77-87).
Springer DOI
1704
BibRef
Liu, Y.[Yuan],
Lai, S.Q.[Shang-Qi],
Du, T.Y.[Tian-Yi],
Yu, Y.Z.[Yi-Zhou],
Hybrid superpixel segmentation,
ICVNZ15(1-6)
IEEE DOI
1701
greedy algorithms
BibRef
Gu, X.,
Jeremiah, D.,
Martin, K.,
A hierarchical segmentation tree for superpixel-based image
segmentation,
ICVNZ16(1-6)
IEEE DOI
1701
Bipartite graph
BibRef
Kurlin, V.[Vitaliy],
Harvey, D.[Donald],
Superpixels Optimized by Color and Shape,
EMMCVPR17(297-311).
Springer DOI
1805
BibRef
Forsythe, J.[Jeremy],
Kurlin, V.[Vitaliy],
Fitzgibbon, A.W.[Andrew W.],
Resolution-Independent Superpixels Based on Convex Constrained Meshes
Without Small Angles,
ISVC16(I: 223-233).
Springer DOI
1701
BibRef
Li, R.[Rui],
Fang, L.[Lu],
Cluster Sensing Superpixel and Grouping,
Microscopy16(1350-1358)
IEEE DOI
1612
BibRef
Sheikh, R.[Rasha],
Garbade, M.[Martin],
Gall, J.[Juergen],
Real-Time Semantic Segmentation with Label Propagation,
CVRoads16(II: 3-14).
Springer DOI
1611
BibRef
Ahmed, Q.A.[Qazi Aitezaz],
Akhtar, M.[Mahmood],
Runtime Performance Enhancement of a Superpixel Based Saliency
Detection Model,
ICIAR16(120-130).
Springer DOI
1608
BibRef
Ates, H.F.[Hasan F.],
Sunetci, S.[Sercan],
Improving Semantic Segmentation with Generalized Models of Local
Context,
CAIP17(II: 320-330).
Springer DOI
1708
BibRef
Ates, H.F.[Hasan F.],
Sunetci, S.[Sercan],
Ak, K.E.[Kenan E.],
Kernel Likelihood Estimation for Superpixel Image Parsing,
ICIAR16(234-242).
Springer DOI
1608
BibRef
Siva, P.[Parthipan],
Scharfenberger, C.[Christian],
Ben Daya, I.[Ibrahim],
Mishra, A.[Akshaya],
Wong, A.[Alexander],
Return of grid seams: A superpixel algorithm using discontinuous
multi-functional energy seam carving,
ICIP15(1334-1338)
IEEE DOI
1512
Discontinuous; Multi-functional; Seam Carving; Superpixels
BibRef
Freifeld, O.[Oren],
Li, Y.X.[Yi-Xin],
Fisher, J.W.[John W.],
A fast method for inferring high-quality simply-connected superpixels,
ICIP15(2184-2188)
IEEE DOI
1512
Superpixel
BibRef
Xu, X.[Xin],
Mu, N.[Nan],
Zhang, H.[Hong],
Fu, X.W.[Xiao-Wei],
Salient object detection from distinctive features in low contrast
images,
ICIP15(3126-3130)
IEEE DOI
1512
low contrast image; saliency map; salient object detection; superpixel
BibRef
Jia, S.Y.[Shao-Yong],
Geng, S.J.[Shi-Jie],
Gu, Y.[Yun],
Yang, J.[Jie],
Shi, P.F.[Peng-Fei],
Qiao, Y.[Yu],
NSLIC: SLIC superpixels based on nonstationarity measure,
ICIP15(4738-4742)
IEEE DOI
1512
nSLIC; nonstationarity measure; super-pixel
BibRef
Ince, K.G.[Kutalmis Gokalp],
Cigla, C.[Cevahir],
Alatan, A.A.[A. Aydin],
LASP: Local adaptive super-pixels,
ICIP15(4092-4096)
IEEE DOI
1512
Over segmentation; clustering; super pixel
BibRef
Verdoja, F.[Francesco],
Grangetto, M.[Marco],
Fast Superpixel-Based Hierarchical Approach to Image Segmentation,
CIAP15(I:364-374).
Springer DOI
1511
BibRef
Picciau, G.[Giulia],
Simari, P.[Patricio],
Iuricich, F.[Federico],
de Floriani, L.[Leila],
Supertetras: A Superpixel Analog for Tetrahedral Mesh Oversegmentation,
CIAP15(I:375-386).
Springer DOI
1511
BibRef
Stutz, D.[David],
Superpixel Segmentation: An Evaluation,
GCPR15(555-562).
Springer DOI
1511
BibRef
Sullivan, K.[Keith],
Lawson, W.[Wallace],
Sofge, D.[Donald],
Improving superpixel boundaries using information beyond the visual
spectrum,
PBVS15(105-112)
IEEE DOI
1510
Clustering algorithms
BibRef
Li, Z.Q.[Zheng-Qin],
Chen, J.S.[Jian-Sheng],
Superpixel segmentation using Linear Spectral Clustering,
CVPR15(1356-1363)
IEEE DOI
1510
BibRef
Giordano, D.[Daniela],
Murabito, F.[Francesca],
Palazzo, S.[Simone],
Spampinato, C.[Concetto],
Superpixel-based video object segmentation using perceptual
organization and location prior,
CVPR15(4814-4822)
IEEE DOI
1510
BibRef
Yan, J.J.[Jun-Jie],
Yu, Y.N.[Yi-Nan],
Zhu, X.Y.[Xiang-Yu],
Lei, Z.[Zhen],
Li, S.Z.[Stan Z.],
Object detection by labeling superpixels,
CVPR15(5107-5116)
IEEE DOI
1510
BibRef
Fu, P.[Peng],
Li, C.Y.[Chang-Yang],
Sun, Q.S.[Quan-Sen],
Cai, W.D.[Wei-Dong],
Feng, D.D.[David Dagan],
Image noise level estimation based on a new adaptive superpixel
classification,
ICIP14(2649-2653)
IEEE DOI
1502
Clustering algorithms
BibRef
Pei, S.C.[Soo-Chang],
Chang, W.W.[Wen-Wen],
Shen, C.T.[Chih-Tsung],
Saliency detection using superpixel belief propagation,
ICIP14(1135-1139)
IEEE DOI
1502
Adaptation models
BibRef
Jia, S.X.[Shi-Xiang],
Zhang, C.M.[Cai-Ming],
Fast and robust image segmentation using an superpixel based FCM
algorithm,
ICIP14(947-951)
IEEE DOI
1502
Classification algorithms
BibRef
Gu, X.B.[Xian-Bin],
Deng, J.D.[Jeremiah D.],
Purvis, M.K.[Martin K.],
Improving superpixel-based image segmentation by incorporating color
covariance matrix manifolds,
ICIP14(4403-4406)
IEEE DOI
1502
Bipartite graph
BibRef
Pan, X.[Xiao],
Zhou, Y.F.[Yuan-Feng],
Zhang, C.M.[Cai-Ming],
Liu, Q.[Qian],
Flooding based superpixels generation with color, compactness and
smoothness constraints,
ICIP14(4432-4436)
IEEE DOI
1502
Clustering algorithms
BibRef
Neubert, P.[Peer],
Protzel, P.[Peter],
Compact Watershed and Preemptive SLIC: On Improving Trade-offs of
Superpixel Segmentation Algorithms,
ICPR14(996-1001)
IEEE DOI
1412
Adaptive optics
BibRef
Massoudifar, P.[Pegah],
Rangarajan, A.[Anand],
Gader, P.[Paul],
Superpixel Estimation for Hyperspectral Imagery,
PBVS14(287-292)
IEEE DOI
1409
BibRef
Gould, S.[Stephen],
Zhao, J.C.[Jie-Cheng],
He, X.M.[Xu-Ming],
Zhang, Y.H.[Yu-Hang],
Superpixel Graph Label Transfer with Learned Distance Metric,
ECCV14(I: 632-647).
Springer DOI
1408
fast approximate nearest neighbor algorithm for semantic segmentation
BibRef
Yang, M.Y.,
Image Segmentation by Bilayer Superpixel Grouping,
ACPR13(552-556)
IEEE DOI
1408
computer vision
BibRef
Siva, P.[Parthipan],
Wong, A.[Alexander],
Grid Seams: A Fast Superpixel Algorithm for Real-Time Applications,
CRV14(127-134)
IEEE DOI
1406
Accuracy
BibRef
Zhu, G.[Gao],
Ming, Y.S.[Yan-Sheng],
Li, H.D.[Hong-Dong],
Object Cut as Minimum Ratio Cycle in a Superpixel Boundary Graph,
DICTA13(1-6)
IEEE DOI
1402
graph theory
BibRef
Pham, T.Q.,
Parallel Implementation of Geodesic Distance Transform with
Application in Superpixel Segmentation,
DICTA13(1-8)
IEEE DOI
1402
application program interfaces
BibRef
Wang, X.F.[Xiao-Fang],
Li, H.B.[Hui-Bin],
Bichot, C.E.[Charles-Edmond],
Masnou, S.[Simon],
Chen, L.M.[Li-Ming],
A graph-cut approach to image segmentation using an affinity graph
based on L0-sparse representation of features,
ICIP13(4019-4023)
IEEE DOI
1402
l0 affinity graph
BibRef
Wang, X.F.[Xiao-Fang],
Zhu, C.[Chao],
Bichot, C.E.[Charles-Edmond],
Masnou, S.[Simon],
Graph-based image segmentation using weighted color patch,
ICIP13(4064-4068)
IEEE DOI
1402
Image segmentation; affinity graph; normalized cuts; weighted color patch
BibRef
Wang, X.F.[Xiao-Fang],
Li, H.B.[Hui-Bin],
Masnou, S.[Simon],
Sparse Coding and Mid-Level Superpixel-Feature for l0-Graph Based
Unsupervised Image Segmentation,
CAIP13(II:160-168).
Springer DOI
1311
BibRef
Li, L.[Liang],
Feng, W.[Wei],
Wan, L.[Liang],
Zhang, J.W.[Jia-Wan],
Maximum Cohesive Grid of Superpixels for Fast Object Localization,
CVPR13(3174-3181)
IEEE DOI
1309
Maximum grid of superpixels; dynamic programming; object localization
BibRef
Shu, G.[Guang],
Dehghan, A.[Afshin],
Shah, M.[Mubarak],
Improving an Object Detector and Extracting Regions Using Superpixels,
CVPR13(3721-3727)
IEEE DOI
1309
BibRef
Liu, H.[Han],
Qu, Y.Y.[Yan-Yun],
Wu, Y.[Yang],
Wang, H.Z.[Han-Zi],
Class-Specified Segmentation with Multi-scale Superpixels,
CompPhot12(I:158-169).
Springer DOI
1304
BibRef
Li, Z.G.[Zhen-Guo],
Wu, X.M.[Xiao-Ming],
Chang, S.F.[Shih-Fu],
Segmentation using superpixels: A bipartite graph partitioning approach,
CVPR12(789-796).
IEEE DOI
1208
BibRef
Zhang, Y.H.[Yu-Hang],
Hartley, R.I.[Richard I.],
Mashford, J.[John],
Burn, S.[Stewart],
Superpixels, Occlusion and Stereo,
DICTA11(84-91).
IEEE DOI
1205
BibRef
And:
Superpixels via pseudo-Boolean optimization,
ICCV11(1387-1394).
IEEE DOI
1201
BibRef
Lowe, R.J.[Richard J.],
Nixon, M.S.[Mark S.],
Evolving Content-Driven Superpixels for Accurate Image Representation,
ISVC11(I: 192-201).
Springer DOI
1109
BibRef
Engel, D.[David],
Spinello, L.[Luciano],
Triebel, R.[Rudolph],
Siegwart, R.[Roland],
Bülthoff, H.H.[Heinrich H.],
Curio, C.[Cristóbal],
Medial Features for Superpixel Segmentation,
MVA09(248-).
PDF File.
0905
BibRef
Veksler, O.[Olga],
Boykov, Y.Y.[Yuri Y.],
Mehrani, P.[Paria],
Superpixels and Supervoxels in an Energy Optimization Framework,
ECCV10(V: 211-224).
Springer DOI
1009
BibRef
Yuan, Y.[Yuan],
Ma, L.H.[Li-Hong],
Lu, H.Q.[Han-Qing],
Image Segmentation Based on Supernodes and Region Size Estimation,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Warrell, J.[Jonathan],
Moore, A.P.[Alastair P.],
Prince, S.J.D.[Simon J.D.],
Vistas: Hierarchial boundary priors using multiscale conditional random
fields,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Moore, A.P.[Alastair P.],
Prince, S.J.D.[Simon J.D.],
Warrell, J.[Jonathan],
Mohammed, U.[Umar],
Jones, G.[Graham],
Scene shape priors for superpixel segmentation,
ICCV09(771-778).
IEEE DOI
0909
BibRef
Earlier:
Superpixel lattices,
CVPR08(1-8).
IEEE DOI
0806
Oversegmentation.
BibRef
Hanbury, A.[Allan],
How Do Superpixels Affect Image Segmentation?,
CIARP08(178-186).
Springer DOI
0809
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Watershed Algorithms, Watershed Segmentation .