Chellappa, R.,
Jain, A.K., (Eds.)
Markov Random Fields: Theory and Applications,
Academic Press1993.
BibRef
9300
Woods, J.W.,
Two dimensional Discrete Markov Random Fields,
IT(18), 1972, pp. 232-240.
BibRef
7200
Woods, J.W.,
Markov Image Modeling,
AC(23), October 1978, pp. 846-850.
BibRef
7810
Cross, G.R.,
Jain, A.K.,
Markov Random Field Texture Models,
PAMI(5), No. 1, January 1983, pp. 25-39.
BibRef
8301
And:
Measures of Homogeneity in Texture,
CVPR83(211-216).
BibRef
Hassner, M.[Martin],
Sklansky, J.[Jack],
The Use of Markov Random Fields as Models of Texture,
CGIP(12), No. 4, April 1980, pp. 357-370.
Elsevier DOI
BibRef
8004
Earlier:
Markov Random Field Models of Digitized Image Texture,
ICPR78(538-540).
BibRef
Earlier:
Markov Random Fields as Models of Digitized Image Texture,
BibRef
Kanal, L.N.[Laveen N.],
Markov Mesh Models,
CGIP(12), No. 4, April 1980, pp. 371-375.
Elsevier DOI
BibRef
8004
Kashyap, R.L.,
Random Field Models of Images,
CGIP(12), No. 3, March 1980, pp. 257-270.
Elsevier DOI
BibRef
8003
Chellappa, R.,
Kashyap, R.L.,
Digital Image Restoration Using Spatial Interaction Models,
ASSP(30), June 1982, pp. 461-472.
BibRef
8206
Kashyap, R.L.,
Chellappa, R.,
Estimation and Choice of Neighbors in Spatial Interaction
Models of Images,
IT(29), No. 1, January 1983, pp. 60-72.
BibRef
8301
Kashyap, R.L.,
Chellappa, R.,
Stochastic Models for Closed Boundary Analysis, Representation,
and Construction,
IT(27), September 1981, pp. 627-637.
BibRef
8109
Earlier:
Stochastic Models for Closed Boundary Analysis:
Part I, Representation, and Construction,
ICPR80(1354-1359).
BibRef
Chellappa, R.,
Kashyap, R.L.,
On the Correlation Structure of Random Field Models of
Images and Textures,
PRIP81(574-576).
BibRef
8100
Chellappa, R.,
Kashyap, R.L.,
Synthetic Generation and Estimation in Random Field Models of Images,
PRIP81(577-582).
BibRef
8100
Kashyap, R.L.,
Chellappa, R.,
Ahuja, N.,
Decision Rules for the Choice of Neighbors in Random Field
Models of Images,
CGIP(15), No. 4, April 1981, pp. 301-318.
Elsevier DOI
BibRef
8104
Kashyap, R.L.,
Two Dimensional Autoregressive Models for Images:
Parameter Estimation and Choice of Neighbors,
PRAI-78(152-154).
BibRef
7800
Chellappa, R.,
Chatterjee, S.,
Classification of Textures Using Gaussian Markov Random Fields,
ASSP(33), August 1985, pp. 959-963.
See also Unsupervised Texture Segmentation Using Markov Random Field Models.
BibRef
8508
Chellappa, R.,
Chatterjee, S.,
Bagdazian, R.,
Texture Synthsis and Compression Using Gaussian-Markov Random
Field Models,
SMC(15), No. 2, March/April 1985, pp. 298-303.
BibRef
8503
Chellappa, R.,
Hu, Y.H.,
Kung, S.Y.,
On Two-Dimensional Markov Spectral Estimation,
ASSP(31), No. 4, August 1983, pp. 836-841.
BibRef
8308
Kashyap, R.L.,
Khotanzad, A.,
A Model-Based Method for Rotation Invariant Texture Classification,
PAMI(8), No. 4, July 1986, pp. 472-481.
BibRef
8607
Earlier:
Rotation Invariant Texture Classification Using
Circular Random Field Models,
CVPR83(194-200).
BibRef
Khotanzad, A.,
Kashyap, R.L.,
Feature Selection for Texture Recognition Based on Image Synthesis,
SMC(17), No. 6, November 1987, pp. 1087-1095.
BibRef
8711
Kashyap, R.L.,
Khotanzad, A.,
A Stochastic Model Based Technique for Texture Segmentation,
ICPR84(1202-1205).
BibRef
8400
Kashyap, R.L.,
Chellappa, R.,
Khotanzad, A.,
Texture Classification Using Features Derived from Random Field Models,
PRL(1), October 1982, pp. 43-50.
See also Color Image Retrieval Using Multispectral Random Field Texture Model and Color Content Features.
BibRef
8210
Zerubia, J.B.,
Chellappa, R.,
Mean Field Annealing Using Compound Gauss-Markov Random Fields
for Edge Detection and Image Estimation,
TNN(4), 1993.
BibRef
9300
Berthod, M.,
Kato, Z.,
Zerubia, J.B.,
DPA: a deterministic approach to the MAP problem,
IP(4), No. 9, September 1995, pp. 1312-1314.
IEEE DOI
0402
BibRef
Kato, Z.[Zoltan],
Berthod, M.[Marc],
Zerubia, J.B.[Josiane B.],
A Hierarchical Markov Random-Field Model and Multitemperature Annealing
for Parallel Image Classification,
GMIP(58), No. 1, January 1996, pp. 18-37.
BibRef
9601
Zerubia, J.B.,
Kato, Z.,
Berthod, M.,
Multi-temperature annealing: a new approach for the energy-minimization
of hierarchical Markov random field models,
ICPR94(A:520-522).
IEEE DOI
9410
BibRef
Kato, Z.[Zoltan],
Zerubia, J.B.[Josiane B.],
Berthod, M.[Marc],
Unsupervised parallel image classification using Markovian models,
PR(32), No. 4, April 1999, pp. 591-604.
BibRef
9904
And:
Elsevier DOI
Unsupervised Parallel Image Classification Using a
Hierarchical Markovian Model,
ICCV95(169-174).
IEEE DOI
BibRef
Earlier: A1, A3, A2:
Multiscale Markov Random Field Models for Parallel
Image Classification,
ICCV93(253-257).
IEEE DOI
BibRef
Berthod, M.[Marc],
Kato, Z.[Zoltan],
Yu, S.[Shan],
Zerubia, J.B.[Josiane B.],
Bayesian Image Classification Using Markov Random-Fields,
IVC(14), No. 4, May 1996, pp. 285-295.
Elsevier DOI
9607
BibRef
Volden, E.[Espen],
Giraudon, G.[Gérard],
Berthod, M.[Marc],
Image redundancy and classification,
CAIP95(206-213).
Springer DOI
9509
BibRef
Miles, R.E.,
A survey of geometrical probability in the plane, with emphasis on
stochastic image modeling,
CGIP(12), No. 1, January 1980, pp. 1-24.
Elsevier DOI
0501
BibRef
Wu, Z.,
Leahy, R.,
An Approximate Method of Evaluating the Joint Likelihood
for First-Order GMRFs,
IP(2), No. 4, October 1993, pp. 520-523.
IEEE DOI
BibRef
9310
Fine, S.,
Singer, Y.,
Tishby, N.,
The hierarchical hidden markov model: Analysis and applications,
MachLearn(31), 1998, pp. 32.
BibRef
9800
Bennett, J.W.[Jesse W.],
Khotanzad, A.[Alireza],
Multispectral Random Field Models for Synthesis and
Analysis of Color Images,
PAMI(20), No. 3, March 1998, pp. 327-332.
IEEE DOI
9805
BibRef
Earlier:
Multispectral and Color Image Modeling and Synthesis Using
Random Field Models,
ICIP96(III: 991-994).
IEEE DOI Extend the tradional gray level models to color.
And a pseudo Markov model that allows simplified estimation.
See also Color Image Retrieval Using Multispectral Random Field Texture Model and Color Content Features.
See also Maximum Likelihood Estimation Methods for Multispectral Random Field Image Models.
BibRef
Khotanzad, A.,
Bennett, J.W.,
Spatial Correlation Based Method for Neighbor Set Selection in Random
Field Image Models,
IP(8), No. 5, May 1999, pp. 734-740.
IEEE DOI
BibRef
9905
Earlier:
A correlation structure based approach to neighborhood selection in
random field models of texture images,
ICIP94(III: 383-387).
IEEE DOI
9411
BibRef
Bennett, J.W.[Jesse W.],
Khotanzad, A.[Alireza],
Modeling Textured Images Using Generalized Long Correlation Models,
PAMI(20), No. 12, December 1998, pp. 1365-1370.
IEEE DOI
See also Maximum Likelihood Estimation Methods for Multispectral Random Field Image Models.
BibRef
9812
Kalayeh, H.M.,
Landgrebe, D.A.,
Stochastic Model Utilizing Spectral and Spatial Characteristics,
PAMI(9), No. 3, May 1987, pp. 457-461.
BibRef
8705
Veijanen, A.[Ari],
A Simulation-Based Estimator for Hidden Markov Random Fields,
PAMI(13), No. 8, August 1991, pp. 825-830.
IEEE DOI
BibRef
9108
Veijanen, A.[Ari],
Contextual estimators of mixing probabilities for Markov chain random
fields,
PR(26), No. 5, May 1993, pp. 763-769.
Elsevier DOI
0401
BibRef
Zhang, J.[Jun],
Parameter reduction for the compound Gauss-Markov model,
IP(4), No. 3, March 1995, pp. 382-386.
IEEE DOI
0402
BibRef
Povlow, B.R.,
Dunn, S.M.,
Texture Classification Using Noncausal Hidden Markov-Models,
PAMI(17), No. 10, October 1995, pp. 1010-1014.
IEEE DOI
BibRef
9510
Earlier:
CVPR93(642-643).
IEEE DOI Noncausal: depends on neighbors in all directions.
BibRef
Solberg, A.H.S.,
Taxt, T.,
Jain, A.K.,
A Markov Random-Field Model for Classification of
Multisource Satellite Imagery,
GeoRS(34), No. 1, January 1996, pp. 100-113.
IEEE Top Reference.
BibRef
9601
Wu, C.H.[Chi-Hsin],
Doerschuk, P.C.,
Tree Approximations to Markov Random-Fields,
PAMI(17), No. 4, April 1995, pp. 391-402.
IEEE DOI
BibRef
9504
Earlier:
Bayesian spatial classifiers based on tree approximations to Markov
random fields,
ICIP94(II: 202-206).
IEEE DOI
9411
Applied to segmentation:
See also Texture-Based Segmentation Using Markov Random Field Models and Approximate Bayesian Estimators Based on Trees.
BibRef
Speis, A.[Athanasios],
Healey, G.[Glenn],
An Analytical and Experimental Study of the Performance of
Markov Random-Fields Applied to Textured Images Using Small Samples,
IP(5), No. 3, March 1996, pp. 447-458.
IEEE DOI
BibRef
9603
Earlier:
ICCV95(115-120).
IEEE DOI The Least Square estimator is the only reasonable choice.
Abstract:
HTML Version.
See also Markov Random-Field Models for Unsupervised Segmentation of Textured Color Images.
BibRef
Speis, A.[Athanasios],
Healey, G.[Glenn],
Feature-Extraction for Texture-Discrimination via
Random-Field Models with Random Spatial Interaction,
IP(5), No. 4, April 1996, pp. 635-645.
IEEE DOI
9605
BibRef
Earlier:
New Directions in Texture Modeling Using Random Fields with
Random Spatial Interaction,
PBMCV95(SESSION 6)
BibRef
Zhang, J.,
The Mean Field Theory in EM Procedures for
Blind Markov Random Field Image Restoration,
IP(2), No. 1, January 1993, pp. 27-40.
IEEE DOI
BibRef
9301
Zhang, J.,
An Alternating Minimization Algorithm for Binary Image Restoration,
IP(21), No. 2, February 2012, pp. 883-888.
IEEE DOI
1201
BibRef
Zhang, J.,
The Application of the Gibbs-Bogoliubov-Feynman Inequality in
Mean-Field Calculations for Markov Random-Fields,
IP(5), No. 7, July 1996, pp. 1208-1214.
IEEE DOI
9607
BibRef
Zhang, J.,
The Convergence of Mean-Field Procedures for MRFs,
IP(5), No. 12, December 1996, pp. 1662-1665.
IEEE DOI
9701
BibRef
Gurelli, M.I.,
Onural, L.,
On a parameter estimation method for Gibbs-Markov random fields,
PAMI(16), No. 4, April 1994, pp. 424-430.
IEEE DOI
0401
BibRef
della Pietra, S.,
della Pietra, V.,
Lafferty, J.,
Inducing features of random fields,
PAMI(19), No. 4, April 1997, pp. 380-393.
IEEE DOI
0401
BibRef
Wu, W.R.,
Wei, S.C.,
Rotation and Gray-Scale Transform-Invariant Texture Classification
Using Spiral Resampling, Subband Decomposition, and Hidden Markov Model,
IP(5), No. 10, October 1996, pp. 1423-1434.
IEEE DOI
9610
BibRef
And:
Correction:
IP(7), No. 2, February 1998, pp. 253-253.
IEEE DOI
9802
BibRef
Jeng, F.C.,
Subsampling of Markov Random Fields,
JVCIR(3), 1992, pp. 225-229.
BibRef
9200
Gray, A.J.,
Kay, J.W.,
Titterington, D.M.,
On the Estimation of Noisy Binary Markov Random Fields,
PR(25), No. 7, July 1992, pp. 749-768.
Elsevier DOI
BibRef
9207
Qian, W.,
Titterington, D.M.,
On the Use of Gibbs Markov Chain Models in the Analysis of Images Based
on Second-Order Pairwise Interactive Distributions,
AppStat(6), No. 2, 1989, pp. 267-282.
BibRef
8900
Qian, W.,
Titterington, D.M.,
Pixel labelling for 3-D scenes based on Markov mesh models,
SP(22), No. 3, 1991, pp. 313-328.
BibRef
9100
Dunmur, A.P.,
Titterington, D.M.,
Computational Bayesian Analysis of Hidden Markov Mesh Models,
PAMI(19), No. 11, November 1997, pp. 1296-1300.
IEEE DOI
9712
BibRef
Dunmur, A.P.,
Titterington, D.M.,
Mean Fields and Two Dimensional Markov Random Fields,
PAA(1), No. 4, 1998, pp. 248-260.
BibRef
9800
Aykroyd, R.G.,
Haigh, J.G.B.,
Zimeras, S.,
Unexpected Spatial Patterns in Exponential Family Auto Models,
GMIP(58), No. 5, September 1996, pp. 452-463.
9611
BibRef
Milun, D.,
Sher, D.,
Improving Sampled Probability Distributions for Markov Random Fields,
PRL(14), 1993, pp. 781-788.
BibRef
9300
Earlier:
Learning structural and corruption information from samples for Markov
random field binary image reconstruction,
ICPR92(III:513-516).
IEEE DOI
9208
BibRef
Gimel'farb, G.L.,
Zalesny, A.V.,
Probabilistic Models of Digital Region Maps Based on
Markov Random Fields with Short- and Long-Range Interaction,
PRL(14), 1993, pp. 789-797.
BibRef
9300
Gimel'farb, G.L.,
Van Gool, L.J.,
Zalesny, A.V.,
To FRAME or not to FRAME in probabilistic texture modelling?,
ICPR04(II: 707-711).
IEEE DOI
0409
BibRef
Chen, C.C.,
Huang, C.L.,
Markov Random Fields for Texture Classification,
PRL(14), 1993, pp. 907-914.
BibRef
9300
Sher, D.B.,
Minimizing the Cost of Errors with a Markov Random Field,
PRL(12), 1991, pp. 85-89.
BibRef
9100
Chen, C.C.,
A Nonparametric Test for Comparing Estimators in Markov Random Fields,
PRL(11), 1990, pp. 765-770.
BibRef
9000
Jeng, F.C.,
Woods, J.W.,
On the Relationship of the Markov Mesh to the NSHP Markov Chain,
PRL(5), 1987, pp. 273-279.
BibRef
8700
Bello, M.G.,
A Combined Markov Random Field and Wave-Packet Transform-Based
Approach for Image Segmentation,
IP(3), No. 6, November 1994, pp. 834-846.
IEEE DOI
BibRef
9411
Li, S.Z.,
Wang, H.,
Chan, K.L.,
Petrou, M.,
Minimization of MRF Energy With Relaxation Labeling,
JMIV(7), No. 2, March 1997, pp. 149-161.
DOI Link
9705
BibRef
Li, S.Z.,
Wang, H.[Han],
Petrou, M.,
Relaxation labeling of Markov random fields,
ICPR94(A:488-492).
IEEE DOI
9410
BibRef
Smyth, P.,
Belief Networks, Hidden Markov-Models, and Markov Random Fields:
A Unifying View,
PRL(18), No. 11-13, November 1997, pp. 1261-1268.
9806
BibRef
Smyth, P.P.,
Taylor, C.J.,
Adams, J.,
Texture Analysis using Local Property Maps,
BMVC95(xx-yy).
PDF File.
9509
BibRef
Fessler, J.A.,
On the Convergence of Mean Field Procedures for MRFs,
IP(7), No. 6, June 1998, pp. 917.
IEEE DOI
9806
BibRef
Shen, D.,
Ip, H.H.S.,
Markov random field regularisation models for adaptive binarisation of
nonuniform images,
VISP(145), No. 5, October 1998, pp. p.322.
BibRef
9810
Descombes, X.,
Morris, R.D.,
Zerubia, J.B.,
Berthod, M.,
Estimation of Markov Random Field Prior Parameters Using Markov Chain
Monte Carlo Maximum Likelihood,
IP(8), No. 7, July 1999, pp. 954-963.
IEEE DOI
BibRef
9907
Rellier, G.[Guillaume],
Descombes, X.[Xavier],
Falzon, F.[Frederic],
Zerubia, J.B.[Josiane B.],
Analyse de texture hyperspectrale par modélisation markovien,
INRIARR-4479, June 2002.
HTML Version.
0211
BibRef
Descombes, X.[Xavier],
A Dense Class of Markov Random Fields and
Associated Parameter Estimation,
JVCIR(8), 1997, pp. 299-316.
BibRef
9700
Lorette, A.,
Descombes, X.,
Zerubia, J.B.,
Texture Analysis through a Markovian Modelling and Fuzzy Classification:
Application to Urban Area Extraction from Satellite Images,
IJCV(36), No. 3, February-March 2000, pp. 221-236.
DOI Link
0003
BibRef
Earlier:
Texture Analysis through Markov Random Fields: Urban Areas Extraction,
ICIP99(IV:430-434).
IEEE DOI
Urban Area.
BibRef
Rellier, G.,
Descombes, X.,
Zerubia, J.B.,
Falzon, F.,
A gauss-markov model for hyperspectral texture analysis of urban areas,
ICPR02(I: 692-695).
IEEE DOI
0211
BibRef
Viveros-Cancino, O.[Oscar],
Descombes, X.[Xavier],
Zerubia, J.B.[Josiane B.],
Analyse intra-urbaine à partir d'images satellitaires par une
approche de fusion de données sur la ville de Mexico,
INRIARR-4578, October 2002.
HTML Version.
0211
Urban texture extraction.
Split/merge application.
BibRef
Descombes, X.,
Sigelle, M.,
Preteux, F.,
Estimating Gaussian Markov Random Field Parameters in a Nonstationary
Framework: Application to Remote Sensing Imaging,
IP(8), No. 4, April 1999, pp. 490-503.
IEEE DOI
BibRef
9904
Tso, B.C.K.,
Mather, P.M.,
Classification of Multisource Remote Sensing Imagery Using a Genetic
Algorithm and Markov Random Fields,
GeoRS(37), No. 3, May 1999, pp. 1255.
IEEE Top Reference.
BibRef
9905
Shahtalebi, K.,
Gazor, S.,
Pasupathy, S.,
Gulak, P.G.,
Second order H-infinity optimal LMS and NLMS algorithms based on a
second-order Markov model,
VISP(147), No. 3, 2000, pp. 231-237.
0008
BibRef
Zhu, S.C.[Song Chun],
Liu, X.W.[Xie Wen],
Wu, Y.N.[Ying Nian],
Exploring Texture Ensembles by Efficient Markov Chain Monte
Carlo-Toward a 'Trichromacy' Theory of Texture,
PAMI(22), No. 6, June 2000, pp. 554-569.
IEEE DOI
0008
BibRef
Wang, L.[Lei],
Liu, J.[Jun],
Li, S.Z.[Stan Z.],
MRF parameter estimation by MCMC method,
PR(33), No. 11, November 2000, pp. 1919-1925.
Elsevier DOI
0011
BibRef
Huang, K.C.[Kuo-Chang],
Tung, S.L.[Shin-Lun],
Juang, Y.T.[Yau-Tarng],
Application of the variance compensation likelihood measure for robust
hidden Markov model in noise,
PRL(22), No. 3-4, March 2001, pp. 353-358.
Elsevier DOI
0105
BibRef
Cai, J.H.[Jin-Hai],
Liu, Z.Q.[Zhi-Qiang],
Hidden Markov Models with Spectral Features for 2D Shape Recognition,
PAMI(23), No. 12, December 2001, pp. 1454-1458.
IEEE DOI
0112
For contour descriptions.
BibRef
Cai, J.H.[Jin-Hai],
Liu, Z.Q.[Zhi-Qiang],
Pattern recognition using Markov random field models,
PR(35), No. 3, March 2002, pp. 725-733.
Elsevier DOI
0201
BibRef
Cai, J.H.[Jin-Hai],
Liu, Z.Q.[Zhi-Qiang],
Markov Process In Pattern Recognition,
IJIG(1), No. 2, April 2001, pp. 287-311.
0104
BibRef
Bui, H.,
Venkatesh, S.,
West, G.A.W.,
Policy recognition in the abstract hidden markov model,
JAIR(17), 2002, pp. 451-499.
BibRef
0200
Stan, S.,
Palubinskas, G.,
Datcu, M.,
Bayesian selection of the neighbourhood order for Gauss-Markov texture
models,
PRL(23), No. 10, August 2002, pp. 1229-1238.
Elsevier DOI
0205
BibRef
Yu, Y.H.[Yi-Hua],
Cheng, Q.S.[Qian-Sheng],
MRF parameter estimation by an accelerated method,
PRL(24), No. 9-10, June 2003, pp. 1251-1259.
Elsevier DOI
0304
BibRef
Ferraiuolo, G.,
Pascazio, V.,
The effect of modified markov random fields on the local minima
occurrence in microwave imaging,
GeoRS(41), No. 5, May 2003, pp. 1043-1055.
IEEE Abstract.
0307
BibRef
Ibáñez, M.V.,
Simó, A.,
Parameter estimation in Markov random field image modeling with
imperfect observations. A comparative study,
PRL(24), No. 14, October 2003, pp. 2377-2389.
Elsevier DOI
0307
BibRef
Marroquín, J.L.[Jose L.],
Santana, E.A.[Edgar Arce],
Botello, S.[Salvador],
Hidden Markov measure field models for image segmentation,
PAMI(25), No. 11, November 2003, pp. 1380-1387.
IEEE Abstract.
0311
Find a label field that divides the image into regions. Applied to MRI data.
See also MPM-MAP algorithm for motion segmentation, The.
BibRef
Rivera, M.,
Ocegueda, O.,
Marroquin, J.L.,
Entropy-Controlled Quadratic Markov Measure Field Models for Efficient
Image Segmentation,
IP(16), No. 12, December 2007, pp. 3047-3057.
IEEE DOI
0711
BibRef
Marroquin, J.L.,
Santana, E.A.,
Botello, S.,
Markov random measure fields for image analysis,
ICIP02(I: 765-768).
IEEE DOI
0210
BibRef
Li, F.[Feng],
Peng, J.X.[Jia-Xiong],
Double random field models for remote sensing image segmentation,
PRL(25), No. 1, January 2004, pp. 129-139.
Elsevier DOI
0311
BibRef
Paget, R.[Rupert],
Strong Markov Random Field Model,
PAMI(26), No. 3, March 2004, pp. 408-413.
IEEE Abstract.
0402
BibRef
Deng, H.[Huawu],
Clausi, D.A.,
Gaussian MRF Rotation-Invariant Features for Image Classification,
PAMI(26), No. 7, July 2004, pp. 951-955.
IEEE Abstract.
0406
BibRef
Earlier:
Advanced gaussian MRF rotation-invariant texture features for
classification of remote sensing imagery,
CVPR03(II: 685-690).
IEEE DOI
0307
Develop a circular MRF model to recover rotation invariant textures.
Compare to
Laplacian pyramid, isotropic circular
GMRF (ICGMRF), and gray level cooccurrence probability features.
BibRef
Sarkar, A.,
Banerjee, A.,
Banerjee, N.,
Brahma, S.,
Kartikeyan, B.,
Chakraborty, M.,
Majumder, K.L.,
Landcover Classification in MRF Context Using Dempster-Shafer Fusion
for Multisensor Imagery,
IP(14), No. 5, May 2005, pp. 634-645.
IEEE DOI
0505
BibRef
Sarkar, A.,
Banerjee, N.,
Nair, P.,
Banerjee, A.,
Brahma, S.,
Kartikeyan, B.,
Majumder, K.L.,
A MRF Based Segmentatiom Approach to Classification Using Dempster
Shafer Fusion for Multisensor Imagery,
ICIAR04(II: 421-428).
Springer DOI
0409
BibRef
Li, Y.J.[Yu-Jian],
Hidden Markov models with states depending on observations,
PRL(26), No. 7, 15 May 2005, pp. 977-984.
Elsevier DOI
0506
BibRef
Destrempes, F.,
Mignotte, M.,
Angers, J.F.,
A stochastic method for Bayesian estimation of hidden Markov random
field models with application to a color model,
IP(14), No. 8, August 2005, pp. 1096-1108.
IEEE DOI
0508
BibRef
Destrempes, F.,
Angers, J.F.,
Mignotte, M.,
Fusion of Hidden Markov Random Field Models and Its Bayesian Estimation,
IP(15), No. 10, October 2006, pp. 2920-2935.
IEEE DOI
0609
BibRef
Chen, L.[Ling],
Man, H.[Hong],
Fast Schemes for Computing Similarities between Gaussian HMMs and Their
Applications in Texture Image Classification,
JASP(2005), No. 13, 2005, pp. 1984-1993.
WWW Link.
0603
BibRef
Bicego, M.[Manuele],
Murino, V.[Vittorio],
Figueiredo, M.A.T.[Mário A.T.],
A sequential pruning strategy for the selection of the number of states
in hidden Markov models,
PRL(24), No. 9-10, June 2003, pp. 1395-1407.
Elsevier DOI
0304
See also Investigating Hidden Markov Models Capabilities in 2D Shape Classification.
BibRef
Bicego, M.[Manuele],
Dovier, A.[Agostino],
Murino, V.[Vittorio],
Designing the Minimal Structure of Hidden Markov Model by Bisimulation,
EMMCVPR01(75-90).
Springer DOI
0205
BibRef
Bicego, M.[Manuele],
Cristani, M.[Marco],
Murino, V.[Vittorio],
Sparseness Achievement in Hidden Markov Models,
CIAP07(67-72).
IEEE DOI
0709
BibRef
Joshi, D.,
Li, J.,
Wang, J.Z.,
A Computationally Efficient Approach to the Estimation of Two- and
Three-Dimensional Hidden Markov Models,
IP(15), No. 7, July 2006, pp. 1871-1886.
IEEE DOI
0606
BibRef
Earlier:
Parameter Estimation of Multi-Dimensional Hidden Markov Models:
A Scalable Approach,
ICIP05(III: 149-152).
IEEE DOI
0512
BibRef
Earlier: A2, A1, A3:
Stochastic modeling of volume images with a 3-d hidden markov model,
ICIP04(IV: 2359-2362).
IEEE DOI
0505
BibRef
Ichir, M.M.,
Mohammad-Djafari, A.,
Hidden Markov Models for Wavelet-Based Blind Source Separation,
IP(15), No. 7, July 2006, pp. 1887-1899.
IEEE DOI
0606
BibRef
Caputo, B.,
A spin glass model of a Markov random field,
IJIST(16), No. 5, 2006, pp. 181-188.
DOI Link
0704
BibRef
Caputo, B.,
Bouattour, S.,
Niemann, H.,
Robust appearance-based object recognition using a fully connected
Markov random field,
ICPR02(III: 565-568).
IEEE DOI
0211
BibRef
Caputo, B.,
Bouattour, S.,
Paulus, D.,
A Novel Probabilistic Model for 3-D Object Recognition:
Spin-Glass Markov Random Fields,
VMV01(xx-yy).
PDF File.
0209
BibRef
Caputo, B.,
Niemann, H.,
To each according to its need: kernel class specific classifiers,
ICPR02(IV: 94-97).
IEEE DOI
0211
BibRef
Wallraven, C.,
Caputo, B.,
Graf, A.,
Recognition with local features: the kernel recipe,
ICCV03(257-264).
IEEE DOI
0311
SVM learning applied to local features.
BibRef
Caputo, B.,
Niemann, H.,
From Markov Random Fields to Associative Memories and Back:
Spin Glass Markov Random Fields,
SCTV01(xx-yy).
0106
BibRef
Ceccarelli, M.[Michele],
A Finite Markov Random Field approach to fast edge-preserving image
recovery,
IVC(25), No. 6, 1 June 2007, pp. 792-804.
Elsevier DOI
0704
BibRef
Earlier:
Fast Edge Preserving Picture Recovery by Finite Markov Random Fields,
CIAP05(277-286).
Springer DOI
0509
Markov random fields; Image denoising; Edge-preserving potentials
BibRef
Antoniol, G.,
Ceccarelli, M.,
A Markov random field approach to microarray image gridding,
ICPR04(III: 550-553).
IEEE DOI
0409
BibRef
Blanchet, J.[Juliette],
Forbes, F.B.P.[Florence B.P.],
Triplet Markov Fields for the Classification of Complex Structure Data,
PAMI(30), No. 6, June 2008, pp. 1055-1067.
IEEE DOI
0804
BibRef
Blanchet, J.[Juliette],
Forbes, F.B.P.[Florence B.P.],
Schmid, C.,
Markov random fields for textures recognition with local invariant
regions and their geometric relationships,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Hauberg, S.[Søren],
Sloth, J.[Jakob],
An Efficient Algorithm for Modelling Duration in Hidden Markov Models,
with a Dramatic Application,
JMIV(31), No. 2-3, July 2008, pp. 165-170.
WWW Link.
0711
BibRef
Xue, J.H.[Jing-Hao],
Titterington, D.M.[D. Michael],
Short note on two output-dependent hidden Markov models,
PRL(29), No. 9, 1 July 2008, pp. 1424-1426.
Elsevier DOI
0711
Discriminative models; Generative models; Mutual information independence;
Output-dependent hidden Markov model
BibRef
Roth, S.[Stefan],
Black, M.J.[Michael J.],
Fields of Experts,
IJCV(82), No. 2, April 2009, pp. xx-yy.
Springer DOI
0903
BibRef
Earlier:
Steerable Random Fields,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Earlier:
Fields of Experts: A Framework for Learning Image Priors,
CVPR05(II: 860-867).
IEEE DOI
0507
Markov random fields
See also Efficient Belief Propagation with Learned Higher-Order Markov Random Fields.
BibRef
Schelten, K.[Kevin],
Roth, S.[Stefan],
Connecting non-quadratic variational models and MRFs,
CVPR11(2641-2648).
IEEE DOI
1106
Spatially-discrete Markov random fields (MRFs) and
spatially-continuous variational approach.
BibRef
Razlighi, Q.R.[Qolamreza R.],
Kehtarnavaz, N.[Nasser],
Nosratinia, A.,
Computation of Image Spatial Entropy Using Quadrilateral Markov Random
Field,
IP(18), No. 12, December 2009, pp. 2629-2639.
IEEE DOI
0912
BibRef
Razlighi, Q.R.[Qolamreza R.],
Rahman, M.T.[Mohammad T.],
Kehtarnavaz, N.[Nasser],
Fast computation methods for estimation of image spatial entropy,
RealTimeIP(6), No. 2, June 2011, pp. 137-142.
WWW Link.
1101
BibRef
Kim, M.Y.[Min-Young],
Large margin cost-sensitive learning of conditional random fields,
PR(43), No. 10, October 2010, pp. 3683-3692.
Elsevier DOI
1007
Conditional random fields; Cost-sensitive learning
BibRef
Alahari, K.[Karteek],
Kohli, P.[Pushmeet],
Torr, P.H.S.[Philip H. S.],
Dynamic Hybrid Algorithms for MAP Inference in Discrete MRFs,
PAMI(32), No. 10, October 2010, pp. 1846-1857.
IEEE DOI
1008
BibRef
Earlier:
Reduce, reuse & recycle: Efficiently solving multi-label MRFs,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Ramalingam, S.[Srikumar],
Kohli, P.[Pushmeet],
Alahari, K.[Karteek],
Torr, P.H.S.[Philip H. S.],
Exact inference in multi-label CRFs with higher order cliques,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Zach, C.[Christopher],
Kohli, P.[Pushmeet],
A Convex Discrete-Continuous Approach for Markov Random Fields,
ECCV12(VI: 386-399).
Springer DOI
1210
BibRef
Vacha, P.[Pavel],
Haindl, M.[Michal],
Suk, T.[Tomas],
Colour and rotation invariant textural features based on Markov random
fields,
PRL(32), No. 6, 15 April 2011, pp. 771-779.
Elsevier DOI
1103
Image modelling; Colour; Texture; Markov random field; Illumination
invariance; Rotation invariance
BibRef
Chatzis, S.P.[Sotirios P.],
Kosmopoulos, D.I.[Dimitrios I.],
Doliotis, P.[Paul],
A conditional random field-based model for joint sequence segmentation
and classification,
PR(46), No. 6, June 2013, pp. 1569-1578.
Elsevier DOI
1302
Conditional random field; Sequence segmentation; Sequence
classification
BibRef
Chatzis, S.P.[Sotirios P.],
A Markov random field-regulated Pitma-Yor process prior for spatially
constrained data clustering,
PR(46), No. 6, June 2013, pp. 1595-1603.
Elsevier DOI
1302
Pitman-Yor process; Clustering; Markov random field
BibRef
Wang, C.H.[Chao-Hui],
Komodakis, N.[Nikos],
Paragios, N.[Nikos],
Markov Random Field modeling, inference & learning in computer
vision & image understanding: A survey,
CVIU(117), No. 11, 2013, pp. 1610-1627.
Elsevier DOI
1309
Survey, Markov Random Fields. Markov Random Fields
BibRef
Versteegen, R.[Ralph],
Gimel'farb, G.L.[Georgy L.],
Riddle, P.[Patricia],
Texture Modelling with Nested High-Order Markov-Gibbs Random Fields,
CVIU(143), No. 1, 2016, pp. 120-134.
Elsevier DOI
1601
BibRef
And:
Markov-Gibbs Texture Modelling with Learnt Freeform Filters,
SSSPR16(379-389).
Springer DOI
1611
BibRef
Earlier:
Texture modelling with non-contiguous filters,
ICVNZ15(1-6)
IEEE DOI
1701
BibRef
Earlier:
Learning generic third-order MGRF texture models,
IVCNZ13(7-12)
IEEE DOI
1402
Texture synthesis and analysis.
Markov processes
BibRef
Liu, N.[Ni],
Gimel'farb, G.L.[Georgy L.],
Delmas, P.[Patrice],
Learnable high-order MGRF models for contrast-invariant texture
recognition,
CVIU(143), No. 1, 2016, pp. 135-146.
Elsevier DOI
1601
BibRef
Earlier:
Combined ternary patterns for texture recognition,
ICVNZ15(1-6)
IEEE DOI
1701
BibRef
And:
Learning High-Order Structures for Texture Retrieval,
GbRPR15(365-374).
Springer DOI
1511
BibRef
Earlier:
Texture modelling with generic translation- and
contrast/offset-invariant 2nd-4th-order MGRFs,
IVCNZ13(370-375)
IEEE DOI
1402
image classification.
Markov processes.
High-order ordinal MGRF
BibRef
Ali, A.M.[Asem M.],
Farag, A.A.[Aly A.],
Gimel'farb, G.L.[Georgy L.],
Analytical method for MGRF Potts model parameter estimation,
ICPR08(1-4).
IEEE DOI
0812
Markov Gibbs Random Field
BibRef
Zhao, H.X.[Hui-Xi],
Comer, M.L.[Mary L.],
de Graef, M.[Marc],
A unified Markov random field/marked point process image model and
its application to computational materials,
ICIP14(6101-6105)
IEEE DOI
1502
Computational modeling
BibRef
Feng, S.W.[Si-Wei],
Itoh, Y.[Yuki],
Parente, M.[Mario],
Duarte, M.F.[Marco F.],
Tailoring non-homogeneous Markov chain wavelet models for
hyperspectral signature classification,
ICIP14(5167-5171)
IEEE DOI
1502
Computational modeling
BibRef
Nizar, B.[Bouhlel],
Laugier, P.[Pascal],
Ultrasound tissue characterizationby generalized GAMMA MRF model,
ICIP14(2266-2270)
IEEE DOI
1502
Acoustics
BibRef
Simmons, J.[Jeff],
Przybyla, C.[Craig],
Bricker, S.[Stephen],
Kim, D.W.[Dae Woo],
Comer, M.[Mary],
Physics of MRF regularization for segmentation of materials
microstructure images,
ICIP14(4882-4886)
IEEE DOI
1502
Image segmentation
BibRef
Fix, A.[Alexander],
Agarwal, S.[Sameer],
Duality and the Continuous Graphical Model,
ECCV14(III: 266-281).
Springer DOI
1408
BibRef
Jiang, F.[Feng],
Wang, X.[Xulin],
Zhao, D.B.[De-Bin],
From relation between filter-based MRFs model and sparsity based
method to the pursuit of natural images space,
ICIP13(93-97)
IEEE DOI
1402
Adaptation models
BibRef
Haindl, M.[Michal],
Remes, V.[Vaclav],
Havlicek, V.[Vojtech],
Potts compound Markovian texture model,
ICPR12(29-32).
WWW Link.
1302
BibRef
Fix, A.[Alexander],
Chen, J.[Joyce],
Boros, E.[Endre],
Zabih, R.[Ramin],
Approximate MRF Inference Using Bounded Treewidth Subgraphs,
ECCV12(I: 385-398).
Springer DOI
1210
BibRef
Gao, Q.[Qi],
Roth, S.[Stefan],
How Well Do Filter-Based MRFs Model Natural Images?,
DAGM12(62-72).
Springer DOI
1209
Award, GCPR, HM.
BibRef
Mei, T.,
Zheng, L.,
Zhong, S.,
A Joint Pixel and Region Based Multiscale Markov Random Field for Image
Classification,
ISPRS12(XXXIX-B3:237-242).
DOI Link
1209
BibRef
Welikanna, D.R.,
Tamura, M.,
Tolpekin, V.A.,
Susaki, J.,
Maki, M.,
Improving Markov Random Field Based Super Resolution Mapping Through
Fuzzy Parameter Integration,
AnnalsPRS(I-7), No. 2012, pp. 183-189.
DOI Link
1209
BibRef
Lin, D.[Dahua],
Fisher, J.W.[John W.],
Manifold guided composite of Markov random fields for image modeling,
CVPR12(2176-2183).
IEEE DOI
1208
BibRef
Lin, D.[Dahua],
Fisher, J.W.[John W.],
Low level vision via switchable Markov random fields,
CVPR12(2432-2439).
IEEE DOI
1208
BibRef
Colonnese, S.[Stefania],
Rinauro, S.[Stefano],
Scarano, G.[Gaetano],
Markov Random Fields using complex line process:
An application to Bayesian image restoration,
EUVIP11(30-35).
IEEE DOI
1110
See also Bayesian image interpolation using Markov random fields driven by visually relevant image features.
BibRef
Schoenemann, T.[Thomas],
Minimizing Count-Based High Order Terms in Markov Random Fields,
EMMCVPR11(17-30).
Springer DOI
1107
BibRef
Tsuboi, Y.[Yuta],
Kashima, H.[Hisashi],
A new objective function for sequence labeling,
ICPR08(1-4).
IEEE DOI
0812
discriminative learning of Markov random fields
BibRef
Zhou, H.B.[Hong-Bo],
Zheng, Z.M.[Zhi-Ming],
Generalized criteria for uniqueness of Gibbs measures,
ICPR08(1-4).
IEEE DOI
0812
BibRef
He, C.[Chu],
Ahonen, T.[Timo],
Pietikainen, M.[Matti],
A Bayesian Local Binary Pattern texture descriptor,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Sargin, M.E.,
Altinok, A.,
Rose, K.,
Manjunath, B.S.,
Conditional iterative decoding of Two Dimensional Hidden Markov Models,
ICIP08(2552-2555).
IEEE DOI
0810
BibRef
Poon, H.F.[Hoi-Fung],
Domingos, P.[Pedro],
Sum-product networks: A new deep architecture,
SIG11(689-690).
IEEE DOI
1201
For partitioning.
BibRef
Domingos, P.[Pedro],
Kok, S.[Stanley],
Lowd, D.[Daniel],
Poon, H.F.[Hoi-Fung],
Richardson, M.[Matt],
Singla, P.[Parag],
Sumner, M.[Marc],
Wang, J.[Jue],
Markov Logic: A Unifying Language for Structural and Statistical
Pattern Recognition,
SSPR08(3).
Springer DOI
0812
BibRef
Gu, L.[Lie],
Xing, E.P.[Eric P.],
Kanade, T.[Takeo],
Learning GMRF Structures for Spatial Priors,
CVPR07(1-6).
IEEE DOI
0706
BibRef
Verbeek, J.[Jakob],
Triggs, B.[Bill],
Region Classification with Markov Field Aspect Models,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Kuruoglu, E.E.,
Tonazzini, A.,
Bianchi, L.,
Source separation in noisy astrophysical images modelled by markov
random fields,
ICIP04(IV: 2701-2704).
IEEE DOI
0505
BibRef
Pichler, A.,
Fisher, R.B.,
Vincze, M.,
Decomposition of range images using markov random fields,
ICIP04(II: 1205-1208).
IEEE DOI
0505
BibRef
Liu, Z.Q.[Zi-Qiang],
Chen, H.[Hong],
Shum, H.Y.[Heung-Yeung],
An efficient approach to learning inhomogeneous Gibbs model,
CVPR03(I: 425-431).
IEEE DOI
0307
demonstrate the efficiency of our approach by learning a
high-dimensional joint distribution of face images and their
corresponding caricatures.
BibRef
Collet, C.,
Louys, M.,
Oberto, A.,
Bot, C.,
Markov model for multispectral image analysis: application to small
magellanic cloud segmentation,
ICIP03(I: 953-956).
IEEE DOI
0312
BibRef
Mertins, A.,
Jamart, O.,
Decoding of images using soft-bits and Markov random field modeling,
ICIP02(I: 241-244).
IEEE DOI
0210
BibRef
Kim, J.[Junhwan],
Zabih, R.[Ramin],
Factorial Markov Random Fields,
ECCV02(III: 321 ff.).
Springer DOI
0205
BibRef
Costen, N.P.,
Cootes, T.F.,
Taylor, C.J.,
Markov fields for recognition derived from facial texture error,
BMVC01(Poster Session 2. and Demonstrations).
HTML Version. Manchester Metropolitan University
0110
BibRef
Salles, E.,
Lee, L.,
Texture Classification by Means of HMM Modeling of AM-FM Features,
ICIP01(III: 182-185).
IEEE DOI
0108
BibRef
Müller, S.,
Wallhoff, F.,
Rigoll, G.,
Retrieval of Overlapping and Touching Objects Using Hidden Markov
Models,
ICIP01(II: 761-764).
IEEE DOI
0108
BibRef
August, J.,
Zucker, S.W.,
A Generative Model for Image Contours:
A Completely Characterized Non-Gaussian Joint Distribution,
SCTV01(xx-yy).
0106
BibRef
Oukil, A.,
Serir, A.,
Markovian Random Fields Energy Minimization Algorithms,
ICPR00(Vol III: 518-521).
IEEE DOI
0009
BibRef
Sivakumar, K.,
A Morphological Estimator for Clique Potentials of Binary Markov Random
Fields,
ICIP00(Vol I: 264-267).
IEEE DOI
0008
BibRef
Paget, R.[Rupert],
Longstaff, I.D.[I. Dennis],
Nonparametric Markov Random Field Model Analysis of the
MeasTex Test Suite,
ICPR00(Vol III: 927-930).
IEEE DOI
IEEE DOI
0009
BibRef
Çarkacioglu, A.[Abdurrahman],
Yarman-Vural, F.T.[Fatos T.],
Similarity measures for binary and gray level Markov Random Field
textures,
CIAP97(I: 127-133).
Springer DOI
9709
BibRef
Budzban, G.,
Casey, W.,
The effect of stable points on the convergence of Markov random fields,
ICIP98(I: 77-79).
IEEE DOI
9810
BibRef
Tanaka, K.,
Ichioka, M.,
Morita, T.,
Statistical-Mechanical Algorithm in MRF Model Based on
Variational Principle,
ICPR96(II: 381-388).
IEEE DOI
9608
(Muroran Inst. of Technology, J)
BibRef
Mosquera, A.,
Cabello, D.,
The Markov Random Fields in Functional Neighbors as a Texture Model:
Applications in Texture Classification,
ICPR96(II: 815-819).
IEEE DOI
9608
(Univ. Santiago de Compostela, E)
BibRef
Delagnes, P.,
Barba, D.,
Rectilinear Structure Extraction in Textured Images with an
Irregular Graph-Based Markov Random Field Model,
ICPR96(II: 800-804).
IEEE DOI
9608
(Univ. de Nantes, F)
BibRef
Li, S.Z.,
Huang, Y.H.,
Fu, J.S.,
Convex MRF potential functions,
ICIP95(II: 296-299).
IEEE DOI
9510
BibRef
Yin, H.,
Allinson, N.M.,
Self-organised parameter estimation and segmentation of MRF model-based
texture images,
ICIP94(II: 645-649).
IEEE DOI
9411
BibRef
Milanfar, P.,
Tenney, R.R.,
Washburn, R.B.,
Willsky, A.S.,
Modeling and estimation for a class of multiresolution random fields,
ICIP94(III: 397-401).
IEEE DOI
9411
BibRef
Ghozi, R.,
Levy, B.C.,
Critical Markov random fields and fractional Brownian motion in texture
synthesis,
ICIP94(III: 426-430).
IEEE DOI
9411
BibRef
Chiou, G.I.,
Hwang, J.N.[Jenq-Neng],
Image sequence classification using a neural network based active
contour model and a hidden Markov model,
ICIP94(III: 926-930).
IEEE DOI
9411
BibRef
Trumbo, M.,
Vaisey, J.,
Variable decay rate histogram modelling for image compression,
ICIP95(III: 416-419).
IEEE DOI
9510
BibRef
And:
Variable resolution Markov modelling of signal data for image
compression,
ICIP95(I: 282-285).
IEEE DOI
9510
BibRef
Baddeley, A.J.[Adrian J.],
van Lieshout, M.N.M.,
Object recognition using Markov spatial processes,
ICPR92(II:136-139).
IEEE DOI
9208
BibRef
Waks, A.,
Tretiak, O.J.,
Gregoriou, G.K.,
Restoration of noisy regions modeled by noncausal Markov random fields
of unknown parameters,
ICPR90(II: 170-175).
IEEE DOI
9208
BibRef
Gao, Y.Q.[Yu Qing],
Chen, Y.B.[Yong Bin],
Huang, T.Y.[Ta Yi],
A new method for estimation of hidden Markov model parameters,
ICPR90(II: 27-30).
IEEE DOI
9208
BibRef
Devijver, P.A.,
Real-time modeling of image sequences based on hidden Markov mesh
random field models,
ICPR90(II: 194-199).
IEEE DOI
9008
BibRef
Haralick, R.M.,
Zhang, M.C.,
Ehrich, R.W.,
Dynamic programming approach for context classification using the
Markov random field,
ICPR88(II: 1169-1181).
IEEE DOI
8811
BibRef
He, Y.[Yang],
Extended Viterbi algorithm for second order hidden Markov process,
ICPR88(II: 718-720).
IEEE DOI
8811
BibRef
Chen, C.C.,
Dubes, R.C.,
Experiments in Fitting Discrete Markov Random Fields to Textures,
CVPR89(298-303).
IEEE DOI
BibRef
8900
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Hierarchical, Multi-Scale Texture Representations and Analysis .