Mecocci, A.,
Benelli, G.,
Garzelli, A.,
Bottalico, S.,
Radar image processing for ship-traffic control,
IVC(13), No. 2, March 1995, pp. 119-128.
Elsevier DOI
0401
BibRef
Musman, S.,
Kerr, D.,
Bachmann, C.,
Automatic Recognition of ISAR Ship Images,
AeroSys(32), No. 4, October 1996, pp. 1392-1404.
9611
BibRef
Maki, A.[Atsuto],
Fukui, K.[Kazuhiro],
Ship identification in sequential ISAR imagery,
MVA(15), No. 3, July 2004, pp. 149-155.
Springer DOI
0407
BibRef
Margarit, G.,
Mallorqui, J.J.,
Fortuny-Guasch, J.,
Lopez-Martinez, C.,
Exploitation of Ship Scattering in Polarimetric SAR for an Improved
Classification Under High Clutter Conditions,
GeoRS(47), No. 4, April 2009, pp. 1224-1235.
IEEE DOI
0903
BibRef
Margarit, G.,
Tabasco, A.,
Ship Classification in Single-Pol SAR Images Based on Fuzzy Logic,
GeoRS(49), No. 8, August 2011, pp. 3129-3138.
IEEE DOI
1108
BibRef
Earlier:
Correction:
GeoRS(51), No. 5, May 2013, pp. 3201.
IEEE DOI
1305
BibRef
Margarit, G.,
Barba Milanés, J.,
Tabasco, A.,
Operational Ship Monitoring System Based on Synthetic Aperture Radar
Processing,
RS(1), No. 3, September 2009, pp. 375-392.
DOI Link
1203
BibRef
Wang, Y.,
Liu, H.,
A Hierarchical Ship Detection Scheme for High-Resolution SAR Images,
GeoRS(50), No. 10, October 2012, pp. 4173-4184.
IEEE DOI
1210
BibRef
Liu, C.,
Gierull, C.H.,
A New Application for PolSAR Imagery in the Field of Moving Target
Indication/Ship Detection,
GeoRS(45), No. 11, November 2007, pp. 3426-3436.
IEEE DOI
0709
BibRef
Brusch, S.,
Lehner, S.,
Fritz, T.,
Soccorsi, M.,
Soloviev, A.,
van Schie, B.,
Ship Surveillance With TerraSAR-X,
GeoRS(49), No. 3, March 2011, pp. 1092-1103.
IEEE DOI
1103
BibRef
Wang, X.L.[Xiao-Long],
Chen, C.X.[Cui-Xia],
An Automatic Ship Detection Method Based on Local Gray-Level Gathering
Characteristics in SAR Imagery,
ELCVIA(12), No. 1, 2013, pp. xx-yy.
DOI Link
1306
BibRef
Velotto, D.,
Soccorsi, M.,
Lehner, S.,
Azimuth Ambiguities Removal for Ship Detection Using Full
Polarimetric X-Band SAR Data,
GeoRS(52), No. 1, January 2014, pp. 76-88.
IEEE DOI
1402
marine radar
BibRef
Hu, C.B.[Can-Bin],
Ferro-Famil, L.[Laurent],
Kuang, G.Y.[Gang-Yao],
Ship Discrimination Using Polarimetric SAR Data and Coherent
Time-Frequency Analysis,
RS(5), No. 12, 2013, pp. 6899-6920.
DOI Link
1412
BibRef
Atteia, G.E.,
Collins, M.J.[Michael J.],
On the use of compact polarimetry SAR for ship detection,
PandRS(80), No. 1, June 2013, pp. 1-9.
Elsevier DOI
1305
Ship detection; Polarimetry; Compact polarimetry; Synthetic aperture
radar
BibRef
Cui, Y.,
Yang, J.,
Yamaguchi, Y.,
Singh, G.,
Park, S.E.,
Kobayashi, H.,
On Semiparametric Clutter Estimation for Ship Detection in Synthetic
Aperture Radar Images,
GeoRS(51), No. 5, May 2013, pp. 3170-3180.
IEEE DOI
1305
BibRef
Gao, G.,
Wang, X.,
Lai, T.,
Detection of Moving Ships Based on a Combination of Magnitude and
Phase in Along-Track Interferometric SAR: Part I: SIMP Metric and Its
Performance,
GeoRS(53), No. 7, July 2015, pp. 3565-3581.
IEEE DOI
1503
Clutter
BibRef
Gao, G.,
Wang, X.,
Lai, T.,
Detection of Moving Ships Based on a Combination of Magnitude and
Phase in Along-Track Interferometric SAR: Part II: Statistical
Modeling and CFAR Detection,
GeoRS(53), No. 7, July 2015, pp. 3582-3599.
IEEE DOI
1503
Approximation methods
BibRef
Marino, A.[Armando],
Sanjuan-Ferrer, M.J.[Maria J.],
Hajnsek, I.[Irena],
Ouchi, K.[Kazuo],
Ship Detection with Spectral Analysis of Synthetic Aperture Radar:
A Comparison of New and Well-Known Algorithms,
RS(7), No. 5, 2015, pp. 5416-5439.
DOI Link
1506
BibRef
Zhao, Y.[Ye],
Zhang, M.[Min],
Zhao, Y.W.[Yan-Wei],
Geng, X.P.[Xu-Pu],
A Bistatic SAR Image Intensity Model for the Composite Ship-Ocean
Scene,
GeoRS(53), No. 8, August 2015, pp. 4250-4258.
IEEE DOI
1506
geophysical image processing
BibRef
Huang, X.J.[Xiao-Jing],
Yang, W.[Wen],
Zhang, H.J.[Hai-Jian],
Xia, G.S.[Gui-Song],
Automatic Ship Detection in SAR Images Using Multi-Scale
Heterogeneities and an A Contrario Decision,
RS(7), No. 6, 2015, pp. 7695.
DOI Link
1507
BibRef
Touzi, R.,
Hurley, J.,
Vachon, P.W.,
Optimization of the Degree of Polarization for Enhanced Ship
Detection Using Polarimetric RADARSAT-2,
GeoRS(53), No. 10, October 2015, pp. 5403-5424.
IEEE DOI
1509
electromagnetic wave polarisation
BibRef
Wang, X.L.[Xiao-Long],
Chen, C.X.[Cui-Xia],
A fast line-scanning-based detection algorithm for real-time SAR ship
detection,
SIViP(9), No. 8, November 2015, pp. 1975-1982.
WWW Link.
1511
BibRef
Wang, X.L.[Xiao-Long],
Chen, C.X.[Cui-Xia],
Adaptive ship detection in SAR images using variance WIE-based method,
SIViP(10), No. 7, October 2016, pp. 1219-1224.
WWW Link.
1609
BibRef
Tu, S.[Song],
Su, Y.[Yi],
Fast and Accurate Target Detection Based on Multiscale Saliency and
Active Contour Model for High-Resolution SAR Images,
GeoRS(54), No. 10, October 2016, pp. 5729-5744.
IEEE DOI
1610
image processing
BibRef
Zhang, L.[Liang],
Lu, S.T.[Sheng-Tao],
Xiang, D.L.[De-Liang],
Su, Y.[Yi],
Fast Ship Detection Based on the Superpixels for High Resolution SAR
Images,
ICIVC22(172-177)
IEEE DOI
2301
Gamma distribution, Image resolution, Shape, Urban areas, Speckle,
Radar polarimetry, Robustness, synthetic aperture radar (SAR),
target detection
BibRef
Pelich, R.,
Longépé, N.,
Mercier, G.,
Hajduch, G.,
Garello, R.,
Vessel Refocusing and Velocity Estimation on SAR Imagery Using the
Fractional Fourier Transform,
GeoRS(54), No. 3, March 2016, pp. 1670-1684.
IEEE DOI
1603
Acceleration
BibRef
Gao, G.,
Luo, Y.,
Ouyang, K.,
Zhou, S.,
Statistical Modeling of PMA Detector for Ship Detection in
High-Resolution Dual-Polarization SAR Images,
GeoRS(54), No. 7, July 2016, pp. 4302-4313.
IEEE DOI
1606
Adaptation models
BibRef
Gao, G.,
Ouyang, K.,
Luo, Y.,
Liang, S.,
Zhou, S.,
Scheme of Parameter Estimation for Generalized Gamma Distribution and
Its Application to Ship Detection in SAR Images,
GeoRS(55), No. 3, March 2017, pp. 1812-1832.
IEEE DOI
1703
Clutter
BibRef
Xu, L.[Lu],
Zhang, H.[Hong],
Wang, C.[Chao],
Zhang, B.[Bo],
Tian, S.[Sirui],
Compact Polarimetric SAR Ship Detection with m-d Decomposition Using
Visual Attention Model,
RS(8), No. 9, 2016, pp. 751.
DOI Link
1610
BibRef
Fan, Q.C.[Qian-Cong],
Chen, F.[Feng],
Cheng, M.[Ming],
Lou, S.L.[Shen-Long],
Xiao, R.[Rulin],
Zhang, B.[Biao],
Wang, C.[Cheng],
Li, J.[Jonathan],
Ship Detection Using a Fully Convolutional Network with Compact
Polarimetric SAR Images,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Wang, S.,
Wang, M.,
Yang, S.,
Jiao, L.,
New Hierarchical Saliency Filtering for Fast Ship Detection in
High-Resolution SAR Images,
GeoRS(55), No. 1, January 2017, pp. 351-362.
IEEE DOI
1701
geophysical techniques
BibRef
Gao, G.[Gui],
Shi, G.T.[Gong-Tao],
CFAR Ship Detection in Nonhomogeneous Sea Clutter Using Polarimetric
SAR Data Based on the Notch Filter,
GeoRS(55), No. 8, August 2017, pp. 4811-4824.
IEEE DOI
1708
Clutter, Data models, Detectors, Marine vehicles, Scattering,
Sea measurements, Synthetic aperture radar,
Constant false alarm rate (CFAR), polarization, ship detection,
synthetic, aperture, radar, (SAR)
BibRef
Gao, G.[Gui],
Shi, G.T.[Gong-Tao],
Ship Detection in Dual-Channel ATI-SAR Based on the Notch Filter,
GeoRS(55), No. 8, August 2017, pp. 4795-4810.
IEEE DOI
1708
Clutter, Covariance matrices, Interferometry, Marine vehicles,
Oceans, Receivers, Synthetic aperture radar,
Along-track interferometry (ATI), detection, ship, synthetic,
aperture, radar, (SAR)
BibRef
Gao, G.[Gui],
Gao, S.[Sheng],
He, J.[Juan],
Li, G.S.[Gao-Sheng],
Ship Detection Using Compact Polarimetric SAR Based on the Notch
Filter,
GeoRS(56), No. 9, September 2018, pp. 5380-5393.
IEEE DOI
1809
Marine vehicles, Synthetic aperture radar, Feature extraction,
Scattering, Image reconstruction, Clutter, Oceans,
synthetic aperture radar (SAR)
BibRef
Gao, G.[Gui],
Gao, S.[Sheng],
He, J.[Juan],
Li, G.S.[Gao-Sheng],
Adaptive Ship Detection in Hybrid-Polarimetric SAR Images Based on
the Power-Entropy Decomposition,
GeoRS(56), No. 9, September 2018, pp. 5394-5407.
IEEE DOI
1809
Synthetic aperture radar, Marine vehicles, Feature extraction,
Spaceborne radar, Entropy, Image reconstruction,
synthetic aperture radar (SAR)
BibRef
Renga, A.,
Moccia, A.,
Use of Doppler Parameters for Ship Velocity Computation in SAR Images,
GeoRS(54), No. 7, July 2016, pp. 3995-4011.
IEEE DOI
1606
Azimuth
BibRef
Zhu, J.W.[Ji-Wei],
Qiu, X.L.[Xiao-Lan],
Pan, Z.X.[Zong-Xu],
Zhang, Y.T.[Yue-Ting],
Lei, B.[Bin],
An Improved Shape Contexts Based Ship Classification in SAR Images,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Greidanus, H.[Harm],
Alvarez, M.[Marlene],
Santamaria, C.[Carlos],
Thoorens, F.X.[François-Xavier],
Kourti, N.[Naouma],
Argentieri, P.[Pietro],
The SUMO Ship Detector Algorithm for Satellite Radar Images,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Xi, Y.Y.[Yu-Yang],
Lang, H.T.[Hai-Tao],
Tao, Y.H.[Yun-Hong],
Huang, L.[Lin],
Pei, Z.J.[Zi-Jun],
Four-Component Model-Based Decomposition for Ship Targets Using
PolSAR Data,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Kang, M.[Miao],
Ji, K.F.[Ke-Feng],
Leng, X.G.[Xiang-Guang],
Lin, Z.[Zhao],
Contextual Region-Based Convolutional Neural Network with Multilayer
Fusion for SAR Ship Detection,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Santamaria, C.[Carlos],
Alvarez, M.[Marlene],
Greidanus, H.[Harm],
Syrris, V.[Vasileios],
Soille, P.[Pierre],
Argentieri, P.[Pietro],
Mass Processing of Sentinel-1 Images for Maritime Surveillance,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Ma, F.[Feng],
Chen, Y.W.[Yu-Wang],
Yan, X.P.[Xin-Ping],
Chu, X.M.[Xiu-Min],
Wang, J.[Jin],
Target recognition for coastal surveillance based on radar images and
generalised Bayesian inference,
IET-ITS(12), No. 2, March 2018, pp. 103-112.
DOI Link
1801
BibRef
Lin, H.P.[Hui-Ping],
Song, S.L.[Sheng-Li],
Yang, J.[Jian],
Ship Classification Based on MSHOG Feature and Task-Driven Dictionary
Learning with Structured Incoherent Constraints in SAR Images,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Lin, H.P.[Hui-Ping],
Chen, H.[Hang],
Wang, H.M.[Hong-Miao],
Yin, J.J.[Jun-Jun],
Yang, J.[Jian],
Ship Detection for PolSAR Images via Task-Driven Discriminative
Dictionary Learning,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Gierull, C.H.,
Sikaneta, I.,
A Compound-Plus-Noise Model for Improved Vessel Detection in
Non-Gaussian SAR Imagery,
GeoRS(56), No. 3, March 2018, pp. 1444-1453.
IEEE DOI
1804
computational complexity, probability, radar clutter,
radar detection, radar imaging, synthetic aperture radar,
synthetic aperture radar (SAR)
BibRef
Rikka, S.[Sander],
Pleskachevsky, A.[Andrey],
Jacobsen, S.[Sven],
Alari, V.[Victor],
Uiboupin, R.[Rivo],
Meteo-Marine Parameters from Sentinel-1 SAR Imagery:
Towards Near Real-Time Services for the Baltic Sea,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Zhang, T.[Tao],
Marino, A.[Armando],
Xiong, H.L.[Hui-Lin],
Yu, W.X.[Wen-Xian],
A Ship Detector Applying Principal Component Analysis to the
Polarimetric Notch Filter,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Wang, Y.,
Chen, X.,
3-D Interferometric Inverse Synthetic Aperture Radar Imaging of Ship
Target With Complex Motion,
GeoRS(56), No. 7, July 2018, pp. 3693-3708.
IEEE DOI
1807
Doppler radar, Imaging, Marine vehicles, Radar imaging,
Radar scattering, Solid modeling,
ship target
BibRef
Similä, M.[Markku],
Lensu, M.[Mikko],
Estimating the Speed of Ice-Going Ships by Integrating SAR Imagery
and Ship Data from an Automatic Identification System,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Li, B.,
Liu, B.,
Guo, W.,
Zhang, Z.,
Yu, W.,
Ship Size Extraction for Sentinel-1 Images Based on Dual-Polarization
Fusion and Nonlinear Regression: Push Error Under One Pixel,
GeoRS(56), No. 8, August 2018, pp. 4887-4905.
IEEE DOI
1808
gradient methods, image fusion, marine radar, radar imaging,
regression analysis, ships, synthetic aperture radar,
synthetic aperture radar (SAR) image
BibRef
Shi, S.,
Shui, P.,
Sea-Surface Floating Small Target Detection by One-Class Classifier
in Time-Frequency Feature Space,
GeoRS(56), No. 11, November 2018, pp. 6395-6411.
IEEE DOI
1811
Clutter, Feature extraction, Time series analysis, Detectors,
Doppler effect, Radar cross-sections,
one-class classifier
BibRef
Hwang, J.I.[Jeong-In],
Jung, H.S.[Hyung-Sup],
Automatic Ship Detection Using the Artificial Neural Network and
Support Vector Machine from X-Band SAR Satellite Images,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Ma, M.Y.[Meng-Yuan],
Chen, J.[Jie],
Liu, W.[Wei],
Yang, W.[Wei],
Ship Classification and Detection Based on CNN Using GF-3 SAR Images,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Zhang, Y.[Ying],
Xiong, W.[Wei],
Dong, X.C.[Xi-Chao],
Hu, C.[Cheng],
Sun, Y.[Yang],
GRFT-Based Moving Ship Target Detection and Imaging in Geosynchronous
SAR,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Leng, X.,
Ji, K.,
Zhou, S.,
Xing, X.,
Zou, H.,
Discriminating Ship From Radio Frequency Interference Based on
Noncircularity and Non-Gaussianity in Sentinel-1 SAR Imagery,
GeoRS(57), No. 1, January 2019, pp. 352-363.
IEEE DOI
1901
Marine vehicles, Synthetic aperture radar, Oceans, Instruments,
Sensors, Image resolution, Radiofrequency interference,
synthetic aperture radar (SAR)
BibRef
Snapir, B.[Boris],
Waine, T.W.[Toby W.],
Biermann, L.[Lauren],
Maritime Vessel Classification to Monitor Fisheries with SAR:
Demonstration in the North Sea,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Liu, N.Y.[Neng-Yuan],
Cao, Z.J.[Zong-Jie],
Cui, Z.Y.[Zong-Yong],
Pi, Y.M.[Yi-Ming],
Dang, S.H.[Si-Hang],
Multi-Scale Proposal Generation for Ship Detection in SAR Images,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Cui, Z.Y.[Zong-Yong],
Tang, C.[Cui],
Cao, Z.J.[Zong-Jie],
Liu, N.Y.[Neng-Yuan],
D-ATR for SAR Images Based on Deep Neural Networks,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Cui, Z.Y.[Zong-Yong],
Dang, S.H.[Si-Hang],
Cao, Z.J.[Zong-Jie],
Wang, S.F.[Si-Fei],
Liu, N.Y.[Neng-Yuan],
SAR Target Recognition in Large Scene Images via Region-Based
Convolutional Neural Networks,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Wang, J.[Jun],
Zheng, T.[Tong],
Lei, P.[Peng],
Bai, X.[Xiao],
A Hierarchical Convolution Neural Network (CNN)-Based Ship Target
Detection Method in Spaceborne SAR Imagery,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Renga, A.,
Graziano, M.D.,
Moccia, A.,
Segmentation of Marine SAR Images by Sublook Analysis and Application
to Sea Traffic Monitoring,
GeoRS(57), No. 3, March 2019, pp. 1463-1477.
IEEE DOI
1903
geophysical image processing, image segmentation,
oceanographic regions, remote sensing by radar, ships,
synthetic aperture radar (SAR)
BibRef
Wang, Y.Y.[Yuan-Yuan],
Wang, C.[Chao],
Zhang, H.[Hong],
Dong, Y.[Yingbo],
Wei, S.[Sisi],
A SAR Dataset of Ship Detection for Deep Learning under Complex
Backgrounds,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Chang, Y.L.[Yang-Lang],
Anagaw, A.[Amare],
Chang, L.[Lena],
Wang, Y.C.[Yi Chun],
Hsiao, C.Y.[Chih-Yu],
Lee, W.H.[Wei-Hong],
Ship Detection Based on YOLOv2 for SAR Imagery,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Gierull, C.H.,
Demystifying the Capability of Sublook Correlation Techniques for
Vessel Detection in SAR Imagery,
GeoRS(57), No. 4, April 2019, pp. 2031-2042.
IEEE DOI
1904
Doppler radar, image texture, marine radar, optical correlation,
radar detection, radar imaging, ships, statistical analysis,
synthetic aperture radar (SAR)
BibRef
Filippo, B.[Biondi],
COSMO-SkyMed Staring Spotlight SAR Data for Micro-Motion and
Inclination Angle Estimation of Ships by Pixel Tracking and Convex
Optimization,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Salembier, P.,
Liesegang, S.,
López-Martínez, C.,
Ship Detection in SAR Images Based on Maxtree Representation and
Graph Signal Processing,
GeoRS(57), No. 5, May 2019, pp. 2709-2724.
IEEE DOI
1905
filtering theory, geophysical image processing,
image representation, learning (artificial intelligence),
tree filter
BibRef
Zhang, T.[Tao],
Ji, J.S.[Jin-Sheng],
Li, X.F.[Xiao-Feng],
Yu, W.X.[Wen-Xian],
Xiong, H.L.[Hui-Lin],
Ship Detection From PolSAR Imagery Using the Complete Polarimetric
Covariance Difference Matrix,
GeoRS(57), No. 5, May 2019, pp. 2824-2839.
IEEE DOI
1905
covariance matrices, geophysical signal processing,
notch filters, object detection, radar clutter, radar imaging,
target-to-clutter ratio (TCR)
BibRef
Zhang, T.[Tao],
Jiang, L.F.[Lin-Feng],
Xiang, D.L.[De-Liang],
Ban, Y.F.[Yi-Fang],
Pei, L.[Ling],
Xiong, H.L.[Hui-Lin],
Ship detection from PolSAR imagery using the ambiguity removal
polarimetric notch filter,
PandRS(157), 2019, pp. 41-58.
Elsevier DOI
1911
PolSAR, Ship detection, Azimuth ambiguity removal, GP-PNF, PSH,
Depolarized energy ratio of targets
BibRef
Zhang, J.Z.[Jia-Zhi],
Zhang, X.[Xin],
Deng, W.B.[Wei-Bo],
Ye, L.[Lei],
Yang, Q.A.[Qi-Ang],
A Geometric Barycenter-Based Clutter Suppression Method for Ship
Detection in HF Mixed-Mode Surface Wave Radar,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Pelich, R.[Ramona],
Chini, M.[Marco],
Hostache, R.[Renaud],
Matgen, P.[Patrick],
Lopez-Martinez, C.[Carlos],
Nuevo, M.[Miguel],
Ries, P.[Philippe],
Eiden, G.[Gerd],
Large-Scale Automatic Vessel Monitoring Based on Dual-Polarization
Sentinel-1 and AIS Data,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
dual-polarimetric descriptors. Ships.
BibRef
Chen, S.Y.[Shi-Yuan],
Li, X.J.[Xiao-Jiang],
A new CFAR algorithm based on variable window for ship target detection
in SAR images,
SIViP(13), No. 4, June 2019, pp. 779-786.
WWW Link.
1906
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
High-Speed Ship Detection in SAR Images Based on a Grid Convolutional
Neural Network,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Joshi, S.K.[Sushil Kumar],
Baumgartner, S.V.[Stefan V.],
da Silva, A.B.C.[Andre B. C.],
Krieger, G.[Gerhard],
Range-Doppler Based CFAR Ship Detection with Automatic Training Data
Selection,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Back, M.Y.[Min-Young],
Kim, D.H.[Dong-Han],
Kim, S.W.[Sang-Wan],
Won, J.S.[Joong-Sun],
Two-Dimensional Ship Velocity Estimation Based on KOMPSAT-5 Synthetic
Aperture Radar Data,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Santi, F.,
Pieralice, F.,
Pastina, D.,
Joint Detection and Localization of Vessels at Sea With a GNSS-Based
Multistatic Radar,
GeoRS(57), No. 8, August 2019, pp. 5894-5913.
IEEE DOI
1908
Doppler radar, passive radar, radar receivers, radio receivers,
radio transmitters, satellite navigation, ship targets,
ship localization
BibRef
Lang, H.,
Xi, Y.,
Zhang, X.,
Ship Detection in High-Resolution SAR Images by Clustering Spatially
Enhanced Pixel Descriptor,
GeoRS(57), No. 8, August 2019, pp. 5407-5423.
IEEE DOI
1908
image resolution, object detection, radar imaging, ships,
synthetic aperture radar, ship detection,
synthetic aperture radar (SAR)
BibRef
Biondi, F.[Filippo],
Addabbo, P.[Pia],
Orlando, D.[Danilo],
Clemente, C.[Carmine],
Micro-Motion Estimation of Maritime Targets Using Pixel Tracking in
Cosmo-Skymed Synthetic Aperture Radar Data: An Operative Assessment,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Ding, Z.,
Zhang, T.,
Li, Y.,
Li, G.,
Dong, X.,
Zeng, T.,
Ke, M.,
A Ship ISAR Imaging Algorithm Based on Generalized Radon-Fourier
Transform With Low SNR,
GeoRS(57), No. 9, September 2019, pp. 6385-6396.
IEEE DOI
1909
Marine vehicles, Imaging, Signal to noise ratio,
Signal processing algorithms, Radar imaging, Doppler effect,
noncooperative ship
BibRef
Leng, X.,
Ji, K.,
Zhou, S.,
Xing, X.,
Ship Detection Based on Complex Signal Kurtosis in Single-Channel SAR
Imagery,
GeoRS(57), No. 9, September 2019, pp. 6447-6461.
IEEE DOI
1909
Marine vehicles, Radar polarimetry, Synthetic aperture radar,
Clutter, Gaussian distribution, Proposals, Sensitivity,
synthetic aperture radar (SAR)
BibRef
Cao, C.H.[Cheng-Hui],
Zhang, J.[Jie],
Meng, J.M.[Jun-Min],
Zhang, X.[Xi],
Mao, X.P.[Xing-Peng],
Analysis of Ship Detection Performance with Full-, Compact- and
Dual-Polarimetric SAR,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Yang, J.Y.[Jun-Ying],
Qiu, X.L.[Xiao-Lan],
Zhong, L.H.[Li-Hua],
Shang, M.Y.[Ming-Yang],
Ding, C.B.[Chi-Biao],
A Simultaneous Imaging Scheme of Stationary Clutter and Moving
Targets for Maritime Scenarios with the First Chinese Dual-Channel
Spaceborne SAR Sensor,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
Shi, J.[Jun],
Wei, S.J.[Shun-Jun],
Depthwise Separable Convolution Neural Network for High-Speed SAR
Ship Detection,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Cui, Z.,
Li, Q.,
Cao, Z.,
Liu, N.,
Dense Attention Pyramid Networks for Multi-Scale Ship Detection in
SAR Images,
GeoRS(57), No. 11, November 2019, pp. 8983-8997.
IEEE DOI
1911
Marine vehicles, Feature extraction, Radar polarimetry,
Synthetic aperture radar, Radar imaging, Semantics,
synthetic aperture radar (SAR)
BibRef
Sommer, A.,
Ostermann, J.,
Backprojection Subimage Autofocus of Moving Ships for Synthetic
Aperture Radar,
GeoRS(57), No. 11, November 2019, pp. 8383-8393.
IEEE DOI
1911
Marine vehicles, Synthetic aperture radar, Antennas,
Image reconstruction, Radar imaging, Spaceborne radar,
synthetic aperture radar (SAR)
BibRef
Gao, F.[Fei],
Shi, W.[Wei],
Wang, J.[Jun],
Yang, E.[Erfu],
Zhou, H.Y.[Hui-Yu],
Enhanced Feature Extraction for Ship Detection from Multi-Resolution
and Multi-Scene Synthetic Aperture Radar (SAR) Images,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Fan, W.W.[Wei-Wei],
Zhou, F.[Feng],
Bai, X.[Xueru],
Tao, M.L.[Ming-Liang],
Tian, T.[Tian],
Ship Detection Using Deep Convolutional Neural Networks for PolSAR
Images,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Ai, J.,
Tian, R.,
Luo, Q.,
Jin, J.,
Tang, B.,
Multi-Scale Rotation-Invariant Haar-Like Feature Integrated CNN-Based
Ship Detection Algorithm of Multiple-Target Environment in SAR
Imagery,
GeoRS(57), No. 12, December 2019, pp. 10070-10087.
IEEE DOI
1912
Marine vehicles, Feature extraction, Clutter,
Synthetic aperture radar, Radar polarimetry, Correlation,
constant false alarm rate (CFAR) detector (TCS-JCFAR)-based prescreening
BibRef
Dechesne, C.[Clément],
Lefèvre, S.[Sébastien],
Vadaine, R.[Rodolphe],
Hajduch, G.[Guillaume],
Fablet, R.[Ronan],
Ship Identification and Characterization in Sentinel-1 SAR Images
with Multi-Task Deep Learning,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Liu, G.W.[Gen-Wang],
Zhang, X.[Xi],
Meng, J.M.[Jun-Min],
A Small Ship Target Detection Method Based on Polarimetric SAR,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Liang, Y.[Yi],
Sun, K.[Kun],
Zeng, Y.G.[Yu-Gui],
Li, G.F.[Guo-Fei],
Xing, M.D.[Meng-Dao],
An Adaptive Hierarchical Detection Method for Ship Targets in
High-Resolution SAR Images,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Wei, S.J.[Shun-Jun],
Su, H.[Hao],
Ming, J.[Jing],
Wang, C.[Chen],
Yan, M.[Min],
Kumar, D.[Durga],
Shi, J.[Jun],
Zhang, X.L.[Xiao-Ling],
Precise and Robust Ship Detection for High-Resolution SAR Imagery
Based on HR-SDNet,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Liu, T.,
Zhang, J.,
Gao, G.,
Yang, J.,
Marino, A.,
CFAR Ship Detection in Polarimetric Synthetic Aperture Radar Images
Based on Whitening Filter,
GeoRS(58), No. 1, January 2020, pp. 58-81.
IEEE DOI
2001
Marine vehicles, Speckle, Covariance matrices, Clutter,
Synthetic aperture radar, Probability density function,
synthetic aperture radar
BibRef
Tian, M.,
Yang, Z.,
Duan, C.,
Liao, G.,
Liu, Y.,
Wang, C.,
Huang, P.,
A Method for Active Marine Target Detection Based on Complex
Interferometric Dissimilarity in Dual-Channel ATI-SAR Systems,
GeoRS(58), No. 1, January 2020, pp. 251-267.
IEEE DOI
2001
Object detection, Synthetic aperture radar, Measurement,
Marine vehicles, Clutter, Radar polarimetry,
synthetic aperture radar (SAR)
BibRef
Lu, H.,
Li, Y.,
Li, H.,
Lv, R.,
Lang, L.,
Li, Q.,
Song, G.,
Li, P.,
Wang, K.,
Xue, L.,
Zhu, D.,
Ship Detection by an Airborne Passive Interferometric Microwave
Sensor (PIMS),
GeoRS(58), No. 4, April 2020, pp. 2682-2694.
IEEE DOI
2004
Airborne, interferometric, microwave sensor, passive, ship detection
BibRef
Guo, R.[Rui],
Cui, J.Y.[Jing-Yu],
Jing, G.B.[Guo-Bin],
Zhang, S.X.[Shuang-Xi],
Xing, M.D.[Meng-Dao],
Validating GEV Model for Reflection Symmetry-Based Ocean Ship
Detection with Gaofen-3 Dual-Polarimetric Data,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Li, Y.Z.[Yong-Zhen],
Quan, S.N.[Si-Nong],
Xiang, D.L.[De-Liang],
Wang, W.[Wei],
Hu, C.B.[Can-Bin],
Liu, Y.[Yemin],
Wang, X.S.[Xue-Song],
Ship Recognition from Chaff Clouds with Sophisticated Polarimetric
Decomposition,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Chen, S.Q.[Shi-Qi],
Zhang, J.[Jun],
Zhan, R.H.[Rong-Hui],
R2FA-Det: Delving into High-Quality Rotatable Boxes for Ship
Detection in SAR Images,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Xiong, W.[Wei],
Zhang, Y.[Ying],
Dong, X.C.[Xi-Chao],
Cui, C.[Chang],
Liu, Z.[Zheng],
Xiong, M.H.[Ming-Hui],
A Novel Ship Imaging Method with Multiple Sinusoidal Functions to
Match Rotation Effects in Geosynchronous SAR,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Gao, F.[Fei],
He, Y.S.[Yi-Shan],
Wang, J.[Jun],
Hussain, A.[Amir],
Zhou, H.Y.[Hui-Yu],
Anchor-free Convolutional Network with Dense Attention Feature
Aggregation for Ship Detection in SAR Images,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
Shi, J.[Jun],
Wei, S.J.[Shun-Jun],
HyperLi-Net: A hyper-light deep learning network for high-accurate
and high-speed ship detection from synthetic aperture radar imagery,
PandRS(167), 2020, pp. 123-153.
Elsevier DOI
2008
HyperLi-Net, Deep learning, Ship detection,
Synthetic Aperture Radar (SAR), High-speed, High-accurate
BibRef
Zhang, T.W.[Tian-Wen],
Zeng, T.J.[Tian-Jiao],
Zhang, X.L.[Xiao-Ling],
Synthetic Aperture Radar (SAR) Meets Deep Learning,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Jin, K.,
Chen, Y.,
Xu, B.,
Yin, J.,
Wang, X.,
Yang, J.,
A Patch-to-Pixel Convolutional Neural Network for Small Ship
Detection With PolSAR Images,
GeoRS(58), No. 9, September 2020, pp. 6623-6638.
IEEE DOI
2008
Feature extraction, Marine vehicles, Object detection,
Optical imaging, Optical sensors, Synthetic aperture radar,
ship detection
BibRef
Wang, X.Q.[Xue-Qian],
Li, G.[Gang],
Zhang, X.,
He, Y.[You],
Ship Detection in SAR Images via Local Contrast of Fisher Vectors,
GeoRS(58), No. 9, September 2020, pp. 6467-6479.
IEEE DOI
2008
Marine vehicles, Radar polarimetry, Detectors, Clutter,
Synthetic aperture radar, Detection algorithms,
synthetic aperture radar (SAR)
BibRef
Wang, X.Q.[Xue-Qian],
Li, G.[Gang],
Plaza, A.[Antonio],
He, Y.[You],
Ship Detection in SAR Images via Enhanced Nonnegative Sparse
Locality-Representation of Fisher Vectors,
GeoRS(59), No. 11, November 2021, pp. 9424-9438.
IEEE DOI
2111
Marine vehicles, Radar polarimetry, Detectors, Clutter,
Feature extraction, Synthetic aperture radar, Training,
synthetic aperture radar (SAR)
BibRef
Liu, T.,
Yang, Z.,
Marino, A.,
Gao, G.,
Yang, J.,
Robust CFAR Detector Based on Truncated Statistics for Polarimetric
Synthetic Aperture Radar,
GeoRS(58), No. 9, September 2020, pp. 6731-6747.
IEEE DOI
2008
Marine vehicles, Clutter, Detectors, Covariance matrices,
Synthetic aperture radar, Training, truncated statistics (TS)
BibRef
Graziano, M.D.[Maria Daniela],
Renga, A.[Alfredo],
Moccia, A.[Antonio],
Integration of Automatic Identification System (AIS) Data and
Single-Channel Synthetic Aperture Radar (SAR) Images by SAR-Based
Ship Velocity Estimation for Maritime Situational Awareness,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Kuang, C.,
Wang, C.,
Wen, B.,
Hou, Y.,
Lai, Y.,
An Improved CA-CFAR Method for Ship Target Detection in Strong
Clutter Using UHF Radar,
SPLetters(27), 2020, pp. 1445-1449.
IEEE DOI
2009
Clutter, Rivers, Marine vehicles, Doppler effect, Doppler radar,
Radar cross-sections, Extended target, improved CA-CFAR method,
UHF radar
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
Ke, X.[Xiao],
Zhan, X.[Xu],
Shi, J.[Jun],
Wei, S.J.[Shun-Jun],
Pan, D.[Dece],
Li, J.W.[Jian-Wei],
Su, H.[Hao],
Zhou, Y.[Yue],
Kumar, D.[Durga],
LS-SSDD-v1.0: A Deep Learning Dataset Dedicated to Small Ship
Detection from Large-Scale Sentinel-1 SAR Images,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Zhang, T.,
Yang, Z.,
Gan, H.,
Xiang, D.,
Zhu, S.,
Yang, J.,
PolSAR Ship Detection Using the Joint Polarimetric Information,
GeoRS(58), No. 11, November 2020, pp. 8225-8241.
IEEE DOI
2011
Marine vehicles, Scattering, Sea surface, Rough surfaces,
Surface roughness, Detectors, Covariance matrices,
surface scattering
BibRef
Ding, F.[Fan],
Zhao, C.[Chen],
Chen, Z.Z.[Ze-Zong],
Li, J.[Jian],
Sea Echoes for Airborne HF/VHF Radar:
Mathematical Model and Simulation,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Yang, J.Y.[Jun-Ying],
Qiu, X.L.[Xiao-Lan],
Shang, M.Y.[Ming-Yang],
Zhong, L.H.[Li-Hua],
Ding, C.[Chibiao],
A Method of Marine Moving Targets Detection in Multi-Channel ScanSAR
System,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Yang, R.[Rong],
Wang, R.[Robert],
Deng, Y.K.[Yun-Kai],
Jia, X.X.[Xiao-Xue],
Zhang, H.[Heng],
Rethinking the Random Cropping Data Augmentation Method Used in the
Training of CNN-Based SAR Image Ship Detector,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Fu, J.M.[Jia-Mei],
Sun, X.[Xian],
Wang, Z.R.[Zhi-Rui],
Fu, K.[Kun],
An Anchor-Free Method Based on Feature Balancing and Refinement
Network for Multiscale Ship Detection in SAR Images,
GeoRS(59), No. 2, February 2021, pp. 1331-1344.
IEEE DOI
2101
Marine vehicles, Feature extraction, Synthetic aperture radar,
Detectors, Radar polarimetry, Scattering, Semantics,
synthetic aperture radar (SAR)
BibRef
Chen, J.S.,
Dao, D.T.,
Chien, H.,
Ship Echo Identification Based on Norm-Constrained Adaptive
Beamforming for an Arrayed High-Frequency Coastal Radar,
GeoRS(59), No. 2, February 2021, pp. 1143-1153.
IEEE DOI
2101
Marine vehicles, Brightness, Array signal processing,
Radar detection, Sea measurements, Radar antennas, ship detection
BibRef
Guo, H.Y.[Hao-Yuan],
Yang, X.[Xi],
Wang, N.N.[Nan-Nan],
Gao, X.B.[Xin-Bo],
A CenterNet++ model for ship detection in SAR images,
PR(112), 2021, pp. 107787.
Elsevier DOI
2102
Ship detection, Synthetic aperture radar (SAR), Deep learning
BibRef
Pastina, D.,
Santi, F.,
Pieralice, F.,
Antoniou, M.,
Cherniakov, M.,
Passive Radar Imaging of Ship Targets With GNSS Signals of
Opportunity,
GeoRS(59), No. 3, March 2021, pp. 2627-2642.
IEEE DOI
2103
Marine vehicles, Radar imaging, Passive radar,
Global navigation satellite system, Satellites, Receivers,
passive radar imaging
BibRef
Tang, G.[Gang],
Zhuge, Y.C.[Yi-Chao],
Claramunt, C.[Christophe],
Men, S.Y.[Shao-Yang],
N-YOLO: A SAR Ship Detection Using Noise-Classifying and
Complete-Target Extraction,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
He, J.,
Wang, Y.,
Liu, H.,
Ship Classification in Medium-Resolution SAR Images via Densely
Connected Triplet CNNs Integrating Fisher Discrimination Regularized
Metric Learning,
GeoRS(59), No. 4, April 2021, pp. 3022-3039.
IEEE DOI
2104
Marine vehicles, Synthetic aperture radar, Measurement, Training,
Task analysis, Scattering, Surveillance,
synthetic aperture radar (SAR)
BibRef
Lin, C.L.[Chih-Lung],
Chen, T.P.[Tsung-Pin],
Fan, K.C.[Kuo-Chin],
Cheng, H.Y.[Hsu-Yung],
Chuang, C.H.[Chi-Hung],
Radar High-Resolution Range Profile Ship Recognition Using
Two-Channel Convolutional Neural Networks Concatenated with
Bidirectional Long Short-Term Memory,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Yang, Z.Q.[Zhi-Qing],
Tang, J.J.[Jian-Jiang],
Zhou, H.[Hao],
Xu, X.J.[Xin-Jun],
Tian, Y.W.[Ying-Wei],
Wen, B.Y.[Bi-Yang],
Joint Ship Detection Based on Time-Frequency Domain and CFAR Methods
with HF Radar,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Zhou, B.B.[Bin-Bin],
Qi, X.Y.[Xiang-Yang],
Zhang, J.H.[Jia-Huan],
Zhang, H.[Heng],
Effect of 6-DOF Oscillation of Ship Target on SAR Imaging,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Xu, P.[Pan],
Li, Q.Y.[Qing-Yang],
Zhang, B.[Bo],
Wu, F.[Fan],
Zhao, K.[Ke],
Du, X.[Xin],
Yang, C.K.[Can-Kun],
Zhong, R.F.[Ruo-Fei],
On-Board Real-Time Ship Detection in HISEA-1 SAR Images Based on CFAR
and Lightweight Deep Learning,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Lv, Y.[Yini],
Zhong, L.H.[Li-Hua],
Qiu, X.L.[Xiao-Lan],
Yuan, X.Z.[Xin-Zhe],
Yang, J.[Junying],
Hu, Y.X.[Yu-Xin],
Ding, C.[Chibiao],
Improving the Image Quality of Moving Ships for GF-3NG Based on
Simultaneous AIS Information,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Guan, Y.[Yanan],
Zhang, J.[Jie],
Zhang, X.[Xi],
Li, Z.W.[Zhong-Wei],
Meng, J.M.[Jun-Min],
Liu, G.W.[Gen-Wang],
Bao, M.[Meng],
Cao, C.H.[Cheng-Hui],
Identification of Fishing Vessel Types and Analysis of Seasonal
Activities in the Northern South China Sea Based on AIS Data:
A Case Study of 2018,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Liu, T.[Tao],
Yang, Z.Y.[Zi-Yuan],
Marino, A.[Armando],
Gao, G.[Gui],
Yang, J.[Jian],
PolSAR Ship Detection Based on Neighborhood Polarimetric Covariance
Matrix,
GeoRS(59), No. 6, June 2021, pp. 4874-4887.
IEEE DOI
2106
Marine vehicles, Covariance matrices, Detectors, Correlation,
Synthetic aperture radar, Clutter, Scattering,
polarimetric whitening filter (PWF)
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
Injection of Traditional Hand-Crafted Features into Modern CNN-Based
Models for SAR Ship Classification: What, Why, Where, and How,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Wang, X.Q.[Xue-Qian],
Li, G.[Gang],
Zhang, X.P.[Xiao-Ping],
He, Y.[You],
A Fast CFAR Algorithm Based on Density-Censoring Operation for Ship
Detection in SAR Images,
SPLetters(28), 2021, pp. 1085-1089.
IEEE DOI
2106
Radar polarimetry, Clutter, Detectors, Marine vehicles, Reflectivity,
Signal processing algorithms, Feature extraction, Density,
constant false alarm rate
BibRef
Chen, S.W.[Si-Wei],
Cui, X.C.[Xing-Chao],
Wang, X.S.[Xue-Song],
Xiao, S.P.[Shun-Ping],
Speckle-Free SAR Image Ship Detection,
IP(30), 2021, pp. 5969-5983.
IEEE DOI
2107
Marine vehicles, Speckle, Synthetic aperture radar, Detectors,
Radar polarimetry, Spaceborne radar, Radar imaging,
speckle-free
BibRef
Yu, L.[Lei],
Wu, H.Y.[Hao-Yu],
Zhong, Z.[Zhi],
Zheng, L.Y.[Li-Ying],
Deng, Q.Y.[Qiu-Yue],
Hu, H.C.[Hai-Cheng],
TWC-Net: A SAR Ship Detection Using Two-Way Convolution and
Multiscale Feature Mapping,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Jia, X.L.[Xin-Lin],
Song, H.J.[Hong-Jun],
He, W.J.[Wen-Jing],
A Novel Method for Refocusing Moving Ships in SAR Images via ISAR
Technique,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Sun, K.[Kun],
Liang, Y.[Yi],
Ma, X.R.[Xiao-Rui],
Huai, Y.Y.[Yuan-Yuan],
Xing, M.D.[Meng-Dao],
DSDet: A Lightweight Densely Connected Sparsely Activated Detector
for Ship Target Detection in High-Resolution SAR Images,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
Ke, X.[Xiao],
Quad-FPN: A Novel Quad Feature Pyramid Network for SAR Ship Detection,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Tong, X.[Xuyao],
Bao, M.[Min],
Sun, G.C.[Guang-Cai],
Han, L.[Liang],
Zhang, Y.[Yu],
Xing, M.D.[Meng-Dao],
Refocusing of Moving Ships in Squint SAR Images Based on Spectrum
Orthogonalization,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Xu, Y.J.[Yong-Jie],
Lang, H.T.[Hai-Tao],
Ship Classification in SAR Images With Geometric Transfer Metric
Learning,
GeoRS(59), No. 8, August 2021, pp. 6799-6813.
IEEE DOI
2108
Marine vehicles, Measurement, Synthetic aperture radar,
Task analysis, Electronics packaging, Optimization,
transfer metric learning (TML)
BibRef
Jiang, W.Q.[Wang-Qiang],
Wang, L.Y.[Liu-Ying],
Li, X.Z.[Xin-Zhuo],
Liu, G.[Gu],
Zhang, M.[Min],
Simulation of a Wideband Radar Echo of a Target on a Dynamic Sea
Surface,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Geng, X.M.[Xiao-Meng],
Zhao, L.[Lingli],
Shi, L.[Lei],
Yang, J.[Jie],
Li, P.X.[Ping-Xiang],
Sun, W.D.[Wei-Dong],
Small-Sized Ship Detection Nearshore Based on Lightweight Active
Learning Model with a Small Number of Labeled Data for SAR Imagery,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
Li, J.W.[Jian-Wei],
Xu, X.W.[Xiao-Wo],
Wang, B.Y.[Bao-You],
Zhan, X.[Xu],
Xu, Y.Q.[Yan-Qin],
Ke, X.[Xiao],
Zeng, T.J.[Tian-Jiao],
Su, H.[Hao],
Ahmad, I.[Israr],
Pan, D.[Dece],
Liu, C.[Chang],
Zhou, Y.[Yue],
Shi, J.[Jun],
Wei, S.[Shunjun],
SAR Ship Detection Dataset (SSDD): Official Release and Comprehensive
Data Analysis,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
WWW Link.
Dataset, Ships.
BibRef
Li, H.L.[Hao-Liang],
Cui, X.C.[Xing-Chao],
Chen, S.W.[Si-Wei],
PolSAR Ship Detection with Optimal Polarimetric Rotation Domain
Features and SVM,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Chen, X.L.[Xiao-Long],
Guan, J.[Jian],
Mu, X.Q.[Xiao-Qian],
Wang, Z.[Zhigao],
Liu, N.[Ningbo],
Wang, G.Q.[Guo-Qing],
Multi-Dimensional Automatic Detection of Scanning Radar Images of
Marine Targets Based on Radar PPInet,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Zhu, D.[Dong],
Wang, X.Q.[Xue-Qian],
Cheng, Y.[Yayun],
Li, G.[Gang],
Vessel Target Detection in Spaceborne-Airborne Collaborative SAR
Images via Proposal and Polarization Fusion,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Sun, Z.Z.[Zhong-Zhen],
Leng, X.G.[Xiang-Guang],
Lei, Y.[Yu],
Xiong, B.[Boli],
Ji, K.[Kefeng],
Kuang, G.Y.[Gang-Yao],
BiFA-YOLO: A Novel YOLO-Based Method for Arbitrary-Oriented Ship
Detection in High-Resolution SAR Images,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
Liu, C.[Chang],
Shi, J.[Jun],
Wei, S.J.[Shun-Jun],
Ahmad, I.[Israr],
Zhan, X.[Xu],
Zhou, Y.[Yue],
Pan, D.[Dece],
Li, J.W.[Jian-Wei],
Su, H.[Hao],
Balance learning for ship detection from synthetic aperture radar
remote sensing imagery,
PandRS(182), 2021, pp. 190-207.
Elsevier DOI
2112
Synthetic aperture radar (SAR), Ship detection,
Marine surveillance, Imbalance problems and solutions,
Balance learning network (BL-Net)
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
A polarization fusion network with geometric feature embedding for
SAR ship classification,
PR(123), 2022, pp. 108365.
Elsevier DOI
2112
Synthetic aperture radar (SAR), Ship classification,
Convolutional neural network, Polarization fusion (PF),
Geometric feature embedding (GFE)
BibRef
Xu, X.[Xiaowo],
Zhang, X.L.[Xiao-Ling],
Shao, Z.K.[Zi-Kang],
Shi, J.[Jun],
Wei, S.[Shunjun],
Zhang, T.W.[Tian-Wen],
Zeng, T.J.[Tian-Jiao],
A Group-Wise Feature Enhancement-and-Fusion Network with
Dual-Polarization Feature Enrichment for SAR Ship Detection,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Zhao, D.[Danpei],
Zhu, C.[Chunbo],
Qi, J.[Jing],
Qi, X.H.[Xin-Hu],
Su, Z.H.[Zhen-Hua],
Shi, Z.W.[Zhen-Wei],
Synergistic Attention for Ship Instance Segmentation in SAR Images,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Xu, L.[Libo],
Pang, C.Y.[Chao-Yi],
Guo, Y.[Yan],
Shu, Z.Y.[Zhen-Yu],
Combinational Fusion and Global Attention of the Single-Shot Method
for Synthetic Aperture Radar Ship Detection,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhang, P.P.[Pan-Pan],
Luo, H.B.[Hai-Bo],
Ju, M.[Moran],
He, M.[Miao],
Chang, Z.[Zheng],
Hui, B.[Bin],
Brain-Inspired Fast Saliency-Based Filtering Algorithm for Ship
Detection in High-Resolution SAR Images,
GeoRS(60), 2022, pp. 1-9.
IEEE DOI
2112
Marine vehicles, Feature extraction, Synthetic aperture radar,
Detectors, Radar polarimetry, Visualization, Focusing,
saliency map
BibRef
Xu, X.B.[Xin-Bo],
Su, F.[Fulin],
Gao, J.J.[Jian-Jun],
Jin, X.F.[Xin-Fei],
High-Squint SAR Imaging of Maritime Ship Targets,
GeoRS(60), 2022, pp. 1-16.
IEEE DOI
2112
Marine vehicles, Imaging, Azimuth, Sea state, Chirp, Radar imaging,
Doppler effect, High-squint synthetic aperture radar (HS-SAR),
modified range-Doppler (RD) algorithm
BibRef
Li, D.[Dong],
Liang, Q.H.[Quan-Huan],
Liu, H.Q.[Hong-Qing],
Liu, Q.H.[Qing-Hua],
Liu, H.J.[Hai-Jun],
Liao, G.S.[Gui-Sheng],
A Novel Multidimensional Domain Deep Learning Network for SAR Ship
Detection,
GeoRS(60), 2022, pp. 1-13.
IEEE DOI
2112
Marine vehicles, Feature extraction, Synthetic aperture radar,
Radar polarimetry, Detectors, Object detection,
synthetic aperture radar (SAR)
BibRef
Ren, Y.[Yibin],
Li, X.F.[Xiao-Feng],
Xu, H.[Huan],
A Deep Learning Model to Extract Ship Size From Sentinel-1 SAR Images,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Marine vehicles, Radar polarimetry, Feature extraction,
Synthetic aperture radar, Data mining, Radar imaging, Oceans,
synthetic aperture radar (SAR) image
BibRef
Lei, S.L.[Song-Lin],
Lu, D.D.[Dong-Dong],
Qiu, X.L.[Xiao-Lan],
Ding, C.[Chibiao],
SRSDD-v1.0: A High-Resolution SAR Rotation Ship Detection Dataset,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
Dataset, Ship Detection.
BibRef
Lan, X.[Xiang],
Wang, L.Y.[Liu-Ying],
Li, J.X.[Jin-Xing],
Jiang, W.Q.[Wang-Qiang],
Zhang, M.[Min],
Maritime Multiple Moving Target Detection Using Multiple-BDS-Based
Radar: Doppler Phase Compensation and Resolution Improvement,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Yu, J.M.[Ji-Min],
Zhou, G.Y.[Guang-Yu],
Zhou, S.B.[Shang-Bo],
Qin, M.W.[Mao-Wei],
A Fast and Lightweight Detection Network for Multi-Scale SAR Ship
Detection under Complex Backgrounds,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Zhang, Q.[Qian],
Huo, W.[Weibo],
Pei, J.F.[Ji-Fang],
Zhang, Y.C.[Yong-Chao],
Yang, J.Y.[Jian-Yu],
Huang, Y.L.[Yu-Lin],
A Novel Flickering Multi-Target Joint Detection Method Based on a
Biological Memory Model,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
Target detection ability of marine navigation radars.
BibRef
Uereyen, S.[Soner],
Bachofer, F.[Felix],
Kuenzer, C.[Claudia],
A Framework for Multivariate Analysis of Land Surface Dynamics and
Driving Variables-A Case Study for Indo-Gangetic River Basins,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Li, H.D.[Hao-Dong],
Liao, G.S.[Gui-Sheng],
Xu, J.W.[Jing-Wei],
Lan, L.[Lan],
An Efficient Maritime Target Joint Detection and Imaging Method with
Airborne ISAR System,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Xu, X.W.[Xiao-Wo],
Zhang, X.L.[Xiao-Ling],
Zhang, T.W.[Tian-Wen],
Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship
Detection in Large-Scene Sentinel-1 SAR Images,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Liu, S.W.[Shan-Wei],
Kong, W.M.[Wei-Min],
Chen, X.F.[Xing-Feng],
Xu, M.M.[Ming-Ming],
Yasir, M.[Muhammad],
Zhao, L.M.[Li-Min],
Li, J.G.[Jia-Guo],
Multi-Scale Ship Detection Algorithm Based on a Lightweight Neural
Network for Spaceborne SAR Images,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Zhu, M.M.[Ming-Ming],
Hu, G.P.[Guo-Ping],
Zhou, H.[Hao],
Wang, S.Q.[Shi-Qiang],
Feng, Z.[Ziang],
Yue, S.J.[Shi-Jie],
A Ship Detection Method via Redesigned FCOS in Large-Scale SAR Images,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Guo, G.B.[Guang-Bin],
Guo, L.X.[Li-Xin],
Wang, R.[Rui],
Liu, W.[Wei],
Li, L.[Long],
Transient Scattering Echo Simulation and ISAR Imaging for a Composite
Target-Ocean Scene Based on the TDSBR Method,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Xia, R.F.[Run-Fan],
Chen, J.[Jie],
Huang, Z.X.[Zhi-Xiang],
Wan, H.Y.[Hui-Yao],
Wu, B.[Bocai],
Sun, L.[Long],
Yao, B.D.[Bai-Dong],
Xiang, H.B.[Hai-Bing],
Xing, M.D.[Meng-Dao],
CRTransSar: A Visual Transformer Based on Contextual Joint
Representation Learning for SAR Ship Detection,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Feng, Y.[Yun],
Chen, J.[Jie],
Huang, Z.X.[Zhi-Xiang],
Wan, H.[Huiyao],
Xia, R.F.[Run-Fan],
Wu, B.[Bocai],
Sun, L.[Long],
Xing, M.D.[Meng-Dao],
A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship
Detection,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Lv, J.M.[Jian-Ming],
Chen, J.[Jie],
Huang, Z.X.[Zhi-Xiang],
Wan, H.Y.[Hui-Yao],
Zhou, C.Y.[Chun-Yan],
Wang, D.Y.[Dao-Yuan],
Wu, B.[Bocai],
Sun, L.[Long],
An Anchor-Free Detection Algorithm for SAR Ship Targets with Deep
Saliency Representation,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
He, B.[Bokun],
Zhang, Q.Y.[Qing-Yi],
Tong, M.[Ming],
He, C.[Chu],
An Anchor-Free Method Based on Adaptive Feature Encoding and
Gaussian-Guided Sampling Optimization for Ship Detection in SAR
Imagery,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Sun, W.F.[Wei-Feng],
Pang, Z.Z.[Zhen-Zhen],
Huang, W.M.[Wei-Min],
Ma, P.[Peng],
Ji, Y.G.[Yong-Gang],
Dai, Y.[Yongshou],
Li, X.T.[Xiao-Tong],
A Multi-Stage Vessel Tracklet Association Method for Compact
High-Frequency Surface Wave Radar,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Shi, H.[Hao],
Fang, Z.H.[Zhong-Hao],
Wang, Y.[Yupei],
Chen, L.[Liang],
An Adaptive Sample Assignment Strategy Based on Feature Enhancement
for Ship Detection in SAR Images,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Heiselberg, P.[Peder],
Sørensen, K.A.[Kristian A.],
Heiselberg, H.[Henning],
Andersen, O.B.[Ole B.],
SAR Ship-Iceberg Discrimination in Arctic Conditions Using Deep
Learning,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
He, B.[Bokun],
Zhang, Q.Y.[Qing-Yi],
Tong, M.[Ming],
He, C.[Chu],
Oriented Ship Detector for Remote Sensing Imagery Based on Pairwise
Branch Detection Head and SAR Feature Enhancement,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Ke, X.[Xiao],
Zhang, X.L.[Xiao-Ling],
Zhang, T.W.[Tian-Wen],
GCBANet: A Global Context Boundary-Aware Network for SAR Ship
Instance Segmentation,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Zhu, M.M.[Ming-Ming],
Hu, G.P.[Guo-Ping],
Li, S.[Shuai],
Zhou, H.[Hao],
Wang, S.Q.[Shi-Qiang],
Feng, Z.[Ziang],
A Novel Anchor-Free Method Based on FCOS + ATSS for Ship Detection in
SAR Images,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Zhang, L.[Liang],
Zhang, Z.J.[Zhi-Jun],
Lu, S.T.[Sheng-Tao],
Xiang, D.L.[De-Liang],
Su, Y.[Yi],
Fast Superpixel-Based Non-Window CFAR Ship Detector for SAR Imagery,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
HTC+ for SAR Ship Instance Segmentation,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Li, J.W.[Jian-Wei],
Xu, C.[Congan],
Su, H.[Hang],
Gao, L.[Long],
Wang, T.[Taoyang],
Deep Learning for SAR Ship Detection: Past, Present and Future,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Gu, M.F.[Ming-Fei],
Wang, Y.H.[Ying-Hua],
Liu, H.W.[Hong-Wei],
Wang, P.H.[Peng-Hui],
PolSAR Ship Detection Based on a SIFT-like PolSAR Keypoint Detector,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Cheng, J.[Jianda],
Xiang, D.L.[De-Liang],
Tang, J.X.[Jia-Xin],
Zheng, Y.P.[Yan-Peng],
Guan, D.D.[Dong-Dong],
Du, B.[Bin],
Inshore Ship Detection in Large-Scale SAR Images Based on Saliency
Enhancement and Bhattacharyya-like Distance,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Raj, J.A.[J. Anil],
Idicula, S.M.[Sumam Mary],
Paul, B.[Binu],
Ship identification from SAR image using novel deep learning method
with reduced false prediction,
IJCVR(12), No. 4, 2022, pp. 411-425.
DOI Link
2207
BibRef
Zhang, C.[Chuan],
Gao, G.[Gui],
Zhang, L.L.[Lin-Lin],
Chen, C.,
Gao, S.,
Yao, L.[Libo],
Bai, Q.[Qilin],
Gou, S.[Shiquan],
A novel full-polarization SAR image ship detector based on scattering
mechanisms and wave polarization anisotropy,
PandRS(190), 2022, pp. 129-143.
Elsevier DOI
2208
Synthetic Aperture Radar (SAR), Scattering mechanism,
Wave polarization anisotropy, Relatively weakly scattering targets
BibRef
Ustalli, N.[Nertjana],
Villano, M.[Michelangelo],
High-Resolution Wide-Swath Ambiguous Synthetic Aperture Radar Modes
for Ship Monitoring,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Yu, W.B.[Wen-Bo],
Wang, Z.J.[Zi-Jian],
Li, J.[Jiamu],
Luo, Y.H.[Yun-Hua],
Yu, Z.J.[Zhong-Jun],
A Lightweight Network Based on One-Level Feature for Ship Detection
in SAR Images,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Shao, Z.K.[Zi-Kang],
Zhang, X.L.[Xiao-Ling],
Zhang, T.W.[Tian-Wen],
Xu, X.W.[Xiao-Wo],
Zeng, T.J.[Tian-Jiao],
RBFA-Net: A Rotated Balanced Feature-Aligned Network for Rotated SAR
Ship Detection and Classification,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Shu, G.F.[Gao-Feng],
Chang, J.[Jiahui],
Lu, J.[Jing],
Wang, Q.[Qing],
Li, N.[Ning],
A Novel Method for SAR Ship Detection Based on Eigensubspace
Projection,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Yu, J.[Jimin],
Wu, T.[Tao],
Zhou, S.[Shangbo],
Pan, H.[Huilan],
Zhang, X.[Xin],
Zhang, W.[Wei],
An SAR Ship Object Detection Algorithm Based on Feature Information
Efficient Representation Network,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, X.Q.[Xiu-Qin],
Li, D.[Dong],
Liu, H.Q.[Hong-Qing],
Wan, J.[Jun],
Chen, Z.[Zhanye],
Liu, Q.H.[Qing-Hua],
A-BFPN: An Attention-Guided Balanced Feature Pyramid Network for SAR
Ship Detection,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, S.[Sen],
Fu, X.J.[Xiong-Jun],
Dong, J.[Jian],
Improved Ship Detection Algorithm Based on YOLOX for SAR Outline
Enhancement Image,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Rizaev, I.G.[Igor G.],
Achim, A.[Alin],
SynthWakeSAR: A Synthetic SAR Dataset for Deep Learning
Classification of Ships at Sea,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, Z.Y.[Zhen-Yu],
Chen, J.L.[Jian-Lai],
Xiong, Y.[Yi],
Yu, H.W.[Han-Wen],
Zhang, H.G.[Huai-Gen],
Gao, B.[Bing],
A Ship Detection and Imagery Scheme for Airborne Single-Channel SAR
in Coastal Regions,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Xu, Z.J.[Zhi-Jing],
Gao, R.[Rui],
Huang, K.[Kan],
Xu, Q.H.[Qi-Hui],
Triangle Distance IoU Loss, Attention-Weighted Feature Pyramid
Network, and Rotated-SARShip Dataset for Arbitrary-Oriented SAR Ship
Detection,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Guo, Y.[Yiyu],
Zhou, L.[Luoyu],
MEA-Net: A Lightweight SAR Ship Detection Model for Imbalanced
Datasets,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Yoshida, T.[Takero],
Ouchi, K.[Kazuo],
Detection of Ships Cruising in the Azimuth Direction Using Spotlight
SAR Images with a Deep Learning Method,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Wang, S.[Simin],
Gao, S.[Song],
Zhou, L.[Lun],
Liu, R.C.[Ruo-Chen],
Zhang, H.S.[Heng-Sheng],
Liu, J.M.[Jia-Ming],
Jia, Y.[Yong],
Qian, J.[Jiang],
YOLO-SD: Small Ship Detection in SAR Images by Multi-Scale
Convolution and Feature Transformer Module,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Zhang, L.Y.[Lu-Yang],
Wang, H.T.[Hai-Tao],
Wang, L.F.[Ling-Feng],
Pan, C.H.[Chun-Hong],
Huo, C.L.[Chun-Lei],
Liu, Q.[Qiang],
Wang, X.Y.[Xin-Yao],
Filtered Convolution for Synthetic Aperture Radar Images Ship
Detection,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Shi, H.[Hao],
Chai, B.Q.[Bing-Qian],
Wang, Y.[Yupei],
Chen, L.[Liang],
A Local-Sparse-Information-Aggregation Transformer with Explicit
Contour Guidance for SAR Ship Detection,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Yan, G.X.[Guo-Xu],
Chen, Z.H.[Zhi-Hua],
Wang, Y.[Yi],
Cai, Y.W.[Yang-Wei],
Shuai, S.K.[Shi-Kang],
LssDet: A Lightweight Deep Learning Detector for SAR Ship Detection
in High-Resolution SAR Images,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Adil, M.[Muhammad],
Buono, A.[Andrea],
Nunziata, F.[Ferdinando],
Ferrentino, E.[Emanuele],
Velotto, D.[Domenico],
Migliaccio, M.[Maurizio],
On the Effects of the Incidence Angle on the L-Band
Multi-Polarisation Scattering of a Small Ship,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Suo, Z.L.[Zhi-Ling],
Zhao, Y.[Yongbo],
Chen, S.[Sheng],
Hu, Y.[Yili],
BoxPaste: An Effective Data Augmentation Method for SAR Ship
Detection,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Yan, Z.G.[Zhen-Guo],
Song, X.[Xin],
Yang, L.[Lei],
Wang, Y.T.[Yi-Tao],
Ship Classification in Synthetic Aperture Radar Images Based on
Multiple Classifiers Ensemble Learning and Automatic Identification
System Data Transfer Learning,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Yao, C.[Canming],
Xie, P.F.[Peng-Fei],
Zhang, L.[Lei],
Fang, Y.Y.[Yu-Yuan],
ATSD: Anchor-Free Two-Stage Ship Detection Based on Feature
Enhancement in SAR Images,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Su, L.Y.[Li-Yang],
Kiang, J.F.[Jean-Fu],
Multi-Channel SAR Imaging on Cruising Ships with Sub-Orbital
Spaceplane,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Xiong, B.[Boli],
Sun, Z.Z.[Zhong-Zhen],
Wang, J.[Jin],
Leng, X.G.[Xiang-Guang],
Ji, K.[Kefeng],
A Lightweight Model for Ship Detection and Recognition in
Complex-Scene SAR Images,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Lang, H.T.[Hai-Tao],
Wang, R.[Ruifu],
Zheng, S.Y.[Shao-Ying],
Wu, S.[Siwen],
Li, J.[Jialu],
Ship Classification in SAR Imagery by Shallow CNN Pre-Trained on
Task-Specific Dataset with Feature Refinement,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Lisowski, J.[Józef],
Szklarski, A.[Andrzej],
Quality Analysis of Small Maritime Target Detection by Means of
Passive Radar Reflectors in Different Sea States,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhan, R.H.[Rong-Hui],
Cui, Z.Y.[Zong-Yong],
Ship Recognition for SAR Scene Images under Imbalance Data,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Sun, Z.Q.[Ze-Qun],
Meng, C.N.[Chun-Ning],
Cheng, J.R.[Jie-Rong],
Zhang, Z.Q.[Zhi-Qing],
Chang, S.J.[Sheng-Jiang],
A Multi-Scale Feature Pyramid Network for Detection and Instance
Segmentation of Marine Ships in SAR Images,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, J.L.[Jie-Lei],
Cui, Z.Y.[Zong-Yong],
Jiang, T.[Ting],
Cao, C.J.[Chang-Jie],
Cao, Z.J.[Zong-Jie],
Lightweight Deep Neural Networks for Ship Target Detection in SAR
Imagery,
IP(32), 2023, pp. 565-579.
IEEE DOI
2301
Marine vehicles, Task analysis, Optimization, Object detection,
Deep learning, Radar polarimetry, Neural networks, network pruning
BibRef
Sun, W.F.[Wei-Feng],
Li, X.T.[Xiao-Tong],
Ji, Y.G.[Yong-Gang],
Dai, Y.S.[Yong-Shou],
Huang, W.M.[Wei-Min],
Plot Quality Aided Plot-to-Track Association in Dense Clutter for
Compact High-Frequency Surface Wave Radar,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zhang, L.[Lili],
Liu, Y.X.[Yu-Xuan],
Qu, L.[Lele],
Cai, J.N.[Jian-Nan],
Fang, J.P.[Jun-Peng],
A Spatial Cross-Scale Attention Network and Global Average Accuracy
Loss for SAR Ship Detection,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zhou, Y.C.[Yu-Cheng],
Fu, K.[Kun],
Han, B.[Bing],
Yang, J.X.[Jun-Xin],
Pan, Z.X.[Zong-Xu],
Hu, Y.X.[Yu-Xin],
Yin, D.[Di],
D-MFPN: A Doppler Feature Matrix Fused with a Multilayer Feature
Pyramid Network for SAR Ship Detection,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Shao, Z.[Zikang],
Zhang, X.L.[Xiao-Ling],
Wei, S.[Shunjun],
Shi, J.[Jun],
Ke, X.[Xiao],
Xu, X.[Xiaowo],
Zhan, X.[Xu],
Zhang, T.W.[Tian-Wen],
Zeng, T.J.[Tian-Jiao],
Scale in Scale for SAR Ship Instance Segmentation,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Jiang, X.Q.[Xin-Qiao],
Xie, H.[Hongtu],
Chen, J.X.[Jia-Xing],
Zhang, J.[Jian],
Wang, G.Q.[Guo-Qian],
Xie, K.[Kai],
Arbitrary-Oriented Ship Detection Method Based on Long-Edge
Decomposition Rotated Bounding Box Encoding in SAR Images,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Zhang, Y.P.[Yi-Peng],
Lu, D.D.[Dong-Dong],
Qiu, X.L.[Xiao-Lan],
Li, F.[Fei],
Scattering-Point-Guided RPN for Oriented Ship Detection in SAR Images,
RS(15), No. 5, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Alessi, M.A.[Marissa A.],
Chirico, P.G.[Peter G.],
Sunder, S.[Sindhuja],
O'Pry, K.L.[Kelsey L.],
Detection and Monitoring of Small-Scale Diamond and Gold Mining
Dredges Using Synthetic Aperture Radar on the Kadei (Sangha) River,
Central African Republic,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
del Prete, R.[Roberto],
Graziano, M.D.[Maria Daniela],
Renga, A.[Alfredo],
Unified Framework for Ship Detection in Multi-Frequency SAR Images: A
Demonstration with COSMO-SkyMed, Sentinel-1, and SAOCOM Data,
RS(15), No. 6, 2023, pp. 1582.
DOI Link
2304
BibRef
Zhao, S.Y.[Si-Yuan],
Luo, Y.[Ying],
Zhang, T.[Tao],
Guo, W.W.[Wei-Wei],
Zhang, Z.H.[Zeng-Hui],
A domain specific knowledge extraction transformer method for
multisource satellite-borne SAR images ship detection,
PandRS(198), 2023, pp. 16-29.
Elsevier DOI
2304
Multisource satellite-borne synthetic aperture radar (SAR),
Object detection, Domain adaptation (DA), Domain-specific knowledge
BibRef
Qiu, W.X.[Wei-Xing],
Pan, Z.X.[Zong-Xu],
Yang, J.W.[Jian-Wei],
Few-Shot PolSAR Ship Detection Based on Polarimetric Features
Selection and Improved Contrastive Self-Supervised Learning,
RS(15), No. 7, 2023, pp. 1874.
DOI Link
2304
BibRef
Lanz, P.[Peter],
Marino, A.[Armando],
Simpson, M.D.[Morgan David],
Brinkhoff, T.[Thomas],
Köster, F.[Frank],
Möller, M.[Matthias],
The InflateSAR Campaign: Developing Refugee Vessel Detection
Capabilities with Polarimetric SAR,
RS(15), No. 8, 2023, pp. 2008.
DOI Link
2305
BibRef
Ge, J.Y.[Jun-Yao],
Tang, Y.P.[Yi-Ping],
Guo, K.T.[Kai-Tai],
Zheng, Y.[Yang],
Hu, H.[Haihong],
Liang, J.[Jimin],
KeyShip: Towards High-Precision Oriented SAR Ship Detection Using Key
Points,
RS(15), No. 8, 2023, pp. 2035.
DOI Link
2305
BibRef
Chen, Z.[Zhuo],
Liu, C.[Chang],
Filaretov, V.F.,
Yukhimets, D.A.,
Multi-Scale Ship Detection Algorithm Based on YOLOv7 for Complex
Scene SAR Images,
RS(15), No. 8, 2023, pp. 2071.
DOI Link
2305
BibRef
Shao, Z.K.[Zi-Kang],
Zhang, T.W.[Tian-Wen],
Ke, X.[Xiao],
A Dual-Polarization Information-Guided Network for SAR Ship
Classification,
RS(15), No. 8, 2023, pp. 2138.
DOI Link
2305
BibRef
Chen, P.[Peng],
Zhou, H.[Hui],
Li, Y.[Ying],
Liu, P.[Peng],
Liu, B.X.[Bing-Xin],
A Novel Deep Learning Network with Deformable Convolution and
Attention Mechanisms for Complex Scenes Ship Detection in SAR Images,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Jin, X.F.[Xin-Fei],
Su, F.[Fulin],
Li, H.X.[Hong-Xu],
Xu, Z.[Zihan],
Deng, J.[Jie],
Automatic ISAR Ship Detection Using Triangle-Points Affine Transform
Reconstruction Algorithm,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Tang, G.[Gang],
Zhao, H.[Hongren],
Claramunt, C.[Christophe],
Zhu, W.D.[Wei-Dong],
Wang, S.M.[Shi-Ming],
Wang, Y.[Yide],
Ding, Y.[Yuehua],
PPA-Net: Pyramid Pooling Attention Network for Multi-Scale Ship
Detection in SAR Images,
RS(15), No. 11, 2023, pp. 2855.
DOI Link
2306
BibRef
Zhu, H.[Hairui],
Guo, S.[Shanhong],
Sheng, W.X.[Wei-Xing],
Xiao, L.[Lei],
SCM: A Searched Convolutional Metaformer for SAR Ship Classification,
RS(15), No. 11, 2023, pp. 2904.
DOI Link
2306
BibRef
Yu, N.J.[Nan-Jing],
Ren, H.H.[Hao-Hao],
Deng, T.M.[Tian-Min],
Fan, X.B.[Xiao-Biao],
A Lightweight Radar Ship Detection Framework with Hybrid Attentions,
RS(15), No. 11, 2023, pp. 2743.
DOI Link
2306
BibRef
Wang, J.[Jin],
Leng, X.G.[Xiang-Guang],
Sun, Z.Z.[Zhong-Zhen],
Zhang, X.[Xi],
Ji, K.[Kefeng],
Refocusing Swing Ships in SAR Imagery Based on Spatial-Variant
Defocusing Property,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Zhang, Y.M.[Yi-Min],
Chen, C.X.[Chu-Xuan],
Hu, R.L.[Rong-Lin],
Yu, Y.T.[Yong-Tao],
ESarDet: An Efficient SAR Ship Detection Method Based on Context
Information and Large Effective Receptive Field,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Liu, Q.Q.[Qian-Qian],
Li, D.[Dong],
Jiang, R.J.[Ren-Jie],
Liu, S.[Shuang],
Liu, H.Q.[Hong-Qing],
Li, S.[Suqi],
MT-FANet: A Morphology and Topology-Based Feature Alignment Network
for SAR Ship Rotation Detection,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Pan, X.[Xueli],
Li, N.[Nana],
Yang, L.X.[Li-Xia],
Huang, Z.X.[Zhi-Xiang],
Chen, J.[Jie],
Wu, Z.H.[Zhen-Hua],
Zheng, G.Q.[Guo-Qing],
Anomaly-Based Ship Detection Using SP Feature-Space Learning with
False-Alarm Control in Sea-Surface SAR Images,
RS(15), No. 13, 2023, pp. 3258.
DOI Link
2307
BibRef
Pu, X.Y.[Xin-Yang],
Jia, H.[Hecheng],
Xin, Y.[Yu],
Wang, F.[Feng],
Wang, H.P.[Hai-Peng],
Ship Detection in Low-Quality SAR Images via an Unsupervised Domain
Adaption Method,
RS(15), No. 13, 2023, pp. 3326.
DOI Link
2307
BibRef
Li, R.M.[Rui-Min],
Li, J.[Jichao],
Gou, S.P.[Shui-Ping],
Lu, H.F.[Hao-Fan],
Mao, S.[Shasha],
Guo, Z.[Zhang],
Multi-Scale Similarity Guidance Few-Shot Network for Ship
Segmentation in SAR Images,
RS(15), No. 13, 2023, pp. 3304.
DOI Link
2307
BibRef
Bezerra, D.X.[Diego X.],
Lorenzzetti, J.A.[João A.],
Paes, R.L.[Rafael L.],
Marine Environmental Impact on CFAR Ship Detection as Measured by
Wave Age in SAR Images,
RS(15), No. 13, 2023, pp. 3441.
DOI Link
2307
BibRef
Ren, X.Z.[Xiao-Zhen],
Bai, Y.[Yanwen],
Liu, G.[Gang],
Zhang, P.[Ping],
YOLO-Lite: An Efficient Lightweight Network for SAR Ship Detection,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Chen, Z.[Zhe],
Ding, Z.Q.[Zhi-Quan],
Zhang, X.L.[Xiao-Ling],
Wang, X.T.[Xiao-Ting],
Zhou, Y.Y.[Yuan-Yuan],
Inshore Ship Detection Based on Multi-Modality Saliency for Synthetic
Aperture Radar Images,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Gao, G.[Gui],
Bai, Q.[Qilin],
Zhang, C.[Chuan],
Zhang, L.L.[Lin-Lin],
Yao, L.[Libo],
Dualistic cascade convolutional neural network dedicated to fully
PolSAR image ship detection,
PandRS(202), 2023, pp. 663-681.
Elsevier DOI
2308
Polarimetric synthetic aperture radar,
Dualistic cascade convolutional neural network, Ship detection
BibRef
Xu, C.[Congan],
Gao, L.[Long],
Su, H.[Hang],
Zhang, J.T.[Jian-Ting],
Wu, J.F.[Jun-Feng],
Yan, W.J.[Wen-Jun],
Label Smoothing Auxiliary Classifier Generative Adversarial Network
with Triplet Loss for SAR Ship Classification,
RS(15), No. 16, 2023, pp. 4058.
DOI Link
2309
BibRef
Xu, Z.J.[Zhi-Jing],
Zhai, J.[Jinle],
Huang, K.[Kan],
Liu, K.[Kun],
DSF-Net: A Dual Feature Shuffle Guided Multi-Field Fusion Network for
SAR Small Ship Target Detection,
RS(15), No. 18, 2023, pp. 4546.
DOI Link
2310
BibRef
Zhang, Y.Y.[Yang-Yang],
Xu, N.[Ning],
Li, N.[Ning],
Guo, Z.W.[Zheng-Wei],
A Multi-Domain Joint Novel Method for ISAR Imaging of Multi-Ship
Targets,
RS(15), No. 19, 2023, pp. 4878.
DOI Link
2310
BibRef
Zhang, Y.[Yue],
Jiang, S.[Shuai],
Cao, Y.[Yue],
Xiao, J.[Jiarong],
Li, C.[Chengkun],
Zhou, X.[Xuan],
Yu, Z.J.[Zhong-Jun],
Hardware-Aware Design of Speed-Up Algorithms for Synthetic Aperture
Radar Ship Target Detection Networks,
RS(15), No. 20, 2023, pp. 4995.
DOI Link
2310
BibRef
Huang, S.Q.[Shi-Qi],
Zhang, O.[Ouya],
Chen, Q.L.[Qi-Long],
Ship Target Detection Method in Synthetic Aperture Radar Images Based
on Block Thumbnail Particle Swarm Optimization Clustering,
RS(15), No. 20, 2023, pp. 4972.
DOI Link
2310
BibRef
Jiang, X.[Xinqiao],
Xie, H.[Hongtu],
Lu, Z.[Zheng],
Hu, J.[Jun],
Energy-Efficient and High-Performance Ship Classification Strategy
Based on Siamese Spiking Neural Network in Dual-Polarized SAR Images,
RS(15), No. 20, 2023, pp. 4966.
DOI Link
2310
BibRef
Liu, Y.[Yuan],
Zhao, S.J.[Sheng-Jie],
Han, F.X.[Feng-Xia],
Chai, M.Q.[Meng-Qiu],
Jiang, H.[Hao],
Zhang, H.M.[Hong-Ming],
Data Collection for Target Localization in Ocean Monitoring
Radar-Communication Networks,
RS(15), No. 21, 2023, pp. 5126.
DOI Link
2311
BibRef
Jafari, Z.[Zahra],
Karami, E.[Ebrahim],
Taylor, R.[Rocky],
Bobby, P.[Pradeep],
Enhanced Ship/Iceberg Classification in SAR Images Using Feature
Extraction and the Fusion of Machine Learning Algorithms,
RS(15), No. 21, 2023, pp. 5202.
DOI Link
2311
BibRef
Feng, K.Y.[Kun-Yu],
Lun, L.[Li],
Wang, X.F.[Xiao-Feng],
Cui, X.X.[Xiao-Xin],
LRTransDet: A Real-Time SAR Ship-Detection Network with Lightweight
ViT and Multi-Scale Feature Fusion,
RS(15), No. 22, 2023, pp. 5309.
DOI Link
2311
BibRef
Qiu, W.X.[Wei-Xing],
Pan, Z.X.[Zong-Xu],
Polarimetric Synthetic Aperture Radar Ship Potential Area Extraction
Based on Neighborhood Semantic Differences of the Latent Dirichlet
Allocation Bag-of-Words Topic Model,
RS(15), No. 23, 2023, pp. 5601.
DOI Link
2312
BibRef
Zhang, L.[Lizun],
Zhou, H.[Hao],
Bai, L.Y.[Li-Yun],
Tian, Y.W.[Ying-Wei],
A Grid-Based Gradient Descent Extended Target Clustering Method and
Ship Target Inverse Synthetic Aperture Radar Imaging for UHF Radar,
RS(15), No. 23, 2023, pp. 5466.
DOI Link
2312
BibRef
Lu, Z.[Zhuhao],
Wang, P.F.[Peng-Fei],
Li, Y.J.[Ya-Jun],
Ding, B.G.[Bao-Gang],
A New Deep Neural Network Based on SwinT-FRM-ShipNet for SAR Ship
Detection in Complex Near-Shore and Offshore Environments,
RS(15), No. 24, 2023, pp. 5780.
DOI Link
2401
BibRef
Alessi, M.A.[Marissa A.],
Chirico, P.G.[Peter G.],
Millones, M.[Marco],
Artisanal Mining River Dredge Detection Using SAR:
A Method Comparison,
RS(15), No. 24, 2023, pp. 5701.
DOI Link
2401
BibRef
Fang, L.[Lu],
Yang, Z.Y.[Zi-Yuan],
Mu, W.X.[Wen-Xing],
Liu, T.[Tao],
A Novel Polarization Scattering Decomposition Model and Its
Application to Ship Detection,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Zhang, X.[Xin],
Li, Y.[Yang],
Li, F.[Feng],
Jiang, H.Z.[Hang-Zhi],
Wang, Y.H.[Yan-Hua],
Zhang, L.[Liang],
Zheng, L.[Le],
Ding, Z.[Zegang],
Ship-Go: SAR Ship Images Inpainting via instance-to-image Generative
Diffusion Models,
PandRS(207), 2024, pp. 203-217.
Elsevier DOI Code:
WWW Link.
2401
Conditional diffusion models, Detection datasets generation, SAR ship detection
BibRef
Chen, B.J.[Bing-Ji],
Xue, F.[Fengli],
Song, H.J.[Hong-Jun],
A Lightweight Arbitrarily Oriented Detector Based on Transformers and
Deformable Features for Ship Detection in SAR Images,
RS(16), No. 2, 2024, pp. 237.
DOI Link
2402
BibRef
Yang, Y.R.[Yan-Rui],
Chen, J.[Jie],
Sun, L.[Long],
Zhou, Z.[Zheng],
Huang, Z.X.[Zhi-Xiang],
Wu, B.[Bocai],
Unsupervised Domain-Adaptive SAR Ship Detection Based on Cross-Domain
Feature Interaction and Data Contribution Balance,
RS(16), No. 2, 2024, pp. 420.
DOI Link
2402
BibRef
Xiao, D.Z.[De-Zhu],
Zhang, X.[Xin],
Yang, Q.[Qiang],
Li, J.M.[Jia-Ming],
Improved Main Lobe Cancellation Method for Suppression Directional
Noise in HFSWR Systems,
RS(16), No. 2, 2024, pp. 254.
DOI Link
2402
For vessel detection.
BibRef
Ji, Y.Z.[Yuan-Zheng],
Liu, A.[Aijun],
Chen, X.[Xuekun],
Wang, J.Q.[Jia-Qi],
Yu, C.J.[Chang-Jun],
Target Detection Method for High-Frequency Surface Wave Radar RD
Spectrum Based on (VI)CFAR-CNN and Dual-Detection Maps Fusion
Compensation,
RS(16), No. 2, 2024, pp. 332.
DOI Link
2402
BibRef
Liu, M.Q.[Min-Qin],
Zhu, B.[Bo],
Ma, H.B.[Hong-Bing],
A New Synthetic Aperture Radar Ship Detector Based on Clutter
Intensity Statistics in Complex Environments,
RS(16), No. 4, 2024, pp. 664.
DOI Link
2402
BibRef
Yang, Z.G.[Zhi-Gang],
Xia, X.Y.[Xiang-Yu],
Liu, Y.M.[Yi-Ming],
Wen, G.[Guiwei],
Zhang, W.E.[Wei Emma],
Guo, L.M.[Li-Min],
LPST-Det: Local-Perception-Enhanced Swin Transformer for SAR Ship
Detection,
RS(16), No. 3, 2024, pp. 483.
DOI Link
2402
BibRef
Tang, H.[Hongdou],
Gao, S.[Song],
Li, S.[Song],
Wang, P.Y.[Peng-Yu],
Liu, J.Q.[Ji-Qiu],
Wang, S.[Simin],
Qian, J.[Jiang],
A Lightweight SAR Image Ship Detection Method Based on Improved
Convolution and YOLOv7,
RS(16), No. 3, 2024, pp. 486.
DOI Link
2402
BibRef
Wang, J.Q.[Jia-Qi],
Liu, A.[Aijun],
Yu, C.J.[Chang-Jun],
Ji, Y.Z.[Yuan-Zheng],
Ship Formation Identification with Spatial Features and Deep Learning
for HFSWR,
RS(16), No. 3, 2024, pp. 577.
DOI Link
2402
BibRef
Zhang, H.[Handan],
Wu, Y.[Yiquan],
CSEF-Net: Cross-Scale SAR Ship Detection Network Based on Efficient
Receptive Field and Enhanced Hierarchical Fusion,
RS(16), No. 4, 2024, pp. 622.
DOI Link
2402
BibRef
Yu, H.L.[Heng-Li],
Ding, H.[Hao],
Cao, Z.[Zheng],
Liu, N.B.[Ning-Bo],
Wang, G.Q.[Guo-Qing],
Zhang, Z.X.[Zhao-Xiang],
A Floating Small Target Identification Method Based on Doppler Time
Series Information,
RS(16), No. 3, 2024, pp. 505.
DOI Link
2402
BibRef
Liu, Y.L.[Yi-Lin],
Ma, Y.[Yong],
Chen, F.[Fu],
Shang, E.[Erping],
Yao, W.[Wutao],
Zhang, S.Y.[Shu-Yan],
Yang, J.[Jin],
YOLOv7oSAR: A Lightweight High-Precision Ship Detection Model for SAR
Images Based on the YOLOv7 Algorithm,
RS(16), No. 5, 2024, pp. 913.
DOI Link
2403
BibRef
Wen, X.[Xue],
Zhang, S.[Shaoming],
Wang, J.[Jianmei],
Yao, T.[Tangjun],
Tang, Y.[Yan],
A CFAR-Enhanced Ship Detector for SAR Images Based on YOLOv5s,
RS(16), No. 5, 2024, pp. 733.
DOI Link
2403
BibRef
Wu, K.[Kun],
Zhang, Z.J.[Zhi-Jian],
Chen, Z.[Zeyu],
Liu, G.H.[Guo-Hua],
Object-Enhanced YOLO Networks for Synthetic Aperture Radar Ship
Detection,
RS(16), No. 6, 2024, pp. 1001.
DOI Link
2403
BibRef
Pan, D.[Dece],
Wu, Y.[Youming],
Dai, W.[Wei],
Miao, T.[Tian],
Zhao, W.C.[Wen-Chao],
Gao, X.[Xin],
Sun, X.[Xian],
TAG-Net: Target Attitude Angle-Guided Network for Ship Detection and
Classification in SAR Images,
RS(16), No. 6, 2024, pp. 944.
DOI Link
2403
BibRef
Zhou, Y.[Yun],
Wang, S.S.[Sen-Sen],
Ren, H.H.[Hao-Hao],
Hu, J.Y.[Jun-Yi],
Zou, L.[Lin],
Wang, X.G.[Xue-Gang],
Multi-Level Feature-Refinement Anchor-Free Framework with Consistent
Label-Assignment Mechanism for Ship Detection in SAR Imagery,
RS(16), No. 6, 2024, pp. 975.
DOI Link
2403
BibRef
Wu, S.J.[Shu-Jie],
Wang, W.[Wei],
Deng, J.[Jie],
Quan, S.N.[Si-Nong],
Ruan, F.[Feng],
Guo, P.C.[Peng-Cheng],
Fan, H.Q.[Hong-Qi],
Nearshore Ship Detection in PolSAR Images by Integrating
Superpixel-Level GP-PNF and Refined Polarimetric Decomposition,
RS(16), No. 6, 2024, pp. 1095.
DOI Link
2403
BibRef
Wang, L.[Lu],
Qi, Y.H.[Yu-Hang],
Mathiopoulos, P.T.[P. Takis],
Zhao, C.H.[Chun-Hui],
Mazhar, S.[Suleman],
An Improved SAR Ship Classification Method Using Text-to-Image
Generation-Based Data Augmentation and Squeeze and Excitation,
RS(16), No. 7, 2024, pp. 1299.
DOI Link
2404
BibRef
Shin, D.W.[Dae-Woon],
Yang, C.S.[Chan-Su],
Chowdhury, S.J.K.[Sree Juwel Kumar],
Enhancement of Small Ship Detection Using Polarimetric Combination
from Sentinel-1 Imagery,
RS(16), No. 7, 2024, pp. 1198.
DOI Link
2404
BibRef
Qi, X.[Xin],
Zhang, Y.[Yun],
Jiang, Y.C.[Yi-Cheng],
Liu, Z.[Zitao],
Ma, X.Y.[Xin-Yue],
Liu, X.[Xuan],
Maritime Moving Target Reconstruction via MBLCFD in Staggered SAR
System,
RS(16), No. 9, 2024, pp. 1550.
DOI Link
2405
BibRef
Wei, H.[Hang],
Wang, Z.[Zulin],
Hua, G.X.[Geng-Xin],
Ni, Y.H.[Yuan-Han],
A Zero-Shot NAS Method for SAR Ship Detection Under Polynomial Search
Complexity,
SPLetters(31), 2024, pp. 1329-1333.
IEEE DOI
2405
Training, Synthetic aperture radar, Search problems,
Marine vehicles, Task analysis, Radar polarimetry,
zero-shot neural architecture search (NAS)
BibRef
Wu, F.[Falin],
Hu, T.Y.[Tian-Yang],
Xia, Y.[Yu],
Ma, B.[Boyi],
Sarwar, S.[Saddam],
Zhang, C.X.[Chun-Xiao],
WDFA-YOLOX: A Wavelet-Driven and Feature-Enhanced Attention YOLOX
Network for Ship Detection in SAR Images,
RS(16), No. 10, 2024, pp. 1760.
DOI Link
2405
BibRef
Zhang, Y.[Yu],
Chen, W.H.[Wen-Hui],
Li, S.L.[Song-Lin],
Liu, H.L.[Hai-Long],
Hu, Q.[Qing],
YOLO-Ships: Lightweight ship object detection based on feature
enhancement,
JVCIR(101), 2024, pp. 104170.
Elsevier DOI
2406
Ship detection, YOLO-Ships, Feature enhancement,
Lightweight network, Attention mechanism
BibRef
Deng, J.[Jie],
Su, F.[Fulin],
SDRnet: A Deep Fusion Network for ISAR Ship Target Recognition Based
on Feature Separation and Weighted Decision,
RS(16), No. 11, 2024, pp. 1920.
DOI Link
2406
BibRef
Wang, X.[Xi],
Xu, W.[Wei],
Huang, P.P.[Ping-Ping],
Tan, W.X.[Wei-Xian],
MSSD-Net: Multi-Scale SAR Ship Detection Network,
RS(16), No. 12, 2024, pp. 2233.
DOI Link
2406
BibRef
Ma, F.[Feng],
Kang, Z.[Zhe],
Chen, C.[Chen],
Sun, J.[Jie],
Xu, X.B.[Xiao-Bin],
Wang, J.[Jin],
Identifying Ships From Radar Blips Like Humans Using a Customized
Neural Network,
ITS(25), No. 7, July 2024, pp. 7187-7205.
IEEE DOI
2407
Marine vehicles, Radar, Radar imaging, Feature extraction, Object recognition,
Radar tracking, Clutter, Marine radar, maritime management
BibRef
Zhang, X.Z.[Xin-Zheng],
Li, J.L.[Jin-Lin],
Li, C.[Chao],
Liu, G.J.[Guo-Jin],
Multi-Teacher D-S Fusion for Semi-Supervised SAR Ship Detection,
RS(16), No. 15, 2024, pp. 2759.
DOI Link
2408
BibRef
Yang, Y.M.[Yi-Min],
Lang, P.[Ping],
Yin, J.J.[Jun-Jun],
He, Y.[Yaomin],
Yang, J.[Jian],
Data Matters: Rethinking the Data Distribution in Semi-Supervised
Oriented SAR Ship Detection,
RS(16), No. 14, 2024, pp. 2551.
DOI Link
2408
BibRef
Wu, B.[Baolong],
Wang, H.[Haonan],
Zhang, C.[Cunle],
Chen, J.[Jianlai],
Optical-to-SAR Translation Based on CDA-GAN for High-Quality Training
Sample Generation for Ship Detection in SAR Amplitude Images,
RS(16), No. 16, 2024, pp. 3001.
DOI Link
2408
BibRef
Chen, D.D.[Dong-Dong],
Ju, R.S.[Ru-Sheng],
Tu, C.Y.[Chuang-Ye],
Long, G.W.[Guang-Wei],
Liu, X.Y.[Xiao-Yang],
Liu, J.Y.[Ji-Yuan],
GDB-YOLOv5s: Improved YOLO-based model for ship detection in SAR
images,
IET-IPR(18), No. 11, 2024, pp. 2869-2883.
DOI Link
2409
computer vision, convolutional neural nets, feature extraction,
image recognition, object detection, ships, synthetic aperture radar
BibRef
Li, J.W.[Jian-Wei],
Yu, Z.T.[Zhen-Tao],
Chen, J.[Jie],
Chi, C.[Cheng],
Yu, L.[Lu],
Cheng, P.[Pu],
Improve the Performance of SAR Ship Detectors by Small Object
Detection Strategies,
RS(16), No. 17, 2024, pp. 3338.
DOI Link
2409
BibRef
Tan, X.D.[Xiang-Dong],
Leng, X.G.[Xiang-Guang],
Sun, Z.Z.[Zhong-Zhen],
Luo, R.[Ru],
Ji, K.[Kefeng],
Kuang, G.Y.[Gang-Yao],
Lightweight Ship Detection Network for SAR Range-Compressed Domain,
RS(16), No. 17, 2024, pp. 3284.
DOI Link
2409
BibRef
Meng, F.L.[Fan-Long],
Qi, X.Y.[Xiang-Yang],
Fan, H.T.[Huai-Tao],
LSR-Det: A Lightweight Detector for Ship Detection in SAR Images
Based on Oriented Bounding Box,
RS(16), No. 17, 2024, pp. 3251.
DOI Link
2409
BibRef
Wang, C.Y.[Chun-Yuan],
Cai, X.J.[Xian-Jun],
Wu, F.[Fei],
Cui, P.[Peng],
Wu, Y.[Yang],
Zhang, Y.[Ye],
Stepwise Attention-Guided Multiscale Fusion Network for Lightweight
and High-Accurate SAR Ship Detection,
RS(16), No. 17, 2024, pp. 3137.
DOI Link
2409
BibRef
Chan, H.P.[Hao-Peng],
Qiu, X.L.[Xiao-Lan],
Gao, X.[Xin],
Lu, D.D.[Dong-Dong],
A Complex Background SAR Ship Target Detection Method Based on Fusion
Tensor and Cross-Domain Adversarial Learning,
RS(16), No. 18, 2024, pp. 3492.
DOI Link
2410
BibRef
He, J.L.[Jing-Lu],
Sun, R.T.[Rui-Ting],
Kong, Y.Y.[Ying-Ying],
Chang, W.L.[Wen-Long],
Sun, C.L.[Cheng-Lu],
Chen, G.[Gaige],
Li, Y.H.[Ying-Hua],
Meng, Z.[Zhe],
Wang, F.P.[Fu-Ping],
CPINet: Towards A Novel Cross-Polarimetric Interaction Network for
Dual-Polarized SAR Ship Classification,
RS(16), No. 18, 2024, pp. 3479.
DOI Link
2410
BibRef
Golubovic, D.[Dragan],
Eric, M.[Miljko],
Vukmirovis, N.[Nenad],
Orlic, V.[Vladimir],
High-Resolution Sea Surface Target Detection Using Bi-Frequency
High-Frequency Surface Wave Radar,
RS(16), No. 18, 2024, pp. 3476.
DOI Link
2410
BibRef
Deng, J.[Jie],
Su, F.[Fulin],
Deep Hybrid Fusion Network for Inverse Synthetic Aperture Radar Ship
Target Recognition Using Multi-Domain High-Resolution Range Profile
Data,
RS(16), No. 19, 2024, pp. 3701.
DOI Link
2410
BibRef
Wu, G.Q.[Guo-Qing],
Wang, S.L.[Shengbin Luo],
Liu, Y.[Yibin],
Wang, P.[Ping],
Li, Y.Z.[Yong-Zhen],
Ship Contour Extraction from Polarimetric SAR Images Based on
Polarization Modulation,
RS(16), No. 19, 2024, pp. 3669.
DOI Link
2410
BibRef
Wei, H.[Hang],
Wang, Z.[Zulin],
Ni, Y.[Yuanhan],
Hierarchical Mixed-Precision Post-Training Quantization for SAR Ship
Detection Networks,
RS(16), No. 21, 2024, pp. 4042.
DOI Link
2411
BibRef
Cai, P.X.[Pei-Xin],
Liu, B.X.[Bing-Xin],
Wang, P.L.[Pei-Lin],
Liu, P.[Peng],
Yuan, Y.[Yu],
Li, X.H.[Xin-Hao],
Chen, P.[Peng],
Li, Y.[Ying],
SDFSD-v1.0: A Sub-Meter SAR Dataset for Fine-Grained Ship Detection,
RS(16), No. 21, 2024, pp. 3952.
DOI Link
2411
BibRef
Ahmed, M.[Mahmoud],
El-Sheimy, N.[Naser],
Leung, H.[Henry],
A Novel Detection Transformer Framework for Ship Detection in
Synthetic Aperture Radar Imagery Using Advanced Feature Fusion and
Polarimetric Techniques,
RS(16), No. 20, 2024, pp. 3877.
DOI Link
2411
BibRef
Qu, Y.[Youmin],
Mao, X.[Xingpeng],
Hou, Y.[Yuguan],
Li, X.[Xue],
An RD-Domain Virtual Aperture Extension Method for Shipborne HFSWR,
RS(16), No. 21, 2024, pp. 3929.
DOI Link
2411
High-frequency surface wave radar. Sea surface targets.
BibRef
Yao, C.[Cheng],
Bai, L.[Lin],
Xue, D.L.[Dong-Ling],
Lin, X.Y.[Xiang-Yuan],
Ye, Z.[Zhen],
Wang, Y.Q.[Yan-Qi],
Yin, K.[Kangdi],
GFB-Net: A Global Context-Guided Feature Balance Network for
Arbitrary-Oriented SAR Ship Detection,
ICIVC22(166-171)
IEEE DOI
2301
Location awareness, Radar detection, Detectors, Object detection,
Radar imaging, Feature extraction, Radar polarimetry,
synthetic aperture radar (SAR)
BibRef
Zhang, H.[Hui],
Liu, S.W.[Shen-Wen],
Li, Y.Z.[Yong-Zhen],
Chen, S.W.[Si-Wei],
Compact-Pol SAR Ship Detection Combining Sublook Analysis and Tucker
Decomposition,
ICIVC22(208-213)
IEEE DOI
2301
Support vector machines, Time-frequency analysis, Tensors,
Filtering, Feature extraction, Polarimetry, Data mining, ship detection
BibRef
Pillai, M.S.[Manu S],
Bhattacharya, A.[Abhijeet],
Baweja, T.[Tanmay],
Gupta, R.[Rohit],
Shah, M.[Mubarak],
DeepSAR: Vessel Detection in SAR Imagery with Noisy Labels,
ICIP22(2526-2530)
IEEE DOI
2211
Training, Location awareness, Image segmentation,
Stochastic processes, Radar imaging, Predictive models,
Synthetic aperture radar
BibRef
Cheng, Y.W.[Yu-Wei],
Xu, H.[Hu],
Liu, Y.M.[Yi-Min],
Robust Small Object Detection on the Water Surface through Fusion of
Camera and Millimeter Wave Radar,
ICCV21(15243-15252)
IEEE DOI
2203
Point cloud compression, Surface waves, Radar detection,
Object detection, Radar, Millimeter wave radar, Radar imaging,
Vision + other modalities
BibRef
Chen, Y.[Yuan],
Yu, J.[Jie],
Xu, Y.[Yang],
SAR Ship Target Detection for SSDv2 under Complex Backgrounds,
CVIDL20(560-565)
IEEE DOI
2102
convolutional neural nets, learning (artificial intelligence),
object detection, radar computing, radar detection, radar imaging,
SAR-Ship-Dataset
BibRef
Li, Z.[Zhi],
Qu, C.W.[Chang-Wen],
Zhou, Q.[Qiang],
Liu, C.[Chen],
Peng, S.J.[Shu-Juan],
Li, J.W.[Jian-Wei],
Ship detection in harbor area in SAR images based on constructing an
accurate sea-clutter model,
ICIVC17(13-19)
IEEE DOI
1708
Clutter, Fitting, Image segmentation, Marine vehicles,
Mathematical model, Strips,
constant false alarm rate, ship detection, the SAR image,
and-sea segmentation, port area, sea clutter model
BibRef
Negula, I.D.[I. Dana],
Poenaru, V.D.,
Olteanu, V.G.,
Badea, A.,
Sentinel-1/2 Data For Ship Traffic Monitoring On The Danube River,
ISPRS16(B8: 37-41).
DOI Link
1610
BibRef
Martin-de-Nicolas, J.,
Jarabo-Amores, P.,
Rey-Maestre, N.,
Mata-Moya, D.,
Barcena-Humanes, J.L.,
A non-parametric CFAR detector based on SAR sea clutter statistical
modeling,
ICIP15(4426-4430)
IEEE DOI
1512
CFAR; Synthetic aperture radar; clutter modeling; ship detection
BibRef
Chen, W.T.[Wen-Ting],
Ji, K.F.[Ke-Feng],
Xing, X.W.[Xiang-Wei],
Zou, H.X.[Huan-Xin],
Sun, H.[Hao],
Ship recognition in high resolution SAR imagery based on feature
selection,
CVRS12(301-305).
IEEE DOI
1302
BibRef
Zhuo, C.[Chen],
An Improved Automatic Ship Detection Method in SAR Images,
CISP09(1-4).
IEEE DOI
0910
BibRef
Li, W.B.[Wei-Bin],
He, M.Y.[Ming-Yi],
Zhang, S.L.[Shun-Li],
A Heterogeneity-Based Ship Detection Algorithm for SAR Imagery,
CISP09(1-5).
IEEE DOI
0910
BibRef
Gagnon, L.,
Klepko, R.,
Hierarchical Classifier Design for Airborne SAR Images of Ships,
SPIE(3371), 1998, pp. xx
PDF File.
BibRef
9800
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Ship Wake Detection .