Mecocci, A.,
Benelli, G.,
Garzelli, A.,
Bottalico, S.,
Radar image processing for ship-traffic control,
IVC(13), No. 2, March 1995, pp. 119-128.
Elsevier DOI
0401
BibRef
Musman, S.,
Kerr, D.,
Bachmann, C.,
Automatic Recognition of ISAR Ship Images,
AeroSys(32), No. 4, October 1996, pp. 1392-1404.
9611
BibRef
Maki, A.[Atsuto],
Fukui, K.[Kazuhiro],
Ship identification in sequential ISAR imagery,
MVA(15), No. 3, July 2004, pp. 149-155.
Springer DOI
0407
BibRef
Margarit, G.,
Mallorqui, J.J.,
Fortuny-Guasch, J.,
Lopez-Martinez, C.,
Exploitation of Ship Scattering in Polarimetric SAR for an Improved
Classification Under High Clutter Conditions,
GeoRS(47), No. 4, April 2009, pp. 1224-1235.
IEEE DOI
0903
BibRef
Margarit, G.,
Tabasco, A.,
Ship Classification in Single-Pol SAR Images Based on Fuzzy Logic,
GeoRS(49), No. 8, August 2011, pp. 3129-3138.
IEEE DOI
1108
BibRef
Earlier:
Correction:
GeoRS(51), No. 5, May 2013, pp. 3201.
IEEE DOI
1305
BibRef
Margarit, G.,
Barba Milanés, J.,
Tabasco, A.,
Operational Ship Monitoring System Based on Synthetic Aperture Radar
Processing,
RS(1), No. 3, September 2009, pp. 375-392.
DOI Link
1203
BibRef
Wang, Y.,
Liu, H.,
A Hierarchical Ship Detection Scheme for High-Resolution SAR Images,
GeoRS(50), No. 10, October 2012, pp. 4173-4184.
IEEE DOI
1210
BibRef
Liu, C.,
Gierull, C.H.,
A New Application for PolSAR Imagery in the Field of Moving Target
Indication/Ship Detection,
GeoRS(45), No. 11, November 2007, pp. 3426-3436.
IEEE DOI
0709
BibRef
Brusch, S.,
Lehner, S.,
Fritz, T.,
Soccorsi, M.,
Soloviev, A.,
van Schie, B.,
Ship Surveillance With TerraSAR-X,
GeoRS(49), No. 3, March 2011, pp. 1092-1103.
IEEE DOI
1103
BibRef
Wang, X.L.[Xiao-Long],
Chen, C.X.[Cui-Xia],
An Automatic Ship Detection Method Based on Local Gray-Level Gathering
Characteristics in SAR Imagery,
ELCVIA(12), No. 1, 2013, pp. xx-yy.
DOI Link
1306
BibRef
Velotto, D.,
Soccorsi, M.,
Lehner, S.,
Azimuth Ambiguities Removal for Ship Detection Using Full
Polarimetric X-Band SAR Data,
GeoRS(52), No. 1, January 2014, pp. 76-88.
IEEE DOI
1402
marine radar
BibRef
Hu, C.B.[Can-Bin],
Ferro-Famil, L.[Laurent],
Kuang, G.Y.[Gang-Yao],
Ship Discrimination Using Polarimetric SAR Data and Coherent
Time-Frequency Analysis,
RS(5), No. 12, 2013, pp. 6899-6920.
DOI Link
1412
BibRef
Atteia, G.E.,
Collins, M.J.[Michael J.],
On the use of compact polarimetry SAR for ship detection,
PandRS(80), No. 1, June 2013, pp. 1-9.
Elsevier DOI
1305
Ship detection; Polarimetry; Compact polarimetry; Synthetic aperture
radar
BibRef
Cui, Y.,
Yang, J.,
Yamaguchi, Y.,
Singh, G.,
Park, S.E.,
Kobayashi, H.,
On Semiparametric Clutter Estimation for Ship Detection in Synthetic
Aperture Radar Images,
GeoRS(51), No. 5, May 2013, pp. 3170-3180.
IEEE DOI
1305
BibRef
Gao, G.,
Wang, X.,
Lai, T.,
Detection of Moving Ships Based on a Combination of Magnitude and
Phase in Along-Track Interferometric SAR: Part I: SIMP Metric and Its
Performance,
GeoRS(53), No. 7, July 2015, pp. 3565-3581.
IEEE DOI
1503
Clutter
BibRef
Gao, G.,
Wang, X.,
Lai, T.,
Detection of Moving Ships Based on a Combination of Magnitude and
Phase in Along-Track Interferometric SAR: Part II: Statistical
Modeling and CFAR Detection,
GeoRS(53), No. 7, July 2015, pp. 3582-3599.
IEEE DOI
1503
Approximation methods
BibRef
Marino, A.[Armando],
Sanjuan-Ferrer, M.J.[Maria J.],
Hajnsek, I.[Irena],
Ouchi, K.[Kazuo],
Ship Detection with Spectral Analysis of Synthetic Aperture Radar:
A Comparison of New and Well-Known Algorithms,
RS(7), No. 5, 2015, pp. 5416-5439.
DOI Link
1506
BibRef
Zhao, Y.[Ye],
Zhang, M.[Min],
Zhao, Y.W.[Yan-Wei],
Geng, X.P.[Xu-Pu],
A Bistatic SAR Image Intensity Model for the Composite Ship-Ocean
Scene,
GeoRS(53), No. 8, August 2015, pp. 4250-4258.
IEEE DOI
1506
geophysical image processing
BibRef
Huang, X.J.[Xiao-Jing],
Yang, W.[Wen],
Zhang, H.J.[Hai-Jian],
Xia, G.S.[Gui-Song],
Automatic Ship Detection in SAR Images Using Multi-Scale
Heterogeneities and an A Contrario Decision,
RS(7), No. 6, 2015, pp. 7695.
DOI Link
1507
BibRef
Touzi, R.,
Hurley, J.,
Vachon, P.W.,
Optimization of the Degree of Polarization for Enhanced Ship
Detection Using Polarimetric RADARSAT-2,
GeoRS(53), No. 10, October 2015, pp. 5403-5424.
IEEE DOI
1509
electromagnetic wave polarisation
BibRef
Wang, X.L.[Xiao-Long],
Chen, C.X.[Cui-Xia],
A fast line-scanning-based detection algorithm for real-time SAR ship
detection,
SIViP(9), No. 8, November 2015, pp. 1975-1982.
WWW Link.
1511
BibRef
Wang, X.L.[Xiao-Long],
Chen, C.X.[Cui-Xia],
Adaptive ship detection in SAR images using variance WIE-based method,
SIViP(10), No. 7, October 2016, pp. 1219-1224.
WWW Link.
1609
BibRef
Pelich, R.,
Longépé, N.,
Mercier, G.,
Hajduch, G.,
Garello, R.,
Vessel Refocusing and Velocity Estimation on SAR Imagery Using the
Fractional Fourier Transform,
GeoRS(54), No. 3, March 2016, pp. 1670-1684.
IEEE DOI
1603
Acceleration
BibRef
Vivone, G.,
Braca, P.,
Horstmann, J.,
Knowledge-Based Multitarget Ship Tracking for HF Surface Wave Radar
Systems,
GeoRS(53), No. 7, July 2015, pp. 3931-3949.
IEEE DOI
1503
Clutter
BibRef
Gao, G.,
Luo, Y.,
Ouyang, K.,
Zhou, S.,
Statistical Modeling of PMA Detector for Ship Detection in
High-Resolution Dual-Polarization SAR Images,
GeoRS(54), No. 7, July 2016, pp. 4302-4313.
IEEE DOI
1606
Adaptation models
BibRef
Gao, G.,
Ouyang, K.,
Luo, Y.,
Liang, S.,
Zhou, S.,
Scheme of Parameter Estimation for Generalized Gamma Distribution and
Its Application to Ship Detection in SAR Images,
GeoRS(55), No. 3, March 2017, pp. 1812-1832.
IEEE DOI
1703
Clutter
BibRef
Xu, L.[Lu],
Zhang, H.[Hong],
Wang, C.[Chao],
Zhang, B.[Bo],
Tian, S.[Sirui],
Compact Polarimetric SAR Ship Detection with m-d Decomposition Using
Visual Attention Model,
RS(8), No. 9, 2016, pp. 751.
DOI Link
1610
BibRef
Fan, Q.C.[Qian-Cong],
Chen, F.[Feng],
Cheng, M.[Ming],
Lou, S.L.[Shen-Long],
Xiao, R.[Rulin],
Zhang, B.[Biao],
Wang, C.[Cheng],
Li, J.[Jonathan],
Ship Detection Using a Fully Convolutional Network with Compact
Polarimetric SAR Images,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Wang, S.,
Wang, M.,
Yang, S.,
Jiao, L.,
New Hierarchical Saliency Filtering for Fast Ship Detection in
High-Resolution SAR Images,
GeoRS(55), No. 1, January 2017, pp. 351-362.
IEEE DOI
1701
geophysical techniques
BibRef
Gao, G.[Gui],
Shi, G.T.[Gong-Tao],
CFAR Ship Detection in Nonhomogeneous Sea Clutter Using Polarimetric
SAR Data Based on the Notch Filter,
GeoRS(55), No. 8, August 2017, pp. 4811-4824.
IEEE DOI
1708
Clutter, Data models, Detectors, Marine vehicles, Scattering,
Sea measurements, Synthetic aperture radar,
Constant false alarm rate (CFAR), polarization, ship detection,
synthetic, aperture, radar, (SAR)
BibRef
Gao, G.[Gui],
Shi, G.T.[Gong-Tao],
Ship Detection in Dual-Channel ATI-SAR Based on the Notch Filter,
GeoRS(55), No. 8, August 2017, pp. 4795-4810.
IEEE DOI
1708
Clutter, Covariance matrices, Interferometry, Marine vehicles,
Oceans, Receivers, Synthetic aperture radar,
Along-track interferometry (ATI), detection, ship, synthetic,
aperture, radar, (SAR)
BibRef
Gao, G.[Gui],
Gao, S.[Sheng],
He, J.[Juan],
Li, G.S.[Gao-Sheng],
Ship Detection Using Compact Polarimetric SAR Based on the Notch
Filter,
GeoRS(56), No. 9, September 2018, pp. 5380-5393.
IEEE DOI
1809
Marine vehicles, Synthetic aperture radar, Feature extraction,
Scattering, Image reconstruction, Clutter, Oceans,
synthetic aperture radar (SAR)
BibRef
Gao, G.[Gui],
Gao, S.[Sheng],
He, J.[Juan],
Li, G.S.[Gao-Sheng],
Adaptive Ship Detection in Hybrid-Polarimetric SAR Images Based on
the Power-Entropy Decomposition,
GeoRS(56), No. 9, September 2018, pp. 5394-5407.
IEEE DOI
1809
Synthetic aperture radar, Marine vehicles, Feature extraction,
Spaceborne radar, Entropy, Image reconstruction,
synthetic aperture radar (SAR)
BibRef
Renga, A.,
Moccia, A.,
Use of Doppler Parameters for Ship Velocity Computation in SAR Images,
GeoRS(54), No. 7, July 2016, pp. 3995-4011.
IEEE DOI
1606
Azimuth
BibRef
Zhu, J.W.[Ji-Wei],
Qiu, X.L.[Xiao-Lan],
Pan, Z.X.[Zong-Xu],
Zhang, Y.T.[Yue-Ting],
Lei, B.[Bin],
An Improved Shape Contexts Based Ship Classification in SAR Images,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Greidanus, H.[Harm],
Alvarez, M.[Marlene],
Santamaria, C.[Carlos],
Thoorens, F.X.[François-Xavier],
Kourti, N.[Naouma],
Argentieri, P.[Pietro],
The SUMO Ship Detector Algorithm for Satellite Radar Images,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Xi, Y.Y.[Yu-Yang],
Lang, H.T.[Hai-Tao],
Tao, Y.H.[Yun-Hong],
Huang, L.[Lin],
Pei, Z.[Zijun],
Four-Component Model-Based Decomposition for Ship Targets Using
PolSAR Data,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Kang, M.[Miao],
Ji, K.F.[Ke-Feng],
Leng, X.G.[Xiang-Guang],
Lin, Z.[Zhao],
Contextual Region-Based Convolutional Neural Network with Multilayer
Fusion for SAR Ship Detection,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Santamaria, C.[Carlos],
Alvarez, M.[Marlene],
Greidanus, H.[Harm],
Syrris, V.[Vasileios],
Soille, P.[Pierre],
Argentieri, P.[Pietro],
Mass Processing of Sentinel-1 Images for Maritime Surveillance,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Ma, F.[Feng],
Chen, Y.W.[Yu-Wang],
Yan, X.P.[Xin-Ping],
Chu, X.M.[Xiu-Min],
Wang, J.[Jin],
Target recognition for coastal surveillance based on radar images and
generalised Bayesian inference,
IET-ITS(12), No. 2, March 2018, pp. 103-112.
DOI Link
1801
BibRef
Lin, H.P.[Hui-Ping],
Song, S.L.[Sheng-Li],
Yang, J.[Jian],
Ship Classification Based on MSHOG Feature and Task-Driven Dictionary
Learning with Structured Incoherent Constraints in SAR Images,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Lin, H.P.[Hui-Ping],
Chen, H.[Hang],
Wang, H.[Hongmiao],
Yin, J.J.[Jun-Jun],
Yang, J.[Jian],
Ship Detection for PolSAR Images via Task-Driven Discriminative
Dictionary Learning,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Gierull, C.H.,
Sikaneta, I.,
A Compound-Plus-Noise Model for Improved Vessel Detection in
Non-Gaussian SAR Imagery,
GeoRS(56), No. 3, March 2018, pp. 1444-1453.
IEEE DOI
1804
computational complexity, probability, radar clutter,
radar detection, radar imaging, synthetic aperture radar,
synthetic aperture radar (SAR)
BibRef
Rikka, S.[Sander],
Pleskachevsky, A.[Andrey],
Jacobsen, S.[Sven],
Alari, V.[Victor],
Uiboupin, R.[Rivo],
Meteo-Marine Parameters from Sentinel-1 SAR Imagery:
Towards Near Real-Time Services for the Baltic Sea,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Zhang, T.[Tao],
Marino, A.[Armando],
Xiong, H.L.[Hui-Lin],
Yu, W.X.[Wen-Xian],
A Ship Detector Applying Principal Component Analysis to the
Polarimetric Notch Filter,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Wang, Y.,
Chen, X.,
3-D Interferometric Inverse Synthetic Aperture Radar Imaging of Ship
Target With Complex Motion,
GeoRS(56), No. 7, July 2018, pp. 3693-3708.
IEEE DOI
1807
Doppler radar, Imaging, Marine vehicles, Radar imaging,
Radar scattering, Solid modeling,
ship target
BibRef
Similä, M.[Markku],
Lensu, M.[Mikko],
Estimating the Speed of Ice-Going Ships by Integrating SAR Imagery
and Ship Data from an Automatic Identification System,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Ma, H.,
Antoniou, M.,
Stove, A.G.,
Winkel, J.,
Cherniakov, M.,
Maritime Moving Target Localization Using Passive GNSS-Based
Multistatic Radar,
GeoRS(56), No. 8, August 2018, pp. 4808-4819.
IEEE DOI
1808
passive radar, satellite navigation, target tracking,
maritime moving target localization,
target localization
BibRef
Li, B.,
Liu, B.,
Guo, W.,
Zhang, Z.,
Yu, W.,
Ship Size Extraction for Sentinel-1 Images Based on Dual-Polarization
Fusion and Nonlinear Regression: Push Error Under One Pixel,
GeoRS(56), No. 8, August 2018, pp. 4887-4905.
IEEE DOI
1808
gradient methods, image fusion, marine radar, radar imaging,
regression analysis, ships, synthetic aperture radar,
synthetic aperture radar (SAR) image
BibRef
Shi, S.,
Shui, P.,
Sea-Surface Floating Small Target Detection by One-Class Classifier
in Time-Frequency Feature Space,
GeoRS(56), No. 11, November 2018, pp. 6395-6411.
IEEE DOI
1811
Clutter, Feature extraction, Time series analysis, Detectors,
Doppler effect, Radar cross-sections,
one-class classifier
BibRef
Hwang, J.I.[Jeong-In],
Jung, H.S.[Hyung-Sup],
Automatic Ship Detection Using the Artificial Neural Network and
Support Vector Machine from X-Band SAR Satellite Images,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Ma, M.Y.[Meng-Yuan],
Chen, J.[Jie],
Liu, W.[Wei],
Yang, W.[Wei],
Ship Classification and Detection Based on CNN Using GF-3 SAR Images,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Zhang, Y.[Ying],
Xiong, W.[Wei],
Dong, X.[Xichao],
Hu, C.[Cheng],
Sun, Y.[Yang],
GRFT-Based Moving Ship Target Detection and Imaging in Geosynchronous
SAR,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Leng, X.,
Ji, K.,
Zhou, S.,
Xing, X.,
Zou, H.,
Discriminating Ship From Radio Frequency Interference Based on
Noncircularity and Non-Gaussianity in Sentinel-1 SAR Imagery,
GeoRS(57), No. 1, January 2019, pp. 352-363.
IEEE DOI
1901
Marine vehicles, Synthetic aperture radar, Oceans, Instruments,
Sensors, Image resolution, Radiofrequency interference,
synthetic aperture radar (SAR)
BibRef
Snapir, B.[Boris],
Waine, T.W.[Toby W.],
Biermann, L.[Lauren],
Maritime Vessel Classification to Monitor Fisheries with SAR:
Demonstration in the North Sea,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Liu, N.Y.[Neng-Yuan],
Cao, Z.J.[Zong-Jie],
Cui, Z.Y.[Zong-Yong],
Pi, Y.M.[Yi-Ming],
Dang, S.H.[Si-Hang],
Multi-Scale Proposal Generation for Ship Detection in SAR Images,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Cui, Z.Y.[Zong-Yong],
Tang, C.[Cui],
Cao, Z.J.[Zong-Jie],
Liu, N.Y.[Neng-Yuan],
D-ATR for SAR Images Based on Deep Neural Networks,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Cui, Z.Y.[Zong-Yong],
Dang, S.H.[Si-Hang],
Cao, Z.J.[Zong-Jie],
Wang, S.F.[Si-Fei],
Liu, N.Y.[Neng-Yuan],
SAR Target Recognition in Large Scene Images via Region-Based
Convolutional Neural Networks,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Wang, J.[Jun],
Zheng, T.[Tong],
Lei, P.[Peng],
Bai, X.[Xiao],
A Hierarchical Convolution Neural Network (CNN)-Based Ship Target
Detection Method in Spaceborne SAR Imagery,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Renga, A.,
Graziano, M.D.,
Moccia, A.,
Segmentation of Marine SAR Images by Sublook Analysis and Application
to Sea Traffic Monitoring,
GeoRS(57), No. 3, March 2019, pp. 1463-1477.
IEEE DOI
1903
geophysical image processing, image segmentation,
oceanographic regions, remote sensing by radar, ships,
synthetic aperture radar (SAR)
BibRef
Wang, Y.Y.[Yuan-Yuan],
Wang, C.[Chao],
Zhang, H.[Hong],
Dong, Y.[Yingbo],
Wei, S.[Sisi],
A SAR Dataset of Ship Detection for Deep Learning under Complex
Backgrounds,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Chang, Y.L.[Yang-Lang],
Anagaw, A.[Amare],
Chang, L.[Lena],
Wang, Y.C.[Yi Chun],
Hsiao, C.Y.[Chih-Yu],
Lee, W.H.[Wei-Hong],
Ship Detection Based on YOLOv2 for SAR Imagery,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Gierull, C.H.,
Demystifying the Capability of Sublook Correlation Techniques for
Vessel Detection in SAR Imagery,
GeoRS(57), No. 4, April 2019, pp. 2031-2042.
IEEE DOI
1904
Doppler radar, image texture, marine radar, optical correlation,
radar detection, radar imaging, ships, statistical analysis,
synthetic aperture radar (SAR)
BibRef
Filippo, B.[Biondi],
COSMO-SkyMed Staring Spotlight SAR Data for Micro-Motion and
Inclination Angle Estimation of Ships by Pixel Tracking and Convex
Optimization,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Salembier, P.,
Liesegang, S.,
López-Martínez, C.,
Ship Detection in SAR Images Based on Maxtree Representation and
Graph Signal Processing,
GeoRS(57), No. 5, May 2019, pp. 2709-2724.
IEEE DOI
1905
filtering theory, geophysical image processing,
image representation, learning (artificial intelligence),
tree filter
BibRef
Zhang, T.[Tao],
Ji, J.S.[Jin-Sheng],
Li, X.F.[Xiao-Feng],
Yu, W.X.[Wen-Xian],
Xiong, H.L.[Hui-Lin],
Ship Detection From PolSAR Imagery Using the Complete Polarimetric
Covariance Difference Matrix,
GeoRS(57), No. 5, May 2019, pp. 2824-2839.
IEEE DOI
1905
covariance matrices, geophysical signal processing,
notch filters, object detection, radar clutter, radar imaging,
target-to-clutter ratio (TCR)
BibRef
Zhang, T.[Tao],
Jiang, L.F.[Lin-Feng],
Xiang, D.L.[De-Liang],
Ban, Y.F.[Yi-Fang],
Pei, L.[Ling],
Xiong, H.L.[Hui-Lin],
Ship detection from PolSAR imagery using the ambiguity removal
polarimetric notch filter,
PandRS(157), 2019, pp. 41-58.
Elsevier DOI
1911
PolSAR, Ship detection, Azimuth ambiguity removal, GP-PNF, PSH,
Depolarized energy ratio of targets
BibRef
Zhang, J.Z.[Jia-Zhi],
Zhang, X.[Xin],
Deng, W.[Weibo],
Ye, L.[Lei],
Yang, Q.A.[Qi-Ang],
A Geometric Barycenter-Based Clutter Suppression Method for Ship
Detection in HF Mixed-Mode Surface Wave Radar,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Pelich, R.[Ramona],
Chini, M.[Marco],
Hostache, R.[Renaud],
Matgen, P.[Patrick],
Lopez-Martinez, C.[Carlos],
Nuevo, M.[Miguel],
Ries, P.[Philippe],
Eiden, G.[Gerd],
Large-Scale Automatic Vessel Monitoring Based on Dual-Polarization
Sentinel-1 and AIS Data,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
dual-polarimetric descriptors. Ships.
BibRef
Chen, S.Y.[Shi-Yuan],
Li, X.J.[Xiao-Jiang],
A new CFAR algorithm based on variable window for ship target detection
in SAR images,
SIViP(13), No. 4, June 2019, pp. 779-786.
WWW Link.
1906
BibRef
Zhang, T.[Tianwen],
Zhang, X.L.[Xiao-Ling],
High-Speed Ship Detection in SAR Images Based on a Grid Convolutional
Neural Network,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Joshi, S.K.[Sushil Kumar],
Baumgartner, S.V.[Stefan V.],
da Silva, A.B.C.[Andre B. C.],
Krieger, G.[Gerhard],
Range-Doppler Based CFAR Ship Detection with Automatic Training Data
Selection,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Back, M.Y.[Min-Young],
Kim, D.[Donghan],
Kim, S.W.[Sang-Wan],
Won, J.S.[Joong-Sun],
Two-Dimensional Ship Velocity Estimation Based on KOMPSAT-5 Synthetic
Aperture Radar Data,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Santi, F.,
Pieralice, F.,
Pastina, D.,
Joint Detection and Localization of Vessels at Sea With a GNSS-Based
Multistatic Radar,
GeoRS(57), No. 8, August 2019, pp. 5894-5913.
IEEE DOI
1908
Doppler radar, passive radar, radar receivers, radio receivers,
radio transmitters, satellite navigation, ship targets,
ship localization
BibRef
Lang, H.,
Xi, Y.,
Zhang, X.,
Ship Detection in High-Resolution SAR Images by Clustering Spatially
Enhanced Pixel Descriptor,
GeoRS(57), No. 8, August 2019, pp. 5407-5423.
IEEE DOI
1908
image resolution, object detection, radar imaging, ships,
synthetic aperture radar, ship detection,
synthetic aperture radar (SAR)
BibRef
Biondi, F.[Filippo],
Addabbo, P.[Pia],
Orlando, D.[Danilo],
Clemente, C.[Carmine],
Micro-Motion Estimation of Maritime Targets Using Pixel Tracking in
Cosmo-Skymed Synthetic Aperture Radar Data: An Operative Assessment,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Ding, Z.,
Zhang, T.,
Li, Y.,
Li, G.,
Dong, X.,
Zeng, T.,
Ke, M.,
A Ship ISAR Imaging Algorithm Based on Generalized Radon-Fourier
Transform With Low SNR,
GeoRS(57), No. 9, September 2019, pp. 6385-6396.
IEEE DOI
1909
Marine vehicles, Imaging, Signal to noise ratio,
Signal processing algorithms, Radar imaging, Doppler effect,
noncooperative ship
BibRef
Leng, X.,
Ji, K.,
Zhou, S.,
Xing, X.,
Ship Detection Based on Complex Signal Kurtosis in Single-Channel SAR
Imagery,
GeoRS(57), No. 9, September 2019, pp. 6447-6461.
IEEE DOI
1909
Marine vehicles, Radar polarimetry, Synthetic aperture radar,
Clutter, Gaussian distribution, Proposals, Sensitivity,
synthetic aperture radar (SAR)
BibRef
Cao, C.H.[Cheng-Hui],
Zhang, J.[Jie],
Meng, J.M.[Jun-Min],
Zhang, X.[Xi],
Mao, X.P.[Xing-Peng],
Analysis of Ship Detection Performance with Full-, Compact- and
Dual-Polarimetric SAR,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Yang, J.Y.[Jun-Ying],
Qiu, X.L.[Xiao-Lan],
Zhong, L.H.[Li-Hua],
Shang, M.Y.[Ming-Yang],
Ding, C.B.[Chi-Biao],
A Simultaneous Imaging Scheme of Stationary Clutter and Moving
Targets for Maritime Scenarios with the First Chinese Dual-Channel
Spaceborne SAR Sensor,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
Shi, J.[Jun],
Wei, S.J.[Shun-Jun],
Depthwise Separable Convolution Neural Network for High-Speed SAR
Ship Detection,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Cui, Z.,
Li, Q.,
Cao, Z.,
Liu, N.,
Dense Attention Pyramid Networks for Multi-Scale Ship Detection in
SAR Images,
GeoRS(57), No. 11, November 2019, pp. 8983-8997.
IEEE DOI
1911
Marine vehicles, Feature extraction, Radar polarimetry,
Synthetic aperture radar, Radar imaging, Semantics,
synthetic aperture radar (SAR)
BibRef
Sommer, A.,
Ostermann, J.,
Backprojection Subimage Autofocus of Moving Ships for Synthetic
Aperture Radar,
GeoRS(57), No. 11, November 2019, pp. 8383-8393.
IEEE DOI
1911
Marine vehicles, Synthetic aperture radar, Antennas,
Image reconstruction, Radar imaging, Spaceborne radar,
synthetic aperture radar (SAR)
BibRef
Gao, F.[Fei],
Shi, W.[Wei],
Wang, J.[Jun],
Yang, E.[Erfu],
Zhou, H.Y.[Hui-Yu],
Enhanced Feature Extraction for Ship Detection from Multi-Resolution
and Multi-Scene Synthetic Aperture Radar (SAR) Images,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Fan, W.W.[Wei-Wei],
Zhou, F.[Feng],
Bai, X.[Xueru],
Tao, M.L.[Ming-Liang],
Tian, T.[Tian],
Ship Detection Using Deep Convolutional Neural Networks for PolSAR
Images,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Ai, J.,
Tian, R.,
Luo, Q.,
Jin, J.,
Tang, B.,
Multi-Scale Rotation-Invariant Haar-Like Feature Integrated CNN-Based
Ship Detection Algorithm of Multiple-Target Environment in SAR
Imagery,
GeoRS(57), No. 12, December 2019, pp. 10070-10087.
IEEE DOI
1912
Marine vehicles, Feature extraction, Clutter,
Synthetic aperture radar, Radar polarimetry, Correlation,
constant false alarm rate (CFAR) detector (TCS-JCFAR)-based prescreening
BibRef
Dechesne, C.[Clément],
Lefèvre, S.[Sébastien],
Vadaine, R.[Rodolphe],
Hajduch, G.[Guillaume],
Fablet, R.[Ronan],
Ship Identification and Characterization in Sentinel-1 SAR Images
with Multi-Task Deep Learning,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Liu, G.[Genwang],
Zhang, X.[Xi],
Meng, J.[Junmin],
A Small Ship Target Detection Method Based on Polarimetric SAR,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Liang, Y.[Yi],
Sun, K.[Kun],
Zeng, Y.[Yugui],
Li, G.[Guofei],
Xing, M.D.[Meng-Dao],
An Adaptive Hierarchical Detection Method for Ship Targets in
High-Resolution SAR Images,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Wei, S.J.[Shun-Jun],
Su, H.[Hao],
Ming, J.[Jing],
Wang, C.[Chen],
Yan, M.[Min],
Kumar, D.[Durga],
Shi, J.[Jun],
Zhang, X.L.[Xiao-Ling],
Precise and Robust Ship Detection for High-Resolution SAR Imagery
Based on HR-SDNet,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Liu, T.,
Zhang, J.,
Gao, G.,
Yang, J.,
Marino, A.,
CFAR Ship Detection in Polarimetric Synthetic Aperture Radar Images
Based on Whitening Filter,
GeoRS(58), No. 1, January 2020, pp. 58-81.
IEEE DOI
2001
Marine vehicles, Speckle, Covariance matrices, Clutter,
Synthetic aperture radar, Probability density function,
synthetic aperture radar
BibRef
Tian, M.,
Yang, Z.,
Duan, C.,
Liao, G.,
Liu, Y.,
Wang, C.,
Huang, P.,
A Method for Active Marine Target Detection Based on Complex
Interferometric Dissimilarity in Dual-Channel ATI-SAR Systems,
GeoRS(58), No. 1, January 2020, pp. 251-267.
IEEE DOI
2001
Object detection, Synthetic aperture radar, Measurement,
Marine vehicles, Clutter, Radar polarimetry,
synthetic aperture radar (SAR)
BibRef
Zhang, L.[Ling],
Mao, D.W.[Dong-Wei],
Niu, J.[Jiong],
Wu, Q.M.J.[Q. M. Jonathan],
Ji, Y.G.[Yong-Gang],
Continuous Tracking of Targets for Stereoscopic HFSWR Based on IMM
Filtering Combined with ELM,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
High frequency surface wave radar.
marine surveillance.
BibRef
Lu, H.,
Li, Y.,
Li, H.,
Lv, R.,
Lang, L.,
Li, Q.,
Song, G.,
Li, P.,
Wang, K.,
Xue, L.,
Zhu, D.,
Ship Detection by an Airborne Passive Interferometric Microwave
Sensor (PIMS),
GeoRS(58), No. 4, April 2020, pp. 2682-2694.
IEEE DOI
2004
Airborne, interferometric, microwave sensor, passive, ship detection
BibRef
Guo, R.[Rui],
Cui, J.Y.[Jing-Yu],
Jing, G.B.[Guo-Bin],
Zhang, S.X.[Shuang-Xi],
Xing, M.D.[Meng-Dao],
Validating GEV Model for Reflection Symmetry-Based Ocean Ship
Detection with Gaofen-3 Dual-Polarimetric Data,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Sun, W.F.[Wei-Feng],
Ji, M.J.[Meng-Jie],
Huang, W.M.[Wei-Min],
Ji, Y.G.[Yong-Gang],
Dai, Y.[Yongshou],
Vessel Tracking Using Bistatic Compact HFSWR,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Li, Y.Z.[Yong-Zhen],
Quan, S.[Sinong],
Xiang, D.L.[De-Liang],
Wang, W.[Wei],
Hu, C.B.[Can-Bin],
Liu, Y.[Yemin],
Wang, X.[Xuesong],
Ship Recognition from Chaff Clouds with Sophisticated Polarimetric
Decomposition,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Chen, S.Q.[Shi-Qi],
Zhang, J.[Jun],
Zhan, R.H.[Rong-Hui],
R2FA-Det: Delving into High-Quality Rotatable Boxes for Ship
Detection in SAR Images,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Xiong, W.[Wei],
Zhang, Y.[Ying],
Dong, X.[Xichao],
Cui, C.[Chang],
Liu, Z.[Zheng],
Xiong, M.H.[Ming-Hui],
A Novel Ship Imaging Method with Multiple Sinusoidal Functions to
Match Rotation Effects in Geosynchronous SAR,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Gao, F.[Fei],
He, Y.S.[Yi-Shan],
Wang, J.[Jun],
Hussain, A.[Amir],
Zhou, H.Y.[Hui-Yu],
Anchor-free Convolutional Network with Dense Attention Feature
Aggregation for Ship Detection in SAR Images,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
Shi, J.[Jun],
Wei, S.[Shunjun],
HyperLi-Net: A hyper-light deep learning network for high-accurate
and high-speed ship detection from synthetic aperture radar imagery,
PandRS(167), 2020, pp. 123-153.
Elsevier DOI
2008
HyperLi-Net, Deep learning, Ship detection,
Synthetic Aperture Radar (SAR), High-speed, High-accurate
BibRef
Jin, K.,
Chen, Y.,
Xu, B.,
Yin, J.,
Wang, X.,
Yang, J.,
A Patch-to-Pixel Convolutional Neural Network for Small Ship
Detection With PolSAR Images,
GeoRS(58), No. 9, September 2020, pp. 6623-6638.
IEEE DOI
2008
Feature extraction, Marine vehicles, Object detection,
Optical imaging, Optical sensors, Synthetic aperture radar,
ship detection
BibRef
Wang, X.,
Li, G.,
Zhang, X.,
He, Y.,
Ship Detection in SAR Images via Local Contrast of Fisher Vectors,
GeoRS(58), No. 9, September 2020, pp. 6467-6479.
IEEE DOI
2008
Marine vehicles, Radar polarimetry, Detectors, Clutter,
Synthetic aperture radar, Detection algorithms,
synthetic aperture radar (SAR)
BibRef
Liu, T.,
Yang, Z.,
Marino, A.,
Gao, G.,
Yang, J.,
Robust CFAR Detector Based on Truncated Statistics for Polarimetric
Synthetic Aperture Radar,
GeoRS(58), No. 9, September 2020, pp. 6731-6747.
IEEE DOI
2008
Marine vehicles, Clutter, Detectors, Covariance matrices,
Synthetic aperture radar, Training, truncated statistics (TS)
BibRef
Graziano, M.D.[Maria Daniela],
Renga, A.[Alfredo],
Moccia, A.[Antonio],
Integration of Automatic Identification System (AIS) Data and
Single-Channel Synthetic Aperture Radar (SAR) Images by SAR-Based
Ship Velocity Estimation for Maritime Situational Awareness,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Kuang, C.,
Wang, C.,
Wen, B.,
Hou, Y.,
Lai, Y.,
An Improved CA-CFAR Method for Ship Target Detection in Strong
Clutter Using UHF Radar,
SPLetters(27), 2020, pp. 1445-1449.
IEEE DOI
2009
Clutter, Rivers, Marine vehicles, Doppler effect, Doppler radar,
Radar cross-sections, Extended target, improved CA-CFAR method,
UHF radar
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
Ke, X.[Xiao],
Zhan, X.[Xu],
Shi, J.[Jun],
Wei, S.J.[Shun-Jun],
Pan, D.[Dece],
Li, J.W.[Jian-Wei],
Su, H.[Hao],
Zhou, Y.[Yue],
Kumar, D.[Durga],
LS-SSDD-v1.0: A Deep Learning Dataset Dedicated to Small Ship
Detection from Large-Scale Sentinel-1 SAR Images,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Zhang, T.,
Yang, Z.,
Gan, H.,
Xiang, D.,
Zhu, S.,
Yang, J.,
PolSAR Ship Detection Using the Joint Polarimetric Information,
GeoRS(58), No. 11, November 2020, pp. 8225-8241.
IEEE DOI
2011
Marine vehicles, Scattering, Sea surface, Rough surfaces,
Surface roughness, Detectors, Covariance matrices,
surface scattering
BibRef
Lanz, P.[Peter],
Marino, A.[Armando],
Brinkhoff, T.[Thomas],
Köster, F.[Frank],
Möller, M.[Matthias],
The InflateSAR Campaign: Evaluating SAR Identification Capabilities
of Distressed Refugee Boats,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Ding, F.[Fan],
Zhao, C.[Chen],
Chen, Z.Z.[Ze-Zong],
Li, J.[Jian],
Sea Echoes for Airborne HF/VHF Radar:
Mathematical Model and Simulation,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Yang, J.Y.[Jun-Ying],
Qiu, X.L.[Xiao-Lan],
Shang, M.Y.[Ming-Yang],
Zhong, L.H.[Li-Hua],
Ding, C.[Chibiao],
A Method of Marine Moving Targets Detection in Multi-Channel ScanSAR
System,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Yang, R.[Rong],
Wang, R.[Robert],
Deng, Y.K.[Yun-Kai],
Jia, X.X.[Xiao-Xue],
Zhang, H.[Heng],
Rethinking the Random Cropping Data Augmentation Method Used in the
Training of CNN-Based SAR Image Ship Detector,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Fu, J.M.[Jia-Mei],
Sun, X.[Xian],
Wang, Z.R.[Zhi-Rui],
Fu, K.[Kun],
An Anchor-Free Method Based on Feature Balancing and Refinement
Network for Multiscale Ship Detection in SAR Images,
GeoRS(59), No. 2, February 2021, pp. 1331-1344.
IEEE DOI
2101
Marine vehicles, Feature extraction, Synthetic aperture radar,
Detectors, Radar polarimetry, Scattering, Semantics,
synthetic aperture radar (SAR)
BibRef
Chen, J.S.,
Dao, D.T.,
Chien, H.,
Ship Echo Identification Based on Norm-Constrained Adaptive
Beamforming for an Arrayed High-Frequency Coastal Radar,
GeoRS(59), No. 2, February 2021, pp. 1143-1153.
IEEE DOI
2101
Marine vehicles, Brightness, Array signal processing,
Radar detection, Sea measurements, Radar antennas, ship detection
BibRef
Guo, H.Y.[Hao-Yuan],
Yang, X.[Xi],
Wang, N.N.[Nan-Nan],
Gao, X.[Xinbo],
A CenterNet++ model for ship detection in SAR images,
PR(112), 2021, pp. 107787.
Elsevier DOI
2102
Ship detection, Synthetic aperture radar (SAR), Deep learning
BibRef
Li, Z.[Zhi],
Qu, C.W.[Chang-Wen],
Zhou, Q.[Qiang],
Liu, C.[Chen],
Peng, S.J.[Shu-Juan],
Li, J.W.[Jian-Wei],
Ship detection in harbor area in SAR images based on constructing an
accurate sea-clutter model,
ICIVC17(13-19)
IEEE DOI
1708
Clutter, Fitting, Image segmentation, Marine vehicles,
Mathematical model, Strips,
constant false alarm rate, ship detection, the SAR image,
and-sea segmentation, port area, sea clutter model
BibRef
Negula, I.D.[I. Dana],
Poenaru, V.D.,
Olteanu, V.G.,
Badea, A.,
Sentinel-1/2 Data For Ship Traffic Monitoring On The Danube River,
ISPRS16(B8: 37-41).
DOI Link
1610
BibRef
Martin-de-Nicolas, J.,
Jarabo-Amores, P.,
Rey-Maestre, N.,
Mata-Moya, D.,
Barcena-Humanes, J.L.,
A non-parametric CFAR detector based on SAR sea clutter statistical
modeling,
ICIP15(4426-4430)
IEEE DOI
1512
CFAR; Synthetic aperture radar; clutter modeling; ship detection
BibRef
Chen, W.T.[Wen-Ting],
Ji, K.F.[Ke-Feng],
Xing, X.W.[Xiang-Wei],
Zou, H.X.[Huan-Xin],
Sun, H.[Hao],
Ship recognition in high resolution SAR imagery based on feature
selection,
CVRS12(301-305).
IEEE DOI
1302
BibRef
Zhuo, C.[Chen],
An Improved Automatic Ship Detection Method in SAR Images,
CISP09(1-4).
IEEE DOI
0910
BibRef
Li, W.B.[Wei-Bin],
He, M.Y.[Ming-Yi],
Zhang, S.L.[Shun-Li],
A Heterogeneity-Based Ship Detection Algorithm for SAR Imagery,
CISP09(1-5).
IEEE DOI
0910
BibRef
Gagnon, L.,
Klepko, R.,
Hierarchical Classifier Design for Airborne SAR Images of Ships,
SPIE(3371), 1998, pp. xx
PDF File.
BibRef
9800
Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
ATR -- IR, Infra-Red, Thermal, Applications .