Chaudhuri, B.B.,
Rodenacker, K.,
Burger, G.,
Characterization and Featuring of Histological Section Images,
PRL(7), 1988, pp. 245-252.
BibRef
8800
Bartels, P.H.,
Gahm, T.,
Thompson, D.,
Automated Microscopy in Diagnostic Histopathology:
From Image-Processing to Automated Reasoning,
IJIST(8), No. 2, 1997, pp. 214-223.
9704
BibRef
Adiga, P.S.U.[P.S. Umesh],
Chaudhuri, B.B.,
An efficient method based on watershed and rule-based merging for
segmentation of 3-D histo-pathological images,
PR(34), No. 7, July 2001, pp. 1449-1458.
Elsevier DOI
0105
BibRef
Gurcan, M.N.[Metin N.],
Boucheron, L.[Laura],
Can, A.[Ali],
Madabhushi, A.[Anant],
Rajpoot, N.[Nasir],
Yener, B.[Bulent],
Histopathological Image Analysis: A Review,
RevBiomedEng(2), 2009, pp. 147-171.
IEEE DOI
WWW Link.
Survey, Histopathology.
BibRef
0900
Brenner, J.F.[John F.],
Lester, J.M.[James M.],
Selles, W.D.[William D.],
Scene Segmentation in Automated Histopathology:
Techniques Evolved from Cytology Automation,
PR(13), No. 1, 1981, pp. 65-77.
Elsevier DOI
0309
BibRef
Sertel, O.,
Kong, J.,
Shimada, H.,
Catalyurek, U.V.,
Saltz, J.H.,
Gurcan, M.N.,
Computer-aided prognosis of neuroblastoma on whole-slide images:
Classification of stromal development,
PR(42), No. 6, June 2009, pp. 1093-1103.
Elsevier DOI
0902
Whole-slide histopathological image analysis; Texture analysis; Neuroblastoma
BibRef
Kong, J.[Jun],
Sertel, O.[Olcay],
Shimada, H.[Hiroyuki],
Boyer, K.L.[Kim L.],
Saltz, J.[Joel],
Gurcan, M.N.[Metin N.],
Computer-aided evaluation of neuroblastoma on whole-slide histology
images: Classifying grade of neuroblastic differentiation,
PR(42), No. 6, June 2009, pp. 1080-1092.
Elsevier DOI
0902
BibRef
Earlier:
Computer-Aided Grading of Neuroblastic Differentiation:
Multi-Resolution and Multi-Classifier Approach,
ICIP07(V: 525-528).
IEEE DOI
0709
Quantitative image analysis; Microscopy images; Neuroblastoma
prognosis; Grade of differentiation; Multi-resolution pathological
image analysis; Machine learning
BibRef
Dundar, M.M.[M. Murat],
Badve, S.I.[Sun-Il],
Raykar, V.C.[Vikas C.],
Jain, R.K.[Rohit K.],
Sertel, O.[Olcay],
Gurcan, M.N.[Metin N.],
A Multiple Instance Learning Approach toward Optimal Classification of
Pathology Slides,
ICPR10(2732-2735).
IEEE DOI
1008
BibRef
Kong, H.,
Gurcan, M.,
Belkacem-Boussaid, K.,
Partitioning Histopathological Images: An Integrated Framework for
Supervised Color-Texture Segmentation and Cell Splitting,
MedImg(30), No. 9, September 2011, pp. 1661-1677.
IEEE DOI
1109
BibRef
Ali, S.,
Madabhushi, A.,
An Integrated Region-, Boundary-, Shape-Based Active Contour for
Multiple Object Overlap Resolution in Histological Imagery,
MedImg(31), No. 7, July 2012, pp. 1448-1460.
IEEE DOI
1208
BibRef
Loménie, N.[Nicolas],
Racoceanu, D.[Daniel],
Point set morphological filtering and semantic spatial configuration
modeling: Application to microscopic image and bio-structure analysis,
PR(45), No. 8, August 2012, pp. 2894-2911.
Elsevier DOI
1204
Shape analysis; Mesh analysis; Unorganized point set; Spatial relation
modeling; Mathematical morphological operator; Image exploration; Graph
representation; Semantic query; Visual reasoning; Digital
histopathology
BibRef
Srinivas, U.,
Mousavi, H.S.,
Monga, V.,
Hattel, A.,
Jayarao, B.,
Simultaneous Sparsity Model for Histopathological Image
Representation and Classification,
MedImg(33), No. 5, May 2014, pp. 1163-1179.
IEEE DOI
1405
Biomedical image processing
BibRef
Gultekin, T.,
Koyuncu, C.F.,
Sokmensuer, C.,
Gunduz-Demir, C.,
Two-Tier Tissue Decomposition for Histopathological Image
Representation and Classification,
MedImg(34), No. 1, January 2015, pp. 275-283.
IEEE DOI
1502
biological organs
BibRef
Vu, T.H.,
Mousavi, H.S.,
Monga, V.,
Rao, G.,
Rao, U.K.A.,
Histopathological Image Classification Using Discriminative
Feature-Oriented Dictionary Learning,
MedImg(35), No. 3, March 2016, pp. 738-751.
IEEE DOI
1603
Biomedical imaging
BibRef
Su, H.,
Xing, F.,
Yang, L.,
Robust Cell Detection of Histopathological Brain Tumor Images Using
Sparse Reconstruction and Adaptive Dictionary Selection,
MedImg(35), No. 6, June 2016, pp. 1575-1586.
IEEE DOI
1606
Dictionaries
BibRef
Ibragimov, B.,
Korez, R.,
Likar, B.,
Pernuš, F.,
Xing, L.,
Vrtovec, T.,
Segmentation of Pathological Structures by Landmark-Assisted
Deformable Models,
MedImg(36), No. 7, July 2017, pp. 1457-1469.
IEEE DOI
1707
Computational modeling, Deformable models, Image edge detection,
Image segmentation, Laplace equations, Pathology, Shape,
Laplacian mesh editing, corpus callosum segmentation,
deformablemodels, landmark detection, pathology analysis,
prostate segmentation, vertebra, segmentation
BibRef
Shi, X.S.[Xiao-Shuang],
Sapkota, M.[Manish],
Xing, F.Y.[Fu-Yong],
Liu, F.J.[Fu-Jun],
Cui, L.[Lei],
Yang, L.[Lin],
Pairwise based deep ranking hashing for histopathology image
classification and retrieval,
PR(81), 2018, pp. 14-22.
Elsevier DOI
1806
Histopathology images, Classification, Retrieval,
Ranking hashing, Deep learning
BibRef
Zhu, S.J.[Shu-Jin],
Li, Y.H.[Yue-Hua],
Kalra, S.[Shivam],
Tizhoosh, H.R.,
Multiple disjoint dictionaries for representation of histopathology
images,
JVCIR(55), 2018, pp. 243-252.
Elsevier DOI
1809
Image retrieval, Image representation, Histopathology,
Wholeslide imaging, Bag-of-words, Dictionary learning, LBP, SVM, Deep learning
BibRef
Kumar, N.[Neeraj],
Uppala, P.[Phanikrishna],
Duddu, K.[Karthik],
Sreedhar, H.[Hari],
Varma, V.[Vishal],
Guzman, G.[Grace],
Walsh, M.[Michael],
Sethi, A.[Amit],
Hyperspectral Tissue Image Segmentation Using Semi-Supervised NMF and
Hierarchical Clustering,
MedImg(38), No. 5, May 2019, pp. 1304-1313.
IEEE DOI
1905
Image segmentation, Imaging, Diseases, Spatial resolution, Chemicals,
Biological tissues, Quantum cascade lasers,
hierarchical clustering
BibRef
Lahiani, A.[Amal],
Gildenblat, J.[Jacob],
Klaman, I.[Irina],
Navab, N.[Nassir],
Klaiman, E.[Eldad],
Generalising multistain immunohistochemistry tissue segmentation using
end-to-end colour deconvolution deep neural networks,
IET-IPR(13), No. 7, 30 May 2019, pp. 1066-1073.
DOI Link
1906
BibRef
Katouzian, A.[Amin],
Karamalis, A.[Athanasios],
Lisauskas, J.[Jennifer],
Eslami, A.[Abouzar],
Navab, N.[Nassir],
IVUS-Histology Image Registration,
WBIR12(141-149).
Springer DOI
1208
BibRef
Maji, P.,
Mahapatra, S.,
Circular Clustering in Fuzzy Approximation Spaces for Color
Normalization of Histological Images,
MedImg(39), No. 5, May 2020, pp. 1735-1745.
IEEE DOI
2005
Image color analysis, Histograms, Image analysis,
Clustering algorithms, Rough sets, Uncertainty, Fuzzy sets,
rough sets
BibRef
Li, X.[Xiao],
Tang, H.Z.[Hong-Zhong],
Zhang, D.B.[Dong-Bo],
Liu, T.[Ting],
Mao, L.Z.[Li-Zhen],
Chen, T.Y.[Tian-Yu],
Histopathological image classification through discriminative feature
learning and mutual information-based multi-channel joint sparse
representation,
JVCIR(70), 2020, pp. 102799.
Elsevier DOI
2007
Discriminative feature learning,
Stack-based discriminative prediction sparse decomposition (SDPSD),
Histopathological image classification
BibRef
Vu, T.,
Lai, P.,
Raich, R.,
Pham, A.,
Fern, X.Z.,
Rao, U.A.,
A Novel Attribute-Based Symmetric Multiple Instance Learning for
Histopathological Image Analysis,
MedImg(39), No. 10, October 2020, pp. 3125-3136.
IEEE DOI
2010
Cancer, Image analysis, Training, Task analysis,
Support vector machines, Image segmentation,
dynamic programming
BibRef
Mahmood, F.,
Borders, D.,
Chen, R.J.,
Mckay, G.N.,
Salimian, K.J.,
Baras, A.,
Durr, N.J.,
Deep Adversarial Training for Multi-Organ Nuclei Segmentation in
Histopathology Images,
MedImg(39), No. 11, November 2020, pp. 3257-3267.
IEEE DOI
2011
Image segmentation, Pathology, Training, Diseases, Task analysis,
Generative adversarial networks, Morphology, Nuclei segmentation,
synthetic pathology data
BibRef
Shafiei, S.,
Safarpoor, A.,
Jamalizadeh, A.,
Tizhoosh, H.R.,
Class-Agnostic Weighted Normalization of Staining in Histopathology
Images Using a Spatially Constrained Mixture Model,
MedImg(39), No. 11, November 2020, pp. 3355-3366.
IEEE DOI
2011
Image color analysis, Parameter estimation, Pathology,
Gaussian mixture model, Probability density function,
spatial information
BibRef
Qu, H.,
Wu, P.,
Huang, Q.,
Yi, J.,
Yan, Z.,
Li, K.,
Riedlinger, G.M.,
De, S.,
Zhang, S.,
Metaxas, D.N.,
Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images,
MedImg(39), No. 11, November 2020, pp. 3655-3666.
IEEE DOI
2011
Image segmentation, Annotations, Training, Task analysis, Cancer,
Biomedical imaging, Deep learning, Nuclei detection,
conditional random field
BibRef
Graham, S.,
Epstein, D.,
Rajpoot, N.,
Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in
Histology Images,
MedImg(39), No. 12, December 2020, pp. 4124-4136.
IEEE DOI
2012
Image segmentation, Standards, Task analysis, Pathology,
Harmonic analysis, Computer architecture, Machine learning,
computational pathology
BibRef
Gunesli, G.N.,
Sokmensuer, C.,
Gunduz-Demir, C.,
AttentionBoost: Learning What to Attend for Gland Segmentation in
Histopathological Images by Boosting Fully Convolutional Networks,
MedImg(39), No. 12, December 2020, pp. 4262-4273.
IEEE DOI
2012
Glands, Task analysis, Image segmentation, Adaptation models,
Training, Boosting, Electronic mail, Deep learning,
instance segmentation
BibRef
Sikaroudi, M.[Milad],
Ghojogh, B.[Benyamin],
Safarpoor, A.[Amir],
Karray, F.[Fakhri],
Crowley, M.[Mark],
Tizhoosh, H.R.[Hamid R.],
Offline Versus Online Triplet Mining Based on Extreme Distances of
Histopathology Patches,
ISVC20(I:333-345).
Springer DOI
2103
BibRef
Maleki, D.[Danial],
Afshari, M.[Mehdi],
Babaie, M.[Morteza],
Tizhoosh, H.R.,
Ink Marker Segmentation in Histopathology Images Using Deep Learning,
ISVC20(I:359-368).
Springer DOI
2103
BibRef
Cheng, H.T.[Hsien-Tzu],
Yeh, C.F.[Chun-Fu],
Kuo, P.C.[Po-Chen],
Wei, A.[Andy],
Liu, K.C.[Keng-Chi],
Ko, M.C.[Mong-Chi],
Chao, K.H.[Kuan-Hua],
Peng, Y.C.[Yu-Ching],
Liu, T.L.[Tyng-Luh],
Self-similarity Student for Partial Label Histopathology Image
Segmentation,
ECCV20(XXV:117-132).
Springer DOI
2011
BibRef
Xiang, Y.,
Chen, J.,
Liu, Q.,
Liang, Y.,
Disentangled Representation Learning Based Multidomain Stain
Normalization For Histological Images,
ICIP20(360-364)
IEEE DOI
2011
Image color analysis, Image reconstruction,
Generative adversarial networks, Training, Decoding, Generators,
Deep Learning
BibRef
Hosseini, M.S.[Mahdi S.],
Chan, L.[Lyndon],
Huang, W.M.[Wei-Min],
Wang, Y.[Yichen],
Hasan, D.[Danial],
Rowsell, C.[Corwyn],
Damaskinos, S.[Savvas],
Plataniotis, K.N.[Konstantinos N.],
On Transferability of Histological Tissue Labels in Computational
Pathology,
ECCV20(XXIX: 453-469).
Springer DOI
2010
BibRef
Cheeseman, A.K.[Alison K.],
Tizhoosh, H.R.[Hamid R.],
Vrscay, E.R.[Edward R.],
Studying the Effect of Digital Stain Separation of Histopathology
Images on Image Search Performance,
ICIAR20(II:262-273).
Springer DOI
2007
BibRef
Alinsaif, S.,
Lang, J.,
Histological Image Classification using Deep Features and Transfer
Learning,
CRV20(101-108)
IEEE DOI
2006
Deep learning, Fine-tuning, CNN-Based Features, histopathological,
SVM, classification
BibRef
Hosseini, M.S.[Mahdi S.],
Chan, L.[Lyndon],
Tse, G.[Gabriel],
Tang, M.[Michael],
Deng, J.[Jun],
Norouzi, S.[Sajad],
Rowsell, C.[Corwyn],
Plataniotis, K.N.[Konstantinos N.],
Damaskinos, S.[Savvas],
Atlas of Digital Pathology: A Generalized Hierarchical Histological
Tissue Type-Annotated Database for Deep Learning,
CVPR19(11739-11748).
IEEE DOI
2002
BibRef
Hou, L.[Le],
Agarwal, A.[Ayush],
Samaras, D.[Dimitris],
Kurc, T.M.[Tahsin M.],
Gupta, R.R.[Rajarsi R.],
Saltz, J.H.[Joel H.],
Robust Histopathology Image Analysis: To Label or to Synthesize?,
CVPR19(8525-8534).
IEEE DOI
2002
BibRef
Cheeseman, A.K.[Alison K.],
Tizhoosh, H.[Hamid],
Vrscay, E.R.[Edward R.],
A Compact Representation of Histopathology Images Using Digital Stain
Separation and Frequency-Based Encoded Local Projections,
ICIAR19(II:147-158).
Springer DOI
1909
BibRef
Stanisavljevic, M.[Milos],
Anghel, A.[Andreea],
Papandreou, N.[Nikolaos],
Andani, S.[Sonali],
Pati, P.[Pushpak],
Rüschoff, J.H.[Jan Hendrik],
Wild, P.[Peter],
Gabrani, M.[Maria],
Pozidis, H.[Haralampos],
A Fast and Scalable Pipeline for Stain Normalization of Whole-Slide
Images in Histopathology,
BioIm18(VI:424-436).
Springer DOI
1905
BibRef
Kieffer, B.,
Babaie, M.,
Kalra, S.,
Tizhoosh, H.R.,
Convolutional neural networks for histopathology image
classification: Training vs. Using pre-trained networks,
IPTA17(1-6)
IEEE DOI
1804
feature extraction, image classification, image representation,
learning (artificial intelligence), medical image processing,
medical imaging
BibRef
Valkonen, M.,
Kartasalo, K.,
Liimatainen, K.,
Nykter, M.,
Latonen, L.,
Ruusuvuori, P.,
Dual Structured Convolutional Neural Network with Feature
Augmentation for Quantitative Characterization of Tissue Histology,
BioIm17(27-35)
IEEE DOI
1802
Biological system modeling, Feature extraction, Histograms,
Image analysis, Pathology, Training
BibRef
Li, W.,
Qian, X.,
Ji, J.,
Noise-tolerant deep learning for histopathological image segmentation,
ICIP17(3075-3079)
IEEE DOI
1803
Diseases, Image color analysis, Image segmentation,
Machine learning, Muscles, Noise measurement, Training,
noisy labels
BibRef
Astola, L.[Laura],
Stain separation in digital bright field histopathology,
IPTA16(1-6)
IEEE DOI
1703
biological tissues
BibRef
Agarwal, N.[Nitin],
Xu, X.M.[Xiang-Min],
Gopi, M.,
Automatic Detection of Histological Artifacts in Mouse Brain Slice
Images,
MCV16(105-115).
Springer DOI
1711
BibRef
Corredor, G.[German],
Romero, E.[Eduardo],
Learning histopathological regions of interest by fusing bottom-up
and top-down information,
ICIP15(3200-3204)
IEEE DOI
1512
Histopathology
BibRef
Li, X.Y.[Xing-Yu],
Plataniotis, K.N.[Konstantinos N.],
Diagnostic color estimation of tissue components in pathology images
via von Mises mixture model,
ICIP15(2060-2064)
IEEE DOI
1512
Pathology image
BibRef
Hatipoglu, N.,
Bilgin, G.,
Classification of histopathological images using convolutional neural
network,
IPTA14(1-6)
IEEE DOI
1503
image classification
BibRef
McCann, M.T.[Michael T.],
Majumdar, J.[Joshita],
Peng, C.[Cheng],
Castro, C.A.[Carlos A.],
Kovacevic, J.[Jelena],
Algorithm and benchmark dataset for stain separation in histology
images,
ICIP14(3953-3957)
IEEE DOI
1502
Accuracy
BibRef
Sommer, C.[Christoph],
Fiaschi, L.[Luca],
Hamprecht, F.A.[Fred A.],
Gerlich, D.W.[Daniel W.],
Learning-based mitotic cell detection in histopathological images,
ICPR12(2306-2309).
WWW Link.
1302
BibRef
Toutain, M.,
Lézoray, O.,
Audigié, F.,
Busoni, V.,
Rossi, G.,
Parillo, F.,
El Moataz, A.,
Analysis of Whole Slide Images of Equine Tendinopathy,
ICIAR12(II: 440-447).
Springer DOI
1206
BibRef
Díaz, G.[Gloria],
Romero, E.[Eduardo],
Histopathological Image Classification Using Stain Component Features
on a pLSA Model,
CIARP10(55-62).
Springer DOI
1011
BibRef
Cooper, L.[Lee],
Saltz, J.[Joel],
Machiraju, R.[Raghu],
Huang, K.[Kun],
Two-point correlation as a feature for histology images:
Feature space structure and correlation updating,
MMBIA10(79-86).
IEEE DOI
1006
BibRef
Graf, F.[Felix],
Grzegorzek, M.[Marcin],
Paulus, D.[Dietrich],
Counting Lymphocytes in Histopathology Images Using Connected
Components,
ICPR-Contests10(263-269).
Springer DOI
1008
BibRef
Cheng, J.[Jierong],
Veronika, M.[Merlin],
Rajapakse, J.C.[Jagath C.],
Identifying Cells in Histopathological Images,
ICPR-Contests10(244-252).
Springer DOI
1008
BibRef
Kuse, M.[Manohar],
Sharma, T.[Tanuj],
Gupta, S.[Sudhir],
A Classification Scheme for Lymphocyte Segmentation in H&E Stained
Histology Images,
ICPR-Contests10(235-243).
Springer DOI
1008
BibRef
Gurcan, M.N.[Metin N.],
Madabhushi, A.[Anant],
Rajpoot, N.[Nasir],
Pattern Recognition in Histopathological Images: An ICPR 2010 Contest,
ICPR-Contests10(226-234).
Springer DOI
1008
BibRef
Thomas, K.A.[Kristine A.],
Sottile, M.J.[Matthew J.],
Salafia, C.M.[Carolyn M.],
Unsupervised Segmentation for Inflammation Detection in Histopathology
Images,
ICISP10(541-549).
Springer DOI
1006
BibRef
Noah, S.A.[Shahrul Azman],
Yaakob, S.[Suraya],
Shahar, S.[Suzana],
Application of Information Visualization Techniques in Representing
Patients' Temporal Personal History Data,
IVIC09(168-179).
Springer DOI
0911
BibRef
Cosatto, E.[Eric],
Miller, M.[Matt],
Graf, H.P.[Hans Peter],
Meyer, J.S.[John S.],
Grading nuclear pleomorphism on histological micrographs,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Canada, B.A.[Brian A.],
Thomas, G.K.[Georgia K.],
Cheng, K.C.[Keith C.],
Wang, J.Z.[James Z.],
Liu, Y.X.[Yan-Xi],
Automatic lattice detection in near-regular histology array images,
ICIP08(1452-1455).
IEEE DOI
0810
BibRef
And:
Towards efficient automated characterization of irregular histology
images via transformation to frieze-like patterns,
CIVR08(581-590).
0807
BibRef
Zhao, D.H.[De-Hua],
Chen, Y.X.[Yi-Xin],
Correa, H.,
Statistical Categorization of Human Histological Images,
ICIP05(III: 628-631).
IEEE DOI
0512
BibRef
Roula, M.A.,
Bouridane, A.,
Kurugollu, F.,
An evolutionary snake algorithm for the segmentation of nuclei in
histopathological images,
ICIP04(I: 127-130).
IEEE DOI
0505
BibRef
Nedzved, A.,
Ablameyko, S.V.,
Pitas, I.,
Morphological Segmentation of Histology Cell Images,
ICPR00(Vol I: 500-503).
IEEE DOI
0009
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Fluorescence Analysis, Microscopic Analysis, Cells .