20.5.6 Retinal Images, Optical Coherence Tomography, OCT

Chapter Contents (Back)
Retinal Images. Optical Coherence Tomography. OCT. More general section: See also Optical Tomography, Infrared Tomography.

Koozekanani, D.[Dara], Boyer, K.L.[Kim L.], Roberts, C.[Cynthia],
Retinal thickness measurements from optical coherence tomography using a markov boundary model,
MedImg(20), No. 9, September 2001, pp. 900-916.
IEEE Top Reference. 0110
BibRef
Earlier: CVPR00(II: 363-370).
IEEE DOI 0005
BibRef

Koozekanani, D.[Dara], Boyer, K.L.[Kim L.], Roberts, C.[Cynthia],
Tracking the Optic Nervehead in OCT Video Using Dual Eigenspaces and an Adaptive Vascular Distribution Model,
MedImg(22), No. 12, December 2003, pp. 1519-1536.
IEEE Abstract. 0401
BibRef
Earlier: Add A4: Katz, S.[Steven], CVPR01(I:934-941).
IEEE DOI 0110
OCT: Optical Coherence Tompgraphy. BibRef

Boyer, K.L.[Kim L.], Herzog, A.[Artemas], Roberts, C.[Cynthia],
Automatic Recovery of the Optic Nervehead Geometry in Optical Coherence Tomography,
MedImg(25), No. 5, May 2006, pp. 553-570.
IEEE DOI 0605
BibRef
Earlier: A2, A1, A3:
Extracting the Optic Disk Endpoints in Optical Coherence Tomography Data,
WACV05(I: 263-268).
IEEE DOI 0502
BibRef

Cabrera Fernandez, D.C.,
Delineating Fluid-Filled Region Boundaries in Optical Coherence Tomography Images of the Retina,
MedImg(24), No. 8, August 2005, pp. 929-945.
IEEE DOI 0508
BibRef

Dudgeon, S.M.[Sinead M.], Keating, D.[David], Parks, S.[Stuart],
Simultaneous structural and functional imaging of the macula using combined optical coherence tomography ophthalmoscope and multifocal electroretinogram,
JOSA-A(24), No. 5, May 2007, pp. 1394-1401.
WWW Link. 0801
BibRef

Zawadzki, R.J.[Robert J.], Choi, S.S.[Stacey S.], Jones, S.M.[Steven M.], Oliver, S.S.[Scot S.], Werner, J.S.[John S.],
Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,
JOSA-A(24), No. 5, May 2007, pp. 1373-1383.
WWW Link. 0801
BibRef

Burns, S.A.[Stephen A.], Tumbar, R.[Remy], Elsner, A.E.[Ann E.], Ferguson, D.[Daniel], Hammer, D.X.[Daniel X.],
Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,
JOSA-A(24), No. 5, May 2007, pp. 1313-1326.
WWW Link. 0801
BibRef

Bigelow, C.E.[Chad E.], Iftimia, N.V.[Nicusor V.], Ferguson, R.D.[R. Daniel], Ustun, T.E.[Teoman E.], Bloom, B.[Benjamin], Hammer, D.X.[Daniel X.],
Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,
JOSA-A(24), No. 5, May 2007, pp. 1327-1336.
WWW Link. 0801
BibRef

Garvin, M.K., Abramoff, M.D., Kardon, R., Russell, S.R., Wu, X., Sonka, M.,
Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search,
MedImg(27), No. 10, October 2008, pp. 1495-1505.
IEEE DOI 0810
See also Vessel Boundary Delineation on Fundus Images Using Graph-Based Approach. BibRef

Garvin, M.K., Abramoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.,
Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images,
MedImg(28), No. 9, September 2009, pp. 1436-1447.
IEEE DOI 0909
BibRef

Lee, K., Niemeijer, M., Garvin, M.K., Kwon, Y.H., Sonka, M., Abramoff, M.D.,
Segmentation of the Optic Disc in 3-D OCT Scans of the Optic Nerve Head,
MedImg(29), No. 1, January 2010, pp. 159-168.
IEEE DOI 1001
BibRef

Grzywacz, N.M., de Juan, J., Ferrone, C., Giannini, D., Huang, D., Koch, G., Russo, V., Tan, O., Bruni, C.,
Statistics of Optical Coherence Tomography Data From Human Retina,
MedImg(29), No. 6, June 2010, pp. 1224-1237.
IEEE DOI 1007
BibRef

Yazdanpanah, A., Hamarneh, G., Smith, B.R., Sarunic, M.V.,
Segmentation of Intra-Retinal Layers From Optical Coherence Tomography Images Using an Active Contour Approach,
MedImg(30), No. 2, February 2011, pp. 484-496.
IEEE DOI 1102
BibRef

Zhu, H., Crabb, D.P., Schlottmann, P.G., Wollstein, G., Garway-Heath, D.F.,
Aligning Scan Acquisition Circles in Optical Coherence Tomography Images of The Retinal Nerve Fibre Layer,
MedImg(30), No. 6, June 2011, pp. 1228-1238.
IEEE DOI 1101
BibRef

Ghorbel, I.[Itebeddine], Rossant, F.[Florence], Bloch, I.[Isabelle], Tick, S.[Sarah], Paques, M.[Michel],
Automated segmentation of macular layers in OCT images and quantitative evaluation of performances,
PR(44), No. 8, August 2011, pp. 1590-1603.
Elsevier DOI 1104
Optical coherence tomography; Retinal imaging; Automated segmentation; Quantitative evaluation BibRef

Molnár, J.[József], Chetverikov, D.[Dmitry], DeBuc, D.C.[Delia Cabrera], Gao, W.[Wei], Somfai, G.M.[Gábor Márk],
Layer extraction in rodent retinal images acquired by optical coherence tomography,
MVA(23), No. 6, November 2012, pp. 1129-1139.
WWW Link. 1210
BibRef

Hu, Z.H.[Zhi-Hong], Niemeijer, M., Abramoff, M.D., Garvin, M.K.,
Multimodal Retinal Vessel Segmentation From Spectral-Domain Optical Coherence Tomography and Fundus Photography,
MedImg(31), No. 10, October 2012, pp. 1900-1911.
IEEE DOI 1210
See also Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images. BibRef

Golabbakhsh, M., Rabbani, H.,
Vessel-based registration of fundus and optical coherence tomography projection images of retina using a quadratic registration model,
IET-IPR(7), No. 8, November 2013, pp. 768-776.
DOI Link 1402
curvelet transforms BibRef

Sigal, I.A., Grimm, J.L., Schuman, J.S., Kagemann, L., Ishikawa, H., Wollstein, G.,
A Method to Estimate Biomechanics and Mechanical Properties of Optic Nerve Head Tissues From Parameters Measurable Using Optical Coherence Tomography,
MedImg(33), No. 6, June 2014, pp. 1381-1389.
IEEE DOI 1407
Biomechanics BibRef

Bogunovic, H., Sonka, M., Kwon, Y.H., Kemp, P., Abramoff, M.D., Wu, X.D.[Xiao-Dong],
Multi-Surface and Multi-Field Co-Segmentation of 3-D Retinal Optical Coherence Tomography,
MedImg(33), No. 12, December 2014, pp. 2242-2253.
IEEE DOI 1412
biomedical optical imaging BibRef

Shi, F., Chen, X., Zhao, H., Zhu, W., Xiang, D., Gao, E., Sonka, M., Chen, H.,
Automated 3-D Retinal Layer Segmentation of Macular Optical Coherence Tomography Images With Serous Pigment Epithelial Detachments,
MedImg(34), No. 2, February 2015, pp. 441-452.
IEEE DOI 1502
Diseases BibRef

Ochoa, N.A.[Noé Alcalá], Moreno, G.M.[Gilberto Muńoz],
Reduction of phase fluctuations in swept-source optical coherence tomography,
SPIE(Newsroom), January 13, 2016
DOI Link 1602
Errors in the detection of phase changes by optical coherence tomography can be reduced significantly by using volumetric recording of images and digital image-processing techniques. BibRef

Amini, Z., Rabbani, H.,
Statistical Modeling of Retinal Optical Coherence Tomography,
MedImg(35), No. 6, June 2016, pp. 1544-1554.
IEEE DOI 1606
Adaptive optics BibRef

Cheng, J., Tao, D., Quan, Y., Wong, D.W.K., Cheung, G.C.M., Akiba, M., Liu, J.,
Speckle Reduction in 3D Optical Coherence Tomography of Retina by A-Scan Reconstruction,
MedImg(35), No. 10, October 2016, pp. 2270-2279.
IEEE DOI 1610
Data acquisition BibRef

Novosel, J., Vermeer, K.A., de Jong, J.H., Wang, Z., van Vliet, L.J.,
Joint Segmentation of Retinal Layers and Focal Lesions in 3-D OCT Data of Topologically Disrupted Retinas,
MedImg(36), No. 6, June 2017, pp. 1276-1286.
IEEE DOI 1706
Attenuation, Diseases, Image segmentation, Lesions, Level set, Pathology, Retina, Loosely coupled level sets, age-related macular degeneration, attenuation coefficients, central serous retinopathy, diabetic-macular, edema BibRef


Rossant, F.[Florence], Grieve, K.[Kate], Paques, M.[Michel],
Automated Analysis of Directional Optical Coherence Tomography Images,
ICIAR17(524-532).
Springer DOI 1706
BibRef

Lee, P.H., Chan, C.C., Huang, S.L., Chen, A., Chen, H.H.,
Blood vessel extraction from OCT data by short-time RPCA,
ICIP16(394-398)
IEEE DOI 1610
Biomedical imaging BibRef

El Tanboly, A., Ismail, M., Switala, A., Mahmoud, M., Soliman, A., Neyer, T., Palacio, A., Hadayer, A., El-Azab, M., Schaal, S., El-Baz, A.,
A novel automatic segmentation of healthy and diseased retinal layers from OCT scans,
ICIP16(116-120)
IEEE DOI 1610
Adaptation models BibRef

Shalbaf, F., Turuwhenua, J., Vaghefi, E., Dokos, S.,
An image processing pipeline for segmenting the retinal layers from optical coherence tomography images,
IVCNZ13(70-75)
IEEE DOI 1402
Gabor filters BibRef

Guimarăes, P.[Pedro], Rodrigues, P.[Pedro], Serranho, P.[Pedro], Bernardes, R.[Rui],
3D Retinal Vascular Network from Optical Coherence Tomography Data,
ICIAR12(II: 339-346).
Springer DOI 1206
BibRef

Tokayer, J.[Jason], Ortega, A.[Antonio], Huang, D.[David],
Sparsity-based retinal layer segmentation of optical coherence tomography images,
ICIP11(449-452).
IEEE DOI 1201
BibRef

Gazarek, J.[Jiri], Jan, J.[Jiri], Kolar, R.[Radim], Odstrcilik, J.[Jan],
Retinal nerve fibre layer detection in fundus camera images compared to results from optical coherence tomography,
ICIIP11(1-5).
IEEE DOI 1112
BibRef

Kolar, R.[Radim], Tasevsky, P.[Pavel],
Registration of 3D Retinal Optical Coherence Tomography Data and 2D Fundus Images,
WBIR10(72-82).
Springer DOI 1007
BibRef

Eichel, J.A.[Justin A.], Bizheva, K.K.[Kostadinka K.], Clausi, D.A.[David A.], Fieguth, P.W.[Paul W.],
Automated 3D Reconstruction and Segmentation from Optical Coherence Tomography,
ECCV10(III: 44-57).
Springer DOI 1009
BibRef

Eichel, J.A.[Justin A.], Mishra, A.K.[Akshaya K.], Fieguth, P.W.[Paul W.], Clausi, D.A.[David A.], Bizheva, K.K.[Kostadinka K.],
A Novel Algorithm for Extraction of the Layers of the Cornea,
CRV09(313-320).
IEEE DOI 0905
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Medical Applications -- Surgery .


Last update:Jul 15, 2017 at 20:56:55