20.5.6 Retinal Images, Optical Coherence Tomography, OCT

Chapter Contents (Back)
Retinal Images. Optical Coherence Tomography. OCT. More general section: See also Optical Tomography, Infrared Tomography.

Koozekanani, D.[Dara], Boyer, K.L.[Kim L.], Roberts, C.[Cynthia],
Retinal thickness measurements from optical coherence tomography using a markov boundary model,
MedImg(20), No. 9, September 2001, pp. 900-916.
IEEE Top Reference. 0110
BibRef
Earlier: CVPR00(II: 363-370).
IEEE DOI 0005
BibRef

Koozekanani, D.[Dara], Boyer, K.L.[Kim L.], Roberts, C.[Cynthia],
Tracking the Optic Nervehead in OCT Video Using Dual Eigenspaces and an Adaptive Vascular Distribution Model,
MedImg(22), No. 12, December 2003, pp. 1519-1536.
IEEE Abstract. 0401
BibRef
Earlier: Add A4: Katz, S.[Steven], CVPR01(I:934-941).
IEEE DOI 0110
OCT: Optical Coherence Tompgraphy. BibRef

Boyer, K.L.[Kim L.], Herzog, A.[Artemas], Roberts, C.[Cynthia],
Automatic Recovery of the Optic Nervehead Geometry in Optical Coherence Tomography,
MedImg(25), No. 5, May 2006, pp. 553-570.
IEEE DOI 0605
BibRef
Earlier: A2, A1, A3:
Extracting the Optic Disk Endpoints in Optical Coherence Tomography Data,
WACV05(I: 263-268).
IEEE DOI 0502
BibRef

Cabrera Fernandez, D.C.,
Delineating Fluid-Filled Region Boundaries in Optical Coherence Tomography Images of the Retina,
MedImg(24), No. 8, August 2005, pp. 929-945.
IEEE DOI 0508
BibRef

Dudgeon, S.M.[Sinead M.], Keating, D.[David], Parks, S.[Stuart],
Simultaneous structural and functional imaging of the macula using combined optical coherence tomography ophthalmoscope and multifocal electroretinogram,
JOSA-A(24), No. 5, May 2007, pp. 1394-1401.
WWW Link. 0801
BibRef

Zawadzki, R.J.[Robert J.], Choi, S.S.[Stacey S.], Jones, S.M.[Steven M.], Oliver, S.S.[Scot S.], Werner, J.S.[John S.],
Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,
JOSA-A(24), No. 5, May 2007, pp. 1373-1383.
WWW Link. 0801
BibRef

Burns, S.A.[Stephen A.], Tumbar, R.[Remy], Elsner, A.E.[Ann E.], Ferguson, D.[Daniel], Hammer, D.X.[Daniel X.],
Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,
JOSA-A(24), No. 5, May 2007, pp. 1313-1326.
WWW Link. 0801
BibRef

Bigelow, C.E.[Chad E.], Iftimia, N.V.[Nicusor V.], Ferguson, R.D.[R. Daniel], Ustun, T.E.[Teoman E.], Bloom, B.[Benjamin], Hammer, D.X.[Daniel X.],
Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,
JOSA-A(24), No. 5, May 2007, pp. 1327-1336.
WWW Link. 0801
BibRef

Garvin, M.K., Abramoff, M.D., Kardon, R., Russell, S.R., Wu, X., Sonka, M.,
Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search,
MedImg(27), No. 10, October 2008, pp. 1495-1505.
IEEE DOI 0810
See also Vessel Boundary Delineation on Fundus Images Using Graph-Based Approach. BibRef

Garvin, M.K., Abramoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.,
Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images,
MedImg(28), No. 9, September 2009, pp. 1436-1447.
IEEE DOI 0909
BibRef

Lee, K., Niemeijer, M., Garvin, M.K., Kwon, Y.H., Sonka, M., Abramoff, M.D.,
Segmentation of the Optic Disc in 3-D OCT Scans of the Optic Nerve Head,
MedImg(29), No. 1, January 2010, pp. 159-168.
IEEE DOI 1001
BibRef

Grzywacz, N.M., de Juan, J., Ferrone, C., Giannini, D., Huang, D., Koch, G., Russo, V., Tan, O., Bruni, C.,
Statistics of Optical Coherence Tomography Data From Human Retina,
MedImg(29), No. 6, June 2010, pp. 1224-1237.
IEEE DOI 1007
BibRef

Yazdanpanah, A., Hamarneh, G., Smith, B.R., Sarunic, M.V.,
Segmentation of Intra-Retinal Layers From Optical Coherence Tomography Images Using an Active Contour Approach,
MedImg(30), No. 2, February 2011, pp. 484-496.
IEEE DOI 1102
BibRef

Zhu, H., Crabb, D.P., Schlottmann, P.G., Wollstein, G., Garway-Heath, D.F.,
Aligning Scan Acquisition Circles in Optical Coherence Tomography Images of The Retinal Nerve Fibre Layer,
MedImg(30), No. 6, June 2011, pp. 1228-1238.
IEEE DOI 1101
BibRef

Ghorbel, I.[Itebeddine], Rossant, F.[Florence], Bloch, I.[Isabelle], Tick, S.[Sarah], Paques, M.[Michel],
Automated segmentation of macular layers in OCT images and quantitative evaluation of performances,
PR(44), No. 8, August 2011, pp. 1590-1603.
Elsevier DOI 1104
Optical coherence tomography; Retinal imaging; Automated segmentation; Quantitative evaluation BibRef

Molnár, J.[József], Chetverikov, D.[Dmitry], DeBuc, D.C.[Delia Cabrera], Gao, W.[Wei], Somfai, G.M.[Gábor Márk],
Layer extraction in rodent retinal images acquired by optical coherence tomography,
MVA(23), No. 6, November 2012, pp. 1129-1139.
WWW Link. 1210
BibRef

Hu, Z.H.[Zhi-Hong], Niemeijer, M., Abramoff, M.D., Garvin, M.K.,
Multimodal Retinal Vessel Segmentation From Spectral-Domain Optical Coherence Tomography and Fundus Photography,
MedImg(31), No. 10, October 2012, pp. 1900-1911.
IEEE DOI 1210
See also Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images. BibRef

Golabbakhsh, M., Rabbani, H.,
Vessel-based registration of fundus and optical coherence tomography projection images of retina using a quadratic registration model,
IET-IPR(7), No. 8, November 2013, pp. 768-776.
DOI Link 1402
curvelet transforms BibRef

Sigal, I.A., Grimm, J.L., Schuman, J.S., Kagemann, L., Ishikawa, H., Wollstein, G.,
A Method to Estimate Biomechanics and Mechanical Properties of Optic Nerve Head Tissues From Parameters Measurable Using Optical Coherence Tomography,
MedImg(33), No. 6, June 2014, pp. 1381-1389.
IEEE DOI 1407
Biomechanics BibRef

Bogunovic, H., Sonka, M., Kwon, Y.H., Kemp, P., Abramoff, M.D., Wu, X.D.[Xiao-Dong],
Multi-Surface and Multi-Field Co-Segmentation of 3-D Retinal Optical Coherence Tomography,
MedImg(33), No. 12, December 2014, pp. 2242-2253.
IEEE DOI 1412
biomedical optical imaging BibRef

Shi, F., Chen, X., Zhao, H., Zhu, W., Xiang, D., Gao, E., Sonka, M., Chen, H.,
Automated 3-D Retinal Layer Segmentation of Macular Optical Coherence Tomography Images With Serous Pigment Epithelial Detachments,
MedImg(34), No. 2, February 2015, pp. 441-452.
IEEE DOI 1502
Diseases BibRef

Ochoa, N.A.[Noé Alcalá], Moreno, G.M.[Gilberto Muńoz],
Reduction of phase fluctuations in swept-source optical coherence tomography,
SPIE(Newsroom), January 13, 2016
DOI Link 1602
Errors in the detection of phase changes by optical coherence tomography can be reduced significantly by using volumetric recording of images and digital image-processing techniques. BibRef

Amini, Z., Rabbani, H.,
Statistical Modeling of Retinal Optical Coherence Tomography,
MedImg(35), No. 6, June 2016, pp. 1544-1554.
IEEE DOI 1606
Adaptive optics BibRef

Cheng, J., Tao, D., Quan, Y., Wong, D.W.K., Cheung, G.C.M., Akiba, M., Liu, J.,
Speckle Reduction in 3D Optical Coherence Tomography of Retina by A-Scan Reconstruction,
MedImg(35), No. 10, October 2016, pp. 2270-2279.
IEEE DOI 1610
Data acquisition BibRef

Novosel, J., Vermeer, K.A., de Jong, J.H., Wang, Z., van Vliet, L.J.,
Joint Segmentation of Retinal Layers and Focal Lesions in 3-D OCT Data of Topologically Disrupted Retinas,
MedImg(36), No. 6, June 2017, pp. 1276-1286.
IEEE DOI 1706
Attenuation, Diseases, Image segmentation, Lesions, Level set, Pathology, Retina, Loosely coupled level sets, age-related macular degeneration, attenuation coefficients, central serous retinopathy, diabetic-macular, edema BibRef

Duan, J.M.[Jin-Ming], Tench, C.[Christopher], Gottlob, I.[Irene], Proudlock, F.[Frank], Bai, L.[Li],
Automated segmentation of retinal layers from optical coherence tomography images using geodesic distance,
PR(72), No. 1, 2017, pp. 158-175.
Elsevier DOI 1708
BibRef
Earlier:
Optical coherence tomography image segmentation,
ICIP15(4278-4282)
IEEE DOI 1512
Optical coherence tomography (OCT) BibRef

Wagner, M.[Marcus],
An Application of Quadratic Measure Filters to the Segmentation of Chorio-Retinal OCT Data,
JMIV(60), No. 2, February 2018, pp. 216-231.
Springer DOI 1802
BibRef

Rasti, R., Rabbani, H., Mehridehnavi, A., Hajizadeh, F.,
Macular OCT Classification Using a Multi-Scale Convolutional Neural Network Ensemble,
MedImg(37), No. 4, April 2018, pp. 1024-1034.
IEEE DOI 1804
Diabetes, Feature extraction, Imaging, Noise reduction, Pathology, Retina, Solid modeling, CAD system, macular pathology BibRef

Lee, P.H., Chan, C.C., Huang, S.L., Chen, A., Chen, H.H.,
Extracting Blood Vessels From Full-Field OCT Data of Human Skin by Short-Time RPCA,
MedImg(37), No. 8, August 2018, pp. 1899-1909.
IEEE DOI 1808
BibRef
Earlier:
Blood vessel extraction from OCT data by short-time RPCA,
ICIP16(394-398)
IEEE DOI 1610
Biomedical imaging, Skin, Face, Sparse matrices, Blood flow, Red blood cells, Robust principal component analysis, blood vessel detection BibRef

Lian, J.[Jian], Hou, S.J.[Su-Juan], Sui, X.D.[Xiao-Dan], Xu, F.Z.[Fang-Zhou], Zheng, Y.J.[Yuan-Jie],
Deblurring retinal optical coherence tomography via a convolutional neural network with anisotropic and double convolution layer,
IET-CV(12), No. 6, September 2018, pp. 900-907.
DOI Link 1808
BibRef

Röhlig, M.[Martin], Schmidt, C.[Christoph], Prakasam, R.K.[Ruby Kala], Rosenthal, P.[Paul], Schumann, H.[Heidrun], Stachs, O.[Oliver],
Visual analysis of retinal changes with optical coherence tomography,
VC(34), No. 9, September 2018, pp. 1209-1224.
Springer DOI 1809
BibRef

Dubose, T.B., Cunefare, D., Cole, E., Milanfar, P., Izatt, J.A., Farsiu, S.,
Statistical Models of Signal and Noise and Fundamental Limits of Segmentation Accuracy in Retinal Optical Coherence Tomography,
MedImg(37), No. 9, September 2018, pp. 1978-1988.
IEEE DOI 1809
Image segmentation, Retina, Probability density function, Speckle, Imaging, Additives, Diseases, Estimation theory, Cramer-Rao bound, biomedical imaging BibRef

Xiang, D., Tian, H., Yang, X., Shi, F., Zhu, W., Chen, H., Chen, X.,
Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization,
IP(27), No. 12, December 2018, pp. 5880-5891.
IEEE DOI 1810
biomedical optical imaging, diseases, feature extraction, image classification, image segmentation, neural network and graph search BibRef


Sleman, A.A., Eltanboly, A., Soliman, A., Ghazal, M., Sandhu, H., Schaal, S., Keynton, R., Elmaghraby, A., El-Baz, A.,
An Innovative 3D Adaptive Patient-Related Atlas for Automatic Segmentation of Retina Layers from Oct Images,
ICIP18(729-733)
IEEE DOI 1809
Image segmentation, Retina, Shape, Solid modeling, Adaptation models, OCT, Atlas BibRef

Kiaee, F., Fahimi, H., Rabbani, H.,
Intra-Retinal Layer Segmentation of Optical Coherence Tomography Using 3D Fully Convolutional Networks,
ICIP18(2795-2799)
IEEE DOI 1809
Retina, Image segmentation, Decoding, Training, Convolutional codes, Machine learning, Segmentation, optical coherence tomography (OCT) BibRef

Liu, X., Liu, D., Fu, T., Zhang, K., Liu, J., Chen, L.,
Shortest Path with Backtracking Based Automatic Layer Segmentation in Pathological Retinal Optical Coherence Tomography,
ICIP18(2770-2774)
IEEE DOI 1809
Image segmentation, Retina, Pathology, Image edge detection, Diseases, Transforms, Heuristic algorithms, OCT, layer segmentation, direction consistency loss BibRef

Liu, X., Fu, T., Pan, Z., Liu, D., Hu, W., Li, B.,
Semi-Supervised Automatic Layer and Fluid Region Segmentation of Retinal Optical Coherence Tomography Images Using Adversarial Learning,
ICIP18(2780-2784)
IEEE DOI 1809
Image segmentation, Retina, Fluids, Convolution, Entropy, Training, Biomedical imaging, OCT, image processing, layer segmentation BibRef

Katona, M.[Melinda], Kovács, A.[Attila], Varga, L.[László], Grósz, T.[Tamás], Dombi, J.[József], Dégi, R.[Rózsa], Nyúl, L.G.[László G.],
Automatic Detection and Characterization of Biomarkers in OCT Images,
ICIAR18(706-714).
Springer DOI 1807
BibRef

Chakravarty, A.[Arunava], Gaddipati, D.J.[Divya Jyothi], Sivaswamy, J.[Jayanthi],
Construction of a Retinal Atlas for Macular OCT Volumes,
ICIAR18(650-658).
Springer DOI 1807
BibRef

Rossant, F.[Florence], Grieve, K.[Kate], Zwillinger, S.[Stéphanie], Paques, M.[Michel],
Detection and Tracking of the Pores of the Lamina Cribrosa in Three Dimensional SD-OCT Data,
ACIVS17(651-663).
Springer DOI 1712
BibRef

Baamonde, S.[Sergio], de Moura, J.[Joaquim], Novo, J.[Jorge], Rouco, J.[José], Ortega, M.[Marcos],
Feature Definition and Selection for Epiretinal Membrane Characterization in Optical Coherence Tomography Images,
CIAP17(II:456-466).
Springer DOI 1711
BibRef

Rossant, F.[Florence], Grieve, K.[Kate], Paques, M.[Michel],
Automated Analysis of Directional Optical Coherence Tomography Images,
ICIAR17(524-532).
Springer DOI 1706
BibRef

El Tanboly, A., Ismail, M., Switala, A., Mahmoud, M., Soliman, A., Neyer, T., Palacio, A., Hadayer, A., El-Azab, M., Schaal, S., El-Baz, A.,
A novel automatic segmentation of healthy and diseased retinal layers from OCT scans,
ICIP16(116-120)
IEEE DOI 1610
Adaptation models BibRef

Shalbaf, F., Turuwhenua, J., Vaghefi, E., Dokos, S.,
An image processing pipeline for segmenting the retinal layers from optical coherence tomography images,
IVCNZ13(70-75)
IEEE DOI 1402
Gabor filters BibRef

Guimarăes, P.[Pedro], Rodrigues, P.[Pedro], Serranho, P.[Pedro], Bernardes, R.[Rui],
3D Retinal Vascular Network from Optical Coherence Tomography Data,
ICIAR12(II: 339-346).
Springer DOI 1206
BibRef

Tokayer, J.[Jason], Ortega, A.[Antonio], Huang, D.[David],
Sparsity-based retinal layer segmentation of optical coherence tomography images,
ICIP11(449-452).
IEEE DOI 1201
BibRef

Gazarek, J.[Jiri], Jan, J.[Jiri], Kolar, R.[Radim], Odstrcilik, J.[Jan],
Retinal nerve fibre layer detection in fundus camera images compared to results from optical coherence tomography,
ICIIP11(1-5).
IEEE DOI 1112
BibRef

Kolar, R.[Radim], Tasevsky, P.[Pavel],
Registration of 3D Retinal Optical Coherence Tomography Data and 2D Fundus Images,
WBIR10(72-82).
Springer DOI 1007
BibRef

Eichel, J.A.[Justin A.], Bizheva, K.K.[Kostadinka K.], Clausi, D.A.[David A.], Fieguth, P.W.[Paul W.],
Automated 3D Reconstruction and Segmentation from Optical Coherence Tomography,
ECCV10(III: 44-57).
Springer DOI 1009
BibRef

Eichel, J.A.[Justin A.], Mishra, A.K.[Akshaya K.], Fieguth, P.W.[Paul W.], Clausi, D.A.[David A.], Bizheva, K.K.[Kostadinka K.],
A Novel Algorithm for Extraction of the Layers of the Cornea,
CRV09(313-320).
IEEE DOI 0905
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Medical Applications -- Surgery .


Last update:Oct 15, 2018 at 09:19:25