22.1.6.43 Atmospheric, Water Vapor, Precipitable Water Vapor, PWV

Chapter Contents (Back)
Aerosols. Water Vapor. The result of water vapor, Rain: See also Rainfall Analysis, Rain, Precipitation, Weather Radar.

Moradi, I., Buehler, S.A., John, V.O., Reale, A., Ferraro, R.R.,
Evaluating Instrumental Inhomogeneities in Global Radiosonde Upper Tropospheric Humidity Data Using Microwave Satellite Data,
GeoRS(51), No. 6, 2013, pp. 3615-3624.
IEEE DOI 1307
water vapor profiles BibRef

Antonini, A., Benedetti, R., Ortolani, A., Rovai, L., Schiavon, G.,
Water Vapor Probabilistic Retrieval Using GNSS Signals,
GeoRS(52), No. 3, March 2014, pp. 1892-1900.
IEEE DOI 1403
atmospheric humidity BibRef

Yarbrough, A.W., Mendenhall, M.J., Martin, R.K., Fiorino, S.T.,
Hyperspectral-Based Adaptive Matched Filter Detector Error as a Function of Atmospheric Water Vapor Estimation,
GeoRS(52), No. 4, April 2014, pp. 2029-2039.
IEEE DOI 1403
atmospheric humidity BibRef

Alshawaf, F., Fuhrmann, T., Knopfler, A., Luo, X., Mayer, M., Hinz, S., Heck, B.,
Accurate Estimation of Atmospheric Water Vapor Using GNSS Observations and Surface Meteorological Data,
GeoRS(53), No. 7, July 2015, pp. 3764-3771.
IEEE DOI 1503
Atmospheric measurements BibRef

Li, X.X.[Xing-Xing], Dick, G., Lu, C.X.[Cui-Xian], Ge, M., Nilsson, T., Ning, T.[Tong], Wickert, J., Schuh, H.,
Multi-GNSS Meteorology: Real-Time Retrieving of Atmospheric Water Vapor From BeiDou, Galileo, GLONASS, and GPS Observations,
GeoRS(53), No. 12, December 2015, pp. 6385-6393.
IEEE DOI 1512
atmospheric humidity BibRef

Kottayil, A.[Ajil], John, V.O.[Viju O.], Buehler, S.A.[Stefan A.], Mohanakumar, K.[Kesavapillai],
Evaluating the Diurnal Cycle of Upper Tropospheric Humidity in Two Different Climate Models Using Satellite Observations,
RS(8), No. 4, 2016, pp. 325.
DOI Link 1604
BibRef

Lu, C.X.[Cui-Xian], Chen, X.H.[Xing-Han], Liu, G.[Gen], Dick, G.[Galina], Wickert, J.[Jens], Jiang, X.Y.[Xin-Yuan], Zheng, K.[Kai], Schuh, H.[Harald],
Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802
BibRef

Moradi, I., Ferraro, R.R., Soden, B.J., Eriksson, P., Arkin, P.,
Retrieving Layer-Averaged Tropospheric Humidity From Advanced Technology Microwave Sounder Water Vapor Channels,
GeoRS(53), No. 12, December 2015, pp. 6675-6688.
IEEE DOI 1512
atmospheric humidity BibRef

Du, J.Y.[Jin-Yang], Kimball, J.S., Jones, L.A.,
Satellite Microwave Retrieval of Total Precipitable Water Vapor and Surface Air Temperature Over Land From AMSR2,
GeoRS(53), No. 5, May 2015, pp. 2520-2531.
IEEE DOI 1502
atmospheric humidity BibRef

Chang, L.[Liang], Gao, G.P.[Guo-Ping], Jin, S.G.[Shuang-Gen], He, X.F.[Xiu-Feng], Xiao, R.[Ruya], Guo, L.X.[Li-Xin],
Calibration and Evaluation of Precipitable Water Vapor From MODIS Infrared Observations at Night,
GeoRS(53), No. 5, May 2015, pp. 2612-2620.
IEEE DOI 1502
Global Positioning System BibRef

Shi, J.B.[Jun-Bo], Xu, C.Q.[Chao-Qian], Guo, J.M.[Ji-Ming], Gao, Y.[Yang],
Real-Time GPS Precise Point Positioning-Based Precipitable Water Vapor Estimation for Rainfall Monitoring and Forecasting,
GeoRS(53), No. 6, June 2015, pp. 3452-3459.
IEEE DOI 1503
Global Positioning System BibRef

Wong, M.S.[Man Sing], Jin, X.[Xiaomeng], Liu, Z.Z.[Zhi-Zhao], Nichol, J.E.[Janet Elizabeth], Ye, S.[Shirong], Jiang, P.[Peng], Chan, P.W.[Pak Wai],
Geostationary Satellite Observation of Precipitable Water Vapor Using an Empirical Orthogonal Function (EOF) based Reconstruction Technique over Eastern China,
RS(7), No. 5, 2015, pp. 5879-5900.
DOI Link 1506
BibRef

Lapini, A., Cuccoli, F., Argenti, F., Facheris, L.,
The Normalized Differential Spectral Sensitivity Approach Applied to the Retrieval of Tropospheric Water Vapor Fields Using a Constellation of Corotating LEO Satellites,
GeoRS(54), No. 1, January 2016, pp. 135-152.
IEEE DOI 1601
atmospheric humidity BibRef

Negusini, M., Petkov, B.H., Sarti, P., Tomasi, C.,
Ground-Based Water Vapor Retrieval in Antarctica: An Assessment,
GeoRS(54), No. 5, May 2016, pp. 2935-2948.
IEEE DOI 1604
atmospheric humidity BibRef

Jiang, P.[Peng], Ye, S.[Shirong], Chen, D.[Dezhong], Liu, Y.[Yanyan], Xia, P.F.[Peng-Fei],
Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China,
RS(8), No. 5, 2016, pp. 389.
DOI Link 1606
BibRef

Ye, J.C.[Jong Chul], Keckhut, P.[Philippe], Vérèmes, H.[Hélène], Duflot, V.[Valentin],
Lidar measurements for water vapor vertical profiles up to the stratosphere,
SPIE(Newsroom), June 27, 2016
DOI Link 1608
Measurements taken from a new lidar observation system could support studies of cloud formation. BibRef

Yuan, F., Lee, Y.H., Meng, Y.S., Ong, J.T.,
Water Vapor Pressure Model for Cloud Vertical Structure Detection in Tropical Region,
GeoRS(54), No. 10, October 2016, pp. 5875-5883.
IEEE DOI 1610
atmospheric humidity BibRef

Manandhar, S.[Shilpa], Lee, Y.H.[Yee Hui], Meng, Y.S.[Yu Song], Yuan, F., Ong, J.T.,
GPS-Derived PWV for Rainfall Nowcasting in Tropical Region,
GeoRS(56), No. 8, August 2018, pp. 4835-4844.
IEEE DOI 1808
atmospheric humidity, atmospheric techniques, Global Positioning System, rain, weather forecasting, nowcasting, rainfall prediction BibRef

Manandhar, S.[Shilpa], Lee, Y.H.[Yee Hui], Meng, Y.S.[Yu Song], Ong, J.T.,
A Simplified Model for the Retrieval of Precipitable Water Vapor From GPS Signal,
GeoRS(55), No. 11, November 2017, pp. 6245-6253.
IEEE DOI 1711
precipitable water vapor (PWV), very-long-baseline interferometry (VLBI), BibRef

Manandhar, S.[Shilpa], Lee, Y.H.[Yee Hui], Meng, Y.S.[Yu Song],
GPS-PWV Based Improved Long-Term Rainfall Prediction Algorithm for Tropical Regions,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Yao, Y., Zhao, Q.,
Maximally Using GPS Observation for Water Vapor Tomography,
GeoRS(54), No. 12, December 2016, pp. 7185-7196.
IEEE DOI 1612
Global Positioning System BibRef

Mateus, P.[Pedro], Tomé, R.[Ricardo], Nico, G.[Giovanni], Catalão, J.[João],
Three-Dimensional Variational Assimilation of InSAR PWV Using the WRFDA Model,
GeoRS(54), No. 12, December 2016, pp. 7323-7330.
IEEE DOI 1612
PWV: precipitable water vapor. atmospheric humidity BibRef

Ohyama, H.[Hirofumi], Kawakami, S.[Shuji], Shiomi, K.[Kei], Morino, I.[Isamu], Uchino, O.[Osamu],
Intercomparison of XH2O Data from the GOSAT TANSO-FTS (TIR and SWIR) and Ground-Based FTS Measurements: Impact of the Spatial Variability of XH2O on the Intercomparison,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link 1702
BibRef

Mateus, P., Catalão, J., Nico, G.,
Sentinel-1 Interferometric SAR Mapping of Precipitable Water Vapor Over a Country-Spanning Area,
GeoRS(55), No. 5, May 2017, pp. 2993-2999.
IEEE DOI 1705
atmospheric humidity, data assimilation, radar interferometry, remote sensing by radar, satellite navigation, synthetic aperture radar, GNSS measurement, Iberian Peninsula, SAR meteorology, Sentinel-1 Interferometric SAR mapping, Sentinel-1A SAR images, atmosphere precipitable water vapor, country-spanning area, global navigation satellite system, interferometric SAR data assimilation, interferometric Sentinel-1A-B C-band synthetic aperture radar data, numerical weather model, Atmosphere, Delays, Image segmentation, Meteorology, Sensors, Spatial resolution, Synthetic aperture radar, Global navigation satellite system (GNSS), SAR interferometry (InSAR), Sentinel-1, moisture content, precipitable water vapor (PWV), synthetic, aperture, radar, (SAR) BibRef

Wu, W., Liu, X., Zhou, D.K., Larar, A.M., Yang, Q., Kizer, S.H., Liu, Q.,
The Application of PCRTM Physical Retrieval Methodology for IASI Cloudy Scene Analysis,
GeoRS(55), No. 9, September 2017, pp. 5042-5056.
IEEE DOI 1709
atmospheric composition, atmospheric humidity, atmospheric temperature, carbon monoxide, modified Gaussian-Newton minimization technique, radiative transfer calculation, BibRef

Merrikhpour, M.H., Rahimzadegan, M.,
Improving the Algorithm of Extracting Regional Total Precipitable Water Vapor Over Land From MODIS Images,
GeoRS(55), No. 10, October 2017, pp. 5889-5898.
IEEE DOI 1710
atmospheric humidity, atmospheric precipitation, Infrared measurements, least-squares methods, radiosondes, satellites BibRef

Hocke, K.[Klemens], Navas-Guzmán, F.[Francisco], Moreira, L.[Lorena], Bernet, L.[Leonie], Mätzler, C.[Christian],
Diurnal Cycle in Atmospheric Water over Switzerland,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Baghdadi, N.[Nicolas], El Hajj, M.[Mohammad], Zribi, M.[Mehrez], Bousbih, S.[Safa],
Calibration of the Water Cloud Model at C-Band for Winter Crop Fields and Grasslands,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Zhang, B.[Bao], Fan, Q.B.[Qing-Biao], Yao, Y.B.[Yi-Bin], Xu, C.J.[Cai-Jun], Li, X.X.[Xing-Xing],
An Improved Tomography Approach Based on Adaptive Smoothing and Ground Meteorological Observations,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
GNSS for water vapor. BibRef

Renju, R., Suresh Raju, C., Mathew, N., Kirankumar, N.V.P., Krishna Moorthy, K.,
Tropical Convective Cloud Characterization Using Ground-Based Microwave Radiometric Observations,
GeoRS(54), No. 7, July 2016, pp. 3774-3779.
IEEE DOI 1606
BibRef

Renju, R., Suresh Raju, C., Mishra, M.K., Mathew, N., Rajeev, K., Krishna Moorthy, K.,
Atmospheric Boundary Layer Characterization Using Multiyear Ground-Based Microwave Radiometric Observations Over a Tropical Coastal Station,
GeoRS(55), No. 12, December 2017, pp. 6877-6882.
IEEE DOI 1712
Aerosols, Atmospheric measurements, Materials requirements planning, Microwave radiometry, terrestrial atmosphere BibRef

Dong, Z.[Zhounan], Jin, S.[Shuanggen],
3-D Water Vapor Tomography in Wuhan from GPS, BDS and GLONASS Observations,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Facheris, L., Cuccoli, F.,
Global ECMWF Analysis Data for Estimating the Water Vapor Content Between Two LEO Satellites Through NDSA Measurements,
GeoRS(56), No. 3, March 2018, pp. 1546-1554.
IEEE DOI 1804
atmospheric humidity, atmospheric techniques, radiosondes, remote sensing, troposphere, tropospheric water vapor (WV) BibRef

Heo, J.H.[Jun-Hyung], Ryu, G.H.[Geun-Hyeok], Jang, J.D.[Jae-Dong],
Optimal Interpolation of Precipitable Water Using Low Earth Orbit and Numerical Weather Prediction Data,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804
BibRef
And: Erratum: RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Wang, T.[Tongmei], Zhang, Q.[Qiong], Lossow, S.[Stefan], Chafik, L.[Léon], Risi, C.[Camille], Murtagh, D.[Donal], Hannachi, A.[Abdel],
Stable Water Isotopologues in the Stratosphere Retrieved from Odin/SMR Measurements,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Chen, Z.[Zhiping], Li, J.C.[Jian-Cheng], Luo, J.[Jia], Cao, X.[Xinyun],
A New Strategy for Extracting ENSO Related Signals in the Troposphere and Lower Stratosphere from GNSS RO Specific Humidity Observations,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Nilo, S.T.[Saverio Teodosio], Romano, F.[Filomena], Cermak, J.[Jan], Cimini, D.[Domenico], Ricciardelli, E.[Elisabetta], Cersosimo, A.[Angela], Di Paola, F.[Francesco], Gallucci, D.[Donatello], Gentile, S.[Sabrina], Geraldi, E.[Edoardo], Larosa, S.[Salvatore], Ripepi, E.[Ermann], Viggiano, M.[Mariassunta],
Fog Detection Based on Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager High Resolution Visible Channel,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Egli, S.[Sebastian], Thies, B.[Boris], Bendix, J.[Jörg],
A Hybrid Approach for Fog Retrieval Based on a Combination of Satellite and Ground Truth Data,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Bobryshev, O., Buehler, S.A., John, V.O., Brath, M., Brogniez, H.,
Is There Really a Closure Gap Between 183.31-GHz Satellite Passive Microwave and In Situ Radiosonde Water Vapor Measurements?,
GeoRS(56), No. 5, May 2018, pp. 2904-2910.
IEEE DOI 1805
Atmospheric measurements, Microwave FET integrated circuits, Microwave imaging, Microwave measurement, Microwave radiometry, remote sensing BibRef

Zhang, F.Z.[Fang-Zhao], Barriot, J.P.[Jean-Pierre], Xu, G.C.[Guo-Chang], Yeh, T.K.[Ta-Kang],
Metrology Assessment of the Accuracy of Precipitable Water Vapor Estimates from GPS Data Acquisition in Tropical Areas: The Tahiti Case,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Wang, Y.F.[Yu-Feng], Tang, L.[Liu], Gao, T.[Tianle], Wang, Q.[Qing], Lu, C.[Chuan], Song, Y.H.[Yue-Hui], Hua, D.X.[Deng-Xin],
Investigation and Analysis of All-Day Atmospheric Water Vapor Content over Xi'an Using Raman Lidar and Sunphotometer Measurements,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Wang, Y.F.[Yu-Feng], Tang, L.[Liu], Zhang, J.[Jing], Gao, T.L.[Tian-Le], Wang, Q.[Qing], Song, Y.H.[Yue-Hui], Hua, D.X.[Deng-Xin],
Investigation of Precipitable Water Vapor Obtained by Raman Lidar and Comprehensive Analyses with Meteorological Parameters in Xi'an,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

López, R.N.[Rubén Nocelo], Santalla del Río, V.[Verónica],
High Temporal Resolution Refractivity Retrieval from Radar Phase Measurements,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
Water vapor estimation. BibRef

Acito, N., Diani, M.,
Atmospheric Column Water Vapor Retrieval From Hyperspectral VNIR Data Based on Low-Rank Subspace Projection,
GeoRS(56), No. 7, July 2018, pp. 3924-3940.
IEEE DOI 1807
atmospheric humidity, atmospheric techniques, geophysical signal processing, radiative transfer, water vapor retrieval BibRef

Acito, N., Diani, M., Corsini, G.,
Coupled Subspace-Based Atmospheric Compensation of LWIR Hyperspectral Data,
GeoRS(57), No. 8, August 2019, pp. 5224-5238.
IEEE DOI 1908
atmospheric radiation, atmospheric techniques, infrared imaging, coupled subspace-based atmospheric compensation, hyperspectral thermal images BibRef

Iturbide-Sanchez, F., da Silva, S.R.S., Liu, Q., Pryor, K.L., Pettey, M.E., Nalli, N.R.,
Toward the Operational Weather Forecasting Application of Atmospheric Stability Products Derived From NUCAPS CrIS/ATMS Soundings,
GeoRS(56), No. 8, August 2018, pp. 4522-4545.
IEEE DOI 1808
atmospheric precipitation, atmospheric techniques, convection, radiosondes, remote sensing, thunderstorms, weather forecasting, weather forecasting BibRef

Boukabara, S., Garrett, K.,
Tropospheric Moisture Sounding Using Microwave Imaging Channels: Application to GCOM-W1/AMSR2,
GeoRS(56), No. 9, September 2018, pp. 5537-5549.
IEEE DOI 1809
Microwave imaging, Moisture, Microwave radiometry, Ocean temperature, Absorption, Microwave theory and techniques, total precipitable water (TPW) BibRef

Du, J.[Jinyang], Kimball, J.S.[John S.], Reichle, R.H.[Rolf H.], Jones, L.A.[Lucas A.], Watts, J.D.[Jennifer D.], Kim, Y.[Youngwook],
Global Satellite Retrievals of the Near-Surface Atmospheric Vapor Pressure Deficit from AMSR-E and AMSR2,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link 1809
BibRef

Shi, L.[Lei], Schreck, C.J.[Carl J.], Schröder, M.[Marc],
Assessing the Pattern Differences between Satellite-Observed Upper Tropospheric Humidity and Total Column Water Vapor during Major El Niño Events,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link 1809
BibRef

Zhao, Q.Z.[Qing-Zhi], Yao, Y.B.[Yi-Bin], Yao, W.Q.[Wan-Qiang],
Troposphere Water Vapour Tomography: A Horizontal Parameterised Approach,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link 1809
BibRef

Paola, F.D.[Francesco Di], Ricciardelli, E.[Elisabetta], Cimini, D.[Domenico], Cersosimo, A.[Angela], Di Paola, A.[Arianna], Gallucci, D.[Donatello], Gentile, S.[Sabrina], Geraldi, E.[Edoardo], Larosa, S.[Salvatore], Nilo, S.T.[Saverio T.], Ripepi, E.[Ermann], Romano, F.[Filomena], Sanò, P.[Paolo], Viggiano, M.[Mariassunta],
MiRTaW: An Algorithm for Atmospheric Temperature and Water Vapor Profile Estimation from ATMS Measurements Using a Random Forests Technique,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
BibRef

Krietemeyer, A.[Andreas], ten Veldhuis, M.C.[Marie-Claire], van der Marel, H.[Hans], Realini, E.[Eugenio], van de Giesen, N.[Nick],
Potential of Cost-Efficient Single Frequency GNSS Receivers for Water Vapor Monitoring,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
BibRef

Trent, T.[Tim], Boesch, H.[Hartmut], Somkuti, P.[Peter], Scott, N.A.[Noëlle A.],
Observing Water Vapour in the Planetary Boundary Layer from the Short-Wave Infrared,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
BibRef

Emmanuel, M., Sunilkumar, S.V., Muhsin, M., Suneel Kumar, B., Nagendra, N., Satheesh Chandran, P.R., Ramkumar, G., Rajeev, K.,
Intercomparison of Cryogenic Frost-Point Hygrometer Observations With Radiosonde, SAPHIR, MLS, and Reanalysis Datasets Over Indian Peninsula,
GeoRS(56), No. 11, November 2018, pp. 6290-6295.
IEEE DOI 1811
Terrestrial atmosphere, Humidity, Humidity measurement, Measurement uncertainty, Cryogenics, Uncertainty, water vapor BibRef

Muñoz-Porcar, C., Comerón, A., Sicard, M., Barragan, R., Garcia-Vizcaino, D., Rodríguez-Gómez, A., Rocadenbosch, F., Granados-Muñoz, M.J.,
Calibration of Raman Lidar Water Vapor Mixing Ratio Measurements Using Zenithal Measurements of Diffuse Sunlight and a Radiative Transfer Model,
GeoRS(56), No. 12, December 2018, pp. 7405-7414.
IEEE DOI 1812
Laser radar, Calibration, Nitrogen, Atmospheric measurements, Instruments, Atmospheric modeling, Interference, Calibration, lidar, water vapor BibRef

Sokol, Z.[Zbynek], Minárová, J.[Jana], Novák, P.[Petr],
Classification of Hydrometeors Using Measurements of the Ka-Band Cloud Radar Installed at the Milešovka Mountain (Central Europe),
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Wang, Y.[Yi], Hioki, S.[Souichiro], Yang, P.[Ping], King, M.D.[Michael D.], di Girolamo, L.[Larry], Fu, D.W.[Dong-Wei], Baum, B.A.[Bryan A.],
Inference of an Optimal Ice Particle Model through Latitudinal Analysis of MISR and MODIS Data,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
Ice cloud properties. BibRef

Yang, J.X., Yang, H.,
Radiometry Calibration With High-Resolution Profiles of GPM: Application to ATMS 183-GHz Water Vapor Channels and Comparison Against Reanalysis Profiles,
GeoRS(57), No. 2, February 2019, pp. 829-838.
IEEE DOI 1901
Atmospheric modeling, Microwave radiometry, Calibration, Data models, Atmospheric measurements, Meteorology, radiative transfer model (RTM) BibRef

Frantz, D.[David], Stellmes, M.[Marion], Hostert, P.[Patrick],
A Global MODIS Water Vapor Database for the Operational Atmospheric Correction of Historic and Recent Landsat Imagery,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Schröder, M.[Marc], Lockhoff, M.[Maarit], Shi, L.[Lei], August, T.[Thomas], Bennartz, R.[Ralf], Brogniez, H.[Helene], Calbet, X.[Xavier], Fell, F.[Frank], Forsythe, J.[John], Gambacorta, A.[Antonia], Ho, S.P.[Shu-Peng], Kursinski, E.R.[E. Robert], Reale, A.[Anthony], Trent, T.[Tim], Yang, Q.[Qiong],
The GEWEX Water Vapor Assessment: Overview and Introduction to Results and Recommendations,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Kulla, B.S.[Birte Solveig], Ritter, C.[Christoph],
Water Vapor Calibration: Using a Raman Lidar and Radiosoundings to Obtain Highly Resolved Water Vapor Profiles,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Wang, Z., Li, J., He, J., Zhang, S., Gu, S., Li, Y., Guo, Y., He, B.,
Performance Analysis of Microwave Humidity and Temperature Sounder Onboard the FY-3D Satellite From Prelaunch Multiangle Calibration Data in Thermal/Vacuum Test,
GeoRS(57), No. 3, March 2019, pp. 1664-1683.
IEEE DOI 1903
atmospheric humidity, atmospheric measuring apparatus, atmospheric techniques, atmospheric temperature, calibration, thermal/vacuum (T/V) test BibRef

Gao, Q.D.[Qi-Dong], Wang, S.[Sheng], Yang, X.F.[Xiao-Feng],
Estimation of Surface Air Specific Humidity and Air-Sea Latent Heat Flux Using FY-3C Microwave Observations,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Hans, I.[Imke], Burgdorf, M.[Martin], Buehler, S.A.[Stefan A.], Prange, M.[Marc], Lang, T.[Theresa], John, V.O.[Viju O.],
An Uncertainty Quantified Fundamental Climate Data Record for Microwave Humidity Sounders,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Hans, I.[Imke], Burgdorf, M.[Martin], Buehler, S.A.[Stefan A.],
Onboard Radio Frequency Interference as the Origin of Inter-Satellite Biases for Microwave Humidity Sounders,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904
BibRef

Benevides, P.[Pedro], Catalao, J.[Joao], Nico, G.[Giovanni],
Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Li, H., Wang, H., Yang, Y., Du, Y., Cao, B., Bian, Z., Liu, Q.,
Evaluation of Atmospheric Correction Methods for the ASTER Temperature and Emissivity Separation Algorithm Using Ground Observation Networks in the HiWATER Experiment,
GeoRS(57), No. 5, May 2019, pp. 3001-3014.
IEEE DOI 1905
atmospheric boundary layer, atmospheric techniques, atmospheric temperature, emissivity, water vapor scaling (WVS) BibRef

Yang, F.[Fei], Guo, J.M.[Ji-Ming], Meng, X.L.[Xiao-Lin], Shi, J.B.[Jun-Bo], Zhou, L.[Lv],
Establishment and Assessment of a New GNSS Precipitable Water Vapor Interpolation Scheme Based on the GPT2w Model,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Tapiador, F.J., Moreno, R., Haddad, Z.S.,
Estimates of the Precipitation Top Heights in Convective Systems Using Microwave Radiances,
GeoRS(57), No. 6, June 2019, pp. 3166-3178.
IEEE DOI 1906
Radiometers, Temperature measurement, Spaceborne radar, Radar measurements, Brightness, Satellite broadcasting, orbital radiometers BibRef

Letu, H., Nagao, T.M., Nakajima, T.Y., Riedi, J., Ishimoto, H., Baran, A.J., Shang, H., Sekiguchi, M., Kikuchi, M.,
Ice Cloud Properties From Himawari-8/AHI Next-Generation Geostationary Satellite: Capability of the AHI to Monitor the DC Cloud Generation Process,
GeoRS(57), No. 6, June 2019, pp. 3229-3239.
IEEE DOI 1906
Ice, Clouds, Cloud computing, Atmospheric modeling, Integrated optics, Optical imaging, Optical scattering, DC cloud, retrieval algorithm BibRef

Lu, N.[Ning],
Biases and Abrupt Shifts of Monthly Precipitable Water from Terra MODIS,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Obregón, M.Á.[María Ángeles], Rodrigues, G.[Gonçalo], Costa, M.J.[Maria Joao], Potes, M.[Miguel], Silva, A.M.[Ana Maria],
Validation of ESA Sentinel-2 L2A Aerosol Optical Thickness and Columnar Water Vapour during 2017-2018,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link 1908
BibRef

di Natale, G., Del Bianco, S., Cortesi, U., Gai, M., Macelloni, G., Montomoli, F., Rovai, L., Melani, S., Ortolani, A., Antonini, A., Cuccoli, F., Facheris, L., Toccafondi, A.,
Implementation and Validation of a Retrieval Algorithm for Profiling of Water Vapor From Differential Attenuation Measurements at Microwaves,
GeoRS(57), No. 8, August 2019, pp. 5939-5948.
IEEE DOI 1908
atmospheric humidity, atmospheric movements, atmospheric techniques, weather forecasting, validation, water vapor (WV) BibRef

Lee, Y.[Yeonjin], Han, D.[Daehyeon], Ahn, M.H.[Myoung-Hwan], Im, J.[Jungho], Lee, S.J.[Su Jeong],
Retrieval of Total Precipitable Water from Himawari-8 AHI Data: A Comparison of Random Forest, Extreme Gradient Boosting, and Deep Neural Network,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Fionda, E.[Ermanno], Cadeddu, M.[Maria], Mattioli, V.[Vinia], Pacione, R.[Rosa],
Intercomparison of Integrated Water Vapor Measurements at High Latitudes from Co-Located and Near-Located Instruments,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Baldysz, Z.[Zofia], Nykiel, G.[Grzegorz],
Improved Empirical Coefficients for Estimating Water Vapor Weighted Mean Temperature over Europe for GNSS Applications,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Mota, G.V.[Galdino V.], Song, S.[Shuli], Stepniak, K.[Katarzyna],
Assessment of Integrated Water Vapor Estimates from the iGMAS and the Brazilian Network GNSS Ground-Based Receivers in Rio de Janeiro,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link 1911
BibRef

He, J., Liu, Z.,
Comparison of Satellite-Derived Precipitable Water Vapor Through Near-Infrared Remote Sensing Channels,
GeoRS(57), No. 12, December 2019, pp. 10252-10262.
IEEE DOI 1912
Global Positioning System, Satellites, MODIS, Remote sensing, Sensors, Spatial resolution, Cloud computing, remote sensing BibRef

Zhao, Q.Z.[Qing-Zhi], Ma, X.W.[Xiong-Wei], Yao, W.Q.[Wan-Qiang], Yao, Y.[Yibin],
A New Typhoon-Monitoring Method Using Precipitation Water Vapor,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Liu, Y.Z.[Yu-Zhi], Tang, Y.[Yuhan], Hua, S.[Shan], Luo, R.[Run], Zhu, Q.Z.[Qing-Zhe],
Features of the Cloud Base Height and Determining the Threshold of Relative Humidity over Southeast China,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Mateus, P., Catalão, J., Nico, G., Benevides, P.,
Mapping Precipitable Water Vapor Time Series From Sentinel-1 Interferometric SAR,
GeoRS(58), No. 2, February 2020, pp. 1373-1379.
IEEE DOI 2001
Synthetic aperture radar, Global navigation satellite system, Atmospheric modeling, Meteorology, Spatial resolution, Delays, time series BibRef

Luo, M.[Min], Liu, Y.[Yuzhi], Zhu, Q.Z.[Qing-Zhe], Tang, Y.[Yuhan], Alam, K.[Khan],
Role and Mechanisms of Black Carbon Affecting Water Vapor Transport to Tibet,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Cancelada, M.[Maite], Salio, P.[Paola], Vila, D.[Daniel], Nesbitt, S.W.[Stephen W.], Vidal, L.[Luciano],
Backward Adaptive Brightness Temperature Threshold Technique (BAB3T): A Methodology to Determine Extreme Convective Initiation Regions Using Satellite Infrared Imagery,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Wang, T.X.[Tian-Xing], Shi, J.C.[Jian-Cheng], Ma, Y.[Ya], Letu, H.[Husi], Li, X.[Xingcai],
All-sky longwave downward radiation from satellite measurements: General parameterizations based on LST, column water vapor and cloud top temperature,
PandRS(161), 2020, pp. 52-60.
Elsevier DOI 2002
Surface longwave downward radiation, Land surface temperature, Column water vapor, Cloud-top temperature, CERES, Cloudy-sky BibRef

Zhao, Q.Z.[Qing-Zhi], Liu, Y.[Yang], Yao, W.Q.[Wan-Qiang], Ma, X.W.[Xiong-Wei], Yao, Y.[Yibin],
A Novel ENSO Monitoring Method using Precipitable Water Vapor and Temperature in Southeast China,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Zhou, J.[Jun], Yang, H.[Hu],
Comparison of the Remapping Algorithms for the Advanced Technology Microwave Sounder (ATMS),
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Henken, C.C.[Cintia Carbajal], Dirks, L.[Lisa], Steinke, S.[Sandra], Diedrich, H.[Hannes], August, T.[Thomas], Crewell, S.[Susanne],
Assessment of Sampling Effects on Various Satellite-Derived Integrated Water Vapor Datasets Using GPS Measurements in Germany as Reference,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Vaquero-Martínez, J.[Javier], Antón, M.[Manuel], Sanchez-Lorenzo, A.[Arturo], Cachorro, V.E.[Victoria E.],
Evaluation of Water Vapor Radiative Effects Using GPS Data Series over Southwestern Europe,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Pagano, T.S.[Thomas S.], Aumann, H.H.[Hartmut H.], Broberg, S.E.[Steven E.], Cañas, C.[Chase], Manning, E.M.[Evan M.], Overoye, K.O.[Kenneth O.], Wilson, R.C.[Robert C.],
SI-Traceability and Measurement Uncertainty of the Atmospheric Infrared Sounder Version 5 Level 1B Radiances,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link 2004
BibRef

He, J., Liu, Z.,
Water Vapor Retrieval From MODIS NIR Channels Using Ground-Based GPS Data,
GeoRS(58), No. 5, May 2020, pp. 3726-3737.
IEEE DOI 2005
GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), precipitable water vapor (PWV), retrieval BibRef

Zabolotskikh, E.V., Khvorostovsky, K.S., Chapron, B.,
An Advanced Algorithm to Retrieve Total Atmospheric Water Vapor Content From the Advanced Microwave Scanning Radiometer Data Over Sea Ice and Sea Water Surfaces in the Arctic,
GeoRS(58), No. 5, May 2020, pp. 3123-3135.
IEEE DOI 2005
Advanced Microwave Scanning Radiometer (AMSR), Arctic, atmospheric water vapor column (WVC), sea ice (SI) BibRef

Almansa, A.F.[Antonio Fernando], Cuevas, E.[Emilio], Barreto, Á.[África], Torres, B.[Benjamín], García, O.E.[Omaira Elena], García, R.D.[Rosa Delia], Velasco-Merino, C.[Cristian], Cachorro, V.E.[Victoria Eugenia], Berjón, A.[Alberto], Mallorquín, M.[Manuel], López, C.[César], Ramos, R.[Ramón], Guirado-Fuentes, C.[Carmen], Negrillo, R.[Ramón], de Frutos, Á.M.[Ángel Máximo],
Column Integrated Water Vapor and Aerosol Load Characterization with the New ZEN-R52 Radiometer,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Kim, B.Y.[Bu-Yo], Cha, J.W.[Joo Wan], Ko, A.R.[A-Reum], Jung, W.[Woonseon], Ha, J.C.[Jong-Chul],
Analysis of the Occurrence Frequency of Seedable Clouds on the Korean Peninsula for Precipitation Enhancement Experiments,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Du, B.L.[Bao-Long], Ji, D.[Dabin], Shi, J.C.[Jian-Cheng], Wang, Y.Q.[Yong-Qian], Lei, T.J.[Tian-Jie], Zhang, P.[Peng], Letu, H.[Husi],
The Retrieval of Total Precipitable Water over Global Land Based on FY-3D/MWRI Data,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Kumar, A.H., Sunilkumar, S.V.,
Assessment of INSAT-3D Retrieved Temperature and Water Vapour With Collocated Radiosonde Measurements Over Indian Region,
GeoRS(58), No. 6, June 2020, pp. 4000-4005.
IEEE DOI 2005
Indian National Satellite System (INSAT)-3D sounder, radiosonde, temperature, water vapour (WV) BibRef

Xue, Y.H.[Yun-Heng], Li, J.[Jun], Li, Z.L.[Zheng-Long], Gunshor, M.M.[Mathew M.], Schmit, T.J.[Timothy J.],
Evaluation of the Diurnal Variation of Upper Tropospheric Humidity in Reanalysis Using Homogenized Observed Radiances from International Geostationary Weather Satellites,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Georgoulias, A.K.[Aristeidis K.], Marinou, E.[Eleni], Tsekeri, A.[Alexandra], Proestakis, E.[Emmanouil], Akritidis, D.[Dimitris], Alexandri, G.[Georgia], Zanis, P.[Prodromos], Balis, D.[Dimitris], Marenco, F.[Franco], Tesche, M.[Matthias], Amiridis, V.[Vassilis],
A First Case Study of CCN Concentrations from Spaceborne Lidar Observations,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006
CCN: Cloud Condensation Nuclei. BibRef

Li, J.Y.[Jun-Yu], Zhang, B.[Bao], Yao, Y.[Yibin], Liu, L.[Lilong], Sun, Z.[Zhangyu], Yan, X.[Xiao],
A Refined Regional Model for Estimating Pressure, Temperature, and Water Vapor Pressure for Geodetic Applications in China,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Wang, S.[Shuaimin], Xu, T.[Tianhe], Nie, W.F.[Wen-Feng], Jiang, C.H.[Chun-Hua], Yang, Y.[Yuguo], Fang, Z.[Zhenlong], Li, M.[Mowen], Zhang, Z.[Zhen],
Evaluation of Precipitable Water Vapor from Five Reanalysis Products with Ground-Based GNSS Observations,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Lu, C., Feng, G., Zheng, Y., Zhang, K., Tan, H., Dick, G., Wickert, J.,
Real-Time Retrieval of Precipitable Water Vapor From Galileo Observations by Using the MGEX Network,
GeoRS(58), No. 7, July 2020, pp. 4743-4753.
IEEE DOI 2006
Real-time systems, Satellites, Global Positioning System, Delays, Estimation, Atmospheric modeling, Receivers, zenith tropospheric delay (ZTD) BibRef

Alshawaf, F.,
A New Method for Reconstructing Absolute Water Vapor Maps From Persistent Scatterer InSAR,
GeoRS(58), No. 7, July 2020, pp. 4951-4957.
IEEE DOI 2006
Delays, Atmospheric modeling, Global Positioning System, Data models, Spatial resolution, Data mining, Predictive models, reconstructing absolute values BibRef

Zhang, G.[Guang], Ma, Y.Y.[Ying-Ying],
Clear-Sky Surface Solar Radiation and the Radiative Effect of Aerosol and Water Vapor Based on Simulations and Satellite Observations over Northern China,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link 2006
BibRef


Musa, T.A., Mazlan, M.H., Opaluwa, Y.D., Musliman, I.A., Radzi, Z.M.,
Water Vapour Weighted Mean Temperature Model for GPS-derived Integrated Water Vapour in Peninsular Malaysia,
GeoDisast17(127-135).
DOI Link 1805
BibRef

Salihin, S., Musa, T.A., Mohd Radzi, Z.,
Spatio-temporal Estimation of Integrated Water Vapour Over The Malaysian Peninsula During Monsoon Season,
GeoDisast17(165-175).
DOI Link 1805
BibRef

Novotny, J., Dejmal, K., Hudec, F., Kolar, P.,
Detection Of Dry Intrusion On Water Vapor Images Over Central Europe: June 2010 To September 2011,
ISPRS16(B8: 281-284).
DOI Link 1610
BibRef

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Atmospheric, Dust, Dust Storms, Volcanic Ash, Remote Sensing .


Last update:Jul 10, 2020 at 16:03:35