22.1.4.32 Atmospheric, Water Vapor, Precipitable Water Vapor, PWV

Chapter Contents (Back)
Aerosols. Water Vapor. The result of water vapor, Rain: See also Rainfall Analysis, Rain, Precipitation, Weather Radar.

Moradi, I., Buehler, S.A., John, V.O., Reale, A., Ferraro, R.R.,
Evaluating Instrumental Inhomogeneities in Global Radiosonde Upper Tropospheric Humidity Data Using Microwave Satellite Data,
GeoRS(51), No. 6, 2013, pp. 3615-3624.
IEEE DOI 1307
water vapor profiles BibRef

Antonini, A., Benedetti, R., Ortolani, A., Rovai, L., Schiavon, G.,
Water Vapor Probabilistic Retrieval Using GNSS Signals,
GeoRS(52), No. 3, March 2014, pp. 1892-1900.
IEEE DOI 1403
atmospheric humidity BibRef

Yarbrough, A.W., Mendenhall, M.J., Martin, R.K., Fiorino, S.T.,
Hyperspectral-Based Adaptive Matched Filter Detector Error as a Function of Atmospheric Water Vapor Estimation,
GeoRS(52), No. 4, April 2014, pp. 2029-2039.
IEEE DOI 1403
atmospheric humidity BibRef

Alshawaf, F., Fuhrmann, T., Knopfler, A., Luo, X., Mayer, M., Hinz, S., Heck, B.,
Accurate Estimation of Atmospheric Water Vapor Using GNSS Observations and Surface Meteorological Data,
GeoRS(53), No. 7, July 2015, pp. 3764-3771.
IEEE DOI 1503
Atmospheric measurements BibRef

Li, X.X.[Xing-Xing], Dick, G., Lu, C.X.[Cui-Xian], Ge, M., Nilsson, T., Ning, T.[Tong], Wickert, J., Schuh, H.,
Multi-GNSS Meteorology: Real-Time Retrieving of Atmospheric Water Vapor From BeiDou, Galileo, GLONASS, and GPS Observations,
GeoRS(53), No. 12, December 2015, pp. 6385-6393.
IEEE DOI 1512
atmospheric humidity BibRef

Lu, C.X.[Cui-Xian], Chen, X.H.[Xing-Han], Liu, G.[Gen], Dick, G.[Galina], Wickert, J.[Jens], Jiang, X.Y.[Xin-Yuan], Zheng, K.[Kai], Schuh, H.[Harald],
Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802
BibRef

Moradi, I., Ferraro, R.R., Soden, B.J., Eriksson, P., Arkin, P.,
Retrieving Layer-Averaged Tropospheric Humidity From Advanced Technology Microwave Sounder Water Vapor Channels,
GeoRS(53), No. 12, December 2015, pp. 6675-6688.
IEEE DOI 1512
atmospheric humidity BibRef

Du, J.Y.[Jin-Yang], Kimball, J.S., Jones, L.A.,
Satellite Microwave Retrieval of Total Precipitable Water Vapor and Surface Air Temperature Over Land From AMSR2,
GeoRS(53), No. 5, May 2015, pp. 2520-2531.
IEEE DOI 1502
atmospheric humidity BibRef

Chang, L.[Liang], Gao, G.P.[Guo-Ping], Jin, S.G.[Shuang-Gen], He, X.F.[Xiu-Feng], Xiao, R.[Ruya], Guo, L.X.[Li-Xin],
Calibration and Evaluation of Precipitable Water Vapor From MODIS Infrared Observations at Night,
GeoRS(53), No. 5, May 2015, pp. 2612-2620.
IEEE DOI 1502
Global Positioning System BibRef

Shi, J.[Junbo], Xu, C.[Chaoqian], Guo, J.M.[Ji-Ming], Gao, Y.[Yang],
Real-Time GPS Precise Point Positioning-Based Precipitable Water Vapor Estimation for Rainfall Monitoring and Forecasting,
GeoRS(53), No. 6, June 2015, pp. 3452-3459.
IEEE DOI 1503
Global Positioning System BibRef

Wong, M.S.[Man Sing], Jin, X.[Xiaomeng], Liu, Z.[Zhizhao], Nichol, J.E.[Janet Elizabeth], Ye, S.[Shirong], Jiang, P.[Peng], Chan, P.W.[Pak Wai],
Geostationary Satellite Observation of Precipitable Water Vapor Using an Empirical Orthogonal Function (EOF) based Reconstruction Technique over Eastern China,
RS(7), No. 5, 2015, pp. 5879-5900.
DOI Link 1506
BibRef

Lapini, A., Cuccoli, F., Argenti, F., Facheris, L.,
The Normalized Differential Spectral Sensitivity Approach Applied to the Retrieval of Tropospheric Water Vapor Fields Using a Constellation of Corotating LEO Satellites,
GeoRS(54), No. 1, January 2016, pp. 135-152.
IEEE DOI 1601
atmospheric humidity BibRef

Negusini, M., Petkov, B.H., Sarti, P., Tomasi, C.,
Ground-Based Water Vapor Retrieval in Antarctica: An Assessment,
GeoRS(54), No. 5, May 2016, pp. 2935-2948.
IEEE DOI 1604
atmospheric humidity BibRef

Jiang, P.[Peng], Ye, S.[Shirong], Chen, D.[Dezhong], Liu, Y.[Yanyan], Xia, P.F.[Peng-Fei],
Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China,
RS(8), No. 5, 2016, pp. 389.
DOI Link 1606
BibRef

Ye, J.C.[Jong Chul], Keckhut, P.[Philippe], Vérčmes, H.[Hélčne], Duflot, V.[Valentin],
Lidar measurements for water vapor vertical profiles up to the stratosphere,
SPIE(Newsroom), June 27, 2016
DOI Link 1608
Measurements taken from a new lidar observation system could support studies of cloud formation. BibRef

Yuan, F., Lee, Y.H., Meng, Y.S., Ong, J.T.,
Water Vapor Pressure Model for Cloud Vertical Structure Detection in Tropical Region,
GeoRS(54), No. 10, October 2016, pp. 5875-5883.
IEEE DOI 1610
atmospheric humidity BibRef

Manandhar, S., Lee, Y.H., Meng, Y.S., Ong, J.T.,
A Simplified Model for the Retrieval of Precipitable Water Vapor From GPS Signal,
GeoRS(55), No. 11, November 2017, pp. 6245-6253.
IEEE DOI 1711
precipitable water vapor (PWV), very-long-baseline interferometry (VLBI), BibRef

Yao, Y., Zhao, Q.,
Maximally Using GPS Observation for Water Vapor Tomography,
GeoRS(54), No. 12, December 2016, pp. 7185-7196.
IEEE DOI 1612
Global Positioning System BibRef

Mateus, P.[Pedro], Tomé, R.[Ricardo], Nico, G.[Giovanni], Catalăo, J.[Joăo],
Three-Dimensional Variational Assimilation of InSAR PWV Using the WRFDA Model,
GeoRS(54), No. 12, December 2016, pp. 7323-7330.
IEEE DOI 1612
PWV: precipitable water vapor. atmospheric humidity BibRef

Ohyama, H.[Hirofumi], Kawakami, S.[Shuji], Shiomi, K.[Kei], Morino, I.[Isamu], Uchino, O.[Osamu],
Intercomparison of XH2O Data from the GOSAT TANSO-FTS (TIR and SWIR) and Ground-Based FTS Measurements: Impact of the Spatial Variability of XH2O on the Intercomparison,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link 1702
BibRef

Mateus, P., Catalăo, J., Nico, G.,
Sentinel-1 Interferometric SAR Mapping of Precipitable Water Vapor Over a Country-Spanning Area,
GeoRS(55), No. 5, May 2017, pp. 2993-2999.
IEEE DOI 1705
atmospheric humidity, data assimilation, radar interferometry, remote sensing by radar, satellite navigation, synthetic aperture radar, GNSS measurement, Iberian Peninsula, SAR meteorology, Sentinel-1 Interferometric SAR mapping, Sentinel-1A SAR images, atmosphere precipitable water vapor, country-spanning area, global navigation satellite system, interferometric SAR data assimilation, interferometric Sentinel-1A-B C-band synthetic aperture radar data, numerical weather model, Atmosphere, Delays, Image segmentation, Meteorology, Sensors, Spatial resolution, Synthetic aperture radar, Global navigation satellite system (GNSS), SAR interferometry (InSAR), Sentinel-1, moisture content, precipitable water vapor (PWV), synthetic, aperture, radar, (SAR) BibRef

Wu, W., Liu, X., Zhou, D.K., Larar, A.M., Yang, Q., Kizer, S.H., Liu, Q.,
The Application of PCRTM Physical Retrieval Methodology for IASI Cloudy Scene Analysis,
GeoRS(55), No. 9, September 2017, pp. 5042-5056.
IEEE DOI 1709
atmospheric composition, atmospheric humidity, atmospheric temperature, carbon monoxide, modified Gaussian-Newton minimization technique, radiative transfer calculation, BibRef

Merrikhpour, M.H., Rahimzadegan, M.,
Improving the Algorithm of Extracting Regional Total Precipitable Water Vapor Over Land From MODIS Images,
GeoRS(55), No. 10, October 2017, pp. 5889-5898.
IEEE DOI 1710
atmospheric humidity, atmospheric precipitation, Infrared measurements, least-squares methods, radiosondes, satellites BibRef

Hocke, K.[Klemens], Navas-Guzmán, F.[Francisco], Moreira, L.[Lorena], Bernet, L.[Leonie], Mätzler, C.[Christian],
Diurnal Cycle in Atmospheric Water over Switzerland,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Baghdadi, N.[Nicolas], El Hajj, M.[Mohammad], Zribi, M.[Mehrez], Bousbih, S.[Safa],
Calibration of the Water Cloud Model at C-Band for Winter Crop Fields and Grasslands,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Zhang, B.[Bao], Fan, Q.B.[Qing-Biao], Yao, Y.B.[Yi-Bin], Xu, C.J.[Cai-Jun], Li, X.X.[Xing-Xing],
An Improved Tomography Approach Based on Adaptive Smoothing and Ground Meteorological Observations,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
GNSS for water vapor. BibRef

Renju, R., Suresh Raju, C., Mathew, N., Kirankumar, N.V.P., Krishna Moorthy, K.,
Tropical Convective Cloud Characterization Using Ground-Based Microwave Radiometric Observations,
GeoRS(54), No. 7, July 2016, pp. 3774-3779.
IEEE DOI 1606
BibRef

Renju, R., Suresh Raju, C., Mishra, M.K., Mathew, N., Rajeev, K., Krishna Moorthy, K.,
Atmospheric Boundary Layer Characterization Using Multiyear Ground-Based Microwave Radiometric Observations Over a Tropical Coastal Station,
GeoRS(55), No. 12, December 2017, pp. 6877-6882.
IEEE DOI 1712
Aerosols, Atmospheric measurements, Materials requirements planning, Microwave radiometry, terrestrial atmosphere BibRef

Dong, Z.[Zhounan], Jin, S.[Shuanggen],
3-D Water Vapor Tomography in Wuhan from GPS, BDS and GLONASS Observations,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Facheris, L., Cuccoli, F.,
Global ECMWF Analysis Data for Estimating the Water Vapor Content Between Two LEO Satellites Through NDSA Measurements,
GeoRS(56), No. 3, March 2018, pp. 1546-1554.
IEEE DOI 1804
atmospheric humidity, atmospheric techniques, radiosondes, remote sensing, troposphere, tropospheric water vapor (WV) BibRef

Heo, J.H.[Jun-Hyung], Ryu, G.H.[Geun-Hyeok], Jang, J.D.[Jae-Dong],
Optimal Interpolation of Precipitable Water Using Low Earth Orbit and Numerical Weather Prediction Data,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804
BibRef
And: Erratum: RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Wang, T.[Tongmei], Zhang, Q.[Qiong], Lossow, S.[Stefan], Chafik, L.[Léon], Risi, C.[Camille], Murtagh, D.[Donal], Hannachi, A.[Abdel],
Stable Water Isotopologues in the Stratosphere Retrieved from Odin/SMR Measurements,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Chen, Z.[Zhiping], Li, J.C.[Jian-Cheng], Luo, J.[Jia], Cao, X.[Xinyun],
A New Strategy for Extracting ENSO Related Signals in the Troposphere and Lower Stratosphere from GNSS RO Specific Humidity Observations,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Nilo, S.T.[Saverio Teodosio], Romano, F.[Filomena], Cermak, J.[Jan], Cimini, D.[Domenico], Ricciardelli, E.[Elisabetta], Cersosimo, A.[Angela], Di Paola, F.[Francesco], Gallucci, D.[Donatello], Gentile, S.[Sabrina], Geraldi, E.[Edoardo], Larosa, S.[Salvatore], Ripepi, E.[Ermann], Viggiano, M.[Mariassunta],
Fog Detection Based on Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager High Resolution Visible Channel,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Egli, S.[Sebastian], Thies, B.[Boris], Bendix, J.[Jörg],
A Hybrid Approach for Fog Retrieval Based on a Combination of Satellite and Ground Truth Data,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Bobryshev, O., Buehler, S.A., John, V.O., Brath, M., Brogniez, H.,
Is There Really a Closure Gap Between 183.31-GHz Satellite Passive Microwave and In Situ Radiosonde Water Vapor Measurements?,
GeoRS(56), No. 5, May 2018, pp. 2904-2910.
IEEE DOI 1805
Atmospheric measurements, Microwave FET integrated circuits, Microwave imaging, Microwave measurement, Microwave radiometry, remote sensing BibRef

Zhang, F.[Fangzhao], Barriot, J.P.[Jean-Pierre], Xu, G.C.[Guo-Chang], Yeh, T.K.[Ta-Kang],
Metrology Assessment of the Accuracy of Precipitable Water Vapor Estimates from GPS Data Acquisition in Tropical Areas: The Tahiti Case,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Wang, Y.F.[Yu-Feng], Tang, L.[Liu], Gao, T.[Tianle], Wang, Q.[Qing], Lu, C.[Chuan], Song, Y.H.[Yue-Hui], Hua, D.X.[Deng-Xin],
Investigation and Analysis of All-Day Atmospheric Water Vapor Content over Xi'an Using Raman Lidar and Sunphotometer Measurements,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Wang, Y.F.[Yu-Feng], Tang, L.[Liu], Zhang, J.[Jing], Gao, T.L.[Tian-Le], Wang, Q.[Qing], Song, Y.H.[Yue-Hui], Hua, D.X.[Deng-Xin],
Investigation of Precipitable Water Vapor Obtained by Raman Lidar and Comprehensive Analyses with Meteorological Parameters in Xi'an,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

López, R.N.[Rubén Nocelo], Santalla del Río, V.[Verónica],
High Temporal Resolution Refractivity Retrieval from Radar Phase Measurements,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
Water vapor estimation. BibRef

Acito, N., Diani, M.,
Atmospheric Column Water Vapor Retrieval From Hyperspectral VNIR Data Based on Low-Rank Subspace Projection,
GeoRS(56), No. 7, July 2018, pp. 3924-3940.
IEEE DOI 1807
atmospheric humidity, atmospheric techniques, geophysical signal processing, radiative transfer, water vapor retrieval BibRef


Musa, T.A., Mazlan, M.H., Opaluwa, Y.D., Musliman, I.A., Radzi, Z.M.,
Water Vapour Weighted Mean Temperature Model for GPS-derived Integrated Water Vapour in Peninsular Malaysia,
GeoDisast17(127-135).
DOI Link 1805
BibRef

Salihin, S., Musa, T.A., Mohd Radzi, Z.,
Spatio-temporal Estimation of Integrated Water Vapour Over The Malaysian Peninsula During Monsoon Season,
GeoDisast17(165-175).
DOI Link 1805
BibRef

Novotny, J., Dejmal, K., Hudec, F., Kolar, P.,
Detection Of Dry Intrusion On Water Vapor Images Over Central Europe: June 2010 To September 2011,
ISPRS16(B8: 281-284).
DOI Link 1610
BibRef

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Atmospheric, Dust, Dust Storms, Volcanic Ash, Remote Sensing .


Last update:Jul 19, 2018 at 13:26:08