4.10.1.2 Wavelets Filter Design, Bases, Basis, and Implementations

Chapter Contents (Back)
Wavelets. Implementation. Filters. For parallel and hardware implementations: See also Wavelets Filters, Parallel, Hardware Implementations.

Shensa, M.J.,
The Discrete Wavelet Transform: Wedding the a Trous and Mallat Algorithms,
TSP(40), October 1992, pp. 2464-2482. BibRef 9210

Coifman, R.R., and Wickerhauser, M.V.,
Entropy-based algorithms for best basis selection,
IT(38), No. 2, March 1992, pp. 713.718.
IEEE DOI BibRef 9203

Ramchandran, K., Vetterli, M.,
Best Wavelet Packet Bases in a Rate-Distortion Sense,
IP(2), No. 2, April 1993, pp. 160-175.
IEEE DOI BibRef 9304

Gopinath, R.A., Burrus, C.S.,
On cosine-modulated wavelet orthonormal bases,
IP(4), No. 2, February 1995, pp. 162-176.
IEEE DOI 0402
BibRef

Tay, D.B.H., Kingsbury, N.G.,
Design of Nonseparable 3-D Filter Banks Wavelet Bases Using Transformations of Variables,
VISP(143), No. 1, February 1996, pp. 51-61. BibRef 9602

Candčs, E.,
Ridgelets: Theory and Applications,
Ph.D.Dissertation, Stanford. Univ, August. 1998. The original discussion of Ridgelets. BibRef 9808

Tay, D.B.H., Kingsbury, N.G., Palaniswami, M.,
Orthonormal Hilbert-Pair of Wavelets With (Almost) Maximum Vanishing Moments,
SPLetters(13), No. 9, September 2006, pp. 533-536.
IEEE DOI 0608
BibRef

Kingsbury, N.G.,
Design of Q-shift complex wavelets for image processing using frequency domain energy minimization,
ICIP03(I: 1013-1016).
IEEE DOI 0312
BibRef

Tay, D.B.H.,
Analytical design of 3-D wavelet filter banks using the multivariate Bernstein polynomial,
VISP(147), No. 2, April 2000, pp. 122. 0005
BibRef

Tay, D.B.H.,
Two-stage, least squares design of biorthogonal filter banks,
VISP(149), No. 6, December 2002, pp. 341-346.
IEEE Top Reference. 0304
BibRef

Tay, D.B.H.,
Zero-Pinning the Bernstein Polynomial: A Simple Design Technique for Orthonormal Wavelets,
SPLetters(12), No. 12, December 2005, pp. 835-838.
IEEE DOI 0512
BibRef

Zalevsky, Z., Ouzieli, I., Mendlovic, D.,
Wavelet-Transform-Based Composite Filters for Invariant Pattern-Recognition,
AppOpt(35), No. 17, June 10 1996, pp. 3141-3147. 9607
BibRef

Lazar, M.S., Bruton, L.T.,
Combining the Discrete Wavelet Transform and Mixed-Domain Filtering,
IP(5), No. 7, July 1996, pp. 1124-1136.
IEEE DOI 9607
BibRef

Lamarque, C.H., Robert, F.,
Image-Analysis Using Space-Filling Curves and 1D Wavelet Bases,
PR(29), No. 8, August 1996, pp. 1309-1322.
WWW Link. 9608
BibRef

Olkkonen, H., Pesola, P.,
Gaussian Pyramid Wavelet Transform for Multiresolution Analysis of Images,
GMIP(58), No. 4, July 1996, pp. 394-398. 9609
BibRef

Basu, S., Levy, B.,
Multidimensional Filter Banks and Wavelets: Research Developments and Applications - Preface,
MultiSP(8), No. 1-2, January 1997, pp. 7-10. 9703
Special issue. BibRef

Park, H., Kalker, T., Vetterli, M.,
Grobner Bases and Multidimensional FIR Multirate Systems,
MultiSP(8), No. 1-2, January 1997, pp. 11-30. 9703
BibRef

Micchelli, C.A., Xu, Y.S.,
Reconstruction and Decomposition Algorithms for Biorthogonal Multiwavelets,
MultiSP(8), No. 1-2, January 1997, pp. 31-69. 9703
BibRef

Marshall, T.G.,
Zero-Phase Filter Bank and Wavelet Code R-Matrices: Properties, Triangular Decompositions, and a Fast Algorithm,
MultiSP(8), No. 1-2, January 1997, pp. 71-88. 9703
BibRef
And: Correction: MultiSP(8), No. 3, July 1997, pp. U2. BibRef

Fridman, J., Manolakos, E.S.,
On the Scalability of 2-D Discrete Wavelet Transform Algorithms,
MultiSP(8), No. 1-2, January 1997, pp. 185-217. 9703
BibRef

Vrhel, M.J., Lee, C., Unser, M.,
Fast Continuous Wavelet Transform: A Least-Squares Formulation,
SP(57), No. 2, March 1997, pp. 103-119. 9705
BibRef

Cooklev, T., Nishihara, A., Sablatash, M.,
Regular Orthonormal and Biorthogonal Wavelet Filters,
SP(57), No. 2, March 1997, pp. 121-137. 9705
BibRef

Cooklev, T.,
An Efficient Architecture for Orthogonal Wavelet Transforms,
SPLetters(13), No. 2, February 2006, pp. 77-79.
IEEE DOI 0602
BibRef

Watanabe, S.,
A Finite Wavelet Decomposition Method,
ECJ-III(80), No. 7, July 1997, pp. 1-10. 9708
BibRef

Zhang, X., Yoshikawa, T., Iwakura, H.,
Recursive Orthonormal Wavelet Bases with Vanishing Moments,
IEICE(E80-A), No. 8, August 1997, pp. 1472-1477. 9709
BibRef

He, W.J., Lai, M.J.,
Digital-Filters Associated with Bivariate Box Spline-Wavelets,
JEI(6), No. 4, October 1997, pp. 453-466. 9807
BibRef

Cho, C.S., Ha, S.W., Kim, J.C., Yoon, T.H., Nam, K.G.,
Optoelectronic Difference-of-Gaussian Wavelet Transform System,
OptEng(36), No. 12, December 1997, pp. 3471-3475. 9801
BibRef

Chan, S.C., Luo, Y., Ho, K.L.,
M-Channel Compactly Supported Biorthogonal Cosine-Modulated Wavelet Bases,
TSP(46), No. 4, April 1998, pp. 1142-1151. 9804
BibRef

Aldroubi, A., Abry, P., Unser, M.,
Construction Of Biorthogonal Wavelets Starting from Any 2 Multiresolutions,
TSP(46), No. 4, April 1998, pp. 1130-1133. 9804
BibRef

Jiang, Q.T.,
Orthogonal Multiwavelets with Optimum Time-Frequency Resolution,
TSP(46), No. 4, April 1998, pp. 830-844. 9804
BibRef

Faugere, J.C., de Saint-Martin, F.M., Rouillier, F.,
Design Of Regular Nonseparable Bidimensional Wavelets Using Grobner Basis Techniques,
TSP(46), No. 4, April 1998, pp. 845-856. 9804
BibRef

Polyak, N., Pearlman, W.A.,
Filters and Filter Banks for Periodic Signals, the Zak Transform, and Fast Wavelet Decomposition,
TSP(46), No. 4, April 1998, pp. 857-873. 9804
BibRef
Earlier:
Wavelet decomposition and reconstruction using arbitrary kernels: a new approach,
ICIP98(III: 866-870).
IEEE DOI 9810
BibRef
Earlier: ICIP97(I: 660-662).
IEEE DOI BibRef

Zurbenko, I.G., Porter, P.S.,
Construction of High Resolution Wavelets,
SP(65), No. 2, March 1998, pp. 315-327. 9806
BibRef

Liu, L.T., Hsu, H.T., Gao, B.X.,
A New Family of Orthonormal Wavelet Bases,
Geodesy(72), No. 5, May 1998, pp. 294-303. 9807
BibRef

Chen, G.Y.[Guang-Yi], Bui, T.D.[Tien D.],
Invariant Fourier-wavelet descriptor for pattern recognition,
PR(32), No. 7, July 1999, pp. 1083-1088.
WWW Link. BibRef 9907

Chen, G.Y., Bhattacharya, P.,
Invariant Texture Classification Using Ridgelet Packets,
ICPR06(II: 464-467).
IEEE DOI 0609
BibRef

Chen, G.Y.[Guang-Yi], Bui, T.D.[Tien D.], Krzyzak, A.,
Invariant Ridgelet-Fourier Descriptor for Pattern Recognition,
ICPR06(II: 768-771).
IEEE DOI 0609
BibRef

Donoho, D.L.[David L.],
Wavelet Shrinkage: Asymptopia?,
RoyalStat(B-57), No. 2, 1995, pp. 301-369. BibRef 9500

Donoho, D.L., Johnstone, I.M.,
Ideal spatial adaptation via wavelets shrinkage,
Biometrika(81), 1994, pp. 425-455.
DOI Link See also DCT image denoising: a simple and effective image denoising algorithm. BibRef 9400

Donoho, D.L., Johnstone, I.M.,
Adapting to unknown smoothness via wavelets shrinkage,
ASAJ(90), No. 432, 1995, pp. 1200-1224. BibRef 9500

Donoho, D.L.[David L.], Duncan, M.R.[Mark Reynold], Huo, X.M.[Xiao-Ming], Levi, O.[Ofer],
Wavelab,
Online Book1999.
WWW Link. Code, Wavelets. Code, Wavelets, Matlab. A collection of Matlab functions to implement various algorithms for wavelet analysis. BibRef 9900

Chang, L.W.[Long-Wen], Shen, Y.E.[Yuh-Erl],
Numerical solutions for orthogonal wavelet filters by Newton method,
SP:IC(14), No. 10, August 1999, pp. 879-887.
WWW Link. BibRef 9908

Xiong, H., Zhang, T., Moon, Y.S.,
A Translation- and Scale-Invariant Adaptive Wavelet Transform,
IP(9), No. 12, December 2000, pp. 2100-2108.
IEEE DOI 0011
See also Comments on A translation- and scale-invariant adaptive wavelet transform. BibRef

Zhao, Y., Swamy, M.N.S.,
New technique for designing nearly-orthogonal wavelet filter banks with linear phase,
VISP(147), No. 6, December 2000, pp. 527-533. 0101
BibRef

Selesnick, I.W.,
Hilbert transform pairs of wavelet bases,
SPLetters(8), No. 6, June 2001, pp. 170-173.
IEEE Top Reference. 0106
BibRef

Attakitmongcol, K., Hardin, D.P., Wilkes, D.M.,
Multiwavelet prefilters-part II: optimal orthogonal prefilters,
IP(10), No. 10, October 2001, pp. 1476-1487.
IEEE DOI 0110
BibRef

Jones, E.[Eric], Runkle, P.[Paul], Dasgupta, N.[Nilanjan], Couchman, L.[Luise], Carin, L.[Lawrence],
Genetic Algorithm Wavelet Design for Signal Classification,
PAMI(23), No. 8, August 2001, pp. 890-895.
IEEE DOI 0109
Design of wavelet filters using a genetic algorithm. BibRef

Zervas, N.D., Anagnostopoulos, G.P., Spiliotopoulos, V., Andreopoulos, Y., Goutis, C.E.,
Evaluation of design alternatives for the 2-D-discrete wavelet transform,
CirSysVideo(11), No. 12, December 2001, pp. 1246-1262.
IEEE Top Reference. 0201
BibRef

Andreopoulos, Y.[Yiannis], van der Schaar, M.[Mihaela],
Incremental Refinement of Computation for the Discrete Wavelet Transform,
ICIP07(IV: 53-56).
IEEE DOI 0709
BibRef

Andreopoulos, Y., Zervas, N.D., Lafruit, G., Schelkens, P., Stouraitis, T., Goutis, C.E., Cornelis, J.P.H.,
A Local Wavelet Transform Implementation Versus an Optimal Row-column Algorithm for the 2-D Multilevel Decomposition,
ICIP01(III: 330-333).
IEEE DOI 0108
BibRef

Munteanu, A.[Adrian], Surdu, O.M.[Oana Maria], Cornelis, J.P.H.[Jan P.H.], Schelkens, P.[Peter],
Segmentation-Driven Direction-Adaptive Discrete Wavelet Transform,
ICIP07(I: 437-440).
IEEE DOI 0709
BibRef

van der Auwera, G., Munteanu, A., Cornelis, J.P.H.,
Evaluation of a Quincunx Wavelet Filter Design Approach for Quadtree-based Embedded Image Coding,
ICIP00(Vol III: 190-193).
IEEE DOI 0008
BibRef

Vandergheynst, P., Gobbers, J.F.,
Directional dyadic wavelet transforms: design and algorithms,
IP(11), No. 4, April 2002, pp. 363-372.
IEEE DOI 0205
BibRef

Özkaramanli, H.[Hüseyin], Bhatti, A.[Asim], Bilgehan, B.[Bulent],
Multi-wavelets from B-spline super-functions with approximation order,
SP(82), No. 8, August 2002, pp. 1029-1046.
HTML Version. 0206
BibRef

Özkaramanli, H.[Hüseyin],
Unified approach for constructing multiwavelets with approximation order using refinable super-functions,
VISP(150), No. 3, June 2003, pp. 143-152.
IEEE Abstract. 0308
BibRef

Kharitonenko, I., Zhang, X.[Xing], Twelves, S.,
A wavelet transform with point-symmetric extension at tile boundaries,
IP(11), No. 12, December 2002, pp. 1357-1364.
IEEE DOI 0301
BibRef

Kharitonenko, I., Zhang, X.,
A Low Complexity Wavelet Transform with Point-symmetric Extension at Tile Boundaries,
ICIP01(II: 269-272).
IEEE DOI 0108
BibRef

Do, M.N., Vetterli, M.,
The finite ridgelet transform for image representation,
IP(12), No. 1, January 2003, pp. 16-28.
IEEE DOI 0301
BibRef

Liebling, M., Blu, T., Unser, M.,
Fresnelets: new multiresolution wavelet bases for digital holography,
IP(12), No. 1, January 2003, pp. 29-43.
IEEE DOI 0301
BibRef

Nealand, J.H., Bradley, A.B., Lech, M.,
Overlap-save convolution applied to wavelet analysis,
SPLetters(10), No. 2, February 2003, pp. 47-49.
IEEE Top Reference. 0301
BibRef

Hsung, T.C., Lun, D.P.K.,
Boundary filter design for multiwavelets,
VISP(149), No. 5, October 2002, pp. 315-320.
IEEE Top Reference. 0304
BibRef

Hsung, T.C., Sun, M.C., Lun, D.P.K., Siu, W.C.,
Symmetric prefilters for multiwavelets,
VISP(150), No. 1, February 2003, pp. 59-68.
IEEE Top Reference. 0304
BibRef

Tian, J.[Jun],
Comments on 'A translation- and scale-invariant adaptive wavelet transform',
IP(12), No. 9, September 2003, pp. 1091-1093.
IEEE DOI 0308
See also Translation- and Scale-Invariant Adaptive Wavelet Transform, A. BibRef

Bala, E., Cetin, A.E.,
Computationally Efficient Wavelet Affine Invariant Functions for Shape Recognition,
PAMI(26), No. 8, August 2004, pp. 1095-1099.
IEEE Abstract. 0407
BibRef
Earlier:
Computationally efficient wavelet affine invariant functions for 2D object recognition,
ICIP03(I: 1061-1064).
IEEE DOI 0312
BibRef

Lam, E.Y.,
Statistical modelling of the wavelet coefficients with different bases and decomposition levels,
VISP(151), No. 3, June 2004, pp. 203-206.
IEEE Abstract. 0409
BibRef

Ates, H.F.[Hasan F.], Orchard, M.T.[Michael T.],
An adaptive edge model in the wavelet domain for wavelet image coding,
SP:IC(20), No. 2, February 2005, pp. 169-185.
WWW Link. 0501
BibRef
Earlier:
Nonlinear modeling of wavelet coefficients around edges,
ICIP03(I: 641-644).
IEEE DOI 0312
BibRef

Ates, H.F.[Hasan F.], Orchard, M.T.[Michael T.],
Spherical Coding Algorithm for Wavelet Image Compression,
IP(18), No. 5, May 2009, pp. 1015-1024.
IEEE DOI 0904
BibRef
Earlier:
Wavelet Image Coding Using the Spherical Representation,
ICIP05(I: 89-92).
IEEE DOI 0512
BibRef

Fernandes, F.C.A., van Spaendonck, R.L.C., Burrus, C.S.,
Multidimensional, Mapping-Based Complex Wavelet Transforms,
IP(14), No. 1, January 2005, pp. 110-124.
IEEE DOI 0501
BibRef

Fernandes, F.C.A., van Spaendonck, R.L.C., Burrus, C.S.,
A Directional, Shift-insensitive, Low-redundancy, Wavelet Transform,
ICIP01(I: 618-621).
IEEE DOI 0108
BibRef

van Spaendonck, R.L.C.,
Non-redundant, Directionally Selective, Complex Wavelets,
ICIP00(Vol II: 379-382).
IEEE DOI 0008
BibRef

Feilner, M., van de Ville, D., Unser, M.,
An Orthogonal Family of Quincunx Wavelets With Continuously Adjustable Order,
IP(14), No. 4, April 2005, pp. 499-510.
IEEE DOI 0501
BibRef

Unser, M., van de Ville, D.,
The Pairing of a Wavelet Basis With a Mildly Redundant Analysis via Subband Regression,
IP(17), No. 11, November 2008, pp. 1-13.
IEEE DOI 0810
BibRef

van de Ville, D., Unser, M.,
Complex Wavelet Bases, Steerability, and the Marr-Like Pyramid,
IP(17), No. 11, November 2008, pp. 1-1.
IEEE DOI 0810
BibRef

Unser, M., Chenouard, N., van de Ville, D.,
Steerable Pyramids and Tight Wavelet Frames in L_2(BBR^d),
IP(20), No. 10, October 2011, pp. 2705-2721.
IEEE DOI 1110
BibRef

Chenouard, N., Unser, M.,
3D Steerable Wavelets in Practice,
IP(21), No. 11, November 2012, pp. 4522-4533.
IEEE DOI 1210
BibRef

Unser, M.[Michael], Chenouard, N.[Nicolas],
A Unifying Parametric Framework for 2D Steerable Wavelet Transforms,
SIIMS(6), No. 1, 2013, pp. 102-135.
DOI Link 1304
BibRef

Sarukhanyan, H.[Hakob], Petrosian, A.[Arthur],
Construction and Application of Hybrid Wavelet and Other Parametric Orthogonal Transforms,
JMIV(23), No. 1, July 2005, pp. 25-46.
Springer DOI 0505
BibRef

Fowler, J.E.,
The Redundant Discrete Wavelet Transform and Additive Noise,
SPLetters(12), No. 9, September 2005, pp. 629-632.
IEEE DOI 0508
BibRef

Li, H., Liu, G., Zhang, Z.,
Optimization of Integer Wavelet Transforms Based on Difference Correlation Structures,
IP(14), No. 11, November 2005, pp. 1831-1847.
IEEE DOI 0510
BibRef

Kamstra, L.[Lute],
Nonlinear Discrete Wavelet Transforms over Finite Sets and an Application to Binary Image Compression,
JMIV(23), No. 3, November 2005, pp. 321-343.
Springer DOI 0510
BibRef
Earlier:
The design of linear binary wavelet transforms and their application to binary image compression,
ICIP03(III: 241-244).
IEEE DOI 0312
BibRef
Earlier:
Nonlinear binary wavelet transforms and their application to binary image compression,
ICIP02(III: 593-596).
IEEE DOI 0210
BibRef

Ahuja, N., Lertrattanapanich, S., Bose, N.K.,
Properties determining choice of mother wavelet,
VISP(152), No. 5, October 2005, pp. 659-664.
DOI Link 0512
BibRef

Chen, H.W., Olson, T.,
New aggressive way to search for the best base in wavelet packets,
VISP(152), No. 6, December 2005, pp. 827-836.
DOI Link 0512
BibRef

Terrades, O.R.[O. Ramos], Valveny, E.,
A new use of the ridgelets transform for describing linear singularities in images,
PRL(27), No. 6, 15 April 2006, pp. 587-596.
WWW Link. BibRef 0604
And:
Local norm features based on ridgelets transform,
ICDAR05(II: 700-704).
IEEE DOI 0508
Ridgelets transform; Wavelets transform; Radon transform; Graphics recognition; Symbol recognition 0604
BibRef

Eslami, R.[Ramin], Radha, H.[Hayder],
A New Family of Nonredundant Transforms Using Hybrid Wavelets and Directional Filter Banks,
IP(16), No. 4, April 2007, pp. 1152-1167.
IEEE DOI 0704
BibRef
And:
Regular Hybrid Wavelets and Directional Filter Banks: Extensions and Applications,
ICIP06(1609-1612).
IEEE DOI 0610
BibRef
Earlier:
New Image Transforms Using Hybrid Wavelets and Directional Filter Banks: Analysis and Design,
ICIP05(I: 733-736).
IEEE DOI 0512
See also Translation-Invariant Contourlet Transform and Its Application to Image Denoising. BibRef

Eslami, R.[Ramin], Wu, X.L.[Xiao-Lin],
Video denoising using 3-D Hybrid Wavelets and Directional filter banks,
ICIP08(2340-2343).
IEEE DOI 0810
BibRef

Carré, P.[Philippe], Andres, E.[Eric],
Discrete analytical ridgelet transform,
SP(84), No. 11, November 2004, pp. xx-yy. BibRef 0411

Helbert, D.[David], Carré, P.[Philippe], Andres, E.[Eric],
3-D Discrete Analytical Ridgelet Transform,
IP(15), No. 12, December 2006, pp. 3701-3714.
IEEE DOI 0611
Use Fourier to comput Radon BibRef

Starck, J.L., Fadili, J.M., Murtagh, F.,
The Undecimated Wavelet Decomposition and its Reconstruction,
IP(16), No. 2, February 2007, pp. 297-309.
IEEE DOI 0702
See also Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal. BibRef

Olkkonen, H., Olkkonen, J.T., Pesola, P.,
FFT-Based Computation of Shift Invariant Analytic Wavelet Transform,
SPLetters(14), No. 3, March 2007, pp. 177-180.
IEEE DOI 0703
BibRef

Liu, Z.D.[Zai-De], Zheng, N.N.[Nan-Ning],
Parametrization construction of biorthogonal wavelet filter banks for image coding,
SIViP(1), No. 1, April 2007, pp. 63-76.
Springer DOI 0706
BibRef
Earlier:
Parametrization Construction of Integer Wavelet Transforms for Embedded Image Coding,
IWICPAS06(435-445).
Springer DOI 0608
BibRef

Liu, Z.D.[Zai-De], Gao, C.X.[Cheng-Xiu],
Construction of parametric biorthogonal wavelet filter banks with two parameters for image coding,
SIViP(2), No. 3, September 2008, pp. xx-yy.
Springer DOI 0804
BibRef

Lin, J.Y.[Jian-Yu], Smith, M.J.T.[Mark J. T.],
New Perspectives and Improvements on the Symmetric Extension Filter Bank for Subband/Wavelet Image Compression,
IP(17), No. 2, February 2008, pp. 177-189.
IEEE DOI 0801
BibRef
Earlier:
Cyclic Filter Bank Implementations of Symmetric Extension for Subband/Wavelet Image Compression,
ICIP07(I: 429-432).
IEEE DOI 0709
BibRef

Lin, J.Y.[Jian-Yu], Smith, M.J.T.[Mark J.T.],
Efficient Block-Based Frequency Domain Wavelet Transform Implementations,
IP(18), No. 8, August 2009, pp. 1717-1723.
IEEE DOI 0907
BibRef

Lin, J.Y.[Jian-Yu], Smith, M.J.T.[Mark J.T.],
A Two-Channel Overlapped Block Transform for Image Compression,
IP(19), No. 11, November 2010, pp. 3064-3071.
IEEE DOI 1011
BibRef

Lin, J.Y.[Jian-Yu], Smith, M.J.T.[Mark J.T.],
Two-Band Hybrid FIR-IIR Filters for Image Compression,
IP(20), No. 11, November 2011, pp. 3063-3072.
IEEE DOI 1110
BibRef

Mrazek, P.[Pavel], Weickert, J.[Joachim],
From two-dimensional nonlinear diffusion to coupled Haar wavelet shrinkage,
JVCIR(18), No. 2, April 2007, pp. 162-175.
WWW Link. 0711
Nonlinear diffusion; Wavelet shrinkage; Rotation invariance; Colour; Vector- and tensor-valued data BibRef

Chen, Y.J.[Yi-Jiao], Wang, Y.Y.[Yuan-Yuan],
Doppler embolic signal detection using the adaptive wavelet packet basis and neurofuzzy classification,
PRL(29), No. 10, 15 July 2008, pp. 1589-1595.
WWW Link. 0711
Adaptive wavelet packet basis; Decision score; Emboli detection; Neurofuzzy; Transcranial Doppler BibRef

Jiang, Q.,
Compactly Supported Orthogonal and Biorthogonal sqrt-5-Refinement Wavelets With 4-Fold Symmetry,
IP(17), No. 11, November 2008, pp. 1-1.
IEEE DOI 0810
BibRef

Wang, H.W.[Hua-Wei], Tang, K.[Kai],
Biorthogonal wavelet construction for hybrid quad/triangle meshes,
VC(25), No. 4, April 2009, pp. xx-yy.
Springer DOI 0903
BibRef

Bahrampour, A.R., Mirzaee, S.M.A.[S. Mohammad Ali],
A variational method for designing adaptive bandlimited wavelets,
SIViP(3), No. 4, December 2009, pp. xx-yy.
Springer DOI 0911
BibRef

Fujinoki, K.[Kensuke], Vasilyev, O.V.[Oleg V.],
Triangular Wavelets: An Isotropic Image Representation with Hexagonal Symmetry,
JIVP(2009), No. 2009, pp. xx-yy.
DOI Link 1002
BibRef

Tanaka, Y.[Yuichi], Hasegawa, M.[Madoka], Kato, S.[Shigeo], Ikehara, M.[Masaaki], Nguyen, T.Q.[Truong Q.],
Adaptive Directional Wavelet Transform Based on Directional Prefiltering,
IP(19), No. 4, April 2010, pp. 934-945.
IEEE DOI 1003
BibRef
Earlier:
Adaptive Directional-Wavelet Transform Using Pre-Directional Filtering,
ICIP09(1-4).
IEEE DOI 0911
BibRef

Tanaka, Y.[Yuichi], Ikehara, M.[Masaaki], Nguyen, T.Q.[Truong Q.],
A new combination of 1D and 2D filter banks for effective multiresolution image representation,
ICIP08(2820-2823).
IEEE DOI 0810
BibRef

Lim, W.Q.,
The Discrete Shearlet Transform: A New Directional Transform and Compactly Supported Shearlet Frames,
IP(19), No. 5, May 2010, pp. 1166-1180.
IEEE DOI 1004
BibRef

Lim, W.Q.,
Nonseparable Shearlet Transform,
IP(22), No. 5, May 2013, pp.2056-2065.
IEEE DOI 1304
BibRef

Labate, D., Lim, W., Kutyniok, G., Weiss, G.,
Sparse multidimensional representation using shearlets,
SPIE(5914), 2005, pp. 254-262
DOI Link 1308
BibRef

Yang, J.Y.[Jing-Yu], Xu, W.L.[Wen-Li], Dai, Q.H.[Qiong-Hai],
Fast adaptive wavelet packets using interscale embedding of decomposition structures,
PRL(31), No. 11, 1 August 2010, pp. 1481-1486.
Elsevier DOI 1008
Basis selection; Adaptive wavelet packets; Anisotropic decomposition; Isotropic decomposition BibRef

Makaremi, I.[Iman], Ahmadi, M.[Majid],
Blur invariants: A novel representation in the wavelet domain,
PR(43), No. 12, December 2010, pp. 3950-3957.
Elsevier DOI 1003
Blur invariant moment; Direct analysis; Feature extraction; Wavelet transform BibRef

Makaremi, I.[Iman], Ahmadi, M.[Majid],
Wavelet-Domain Blur Invariants for Image Analysis,
IP(21), No. 3, March 2012, pp. 996-1006.
IEEE DOI 1203
BibRef

Makaremi, I.[Iman], Leboeuf, K.[Karl], Ahmadi, M.[Majid],
Wavelet Domain Blur Invariants for 1D Discrete Signals,
ICIAR11(I: 69-79).
Springer DOI 1106
BibRef

Tomassi, D., Milone, D.H., Forzani, L.,
Minimum classification error learning for sequential data in the wavelet domain,
PR(43), No. 12, December 2010, pp. 3998-4010.
Elsevier DOI 1003
Hidden Markov models; Hidden Markov trees; Discriminative training; Minimum classification error; Wavelet transform BibRef

Plonka, G., Tenorth, S., Rosca, D.,
A New Hybrid Method for Image Approximation Using the Easy Path Wavelet Transform,
IP(20), No. 2, February 2011, pp. 372-381.
IEEE DOI 1102
BibRef

Lisowska, A.[Agnieszka],
Moments-Based Fast Wedgelet Transform,
JMIV(39), No. 2, February 2011, pp. 180-192.
WWW Link. 1103
BibRef

Li, B., Peng, L.,
Balanced Multiwavelets with Interpolatory Property,
IP(20), No. 5, May 2011, pp. 1450-1457.
IEEE DOI 1104
BibRef

Hwang, J.I.G., Yang, N., Yen, C.C.,
Solvability of the Zero-Pinning Technique to Orthonormal Wavelet Design,
SPLetters(18), No. 8, August 2011, pp. 451-453.
IEEE DOI 1107
BibRef

Zhang, X.[Xi],
A New Phase-Factor Design Method for Hilbert-Pairs of Orthonormal Wavelets,
SPLetters(18), No. 9, September 2011, pp. 529-532.
IEEE DOI 1108
BibRef
Earlier:
Design of Hilbert transform pairs of orthonormal wavelet bases using Remez exchange algorithm,
ICIP09(3813-3816).
IEEE DOI 0911
BibRef

Zhang, X.[Xi], Ge, D.F.[Dong Fang],
Hilbert Transform Pairs of Orthonormal Symmetric Wavelet Bases using Allpass Filters,
ICIP07(I: 425-428).
IEEE DOI 0709
BibRef

Mondal, D., Percival, D.B.,
Wavelet Variance Analysis for Random Fields on a Regular Lattice,
IP(21), No. 2, February 2012, pp. 537-549.
IEEE DOI 1201
BibRef

Thon, K., Geilhufe, M., Percival, D.B.,
A Multiscale Wavelet-Based Test for Isotropy of Random Fields on a Regular Lattice,
IP(24), No. 2, February 2015, pp. 694-708.
IEEE DOI 1502
image processing BibRef

Easley, G.R., Labate, D.,
Critically Sampled Wavelets With Composite Dilations,
IP(21), No. 2, February 2012, pp. 550-561.
IEEE DOI 1201
BibRef

Maleki, A., Rajaei, B., Pourreza, H.R.,
Rate-Distortion Analysis of Directional Wavelets,
IP(21), No. 2, February 2012, pp. 588-600.
IEEE DOI 1201
BibRef

Lee, D.U., Kim, L.W., Villasenor, J.D.,
Precision-Aware Self-Quantizing Hardware Architectures for the Discrete Wavelet Transform,
IP(21), No. 2, February 2012, pp. 768-777.
IEEE DOI 1201
BibRef

Ram, I., Elad, M., Cohen, I.,
Redundant Wavelets on Graphs and High Dimensional Data Clouds,
SPLetters(19), No. 5, May 2012, pp. 291-294.
IEEE DOI 1204
BibRef

Wang, X.K.[Xiao-Kai], Gao, J.H.[Jing-Huai], Chen, W.C.[Wen-Chao],
A New Tiling Scheme for 2-D Continuous Wavelet Transform With Different Rotation Parameters at Different Scales Resulting in a Tighter Frame,
SPLetters(19), No. 7, July 2012, pp. 407-410.
IEEE DOI 1206
BibRef

Sheridan, P.[Phillip], Thornton, B.[Barry],
Contextual modulation via low-level vision processing,
IVC(30), No. 4-5, May 2012, pp. 367-377.
Elsevier DOI 1206
Gabor wavelet; Contextual modulation; Primary visual cortex; Computational model; Orientation pinwheels BibRef

Franco, J.[Joaquín], Bernabé, G.[Gregorio], Fernández, J.[Juan], Ujaldón, M.[Manuel],
The 2D wavelet transform on emerging architectures: GPUs and multicores,
RealTimeIP(7), No. 3, September 2012, pp. 145-152.
WWW Link. 1208
BibRef

Naik, A.K., Holambe, R.S.,
Design of Low-Complexity High-Performance Wavelet Filters for Image Analysis,
IP(22), No. 5, May 2013, pp. 1848-1858.
IEEE DOI 1303
BibRef

Naik, A.K., Holambe, R.S.,
New Approach to the Design of Low Complexity 9/7 Tap Wavelet Filters With Maximum Vanishing Moments,
IP(23), No. 12, December 2014, pp. 5722-5732.
IEEE DOI 1412
data compression BibRef

Roy, S.[Sanjit], Howlader, T.[Tamanna], Rahman, S.M.M.[S.M. Mahbubur],
Image fusion technique using multivariate statistical model for wavelet coefficients,
SIViP(7), No. 2, March 2013, pp. 355-365.
WWW Link. 1303
BibRef

Shukla, K.K., Tiwari, A.K.[Arvind K.],
Efficient Algorithms for Discrete Wavelet Transform: With Applications to Denoising and Fuzzy Inference Systems,
Springer2013. ISBN 978-1-4471-4940-8


WWW Link. 1304
BibRef

Bosch, E.[Edward], Castrodad, A.[Alexey], Cooper, J.[John], Dobrosotskaya, J.[Julia], Czaja, W.[Wojciech],
Multiscale and multidirectional tight frames for image analysis,
SPIE(Newsroom), May 29, 2013
DOI Link 1308
A model for constructing 2D tight frames provides a new way to analyze, visualize, and process data at multiple scales and directions. BibRef

Hadmi, A.[Azhar], Puech, W.[William], Said, B.A.E.[Brahim Ait Es], Ouahman, A.A.[Abdellah Ait],
A robust and secure perceptual hashing system based on a quantization step analysis,
SP:IC(28), No. 8, 2013, pp. 929-948.
Elsevier DOI 1309
BibRef
Earlier:
Statistical analysis of the quantization stage of robust perceptual image hashing,
EUVIP11(274-279).
IEEE DOI 1110
BibRef
Earlier:
Analysis of the robustness of wavelet-based perceptual signatures,
IPTA10(112-117).
IEEE DOI 1007
Robust hashing BibRef

Yang, H., Ying, L.,
Synchrosqueezed Wave Packet Transform for 2D Mode Decomposition,
SIIMS(6), No. 4, 2013, pp. 1979-2009.
DOI Link 1402
BibRef

Gilles, J., Tran, G., Osher, S.,
2D Empirical Transforms. Wavelets, Ridgelets, and Curvelets Revisited,
SIIMS(7), No. 1, 2014, pp. 157-186.
DOI Link 1404
BibRef

Tay, D.B.H., Lin, Z., Murugesan, S.,
Orthogonal Wavelet Filters with Minimum RMS Bandwidth,
SPLetters(21), No. 7, July 2014, pp. 819-823.
IEEE DOI 1405
Bandwidth BibRef

Tay, D.B.H., Lin, Z.,
Design of Near Orthogonal Graph Filter Banks,
SPLetters(22), No. 6, June 2015, pp. 701-704.
IEEE DOI 1411
Bipartite graph BibRef

Tay, D.B.H., Tanaka, Y., Sakiyama, A.,
Near Orthogonal Oversampled Graph Filter Banks,
SPLetters(23), No. 2, February 2016, pp. 277-281.
IEEE DOI 1602
channel bank filters BibRef

Han, B., Zhao, Z.,
Tensor Product Complex Tight Framelets with Increasing Directionality,
SIIMS(7), No. 2, 2014, pp. 997-1034.
DOI Link 1407
BibRef

Shen, Y.[Yi], Han, B.[Bin], Braverman, E.[Elena],
Removal of Mixed Gaussian and Impulse Noise Using Directional Tensor Product Complex Tight Framelets,
JMIV(54), No. 1, January 2016, pp. 64-77.
WWW Link. 1601
BibRef

Auli-Llinas, F.[Francesc],
Entropy-Based Evaluation of Context Models for Wavelet-Transformed Images,
IP(24), No. 1, January 2015, pp. 57-67.
IEEE DOI 1502
codecs BibRef

Auli-Llinas, F.[Francesc], Enfedaque, P.[Pablo], Serra-Sagrista, J.[Joan], Sanchez, V.[Victor],
Evaluation of context models to code wavelet-transformed hyperspectral images,
ICIP14(4827-4831)
IEEE DOI 1502
Context BibRef

Bostan, E.[Emrah], Unser, M.[Michael], Ward, J.P.,
Divergence-Free Wavelet Frames,
SPLetters(22), No. 8, August 2015, pp. 1142-1146.
IEEE DOI 1502
fast Fourier transforms BibRef

Fageot, J.[Julien], Bostan, E.[Emrah], Unser, M.[Michael],
Wavelet Statistics of Sparse and Self-Similar Images,
SIIMS(8), No. 4, 2015, pp. 2951-2975.
DOI Link 1601
BibRef
Earlier:
Statistics of Wavelet Coefficients for Sparse Self-Similar Images,
ICIP14(6096-6100)
IEEE DOI 1502
Compounds BibRef

Pad, P.[Pedram], Uhlmann, V.[Virginie], Unser, M.[Michael],
VOW: Variance-optimal wavelets for the steerable pyramid,
ICIP14(2973-2977)
IEEE DOI 1502
Approximation methods BibRef

Shi, J.[Jun], Liu, X.P.[Xiao-Ping], Zhang, N.[Naitong],
Multiresolution analysis and orthogonal wavelets associated with fractional wavelet transform,
SIViP(9), No. 1, January 2015, pp. 211-220.
WWW Link. 1503
BibRef

Kakoty, N.M.[Nayan M.], Saikia, A.[Adity], Hazarika, S.M.[Shyamanta M.],
Exploring a family of wavelet transforms for EMG-based grasp recognition,
SIViP(9), No. 3, March 2015, pp. 553-559.
WWW Link. 1503
BibRef

Gopalan, B., Chilambuchelvan, A., Vijayan, S., Gowrison, G.,
Performance Improvement of Average Based Spatial Filters through Multilevel Preprocessing using Wavelets,
SPLetters(22), No. 10, October 2015, pp. 1698-1702.
IEEE DOI 1506
Gaussian noise BibRef

Ahrabian, A., Mandic, D.P.,
Selective Time-Frequency Reassignment Based on Synchrosqueezing,
SPLetters(22), No. 11, November 2015, pp. 2039-2043.
IEEE DOI 1509
signal representation BibRef

Chen, Y.[Yang], Cheng, C.[Cheng], Sun, Q.[Qiyu],
Reconstruction of Sparse Wavelet Signals From Partial Fourier Measurements,
SPLetters(22), No. 12, December 2015, pp. 2299-2303.
IEEE DOI 1512
Fourier transforms BibRef

Gawande, J.P.[Jayanand P.], Rahulkar, A.D.[Amol D.], Holambe, R.S.[Raghunath S.],
Design of new class of regular biorthogonal wavelet filter banks using generalized and hybrid lifting structures,
SIViP(9), No. 1 Supp, December 2015, pp. 265-273.
Springer DOI 1601
BibRef

Escande, P.[Paul], Weiss, P.[Pierre],
Sparse Wavelet Representations of Spatially Varying Blurring Operators,
SIIMS(8), No. 4, 2015, pp. 2976-3014.
DOI Link 1601
BibRef

Ghribi, S.F.[Sameh Fakhfakh], Jammoussi, A.Y.[Ameni Yangui], Masmoudi, D.S.[Dorra Sellami],
Multiobjective genetic algorithm-based adaptive wavelet design,
IJCVR(6), No. 1-2, 2016, pp. 127-145.
DOI Link 1601
BibRef

Puspoki, Z., Uhlmann, V., Vonesch, C., Unser, M.,
Design of Steerable Wavelets to Detect Multifold Junctions,
IP(25), No. 2, February 2016, pp. 643-657.
IEEE DOI 1601
Biomedical imaging BibRef

Kale, M.C.[Mehmet Cemil],
A general biorthogonal wavelet based on Karhunen-Loéve transform approximation,
SIViP(10), No. 4, April 2016, pp. 791-794.
Springer DOI 1604
BibRef

Adcock, B., Hansen, A.C., Roman, B.,
A Note on Compressed Sensing of Structured Sparse Wavelet Coefficients From Subsampled Fourier Measurements,
SPLetters(23), No. 5, May 2016, pp. 732-736.
IEEE DOI 1604
Coherence BibRef

Bastounis, A.[Alexander], Hansen, A.C.[Anders C.],
On the Absence of Uniform Recovery in Many Real-World Applications of Compressed Sensing and the Restricted Isometry Property and Nullspace Property in Levels,
SIIMS(10), No. 1, 2017, pp. 335-371.
DOI Link 1704
BibRef

Zhang, Y.F.[Yong-Fei], Cao, H.H.[Hai-Heng], Jiang, H.X.[Hong-Xu], Li, B.[Bo],
Memory-efficient high-speed VLSI implementation of multi-level discrete wavelet transform,
JVCIR(38), No. 1, 2016, pp. 297-306.
Elsevier DOI 1605
DWT BibRef

Jayachandra, D., Makur, A.[Anamitra],
Reduction of transients during lifting based spatial switching of two-channel filter banks,
SP:IC(47), No. 1, 2016, pp. 229-241.
Elsevier DOI 1610
Wavelets BibRef

Püspöki, Z.[Zsuzsanna], Ward, J.P.[John Paul], Sage, D.[Daniel], Unser, M.[Michael],
On the Continuous Steering of the Scale of Tight Wavelet Frames,
SIIMS(9), No. 3, 2016, pp. 1042-1062.
DOI Link 1610
BibRef

Folberth, J., Becker, S.,
Efficient Adjoint Computation for Wavelet and Convolution Operators,
SPMag(33), No. 6, November 2016, pp. 135-147.
IEEE DOI 1609
[Lecture Notes]. Blind equalizers BibRef

Kumar, N.[Neeraj], Verma, R.[Ruchika], Sethi, A.[Amit],
Convolutional neural networks for wavelet domain super resolution,
PRL(90), No. 1, 2017, pp. 65-71.
Elsevier DOI 1704
BibRef
Earlier: A1, A3, Only:
On spatial neighborhood of patch-based super resolution,
ICIP15(497-501)
IEEE DOI 1512
Super resolution. Group Method of Data Handling BibRef

Kumar, N.[Neeraj], Rai, N.K.[Naveen Kumar], Sethi, A.[Amit],
Learning to predict super resolution wavelet coefficients,
ICPR12(3468-3471).
WWW Link. 1302
BibRef


Regli, J.B., Nelson, J.D.B.,
Scattering convolutional hidden Markov trees,
ICIP16(1883-1887)
IEEE DOI 1610
Convolution BibRef

Nelson, J.D.B., Gibberd, A.J.,
Introducing the locally stationary dual-tree complex wavelet model,
ICIP16(3583-3587)
IEEE DOI 1610
Computational modeling BibRef

Zhang, X.,
A novel design of biorthogonal graph wavelet filter banks,
ICIP16(1529-1533)
IEEE DOI 1610
Algorithm design and analysis BibRef

Tay, P.C.[Peter C.],
A conjointly well localized quadrature mirror filterbank,
ICIP15(3725-3729)
IEEE DOI 1512
Quadrature Mirror Filter-bank; Wavelet Transform; time-frequency measure BibRef

Bahri, M., Ashimo, R.,
Convolution and correlation theorems for continuous reduced biquaternion wavelet transform,
ICWAPR15(81-86)
IEEE DOI 1511
wavelet transforms BibRef

Zheng, Y.[Yan], Fujimoto, S., Rinoshika, A.,
Comparing wavelet transform with proper orthogonal decomposition,
ICWAPR15(117-123)
IEEE DOI 1511
shear turbulence BibRef

Marinucci, D.[Domenico], Vadlamani, S.[Sreekar],
Statistical properties of spherical wavelets systems,
ICIP14(6011-6015)
IEEE DOI 1502
Data analysis BibRef

Barina, D.[David], Zemcik, P.[Pavel],
Diagonal vectorisation of 2-D wavelet lifting,
ICIP14(2978-2982)
IEEE DOI 1502
Central Processing Unit BibRef

Qiao, L.H.[Li-Hong], Qin, Y.[Yao],
Directional multidimensional monogenic signal analysis using shearlet monogenic transform,
ICWAPR14(7-12)
IEEE DOI 1402
Estimation BibRef

Qiao, L.H.[Li-Hong], Ren, X.Z.[Xiao-Zhen],
Intrinsic image modulation characters extraction based on monogenic and structure tensor,
ICWAPR14(1-6)
IEEE DOI 1402
Empirical mode decomposition BibRef

Zhang, Z.[Zhong], Suzuki, J., Akiduki, T., Miyake, T.[Tetsuo],
Consideration of composing method of the optimized real-signal mother wavelet,
ICWAPR16(107-113)
IEEE DOI 1611
Continuous wavelet transforms BibRef

Toda, H.[Hiroshi], Zhang, Z.[Zhong],
High flexible orthonormal basis of wavelets and its Hilbert transform pair,
ICWAPR16(134-139)
IEEE DOI 1611
Pattern recognition BibRef

Shirasuna, M., Zhang, Z.[Zhong], Toda, H.[Hiroshi], Miyake, T.[Tetsuo],
Approximate tight wavelet frame using Gabor wavelet,
ICWAPR15(105-110)
IEEE DOI 1511
approximation theory BibRef

Zhang, Z.[Zhong], Shimasue, K.[Kosuke], Toda, H.[Hiroshi], Miyake, T.[Tetsuo],
Achieving complex discrete wavelet transform by lifting scheme using Meyer wavelet,
ICWAPR14(170-175)
IEEE DOI 1402
Discrete wavelet transforms BibRef

Kato, T.[Takeshi], Zhang, Z.[Zhong], Toda, H.[Hiroshi], Imamura, T.[Takashi], Miyake, T.[Tetsuo],
The novel directional selection based on complex discrete wavelet transform,
ICWAPR14(164-169)
IEEE DOI 1402
Discrete wavelet transforms BibRef

Fujinoki, K.[Kensuke],
Image restoration with triangular orthogonal wavelets,
ICWAPR15(124-127)
IEEE DOI 1511
BibRef
Earlier:
A design of triangular biorthogonal wavelet filters with average interpolation scheme,
ICWAPR14(159-163)
IEEE DOI 1402
AWGN. Image processing BibRef

Toda, H.[Hiroshi], Zhang, Z.[Zhong],
A new type of orthonormal wavelet basis having customizable frequency bands,
ICWAPR15(99-104)
IEEE DOI 1511
BibRef
Earlier:
Study of arbitrary real dilation factor of orthonorma wavelet basis,
ICWAPR14(140-145)
IEEE DOI 1402
frequency-domain analysis. Equations BibRef

Morimoto, A.[Akira], Ashino, R.[Ryuichi], Mandai, T.[Takeshi],
Image separation using N-tree wavelet transforms,
ICWAPR15(93-98)
IEEE DOI 1511
Hilbert transforms BibRef

Morimoto, A.[Akira], Ashino, R.[Ryuichi], Ikebe, K.[Kazuma], Mandai, T.[Takeshi], Tatsumi, M.[Motoi],
Filter coefficients of the fractional Hilbert transforms of biorthogonal wavelets,
ICWAPR14(134-139)
IEEE DOI 1402
Biorthogonal wavelets BibRef

Fujita, K.[Keiko],
Gabor transformation on the circle,
ICWAPR14(122-126)
IEEE DOI 1402
Fourier transforms BibRef

Bahri, M.[Mawardi], Ashino, R.[Ryuichi],
Logarithmic uncertainty principle for quaternion linear canonical transform,
ICWAPR16(140-145)
IEEE DOI 1611
BibRef
Earlier:
Relationship between quaternion linear canonical and quaternion fourier transforms,
ICWAPR14(116-121)
IEEE DOI 1402
Algebra. Convolution BibRef

Lian, J.A.[Jian-Ao], Wang, Y.[Yonghui],
Construction of energy preserving QMF,
ICWAPR14(24-29)
IEEE DOI 1402
Filter banks BibRef

Iwahashi, M.[Masahiro], Orachon, T.[Teerapong], Kiya, H.[Hitoshi],
Three dimensional discrete wavelet transform with deduced number of lifting steps,
ICIP13(1651-1654)
IEEE DOI 1402
3D; coding; medical; wavelet BibRef

Chae, E.J.[Eun-Jung], Lee, E.S.[Eun-Sung], Kang, W.[Wonseok], Lim, Y.H.[Young-Hoon], Jung, J.H.[Jung-Hoon], Kim, T.[Taechan], Katsaggelos, A.K.[Aggelos K.], Paik, J.[Joonki],
Frequency-domain analysis of discrete wavelet transform coefficients and their adaptive shrinkage for anti-aliasing,
ICIP13(1071-1074)
IEEE DOI 1402
Discrete Fourier transforms BibRef

Stutz, T.[Thomas], Uhl, A.[Andreas],
Complexity analysis of the Key-dependent Wavelet Packet Transform for JPEG2000 encryption,
ICIP12(2633-2636).
IEEE DOI 1302
BibRef

Ye, W.X.[Wen-Xing], Entezari, A.[Alireza],
Design of bivariate sinc wavelets,
ICIP12(2477-2480).
IEEE DOI 1302
BibRef

Schwartz, W.R.[William Robson], da Silva, R.D.[Ricardo Dutra], Davis, L.S.[Larry S.], Pedrini, H.[Helio],
A novel feature descriptor based on the shearlet transform,
ICIP11(1033-1036).
IEEE DOI 1201
BibRef

Rao, N.S.[Nikhil S.], Nowak, R.D.[Robert D.], Wright, S.J.[Stephen J.], Kingsbury, N.G.[Nick G.],
Convex approaches to model wavelet sparsity patterns,
ICIP11(1917-1920).
IEEE DOI 1201
BibRef

Kwitt, R.[Roland], Meerwald, P.[Peter], Uhl, A.[Andreas], Verdoolaege, G.[Geert],
Testing a multivariate model for wavelet coefficients,
ICIP11(1277-1280).
IEEE DOI 1201
BibRef

Unaldi, N.[Numan], Asari, V.K.[Vijayan K.],
Undecimated Wavelet Transform-Based Image Interpolation,
ISVC10(III: 474-483).
Springer DOI 1011
BibRef

Jing, M.[Mingli], Huang, H.[Hua], Liu, W.[WuLing], Qi, C.[Chun],
Orthogonal 4-tap integer multiwavelet transforms using matrix factorization,
ICIP10(393-396).
IEEE DOI 1009
BibRef

Papari, G.[Giuseppe], Campisi, P.[Patrizio], Petkov, N.[Nicolai],
Closed form of the steered elongated Hermite-Gauss wavelets,
ICIP10(377-380).
IEEE DOI 1009
BibRef

Kopenkov, V.N.[Vasiliy N.], Myasnikov, V.V.[Vladislav V.],
Research the Performance of a Recursive Algorithm of the Local Discrete Wavelet Transform,
ICPR10(4452-4455).
IEEE DOI 1008
BibRef

Baradarani, A.[Aryaz], Mendapara, P.[Pankajkumar], Wu, Q.M.J.[Q.M. Jonathan],
On the Design of a Class of Odd-Length Biorthogonal Wavelet Filter Banks for Signal and Image Processing,
ICPR10(2282-2285).
IEEE DOI 1008
BibRef

Bhavsar, J.K.[Jignesh K.], Mitra, S.K.[Suman K.],
Deriving Sparse Coefficients of Wavelet Pyramid Taking Clues from Hough Transform,
PReMI09(327-332).
Springer DOI 0912
BibRef

Vosoughi, A.[Arash], Shamsollahi, M.B.[Mohammad B.], Vosoughi, A.[Azadeh],
Nonsubsampled higher-density discrete wavelet transform: Filter design and application in image contrast enhancement,
ICIP09(3165-3168).
IEEE DOI 0911
BibRef

El-Shehaby, I.A.[Iman A.], Tran, T.D.[Trac D.],
Implementation and application of local computation of wavelet coefficients in the dual-tree complex wavelets,
ICIP09(3885-3888).
IEEE DOI 0911
BibRef

Goossens, B., Aelterman, J., Luong, H., Pizurica, A., Philips, W.,
Efficient design of a low redundant Discrete Shearlet Transform,
LNLA09(112-124).
IEEE DOI 0908
BibRef

Kravchenko, V.[Victor], Meana, H.P.[Hector Perez], Ponomaryov, V.[Volodymyr], Churikov, D.[Dmitry],
Spectral Estimation of Digital Signals by the Orthogonal Kravchenko Wavelets {ha(t)~},
CIARP09(989-996).
Springer DOI 0911
BibRef

Ma, Q.[Qin], Mei, S.L.[Shu-Li], Zhu, D.H.[De-Hai],
Construction of Quasi Interval Wavelet Based on Constrained Variational Principle,
CISP09(1-5).
IEEE DOI 0910
BibRef

Xiao, H.Y.[Hong-Ying],
A Recursive Approach to Generate Univariate Orthonormal Wavelet,
CISP09(1-4).
IEEE DOI 0910
BibRef

Zhang, W.B.[Wen-Bin], Shen, L.[Lu], Li, J.[Junsheng], Cai, Q.[Qun], Wang, H.J.[Hong-Jun],
Morphological Undecimated Wavelet Decomposition for Fault Feature Extraction of Rolling Element Bearing,
CISP09(1-5).
IEEE DOI 0910
BibRef

Liu, S.G.[Shu-Guang], Qu, P.G.[Ping-Ge],
Construction of Two Types of Wavelets Based on Edge Detector,
CISP09(1-4).
IEEE DOI 0910
BibRef

Wang, J.J.[Jin-Jun], Zhu, S.H.[Sheng-Huo], Gong, Y.H.[Yi-Hong],
Resolution-Invariant Image Representation and its applications,
CVPR09(2512-2519).
IEEE DOI 0906
Multiple resolution bases from training images, use to represent image. BibRef

Adams, M.D.[Michael D.],
On the coding gain of separable 2D wavelet filter banks,
ICIP08(1204-1207).
IEEE DOI 0810
BibRef

Patel, V.M.[Vishal M.], Easley, G.R.[Glenn R.], Healy, D.M.[Dennis M.],
A new multiresolution generalized directional filter bank design and application in image enhancement,
ICIP08(2816-2819).
IEEE DOI 0810
BibRef

Sigari, M.H.[Mohamad Hoseyn],
Best wavelength selection for Gabor wavelet using GA for EBGM algorithm,
ICMV07(35-39).
IEEE DOI 0712
BibRef

Byröd, M.[Martin], Josephson, K.[Klas], Ĺström, K.[Kalle],
A Column-Pivoting Based Strategy for Monomial Ordering in Numerical Gröbner Basis Calculations,
ECCV08(IV: 130-143).
Springer DOI 0810
BibRef
Earlier:
Improving Numerical Accuracy of Grobner Basis Polynomial Equation Solvers,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Bede, B.[Barnabas], Nobuhara, H.[Hajime], Schwab, E.D.[Emil Daniel],
Multichannel Image Decomposition by using Pseudo-Linear Haar Wavelets,
ICIP07(VI: 17-20).
IEEE DOI 0709
BibRef

Zergainoh, A., Duhamel, P.,
Compactly Supported Non-Uniform Spline Wavelet for Irregularly Sub-Sampled Image Representation,
ICIP06(1621-1624).
IEEE DOI 0610
BibRef

Yin, X.X., Ng, B.W.H., Ferguson, B., Mickan, S.P., Abbott, D.,
Statistical Model for the Classification of the Wavelet Transforms of T-ray Pulses,
ICPR06(III: 236-239).
IEEE DOI 0609
BibRef

Huang, C.P.[Chin-Pan], Li, C.C.[Ching-Chung],
A Secret Image Sharing Method using Integer Multiwavelet Transform,
ICIP06(1969-1972).
IEEE DOI 0610
BibRef
Earlier:
A Secret Image Sharing Method Using Integer-to-Integer Wavelet Transform,
ICPR06(III: 802-805).
IEEE DOI 0609
BibRef

Amiri, M., Azimifar, Z., Fieguth, P.W.,
Correlated non-linear wavelet shrinkage,
ICIP08(2348-2351).
IEEE DOI 0810
BibRef

Azimifar, Z., Fieguth, P.W., Jernigan, E.,
Correlated Wavelet Shrinkage: Models of Local Random Fields Across Multiple Resolutions,
ICIP05(III: 157-160).
IEEE DOI 0512
BibRef
Earlier:
Wavelet Shrinkage with Correlated Wavelet Coefficients,
ICIP01(III: 162-165).
IEEE DOI 0108
BibRef

Martina, M., Masera, G.,
Low-Complexity, Efficient 9/7 Wavelet Filters Implementation,
ICIP05(III: 1000-1003).
IEEE DOI 0512
BibRef

Durand, S.,
Orthonormal Bases of Non-Separable Wavelets with Sharp Directions,
ICIP05(I: 449-452).
IEEE DOI 0512
BibRef

Chan, W.L.[Wai Lam], Choi, H.H.[Hyeok-Ho], Baraniuk, R.G.,
Quaternion wavelets for image analysis and processing,
ICIP04(V: 3057-3060).
IEEE DOI 0505
BibRef

van de Ville, D., Blu, T., Forster, B., Unser, M.,
Isotropic-polyharmonic B-splines and wavelets,
ICIP04(I: 661-664).
IEEE DOI 0505
BibRef

Kutil, R.,
Anisotropic 3-d wavelet packet bases for video coding,
ICIP03(II: 73-76).
IEEE DOI 0312
BibRef

Care, P., Helbert, D., Andres, E.,
3-D fast ridgelet transform,
ICIP03(I: 1021-1024).
IEEE DOI 0312
BibRef

Cho, S.Y.[Seong-Yun], Han, S.Y.[Su-Young],
Coefficient Partitioning Scanning Order Wavelet Packet Algorithm for Satellite Images,
CAIP03(278-284).
Springer DOI 0311
BibRef

Wang, H.J.[Hong-Jian], Chen, T.[Tao], Peng, S.L.[Si-Long],
A novel method for designing adaptive compaction orthogonal wavelet filter banks,
ICIP03(I: 1041-1044).
IEEE DOI 0312
BibRef

Kim, H.C.[Hyung Cook], Delp, E.J.,
A comparison of fixed-point 2D 9x7 discrete wavelet transform implementations,
ICIP02(I: 389-392).
IEEE DOI 0210
BibRef

Zhou, D., DeBrunner, V., Havlicek, J.P.,
A spatially selective filter based on the undecimated wavelet transform that is robust to noise estimation error,
Southwest04(162-166).
WWW Link. 0411
BibRef

Tay, P.C., Havlicek, J.P.,
Frequency implementation of discrete wavelet transforms,
Southwest04(167-171).
WWW Link. 0411
BibRef

Tay, P.C., Havlicek, J.P.,
Joint uncertainty measures for maximally decimated M-channel prime factor cascaded wavelet filter banks,
ICIP03(I: 1033-1036).
IEEE DOI 0312
BibRef

Tay, P.C., Havlicek, J.P., DeBrunner, V.,
A wavelet filter bank which minimizes a novel translation invariant discrete uncertainty measure,
Southwest02(173-177).
IEEE Top Reference. 0208
BibRef

Law, N.F., Liew, A.W.C., Siu, W.C.,
Fast Algorithm for Binary Field Wavelet Transform for Image Processing,
ICIP01(II: 281-284).
IEEE DOI 0108
BibRef

Carré, P.[Philippe], Andres, E., Fernandez-Maloigne, C.[Christine],
Discrete Rotation for Directional Orthogonal Wavelet Packets,
ICIP01(II: 257-260).
IEEE DOI 0108
BibRef

Hawwar, Y., Reza, A.,
Nonlinear Filtering in the Wavelet Transform Domain,
ICIP00(Vol III: 266-269).
IEEE DOI 0008
BibRef

Monro, D.,
Visual Embedding of Wavelet Transform Coefficients,
ICIP00(Vol III: 186-189).
IEEE DOI 0008
BibRef

Kacker, D., Ufak Agar, A., Allebach, J.P., Lucier, B.J.,
Wavelet decomposition based representation of nonlinear color transformations and comparison with sequential linear interpolation,
ICIP98(I: 186-190).
IEEE DOI 9810
BibRef

Karam, L.J.[Lina J.],
Design of Complex Multi-Dimensional FIR Filters by Transformation,
ICIP96(I: 573-576).
IEEE DOI BibRef 9600

Srinivasan, S.[Sridhar],
Design of Optimal Cascaded Multirate Filter Banks in the Presence of Quantization,
ICIP96(I: 617-620).
IEEE DOI BibRef 9600

Zervakis, M.E., Kwon, T.M.[Taek Mu], Savakis, A.E.,
Operator decomposition using the wavelet transform: Fundamental properties and image restoration applications,
ICIP94(I: 56-60).
IEEE DOI 9411
BibRef

Lau, P., Papanikolopoulos, N.P., Boley, D.L.,
A note on the Gabor-QR decomposition,
ICIP94(I: 815-819).
IEEE DOI 9411
BibRef

Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Wavelets Filters, Parallel, Hardware Implementations .


Last update:May 17, 2017 at 14:04:35