Shephard, M.W.,
Kennelly, E.J.,
Effect of band-to-band coregistration on fire property retrievals,
GeoRS(41), No. 11, November 2003, pp. 2648-2661.
IEEE Abstract.
0311
BibRef
Briz, S.,
de Castro, A.J.,
Aranda, J.M.,
Meléndez, J.,
López, F.,
Reduction of false alarm rate in automatic forest fire infrared
surveillance systems,
RSE(86), No. 1, 30 June 2003, pp. 19-29.
Elsevier DOI
0309
BibRef
Csiszar, I.A.,
Morisette, J.T.,
Giglio, L.,
Validation of Active Fire Detection From Moderate-Resolution Satellite
Sensors: The MODIS Example in Northern Eurasia,
GeoRS(44), No. 7, Part 1, July 2006, pp. 1757-1764.
IEEE DOI
0606
BibRef
Umamaheshwaran, R.,
Bijker, W.,
Stein, A.,
Image Mining for Modeling of Forest Fires From Meteosat Images,
GeoRS(45), No. 1, January 2007, pp. 246-253.
IEEE DOI
0701
BibRef
Martinez-de Dios, J.R.,
Arrue, B.C.,
Ollero, A.,
Merino, L.,
Gomez-Rodriguez, F.,
Computer vision techniques for forest fire perception,
IVC(26), No. 4, April 2008, pp. 550-562.
Elsevier DOI
0711
Perception systems; Infrared and visual image processing;
Forest fires; Sensor fusion
BibRef
Harris, S.,
Veraverbeke, S.,
Hook, S.,
Evaluating Spectral Indices for Assessing Fire Severity in Chaparral
Ecosystems (Southern California) Using MODIS/ASTER (MASTER) Airborne
Simulator Data,
RS(3), No. 11, November 2011, pp. 2403-2419.
DOI Link
1203
BibRef
Sifakis, N.,
Iossifidis, C.,
Kontoes, C.C.,
Keramitsoglou, I.,
Wildfire Detection and Tracking over Greece Using MSG-SEVIRI Satellite
Data,
RS(3), No. 3, March 2011, pp. 524-538.
DOI Link
1203
BibRef
Gunay, O.,
Toreyin, B.U.,
Kose, K.,
Cetin, A.E.,
Entropy-Functional-Based Online Adaptive Decision Fusion Framework With
Application to Wildfire Detection in Video,
IP(21), No. 5, May 2012, pp. 2853-2865.
IEEE DOI
1204
BibRef
Orozco, C.V.[Carmen Vega],
Tonini, M.[Marj],
Conedera, M.[Marco],
Kanveski, M.[Mikhail],
Cluster recognition in spatial-temporal sequences:
The case of forest fires,
GeoInfo(16), No. 4, October 2012, pp. 653-673.
WWW Link.
1210
BibRef
Bernhard, E.M.[Eva-Maria],
Twele, A.[André],
Gähler, M.[Monika],
Rapid Mapping of Forest Fires in the European Mediterranean Region:
A Change Detection Approach Using X-Band SAR-Data,
PFG(2011), No. 4, 2011, pp. 261-270.
WWW Link.
1211
BibRef
Maier, S.W.[Stefan W.],
Russell-Smith, J.[Jeremy],
Edwards, A.C.[Andrew C.],
Yates, C.[Cameron],
Sensitivity of the MODIS fire detection algorithm (MOD14) in the
savanna region of the Northern Territory, Australia,
PandRS(76), No. 1, February 2013, pp. 11-16.
Elsevier DOI
1301
Forest fire; Thermal; Performance; Hazards; Monitoring; Detection
BibRef
Elvidge, C.D.[Christopher D.],
Zhizhin, M.[Mikhail],
Hsu, F.C.[Feng-Chi],
Baugh, K.E.[Kimberly E.],
VIIRS Nightfire: Satellite Pyrometry at Night,
RS(5), No. 9, 2013, pp. 4423-4449.
DOI Link
1310
BibRef
Paugam, R.,
Wooster, M.J.,
Roberts, G.,
Use of Handheld Thermal Imager Data for Airborne Mapping of
Fire Radiative Power and Energy and Flame Front Rate of Spread,
GeoRS(51), No. 6, 2013, pp. 3385-3399.
IEEE DOI
1307
flames; infrared imaging; georeferencing algorithm
BibRef
Pennypacker, C.R.[Carlton R.],
Jakubowski, M.K.[Marek K.],
Kelly, M.[Maggi],
Lampton, M.[Michael],
Schmidt, C.[Christopher],
Stephens, S.[Scott],
Tripp, R.[Robert],
FUEGO: Fire Urgency Estimator in Geosynchronous Orbit:
A Proposed Early-Warning Fire Detection System,
RS(5), No. 10, 2013, pp. 5173-5192.
DOI Link
1311
BibRef
Pennypacker, C.R.[Carlton R.],
FUEGO: a satellite system for rapid location of wildfires,
SPIE(Newsroom), February 14, 2014
DOI Link
1402
Combining imaging, computation, software modeling, and satellite
hosting systems with firefighting methods may enable cost-effective
detection and monitoring of wildland fires in their first few minutes.
BibRef
Freeborn, P.H.[Patrick H.],
Wooster, M.J.[Martin J.],
Roberts, G.[Gareth],
Xu, W.D.[Wei-Dong],
Evaluating the SEVIRI Fire Thermal Anomaly Detection Algorithm across
the Central African Republic Using the MODIS Active Fire Product,
RS(6), No. 3, 2014, pp. 1890-1917.
DOI Link
1404
BibRef
Le, G.E.[George E.],
Breysse, P.N.[Patrick N.],
McDermott, A.[Aidan],
Eftim, S.E.[Sorina E.],
Geyh, A.[Alison],
Berman, J.D.[Jesse D.],
Curriero, F.C.[Frank C.],
Canadian Forest Fires and the Effects of Long-Range Transboundary Air
Pollution on Hospitalizations among the Elderly,
IJGI(3), No. 2, 2014, pp. 713-731.
DOI Link
1407
BibRef
Montealegre, A.L.[Antonio Luis],
Lamelas, M.T.[María Teresa],
Tanase, M.A.[Mihai A.],
de la Riva, J.[Juan],
Forest Fire Severity Assessment Using ALS Data in a Mediterranean
Environment,
RS(6), No. 5, 2014, pp. 4240-4265.
DOI Link
1407
BibRef
Vlassova, L.[Lidia],
Pérez-Cabello, F.[Fernando],
Mimbrero, M.R.[Marcos Rodrigues],
Llovería, R.M.[Raquel Montorio],
García-Martín, A.[Alberto],
Analysis of the Relationship between Land Surface Temperature and
Wildfire Severity in a Series of Landsat Images,
RS(6), No. 7, 2014, pp. 6136-6162.
DOI Link
1408
BibRef
Safronov, A.N.[Alexander N.],
Fokeeva, E.V.[Ekaterina V.],
Rakitin, V.S.[Vadim S.],
Grechko, E.I.[Eugene I.],
Shumsky, R.A.[Roman A.],
Severe Wildfires Near Moscow, Russia in 2010: Modeling of Carbon
Monoxide Pollution and Comparisons with Observations,
RS(7), No. 1, 2014, pp. 395-429.
DOI Link
1502
BibRef
Gross, B.[Barry],
Wu, Y.H.[Yong-Hua],
Moshary, F.[Fred],
Delgado, R.[Ruben],
Hoff, R.[Ray],
Su, J.[Jia],
Lee, R.[Robert],
McCormick, P.[Pat],
Using lidar networks to explore aloft plume properties,
SPIE(Newsroom), December 30, 2014
DOI Link
1504
A coordinated lidar network in the northeastern United States explored
the optical properties of transported plumes from fires and dust and
diagnosed chemical transport model concentration biases.
BibRef
Toulouse, T.,
Rossi, L.,
Akhloufi, M.,
Celik, T.,
Maldague, X.,
Benchmarking of wildland fire colour segmentation algorithms,
IET-IPR(9), No. 12, 2015, pp. 1064-1072.
DOI Link
1512
fires
BibRef
Li, P.[Peng],
Feng, Z.M.[Zhi-Ming],
Extent and Area of Swidden in Montane Mainland Southeast Asia:
Estimation by Multi-Step Thresholds with Landsat-8 OLI Data,
RS(8), No. 1, 2016, pp. 44.
DOI Link
1602
slash and burn analysis.
BibRef
Benali, A.[Akli],
Russo, A.[Ana],
Sá, A.C.L.[Ana C. L.],
Pinto, R.M.S.[Renata M. S.],
Price, O.[Owen],
Koutsias, N.[Nikos],
Pereira, J.M.C.[José M. C.],
Determining Fire Dates and Locating Ignition Points With Satellite
Data,
RS(8), No. 4, 2016, pp. 326.
DOI Link
1604
BibRef
Lin, L.[Lei],
Meng, Y.[Yu],
Yue, A.Z.[An-Zhi],
Yuan, Y.[Yuan],
Liu, X.Y.[Xiao-Yi],
Chen, J.B.[Jing-Bo],
Zhang, M.M.[Meng-Meng],
Chen, J.S.[Jian-Sheng],
A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS
Satellite Data,
RS(8), No. 5, 2016, pp. 403.
DOI Link
1606
BibRef
Polivka, T.N.,
Wang, J.,
Ellison, L.T.,
Hyer, E.J.,
Ichoku, C.M.,
Improving Nocturnal Fire Detection With the VIIRS Day: Night Band,
GeoRS(54), No. 9, September 2016, pp. 5503-5519.
IEEE DOI
1609
remote sensing
BibRef
Oom, D.[Duarte],
Silva, P.C.[Pedro C.],
Bistinas, I.[Ioannis],
Pereira, J.M.C.[José M. C.],
Highlighting Biome-Specific Sensitivity of Fire Size Distributions to
Time-Gap Parameter Using a New Algorithm for Fire Event Individuation,
RS(8), No. 8, 2016, pp. 663.
DOI Link
1609
BibRef
de Grandi, E.C.[Elsa Carla],
Mitchard, E.[Edward],
Hoekman, D.[Dirk],
Wavelet Based Analysis of TanDEM-X and LiDAR DEMs across a Tropical
Vegetation Heterogeneity Gradient Driven by Fire Disturbance in
Indonesia,
RS(8), No. 8, 2016, pp. 641.
DOI Link
1609
BibRef
Xie, H.[Huan],
Du, L.[Li],
Liu, S.[Sicong],
Chen, L.[Lei],
Gao, S.[Sa],
Liu, S.[Shuang],
Pan, H.Y.[Hai-Yan],
Tong, X.H.[Xiao-Hua],
Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014
Using MODIS and GlobeLand30 Data,
IJGI(5), No. 10, 2016, pp. 172.
DOI Link
1610
BibRef
Tian, G.,
Ren, Y.,
Zhou, M.,
Dual-Objective Scheduling of Rescue Vehicles to Distinguish Forest
Fires via Differential Evolution and Particle Swarm Optimization
Combined Algorithm,
ITS(17), No. 11, November 2016, pp. 3009-3021.
IEEE DOI
1609
Engines
BibRef
Wickramasinghe, C.H.[Chathura H.],
Jones, S.[Simon],
Reinke, K.[Karin],
Wallace, L.[Luke],
Development of a Multi-Spatial Resolution Approach to the
Surveillance of Active Fire Lines Using Himawari-8,
RS(8), No. 11, 2016, pp. 932.
DOI Link
1612
BibRef
Plank, S.[Simon],
Fuchs, E.M.[Eva-Maria],
Frey, C.[Corinne],
A Fully Automatic Instantaneous Fire Hotspot Detection Processor
Based on AVHRR Imagery: A TIMELINE Thematic Processor,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
See also Fully Automatic Burnt Area Mapping Processor Based on AVHRR Imagery: A TIMELINE Thematic Processor, A.
BibRef
Fukuhara, T.,
Kouyama, T.,
Kato, S.,
Nakamura, R.,
Takahashi, Y.,
Akiyama, H.,
Detection of Small Wildfire by Thermal Infrared Camera With the
Uncooled Microbolometer Array for 50-kg Class Satellite,
GeoRS(55), No. 8, August 2017, pp. 4314-4324.
IEEE DOI
1708
Brightness temperature, Cameras, Instruments,
Low earth orbit satellites, Satellite broadcasting,
Spatial resolution, Infrared imaging, remote sensing, satellite, applications
BibRef
Lin, Z.,
Chen, F.,
Li, B.,
Yu, B.,
Shirazi, Z.,
Wu, Q.,
Wu, W.,
FengYun-3C VIRR Active Fire Monitoring: Algorithm Description and
Initial Assessment Using MODIS and Landsat Data,
GeoRS(55), No. 11, November 2017, pp. 6420-6430.
IEEE DOI
1711
Algorithm design and analysis, Earth, Heuristic algorithms, MODIS,
Active fire monitoring.
BibRef
Fornacca, D.[Davide],
Ren, G.[Guopeng],
Xiao, W.[Wen],
Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML),
and ESA Fire_CCI in a Mountainous Area of Northwest Yunnan, China,
Characterized by Frequent Small Fires,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Zhang, X.X.[Xiao-Xiang],
Yao, J.[Jing],
Sila-Nowicka, K.[Katarzyna],
Exploring Spatiotemporal Dynamics of Urban Fires: A Case of Nanjing,
China,
IJGI(7), No. 1, 2018, pp. xx-yy.
DOI Link
1801
BibRef
Earlier: A2, A1, Only:
Spatial-temporal Dynamics Of Urban Fire Incidents:
A Case Study Of Nanjing, China,
ISPRS16(B2: 63-69).
DOI Link
1610
BibRef
Cho, K.J.[Kang-Joon],
Kim, Y.H.[Yong-Hyun],
Kim, Y.[Yongil],
Disaggregation of Landsat-8 Thermal Data Using Guided SWIR Imagery on
the Scene of a Wildfire,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Garg, S.[Saurabh],
Forbes-Smith, N.[Nicholas],
Hilton, J.[James],
Prakash, M.[Mahesh],
SparkCloud: A Cloud-Based Elastic Bushfire Simulation Service,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Wu, P.,
Chu, F.,
Che, A.,
Zhou, M.,
Bi-Objective Scheduling of Fire Engines for Fighting Forest Fires:
New Optimization Approaches,
ITS(19), No. 4, April 2018, pp. 1140-1151.
IEEE DOI
1804
Earthquakes, Emergency services, Engines, Heuristic algorithms,
Processor scheduling, Routing, Scheduling, Forest fires,
optimization
BibRef
di Biase, V.[Valeria],
Laneve, G.[Giovanni],
Geostationary Sensor Based Forest Fire Detection and Monitoring: An
Improved Version of the SFIDE Algorithm,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Parks, S.A.[Sean A.],
Holsinger, L.M.[Lisa M.],
Voss, M.A.[Morgan A.],
Loehman, R.A.[Rachel A.],
Robinson, N.P.[Nathaniel P.],
Mean Composite Fire Severity Metrics Computed with Google Earth
Engine Offer Improved Accuracy and Expanded Mapping Potential,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
And:
Correction:
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhang, T.R.[Tian-Ran],
Wooster, M.J.[Martin J.],
de Jong, M.C.[Mark C.],
Xu, W.D.[Wei-Dong],
How Well Does the 'Small Fire Boost' Methodology Used within the
GFED4.1s Fire Emissions Database Represent the Timing, Location and
Magnitude of Agricultural Burning?,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Hally, B.[Bryan],
Wallace, L.[Luke],
Reinke, K.[Karin],
Jones, S.[Simon],
Engel, C.[Chermelle],
Skidmore, A.[Andrew],
Estimating Fire Background Temperature at a Geostationary Scale:
An Evaluation of Contextual Methods for AHI-8,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Liu, X.Z.[Xiang-Zhuo],
He, B.B.[Bin-Bin],
Quan, X.W.[Xing-Wen],
Yebra, M.[Marta],
Qiu, S.[Shi],
Yin, C.M.[Chang-Ming],
Liao, Z.M.[Zhan-Mang],
Zhang, H.G.[Hong-Guo],
Near Real-Time Extracting Wildfire Spread Rate from Himawari-8
Satellite Data,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Roberts, G.[Gareth],
Wooster, M.J.[Martin J.],
Xu, W.D.[Wei-Dong],
He, J.P.[Jiang-Ping],
Fire Activity and Fuel Consumption Dynamics in Sub-Saharan Africa,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Tran, B.N.[Bang Nguyen],
Tanase, M.A.[Mihai A.],
Bennett, L.T.[Lauren T.],
Aponte, C.[Cristina],
Evaluation of Spectral Indices for Assessing Fire Severity in
Australian Temperate Forests,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Xie, Z.X.[Zi-Xi],
Song, W.G.[Wei-Guo],
Ba, R.[Rui],
Li, X.L.[Xiao-Lian],
Xia, L.[Long],
A Spatiotemporal Contextual Model for Forest Fire Detection Using
Himawari-8 Satellite Data,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Jang, E.[Eunna],
Kang, Y.J.[Yoo-Jin],
Im, J.H.[Jung-Ho],
Lee, D.W.[Dong-Won],
Yoon, J.M.[Jong-Min],
Kim, S.K.[Sang-Kyun],
Detection and Monitoring of Forest Fires Using Himawari-8
Geostationary Satellite Data in South Korea,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Sofan, P.[Parwati],
Bruce, D.[David],
Jones, E.[Eriita],
Marsden, J.[Jackie],
Detection and Validation of Tropical Peatland Flaming and Smouldering
Using Landsat-8 SWIR and TIRS Bands,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Earlier:
Correction:
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Weber, H.[Helga],
Wunderle, S.[Stefan],
Drifting Effects of NOAA Satellites on Long-Term Active Fire Records
of Europe,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Elvidge, C.D.[Christopher D.],
Zhi-Zhin, M.[Mikhail],
Baugh, K.[Kimberly],
Hsu, F.C.[Feng Chi],
Ghosh, T.[Tilottama],
Extending Nighttime Combustion Source Detection Limits with Short
Wavelength VIIRS Data,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Ozaki, M.[Mitsuhiro],
Aryal, J.[Jagannath],
Fox-Hughes, P.[Paul],
Dynamic Wildfire Navigation System,
IJGI(8), No. 4, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Cruz-López, M.I.[María Isabel],
Manzo-Delgado, L.D.[Lilia De_Lourdes],
Aguirre-Gómez, R.[Raúl],
Chuvieco, E.[Emilio],
Equihua-Benítez, J.A.[Julián Alberto],
Spatial Distribution of Forest Fire Emissions:
A Case Study in Three Mexican Ecoregions,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Kaur, I.[Inderpreet],
Hüser, I.[Imke],
Zhang, T.R.[Tian-Ran],
Gehrke, B.[Berit],
Kaiser, J.W.[Johannes W.],
Correcting Swath-Dependent Bias of MODIS FRP Observations with
Quantile Mapping,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
FRP: Fire Radiative Power.
Active fire monitoring.
BibRef
Klein, D.,
Richter, R.,
Strobl, C.,
Schläpfer, D.,
Solar Influence on Fire Radiative Power Retrieved With the Bispectral
Method,
GeoRS(57), No. 7, July 2019, pp. 4521-4528.
IEEE DOI
1907
Table lookup, Cameras, Sensors, MODIS, Solar radiation, Fires,
Bispectral method, fire radiative power (FRP),
TET-1
BibRef
Lin, Z.,
Chen, F.,
Li, B.,
Yu, B.,
Jia, H.,
Zhang, M.,
Liang, D.,
A Contextual and Multitemporal Active-Fire Detection Algorithm Based
on FengYun-2G S-VISSR Data,
GeoRS(57), No. 11, November 2019, pp. 8840-8852.
IEEE DOI
1911
Satellite broadcasting, Spatial resolution, MODIS,
Geostationary satellites, Detection algorithms,
geostationary satellite data
BibRef
Shah, S.B.,
Grübler, T.,
Krempel, L.,
Ernst, S.,
Mauracher, F.,
Contractor, S.,
Real-time Wildfire Detection From Space - a Trade-off Between Sensor
Quality, Physical Limitations and Payload Size,
PIA19(209-213).
DOI Link
1912
BibRef
Hesam, S.,
Valizadeh Kamran, K.,
Intelligent Management Occurrence and Spread of Front Fire in GIS by
Using Cellular Automata. Case Study: Golestan Forest,
SMPR19(475-481).
DOI Link
1912
BibRef
Jahdi, R.,
Salis, M.,
Arabi, M.,
Arca, B.,
Fire Modelling to Assess Spatial Patterns of Wildfire Exposure In
Ardabil, Nw Iran,
SMPR19(577-581).
DOI Link
1912
BibRef
Ying, L.X.[Ling-Xiao],
Shen, Z.[Zehao],
Yang, M.Z.[Ming-Zheng],
Piao, S.L.[Shi-Long],
Wildfire Detection Probability of MODIS Fire Products under the
Constraint of Environmental Factors: A Study Based on Confirmed
Ground Wildfire Records,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Govil, K.[Kinshuk],
Welch, M.L.[Morgan L.],
Ball, J.T.[J. Timothy],
Pennypacker, C.R.[Carlton R.],
Preliminary Results from a Wildfire Detection System Using Deep
Learning on Remote Camera Images,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Kumar, S.S.[Sanath Sathyachandran],
Hult, J.[John],
Picotte, J.[Joshua],
Peterson, B.[Birgit],
Potential Underestimation of Satellite Fire Radiative Power
Retrievals over Gas Flares and Wildland Fires,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Valero, M.M.[Mario M.],
Verstockt, S.[Steven],
Mata, C.[Christian],
Jimenez, D.[Dan],
Queen, L.[Lloyd],
Rios, O.[Oriol],
Pastor, E.[Elsa],
Planas, E.[Eulàlia],
Image Similarity Metrics Suitable for Infrared Video Stabilization
during Active Wildfire Monitoring: A Comparative Analysis,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Varotsos, C.A.[Costas A.],
Krapivin, V.F.[Vladimir F.],
Mkrtchyan, F.A.[Ferdenant A.],
A New Passive Microwave Tool for Operational Forest Fires Detection:
A Case Study of Siberia in 2019,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Pham, H.X.,
La, H.M.,
Feil-Seifer, D.,
Deans, M.C.,
A Distributed Control Framework of Multiple Unmanned Aerial Vehicles
for Dynamic Wildfire Tracking,
SMCS(50), No. 4, April 2020, pp. 1537-1548.
IEEE DOI
2004
Mathematical model, Unmanned aerial vehicles,
Robot sensing systems, Decentralized control, Task analysis, Color,
networked robots
BibRef
Zhang, X.X.[Xiao-Xiang],
Yao, J.[Jing],
Sila-Nowicka, K.[Katarzyna],
Jin, Y.H.[Yu-Hao],
Urban Fire Dynamics and Its Association with Urban Growth:
Evidence from Nanjing, China,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Pan, H.Y.[Hong-Yi],
Badawi, D.[Diaa],
Zhang, X.[Xi],
Cetin, A.E.[Ahmet Enis],
Additive neural network for forest fire detection,
SIViP(14), No. 4, June 2020, pp. 675-682.
WWW Link.
2005
BibRef
Udahemuka, G.[Gustave],
van Wyk, B.J.[Barend J.],
Hamam, Y.[Yskandar],
Characterization of Background Temperature Dynamics of a
Multitemporal Satellite Scene through Data Assimilation for Wildfire
Detection,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Li, F.J.[Fang-Jun],
Zhang, X.Y.[Xiao-Yang],
Kondragunta, S.[Shobha],
Biomass Burning in Africa: An Investigation of Fire Radiative Power
Missed by MODIS Using the 375 m VIIRS Active Fire Product,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Wei, X.[Xikun],
Wang, G.J.[Guo-Jie],
Chen, T.[Tiexi],
Hagan, D.F.T.[Daniel Fiifi Tawia],
Ullah, W.[Waheed],
A Spatio-Temporal Analysis of Active Fires over China during
2003-2016,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Salguero, J.[John],
Li, J.J.[Jing-Jing],
Farahmand, A.[Alireza],
Reager, J.T.[John T.],
Wildfire Trend Analysis over the Contiguous United States Using
Remote Sensing Observations,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Li, S.,
Yan, Q.,
Liu, P.,
An Efficient Fire Detection Method Based on Multiscale Feature
Extraction, Implicit Deep Supervision and Channel Attention Mechanism,
IP(29), 2020, pp. 8467-8475.
IEEE DOI
2008
Fire detection, convolutional neural network,
industrial applications, multiscale feature extraction,
channel attention mechanism
BibRef
Fu, Y.Y.[Yu-Yun],
Li, R.[Rui],
Wang, X.W.[Xue-Wen],
Bergeron, Y.[Yves],
Valeria, O.[Osvaldo],
Chavardès, R.D.[Raphaël D.],
Wang, Y.[Yipu],
Hu, J.H.[Ji-Heng],
Fire Detection and Fire Radiative Power in Forests and Low-Biomass
Lands in Northeast Asia: MODIS versus VIIRS Fire Products,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Weber, K.T.[Keith T.],
Yadav, R.[Rituraj],
Spatiotemporal Trends in Wildfires across the Western United States
(1950-2019),
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Hayasaka, H.[Hiroshi],
Sokolova, G.V.[Galina V.],
Ostroukhov, A.[Andrey],
Naito, D.[Daisuke],
Classification of Active Fires and Weather Conditions in the Lower
Amur River Basin,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Barmpoutis, P.[Panagiotis],
Stathaki, T.[Tania],
Dimitropoulos, K.[Kosmas],
Grammalidis, N.[Nikos],
Early Fire Detection Based on Aerial 360-Degree Sensors, Deep
Convolution Neural Networks and Exploitation of Fire Dynamic Textures,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Castillo, E.B.[Elgar Barboza],
Cayo, E.Y.T.[Efrain Y. Turpo],
de Almeida, C.M.[Cláudia Maria],
López, R.S.[Rolando Salas],
Briceño, N.B.R.[Nilton B. Rojas],
López, J.O.S.[Jhonsy Omar Silva],
Gurbillón, M.Á.B.[Miguel Ángel Barrena],
Oliva, M.[Manuel],
Espinoza-Villar, R.[Raul],
Monitoring Wildfires in the Northeastern Peruvian Amazon Using
Landsat-8 and Sentinel-2 Imagery in the GEE Platform,
IJGI(9), No. 10, 2020, pp. xx-yy.
DOI Link
2010
BibRef
And:
Erratum:
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Ciullo, V.[Vito],
Rossi, L.[Lucile],
Pieri, A.[Antoine],
Experimental Fire Measurement with UAV Multimodal Stereovision,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Yin, C.M.[Chang-Ming],
He, B.B.[Bin-Bin],
Quan, X.W.[Xing-Wen],
Yebra, M.[Marta],
Lai, G.K.[Geng-Ke],
Remote Sensing of Burn Severity Using Coupled Radiative Transfer
Model: A Case Study on Chinese Qinyuan Pine Fires,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Balch, J.K.[Jennifer K.],
Denis, L.A.S.[Lise A. St.],
Mahood, A.L.[Adam L.],
Mietkiewicz, N.P.[Nathan P.],
Williams, T.M.[Travis M.],
McGlinchy, J.[Joe],
Cook, M.C.[Maxwell C.],
FIRED (Fire Events Delineation): An Open, Flexible Algorithm and
Database of US Fire Events Derived from the MODIS Burned Area Product
(2001-2019),
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Park, M.S.[Min-Soo],
Tran, D.Q.[Dai Quoc],
Jung, D.[Daekyo],
Park, S.[Seunghee],
Wildfire-Detection Method Using DenseNet and CycleGAN Data
Augmentation-Based Remote Camera Imagery,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Janiec, P.[Piotr],
Gadal, S.[Sébastien],
A Comparison of Two Machine Learning Classification Methods for
Remote Sensing Predictive Modeling of the Forest Fire in the
North-Eastern Siberia,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Guo, J.Y.[Jin-Yun],
Hou, R.[Rui],
Zhou, M.S.[Mao-Sheng],
Jin, X.[Xin],
Li, C.M.[Cheng-Ming],
Liu, X.[Xin],
Gao, H.[Hao],
Monitoring 2019 Forest Fires in Southeastern Australia with GNSS
Technique,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Silva, C.A.[Claudia Arantes],
Santilli, G.[Giancarlo],
Sano, E.E.[Edson Eyji],
Laneve, G.[Giovanni],
Fire Occurrences and Greenhouse Gas Emissions from Deforestation in
the Brazilian Amazon,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
van Gerrevink, M.J.[Max J.],
Veraverbeke, S.[Sander],
Evaluating the Near and Mid Infrared Bi-Spectral Space for Assessing
Fire Severity and Comparison with the Differenced Normalized Burn
Ratio,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
da Penha Pacheco, A.[Admilson],
da Silva Junior, J.A.[Juarez Antonio],
Ruiz-Armenteros, A.M.[Antonio Miguel],
Henriques, R.F.F.[Renato Filipe Faria],
Assessment of k-Nearest Neighbor and Random Forest Classifiers for
Mapping Forest Fire Areas in Central Portugal Using Landsat-8,
Sentinel-2, and Terra Imagery,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Nolde, M.[Michael],
Plank, S.[Simon],
Richter, R.[Rudolf],
Klein, D.[Doris],
Riedlinger, T.[Torsten],
The DLR FireBIRD Small Satellite Mission:
Evaluation of Infrared Data for Wildfire Assessment,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Amici, S.[Stefania],
Piscini, A.[Alessandro],
Exploring PRISMA Scene for Fire Detection: Case Study of 2019
Bushfires in Ben Halls Gap National Park, NSW, Australia,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Engel, C.B.[Chermelle B.],
Jones, S.D.[Simon D.],
Reinke, K.J.[Karin J.],
Real-Time Detection of Daytime and Night-Time Fire Hotspots from
Geostationary Satellites,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Engel, C.B.[Chermelle B.],
Jones, S.D.[Simon D.],
Reinke, K.[Karin],
A Seasonal-Window Ensemble-Based Thresholding Technique Used to
Detect Active Fires in Geostationary Remotely Sensed Data,
GeoRS(59), No. 6, June 2021, pp. 4947-4956.
IEEE DOI
2106
Australia, Clouds, Cloud computing, Fires, MODIS,
Advanced Baseline Imager, Advanced Himawari Imager, Himawari-8
BibRef
Farguell, A.[Angel],
Mandel, J.[Jan],
Haley, J.[James],
Mallia, D.V.[Derek V.],
Kochanski, A.[Adam],
Hilburn, K.[Kyle],
Machine Learning Estimation of Fire Arrival Time from Level-2 Active
Fires Satellite Data,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Tariq, A.[Aqil],
Shu, H.[Hong],
Li, Q.[Qingting],
Altan, O.[Orhan],
Khan, M.R.[Mobushir Riaz],
Baqa, M.F.[Muhammad Fahad],
Lu, L.L.[Lin-Lin],
Quantitative Analysis of Forest Fires in Southeastern Australia Using
SAR Data,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Hysa, A.[Artan],
Spalevic, V.[Velibor],
Dudic, B.[Branislav],
Rosca, S.[Sanda],
Kuriqi, A.[Alban],
Bilasco, S.[Stefan],
Sestras, P.[Paul],
Utilizing the Available Open-Source Remotely Sensed Data in Assessing
the Wildfire Ignition and Spread Capacities of Vegetated Surfaces in
Romania,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
de Almeida Pereira, G.H.[Gabriel Henrique],
Fusioka, A.M.[Andre Minoro],
Nassu, B.T.[Bogdan Tomoyuki],
Minetto, R.[Rodrigo],
Active fire detection in Landsat-8 imagery:
A large-scale dataset and a deep-learning study,
PandRS(178), 2021, pp. 171-186.
Elsevier DOI
2108
Active fire detection, Active fire segmentation,
Active fire dataset, Convolutional neural network, Landsat-8 imagery
BibRef
Zheng, Y.M.[Yue-Ming],
Liu, J.[Jian],
Jian, H.[Hongdeng],
Fan, X.T.[Xiang-Tao],
Yan, F.[Fuli],
Fire Diurnal Cycle Derived from a Combination of the Himawari-8 and
VIIRS Satellites to Improve Fire Emission Assessments in Southeast
Australia,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Gong, A.[Adu],
Li, J.[Jing],
Chen, Y.L.[Yan-Ling],
A Spatio-Temporal Brightness Temperature Prediction Method for Forest
Fire Detection with MODIS Data: A Case Study in San Diego,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Lourenço, M.[Miguel],
Oliveira, L.B.[Luís B.],
Oliveira, J.P.[João P.],
Mora, A.[André],
Oliveira, H.[Henrique],
Santos, R.[Rui],
An Integrated Decision Support System for Improving Wildfire
Suppression Management,
IJGI(10), No. 8, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Ghali, R.[Rafik],
Akhloufi, M.A.[Moulay A.],
Jmal, M.[Marwa],
Mseddi, W.S.[Wided Souidene],
Attia, R.[Rabah],
Wildfire Segmentation Using Deep Vision Transformers,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhang, N.[Ning],
Sun, L.[Lin],
Sun, Z.D.[Zhen-Dong],
Qu, Y.[Yu],
Detecting Low-Intensity Fires in East Asia Using VIIRS Data:
An Improved Contextual Algorithm,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Li, X.D.[Xing-Dong],
Gao, H.[Hewei],
Zhang, M.X.[Ming-Xian],
Zhang, S.Y.[Shi-Yu],
Gao, Z.M.[Zhi-Ming],
Liu, J.Q.[Jiu-Qing],
Sun, S.[Shufa],
Hu, T.X.[Tong-Xin],
Sun, L.[Long],
Prediction of Forest Fire Spread Rate Using UAV Images and an LSTM
Model Considering the Interaction between Fire and Wind,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Kim, T.H.[Tae-Hee],
Hwang, S.[Suyeon],
Choi, J.[Jinmu],
Characteristics of Spatiotemporal Changes in the Occurrence of Forest
Fires,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhang, Q.[Qi],
Ge, L.L.[Lin-Lin],
Zhang, R.H.[Rui-Heng],
Metternicht, G.I.[Graciela Isabel],
Liu, C.[Chang],
Du, Z.Y.[Zhe-Yuan],
Towards a Deep-Learning-Based Framework of Sentinel-2 Imagery for
Automated Active Fire Detection,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Nolde, M.[Michael],
Mueller, N.[Norman],
Strunz, G.[Günter],
Riedlinger, T.[Torsten],
Assessment of Wildfire Activity Development Trends for Eastern
Australia Using Multi-Sensor Earth Observation Data,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Li, R.[Rui],
Fu, Y.Y.[Yu-Yun],
Bergeron, Y.[Yves],
Valeria, O.[Osvaldo],
Chavardès, R.D.[Raphaël D.],
Hu, J.[Jiheng],
Wang, Y.[Yipu],
Duan, J.W.[Jia-Wei],
Li, D.[Dong],
Cheng, Y.X.[Yuan-Xi],
Assessing forest fire properties in Northeastern Asia and Southern
China with satellite microwave Emissivity Difference Vegetation Index
(EDVI),
PandRS(183), 2022, pp. 54-65.
Elsevier DOI
2201
Satellite remote sensing, Fire count,
Fire Radiative Power (FRP), Vegetation water content,
Fire Weather Index (FWI)
BibRef
Mazzeo, G.[Giuseppe],
de Santis, F.[Fortunato],
Falconieri, A.[Alfredo],
Filizzola, C.[Carolina],
Lacava, T.[Teodosio],
Lanorte, A.[Antonio],
Marchese, F.[Francesco],
Nolè, G.[Gabriele],
Pergola, N.[Nicola],
Pietrapertosa, C.[Carla],
Satriano, V.[Valeria],
Integrated Satellite System for Fire Detection and Prioritization,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Dvornikov, Y.[Yury],
Novenko, E.[Elena],
Korets, M.[Mikhail],
Olchev, A.[Alexander],
Wildfire Dynamics along a North-Central Siberian Latitudinal Transect
Assessed Using Landsat Imagery,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Higa, L.[Leandro],
Junior, J.M.[José Marcato],
Rodrigues, T.[Thiago],
Zamboni, P.[Pedro],
Silva, R.[Rodrigo],
Almeida, L.[Laisa],
Liesenberg, V.[Veraldo],
Roque, F.[Fábio],
Libonati, R.[Renata],
Gonçalves, W.N.[Wesley Nunes],
Silva, J.[Jonathan],
Active Fire Mapping on Brazilian Pantanal Based on Deep Learning and
CBERS 04A Imagery,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Rostami, A.[Amirhossein],
Shah-Hosseini, R.[Reza],
Asgari, S.[Shabnam],
Zarei, A.[Arastou],
Aghdami-Nia, M.[Mohammad],
Homayouni, S.[Saeid],
Active Fire Detection from Landsat-8 Imagery Using Deep Multiple
Kernel Learning,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Ostroukhov, A.[Andrey],
Klimina, E.[Elena],
Kuptsova, V.[Viktoriya],
Naito, D.[Daisuke],
Estimating Long-Term Average Carbon Emissions from Fires in
Non-Forest Ecosystems in the Temperate Belt,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
bin Azami, M.H.[Muhammad Hasif],
Orger, N.C.[Necmi Cihan],
Schulz, V.H.[Victor Hugo],
Oshiro, T.[Takashi],
Cho, M.[Mengu],
Earth Observation Mission of a 6U CubeSat with a 5-Meter Resolution
for Wildfire Image Classification Using Convolution Neural Network
Approach,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Morante-Carballo, F.[Fernando],
Bravo-Montero, L.[Lady],
Carrión-Mero, P.[Paúl],
Velastegui-Montoya, A.[Andrés],
Berrezueta, E.[Edgar],
Forest Fire Assessment Using Remote Sensing to Support the
Development of an Action Plan Proposal in Ecuador,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Stoyanova, J.S.[Julia S.],
Georgiev, C.G.[Christo G.],
Neytchev, P.N.[Plamen N.],
Satellite Observations of Fire Activity in Relation to Biophysical
Forcing Effect of Land Surface Temperature in Mediterranean Climate,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Yuan, S.[Shuyun],
Bao, F.[Fangwen],
Zhang, X.C.[Xiao-Chuan],
Li, Y.[Ying],
Severe Biomass-Burning Aerosol Pollution during the 2019 Amazon
Wildfire and Its Direct Radiative-Forcing Impact: A Space Perspective
from MODIS Retrievals,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Harkat, H.[Houda],
Nascimento, J.M.P.[José M. P.],
Bernardino, A.[Alexandre],
Ahmed, H.F.T.[Hasmath Farhana Thariq],
Assessing the Impact of the Loss Function and Encoder Architecture
for Fire Aerial Images Segmentation Using Deeplabv3+,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Riet, M.[Mats],
Veraverbeke, S.[Sander],
How Much of a Pixel Needs to Burn to Be Detected by Satellites? A
Spectral Modeling Experiment Based on Ecosystem Data from Yellowstone
National Park, USA,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Osswald, T.[Tobias],
Fernandes, A.P.[Ana Patrícia],
Miranda, A.I.[Ana Isabel],
Gouveia, S.[Sónia],
Dynamic PCA Based Statistical Monitoring of Air Pollutant
Concentrations in Wildfire Scenarios,
IbPRIA22(680-692).
Springer DOI
2205
BibRef
Xu, H.Z.[Hai-Zhou],
Zhang, G.[Gui],
Zhou, Z.M.[Zhao-Ming],
Zhou, X.B.[Xia-Bing],
Zhou, C.[Cui],
Forest Fire Monitoring and Positioning Improvement at Subpixel Level:
Application to Himawari-8 Fire Products,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Špulák, P.[Pavel],
Wildland Fires in the Czech Republic: Review of Data Spanning 20
Years,
IJGI(11), No. 5, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Fu, J.[Jing],
Song, S.T.[Shi-Tao],
Guo, L.[Li],
Chen, W.W.[Wei-Wei],
Wang, P.[Peng],
Duanmu, L.J.[Ling-Jian],
Shang, Y.J.[Yi-Jing],
Shi, B.[Bowen],
He, L.[Luyan],
Interprovincial Joint Prevention and Control of Open Straw Burning in
Northeast China: Implications for Atmospheric Environment Management,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Pletsch, M.A.J.S.[Mikhaela A. J. S.],
Körting, T.S.[Thales S.],
Morita, F.C.[Felipe C.],
Silva-Junior, C.H.L.[Celso H. L.],
Anderson, L.O.[Liana O.],
Aragão, L.E.O.C.[Luiz E. O. C.],
Near Real-Time Fire Detection and Monitoring in the MATOPIBA Region,
Brazil,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Guan, Z.H.[Zhi-Hao],
Miao, X.Y.[Xin-Yu],
Mu, Y.J.[Yun-Jie],
Sun, Q.[Quan],
Ye, Q.L.[Qiao-Lin],
Gao, D.[Demin],
Forest Fire Segmentation from Aerial Imagery Data Using an Improved
Instance Segmentation Model,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Schag, G.M.[Gavin M.],
Stow, D.A.[Douglas A.],
Riggan, P.J.[Philip J.],
Nara, A.[Atsushi],
Spatial-Statistical Analysis of Landscape-Level Wildfire Rate of
Spread,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Tian, J.X.[Jia-Xin],
Chen, X.N.[Xiao-Ning],
Cao, Y.F.[Yun-Feng],
Chen, F.[Feng],
Satellite Observational Evidence of Contrasting Changes in Northern
Eurasian Wildfires from 2003 to 2020,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zhao, Y.[Yu],
Ban, Y.F.[Yi-Fang],
GOES-R Time Series for Early Detection of Wildfires with Deep
GRU-Network,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Tian, Y.P.[Yu-Ping],
Wu, Z.C.[Ze-Chuan],
Li, M.Z.[Ming-Ze],
Wang, B.[Bin],
Zhang, X.D.[Xiao-Di],
Forest Fire Spread Monitoring and Vegetation Dynamics Detection Based
on Multi-Source Remote Sensing Images,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Kaaret, P.[Philip],
Tammes, S.[Steve],
Wang, J.[Jun],
Schnell, T.[Thomas],
Linderman, M.[Marc],
Richey, C.H.[Carlton H.],
Packard, C.M.[Colin M.],
Zhou, M.[Meng],
Fuller, C.A.[Chase A.],
On the Potential of Flaming Hotspot Detection at Night via Multiband
Visible/Near-Infrared Imaging,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
Flares
BibRef
Jin, R.[Ri],
Lee, K.S.[Kyoo-Seock],
Investigation of Forest Fire Characteristics in North Korea Using
Remote Sensing Data and GIS,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Rafaqat, W.[Warda],
Iqbal, M.[Mansoor],
Kanwal, R.[Rida],
Song, W.G.[Wei-Guo],
Evaluation of Wildfire Occurrences in Pakistan with Global Gridded
Soil Properties Derived from Remotely Sensed Data,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Ye, X.X.[Xin-Xin],
Deshler, M.[Mina],
Lyapustin, A.[Alexi],
Wang, Y.J.[Yu-Jie],
Kondragunta, S.[Shobha],
Saide, P.[Pablo],
Assessment of Satellite AOD during the 2020 Wildfire Season in the
Western U.S.,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhou, Y.K.[Yi-Kang],
Ji, S.P.[Shun-Ping],
Warner, T.A.[Timothy A.],
Regional Spatiotemporal Patterns of Fire in the Eurasian Subarctic
Based on Satellite Imagery,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Muksimova, S.[Shakhnoza],
Mardieva, S.[Sevara],
Cho, Y.I.[Young-Im],
Deep Encoder-Decoder Network-Based Wildfire Segmentation Using Drone
Images in Real-Time,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Lian, C.Q.[Chen-Qin],
Xiao, C.[Chiwei],
Feng, Z.M.[Zhi-Ming],
Spatiotemporal Characteristics and Regional Variations of Active
Fires in China since 2001,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Bao, Y.L.[Yu-Long],
Shinoda, M.[Masato],
Yi, K.[Kunpeng],
Fu, X.M.[Xiao-Man],
Sun, L.[Long],
Nasanbat, E.[Elbegjargal],
Li, N.[Na],
Xiang, H.[Honglin],
Yang, Y.[Yan],
DavdaiJavzmaa, B.[Bulgan],
Nandintsetseg, B.[Banzragch],
Satellite-Based Analysis of Spatiotemporal Wildfire Pattern in the
Mongolian Plateau,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Sofan, P.[Parwati],
Yulianto, F.[Fajar],
Sakti, A.D.[Anjar Dimara],
Characteristics of False-Positive Active Fires for Biomass Burning
Monitoring in Indonesia from VIIRS Data and Local Geo-Features,
IJGI(11), No. 12, 2022, pp. xx-yy.
DOI Link
2301
BibRef
Tagestad, J.D.[Jerry D.],
Saltiel, T.M.[Troy M.],
Coleman, A.M.[André M.],
Rapid Spaceborne Mapping of Wildfire Retardant Drops for Active
Wildfire Management,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Fernández-Guisuraga, J.M.[José Manuel],
Fernandes, P.M.[Paulo M.],
Using Pre-Fire High Point Cloud Density LiDAR Data to Predict Fire
Severity in Central Portugal,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Ren, X.Y.[Xiao-Yang],
Yu, X.[Xin],
Wang, Y.[Yi],
A Spectral-Spatial Method for Mapping Fire Severity Using
Morphological Attribute Profiles,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Thangavel, K.[Kathiravan],
Spiller, D.[Dario],
Sabatini, R.[Roberto],
Amici, S.[Stefania],
Sasidharan, S.T.[Sarathchandrakumar Thottuchirayil],
Fayek, H.[Haytham],
Marzocca, P.[Pier],
Autonomous Satellite Wildfire Detection Using Hyperspectral Imagery
and Neural Networks: A Case Study on Australian Wildfire,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Zhang, D.[Da],
Huang, C.L.[Chun-Lin],
Gu, J.[Juan],
Hou, J.L.[Jin-Liang],
Zhang, Y.[Ying],
Han, W.X.[Wei-Xiao],
Dou, P.[Peng],
Feng, Y.[Yaya],
Real-Time Wildfire Detection Algorithm Based on VIIRS Fire Product
and Himawari-8 Data,
RS(15), No. 6, 2023, pp. 1541.
DOI Link
2304
BibRef
Ghali, R.[Rafik],
Akhloufi, M.A.[Moulay A.],
Deep Learning Approaches for Wildland Fires Remote Sensing:
Classification, Detection, and Segmentation,
RS(15), No. 7, 2023, pp. 1821.
DOI Link
2304
BibRef
Asanjan, A.A.[Ata Akbari],
Memarzadeh, M.[Milad],
Lott, P.A.[Paul Aaron],
Rieffel, E.[Eleanor],
Grabbe, S.[Shon],
Probabilistic Wildfire Segmentation Using Supervised Deep Generative
Model from Satellite Imagery,
RS(15), No. 11, 2023, pp. 2718.
DOI Link
2306
BibRef
Yulianti, N.[Nina],
Hayasaka, H.[Hiroshi],
Recent Active Fires in Indonesia's Southern Papua Province Caused by
El Nino Conditions,
RS(15), No. 11, 2023, pp. 2709.
DOI Link
2306
BibRef
Li, Z.R.[Zong-Run],
Maji, K.J.[Kamal J.],
Hu, Y.T.[Yong-Tao],
Vaidyanathan, A.[Ambarish],
O'Neill, S.M.[Susan M.],
Odman, M.T.[M. Talat],
Russell, A.G.[Armistead G.],
An Analysis of Prescribed Fire Activities and Emissions in the
Southeastern United States from 2013 to 2020,
RS(15), No. 11, 2023, pp. 2725.
DOI Link
2306
BibRef
Liu, Y.Q.[Yu-Qi],
Zheng, C.[Change],
Liu, X.D.[Xiao-Dong],
Tian, Y.[Ye],
Zhang, J.Z.[Jian-Zhong],
Cui, W.B.[Wen-Bin],
Forest Fire Monitoring Method Based on UAV Visual and Infrared Image
Fusion,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Schreck, J.S.[John S.],
Petzke, W.[William],
Jiménez, P.A.[Pedro A.],
Brummet, T.[Thomas],
Knievel, J.C.[Jason C.],
James, E.[Eric],
Kosovic, B.[Branko],
Gagne, D.J.[David John],
Machine Learning and VIIRS Satellite Retrievals for Skillful Fuel
Moisture Content Monitoring in Wildfire Management,
RS(15), No. 13, 2023, pp. 3372.
DOI Link
2307
BibRef
Gibson, R.K.[Rebecca Kate],
Mitchell, A.[Anthea],
Chang, H.C.[Hsing-Chung],
Image Texture Analysis Enhances Classification of Fire Extent and
Severity Using Sentinel 1 and 2 Satellite Imagery,
RS(15), No. 14, 2023, pp. 3512.
DOI Link
2307
BibRef
Wang, J.L.[Jun-Ling],
Wang, Y.P.[Yu-Peng],
Liu, L.P.[Li-Ping],
Yin, H.[Hengfu],
Ye, N.[Ning],
Xu, C.[Can],
Weakly Supervised Forest Fire Segmentation in UAV Imagery Based on
Foreground-Aware Pooling and Context-Aware Loss,
RS(15), No. 14, 2023, pp. 3606.
DOI Link
2307
BibRef
Fu, Y.Y.[Yu-Yun],
Hu, J.H.[Ji-Heng],
Song, W.G.[Wei-Guo],
Cheng, Y.Y.X.[Yuan-Yan-Xi],
Li, R.[Rui],
Satellite observed response of fire dynamics to vegetation water
content and weather conditions in Southeast Asia,
PandRS(202), 2023, pp. 230-245.
Elsevier DOI
2308
Microwave vegetation water content, Weather conditions, Fire activity
BibRef
Zhong, W.Q.[Wei-Qi],
Mei, X.[Xin],
Niu, F.[Fei],
Fan, X.[Xin],
Ou, S.Y.[Sheng-Ya],
Zhong, S.B.[Shao-Bo],
Fusing Social Media, Remote Sensing, and Fire Dynamics to Track
Wildland-Urban Interface Fire,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Martino, T.D.[Thomas Di],
Saux, B.L.[Bertrand Le],
Guinvarc'h, R.[Régis],
Thirion-Lefevre, L.[Laetitia],
Colin, E.[Elise],
Detection of Forest Fires through Deep Unsupervised Learning Modeling
of Sentinel-1 Time Series,
IJGI(12), No. 8, 2023, pp. 332.
DOI Link
2309
BibRef
Yang, X.B.[Xu-Bing],
Hua, Z.C.[Zhi-Chun],
Zhang, L.[Li],
Fan, X.J.[Xi-Jian],
Zhang, F.Q.[Fu-Quan],
Ye, Q.L.[Qiao-Lin],
Fu, L.[Liyong],
Preferred vector machine for forest fire detection,
PR(143), 2023, pp. 109722.
Elsevier DOI
2310
Forest fire detection, Fire detection rate, Error warning rate,
SVM, Dual representation
BibRef
Su, J.J.[Jia-Jia],
Liu, Z.H.[Zhi-Hua],
Wang, W.J.[Wen-Juan],
Jiao, K.W.[Ke-Wei],
Yu, Y.[Yue],
Li, K.[Kaili],
Lü, Q.S.[Qiu-Shuang],
Fletcher, T.L.[Tamara L.],
Evaluation of the Spatial Distribution of Predictors of Fire Regimes
in China from 2003 to 2016,
RS(15), No. 20, 2023, pp. 4946.
DOI Link
2310
BibRef
Pang, Y.X.[Ya-Xuan],
Wu, Y.[Yiquan],
Yuan, Y.[Yubin],
FuF-Det: An Early Forest Fire Detection Method under Fog,
RS(15), No. 23, 2023, pp. 5435.
DOI Link
2312
BibRef
Li, Y.[Yan],
Wu, G.Z.[Guo-Zhou],
Zhang, S.[Shuai],
Li, M.C.[Man-Chun],
Nie, B.[Beidou],
Chen, Z.J.[Zhen-Jie],
A Novel Method of Modeling Grassland Wildfire Dynamics Based on
Cellular Automata: A Case Study in Inner Mongolia, China,
IJGI(12), No. 12, 2023, pp. 474.
DOI Link
2312
BibRef
Badhan, M.[Mukul],
Shamsaei, K.[Kasra],
Ebrahimian, H.[Hamed],
Bebis, G.[George],
Lareau, N.P.[Neil P.],
Rowell, E.[Eric],
Deep Learning Approach to Improve Spatial Resolution of GOES-17
Wildfire Boundaries Using VIIRS Satellite Data,
RS(16), No. 4, 2024, pp. 715.
DOI Link
2402
BibRef
Zeng, Y.[Yu],
Liu, S.G.[Shu-Guang],
Huang, S.[Sheng],
Patil, S.D.[Sopan D.],
Gao, W.Y.[Wen-Yuan],
Li, H.[Hao],
Exploring Spatiotemporal Characteristics and Driving Forces of Straw
Burning in Hunan Province, China, from 2010 to 2020,
RS(16), No. 8, 2024, pp. 1438.
DOI Link
2405
BibRef
Zikiou, N.[Nadia],
Rushmeier, H.[Holly],
Capel, M.I.[Manuel I.],
Kandakji, T.[Tarek],
Rios, N.[Nelson],
Lahdir, M.[Mourad],
Remote Sensing and Machine Learning for Accurate Fire Severity
Mapping in Northern Algeria,
RS(16), No. 9, 2024, pp. 1517.
DOI Link
2405
BibRef
Han, Y.H.[Yu-Hang],
Duan, B.C.[Bing-Chen],
Guan, R.[Renxiang],
Yang, G.[Guang],
Zhen, Z.[Zhen],
LUFFD-YOLO: A Lightweight Model for UAV Remote Sensing Forest Fire
Detection Based on Attention Mechanism and Multi-Level Feature Fusion,
RS(16), No. 12, 2024, pp. 2177.
DOI Link
2406
BibRef
Wang, H.F.[Hai-Feng],
Zhang, G.[Gui],
Yang, Z.[Zhigao],
Xu, H.Z.[Hai-Zhou],
Liu, F.[Feng],
Xie, S.F.[Shao-Feng],
Satellite Remote Sensing False Forest Fire Hotspot Excavating Based
on Time-Series Features,
RS(16), No. 13, 2024, pp. 2488.
DOI Link
2407
BibRef
Goffin, B.D.[Benjamin D.],
Aryal, A.[Aashutosh],
Deppert, Q.[Quinton],
Ross, K.W.[Kenton W.],
Lakshmi, V.[Venkataraman],
Mapping Extreme Wildfires Using a Critical Threshold in SMAP Soil
Moisture,
RS(16), No. 13, 2024, pp. 2457.
DOI Link
2407
BibRef
Li, S.L.[Shou-Liang],
Han, J.[Jiale],
Chen, F.H.[Fang-Hui],
Min, R.[Rudong],
Yi, S.[Sixue],
Yang, Z.[Zhen],
Fire-Net: Rapid Recognition of Forest Fires in UAV Remote Sensing
Imagery Using Embedded Devices,
RS(16), No. 15, 2024, pp. 2846.
DOI Link
2408
BibRef
Son, M.W.[Min-Woo],
Kim, C.G.[Chang-Gyun],
Kim, B.S.[Byung-Sik],
Development of an Algorithm for Assessing the Scope of Large Forest
Fire Using VIIRS-Based Data and Machine Learning,
RS(16), No. 14, 2024, pp. 2667.
DOI Link
2408
BibRef
Tong, H.W.[Hong-Wei],
Yuan, J.[Jianye],
Zhang, J.J.[Jing-Jing],
Wang, H.F.[Hao-Fei],
Li, T.[Teng],
Real-Time Wildfire Monitoring Using Low-Altitude Remote Sensing
Imagery,
RS(16), No. 15, 2024, pp. 2827.
DOI Link
2408
BibRef
Hayasaka, H.[Hiroshi],
Active Wildland Fires in Central Chile and Local Winds (Puelche),
RS(16), No. 14, 2024, pp. 2605.
DOI Link
2408
BibRef
Horton, D.[Dustin],
Johnson, J.T.[Joel T.],
Baris, I.[Ismail],
Jagdhuber, T.[Thomas],
Bindlish, R.[Rajat],
Park, J.[Jeonghwan],
Al-Khaldi, M.M.[Mohammad M.],
Wildfire Threshold Detection and Progression Monitoring Using an
Improved Radar Vegetation Index in California,
RS(16), No. 16, 2024, pp. 3050.
DOI Link
2408
BibRef
Yao, H.[Houzhi],
Yang, Z.[Zhigao],
Zhang, G.[Gui],
Liu, F.[Feng],
Forest Fire Detection Based on Spatial Characteristics of Surface
Temperature,
RS(16), No. 16, 2024, pp. 2945.
DOI Link
2408
BibRef
Li, Y.[Yihan],
Hu, H.Y.[Hai-Yang],
Wang, Q.[Qiang],
Non-Dominated Sorting Genetic Algorithm II (NSGA2)-Based Parameter
Optimization of the MSMGWB Model Used in Remote Infrared Sensing
Prediction for Hot Combustion Gas Plume,
RS(16), No. 17, 2024, pp. 3116.
DOI Link
2409
BibRef
Yuan, J.Y.[Jian-Ye],
Wang, H.F.[Hao-Fei],
Li, M.H.[Ming-Hao],
Wang, X.H.[Xiao-Han],
Song, W.W.[Wei-Wei],
Li, S.[Song],
Gong, W.[Wei],
FD-Net: A Single-Stage Fire Detection Framework for Remote Sensing in
Complex Environments,
RS(16), No. 18, 2024, pp. 3382.
DOI Link
2410
BibRef
Liu, J.[Jia],
Wang, Y.K.[Yu-Kuan],
Lu, Y.F.[Ya-Feng],
Zhao, P.G.[Peng-Guo],
Wang, S.J.[Shun-Jiu],
Sun, Y.[Yu],
Luo, Y.[Yu],
Application of Remote Sensing and Explainable Artificial Intelligence
(XAI) for Wildfire Occurrence Mapping in the Mountainous Region of
Southwest China,
RS(16), No. 19, 2024, pp. 3602.
DOI Link
2410
BibRef
He, Y.H.[Yong-Huan],
Sahma, A.[Age],
He, X.[Xu],
Wu, R.[Rong],
Zhang, R.[Rui],
FireNet: A Lightweight and Efficient Multi-Scenario Fire Object
Detector,
RS(16), No. 21, 2024, pp. 4112.
DOI Link
2411
BibRef
Liu, P.[Pingbo],
Zhang, G.[Gui],
A Case Study on the Integration of Remote Sensing for Predicting
Complicated Forest Fire Spread,
RS(16), No. 21, 2024, pp. 3969.
DOI Link
2411
BibRef
Abdusalomov, A.[Akmalbek],
Umirzakova, S.[Sabina],
Shukhratovich, M.B.[Makhkamov Bakhtiyor],
Mukhiddinov, M.[Mukhriddin],
Kakhorov, A.[Azamat],
Buriboev, A.[Abror],
Jeon, H.S.[Heung Seok],
Drone-Based Wildfire Detection with Multi-Sensor Integration,
RS(16), No. 24, 2024, pp. 4651.
DOI Link
2501
BibRef
Liu, P.[Pingbo],
Zhang, G.[Gui],
Forest Fire Discrimination Based on Angle Slope Index and Himawari-8,
RS(17), No. 1, 2025, pp. 142.
DOI Link
2501
BibRef
Fan, J.A.[Jian-An],
Zhan, X.[Xin],
Flame Recognition Algorithm for aerial cruising firefighting Robot
based on RGB and improved YOLOv5,
CVIDL23(363-369)
IEEE DOI
2403
Visualization, Image recognition, Service robots,
Computational modeling, Atmospheric modeling, Warehousing, Fires,
SE attention mechanism
BibRef
Hu, Y.[Yue],
Ye, X.[Xinan],
Liu, Y.F.[Yi-Fei],
Kundu, S.[Souvik],
Datta, G.[Gourav],
Mutnuri, S.[Srikar],
Asavisanu, N.[Namo],
Ayanian, N.[Nora],
Psounis, K.[Konstantinos],
Beerel, P.[Peter],
FireFly: A Synthetic Dataset for Ember Detection in Wildfire,
AIHADR23(3767-3771)
IEEE DOI
2401
BibRef
Amaral, B.[Bernardo],
Niknejad, M.[Milad],
Barata, C.[Catarina],
Bernardino, A.[Alexandre],
Weakly Supervised Fire and Smoke Segmentation in Forest Images with
CAM and CRF,
ICPR22(442-448)
IEEE DOI
2212
Measurement, Image segmentation, Uncertainty, Sociology, Fires,
Forestry, fire segmentation, conditional random fields
BibRef
Pan, H.Y.[Hong-Yi],
Badawi, D.[Diaa],
Chen, C.[Chang],
Watts, A.[Adam],
Koyuncu, E.[Erdem],
Cetin, A.E.[Ahmet Enis],
Deep Neural Network with Walsh-Hadamard Transform Layer For Ember
Detection during a Wildfire,
PBVS22(256-265)
IEEE DOI
2210
Deep learning, Computational modeling,
Neural networks, Fires, Transforms, Data models
BibRef
Spiller, D.,
Ansalone, L.,
Amici, S.,
Piscini, A.,
Mathieu, P.P.,
Analysis and Detection of Wildfires By Using Prisma Hyperspectral
Imagery,
ISPRS21(B3-2021: 215-222).
DOI Link
2201
BibRef
Pan, H.Y.[Hong-Yi],
Badawi, D.[Diaa],
Cetin, A.E.[Ahmet Enis],
Fourier Domain Pruning of MobileNet-V2 with Application to Video
Based Wildfire Detection,
ICPR21(1015-1022)
IEEE DOI
2105
Performance evaluation, Training, Image edge detection,
Neural networks, Transfer learning, Fires, Forestry,
pruning and slimming
BibRef
Kanand, T.,
Kemper, G.,
König, R.,
Kemper, H.,
Wildfire Detection and Disaster Monitoring System Using Uas and Sensor
Fusion Technologies,
ISPRS20(B3:1671-1675).
DOI Link
2012
BibRef
Lee, I.K.,
Trinder, J.C.,
Sowmya, A.,
Application of U-net Convolutional Neural Network to Bushfire
Monitoring In Australia With Sentinel-1/-2 Data,
ISPRS20(B1:573-578).
DOI Link
2012
BibRef
Liu, Z.,
Wu, K.,
Jiang, R.,
Zhang, H.,
A Simple Artificial Neural Network for Fire Detection Using Landsat-8
Data,
ISPRS20(B3:447-452).
DOI Link
2012
BibRef
Tavra, M.,
Racetin, I.,
Peroš, J.,
Combining Social Media and Authoritative Data for Crisis Mapping:
A Case Study of a Wildfire Reaching Croatian City of Split,
Gi4DM19(415-420).
DOI Link
1912
BibRef
de Paula, L.G.[Lucas Goncalves],
Hyttel, K.[Kristian],
Geipel, K.R.[Kenneth Richard],
de Domingo Gil, J.E.[Jacobo Eduardo],
Novac, I.[Iuliu],
Chrysostomou, D.[Dimitrios],
Estimation of Wildfire Size and Location Using a Monocular Camera on a
Semi-autonomous Quadcopter,
CVS19(133-142).
Springer DOI
1912
BibRef
Špulák, P.,
Aerial Firefighting of Forest Fires: Spatial Data Support,
Gi4DM19(409-413).
DOI Link
1912
BibRef
Adão, T.,
Pinho, T.M.,
Pádua, L.,
Santos, N.,
Sousa, A.,
Sousa, J.J.,
Peres, E.,
Using Virtual Scenarios to Produce Machine Learnable Environments For
Wildfire Detection and Segmentation,
Gi4DM19(9-15).
DOI Link
1912
BibRef
Akay, A.E.,
Karas, I.R.,
Kahraman, I.,
Determining the Locations of Potential Firefighting Teams By Using GIS
Techniques,
GeoDisast18(83-88).
DOI Link
1901
BibRef
Hally, B.,
Wallace, L.,
Reinke, K.,
Jones, S.,
Assessment Of The Utility Of The Advanced Himawari Imager To Detect
Active Fire Over Australia,
ISPRS16(B8: 65-71).
DOI Link
1610
BibRef
Tonbul, H.,
Kavzoglu, T.,
Kaya, S.,
Assessment Of Fire Severity And Post-fire Regeneration Based On
Topographical Features Using Multitemporal Landsat Imagery: A Case
Study in Mersin, Turkey,
ISPRS16(B8: 763-769).
DOI Link
1610
BibRef
Alamgir, N.,
Boles, W.,
Chandran, V.,
A Model Integrating Fire Prediction and Detection for Rural-Urban
Interface,
DICTA15(1-8)
IEEE DOI
1603
geophysical image processing
BibRef
Homainejad, N.,
Rizos, C.,
Application of Multiple Categories of Unmanned Aircraft Systems (UAS)
in Different Airspaces for Bushfire Monitoring and Response,
UAV-g15(55-60).
DOI Link
1512
BibRef
Chen, C.H.,
Chien, S.W.,
Ho, M.C.,
A study on fire spreading model for the safety distance between the
neighborhood occupancies and historical buildings in Taiwan,
CIPA15(73-78).
DOI Link
1508
BibRef
Pastor, E.,
Planas, E.,
Infrared imagery on wildfire research. Some examples of sound
capabilities and applications,
IPTA12(31-36)
IEEE DOI
1503
environmental science computing
BibRef
Stipanicev, D.,
Seric, L.,
Braovic, M.,
Krstinic, D.,
Jakovcevic, T.,
Stula, M.,
Bugaric, M.,
Maras, J.,
Vision based wildfire and natural risk observers,
IPTA12(37-42)
IEEE DOI
1503
environmental science computing
BibRef
Amarger, V.,
Ramik, D.M.,
Sabourin, C.,
Madani, K.,
Moreno, R.,
Rossi, L.,
Grana, M.,
Spherical coordinates framed RGB color space dichromatic reflection
model based image segmentation: Application to wildland fires'
outlines extraction,
IPTA12(19-24)
IEEE DOI
1503
computer vision
BibRef
Howard, S.M.,
Picotte, J.J.,
Coan, M.J.,
Utilizing Multi-Sensor Fire Detections to Map Fires in the United
States,
LandImaging14(161-166).
DOI Link
1411
BibRef
Samadzadegan, F.,
Saber, M.,
Zahmatkesh, H.,
Khanlou, H.J.G.[H. Joze Ghazi],
An Architecture for Automated Fire Detection Early Warning System Based
on Geoprocessing Service Composition,
SMPR13(351-355).
DOI Link
1311
BibRef
Zhong, Z.N.[Zhi-Nong],
Jing, N.[Ning],
Wu, Q.Y.[Qiu-Yun],
Gao, Y.[Yang],
Integration of GIS/RS/GPS for urban fire response,
CVRS12(311-316).
IEEE DOI
1302
BibRef
Solberg, S.,
Naesset, E.,
Mapping Defoliation with Lidar,
Laser07(379).
PDF File.
0709
BibRef
Rudz, S.[Steve],
Chetehouna, K.[Khaled],
Hafiane, A.[Adel],
Sero-Guillaume, O.[Olivier],
Laurent, H.[Hélène],
On the Evaluation of Segmentation Methods for Wildland Fire,
ACIVS09(12-23).
Springer DOI
0909
BibRef
Bosch, I.[Ignacio],
Gomez, S.[Soledad],
Vergara, L.[Luis],
Moragues, J.[Jorge],
Infrared image processing and its application to forest fire
surveillance,
AVSBS07(283-288).
IEEE DOI
0709
BibRef
Fan, X.F.[Xiao-Feng],
Rhody, H.E.,
A spatial feature enhanced MMI algorithm for multi-modal wild-fire
image registration,
AIPR08(1-5).
IEEE DOI
0810
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Smoke from Forest Fires, Smoke from Wildfires .