Johnson, N.[Neil],
Hogg, D.C.[David C.],
Learning the Distribution of Object Trajectories for Event Recognition,
IVC(14), No. 8, August 1996, pp. 609-615.
Elsevier DOI
9609
BibRef
Earlier:
BMVC95(xx-yy).
PDF File.
9509
BibRef
Rosales, R.[Rómer],
Sclaroff, S.[Stan],
A framework for heading-guided recognition of human activity,
CVIU(91), No. 3, September 2003, pp. 335-367.
Elsevier DOI
0310
BibRef
Earlier:
3D Trajectory Recovery for Tracking Multiple Objects and
Trajectory-Guided Recognition of Actions,
CVPR99(II: 117-123).
IEEE DOI
BibRef
de Almeida, V.T.[Victor Teixeira],
Güting, R.H.[Ralf Hartmut],
Indexing the Trajectories of Moving Objects in Networks,
GeoInfo(9), No. 1, March 2005, pp. 33-60.
Springer DOI
0509
Store and query the trajectories of the objects.
BibRef
Valdés, F.[Fabio],
Güting, R.H.[Ralf Hartmut],
Index-supported pattern matching on tuples of time-dependent values,
GeoInfo(21), No. 3, July 2017, pp. 429-458.
WWW Link.
1708
BibRef
Pfoser, D.[Dieter],
Jensen, C.S.[Christian S.],
Trajectory Indexing Using Movement Constraints,
GeoInfo(9), No. 2, June 2005, pp. 93-115.
Springer DOI
0509
BibRef
Hsiao, Y.T.[Ying-Tung],
Chuang, C.L.[Cheng-Long],
Lu, Y.L.[Yen-Ling],
Jiang, J.A.[Joe-Air],
Robust multiple objects tracking using image segmentation and
trajectory estimation scheme in video frames,
IVC(24), No. 10, 1 October 2006, pp. 1123-1136.
Elsevier DOI
0609
Mathematical morphology; Edge detection; Image segmentation; Motion estimation
BibRef
Hsieh, J.W.[Jun-Wei],
Yu, S.L.[Shang-Li],
Chen, Y.S.[Yung-Sheng],
Motion-based video retrieval by trajectory matching,
CirSysVideo(16), No. 3, March 2006, pp. 396-409.
IEEE DOI
0604
BibRef
Earlier:
Trajectory-based video retrieval by string matching,
ICIP04(IV: 2243-2246).
IEEE DOI
0505
BibRef
Gudmundsson, J.[Joachim],
van Kreveld, M.[Marc],
Speckmann, B.[Bettina],
Efficient Detection of Patterns in 2D Trajectories of Moving Points,
GeoInfo(11), No. 2, June 2007, pp. 195-215.
Springer DOI
0709
BibRef
Bashir, F.I.,
Khokhar, A.A.,
Schonfeld, D.,
Object Trajectory-Based Activity Classification and Recognition Using
Hidden Markov Models,
IP(16), No. 7, July 2007, pp. 1912-1919.
IEEE DOI
0707
BibRef
Ma, X.,
Bashir, F.I.,
Khokhar, A.A.,
Schonfeld, D.,
Event Analysis Based on Multiple Interactive Motion Trajectories,
CirSysVideo(19), No. 3, March 2009, pp. 397-406.
IEEE DOI
0903
BibRef
Bashir, F.I.,
Qu, W.[Wei],
Khokhar, A.A.,
Schonfeld, D.,
HMM-Based Motion Recognition System Using Segmented PCA,
ICIP05(III: 1288-1291).
IEEE DOI
0512
BibRef
Chen, X.[Xu],
Schonfeld, D.[Dan],
Khokhar, A.A.[Ashfaq A.],
Localized Null Space representation for dynamic updating and downdating
in image and video databases,
ICIP09(801-804).
IEEE DOI
0911
BibRef
Earlier:
Robust multi-dimensional Null Space representation for image retrieval
and classification,
ICIP08(177-180).
IEEE DOI
0810
BibRef
And:
Robust null space representation and sampling for view-invariant motion
trajectory analysis,
CVPR08(1-6).
IEEE DOI
0806
See also Bilinear invariant representation for video classification and retrieval.
BibRef
Bashir, F.I.,
Khokhar, A.A.,
Schonfeld, D.,
Real-Time Motion Trajectory-Based Indexing and Retrieval of Video
Sequences,
MultMed(9), No. 1, January 2007, pp. 58-65.
IEEE DOI
0905
BibRef
Earlier:
Segmented trajectory based indexing and retrieval of video data,
ICIP03(II: 623-626).
IEEE DOI
0312
BibRef
Ma, X.[Xiang],
Khokhar, A.A.[Ashfaq A.],
Schonfeld, D.[Dan],
Robust Video Mining Based on Local Similarity Alignment of Motion
Trajectories,
ICIP09(281-284).
IEEE DOI
0911
BibRef
Chen, X.[Xu],
Schonfeld, D.[Dan],
Khokhar, A.A.[Ashfaq A.],
Bilinear invariant representation for video classification and
retrieval,
ICIP10(2385-2388).
IEEE DOI
1009
See also Localized Null Space representation for dynamic updating and downdating in image and video databases.
BibRef
Lin, B.[Bin],
Su, J.W.[Jian-Wen],
One Way Distance:
For Shape Based Similarity Search of Moving Object Trajectories,
GeoInfo(12), No. 2, June 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Wu, S.D.[Shan-Dong],
Li, Y.F.,
Flexible signature descriptions for adaptive motion trajectory
representation, perception and recognition,
PR(42), No. 1, January 2009, pp. 194-214.
Elsevier DOI
0809
Signature; Trajectory descriptor; Trajectory representation;
Motion perception; Trajectory recognition; Robot vision
BibRef
Wu, S.D.[Shan-Dong],
Li, Y.F.,
Motion trajectory reproduction from generalized signature description,
PR(43), No. 1, January 2010, pp. 204-221,.
Elsevier DOI
0909
Motion trajectory; Signature descriptor; Mutual description;
Trajectory reproduction; Computer vision
BibRef
Wang, Y.[Yong],
Hu, S.Q.[Shi-Qiang],
Wu, S.D.[Shan-Dong],
Visual tracking based on group sparsity learning,
MVA(26), No. 1, January 2015, pp. 127-139.
WWW Link.
1503
BibRef
Andersson, M.[Mattias],
Gudmundsson, J.[Joachim],
Laube, P.[Patrick],
Wolle, T.[Thomas],
Reporting Leaders and Followers among Trajectories of Moving Point
Objects,
GeoInfo(12), No. 4, December 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Kayumbi, G.[Gabin],
Cavallaro, A.[Andrea],
Multiview Trajectory Mapping Using Homography with Lens Distortion
Correction,
JIVP(2008), No. 2008, pp. xx-yy.
DOI Link
0804
BibRef
Anjum, N.[Nadeem],
Cavallaro, A.[Andrea],
Trajectory Association and Fusion across Partially Overlapping Cameras,
AVSBS09(201-206).
IEEE DOI
0909
BibRef
Kayumbi, G.[Gabin],
Anjum, N.[Nadeem],
Cavallaro, A.[Andrea],
Global trajectory reconstruction from distributed visual sensors,
ICDSC08(1-8).
IEEE DOI
0809
BibRef
Earlier: A1, A3, Only:
Robust Homography-Based Trajectory Transformation for Multi-Camera
Scene Analysis,
ICDSC07(59-66).
IEEE DOI
0709
BibRef
Pelot, R.,
Wu, Y.[Yan],
Classification of recreational boat types based on trajectory patterns,
PRL(28), No. 15, 1 November 2007, pp. 1987-1994.
Elsevier DOI
0711
Recreational boating; Trajectory analysis; Global positioning system;
Discriminant classification
BibRef
Anjum, N.[Nadeem],
Cavallaro, A.[Andrea],
Multifeature Object Trajectory Clustering for Video Analysis,
CirSysVideo(18), No. 11, November 2008, pp. 1555-1564.
IEEE DOI
0811
BibRef
Earlier:
Single camera calibration for trajectory-based behavior analysis,
AVSBS07(147-152).
IEEE DOI
0709
BibRef
And:
Unsupervised Fuzzy Clustering for Trajectory Analysis,
ICIP07(III: 213-216).
IEEE DOI
0709
BibRef
Hervieu, A.,
Bouthemy, P.,
Le Cadre, J.P.,
A Statistical Video Content Recognition Method Using Invariant Features
on Object Trajectories,
CirSysVideo(18), No. 11, November 2008, pp. 1533-1543.
IEEE DOI
0811
BibRef
And:
Activity-based temporal segmentation for videos of interacting objects
using invariant trajectory features,
ICIP08(3208-3211).
IEEE DOI
0810
BibRef
Earlier:
A HMM-Based Method for Recognizing Dynamic Video Contents from
Trajectories,
ICIP07(IV: 533-536).
IEEE DOI
0709
BibRef
Hu, Z.H.[Zhao-Hua],
Fan, X.[Xin],
Song, Y.L.[Yao-Liang],
Liang, D.Q.[De-Qun],
Joint trajectory tracking and recognition based on bi-directional
nonlinear learning,
IVC(27), No. 9, 3 August 2009, pp. 1302-1312.
Elsevier DOI
0906
Visual tracking; Trajectory generative model; Autoencoder network;
Nonlinear dimensionality reduction; Particle filter; Improved
Hausdorff distance.
Embeds high-dimensional trajectories into a two-dimensional plane.
BibRef
Dyana, A.,
Das, S.[Sukhendu],
Trajectory representation using Gabor features for motion-based video
retrieval,
PRL(30), No. 10, 15 July 2009, pp. 877-892.
Elsevier DOI
0906
Trajectory representation; Spectral features; Gabor filters; Partial
trajectory matching; Edit distance; Motion-based video retrieval
BibRef
Liu, H.W.[Hao-Wei],
Sun, M.T.[Ming-Ting],
Wu, R.C.[Ruei-Cheng],
Yu, S.S.[Shiaw-Shian],
Automatic video activity detection using compressed domain motion
trajectories for H.264 videos,
JVCIR(22), No. 5, July 2011, pp. 432-439.
Elsevier DOI
1106
Activity detection; Vehicle tracking; Compressed domain processing;
H.264 videos; Object classification; Trajectory classification; Motion
vector tracking; Residual error tracking
BibRef
Karavasilis, V.[Vasileios],
Nikou, C.[Christophoros],
Likas, A.[Aristidis],
Visual tracking using the Earth Mover's Distance between Gaussian
mixtures and Kalman filtering,
IVC(29), No. 5, April 2011, pp. 295-305.
Elsevier DOI
1103
Visual tracking; Gaussian mixture model (GMM);
Expectation-Maximization (EM) algorithm; Differential Earth Mover's
Distance (Differential EMD); Kalman filter
BibRef
Karavasilis, V.[Vasileios],
Blekas, K.[Konstantinos],
Nikou, C.[Christophoros],
A novel framework for motion segmentation and tracking by clustering
incomplete trajectories,
CVIU(116), No. 11, November 2012, pp. 1135-1148.
Elsevier DOI
1210
Motion segmentation; Visual feature tracking; Trajectory clustering;
Sparse regression modeling
See also Matching mixtures of curves for human action recognition.
BibRef
Karavasilis, V.[Vasileios],
Nikou, C.[Christophoros],
Likas, A.[Aristidis],
Visual tracking using spatially weighted likelihood of Gaussian
mixtures,
CVIU(140), No. 1, 2015, pp. 43-57.
Elsevier DOI
1509
Visual tracking
BibRef
Karavasilis, V.[Vasileios],
Nikou, C.[Christophoros],
Likas, A.[Aristidis],
Real time visual tracking using a spatially weighted von Mises
mixture model,
PRL(90), No. 1, 2017, pp. 50-57.
Elsevier DOI
1704
Visual tracking
BibRef
Hu, W.M.[Wei-Ming],
Tian, G.D.[Guo-Dong],
Li, X.[Xi],
Maybank, S.J.[Stephen J.],
An Improved Hierarchical Dirichlet Process-Hidden Markov Model and Its
Application to Trajectory Modeling and Retrieval,
IJCV(105), No. 3, December 2013, pp. 246-268.
Springer DOI
1309
BibRef
del-Bianco, C.R.[Carlos R.],
Jaureguizar, F.[Fernando],
Garcia, N.[Narciso],
Inference of Complex Trajectories by Means of a Multibehavior and
Multiobject Tracking Algorithm,
CirSysVideo(23), No. 8, 2013, pp. 1300-1311.
IEEE DOI
1308
BibRef
Earlier:
Bayesian visual surveillance: A model for detecting and tracking a
variable number of moving objects,
ICIP11(1437-1440).
IEEE DOI
1201
BibRef
Earlier:
Visual tracking of multiple interacting objects through
Rao-Blackwellized Data Association Particle Filtering,
ICIP10(821-824).
IEEE DOI
1009
Calibration
BibRef
Maqueda, A.I.[Ana I.],
Ruano, A.[Arturo],
del-Blanco, C.R.[Carlos R.],
Carballeira, P.[Pablo],
Jaureguizar, F.[Fernando],
Garcia, N.[Narciso],
Novel multi-feature Bag-of-Words descriptor via subspace random
projection for efficient human-action recognition,
AVSS15(1-6)
IEEE DOI
1511
Accuracy
BibRef
Lin, W.Y.[Wei-Yang],
Hsieh, C.Y.[Chung-Yang],
Kernel-based representation for 2D/3D motion trajectory retrieval and
classification,
PR(46), No. 3, March 2013, pp. 662-670.
Elsevier DOI
1212
Discriminant analysis; Kernel method; Trajectory representation;
Trajectory-based retrieval; Trajectory-based classification
BibRef
Celeux, G.[Gilles],
Nascimento, J.C.[Jacinto C.],
Marques, J.S.[Jorge S.],
Learning switching dynamic models for objects tracking,
PR(37), No. 9, September 2004, pp. 1841-1853.
Elsevier DOI
0407
BibRef
Nascimento, J.C.[Jacinto C.],
Figueiredo, M.A.T.[Mário A.T.],
Marques, J.S.[Jorge S.],
Trajectory Classification Using Switched Dynamical Hidden Markov Models,
IP(19), No. 5, May 2010, pp. 1338-1348.
IEEE DOI
1004
See also Similarity-Based Classification of Sequences Using Hidden Markov Models.
BibRef
Nascimento, J.C.[Jacinto C.],
Figueiredo, M.A.T.[Mário A.T.],
Marques, J.S.[Jorge S.],
Activity Recognition Using a Mixture of Vector Fields,
IP(22), No. 5, May 2013, pp. 1712-1725.
IEEE DOI
1303
BibRef
Earlier:
Trajectory analysis in natural images using mixtures of vector fields,
ICIP09(4353-4356).
IEEE DOI
0911
BibRef
And:
Trajectory Modeling Using Mixtures of Vector Fields,
IbPRIA09(40-47).
Springer DOI
0906
BibRef
Portêlo, A.[Ana],
Cavallaro, A.[Andrea],
Barata, C.[Catarina],
Marques, J.S.[Jorge S.],
Description and Recognition of Activity Patterns Using Sparse Vector
Fields,
IbPRIA19(I:239-248).
Springer DOI
1910
BibRef
Marques, J.S.[Jorge S.],
Barão, M.[Miguel],
Lemos, J.M.[João M.],
Alignment of velocity fields for video surveillance,
PRL(33), No. 12, 1 September 2012, pp. 1632-1637.
Elsevier DOI
1208
Image analysis; Image alignment; Motion analysis; Video surveillance
BibRef
Nascimento, J.C.[Jacinto C.],
Marques, J.S.[Jorge S.],
Improving the robustness of gradient vector flow in cluttered images,
ICIP10(657-660).
IEEE DOI
1009
See also Improving the robustness of parametric shape tracking with switched multiple models.
BibRef
Barata, C.,
Lemos, J.M.[Joao M.],
Marques, J.S.[Jorge S.],
Estimation of Space-Varying Covariance Matrices,
ICIP18(4003-4007)
IEEE DOI
1809
Trajectory, Covariance matrices, Switches, Estimation, Uncertainty,
Interpolation, Dictionaries, Human motion,
space-varying covariance matrices
BibRef
Marques, J.S.[Jorge S.],
Lemos, J.M.[João M.],
Figueiredo, M.A.T.[Mário A.T.],
Nascimento, J.C.[Jacinto C.],
Barão, M.[Miguel],
Trajectory Analysis Using Switched Motion Fields: A Parametric Approach,
IbPRIA11(420-427).
Springer DOI
1106
BibRef
Nascimento, J.C.[Jacinto C.],
Marques, J.S.[Jorge S.],
Lemos, J.M.[Joao M.],
Modeling and Classifying Human Activities From Trajectories Using a
Class of Space-Varying Parametric Motion Fields,
IP(22), No. 5, May 2013, pp. 2066-2080.
IEEE DOI
1304
BibRef
Earlier:
A class of space-varying parametric motion fields for human activity
recognition,
ICIP12(761-764).
IEEE DOI
1302
BibRef
Earlier:
Flexible trajectory modeling using a mixture of parametric motion
fields for video surveillance,
ICIP11(1413-1416).
IEEE DOI
1201
BibRef
Cancela, B.[Brais],
Ortega, M.[Marcos],
Penedo, M.G.[Manuel G.],
Novo, J.,
Barreira, N.,
On the use of a minimal path approach for target trajectory analysis,
PR(46), No. 7, July 2013, pp. 2015-2027.
Elsevier DOI
1303
Online trajectory analysis; Dynamic potential; Abnormal behavior
detection; Minimal path; Geodesic active contours
BibRef
Cancela, B.[Brais],
Ortega, M.[Marcos],
Penedo, M.G.[Manuel G.],
Path Analysis Using Directional Forces. A Practical Case: Traffic
Scenes,
IbPRIA13(366-373).
Springer DOI
1307
BibRef
Cancela, B.[Brais],
Ortega, M.[Marcos],
Fernández, A.[Alba],
Trajectory Similarity Measures Using Minimal Paths,
CIAP13(I:400-409).
Springer DOI
1311
BibRef
Cancela, B.[Brais],
Ortega, M.[Marcos],
Fernández, A.[Alba],
Penedo, M.G.[Manuel G.],
Path Analysis in Multiple-Target Video Sequences,
CIAP11(II: 50-59).
Springer DOI
1109
BibRef
Earlier: A1, A2, A4, A3:
Solving Multiple-Target Tracking Using Adaptive Filters,
ICIAR11(I: 416-425).
Springer DOI
1106
BibRef
Lin, L.[Liang],
Lu, Y.Y.[Yong-Yi],
Pan, Y.[Yan],
Chen, X.W.[Xiao-Wu],
Integrating Graph Partitioning and Matching for Trajectory Analysis in
Video Surveillance,
IP(21), No. 12, December 2012, pp. 4844-4857.
IEEE DOI
1212
BibRef
Wang, H.[Heng],
Kläser, A.[Alexander],
Schmid, C.[Cordelia],
Liu, C.L.[Cheng-Lin],
Dense Trajectories and Motion Boundary Descriptors for Action
Recognition,
IJCV(103), No. 1, May 2013, pp. 60-79.
Springer DOI
1305
BibRef
Earlier:
Action recognition by dense trajectories,
CVPR11(3169-3176).
IEEE DOI
1106
BibRef
Wang, H.[Heng],
Schmid, C.[Cordelia],
Action Recognition with Improved Trajectories,
ICCV13(3551-3558)
IEEE DOI
1403
BibRef
Hu, W.M.[Wei-Ming],
Li, X.[Xi],
Tian, G.D.[Guo-Dong],
Maybank, S.J.[Stephen J.],
Zhang, Z.F.[Zhong-Fei],
An Incremental DPMM-Based Method for Trajectory Clustering, Modeling,
and Retrieval,
PAMI(35), No. 5, May 2013, pp. 1051-1065.
IEEE DOI
1304
Dirichlet process mixture model, Trajectory clustering and modeling,
incremental clustering, time-sensitive Dirichlet process mixture
model, video retrieval
BibRef
Parent, C.[Christine],
Spaccapietra, S.[Stefano],
Renso, C.[Chiara],
Andrienko, G.[Gennady],
Andrienko, N.[Natalia],
Bogorny, V.[Vania],
Damiani, M.L.[Maria Luisa],
Gkoulalas-Divanis, A.[Aris],
Macedo, J.[Jose],
Pelekis, N.[Nikos],
Theodoridis, Y.[Yannis],
Yan, Z.X.[Zhi-Xian],
Semantic trajectories modeling and analysis,
Surveys(45), No. 2, February 2013, pp. Article No 42.
DOI Link
1309
Survey, Trajectory Analysis. Focus on movement data has increased as a consequence of the larger
availability of such data due to current GPS, GSM, RFID, and sensors
techniques. In parallel, interest in movement has shifted from raw
movement data analysis to more application-oriented
BibRef
Anagnostopoulos, C.,
Hadjiefthymiades, S.,
Intelligent Trajectory Classification for Improved Movement
Prediction,
SMCS(44), No. 10, October 2014, pp. 1301-1314.
IEEE DOI
1410
knowledge based systems
BibRef
Chen, X.G.[Xiao-Gang],
Ye, Q.X.[Qi-Xiang],
Zou, J.L.[Jia-Ling],
Li, C.[Ce],
Cui, Y.T.[Yan-Ting],
Jiao, J.B.[Jian-Bin],
Visual trajectory analysis via Replicated Softmax-based models,
SIViP(8), No. S1, December 2014, pp. 183-190.
Springer DOI
1411
BibRef
Zhang, S.[Shun],
Wang, J.J.[Jin-Jun],
Wang, Z.[Zelun],
Gong, Y.H.[Yi-Hong],
Liu, Y.H.[Yue-Hu],
Multi-target tracking by learning local-to-global trajectory models,
PR(48), No. 2, 2015, pp. 580-590.
Elsevier DOI
1411
Local-to-global
BibRef
Wang, Z.[Zelun],
Wang, J.J.[Jin-Jun],
Zhang, S.[Shun],
Gong, Y.H.[Yi-Hong],
Visual tracking based on online sparse feature learning,
IVC(38), No. 1, 2015, pp. 24-32.
Elsevier DOI
1506
Visual tracking
BibRef
Wang, T.,
Zhang, D.,
Zhou, X.,
Qi, X.,
Ni, H.,
Wang, H.,
Zhou, G.,
Mining Personal Frequent Routes via Road Corner Detection,
SMCS(46), No. 4, April 2016, pp. 445-458.
IEEE DOI
1604
Clustering algorithms
BibRef
Xiang, L.G.[Long-Gang],
Gao, M.[Meng],
Wu, T.[Tao],
Extracting Stops from Noisy Trajectories:
A Sequence Oriented Clustering Approach,
IJGI(5), No. 3, 2016, pp. 29.
DOI Link
1604
BibRef
Lai, T.T.[Tao-Tao],
Wang, H.Z.[Han-Zi],
Yan, Y.[Yan],
Chin, T.J.[Tat-Jun],
Zhao, W.L.[Wan-Lei],
Motion Segmentation Via a Sparsity Constraint,
ITS(18), No. 4, April 2017, pp. 973-983.
IEEE DOI
1704
Computational modeling. Trajectory segmentation.
BibRef
Luo, T.[Ting],
Zheng, X.W.[Xin-Wei],
Xu, G.[Guangluan],
Fu, K.[Kun],
Ren, W.J.[Wen-Juan],
An Improved DBSCAN Algorithm to Detect Stops in Individual
Trajectories,
IJGI(6), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Lin, W.Y.[Wei-Yao],
Zhou, Y.[Yang],
Xu, H.T.[Hong-Teng],
Yan, J.C.[Jun-Chi],
Xu, M.L.[Ming-Liang],
Wu, J.X.[Jian-Xin],
Liu, Z.C.[Zi-Cheng],
A Tube-and-Droplet-Based Approach for Representing and Analyzing
Motion Trajectories,
PAMI(39), No. 8, August 2017, pp. 1489-1503.
IEEE DOI
1707
Representing motion trajectories.
Context modeling, Electron tubes,
Hidden Markov models, Shape,
Trajectory, 3D action recognition, 3D tube,
Trajectory representation, abnormality detection, trajectory analysis.
BibRef
Guo, S.[Sheng],
Xiong, H.J.[Han-Jiang],
Zheng, X.W.[Xian-Wei],
A Novel Semantic Matching Method for Indoor Trajectory Tracking,
IJGI(6), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Qian, H.Z.[Hai-Zhong],
Lu, Y.M.[Yong-Mei],
Simplifying GPS Trajectory Data with Enhanced Spatial-Temporal
Constraints,
IJGI(6), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Guo, N.[Ning],
Ma, M.Y.[Meng-Yu],
Xiong, W.[Wei],
Chen, L.[Luo],
Jing, N.[Ning],
An Efficient Query Algorithm for Trajectory Similarity Based on
Fréchet Distance Threshold,
IJGI(6), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Jia, T.[Tao],
Ji, Z.[Zheng],
Understanding the Functionality of Human Activity Hotspots from Their
Scaling Pattern Using Trajectory Data,
IJGI(6), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Timofte, R.[Radu],
Kwon, J.[Junseok],
Van Gool, L.J.[Luc J.],
PICASO: PIxel correspondences and SOft match selection for real-time
tracking,
CVIU(153), No. 1, 2016, pp. 151-162.
Elsevier DOI
1612
Visual tracking
BibRef
Kwon, J.[Junseok],
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
Leveraging observation uncertainty for robust visual tracking,
CVIU(158), No. 1, 2017, pp. 62-71.
Elsevier DOI
1704
Object tracking
BibRef
Manen, S.[Santiago],
Timofte, R.,
Dai, D.,
Van Gool, L.J.[Luc J.],
Leveraging single for multi-target tracking using a novel trajectory
overlap affinity measure,
WACV16(1-9)
IEEE DOI
1606
Atmospheric measurements
BibRef
Manen, S.[Santiago],
Gygli, M.,
Dai, D.,
Van Gool, L.J.[Luc J.],
PathTrack: Fast Trajectory Annotation with Path Supervision,
ICCV17(290-299)
IEEE DOI
1802
image motion analysis, image sequences,
learning (artificial intelligence), object recognition,
Trajectory
BibRef
Li, J.P.[Jia-Peng],
Chen, W.[Wei],
Liu, A.[An],
Li, Z.X.[Zhi-Xu],
Zhao, L.[Lei],
FTS: a feature-preserving trajectory synthesis model,
GeoInfo(22), No. 1, January 2018, pp. 49-70.
Springer DOI
1802
Trajectory datasets from GPS data.
BibRef
Zou, Y.B.[Ye-Bin],
Chen, Y.J.[Yi-Jin],
He, J.[Jing],
Pang, G.[Gehu],
Zhang, K.X.[Kai-Xuan],
4D Time Density of Trajectories:
Discovering Spatiotemporal Patterns in Movement Data,
IJGI(7), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Zhao, H.D.[Han-Dong],
Ding, Z.M.[Zheng-Ming],
Fu, Y.[Yun],
Ensemble Subspace Segmentation Under Blockwise Constraints,
CirSysVideo(28), No. 7, July 2018, pp. 1526-1539.
IEEE DOI
1807
Tracks of moving objects.
Computational efficiency, Face, Image segmentation,
Motion segmentation, Optimization, Robustness, Sparse matrices,
sparse graph
BibRef
Li, J.[Jing],
Wang, X.T.[Xuan-Tong],
Zhang, T.[Tong],
Xu, Y.[You],
Efficient Parallel K Best Connected Trajectory (K-BCT) Query with
GPGPU: A Combinatorial Min-Distance and Progressive Bounding Box
Approach,
IJGI(7), No. 7, 2018, pp. xx-yy.
DOI Link
1808
Similarity of trajectories.
BibRef
Xu, J.Q.[Jian-Qiu],
Güting, R.H.[Ralf Hartmut],
Gao, Y.J.[Yun-Jun],
Continuous k nearest neighbor queries over large multi-attribute
trajectories: a systematic approach,
GeoInfo(22), No. 4, October 2018, pp. 723-766.
WWW Link.
1811
BibRef
Zhang, Y.[Yue],
Lin, Y.P.[Ya-Ping],
An interactive method for identifying the stay points of the
trajectory of moving objects,
JVCIR(59), 2019, pp. 387-392.
Elsevier DOI
1903
Trajectory, Stay point, Space-time cube
BibRef
Saini, R.[Rajkumar],
Roy, P.P.[Partha Pratim],
Dogra, D.P.[Debi Prosad],
A novel point-line duality feature for trajectory classification,
VC(35), No. 3, March 2019, pp. 415-427.
Springer DOI
1906
BibRef
Chen, R.[Rui],
Chen, M.J.[Ming-Jian],
Li, W.L.[Wan-Li],
Wang, J.G.[Jian-Guang],
Yao, X.[Xiang],
Mobility Modes Awareness from Trajectories Based on Clustering and a
Convolutional Neural Network,
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Pulshashi, I.R.[Iq Reviessay],
Bae, H.[Hyerim],
Choi, H.[Hyunsuk],
Mun, S.[Seunghwan],
Sutrisnowati, R.A.[Riska Asriana],
Simplification and Detection of Outlying Trajectories from Batch and
Streaming Data Recorded in Harsh Environments,
IJGI(8), No. 6, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Cutrona, V.[Vincenzo],
Bianchi, F.[Federico],
Ciavotta, M.[Michele],
Maurino, A.[Andrea],
On the composition and recommendation of multi-feature paths:
a comprehensive approach,
GeoInfo(23), No. 3, July 2019, pp. 353-373.
Springer DOI
1908
From GPS trackers.
BibRef
Shirazi, M.S.[Mohammad Shokrolah],
Morris, B.T.[Brendan Tran],
Trajectory prediction of vehicles turning at intersections using deep
neural networks,
MVA(30), No. 6, September 2019, pp. 1097-1109.
WWW Link.
1909
BibRef
Gatziolis, D.[Demetrios],
McGaughey, R.J.[Robert J.],
Reconstructing Aircraft Trajectories from Multi-Return Airborne
Laser-Scanning Data,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Yang, T.[Tao],
Li, D.D.[Dong-Dong],
Bai, Y.[Yi],
Zhang, F.B.[Fang-Bing],
Li, S.[Sen],
Wang, M.[Miao],
Zhang, Z.Y.[Zhuo-Yue],
Li, J.[Jing],
Multiple-Object-Tracking Algorithm Based on Dense Trajectory Voting
in Aerial Videos,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Su, B.[Bing],
Hua, G.[Gang],
Order-Preserving Optimal Transport for Distances between Sequences,
PAMI(41), No. 12, December 2019, pp. 2961-2974.
IEEE DOI
1911
Distance between sequences.
Solid modeling, Distortion, Legged locomotion,
Distortion measurement, Supervised learning, Optimal transport,
inverse difference moment
BibRef
Guo, N.[Ning],
Shekhar, S.[Shashi],
Xiong, W.[Wei],
Chen, L.[Luo],
Jing, N.[Ning],
UTSM: A Trajectory Similarity Measure Considering Uncertainty Based
on an Amended Ellipse Model,
IJGI(8), No. 11, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Ribeiro de Almeida, D.[Damião],
de Souza Baptista, C.[Cláudio],
Gomes de Andrade, F.[Fabio],
Soares, A.[Amilcar],
A Survey on Big Data for Trajectory Analytics,
IJGI(9), No. 2, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Salas, J.[Julián],
Megías, D.[David],
Torra, V.[Vicenç],
Toger, M.[Marina],
Dahne, J.[Joel],
Sainudiin, R.[Raazesh],
Swapping trajectories with a sufficient sanitizer,
PRL(131), 2020, pp. 474-480.
Elsevier DOI
2004
Privacy preserving mobility data mining,
Real-time mobility data anonymization,
Origin-Destination matrices
BibRef
Chen, C.,
Ding, Y.,
Xie, X.,
Zhang, S.,
Wang, Z.,
Feng, L.,
TrajCompressor: An Online Map-matching-based Trajectory Compression
Framework Leveraging Vehicle Heading Direction and Change,
ITS(21), No. 5, May 2020, pp. 2012-2028.
IEEE DOI
2005
Trajectory, Global Positioning System, Roads, Presses, Data centers,
Urban areas, Task analysis, Vehicle trajectory compression,
mobile environment
BibRef
Faisal, M.,
Akhter, I.,
Ali, M.,
Hartley, R.I.,
EpO-Net: Exploiting Geometric Constraints on Dense Trajectories for
Motion Saliency,
WACV20(1873-1882)
IEEE DOI
2006
Trajectory, Optical imaging, Motion segmentation, Robustness,
Tensile stress, Optical fiber networks
BibRef
Campo, D.,
Baydoun, M.,
Marin, P.,
Martin, D.,
Marcenaro, L.,
de la Escalera, A.,
Regazzoni, C.S.,
Learning Probabilistic Awareness Models for Detecting Abnormalities
in Vehicle Motions,
ITS(21), No. 3, March 2020, pp. 1308-1320.
IEEE DOI
2003
Trajectory, Vehicle dynamics, Hidden Markov models, Dynamics,
Data models, Intelligent systems, Smart mobility,
decision systems
BibRef
Campo, D.,
Baydoun, M.,
Marcenaro, L.,
Cavallaro, A.,
Regazzoni, C.S.,
Unsupervised Trajectory Modeling Based on Discrete Descriptors for
Classifying Moving Objects in Video Sequences,
ICIP18(833-837)
IEEE DOI
1809
BibRef
Earlier:
Modeling and classification of trajectories based on a Gaussian
process decomposition into discrete components,
AVSS17(1-6)
IEEE DOI
1806
BibRef
Earlier: A1, A2, A3, A5, Only:
Task-dependent saliency estimation from trajectories of agents in
video sequences,
ICIP17(4252-4256)
IEEE DOI
1803
Trajectory, Vocabulary, Neurons, Video sequences,
Self-organizing feature maps, Data models, Training,
trajectory classification.
Gaussian processes, data handling, image classification,
image motion analysis, image segmentation, regression analysis,
Uncertainty.
Heuristic algorithms, Image color analysis, Task analysis,
Transforms, Visualization, vector field representation
BibRef
Moreira, T.P.[Thierry Pinheiro],
Menotti, D.[David],
Pedrini, H.[Helio],
Video action recognition based on visual rhythm representation,
JVCIR(71), 2020, pp. 102771.
Elsevier DOI
2009
a methodology of volume description (spact-time volume).
Action recognition, Visual rhythm, Video sequences, Computer vision
BibRef
Niu, X.,
Chen, T.,
Wu, C.Q.,
Niu, J.,
Li, Y.,
Label-Based Trajectory Clustering in Complex Road Networks,
ITS(21), No. 10, October 2020, pp. 4098-4110.
IEEE DOI
2010
Trajectory, Roads, Clustering algorithms, Complex networks,
Euclidean distance, Computational modeling, Bayes methods,
dual graph
BibRef
Huang, Z.[Zhi],
Wang, J.[Jun],
Pi, L.[Lei],
Song, X.L.[Xiao-Lin],
Yang, L.F.[Ling-Fang],
LSTM based trajectory prediction model for cyclist utilizing multiple
interactions with environment,
PR(112), 2021, pp. 107800.
Elsevier DOI
2102
Trajectory prediction, Interaction, Cyclist, LSTM, Focal attention mechanism
BibRef
Li, S.Y.[Song-Yuan],
Tian, H.[Hui],
Shen, H.[Hong],
Sang, Y.P.[Ying-Peng],
Privacy-Preserving Trajectory Data Publishing by Dynamic
Anonymization with Bounded Distortion,
IJGI(10), No. 2, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Zhu, J.[Jin],
Cheng, D.[Dayu],
Zhang, W.W.[Wei-Wei],
Song, C.[Ci],
Chen, J.[Jie],
Pei, T.[Tao],
A New Approach to Measuring the Similarity of Indoor Semantic
Trajectories,
IJGI(10), No. 2, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Wang, S.[Sheng],
Bao, Z.F.[Zhi-Feng],
Culpepper, J.S.[J. Shane],
Cong, G.[Gao],
A Survey on Trajectory Data Management, Analytics, and Learning,
Surveys(54), No. 2, March 2021, pp. xx-yy.
DOI Link
2104
Survey, Trajectory Analysis. similarity search, storage system, deep learning,
urban analytics, Trajectory
BibRef
Zhang, K.X.[Kai-Xuan],
Zhao, D.B.[Dong-Bao],
Feng, L.L.[Lin-Lin],
Cao, L.H.[Lian-Hai],
Cycling Trajectory-Based Navigation Independent of Road Network Data
Support,
IJGI(10), No. 6, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Bertugli, A.[Alessia],
Calderara, S.[Simone],
Coscia, P.[Pasquale],
Ballan, L.[Lamberto],
Cucchiara, R.[Rita],
AC-VRNN: Attentive Conditional-VRNN for multi-future trajectory
prediction,
CVIU(210), 2021, pp. 103245.
Elsevier DOI
2109
Trajectory forecasting, Multi-future prediction, Time series,
Variational recurrent neural networks, Graph attention networks
BibRef
Monti, A.[Alessio],
Bertugli, A.[Alessia],
Calderara, S.[Simone],
Cucchiara, R.[Rita],
DAG-Net: Double Attentive Graph Neural Network for Trajectory
Forecasting,
ICPR21(2551-2558)
IEEE DOI
2105
Urban areas, Predictive models, Graph neural networks, Trajectory,
Pattern recognition, Proposals, Forecasting
BibRef
Landi, F.[Federico],
Baraldi, L.[Lorenzo],
Cornia, M.[Marcella],
Corsini, M.[Massimiliano],
Cucchiara, R.[Rita],
Multimodal attention networks for low-level vision-and-language
navigation,
CVIU(210), 2021, pp. 103255.
Elsevier DOI
2109
Vision-and-language navigation, Embodied AI, Multi-modal attention
BibRef
Bigazzi, R.[Roberto],
Landi, F.[Federico],
Cornia, M.[Marcella],
Cascianelli, S.[Silvia],
Baraldi, L.[Lorenzo],
Cucchiara, R.[Rita],
Explore and Explain: Self-supervised Navigation and Recounting,
ICPR21(1152-1159)
IEEE DOI
2105
Measurement, Navigation, Natural languages, Trajectory,
Pattern recognition, Intelligent agents, Artificial intelligence
BibRef
Saini, R.[Rajkumar],
Kumar, P.[Pradeep],
Roy, P.P.[Partha Pratim],
Pal, U.[Umapada],
Modeling local and global behavior for trajectory classification
using graph based algorithm,
PRL(150), 2021, pp. 280-288.
Elsevier DOI
2109
Trajectory classification and clustering, Dynamic time warping (DTW),
Minimum spanning tree (MST)
BibRef
Vidal-Filho, J.N.[Jarbas Nunes],
Times, V.C.[Valéria Cesário],
Lisboa-Filho, J.[Jugurta],
Renso, C.[Chiara],
Towards the Semantic Enrichment of Trajectories Using Spatial Data
Infrastructures,
IJGI(10), No. 12, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Wang, Y.[Yu],
Zhao, S.J.[Sheng-Jie],
Zhang, R.Q.[Rong-Qing],
Cheng, X.[Xiang],
Yang, L.Q.[Liu-Qing],
Multi-Vehicle Collaborative Learning for Trajectory Prediction With
Spatio-Temporal Tensor Fusion,
ITS(23), No. 1, January 2022, pp. 236-248.
IEEE DOI
2201
Predict other vehicle trajectories.
Trajectory, Predictive models, Generative adversarial networks,
Collaborative work, Tensile stress, Intelligent vehicles,
generative adversarial networks
BibRef
Wang, Y.[Yu],
Chen, S.W.[Shi-Wei],
Multi-Agent Trajectory Prediction With Spatio-Temporal Sequence
Fusion,
MultMed(25), 2023, pp. 13-23.
IEEE DOI
2301
Analytical models, Correlation, Graphical models, Buildings,
Trajectory, Intelligent transportation systems, sequence-to-sequence
BibRef
Jimoh, B.[Biliaminu],
Mariescu-Istodor, R.[Radu],
Fränti, P.[Pasi],
Is Medoid Suitable for Averaging GPS Trajectories?,
IJGI(11), No. 2, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Xia, B.H.[Bei-Hao],
Wong, C.H.[Cong-Hao],
Peng, Q.[Qinmu],
Yuan, W.[Wei],
You, X.G.[Xin-Ge],
CSCNet: Contextual semantic consistency network for trajectory
prediction in crowded spaces,
PR(126), 2022, pp. 108552.
Elsevier DOI
2204
Trajectory prediction, The context-aware transfer, The conditional context loss
BibRef
Maczyta, L.[Léo],
Bouthemy, P.[Patrick],
Le Meur, O.[Olivier],
Trajectory Saliency Detection Using Consistency-Oriented Latent Codes
From a Recurrent Auto-Encoder,
CirSysVideo(32), No. 4, April 2022, pp. 1724-1738.
IEEE DOI
2204
Trajectory, Videos, Image reconstruction, Saliency detection,
Dynamics, Training, Generative adversarial networks,
recurrent auto-encoder
BibRef
Qiao, D.[Dianfeng],
Yang, X.Y.[Xin-Yu],
Liang, Y.[Yan],
Hao, X.H.[Xiao-Hui],
Rapid trajectory clustering based on neighbor spatial analysis,
PRL(156), 2022, pp. 167-173.
Elsevier DOI
2205
Trajectory clustering, Trajectory-Hausdorff distance,
Shared nearest neighbor, Similarity matrix, R-tree
BibRef
Horak, J.[Jiri],
Kukuliac, P.[Pavel],
Maresova, P.[Petra],
Orlikova, L.[Lucie],
Kolodziej, O.[Ondrej],
Spatial Pattern of the Walkability Index, Walk Score and Walk Score
Modification for Elderly,
IJGI(11), No. 5, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Qian, S.Y.[Shi-You],
Cheng, B.[Bin],
Cao, J.[Jian],
Xue, G.T.[Guang-Tao],
Zhu, Y.M.[Yan-Min],
Yu, J.[Jiadi],
Li, M.L.[Ming-Lu],
Zhang, T.[Tao],
Detecting Taxi Trajectory Anomaly Based on Spatio-Temporal Relations,
ITS(23), No. 7, July 2022, pp. 6883-6894.
IEEE DOI
2207
Trajectory, Public transportation, Transportation, Testing,
Feature extraction, Roads, Computer science, Anomaly detection,
spatio-temporal
BibRef
Neves, F.[Francisco],
Finamore, A.C.[Anna C.],
Madeira, S.C.[Sara C.],
Henriques, R.[Rui],
Mining Actionable Patterns of Road Mobility From Heterogeneous
Traffic Data Using Biclustering,
ITS(23), No. 7, July 2022, pp. 6430-6445.
IEEE DOI
2207
Roads, Urban areas, Geology, Trajectory, Time series analysis,
Spatiotemporal phenomena, Detectors, Sustainable mobility,
road traffic data
BibRef
Cao, Q.[Qi],
Ren, G.[Gang],
Li, D.W.[Da-Wei],
Li, H.J.[Hao-Jie],
Ma, J.[Jiangshan],
Map Matching for Sparse Automatic Vehicle Identification Data,
ITS(23), No. 7, July 2022, pp. 6495-6508.
IEEE DOI
2207
Global Positioning System, Hidden Markov models, Trajectory,
Vehicles, Roads, Tracking, Radiofrequency identification, AVI data,
sparsity issue
BibRef
Xiao, J.H.[Jian-Hua],
Xiao, Z.[Zhu],
Wang, D.[Dong],
Havyarimana, V.[Vincent],
Liu, C.X.[Chen-Xi],
Zou, C.M.[Cheng-Ming],
Wu, D.[Di],
Vehicle Trajectory Interpolation Based on Ensemble Transfer
Regression,
ITS(23), No. 7, July 2022, pp. 7680-7691.
IEEE DOI
2207
Trajectory, Interpolation, Global navigation satellite system,
Training, Roads, Urban areas, Data models,
ensemble learning
BibRef
Liu, Y.[Yang],
Wu, F.[Fanyou],
Lyu, C.[Cheng],
Liu, X.[Xin],
Liu, Z.Y.[Zhi-Yuan],
Behavior2vector:
Embedding Users' Personalized Travel Behavior to Vector,
ITS(23), No. 7, July 2022, pp. 8346-8355.
IEEE DOI
2207
Navigation, Unsupervised learning, Principal component analysis,
Web and internet services, Trajectory, Numerical models,
embedding vector
BibRef
Belhadi, A.[Asma],
Djenouri, Y.[Youcef],
Djenouri, D.[Djamel],
Michalak, T.[Tomasz],
Lin, J.C.W.[Jerry Chun-Wei],
Deep Learning Versus Traditional Solutions for Group Trajectory
Outliers,
Cyber(52), No. 6, June 2022, pp. 4508-4519.
IEEE DOI
2207
Trajectory, Anomaly detection, Feature extraction, Correlation,
Deep learning, Computational modeling, Hurricanes,
trajectory data
BibRef
Zhang, K.X.[Kai-Xuan],
Zhao, D.[Dongbao],
Liu, W.K.[Wen-Kai],
Online vehicle trajectory compression algorithm based on motion
pattern recognition,
IET-ITS(16), No. 8, 2022, pp. 998-1010.
DOI Link
2207
BibRef
Ribeiro de Almeida, D.[Damião],
de Souza Baptista, C.[Cláudio],
de Andrade, F.G.[Fabio Gomes],
Similarity Search on Semantic Trajectories Using Text Processing,
IJGI(11), No. 7, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Ahmed, U.[Usman],
Srivastava, G.[Gautam],
Djenouri, Y.[Youcef],
Lin, J.C.W.[Jerry Chun-Wei],
Deviation Point Curriculum Learning for Trajectory Outlier Detection
in Cooperative Intelligent Transport Systems,
ITS(23), No. 9, September 2022, pp. 16514-16523.
IEEE DOI
2209
Trajectory, Public transportation, Anomaly detection, Roads,
Monitoring, Intelligent sensors, Databases, Trajectory analysis,
smart city application
BibRef
Hu, W.[Wenya],
Li, W.M.[Wei-Min],
Zhou, X.K.[Xiao-Kang],
Kawai, A.[Akira],
Fueda, K.[Kaoru],
Qian, Q.[Quan],
Wang, J.J.[Jian-Jia],
Spatio-Temporal Graph Convolutional Networks via View Fusion for
Trajectory Data Analytics,
ITS(24), No. 4, April 2023, pp. 4608-4620.
IEEE DOI
2304
Trajectory, Convolution, Feature extraction, Sensors,
Predictive models, Task analysis, Data mining, traffic forecasting
BibRef
Schaffert, M.[Markus],
Geist, K.[Konstantin],
Albrecht, J.[Jonathan],
Enners, D.[Dorothea],
Müller, H.[Hartmut],
Walk Score from 2D to 3D: Walkability for the Elderly in Two
Medium-Sized Cities in Germany,
IJGI(12), No. 4, 2023, pp. 157.
DOI Link
2305
BibRef
Marchetti, F.[Francesco],
Becattini, F.[Federico],
Seidenari, L.[Lorenzo],
del Bimbo, A.[Alberto],
Multiple Trajectory Prediction of Moving Agents With Memory Augmented
Networks,
PAMI(45), No. 6, June 2023, pp. 6688-6702.
IEEE DOI
2305
BibRef
Earlier:
MANTRA: Memory Augmented Networks for Multiple Trajectory Prediction,
CVPR20(7141-7150)
IEEE DOI
2008
Trajectory, Navigation, Predictive models, Autonomous vehicles,
Safety, Sensors, Robots, Trajectory prediction,
autonomous driving.
Encoding, Task analysis, Decoding, Recurrent neural networks
BibRef
Kang, Y.[Youngok],
Kim, J.[Jiyeon],
Park, J.Y.[Ji-Young],
Lee, J.[Jiyoon],
Assessment of Perceived and Physical Walkability Using Street View
Images and Deep Learning Technology,
IJGI(12), No. 5, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Zhang, Y.Z.[Yu-Zhen],
Guo, W.Z.[Wei-Zhi],
Su, J.[Junning],
Lv, P.[Pei],
Xu, M.L.[Ming-Liang],
BIP-Tree: Tree Variant With Behavioral Intention Perception for
Heterogeneous Trajectory Prediction,
ITS(24), No. 9, September 2023, pp. 9584-9598.
IEEE DOI
2310
BibRef
Persson, M.[Mikael],
Häger, G.[Gustav],
Ovrén, H.[Hannes],
Forssén, P.E.[Per-Erik],
Practical Pose Trajectory Splines With Explicit Regularization,
3DV21(156-165)
IEEE DOI
2201
Extrapolation, Estimation, Real-time systems, Trajectory,
Calibration, Splines (mathematics), Pose Trajectory, spline
BibRef
Rossi, S.[Silvia],
Viola, I.[Irene],
Toni, L.[Laura],
Cesar, P.[Pablo],
A New Challenge:
Behavioural Analysis of 6-DOF User When Consuming Immersive Media,
ICIP21(3423-3427)
IEEE DOI
2201
Measurement, Solid modeling, Navigation, Heuristic algorithms,
Wearable computers, Simulation, Virtual reality, Point Cloud,
Data Clustering
BibRef
Huang, R.[Renhao],
Song, Y.[Yang],
Pagnucco, M.[Maurice],
An Improved Discriminator for GAN-Based Trajectory Prediction Models,
DICTA20(1-3)
IEEE DOI
2201
Training, Recurrent neural networks, Computational modeling,
Stochastic processes, Predictive models, Trajectory, Robots
BibRef
Alfani, A.[Alessandra],
Becattini, F.[Federico],
Seidenari, L.[Lorenzo],
del Bimbo, A.[Alberto],
Online Deep Clustering with Video Track Consistency,
ICPR22(2650-2656)
IEEE DOI
2212
Visualization, Annotations, Cameras, Generators,
Noise measurement, Task analysis
BibRef
Berlincioni, L.[Lorenzo],
Becattini, F.[Federico],
Seidenari, L.[Lorenzo],
del Bimbo, A.[Alberto],
Multiple Future Prediction Leveraging Synthetic Trajectories,
ICPR21(6081-6088)
IEEE DOI
2105
Training, Predictive models, Markov processes, Data models,
Trajectory, Safety, Planning
BibRef
Hu, Q.Y.[Qi-Yang],
Wälchli, A.[Adrian],
Portenier, T.[Tiziano],
Zwicker, M.[Matthias],
Favaro, P.[Paolo],
Learning to Take Directions One Step at a Time,
ICPR21(739-746)
IEEE DOI
2105
Training, Tracking, Video sequences, Rendering (computer graphics),
Animation, Trajectory
BibRef
Amirian, J.[Javad],
Zhang, B.Q.[Bing-Qing],
Castro, F.V.[Francisco Valente],
Baldelomar, J.J.[Juan José],
Hayet, J.B.[Jean-Bernard],
Pettré, J.[Julien],
Opentraj: Assessing Prediction Complexity in Human Trajectories
Datasets,
ACCV20(VI:566-582).
Springer DOI
2103
BibRef
Sun, J.[Jin],
Averbuch-Elor, H.[Hadar],
Wang, Q.Q.[Qian-Qian],
Snavely, N.[Noah],
Hidden Footprints: Learning Contextual Walkability from 3d Human Trails,
ECCV20(XVIII:192-207).
Springer DOI
2012
BibRef
Wang, L.M.[Li-Min],
Tong, Z.[Zhan],
Ji, B.[Bin],
Wu, G.S.[Gang-Shan],
TDN: Temporal Difference Networks for Efficient Action Recognition,
CVPR21(1895-1904)
IEEE DOI
2111
Analytical models, Visualization, Solid modeling,
Convolution, Computational modeling, Motion segmentation
BibRef
Li, Y.X.[Yi-Xuan],
Wang, Z.X.[Zi-Xu],
Wang, L.M.[Li-Min],
Wu, G.S.[Gang-Shan],
Actions as Moving Points,
ECCV20(XVI: 68-84).
Springer DOI
2010
BibRef
Malla, S.,
Dariush, B.,
Choi, C.,
TITAN: Future Forecast Using Action Priors,
CVPR20(11183-11193)
IEEE DOI
2008
Trajectory, Predictive models, Context modeling,
Navigation, Roads, Prediction algorithms
BibRef
Phan-Minh, T.,
Grigore, E.C.,
Boulton, F.A.,
Beijbom, O.,
Wolff, E.M.,
CoverNet: Multimodal Behavior Prediction Using Trajectory Sets,
CVPR20(14062-14071)
IEEE DOI
2008
Trajectory, Vehicle dynamics, Probabilistic logic, Uncertainty,
Stochastic processes, Standards, Dynamics
BibRef
Zhao, T.Y.[Tian-Yang],
Xu, Y.F.[Yi-Fei],
Monfort, M.[Mathew],
Choi, W.G.[Won-Gun],
Baker, C.[Chris],
Zhao, Y.B.[Yi-Biao],
Wang, Y.Z.[Yi-Zhou],
Wu, Y.N.[Ying Nian],
Multi-Agent Tensor Fusion for Contextual Trajectory Prediction,
CVPR19(12118-12126).
IEEE DOI
2002
BibRef
Liu, J.,
Xue, C.,
Wu, C.,
Dong, Q.,
A Process-oriented Spatiotemporal Clustering Method for Complex
Trajectories,
ISSDQ19(1237-1242).
DOI Link
1912
BibRef
Moayedi, A.,
Abbaspour, R.A.,
Chehreghan, A.,
A Comparison of Efficiency of The Optimization Approach for Clustering
of Trajectories,
SMPR19(737-740).
DOI Link
1912
BibRef
Barata, C.,
Figueiredo, M.A.T.,
Marques, J.S.,
Multiple Motion Fields for Multiple Types of Agents,
ICIP19(1287-1291)
IEEE DOI
1910
Surveillance, trajectory analysis, motion fields, hierarchical Markov models
BibRef
Duits, R.[Remco],
Smets, B.[Bart],
Bekkers, E.[Erik],
Portegies, J.[Jim],
Equivariant Deep Learning via Morphological and Linear Scale Space PDEs
on the Space of Positions and Orientations,
SSVM21(27-39).
Springer DOI
2106
BibRef
Duits, R.[Remco],
St-Onge, E.[Etienne],
Portegies, J.[Jim],
Smets, B.[Bart],
Total Variation and Mean Curvature PDEs on the Space of Positions and
Orientations,
SSVM19(211-223).
Springer DOI
1909
BibRef
Wu, T.[Ting],
Xu, Q.[Qing],
Li, Y.H.[Yun-He],
Guo, Y.J.[Yue-Jun],
Schoeffmann, K.[Klaus],
Detail-Preserving Trajectory Summarization Based on Segmentation and
Group-Based Filtering,
MMMod19(II:402-413).
Springer DOI
1901
BibRef
Yoon, J.S.,
Li, Z.,
Park, H.S.,
3D Semantic Trajectory Reconstruction from 3D Pixel Continuum,
CVPR18(5060-5069)
IEEE DOI
1812
Trajectory, Semantics, Cameras, Image reconstruction, Streaming media
BibRef
Wang, W.,
Lin, Y.,
Cheng, H.,
Huang, C.,
Clustering Trajectories in Heterogeneous Representations for Video
Event Detection,
ICIP18(933-937)
IEEE DOI
1809
Trajectory, Acceleration, Entropy, Feature extraction,
Event detection, Clustering algorithms,
trajectory clustering
BibRef
Tian, J.,
Chen, L.,
Liu, X.,
Movement Classification in Video Using Kinematics-Driven Change
Detection and Local Kinematics Shape Pattern,
ICIP18(714-718)
IEEE DOI
1809
Kinematics, Feature extraction, Shape, Shape measurement, Histograms,
Muscles, Spatiotemporal phenomena, movement change detection,
local kinematics shape pattern
BibRef
Wang, Y.,
Tran, V.Q.,
Nguyen, M.H.,
Eigen-Evolution Dense Trajectory Descriptors,
FG18(473-479)
IEEE DOI
1806
Clutter, Covariance matrices, Feature extraction, Histograms,
Machine learning, Trajectory, Visualization, Action Recognition,
Trajectory Pooling
BibRef
Sharif, M.,
Alesheikh, A.A.,
Multi-dimensional Pattern Discovery of Trajectories Using Contextual
Information,
GeoInfo17(31-36).
DOI Link
1805
BibRef
Zhou, Y.,
Yu, H.,
Wang, S.,
Feature sampling strategies for action recognition,
ICIP17(3968-3972)
IEEE DOI
1803
Feature extraction, Histograms, Image edge detection, Proposals,
Sampling methods, Streaming media, Trajectory, Action recognition,
Video analysis
BibRef
Chakraborty, R.,
Singh, V.,
Adluru, N.,
Vemuri, B.C.[Baba C.],
A Geometric Framework for Statistical Analysis of Trajectories with
Distinct Temporal Spans,
ICCV17(172-181)
IEEE DOI
1802
computational geometry, data analysis,
differential geometry, principal component analysis,
Trajectory
BibRef
Salarpour, A.,
Khotanlou, H.,
Mahboubi, M.A.,
Daghigh, S.,
A multiresolution approach to trajectory description,
IPRIA17(62-68)
IEEE DOI
1712
image resolution, image segmentation, spatiotemporal phenomena,
visual databases, CROSS data-set, LABOMNI data-set, LCSS distance,
Trajectory similarity
BibRef
Tian, D.[Dong],
Sun, H.F.[Hui-Fang],
Vetro, A.[Anthony],
Keypoint trajectory coding on compact descriptor for video analysis,
ICIP16(171-175)
IEEE DOI
1610
Encoding
Trajectory descriptions.
BibRef
Li, H.Y.[Hong-Yang],
Chen, J.[Jun],
Hu, R.M.[Rui-Min],
Yu, M.[Mei],
Chen, H.F.[Hua-Feng],
Xu, Z.M.[Zeng-Min],
Action Recognition Using Visual Attention with Reinforcement Learning,
MMMod19(II:365-376).
Springer DOI
1901
BibRef
Xu, Z.M.[Zeng-Min],
Hu, R.M.[Rui-Min],
Chen, J.[Jun],
Chen, H.F.[Hua-Feng],
Li, H.Y.[Hong-Yang],
Global Contrast Based Salient Region Boundary Sampling for Action
Recognition,
MMMod16(I: 187-198).
Springer DOI
1601
Dense Trajectory (iDT) based features.
See also Dense Trajectories and Motion Boundary Descriptors for Action Recognition.
BibRef
Zhu, W.J.[Wang-Jiang],
Wang, B.Y.[Bao-Yuan],
Lin, S.,
Adaptive pooling over multiple trajectory attributes for action
recognition,
AVSS15(1-6)
IEEE DOI
1511
image motion analysis
BibRef
Yang, J.Y.[Jian-Yu],
Yuan, J.S.[Jun-Song],
Li, Y.F.,
Flexible Trajectory Indexing for 3D Motion Recognition,
WACV15(326-332)
IEEE DOI
1503
Accuracy
BibRef
Cox, D.[Doug],
Fairall, D.[Darren],
MacMillan, N.[Neil],
Marinakis, D.[Dimitri],
Meger, D.[David],
Pourtavakoli, S.[Saamaan],
Weston, K.[Kyle],
Trajectory Inference Using a Motion Sensing Network,
CRV14(159-166)
IEEE DOI
1406
Trajectory from low resolution (space and time) sequences.
BibRef
Banerjee, P.[Prithviraj],
Nevatia, R.[Ram],
Multi-state Discriminative Video Segment Selection for Complex Event
Classification,
ACCV14(V: 162-177).
Springer DOI
1504
BibRef
Banerjee, P.[Prithviraj],
Nevatia, R.[Ram],
Pose Filter Based Hidden-CRF Models for Activity Detection,
ECCV14(II: 711-726).
Springer DOI
1408
BibRef
Earlier:
Learning neighborhood cooccurrence statistics of sparse features for
human activity recognition,
AVSBS11(212-217).
IEEE DOI
1111
BibRef
Banerjee, P.[Prithviraj],
Nevatia, R.[Ramakant],
Dynamics Based Trajectory Segmentation for UAV videos,
AVSS10(345-352).
IEEE DOI
1009
BibRef
Liu, H.[Hong],
Li, J.[Jiang],
Unsupervised multi-target trajectory detection, learning and analysis
in complicated environments,
ICPR12(3716-3720).
WWW Link.
1302
BibRef
Cordes, K.[Kai],
Müller, O.[Oliver],
Rosenhahn, B.[Bodo],
Ostermann, J.[Jörn],
Feature Trajectory Retrieval with Application to Accurate Structure and
Motion Recovery,
ISVC11(I: 156-167).
Springer DOI
1109
BibRef
Shi, F.,
Zhou, Z.,
Xiao, J.,
Wu, W.,
A new trajectory clustering algorithm using temporal smoothness for
motion segmentation,
ICIP13(4044-4048)
IEEE DOI
1402
Motion Segmentation; Temporal Smoothness; Trajectory Clustering
BibRef
Jodoin, P.M.[Pierre-Marc],
Benezeth, Y.[Yannick],
Wang, Y.[Yi],
Meta-tracking for video scene understanding,
AVSS13(1-6)
IEEE DOI
1311
Histograms; Layout; Surveillance; Tracking; Trajectory; Vectors; Vehicles
BibRef
Nierhoff, T.,
Hirche, S.,
Fast trajectory replanning using Laplacian mesh optimization,
ICARCV12(154-159).
IEEE DOI
1304
BibRef
Shen, Y.[Yuan],
Miao, Z.J.[Zhen-Jiang],
Zhang, J.[Jian],
Unsupervised online learning trajectory analysis based on weighted
directed graph,
ICPR12(1306-1309).
WWW Link.
1302
BibRef
Ulm, M.[Michael],
Brandie, N.[Norbert],
Robust online trajectory clustering without computing trajectory
distances,
ICPR12(2270-2273).
WWW Link.
1302
BibRef
Twardy, C.R.[Charles R.],
Stefanidis, A.[Anthony],
Local complexity adaptable trajectory partitioning via minimum message
length,
ICIP11(1881-1884).
IEEE DOI
1201
BibRef
Aung, Z.[Zeyar],
Sim, K.[Kelvin],
Ng, W.S.[Wee Siong],
Traj Align: A Method for Precise Matching of 3-D Trajectories,
ICPR10(3818-3821).
IEEE DOI
1008
BibRef
Jablonski, B.[Bartosz],
Kulbacki, M.[Marek],
Nonlinear Multiscale Analysis of Motion Trajectories,
ICCVG10(I: 122-130).
Springer DOI
1009
BibRef
Dudek, G.[Gregory],
Lobos, J.P.[John-Paul],
Towards Navigation Summaries:
Automated Production of a Synopsis of a Robot Trajectories,
CRV09(93-100).
IEEE DOI
0905
BibRef
Das, S.[Sanjib],
Bora, P.K.[Prabin Kumar],
Gogoi, A.K.[Anup Kumar],
Subtractive clustering of vertices for CPCA based animation geometry
compression,
ICCVGIP10(205-210).
DOI Link
1111
Clustered PCA. vertex trajectory analysis.
BibRef
Jiang, W.[Wang],
Zhang, Z.H.[Zeng-Hui],
Zhu, J.[Jubo],
Trajectory Processing Under Incomplete Measurement Situation Using a
Sparse Representation Model,
CISP09(1-5).
IEEE DOI
0910
BibRef
Li, X.,
Hu, W.,
Zhang, Z.,
Zhang, X.,
Luo, G.,
Trajectory-Based Video Retrieval Using Dirichlet Process Mixture Models,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Dockstader, S.L.[Shiloh L.],
Motion Trajectory Classification for Visual Surveillance and Tracking,
AVSBS06(34-34).
IEEE DOI
0611
BibRef
Jin, Y.,
Mokhtarian, F.,
Efficient Video Retrieval by Motion Trajectory,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Choi, P., and
Hebert, M.,
Learning and Predicting Moving Object Trajectory:
A piecewise trajectory segment approach,
CMU-RI-TR-06-42, August, 2006.
WWW Link.
BibRef
0608
Naftel, A.[Andrew],
Khalid, S.[Shehzad],
Motion Trajectory Learning in the DFT-Coefficient Feature Space,
CVS06(47).
IEEE DOI
0602
Cluster video using spatio-temporal models based on DFT.
BibRef
Khalid, S.[Shehzad],
Naftel, A.[Andrew],
Evaluation of Matching Metrics for Trajectory-Based Indexing and
Retrieval of Video Clips,
WACV05(I: 242-249).
IEEE DOI
0502
3 similarity metrics to match trajectories.
BibRef
Mann, R.,
Jepson, A.D.,
El-Maraghi, T.F.,
Trajectory segmentation using dynamic programming,
ICPR02(I: 331-334).
IEEE DOI
0211
BibRef
Kubica, J.M.,
Moore, A.,
Connolly, A.J.,
Jedicke, R.,
Spatial Data Structures for Efficient Trajectory-Based Queries,
CMU-RI-TR-04-61, November, 2004.
HTML Version.
0501
BibRef
Owens, J.,
Hunter, A.,
Application of the Self-Organizing Map to Trajectory Classification,
VS00(77-83).
0102
BibRef
Heikkonen, J.,
Koikkalainen, P.,
Schnorr, C.,
Learning motion trajectories via self-organization,
ICPR94(B:554-556).
IEEE DOI
9410
BibRef
Garcia, M.,
Nicolas, H.,
Video object trajectory analysis,
ICIP02(I: 585-588).
IEEE DOI
0210
BibRef
Motsch, J.,
Nicolas, H.,
3D motion estimation of video objects using a priori data and 2D
apparent motion,
ICIP98(I: 908-912).
IEEE DOI
9810
BibRef
Hsu, C.T.[Chiou-Ting],
Teng, S.J.[Shang-Ju],
Motion trajectory based video indexing and retrieval,
ICIP02(I: 605-608).
IEEE DOI
0210
BibRef
Ichimura, N.,
Stochastic filtering for motion trajectory in image sequences using a
monte carlo filter with estimation of hyper-parameters,
ICPR02(IV: 68-73).
IEEE DOI
0211
BibRef
Eng, H.L.[How-Lung],
Ma, K.K.[Kai-Kuang],
Motion Trajectory Extraction Based on Macroblock Motion Vectors for
Video Indexing,
ICIP99(III:284-288).
IEEE DOI
BibRef
9900
Haynes, S.M., and
Jain, R.C.,
Trajectories and Events,
CVPR91(702-703).
IEEE DOI
BibRef
9100
Earlier:
Low Level Motion Events: Trajectory Discontinuities,
CAIA84(251-256).
Line fitting algorithm to track points through a sequence.
BibRef
Gould, K.,
Shah, M.,
The Trajectory Primal Sketch:
A Multi-Scale Scheme for Representing Motion Characteristics,
CVPR89(79-85).
IEEE DOI
BibRef
8900
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Event Models, Action Models, Motion Detection for Events, Backgrounds .