Cavallaro, R.H.[Richard H.],
Gepner, J.N.[Jerry N.],
Gloudemans, J.R.[James R.],
Honey, S.K.[Stanley K.],
Squadron, W.F.[William F.],
White, M.S.[Marvin S.],
System for determining the position of an object,
US_Patent6,133,946, Oct 17, 2000
WWW Link.
BibRef
0010
Cavallaro, R.H.[Richard H.],
Gloudemans, J.R.[James R.],
Honey, S.K.[Stanley K.],
O'Brien, T.J.[Terence J.],
Phillips, A.C.[Alan C.],
Squadron, W.F.[William F.],
White, M.S.[Marvin S.],
System for determining the end of a path for a moving object,
US_Patent6,304,665, Oct 16, 2001
WWW Link.
BibRef
0110
Gupta, A.[Abhinav],
Kembhavi, A.[Aniruddha],
Davis, L.S.[Larry S.],
Observing Human-Object Interactions:
Using Spatial and Functional Compatibility for Recognition,
PAMI(31), No. 10, October 2009, pp. 1775-1789.
IEEE DOI
0909
Understand events, recognize motions, recognize the objects.
Apply constraints to reduce computation.
BibRef
Jiang, Y.G.[Yu-Gang],
Li, Z.,
Chang, S.F.[Shih-Fu],
Modeling Scene and Object Contexts for Human Action Retrieval With Few
Examples,
CirSysVideo(21), No. 5, May 2011, pp. 674-681.
IEEE DOI
1105
Context from the background scene. Based on 10 basic actions.
BibRef
Liu, Y.[Yuan],
Ma, L.[Lin],
Zhang, Y.F.[Yi-Feng],
Liu, W.[Wei],
Chang, S.F.[Shih-Fu],
Multi-Granularity Generator for Temporal Action Proposal,
CVPR19(3599-3608).
IEEE DOI
2002
BibRef
Shou, Z.[Zheng],
Gao, H.[Hang],
Zhang, L.[Lei],
Miyazawa, K.[Kazuyuki],
Chang, S.F.[Shih-Fu],
AutoLoc:
Weakly-Supervised Temporal Action Localization in Untrimmed Videos,
ECCV18(XVI: 162-179).
Springer DOI
1810
BibRef
Shou, Z.[Zheng],
Wang, D.A.[Dong-Ang],
Chang, S.F.[Shih-Fu],
Temporal Action Localization in Untrimmed Videos via Multi-stage CNNs,
CVPR16(1049-1058)
IEEE DOI
1612
BibRef
Shou, Z.[Zheng],
Chan, J.,
Zareian, A.,
Miyazawa, K.,
Chang, S.F.[Shih-Fu],
CDC: Convolutional-De-Convolutional Networks for Precise Temporal
Action Localization in Untrimmed Videos,
CVPR17(1417-1426)
IEEE DOI
1711
Convolution, Feature extraction, Kernel, Proposals, Semantics,
Videos
BibRef
Filipovych, R.[Roman],
Ribeiro, E.[Eraldo],
Robust sequence alignment for actor-object interaction recognition:
Discovering actor-object states,
CVIU(115), No. 2, February 2011, pp. 177-193.
Elsevier DOI
1102
BibRef
Earlier:
Recognizing primitive interactions by exploring actor-object states,
CVPR08(1-7).
IEEE DOI
0806
Activity analysis; Human-object interaction; Sequence matching;
Dynamic programming
BibRef
Filipovych, R.[Roman],
Ribeiro, E.[Eraldo],
Learning Structural Models in Multiple Projection Spaces,
ICIAR09(616-626).
Springer DOI
0907
BibRef
Earlier:
Learning human motion models from unsegmented videos,
CVPR08(1-7).
IEEE DOI
0806
BibRef
Earlier:
Combining Models of Pose and Dynamics for Human Motion Recognition,
ISVC07(II: 21-32).
Springer DOI
0711
BibRef
And:
Learning Repetitive Patterns for Classifying Non-Rigidly Deforming
Texture Surfaces,
CIAP07(49-54).
IEEE DOI
0709
BibRef
And:
Learning Basic Patterns from Repetitive Texture Surfaces Under
Non-rigid Deformations,
ICIAR07(81-92).
Springer DOI
0708
BibRef
Filipovych, R.[Roman],
Ribeiro, E.[Eraldo],
Adaptive Tuboid Shapes for Action Recognition,
ISVC09(II: 367-376).
Springer DOI
0911
BibRef
Filipovych, R.[Roman],
Ribeiro, E.[Eraldo],
Determining the scale of interest regions in videos,
ICIP09(985-988).
IEEE DOI
0911
BibRef
Yao, B.P.[Bang-Peng],
Fei-Fei, L.[Li],
Recognizing Human-Object Interactions in Still Images by Modeling the
Mutual Context of Objects and Human Poses,
PAMI(34), No. 9, September 2012, pp. 1691-1703.
IEEE DOI
1208
BibRef
Earlier:
Modeling mutual context of object and human pose in human-object
Interaction activities,
CVPR10(17-24).
IEEE DOI Video of talk:
WWW Link.
1006
Award, CVPR, Student HM.
BibRef
Yao, B.P.[Bang-Peng],
Fei-Fei, L.[Li],
Grouplet: A structured image representation for recognizing human and
object interactions,
CVPR10(9-16).
IEEE DOI Video of talk:
WWW Link.
1006
BibRef
Yao, B.P.[Bang-Peng],
Fei-Fei, L.[Li],
Action Recognition with Exemplar Based 2.5D Graph Matching,
ECCV12(IV: 173-186).
Springer DOI
1210
BibRef
Yao, B.P.[Bang-Peng],
Jiang, X.Y.[Xiao-Ye],
Khosla, A.[Aditya],
Lin, A.L.[Andy Lai],
Guibas, L.J.[Leonidas J.],
Fei-Fei, L.[Li],
Human action recognition by learning bases of action attributes and
parts,
ICCV11(1331-1338).
IEEE DOI
1201
Attributes of pose and basic actions.
BibRef
Zhu, Y.[Yuke],
Fathi, A.[Alireza],
Fei-Fei, L.[Li],
Reasoning about Object Affordances in a Knowledge Base Representation,
ECCV14(II: 408-424).
Springer DOI
1408
BibRef
Cheng, S.C.[Shyi-Chyi],
Cheng, K.Y.[Kwang-Yu],
Chen, Y.P.P.[Yi-Ping Phoebe],
GHT-based associative memory learning and its application to Human
action detection and classification,
PR(46), No. 11, November 2013, pp. 3117-3128.
Elsevier DOI
1306
Action object shapes; Generalized Hough transform;
Associative memory; Hypergraph; Human action detection and recognition
BibRef
Liu, H.W.[Hao-Wei],
Philipose, M.[Matthai],
Pettersson, M.[Martin],
Sun, M.T.[Ming-Ting],
Recognizing object manipulation activities using depth and visual
cues,
JVCIR(25), No. 4, 2014, pp. 719-726.
Elsevier DOI
1403
Activity recognition
See also Automatic objects segmentation with RGB-D cameras.
BibRef
Richtsfeld, A.[Andreas],
Mörwald, T.[Thomas],
Prankl, J.[Johann],
Zillich, M.[Michael],
Vincze, M.[Markus],
Learning of perceptual grouping for object segmentation on RGB-D data,
JVCIR(25), No. 1, 2014, pp. 64-73.
Elsevier DOI
1502
Computer vision
BibRef
Fäulhammer, T.,
Zillich, M.[Michael],
Prankl, J.[Johann],
Vincze, M.[Markus],
A multi-modal RGB-D object recognizer,
ICPR16(733-738)
IEEE DOI
1705
Cameras, Computational modeling, Feature extraction, Pipelines,
Shape, Training
BibRef
Cavallo, A.,
Falco, P.,
Online Segmentation and Classification of Manipulation Actions From
the Observation of Kinetostatic Data,
HMS(44), No. 2, April 2014, pp. 256-269.
IEEE DOI
1404
image classification
BibRef
Xie, Z.G.[Zhi-Ge],
Xiong, Y.S.[Yue-Shan],
Xu, K.[Kai],
AB3D: action-based 3D descriptor for shape analysis,
VC(30), No. 6-8, June 2014, pp. 591-601.
Springer DOI
1407
BibRef
Earlier:
Erratum:
VC(30), No. 9, September 2014, pp. 1071.
WWW Link.
1410
3D models for human interactions. Graphics.
BibRef
Darby, J.[John],
Li, B.H.[Bai-Hua],
Costen, N.P.[Nicholas P.],
Tracking object poses in the context of robust body pose estimates,
CVIU(127), No. 1, 2014, pp. 57-72.
Elsevier DOI
1408
Human-object interaction
BibRef
Darby, J.[John],
Li, B.H.[Bai-Hua],
Cunningham, R.[Ryan],
Costen, N.P.[Nicholas P.],
Object localisation via action recognition,
ICPR12(817-820).
WWW Link.
1302
Track objects in use by people
BibRef
Hu, J.F.[Jian-Fang],
Zheng, W.S.[Wei-Shi],
Lai, J.H.[Jian-Huang],
Gong, S.G.[Shao-Gang],
Xiang, T.[Tao],
Exemplar-Based Recognition of Human: Object Interactions,
CirSysVideo(26), No. 4, April 2016, pp. 647-660.
IEEE DOI
1604
BibRef
Earlier:
Recognising Human-Object Interaction via Exemplar Based Modelling,
ICCV13(3144-3151)
IEEE DOI
1403
image matching.
Human-Object Interaction; action recognition; exemplar modelling
BibRef
Bazzica, A.[Alessio],
Liem, C.C.S.[Cynthia C.S.],
Hanjalic, A.[Alan],
On detecting the playing/non-playing activity of musicians in
symphonic music videos,
CVIU(144), No. 1, 2016, pp. 188-204.
Elsevier DOI
1604
Cross-modal analysis
BibRef
Malmir, M.[Mohsen],
Sikka, K.[Karan],
Forster, D.[Deborah],
Fasel, I.[Ian],
Movellan, J.R.[Javier R.],
Cottrell, G.W.[Garrison W.],
Deep active object recognition by joint label and action prediction,
CVIU(156), No. 1, 2017, pp. 128-137.
Elsevier DOI
1702
BibRef
Earlier: A1, A2, A3, A5, A6, Only:
Deep Q-learning for Active Recognition of GERMS:
Baseline performance on a standardized dataset for active learning,
BMVC15(xx-yy).
DOI Link
1601
Active object recognition in the context of human robot interaction.
BibRef
Srikantha, A.[Abhilash],
Gall, J.[Juergen],
Weak supervision for detecting object classes from activities,
CVIU(156), No. 1, 2017, pp. 138-150.
Elsevier DOI
1702
BibRef
Earlier:
Human Pose as Context for Object Detection,
BMVC15(xx-yy).
DOI Link
1601
Weakly supervised
BibRef
Aksoy, E.E.[Eren Erdal],
Orhan, A.[Adil],
Wörgötter, F.[Florentin],
Semantic Decomposition and Recognition of Long and Complex Manipulation
Action Sequences,
IJCV(122), No. 1, March 2017, pp. 84-115.
Springer DOI
1702
BibRef
Wei, P.[Ping],
Zhao, Y.B.[Yi-Biao],
Zheng, N.N.[Nan-Ning],
Zhu, S.C.[Song-Chun],
Modeling 4D Human-Object Interactions for Joint Event Segmentation,
Recognition, and Object Localization,
PAMI(39), No. 6, June 2017, pp. 1165-1179.
IEEE DOI
1705
BibRef
Earlier:
Modeling 4D Human-Object Interactions for Event and Object
Recognition,
ICCV13(3272-3279)
IEEE DOI
1403
Context modeling, Hidden Markov models, Robots, Semantics,
Video sequences,
Human-object interaction, event recognition, object affordance,
object localization, sequence, segmentation
BibRef
Pajarinen, J.[Joni],
Kyrki, V.[Ville],
Robotic manipulation of multiple objects as a POMDP,
AI(247), No. 1, 2017, pp. 213-228.
Elsevier DOI
1705
POMDP
BibRef
Matsuo, T.[Tadashi],
Shimada, N.[Nobutaka],
Construction of Latent Descriptor Space and Inference Model of
Hand-Object Interactions,
IEICE(E100-D), No. 6, June 2017, pp. 1350-1359.
WWW Link.
1706
BibRef
Yu, H.N.[Hao-Nan],
Siskind, J.M.[Jeffrey Mark],
Sentence Directed Video Object Codiscovery,
IJCV(124), No. 3, September 2017, pp. 312-334.
Springer DOI
1708
Not just large objects in the scene.
BibRef
Meng, M.[Meng],
Drira, H.[Hassen],
Boonaert, J.[Jacques],
Distances evolution analysis for online and off-line human object
interaction recognition,
IVC(70), 2018, pp. 32-45.
Elsevier DOI
1804
BibRef
And:
Corrigendum:
IVC(72), 2018, pp. 39.
Elsevier DOI
1804
Human object interaction, Rate invariance, Shape analysis, Temporal modeling
BibRef
Truong, A.M.[Anh Minh],
Yoshitaka, A.[Atsuo],
Structured RNN for human interaction,
IET-CV(12), No. 6, September 2018, pp. 817-825.
DOI Link
1808
BibRef
Earlier:
Structured LSTM for human-object interaction detection and
anticipation,
AVSS17(1-6)
IEEE DOI
1806
image motion analysis, image sequences,
learning (artificial intelligence), neural nets,
Recurrent neural networks
BibRef
Roy, A.[Abhinaba],
Banerjee, B.[Biplab],
Murino, V.[Vittorio],
Discriminative body part interaction mining for mid-level action
representation and classification,
JVCIR(55), 2018, pp. 829-840.
Elsevier DOI
1809
Action recognition, Mid level feature, Zero shot learning
BibRef
Ghodsi, S.[Saeed],
Mohammadzade, H.[Hoda],
Korki, E.[Erfan],
Simultaneous joint and object trajectory templates for human activity
recognition from 3-D data,
JVCIR(55), 2018, pp. 729-741.
Elsevier DOI
1809
Human activity recognition, RGB-D sensors,
Trajectory-based representation, Action template,
Human object interaction
BibRef
Ma, C.Y.[Chih-Yao],
Chen, M.H.[Min-Hung],
Kira, Z.[Zsolt],
Al Regib, G.[Ghassan],
TS-LSTM and temporal-inception: Exploiting spatiotemporal dynamics
for activity recognition,
SP:IC(71), 2019, pp. 76-87.
Elsevier DOI
1901
Video understanding, Action recognition,
Convolutional neural network, Recurrent neural network
BibRef
Chen, M.H.[Min-Hung],
Li, B.P.[Bao-Pu],
Bao, Y.Z.[Ying-Ze],
Al Regib, G.[Ghassan],
Kira, Z.[Zsolt],
Action Segmentation With Joint Self-Supervised Temporal Domain
Adaptation,
CVPR20(9451-9460)
IEEE DOI
2008
Videos, Task analysis, Adaptation models, Convolution, Training,
Predictive models, Training data
BibRef
Chen, M.,
Li, B.,
Bao, Y.,
Al Regib, G.[Ghassan],
Action Segmentation with Mixed Temporal Domain Adaptation,
WACV20(594-603)
IEEE DOI
2006
Videos, Adaptation models, Feature extraction, Generators,
Neural networks, Decoding, Video surveillance
BibRef
Ma, C.Y.[Chih-Yao],
Kadav, A.,
Melvin, I.,
Kira, Z.[Zsolt],
Al Regib, G.[Ghassan],
Graf, H.P.,
Attend and Interact:
Higher-Order Object Interactions for Video Understanding,
CVPR18(6790-6800)
IEEE DOI
1812
Visualization, Task analysis, Computational modeling,
Image color analysis, Marine vehicles, Cognition, Feature extraction
BibRef
Chen, C.P.[Cheng-Peng],
Min, W.Q.[Wei-Qing],
Li, X.[Xue],
Jiang, S.Q.[Shu-Qiang],
Hybrid incremental learning of new data and new classes for hand-held
object recognition,
JVCIR(58), 2019, pp. 138-148.
Elsevier DOI
1901
Incremental learning, Object recognition, SVM, Human-machine interaction
BibRef
Ehrhardt, S.[Sebastien],
Monszpart, A.[Aron],
Mitra, N.J.[Niloy J.],
Vedaldi, A.[Andrea],
Taking visual motion prediction to new heightfields,
CVIU(181), 2019, pp. 14-25.
Elsevier DOI
1903
Modeling physical interactions between objects.
BibRef
Kim, S.,
Yun, K.,
Park, J.,
Choi, J.Y.,
Skeleton-Based Action Recognition of People Handling Objects,
WACV19(61-70)
IEEE DOI
1904
feature extraction, graph theory, image representation,
object detection, object recognition, pose estimation,
Detectors
BibRef
Bayraktar, E.[Ertugrul],
Yigit, C.B.[Cihat Bora],
Boyraz, P.[Pinar],
A hybrid image dataset toward bridging the gap between real and
simulation environments for robotics,
MVA(30), No. 1, February 2019, pp. 23-40.
Springer DOI
1904
BibRef
Zhang, H.[Hao],
Ngo, C.W.[Chong-Wah],
A Fine Granularity Object-Level Representation for Event Detection
and Recounting,
MultMed(21), No. 6, June 2019, pp. 1450-1463.
IEEE DOI
1906
Events involve interactions between people and objects.
Feature extraction, Event detection, Encoding, Visualization,
Training, Streaming media, Semantics,
search result reasoning
BibRef
Li, X.D.[Xu-Dong],
Ye, M.[Mao],
Liu, Y.G.[Yi-Guang],
Zhu, C.[Ce],
Adaptive Deep Convolutional Neural Networks for Scene-Specific Object
Detection,
CirSysVideo(29), No. 9, September 2019, pp. 2538-2551.
IEEE DOI
1909
Object detection, Feature extraction, Surveillance, Kernel,
Adaptation models, Detectors, Linear programming, surveillance scene
BibRef
Xu, B.,
Li, J.,
Wong, Y.,
Zhao, Q.,
Kankanhalli, M.S.,
Interact as You Intend: Intention-Driven Human-Object Interaction
Detection,
MultMed(22), No. 6, June 2020, pp. 1423-1432.
IEEE DOI
2005
Visualization, Task analysis, Object detection, Image recognition,
Feature extraction, Computational modeling, Semantics,
Visual Relationships
BibRef
Sandino, J.[Juan],
Vanegas, F.[Fernando],
Maire, F.[Frederic],
Caccetta, P.[Peter],
Sanderson, C.[Conrad],
Gonzalez, F.[Felipe],
UAV Framework for Autonomous Onboard Navigation and People/Object
Detection in Cluttered Indoor Environments,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Wolf, O.O.[Oliver Olsen],
Wiggins, G.A.[Geraint A.],
Look! It's Moving! Is It Alive? How Movement Affects Humans' Affinity
Living and Non-Living Entities,
AffCom(11), No. 4, October 2020, pp. 669-683.
IEEE DOI
2011
Human perception of movement.
Robots, Anthropomorphism, Animals, Linguistics, Animation, Observers,
Measurement, Animacy, expressiveness, language, metaphors,
quantitative methods
BibRef
Zhang, H.B.[Han-Bo],
Lan, X.G.[Xu-Guang],
Zhou, X.W.[Xin-Wen],
Tian, Z.Q.[Zhi-Qiang],
Zhang, Y.[Yang],
Zheng, N.N.[Nan-Ning],
Visual manipulation relationship recognition in object-stacking
scenes,
PRL(140), 2020, pp. 34-42.
Elsevier DOI
2012
Visual manipulation relationship, Grasp precondition, Robot vision
BibRef
Lin, T.W.[Tian-Wei],
Zhao, X.[Xu],
Su, H.S.[Hai-Sheng],
Joint Learning of Local and Global Context for Temporal Action
Proposal Generation,
CirSysVideo(30), No. 12, December 2020, pp. 4899-4912.
IEEE DOI
2012
Proposals, Videos, Task analysis, Reliability, Convolution,
Object detection, Robots, Temporal action proposal generation,
untrimmed video
BibRef
Qing, Z.W.[Zhi-Wu],
Su, H.S.[Hai-Sheng],
Gan, W.H.[Wei-Hao],
Wang, D.L.[Dong-Liang],
Wu, W.[Wei],
Wang, X.[Xiang],
Qiao, Y.[Yu],
Yan, J.J.[Jun-Jie],
Gao, C.X.[Chang-Xin],
Sang, N.[Nong],
Temporal Context Aggregation Network for Temporal Action Proposal
Refinement,
CVPR21(485-494)
IEEE DOI
2111
Location awareness, Benchmark testing,
Reliability engineering, Pattern recognition, Proposals, Task analysis
BibRef
Fan, Z.X.[Zhao-Xuan],
Zhao, X.[Xu],
Lin, T.W.[Tian-Wei],
Su, H.S.[Hai-Sheng],
Attention-Based Multiview Re-Observation Fusion Network for Skeletal
Action Recognition,
MultMed(21), No. 2, February 2019, pp. 363-374.
IEEE DOI
1902
Skeleton, Nonhomogeneous media, Fuses, Task analysis,
Visualization, Pose estimation,
long short-term memory (LSTM)
BibRef
Su, H.S.[Hai-Sheng],
Zhao, X.[Xu],
Lin, T.W.[Tian-Wei],
Cascaded Pyramid Mining Network for Weakly Supervised Temporal Action
Localization,
ACCV18(II:558-574).
Springer DOI
1906
BibRef
Liu, S.M.[Shu-Ming],
Zhao, X.[Xu],
Su, H.S.[Hai-Sheng],
Hu, Z.L.[Zhi-Lan],
TSI: Temporal Scale Invariant Network for Action Proposal Generation,
ACCV20(V:530-546).
Springer DOI
2103
BibRef
Lin, T.W.[Tian-Wei],
Zhao, X.[Xu],
Su, H.S.[Hai-Sheng],
Wang, C.J.[Chong-Jing],
Yang, M.[Ming],
BSN: Boundary Sensitive Network for Temporal Action Proposal Generation,
ECCV18(II: 3-21).
Springer DOI
1810
BibRef
Ji, Z.[Zhong],
Liu, X.Y.[Xi-Yao],
Pang, Y.W.[Yan-Wei],
Ouyang, W.L.[Wang-Li],
Li, X.L.[Xue-Long],
Few-Shot Human-Object Interaction Recognition With Semantic-Guided
Attentive Prototypes Network,
IP(30), 2021, pp. 1648-1661.
IEEE DOI
2101
Prototypes, Task analysis, Training, Computational modeling,
Visualization, Semantics, Explosions, Few-shot learning,
graph convolutional network
BibRef
Zhong, X.B.[Xu-Bin],
Ding, C.X.[Chang-Xing],
Qu, X.[Xian],
Tao, D.C.[Da-Cheng],
Polysemy Deciphering Network for Robust Human-Object Interaction
Detection,
IJCV(129), No. 6, June 2021, pp. 1910-1929.
Springer DOI
2106
BibRef
Earlier:
Polysemy Deciphering Network for Human-object Interaction Detection,
ECCV20(XX:69-85).
Springer DOI
2011
BibRef
Subramanian, R.R.[R. Raja],
Vasudevan, V.,
A deep genetic algorithm for human activity recognition leveraging
fog computing frameworks,
JVCIR(77), 2021, pp. 103132.
Elsevier DOI
2106
Deep genetic algorithm, Human activity recognition,
Fog computing, Ambulatory healthcare
BibRef
Amer, A.Y.A.[Ahmed Youssef Ali],
Aerts, J.M.[Jean-Marie],
Vanrumste, B.[Bart],
Luca, S.[Stijn],
A Localized Learning Approach Applied to Human Activity Recognition,
IEEE_Int_Sys(36), No. 3, May 2021, pp. 58-71.
IEEE DOI
2107
Support vector machines, Feature extraction,
Hidden Markov models, Training, Data models, Mathematical model,
least-squares support vector machine
BibRef
Wang, H.R.[Hao-Ran],
Jiao, L.C.[Li-Cheng],
Liu, F.[Fang],
Li, L.L.[Ling-Ling],
Liu, X.[Xu],
Ji, D.[Deyi],
Gan, W.H.[Wei-Hao],
IPGN: Interactiveness Proposal Graph Network for Human-Object
Interaction Detection,
IP(30), 2021, pp. 6583-6593.
IEEE DOI
2108
Task analysis, Proposals, Visualization, Semantics, Pose estimation,
Message passing, Knowledge engineering,
interaction learning
BibRef
Li, Y.L.[Yong-Lu],
Liu, X.P.[Xin-Peng],
Wu, X.Q.[Xiao-Qian],
Huang, X.J.[Xi-Jie],
Xu, L.[Liang],
Lu, C.[Cewu],
Transferable Interactiveness Knowledge for Human-Object Interaction
Detection,
PAMI(44), No. 7, July 2022, pp. 3870-3882.
IEEE DOI
2206
Feature extraction, Visualization, Image edge detection,
Biological system modeling, Task analysis, Semantics,
transfer learning
BibRef
Li, Y.L.[Yong-Lu],
Zhou, S.Y.[Si-Yuan],
Huang, X.J.[Xi-Jie],
Xu, L.[Liang],
Ma, Z.[Ze],
Fang, H.S.[Hao-Shu],
Wang, Y.F.[Yan-Feng],
Lu, C.[Cewu],
Transferable Interactiveness Knowledge for Human-Object Interaction
Detection,
CVPR19(3580-3589).
IEEE DOI
2002
BibRef
Kogashi, K.[Kaen],
Wu, Y.[Yang],
Nobuhara, S.[Shohei],
Nishino, K.[Ko],
Human-Object Interaction Detection with Missing Objects,
IVC(113), 2021, pp. 104262.
Elsevier DOI
2108
BibRef
Earlier:
MVA21(1-5)
DOI Link
2109
Human-object interaction
BibRef
Gao, Y.M.[Yi-Ming],
Kuang, Z.H.[Zhang-Hui],
Li, G.B.[Guan-Bin],
Zhang, W.[Wayne],
Lin, L.[Liang],
Hierarchical Reasoning Network for Human-Object Interaction Detection,
IP(30), 2021, pp. 8306-8317.
IEEE DOI
2110
Visualization, Cognition, Correlation, Benchmark testing,
Task analysis, Sports, Periodic structures, graph neural network
BibRef
Kim, D.J.[Dong-Jin],
Sun, X.[Xiao],
Choi, J.[Jinsoo],
Lin, S.[Stephen],
Kweon, I.S.[In So],
ACP++:
Action Co-Occurrence Priors for Human-Object Interaction Detection,
IP(30), 2021, pp. 9150-9163.
IEEE DOI
2112
BibRef
Earlier:
Detecting Human-object Interactions with Action Co-occurrence Priors,
ECCV20(XXI:718-736).
Springer DOI
2011
Visualization, Training, Task analysis, Bicycles, Semantics,
Context modeling, Benchmark testing, Human-object interaction,
knowledge distillation
BibRef
Yang, D.M.[Dong-Ming],
Zou, Y.X.[Yue-Xian],
Li, Z.[Zhu],
Li, G.[Ge],
Learning Human-Object Interaction via Interactive Semantic Reasoning,
IP(30), 2021, pp. 9294-9305.
IEEE DOI
2112
Semantics, Visualization, Cognition, Feature extraction,
Biological system modeling, Message passing, Neural networks,
human body-part
BibRef
Fan, H.[Hehe],
Zhuo, T.[Tao],
Yu, X.[Xin],
Yang, Y.[Yi],
Kankanhalli, M.[Mohan],
Understanding Atomic Hand-Object Interaction With Human Intention,
CirSysVideo(32), No. 1, January 2022, pp. 275-285.
IEEE DOI
2201
Videos, Cognition, Pattern recognition,
Fans, Task analysis, Neural networks, deep neural networks
BibRef
Wang, T.[Ting],
Ng, W.W.Y.[Wing W. Y.],
Li, J.[Jinde],
Wu, Q.X.[Qiu-Xia],
Zhang, S.[Shuai],
Nugent, C.[Chris],
Shewell, C.[Colin],
A Deep Clustering via Automatic Feature Embedded Learning for Human
Activity Recognition,
CirSysVideo(32), No. 1, January 2022, pp. 210-223.
IEEE DOI
2201
Feature extraction, Clustering algorithms, Clustering methods,
Visualization, Activity recognition, Vocabulary, Task analysis,
autoencoder
BibRef
Shakerian, R.[Reza],
Yadollahzadeh-Tabari, M.[Meisam],
Rad, S.Y.B.[Seyed Yaser Bozorgi],
Proposing a Fuzzy Soft-max-based classifier in a hybrid deep learning
architecture for human activity recognition,
IET-Bio(11), No. 2, 2022, pp. 171-186.
DOI Link
2202
deep learning, Fuzzy, Human Activity Recognition (HAR), soft-max classifier
BibRef
Li, Z.M.[Zong-Mian],
Sedlar, J.[Jiri],
Carpentier, J.[Justin],
Laptev, I.[Ivan],
Mansard, N.[Nicolas],
Sivic, J.[Josef],
Estimating 3D Motion and Forces of Human-Object Interactions from
Internet Videos,
IJCV(130), No. 2, February 2022, pp. 363-383.
Springer DOI
2202
BibRef
Earlier:
Estimating 3D Motion and Forces of Person-Object Interactions From
Monocular Video,
CVPR19(8632-8641).
IEEE DOI
2002
BibRef
Liu, L.[Lu],
Tan, R.T.[Robby T.],
Human object interaction detection using two-direction spatial
enhancement and exclusive object prior,
PR(124), 2022, pp. 108438.
Elsevier DOI
2203
Human-object interaction detection,
Two-direction spatial enhancement, Exclusive object prior,
Non-interactive suppression
BibRef
Jin, Y.[Yang],
Jiang, W.H.[Wen-Hao],
Yang, Y.[Yi],
Mu, Y.D.[Ya-Dong],
Zero-Shot Video Event Detection With High-Order Semantic Concept
Discovery and Matching,
MultMed(24), No. 2022, pp. 1896-1908.
IEEE DOI
2204
Semantics, Event detection, Visualization, Libraries,
Streaming media, Task analysis, Feature extraction,
high-order concept
BibRef
Ghadi, Y.Y.[Yazeed Yasin],
Waheed, M.[Manahil],
al Shloul, T.[Tamara],
Alsuhibany, S.A.[Suliman A.],
Jalal, A.[Ahmad],
Park, J.[Jeongmin],
Automated Parts-Based Model for Recognizing Human-Object Interactions
from Aerial Imagery with Fully Convolutional Network,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Zhou, T.F.[Tian-Fei],
Qi, S.Y.[Si-Yuan],
Wang, W.G.[Wen-Guan],
Shen, J.B.[Jian-Bing],
Zhu, S.C.[Song-Chun],
Cascaded Parsing of Human-Object Interaction Recognition,
PAMI(44), No. 6, June 2022, pp. 2827-2840.
IEEE DOI
2205
Portable computers, Neural networks, Cognition, Task analysis,
Image segmentation, Context modeling, Visualization,
fine-grained relation segmentation
BibRef
Zhou, T.F.[Tian-Fei],
Wang, W.G.[Wen-Guan],
Qi, S.Y.[Si-Yuan],
Ling, H.,
Shen, J.B.[Jian-Bing],
Cascaded Human-Object Interaction Recognition,
CVPR20(4262-4271)
IEEE DOI
2008
Semantics, Task analysis, Pipelines,
Proposals, Visualization, Computer vision
BibRef
Xu, K.L.[Kun-Lun],
Li, Z.M.[Zhi-Min],
Zhang, Z.J.[Zhi-Jun],
Dong, L.Z.[Lei-Zhen],
Xu, W.H.[Wen-Hui],
Yan, L.X.[Lu-Xin],
Zhong, S.[Sheng],
Zou, X.[Xu],
Effective actor-centric human-object interaction detection,
IVC(121), 2022, pp. 104422.
Elsevier DOI
2205
Human-object interaction detection, Global context utilizing,
Pixel-wise prediction, Deep learning
BibRef
Yang, D.M.[Dong-Ming],
Zou, Y.X.[Yue-Xian],
Zhang, C.[Can],
Cao, M.[Meng],
Chen, J.[Jie],
RR-Net: Relation Reasoning for End-to-End Human-Object Interaction
Detection,
CirSysVideo(32), No. 6, June 2022, pp. 3853-3865.
IEEE DOI
2206
Cognition, Detectors, Visualization, Feature extraction, Semantics,
Proposals, Encoding, Relation reasoning, end-to-end
BibRef
Khaire, P.[Pushpajit],
Kumar, P.[Praveen],
Deep learning and RGB-D based human action, human-human and
human-object interaction recognition: A survey,
JVCIR(86), 2022, pp. 103531.
Elsevier DOI
2206
Human action recognition, CNN, LSTM, Human-human interaction,
Human-object interaction, Deep learning, RGB-D sensors,
GCN
BibRef
Nie, L.S.[Lan-Shun],
Li, X.[Xue],
Gong, T.Y.[Tian-Ying],
Zhan, D.[Dechen],
Few shot learning-based fast adaptation for human activity
recognition,
PRL(159), 2022, pp. 100-107.
Elsevier DOI
2206
BibRef
Buoncompagni, L.[Luca],
Kareem, S.Y.[Syed Yusha],
Mastrogiovanni, F.[Fulvio],
Human Activity Recognition Models in Ontology Networks,
Cyber(52), No. 6, June 2022, pp. 5587-5606.
IEEE DOI
2207
Ontologies, Activity recognition, Knowledge engineering,
Smart homes, Hidden Markov models,
semantic networks
BibRef
Liu, S.[Si],
Wang, Z.[Zitian],
Gao, Y.[Yulu],
Ren, L.[Lejian],
Liao, Y.[Yue],
Ren, G.H.[Guang-Hui],
Li, B.[Bo],
Yan, S.C.[Shui-Cheng],
Human-Centric Relation Segmentation: Dataset and Solution,
PAMI(44), No. 9, September 2022, pp. 4987-5001.
IEEE DOI
2208
Person In Context (PIC) dataset for this new task, which contains
17,122 high-resolution images.
Task analysis, Image segmentation, Visualization, Semantics, Robots,
Kernel, Silicon, Human-centric relation segmentation, matching,
visual relation detection
BibRef
Yu, J.H.[Jia-Hui],
Gao, H.W.[Hong-Wei],
Chen, Y.Q.[Yong-Quan],
Zhou, D.[Dalin],
Liu, J.G.[Jin-Guo],
Ju, Z.J.[Zhao-Jie],
Deep Object Detector With Attentional Spatiotemporal LSTM for Space
Human-Robot Interaction,
HMS(52), No. 4, August 2022, pp. 784-793.
IEEE DOI
2208
Feature extraction, Videos, Detectors, Robots, Semantics,
Object detection, Real-time systems, Attention model,
video object detection
BibRef
Shrivastava, R.[Rahul],
Tiwari, V.[Vivek],
Jain, S.[Swati],
Tiwari, B.[Basant],
Kushwaha, A.K.S.[Alok Kumar Singh],
Singh, V.P.[Vibhav Prakash],
A role-entity based human activity recognition using inter-body
features and temporal sequence memory,
IET-IPR(16), No. 11, 2022, pp. 2911-2921.
DOI Link
2208
BibRef
Liu, X.L.[Xiao-Long],
Bai, S.[Song],
Bai, X.[Xiang],
An Empirical Study of End-to-End Temporal Action Detection,
CVPR22(19978-19987)
IEEE DOI
2210
Training, Codes, Computational modeling, Semantics, Buildings,
Detectors, Action and event recognition, Video analysis and understanding
BibRef
Liu, X.L.[Xiao-Long],
Wang, Q.M.[Qi-Meng],
Hu, Y.[Yao],
Tang, X.[Xu],
Zhang, S.W.[Shi-Wei],
Bai, S.[Song],
Bai, X.[Xiang],
End-to-End Temporal Action Detection With Transformer,
IP(31), 2022, pp. 5427-5441.
IEEE DOI
2208
Pipelines, Transformers, Proposals, Training, Feature extraction,
Task analysis, Detectors, Transformer, temporal action detection,
action recognition
BibRef
Zeng, F.G.[Fan-Gao],
Dong, B.[Bin],
Zhang, Y.[Yuang],
Wang, T.C.[Tian-Cai],
Zhang, X.Y.[Xiang-Yu],
Wei, Y.C.[Yi-Chen],
MOTR: End-to-End Multiple-Object Tracking with Transformer,
ECCV22(XXVII:659-675).
Springer DOI
2211
BibRef
Zou, C.[Cheng],
Wang, B.H.[Bo-Han],
Hu, Y.[Yue],
Liu, J.Q.[Jun-Qi],
Wu, Q.[Qian],
Zhao, Y.[Yu],
Li, B.[Boxun],
Zhang, C.G.[Chen-Guang],
Zhang, C.[Chi],
Wei, Y.C.[Yi-Chen],
Sun, J.[Jian],
End-to-End Human Object Interaction Detection with HOI Transformer,
CVPR21(11820-11829)
IEEE DOI
2111
Pipelines, Force, Object detection,
Transformer cores, Streaming media, Transformers
BibRef
Wang, J.F.[Jian-Feng],
Song, L.[Lin],
Li, Z.M.[Ze-Ming],
Sun, H.B.[Hong-Bin],
Sun, J.[Jian],
Zheng, N.N.[Nan-Ning],
End-to-End Object Detection with Fully Convolutional Network,
CVPR21(15844-15853)
IEEE DOI
2111
Convolutional codes, Training,
Filtering, Detectors, Object detection
BibRef
Xu, M.D.[Meng-De],
Zhang, Z.[Zheng],
Hu, H.[Han],
Wang, J.F.[Jian-Feng],
Wang, L.J.[Li-Juan],
Wei, F.Y.[Fang-Yun],
Bai, X.[Xiang],
Liu, Z.C.[Zi-Cheng],
End-to-End Semi-Supervised Object Detection with Soft Teacher,
ICCV21(3040-3049)
IEEE DOI
2203
Training, Image segmentation, Computational modeling,
Object detection, Detectors, Benchmark testing,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Wang, T.C.[Tian-Cai],
Yang, T.[Tong],
Danelljan, M.[Martin],
Khan, F.S.[Fahad Shahbaz],
Zhang, X.Y.[Xiang-Yu],
Sun, J.[Jian],
Learning Human-Object Interaction Detection Using Interaction Points,
CVPR20(4115-4124)
IEEE DOI
2008
Object detection, Feature extraction, Detectors,
Heating systems, Streaming media, Visualization
BibRef
Wang, T.C.[Tian-Cai],
Anwer, R.M.[Rao Muhammad],
Khan, M.H.[Muhammad Haris],
Khan, F.S.[Fahad Shahbaz],
Pang, Y.W.[Yan-Wei],
Shao, L.[Ling],
Laaksonen, J.T.[Jorma T.],
Deep Contextual Attention for Human-Object Interaction Detection,
ICCV19(5693-5701)
IEEE DOI
2004
feature extraction, image representation,
learning (artificial intelligence), object detection,
Visualization
BibRef
Li, Q.Y.[Qi-Yue],
Xie, X.M.[Xue-Mei],
Zhang, J.[Jin],
Shi, G.M.[Guang-Ming],
Language-guided graph parsing attention network for human-object
interaction recognition,
JVCIR(89), 2022, pp. 103640.
Elsevier DOI
2212
Human-object interaction, Language-guided,
Graph parsing attention network, Word embedding
BibRef
Bai, L.[Lin],
Chen, F.[Fenglian],
Tian, Y.[Yang],
Automatically detecting human-object interaction by an instance
part-level attention deep framework,
PR(134), 2023, pp. 109110.
Elsevier DOI
2212
Human-object interaction, Instance part-level correlations,
Self-attention-based model, Image context
BibRef
Lim, J.Y.[Jun-Yi],
Baskaran, V.M.[Vishnu Monn],
Lim, J.M.Y.[Joanne Mun-Yee],
Wong, K.S.[Kok-Sheik],
See, J.[John],
Tistarelli, M.[Massimo],
ERNet: An Efficient and Reliable Human-Object Interaction Detection
Network,
IP(32), 2023, pp. 964-979.
IEEE DOI
2301
Training, Adaptation models, Uncertainty, Estimation,
Feature extraction, Transformers, Decoding,
uncertainty estimation
BibRef
Antoun, M.[Maya],
Asmar, D.[Daniel],
Human object interaction detection: Design and survey,
IVC(130), 2023, pp. 104617.
Elsevier DOI
2301
Human object interaction, Scene understanding, Deep learning
BibRef
Xu, Z.J.[Zhi-Jing],
Huang, J.J.[Jia-Jing],
Huang, K.[Kan],
A novel computer vision-based approach for monitoring safety
harness use in construction,
IET-IPR(17), No. 4, 2023, pp. 1071-1085.
DOI Link
2303
computer vision, construction industry, object detection
BibRef
Cheng, Y.M.[Ya-Min],
Wang, Z.[Zhi],
Zhan, W.H.[Wen-Han],
Duan, H.C.[Han-Cong],
Multi-Scale Human-Object Interaction Detector,
CirSysVideo(33), No. 4, April 2023, pp. 1827-1838.
IEEE DOI
2304
Transformers, Detectors, Computer architecture, Task analysis,
Decoding, Iterative decoding, Feature extraction,
multi-scale
BibRef
Sudhakaran, S.[Swathikiran],
Escalera, S.[Sergio],
Lanz, O.[Oswald],
Learning to Recognize Actions on Objects in Egocentric Video With
Attention Dictionaries,
PAMI(45), No. 6, June 2023, pp. 6674-6687.
IEEE DOI
2305
Feature extraction, Cameras, Visualization, Task analysis,
Optical imaging, Logic gates, Encoding, Egocentric vision,
video classification
BibRef
Zeng, Z.T.[Zhi-Tao],
Dai, P.W.[Peng-Wen],
Zhang, X.[Xuan],
Zhang, L.[Lei],
Cao, X.C.[Xiao-Chun],
Cognition Guided Human-Object Relationship Detection,
IP(32), 2023, pp. 2468-2480.
IEEE DOI
2305
Feature extraction, Videos, Head, Solid modeling, Brain modeling,
Visualization, Human-object relationship, head pose, body pose,
eye-head-body movements
BibRef
Ye, Q.[Qing],
Wang, X.[Xikun],
Li, R.[Rui],
Zhang, Y.[Yongmei],
Human object interaction detection based on feature optimization and
key human-object enhancement,
JVCIR(93), 2023, pp. 103824.
Elsevier DOI
2305
Human object interaction detection, FOFR-CNN,
Key human-object enhancement, Graph convolutional network
BibRef
Ni, Z.F.[Zhi-Fan],
Valls-Mascaró, E.[Esteve],
Ahn, H.[Hyemin],
Lee, D.[Dongheui],
Human-object interaction prediction in videos through gaze following,
CVIU(233), 2023, pp. 103741.
Elsevier DOI
2307
Human-object interaction prediction,
Semantic scene understanding, Spatial-temporal transformer
BibRef
Aboukhadra, A.T.[Ahmed Tawfik],
Malik, J.[Jameel],
Elhayek, A.[Ahmed],
Robertini, N.[Nadia],
Stricker, D.[Didier],
THOR-Net: End-to-end Graformer-based Realistic Two Hands and Object
Reconstruction with Self-supervision,
WACV23(1001-1010)
IEEE DOI
2302
2 hands interacting.
Water, Heating systems, Shape, Network topology, Pose estimation,
Feature extraction, Algorithms: Biometrics, face, gesture, body pose
BibRef
Agarwal, A.[Apoorva],
Dabral, R.[Rishabh],
Jain, A.[Arjun],
Ramakrishnan, G.[Ganesh],
Skew-Robust Human-Object Interactions in Videos,
WACV23(5087-5096)
IEEE DOI
2302
Visualization, Protocols, Pipelines, Image representation, Solids,
Videos,
visual reasoning
BibRef
Yu, Z.C.[Ze-Cheng],
Huang, Y.F.[Yi-Fei],
Furuta, R.[Ryosuke],
Yagi, T.[Takuma],
Goutsu, Y.[Yusuke],
Sato, Y.[Yoichi],
Fine-grained Affordance Annotation for Egocentric Hand-Object
Interaction Videos,
WACV23(2154-2162)
IEEE DOI
2302
Annotations, Affordances, Manuals, Predictive models, Task analysis, Videos
BibRef
Wang, R.[Rong],
Mao, W.[Wei],
Li, H.D.[Hong-Dong],
Interacting Hand-Object Pose Estimation via Dense Mutual Attention,
WACV23(5724-5734)
IEEE DOI
2302
Correlation, Codes, Computational modeling, Pose estimation,
Benchmark testing, Real-time systems, Algorithms: Biometrics, face,
Virtual/augmented reality
BibRef
Huang, Z.T.[Zi-Ting],
Zhen, Q.[Qing],
Guo, C.[Cong],
Shi, X.F.[Xiang-Feng],
Zhang, Y.J.[Yu-Jie],
Zhao, X.B.[Xin-Bo],
Object Detection of Tobacco-Related Information Based on Visual
Features,
ICIVC22(135-144)
IEEE DOI
2301
Are people smoking?
Visualization, Image recognition, Text recognition,
Target recognition, Software algorithms, Object detection,
tobacco-related case
BibRef
Gutzeit, L.[Lisa],
Hierarchical Segmentation of Human Manipulation Movements,
ICPR22(2742-2748)
IEEE DOI
2212
Training, Tracking, Motion segmentation, Training data,
Inference algorithms, Classification algorithms
BibRef
Guermal, M.[Mohammed],
Dai, R.[Rui],
Brémond, F.[François],
THORN: Temporal Human-Object Relation Network for Action Recognition,
ICPR22(3303-3309)
IEEE DOI
2212
Visualization, Solid modeling,
Computational modeling, Object detection, Predictive models, Robustness
BibRef
Yang, B.X.[Bai-Xiang],
Gao, W.[Wei],
Li, G.[Ge],
Focus and Adjust: Progressive Refinement Network for Human Object
Interaction Detection,
ICPR22(2546-2552)
IEEE DOI
2212
Location awareness, Visualization, Semantics, Detectors,
Predictive models, Benchmark testing, Transformers
BibRef
Almushyti, M.[Muna],
Li, F.W.B.[Frederick W. B.],
STIT: Spatio-Temporal Interaction Transformers for Human-Object
Interaction Recognition in Videos,
ICPR22(3287-3294)
IEEE DOI
2212
Deep learning, Transformers, Videos, Context modeling
BibRef
Wang, G.Z.[Guang-Zhi],
Guo, Y.Y.[Yang-Yang],
Wong, Y.K.[Yong-Kang],
Kankanhalli, M.[Mohan],
Chairs Can Be Stood On: Overcoming Object Bias in Human-Object
Interaction Detection,
ECCV22(XXIV:654-672).
Springer DOI
2211
BibRef
Xie, X.H.[Xiang-Hui],
Bhatnagar, B.L.[Bharat Lal],
Pons-Moll, G.[Gerard],
CHORE: Contact, Human and Object Reconstruction from a Single RGB Image,
ECCV22(II:125-145).
Springer DOI
2211
BibRef
Zhao, K.F.[Kai-Feng],
Wang, S.F.[Shao-Fei],
Zhang, Y.[Yan],
Beeler, T.[Thabo],
Tang, S.[Siyu],
Compositional Human-Scene Interaction Synthesis with Semantic Control,
ECCV22(VI:311-327).
Springer DOI
2211
BibRef
Zhou, K.[Keyang],
Bhatnagar, B.L.[Bharat Lal],
Lenssen, J.E.[Jan Eric],
Pons-Moll, G.[Gerard],
TOCH: Spatio-Temporal Object-to-Hand Correspondence for Motion
Refinement,
ECCV22(III:1-19).
Springer DOI
2211
BibRef
Walsman, A.[Aaron],
Zhang, M.[Muru],
Kotar, K.[Klemen],
Desingh, K.[Karthik],
Farhadi, A.[Ali],
Fox, D.[Dieter],
Break and Make: Interactive Structural Understanding Using LEGO Bricks,
ECCV22(XXVIII:90-107).
Springer DOI
2211
BibRef
Guo, Q.P.[Qing-Pei],
Yao, K.S.[Kai-Sheng],
Chu, W.[Wei],
Switch-BERT: Learning to Model Multimodal Interactions by Switching
Attention and Input,
ECCV22(XXXVI:330-346).
Springer DOI
2211
BibRef
Wang, Y.F.[Yi-Fan],
Wu, R.[Ruihai],
Mo, K.[Kaichun],
Ke, J.Q.[Jia-Qi],
Fan, Q.[Qingnan],
Guibas, L.J.[Leonidas J.],
Dong, H.[Hao],
AdaAfford: Learning to Adapt Manipulation Affordance for 3D Articulated
Objects via Few-Shot Interactions,
ECCV22(XXIX:90-107).
Springer DOI
2211
BibRef
Wang, Y.[Yuan],
Sun, R.[Rui],
Zhang, Z.[Zhe],
Zhang, T.Z.[Tian-Zhu],
Adaptive Agent Transformer for Few-Shot Segmentation,
ECCV22(XXIX:36-52).
Springer DOI
2211
BibRef
Wu, X.Q.[Xiao-Qian],
Li, Y.L.[Yong-Lu],
Liu, X.P.[Xin-Peng],
Zhang, J.[Junyi],
Wu, Y.Z.[Yu-Zhe],
Lu, C.[Cewu],
Mining Cross-Person Cues for Body-Part Interactiveness Learning in HOI
Detection,
ECCV22(IV:121-136).
Springer DOI
2211
Human-Object Interaction.
BibRef
Zhong, X.[Xubin],
Ding, C.X.[Chang-Xing],
Li, Z.J.[Zi-Jian],
Huang, S.L.[Shao-Li],
Towards Hard-Positive Query Mining for DETR-Based Human-Object
Interaction Detection,
ECCV22(XXVII:444-460).
Springer DOI
2211
BibRef
Zhang, X.H.[Xiao-Han],
Bhatnagar, B.L.[Bharat Lal],
Starke, S.[Sebastian],
Guzov, V.[Vladimir],
Pons-Moll, G.[Gerard],
COUCH: Towards Controllable Human-Chair Interactions,
ECCV22(V:518-535).
Springer DOI
2211
BibRef
Tu, D.Y.[Dan-Yang],
Min, X.K.[Xiong-Kuo],
Duan, H.Y.[Hui-Yu],
Guo, G.D.[Guo-Dong],
Zhai, G.T.[Guang-Tao],
Shen, W.[Wei],
Iwin: Human-Object Interaction Detection via Transformer with Irregular
Windows,
ECCV22(IV:87-103).
Springer DOI
2211
BibRef
Qiao, T.[Tanqiu],
Men, Q.H.[Qian-Hui],
Li, F.W.B.[Frederick W. B.],
Kubotani, Y.[Yoshiki],
Morishima, S.[Shigeo],
Shum, H.P.H.[Hubert P. H.],
Geometric Features Informed Multi-person Human-Object Interaction
Recognition in Videos,
ECCV22(IV:474-491).
Springer DOI
2211
BibRef
Soucek, T.[Tomáš],
Alayrac, J.B.[Jean-Baptiste],
Miech, A.[Antoine],
Laptev, I.[Ivan],
Sivic, J.[Josef],
Look for the Change: Learning Object States and State-Modifying
Actions from Untrimmed Web Videos,
CVPR22(13936-13946)
IEEE DOI
2210
Training, Adaptation models, Training data, Footwear,
Information filters, Pattern recognition, Internet,
Self- semi- meta- unsupervised learning
BibRef
Huang, C.H.P.[Chun-Hao P.],
Yi, H.W.[Hong-Wei],
Höschle, M.[Markus],
Safroshkin, M.[Matvey],
Alexiadis, T.[Tsvetelina],
Polikovsky, S.[Senya],
Scharstein, D.[Daniel],
Black, M.J.[Michael J.],
Capturing and Inferring Dense Full-Body Human-Scene Contact,
CVPR22(13264-13275)
IEEE DOI
2210
Image resolution, Codes, Shape, Video sequences, Pose estimation,
Transformers, Pose estimation and tracking, Datasets and evaluation
BibRef
Iftekhar, A.S.M.,
Chen, H.[Hao],
Kundu, K.[Kaustav],
Li, X.Y.[Xin-Yu],
Tighe, J.[Joseph],
Modolo, D.[Davide],
What to look at and where: Semantic and Spatial Refined Transformer
for detecting human-object interactions,
CVPR22(5343-5353)
IEEE DOI
2210
Image analysis, Semantics, Benchmark testing, Transformers,
Feature extraction, Pattern recognition, Recognition: detection,
Scene analysis and understanding
BibRef
Jiang, Z.Y.[Zhen-Yu],
Hsu, C.C.[Cheng-Chun],
Zhu, Y.[Yuke],
Ditto: Building Digital Twins of Articulated Objects from Interaction,
CVPR22(5606-5616)
IEEE DOI
2210
Geometry, Visualization, Solid modeling, Buildings, Estimation,
Virtual environments, 3D from multi-view and sensors,
Representation learning
BibRef
Jiang, Y.H.[Yu-Heng],
Jiang, S.[Suyi],
Sun, G.X.[Guo-Xing],
Su, Z.[Zhuo],
Guo, K.[Kaiwen],
Wu, M.[Minye],
Yu, J.Y.[Jing-Yi],
Xu, L.[Lan],
NeuralHOFusion: Neural Volumetric Rendering under Human-object
Interactions,
CVPR22(6145-6155)
IEEE DOI
2210
Geometry, Telepresence, Face recognition, Pose estimation, Pipelines,
3D from multi-view and sensors, Face and gestures,
RGBD sensors and analytics
BibRef
Bhatnagar, B.L.[Bharat Lal],
Xie, X.H.[Xiang-Hui],
Petrov, I.A.[Ilya A.],
Sminchisescu, C.[Cristian],
Theobalt, C.[Christian],
Pons-Moll, G.[Gerard],
BEHAVE: Dataset and Method for Tracking Human Object Interactions,
CVPR22(15914-15925)
IEEE DOI
2210
Solid modeling, Codes, Pose estimation, Neural networks,
Mixed reality, Predictive models, 3D from multi-view and sensors,
Vision+graphics
BibRef
Jiang, H.Z.[Huai-Zu],
Ma, X.J.[Xiao-Jian],
Nie, W.[Weili],
Yu, Z.D.[Zhi-Ding],
Zhu, Y.[Yuke],
Anandkumar, A.[Anima],
Bongard-HOI: Benchmarking Few-Shot Visual Reasoning for Human-Object
Interactions,
CVPR22(19034-19043)
IEEE DOI
2210
Training, Representation learning, Learning systems, Visualization,
Image recognition, Benchmark testing, Predictive models,
retrieval
BibRef
Dong, L.Z.[Lei-Zhen],
Li, Z.M.[Zhi-Min],
Xu, K.L.[Kun-Lun],
Zhang, Z.J.[Zhi-Jun],
Yan, L.X.[Lu-Xin],
Zhong, S.[Sheng],
Zou, X.[Xu],
Category-Aware Transformer Network for Better Human-Object
Interaction Detection,
CVPR22(19516-19525)
IEEE DOI
2210
Head, Image recognition, Semantics, Object detection, Detectors,
Performance gain, Scene analysis and understanding, retrieval
BibRef
Saha, A.[Avishkar],
Mendez, O.[Oscar],
Russell, C.[Chris],
Bowden, R.[Richard],
'The Pedestrian next to the Lamppost' Adaptive Object Graphs for
Better Instantaneous Mapping,
CVPR22(19506-19515)
IEEE DOI
2210
Location awareness, Image segmentation, Navigation, Convolution,
Image edge detection, Message passing,
3D from single images
BibRef
Zhang, Y.[Yong],
Pan, Y.W.[Ying-Wei],
Yao, T.[Ting],
Huang, R.[Rui],
Mei, T.[Tao],
Chen, C.W.[Chang-Wen],
Exploring Structure-aware Transformer over Interaction Proposals for
Human-Object Interaction Detection,
CVPR22(19526-19535)
IEEE DOI
2210
Image analysis, Codes, Semantics, Detectors, Benchmark testing,
Transformers, Scene analysis and understanding
BibRef
Qu, X.[Xian],
Ding, C.X.[Chang-Xing],
Li, X.[Xingao],
Zhong, X.[Xubin],
Tao, D.C.[Da-Cheng],
Distillation Using Oracle Queries for Transformer-based Human-Object
Interaction Detection,
CVPR22(19536-19545)
IEEE DOI
2210
Training, Representation learning, Knowledge engineering,
Image analysis, Codes, Computational modeling, Scene analysis and understanding
BibRef
Zhou, D.[Desen],
Liu, Z.C.[Zhi-Chao],
Wang, J.[Jian],
Wang, L.[Leshan],
Hu, T.[Tao],
Ding, E.[Errui],
Wang, J.D.[Jing-Dong],
Human-Object Interaction Detection via Disentangled Transformer,
CVPR22(19546-19555)
IEEE DOI
2210
Location awareness, Visualization, Codes, Benchmark testing,
Transformers, Decoding, Scene analysis and understanding,
grouping and shape analysis
BibRef
Zhang, F.Z.[Frederic Z.],
Campbell, D.[Dylan],
Gould, S.[Stephen],
Efficient Two-Stage Detection of Human-Object Interactions with a
Novel Unary-Pairwise Transformer,
CVPR22(20072-20080)
IEEE DOI
2210
Visualization, Memory management, Graphics processing units,
Detectors, Transformers, Real-time systems, Pattern recognition, retrieval
BibRef
Liu, X.P.[Xin-Peng],
Li, Y.L.[Yong-Lu],
Wu, X.Q.[Xiao-Qian],
Tai, Y.W.[Yu-Wing],
Lu, C.[Cewu],
Tang, C.K.[Chi-Keung],
Interactiveness Field in Human-Object Interactions,
CVPR22(20081-20090)
IEEE DOI
2210
Codes, Benchmark testing, Pattern recognition,
Action and event recognition, Recognition: detection,
Scene analysis and understanding
BibRef
Liu, Y.Z.[Yun-Ze],
Liu, Y.[Yun],
Jiang, C.[Che],
Lyu, K.[Kangbo],
Wan, W.[Weikang],
Shen, H.[Hao],
Liang, B.Q.[Bo-Qiang],
Fu, Z.[Zhoujie],
Wang, H.[He],
Yi, L.[Li],
HOI4D: A 4D Egocentric Dataset for Category-Level Human-Object
Interaction,
CVPR22(20981-20990)
IEEE DOI
2210
Point cloud compression, Visualization, Target tracking,
Annotations, Shape, Datasets and evaluation,
grouping and shape analysis
BibRef
Liao, Y.[Yue],
Zhang, A.[Aixi],
Lu, M.[Miao],
Wang, Y.L.[Yong-Liang],
Li, X.B.[Xiao-Bo],
Liu, S.[Si],
GEN-VLKT: Simplify Association and Enhance Interaction Understanding
for HOI Detection,
CVPR22(20091-20100)
IEEE DOI
2210
Training, Visualization, Pipelines, Detectors, Feature extraction,
Decoding, Action and event recognition, Behavior analysis, Vision+language
BibRef
Ou, Y.J.[Yang-Jun],
Mi, L.[Li],
Chen, Z.Z.[Zhen-Zhong],
Object-Relation Reasoning Graph for Action Recognition,
CVPR22(20101-20110)
IEEE DOI
2210
Couplings, Visualization, Message passing, Semantics, Cognition,
Pattern recognition, Action and event recognition, Visual reasoning
BibRef
Yang, L.X.[Li-Xin],
Li, K.[Kailin],
Zhan, X.Y.[Xin-Yu],
Wu, F.[Fei],
Xu, A.[Anran],
Liu, L.[Liu],
Lu, C.[Cewu],
OakInk: A Large-scale Knowledge Repository for Understanding
Hand-Object Interaction,
CVPR22(20921-20930)
IEEE DOI
2210
Visualization, Affordances, Knowledge based systems,
Pose estimation, Ink, Benchmark testing, Handover,
Pose estimation and tracking
BibRef
Hampali, S.[Shreyas],
Sarkar, S.D.[Sayan Deb],
Rad, M.[Mahdi],
Lepetit, V.[Vincent],
Keypoint Transformer: Solving Joint Identification in Challenging
Hands and Object Interactions for Accurate 3D Pose Estimation,
CVPR22(11080-11090)
IEEE DOI
2210
Heating systems, Pose estimation, Detectors,
Transformers, Pattern recognition, Pose estimation and tracking,
Deep learning architectures and techniques
BibRef
Goyal, M.[Mohit],
Modi, S.[Sahil],
Goyal, R.[Rishabh],
Gupta, S.[Saurabh],
Human Hands as Probes for Interactive Object Understanding,
CVPR22(3283-3293)
IEEE DOI
2210
Affordances, Pattern recognition, Probes, Unsupervised learning,
Videos, Video analysis and understanding,
Self- semi- meta- unsupervised learning
BibRef
Ye, Y.F.[Yu-Fei],
Gupta, A.[Abhinav],
Tulsiani, S.[Shubham],
What's in your hands? 3D Reconstruction of Generic Objects in Hands,
CVPR22(3885-3895)
IEEE DOI
2210
Training, Visualization, Shape, Pose estimation,
Rendering (computer graphics), Robustness, 3D from single images
BibRef
Bhango, Z.[Zibusiso],
van der Haar, D.[Dustin],
A Comparison of Deep Learning Methods for Inebriation Recognition in
Humans,
CIAP22(I:610-620).
Springer DOI
2205
BibRef
Leonardi, R.[Rosario],
Ragusa, F.[Francesco],
Furnari, A.[Antonino],
Farinella, G.M.[Giovanni Maria],
Egocentric Human-Object Interaction Detection Exploiting Synthetic Data,
CIAP22(II:237-248).
Springer DOI
2205
BibRef
Ji, J.W.[Jing-Wei],
Desai, R.[Rishi],
Niebles, J.C.[Juan Carlos],
Detecting Human-Object Relationships in Videos,
ICCV21(8086-8096)
IEEE DOI
2203
Visualization, Genomics, Predictive models, Transformers,
Feature extraction, Cognition, Video analysis and understanding,
Scene analysis and understanding
BibRef
He, T.[Tao],
Gao, L.[Lianli],
Song, J.[Jingkuan],
Li, Y.F.[Yuan-Fang],
Exploiting Scene Graphs for Human-Object Interaction Detection,
ICCV21(15964-15973)
IEEE DOI
2203
Visualization, Message passing, Computational modeling, Semantics,
Layout, Benchmark testing, Action and behavior recognition,
Scene analysis and understanding
BibRef
Dabral, R.[Rishabh],
Shimada, S.[Soshi],
Jain, A.[Arjun],
Theobalt, C.[Christian],
Golyanik, V.[Vladislav],
Gravity-Aware Monocular 3D Human-Object Reconstruction,
ICCV21(12345-12354)
IEEE DOI
2203
Meters, Measurement, Estimation, Kinematics, Bones, Linear programming,
3D from a single image and shape-from-x,
Motion and tracking
BibRef
Zhang, F.Z.[Frederic Z.],
Campbell, D.[Dylan],
Gould, S.[Stephen],
Spatially Conditioned Graphs for Detecting Human-Object Interactions,
ICCV21(13299-13307)
IEEE DOI
2203
Computational modeling, Detectors, Feature extraction,
Graph neural networks, Action and behavior recognition,
Recognition and classification
BibRef
Li, S.[Shuang],
Du, Y.L.[Yi-Lun],
Torralba, A.B.[Antonio B.],
Sivic, J.[Josef],
Russell, B.[Bryan],
Weakly Supervised Human-Object Interaction Detection in Video via
Contrastive Spatiotemporal Regions,
ICCV21(1825-1835)
IEEE DOI
2203
Training, Vocabulary, Visualization, Annotations, Surveillance,
Supervised learning, Search problems,
Vision+language, Video analysis and understanding
BibRef
Cao, Z.[Zhe],
Radosavovic, I.[Ilija],
Kanazawa, A.[Angjoo],
Malik, J.[Jitendra],
Reconstructing Hand-Object Interactions in the Wild,
ICCV21(12397-12406)
IEEE DOI
2203
Solid modeling, Image reconstruction,
3D from a single image and shape-from-x,
BibRef
Yang, L.X.[Li-Xin],
Zhan, X.Y.[Xin-Yu],
Li, K.[Kailin],
Xu, W.Q.[Wen-Qiang],
Li, J.F.[Jie-Feng],
Lu, C.[Cewu],
CPF: Learning a Contact Potential Field to Model the Hand-Object
Interaction,
ICCV21(11077-11086)
IEEE DOI
2203
Measurement, Deep learning, Codes, Pose estimation,
Benchmark testing, Gestures and body pose,
3D from a single image and shape-from-x
BibRef
Xu, B.[Bo],
Huang, H.[Han],
Lu, C.[Cheng],
Li, Z.W.[Zi-Wen],
Guo, Y.D.[Yan-Dong],
Virtual Multi-Modality Self-Supervised Foreground Matting for
Human-Object Interaction,
ICCV21(428-437)
IEEE DOI
2203
Training, Heating systems, Image segmentation,
Computer network reliability, Computational modeling,
Vision applications and systems
BibRef
Kwon, T.[Taein],
Tekin, B.[Bugra],
Stühmer, J.[Jan],
Bogo, F.[Federica],
Pollefeys, M.[Marc],
H2O: Two Hands Manipulating Objects for First Person Interaction
Recognition,
ICCV21(10118-10128)
IEEE DOI
2203
Water, Point cloud compression, Solid modeling, Annotations,
Pose estimation, Predictive models, Datasets and evaluation,
Gestures and body pose
BibRef
Moro, M.[Matteo],
Casadio, M.[Maura],
Mrotek, L.A.[Leigh Ann],
Ranganathan, R.[Rajiv],
Scheidt, R.[Robert],
Odone, F.[Francesca],
On the Precision of Markerless 3d Semantic Features: An Experimental
Study on Violin Playing,
ICIP21(2733-2737)
IEEE DOI
2201
Motor drives, Tracking, Filtering, Feature detection, Pipelines,
Semantics, Marker-less, 3D Reconstruction, Human Motion Analysis,
Semantic Features Detection
BibRef
Nanyang, J.D.[Jiafei Duan],
Jian, S.Y.B.[Samson Yu Bai],
Tan, C.[Cheston],
SPACE: A Simulator for Physical Interactions and Causal Learning in
3D Environments,
SEAR21(2058-2063)
IEEE DOI
2112
Deep learning, Solid modeling, Stability analysis
BibRef
Yang, W.H.[Wen-Hao],
Song, Y.[Yinan],
Zhao, Z.C.[Zhi-Cheng],
Su, F.[Fei],
Instance Search via Fusing Hierarchical Multi-level Retrieval and
Human-object Interaction Detection,
ViRaL21(2323-2327)
IEEE DOI
2112
Face recognition, Feature extraction
BibRef
Chen, M.F.[Ming-Fei],
Liao, Y.[Yue],
Liu, S.[Si],
Chen, Z.Y.[Zhi-Yuan],
Wang, F.[Fei],
Qian, C.[Chen],
Reformulating HOI Detection as Adaptive Set Prediction,
CVPR21(9000-9009)
IEEE DOI
2111
Human-Object Interaction.
Training, Codes, Aggregates, Detectors, Feature extraction, Transformers
BibRef
Min, C.H.[Cheol-Hui],
Bae, J.[Jinseok],
Lee, J.[Junho],
Kim, Y.M.[Young Min],
GATSBI: Generative Agent-centric Spatio-temporal Object Interaction,
CVPR21(3073-3082)
IEEE DOI
2111
Visualization, Computational modeling, Transforms,
Reinforcement learning, Predictive models, Trajectory, Spatiotemporal phenomena
BibRef
Deng, S.H.[Sheng-Heng],
Xu, X.[Xun],
Wu, C.Z.[Chao-Zheng],
Chen, K.[Ke],
Jia, K.[Kui],
3D AffordanceNet:
A Benchmark for Visual Object Affordance Understanding,
CVPR21(1778-1787)
IEEE DOI
2111
Ingeract with limited location. Deep learning, Visualization, Shape,
Affordances, Semantics, Estimation
BibRef
Chao, Y.W.[Yu-Wei],
Yang, W.[Wei],
Xiang, Y.[Yu],
Molchanov, P.[Pavlo],
Handa, A.[Ankur],
Tremblay, J.[Jonathan],
Narang, Y.S.[Yashraj S.],
van Wyk, K.[Karl],
Iqbal, U.[Umar],
Birchfield, S.[Stan],
Kautz, J.[Jan],
Fox, D.[Dieter],
DexYCB: A Benchmark for Capturing Hand Grasping of Objects,
CVPR21(9040-9049)
IEEE DOI
2111
Pose estimation, Grasping, Benchmark testing, Handover, Drives
BibRef
Ehsani, K.[Kiana],
Han, W.[Winson],
Herrasti, A.[Alvaro],
VanderBilt, E.[Eli],
Weihs, L.[Luca],
Kolve, E.[Eric],
Kembhavi, A.[Aniruddha],
Mottaghi, R.[Roozbeh],
ManipulaTHOR: A Framework for Visual Object Manipulation,
CVPR21(4495-4504)
IEEE DOI
2111
Visualization, Navigation,
Mobile agents, Grasping, Manipulators, Planning
BibRef
Morais, R.[Romero],
Le, V.[Vuong],
Venkatesh, S.[Svetha],
Tran, T.[Truyen],
Learning Asynchronous and Sparse Human-Object Interaction in Videos,
CVPR21(16036-16045)
IEEE DOI
2111
Analytical models, Adaptation models,
Computational modeling, Affordances, Time series analysis, Pattern recognition
BibRef
Hou, Z.[Zhi],
Yu, B.S.[Bao-Sheng],
Tao, D.C.[Da-Cheng],
Discovering Human-Object Interaction Concepts via Self-Compositional
Learning,
ECCV22(XXVII:461-478).
Springer DOI
2211
BibRef
Hou, Z.[Zhi],
Yu, B.S.[Bao-Sheng],
Qiao, Y.[Yu],
Peng, X.J.[Xiao-Jiang],
Tao, D.C.[Da-Cheng],
Detecting Human-Object Interaction via Fabricated Compositional
Learning,
CVPR21(14641-14650)
IEEE DOI
2111
Codes, Benchmark testing, Pattern recognition, Task analysis
BibRef
Zhong, X.[Xubin],
Qu, X.[Xian],
Ding, C.X.[Chang-Xing],
Tao, D.C.[Da-Cheng],
Glance and Gaze: Inferring Action-aware Points for One-Stage
Human-Object Interaction Detection,
CVPR21(13229-13238)
IEEE DOI
2111
Adaptation models, Visualization, Codes, Color,
Predictive models, Feature extraction
BibRef
Bodla, N.[Navaneeth],
Shrivastava, G.[Gaurav],
Chellappa, R.[Rama],
Shrivastava, A.[Abhinav],
Hierarchical Video Prediction using Relational Layouts for
Human-Object Interactions,
CVPR21(12141-12150)
IEEE DOI
2111
Measurement, Recurrent neural networks,
Computational modeling, Layout, Predictive models, Cognition
BibRef
Tamura, M.[Masato],
Ohashi, H.[Hiroki],
Yoshinaga, T.[Tomoaki],
QPIC: Query-Based Pairwise Human-Object Interaction Detection with
Image-Wide Contextual Information,
CVPR21(10405-10414)
IEEE DOI
2111
Graphical models, Codes, Aggregates, Detectors,
Feature extraction, Transformers
BibRef
Kim, B.[Bumsoo],
Mun, J.[Jonghwan],
On, K.W.[Kyoung-Woon],
Shin, M.[Minchul],
Lee, J.[Junhyun],
Kim, E.S.[Eun-Sol],
MSTR: Multi-Scale Transformer for End-to-End Human-Object Interaction
Detection,
CVPR22(19556-19565)
IEEE DOI
2210
Training, Image resolution, Semantics, Detectors,
Benchmark testing, Transformers,
Scene analysis and understanding
BibRef
Kim, B.[Bumsoo],
Lee, J.[Junhyun],
Kang, J.[Jaewoo],
Kim, E.S.[Eun-Sol],
Kim, H.W.J.[Hyun-Woo J.],
HOTR: End-to-End Human-Object Interaction Detection with Transformers,
CVPR21(74-83)
IEEE DOI
2111
Training, Semantics, Detectors, Benchmark testing, Predictive models,
Transformers, Prediction algorithms
BibRef
Park, J.[Jihwan],
Lee, S.[SeungJun],
Heo, H.[Hwan],
Choi, H.K.[Hyeong Kyu],
Kim, H.W.J.[Hyun-Woo J.],
Consistency Learning via Decoding Path Augmentation for Transformers
in Human Object Interaction Detection,
CVPR22(1009-1018)
IEEE DOI
2210
Visualization, Codes, Computational modeling,
Object detection, Transformers, retrieval,
Recognition: detection
BibRef
Haidu, A.[Andrei],
Zhang, X.Y.[Xiao-Yue],
Beetz, M.[Michael],
Knowledge-Enabled Generation of Semantically Annotated Image Sequences
of Manipulation Activities from VR Demonstrations,
CVS21(130-143).
Springer DOI
2109
BibRef
Manousaki, V.[Victoria],
Papoutsakis, K.[Konstantinos],
Argyros, A.[Antonis],
Action Prediction During Human-Object Interaction Based on DTW and
Early Fusion of Human and Object Representations,
CVS21(169-179).
Springer DOI
2109
BibRef
Dabral, R.[Rishabh],
Sarkar, S.[Srijon],
Reddy, S.P.[Sai Praneeth],
Ramakrishnan, G.[Ganesh],
Exploration of Spatial and Temporal Modeling Alternatives for HOI,
WACV21(2280-2289)
IEEE DOI
2106
Human-Object Interaction.
Visualization, Pipelines, Benchmark testing, Feature extraction
BibRef
Kumaraswamy, S.K.[Suresh Kirthi],
Shi, M.J.[Miao-Jing],
Kijak, E.[Ewa],
Detecting Human-Object Interaction with Mixed Supervision,
WACV21(1227-1236)
IEEE DOI
2106
Training, Learning systems, Annotations, Pipelines, Robustness
BibRef
Ragusa, F.[Francesco],
Furnari, A.[Antonino],
Livatino, S.[Salvatore],
Farinella, G.M.[Giovanni Maria],
The MECCANO Dataset: Understanding Human-Object Interactions from
Egocentric Videos in an Industrial-like Domain,
WACV21(1568-1577)
IEEE DOI
WWW Link.
2106
Dataset, Interactions. Taxonomy, Motorcycles,
Object detection, Tools, Object recognition
BibRef
Amrani, H.[Hamza],
Micucci, D.[Daniela],
Napoletano, P.[Paolo],
Personalized Models in Human Activity Recognition using Deep Learning,
ICPR21(9682-9688)
IEEE DOI
2105
Deep learning, Performance evaluation, Adaptation models,
Neural networks, Transfer learning, Software algorithms, Activity recognition
BibRef
Chen, G.Y.[Guan-Yu],
Chen, C.[Chong],
Zhao, Z.C.[Zhi-Cheng],
Su, F.[Fei],
Human-Centric Parsing Network for Human-Object Interaction Detection,
ICPR21(5488-5494)
IEEE DOI
2105
Knowledge engineering, Image edge detection, Message passing,
Semantics, Redundancy, Feature extraction, Pattern recognition
BibRef
Agarwal, A.[Aditya],
Sen, B.[Bipasha],
An Approach Towards Action Recognition Using Part Based Hierarchical
Fusion,
ISVC20(I:306-318).
Springer DOI
2103
BibRef
Beleza, S.R.A.[Suzana R. A.],
Fukui, K.[Kazuhiro],
Slow Feature Subspace for Action Recognition,
FBE20(702-716).
Springer DOI
2103
See also Applying slow feature analysis to image sequences yields a rich repertoire of complex cell properties.
BibRef
Zhang, S.,
Zhang, Y.,
Ma, Q.,
Black, M.J.,
Tang, S.,
PLACE: Proximity Learning of Articulation and Contact in 3D
Environments,
3DV20(642-651)
IEEE DOI
2102
Solid modeling,
Biological system modeling, Encoding, Semantics, Affordances
BibRef
Kim, B.[Bumsoo],
Choi, T.[Taeho],
Kang, J.[Jaewoo],
Kim, H.W.J.[Hyun-Woo J.],
Uniondet: Union-level Detector Towards Real-time Human-object
Interaction Detection,
ECCV20(XV:498-514).
Springer DOI
2011
BibRef
Hou, Z.[Zhi],
Yu, B.[Baosheng],
Qiao, Y.[Yu],
Peng, X.J.[Xiao-Jiang],
Tao, D.C.[Da-Cheng],
Affordance Transfer Learning for Human-Object Interaction Detection,
CVPR21(495-504)
IEEE DOI
2111
Codes, Affordances, Computational modeling,
Transfer learning, Cognition, Pattern recognition
BibRef
Hou, Z.[Zhi],
Peng, X.J.[Xiao-Jiang],
Qiao, Y.[Yu],
Tao, D.C.[Da-Cheng],
Visual Compositional Learning for Human-object Interaction Detection,
ECCV20(XV:584-600).
Springer DOI
2011
BibRef
Wang, H.[Hai],
Zheng, W.S.[Wei-Shi],
Yingbiao, L.[Ling],
Contextual Heterogeneous Graph Network for Human-object Interaction
Detection,
ECCV20(XVII:248-264).
Springer DOI
2011
BibRef
Basit, A.,
Munir, M.A.,
Ali, M.,
Werghi, N.,
Mahmood, A.,
Localizing Firearm Carriers By Identifying Human-Object Pairs,
ICIP20(2031-2035)
IEEE DOI
2011
Adaptation models, Proposals, Task analysis, Detectors,
Pose estimation, Classification algorithms, Object detection,
Gun violence
BibRef
Hussain, S.M.[S. Muzamil],
Liu, L.[Liu],
Xu, W.Q.[Wen-Qiang],
Lu, C.[Cewu],
FPHA-Afford: A Domain-Specific Benchmark Dataset for Occluded Object
Affordance Estimation in Human-Object-Robot Interaction,
ICIP20(1416-1420)
IEEE DOI
2011
Estimation, Videos, Robots, Semantics, Task analysis, Machine learning,
Feature extraction, Human-Object-Robot Interaction,
FPHA-Afford
BibRef
Liu, Y.[Yang],
Chen, Q.C.[Qing-Chao],
Zisserman, A.[Andrew],
Amplifying Key Cues for Human-object-interaction Detection,
ECCV20(XIV:248-265).
Springer DOI
2011
BibRef
Liu, M.[Miao],
Tang, S.[Siyu],
Li, Y.[Yin],
Rehg, J.M.[James M.],
Forecasting Human-object Interaction: Joint Prediction of Motor
Attention and Actions in First Person Video,
ECCV20(I:704-721).
Springer DOI
2011
BibRef
Choi, J.[Jinwoo],
Sharma, G.[Gaurav],
Schulter, S.[Samuel],
Huang, J.B.[Jia-Bin],
Shuffle and Attend: Video Domain Adaptation,
ECCV20(XII: 678-695).
Springer DOI
2010
human action recognition.
BibRef
Gao, C.[Chen],
Xu, J.R.[Jia-Rui],
Zou, Y.L.[Yu-Liang],
Huang, J.B.[Jia-Bin],
DRG: Dual Relation Graph for Human-object Interaction Detection,
ECCV20(XII: 696-712).
Springer DOI
2010
BibRef
Zhang, J.Y.[Jason Y.],
Pepose, S.[Sam],
Joo, H.[Hanbyul],
Ramanan, D.[Deva],
Malik, J.[Jitendra],
Kanazawa, A.[Angjoo],
Perceiving 3d Human-object Spatial Arrangements from a Single Image in
the Wild,
ECCV20(XII: 34-51).
Springer DOI
2010
BibRef
Liu, C.C.[Chen-Chen],
Jin, Y.[Yang],
Xu, K.H.[Ke-Han],
Gong, G.Q.[Guo-Qiang],
Mu, Y.D.[Ya-Dong],
Beyond Short-Term Snippet: Video Relation Detection With
Spatio-Temporal Global Context,
CVPR20(10837-10846)
IEEE DOI
2008
Interacting objects.
Proposals, Visualization, Feature extraction, Object detection,
Task analysis, Tracking, Image segmentation
BibRef
Ulutan, O.,
Iftekhar, A.S.M.,
Manjunath, B.S.,
VSGNet: Spatial Attention Network for Detecting Human Object
Interactions Using Graph Convolutions,
CVPR20(13614-13623)
IEEE DOI
2008
Feature extraction, Visualization, Task analysis, Proposals,
Object detection, Image edge detection, Convolutional codes
BibRef
Liao, Y.,
Liu, S.,
Wang, F.,
Chen, Y.,
Qian, C.,
Feng, J.,
PPDM: Parallel Point Detection and Matching for Real-Time
Human-Object Interaction Detection,
CVPR20(479-487)
IEEE DOI
2008
Proposals, Heating systems, Feature extraction, Task analysis,
Object detection, Real-time systems, Visualization
BibRef
Li, Y.,
Liu, X.,
Lu, H.,
Wang, S.,
Liu, J.,
Li, J.,
Lu, C.,
Detailed 2D-3D Joint Representation for Human-Object Interaction,
CVPR20(10163-10172)
IEEE DOI
2008
Shape, Face, Benchmark testing, Robustness, Pose estimation
BibRef
Li, Z.,
Huang, Y.,
Cai, M.,
Sato, Y.,
Manipulation-Skill Assessment from Videos with Spatial Attention
Network,
EPIC19(4385-4395)
IEEE DOI
2004
behavioural sciences computing,
learning (artificial intelligence), medical computing, Video Analysis
BibRef
Zhou, P.,
Chi, M.,
Relation Parsing Neural Network for Human-Object Interaction
Detection,
ICCV19(843-851)
IEEE DOI
2004
graph theory, learning (artificial intelligence), neural nets,
object detection, human-object interaction detection, Visualization
BibRef
Nagarajan, T.,
Feichtenhofer, C.,
Grauman, K.,
Grounded Human-Object Interaction Hotspots From Video,
ICCV19(8687-8696)
IEEE DOI
2004
WWW Link. image segmentation,
learning (artificial intelligence), object detection,
Facebook
BibRef
Wan, B.,
Zhou, D.,
Liu, Y.,
Li, R.,
He, X.,
Pose-Aware Multi-Level Feature Network for Human Object Interaction
Detection,
ICCV19(9468-9477)
IEEE DOI
2004
image representation, object detection,
pose-aware multilevel feature network, Neural networks
BibRef
Gupta, T.,
Schwing, A.,
Hoiem, D.,
No-Frills Human-Object Interaction Detection:
Factorization, Layout Encodings, and Training Techniques,
ICCV19(9676-9684)
IEEE DOI
2004
learning (artificial intelligence), object detection,
human-object interaction detection, layout encodings,
Feature extraction
BibRef
Chen, Y.,
Huang, S.,
Yuan, T.,
Zhu, Y.,
Qi, S.,
Zhu, S.,
Holistic++ Scene Understanding: Single-View 3D Holistic Scene Parsing
and Human Pose Estimation With Human-Object Interaction and Physical
Commonsense,
ICCV19(8647-8656)
IEEE DOI
2004
cameras, graph theory, image reconstruction, inference mechanisms,
Markov processes, Monte Carlo methods, object detection,
Two dimensional displays
BibRef
Xu, B.J.[Bing-Jie],
Wong, Y.K.[Yong-Kang],
Li, J.N.[Jun-Nan],
Zhao, Q.[Qi],
Kankanhalli, M.S.[Mohan S.],
Learning to Detect Human-Object Interactions With Knowledge,
CVPR19(2019-2028).
IEEE DOI
2002
BibRef
Chao, Y.,
Vijayanarasimhan, S.,
Seybold, B.,
Ross, D.A.,
Deng, J.,
Sukthankar, R.,
Rethinking the Faster R-CNN Architecture for Temporal Action
Localization,
CVPR18(1130-1139)
IEEE DOI
1812
Proposals, Object detection, Feature extraction,
Image segmentation, Computer architecture
BibRef
Kawanishi, Y.,
Murase, H.,
Xu, J.,
Tasaka, K.,
Yanagihara, H.,
Which Content in a Booklet is he/she Reading? Reading Content
Estimation using an Indoor Surveillance Camera,
ICPR18(1731-1736)
IEEE DOI
1812
Estimation, Cameras, Feature extraction, Databases, Surveillance,
Focusing, Face
BibRef
Gkioxari, G.,
Girshick, R.,
Dollár, P.,
He, K.,
Detecting and Recognizing Human-Object Interactions,
CVPR18(8359-8367)
IEEE DOI
1812
Feature extraction, Visualization, Object detection,
Predictive models, Task analysis, Target recognition, Image recognition
BibRef
Kato, K.[Keizo],
Li, Y.[Yin],
Gupta, A.[Abhinav],
Compositional Learning for Human Object Interaction,
ECCV18(XIV: 247-264).
Springer DOI
1810
BibRef
Tsoli, A.[Aggeliki],
Argyros, A.A.[Antonis A.],
Joint 3D Tracking of a Deformable Object in Interaction with a Hand,
ECCV18(XIV: 504-520).
Springer DOI
1810
BibRef
Tian, Y.P.[Ya-Peng],
Shi, J.[Jing],
Li, B.[Bochen],
Duan, Z.Y.[Zhi-Yao],
Xu, C.L.[Chen-Liang],
Audio-Visual Event Localization in Unconstrained Videos,
ECCV18(II: 252-268).
Springer DOI
1810
BibRef
Zhao, H.[Hang],
Gan, C.[Chuang],
Rouditchenko, A.[Andrew],
Vondrick, C.[Carl],
McDermott, J.[Josh],
Torralba, A.B.[Antonio B.],
The Sound of Pixels,
ECCV18(I: 587-604).
Springer DOI
1810
BibRef
Gao, R.[Ruohan],
Feris, R.[Rogerio],
Grauman, K.[Kristen],
Learning to Separate Object Sounds by Watching Unlabeled Video,
ECCV18(III: 36-54).
Springer DOI
1810
Results:
WWW Link. Audio-visual interactions.
BibRef
Pandey, R.[Rohit],
Pidlypenskyi, P.[Pavel],
Yang, S.[Shuoran],
Kaeser-Chen, C.[Christine],
Efficient 6-DoF Tracking of Handheld Objects from an Egocentric
Viewpoint,
ECCV18(II: 426-441).
Springer DOI
1810
BibRef
Fang, H.S.[Hao-Shu],
Cao, J.[Jinkun],
Tai, Y.W.[Yu-Wing],
Lu, C.[Cewu],
Pairwise Body-Part Attention for Recognizing Human-Object Interactions,
ECCV18(X: 52-68).
Springer DOI
1810
BibRef
Qi, S.Y.[Si-Yuan],
Wang, W.G.[Wen-Guan],
Jia, B.X.[Bao-Xiong],
Shen, J.B.[Jian-Bing],
Zhu, S.C.[Song-Chun],
Learning Human-Object Interactions by Graph Parsing Neural Networks,
ECCV18(IX: 407-423).
Springer DOI
1810
BibRef
Huang, T.,
McKenna, S.J.[Stephen J.],
Sequential Recognition of Manipulation Actions Using Discriminative
Superpixel Group Mining,
ICIP18(579-583)
IEEE DOI
1809
Color, Histograms, Training, Image segmentation,
Oils, Detectors, Superpixel grouping, Human-object interaction,
Action recognition
BibRef
Shen, L.Y.[Li-Yue],
Yeung, S.[Serena],
Hoffman, J.[Judy],
Mori, G.[Greg],
Fei-Fei, L.[Li],
Scaling Human-Object Interaction Recognition Through Zero-Shot
Learning,
WACV18(1568-1576)
IEEE DOI
1806
learning (artificial intelligence), object recognition,
HICODET dataset, HOI recognition, fully-supervised HOI detection,
Visualization
BibRef
Chao, Y.W.,
Liu, Y.,
Liu, X.,
Zeng, H.,
Deng, J.,
Learning to Detect Human-Object Interactions,
WACV18(381-389)
IEEE DOI
1806
image classification, neural nets,
object detection, object recognition, DNN input, HICO-DET, HO-RCNN,
Semantics
BibRef
Pirk, S.,
Diamanti, O.,
Thibert, B.,
Xu, D.,
Guibas, L.,
Shape-aware spatio-temporal descriptors for interaction
classification,
ICIP17(4527-4531)
IEEE DOI
1803
Layout, Robot sensing systems,
Sensor phenomena and characterization, Shape, scene analysis
BibRef
Alayrac, J.B.,
Sivic, J.[Josef],
Laptev, I.[Ivan],
Lacoste-Julien, S.[Simon],
Joint Discovery of Object States and Manipulation Actions,
ICCV17(2146-2155)
IEEE DOI
1802
image motion analysis, image sequences, manipulators,
pattern clustering, video signal processing, action recognition,
Videos
BibRef
Suchan, J.,
Bhatt, M.,
Commonsense Scene Semantics for Cognitive Robotics:
Towards Grounding Embodied Visuo-Locomotive Interactions,
AutoRob17(742-750)
IEEE DOI
1802
Cognition, Computational modeling, Grounding,
Robot sensing systems, Semantics, Space stations
BibRef
Moltisanti, D.[Davide],
Wray, M.[Michael],
Mayol-Cuevas, W.W.[Walterio W.],
Damen, D.[Dima],
Trespassing the Boundaries: Labeling Temporal Bounds for Object
Interactions in Egocentric Video,
ICCV17(2905-2913)
IEEE DOI
1802
convolution, image annotation, neural nets, object detection,
object recognition, video signal processing, Rubicon Boundaries,
BibRef
Wang, X.L.[Xiao-Long],
Girdhar, R.[Rohit],
Gupta, A.[Abhinav],
Binge Watching: Scaling Affordance Learning from Sitcoms,
CVPR17(3366-3375)
IEEE DOI
1711
Dataset for learning work.
Manuals, Robots, Semantics, TV, Videos
BibRef
Schröder, M.,
Ritter, H.,
Hand-Object Interaction Detection with Fully Convolutional Networks,
ActionCh17(1236-1243)
IEEE DOI
1709
Convolutional codes, Data models, Decoding,
Labeling, Object tracking, Real-time, systems
BibRef
Sermanet, P.[Pierre],
Lynch, C.[Corey],
Hsu, J.[Jasmine],
Levine, S.[Sergey],
Time-Contrastive Networks:
Self-Supervised Learning from Multi-view Observation,
DeepLearnRV17(486-487)
IEEE DOI
1709
Loss measurement, Robots, Training, Videos
BibRef
Fire, A.[Amy],
Zhu, S.C.[Song-Chun],
Inferring Hidden Statuses and Actions in Video by Causal Reasoning,
Cognition17(48-56)
IEEE DOI
1709
Hidden features of actions.
Cognition, Feature extraction, Grammar,
Hidden Markov models, Monitoring, Switches
BibRef
Junokas, M.J.,
Kohlburn, G.,
Lane, B.,
Kumar, S.,
Fu, W.T.,
Lindgren, R.,
Gestural Interactions of Embodied Educational Technology Using
One-Shot Machine Learning,
FG17(996-996)
IEEE DOI
1707
Adaptation models, Educational technology, Feature extraction,
Gesture recognition, Hidden Markov models, Magnetic cores, Training
BibRef
Ji, Y.L.[Yan-Li],
Li, J.[Jia_Ming],
Cheng, H.[Hong],
Xu, X.[Xing],
Song, J.[Jingkuan],
Multi-cue Information Fusion for Two-Layer Activity Recognition,
HIS16(III: 273-285).
Springer DOI
1704
Body motion and object interaction (NN), fuse for activities.
BibRef
Meng, M.,
Drira, H.,
Daoudi, M.,
Boonaert, J.,
Human Object Interaction Recognition Using Rate-Invariant Shape
Analysis of Inter Joint Distances Trajectories,
DIFF-CV16(999-1004)
IEEE DOI
1612
BibRef
Kera, H.,
Yonetani, R.,
Higuchi, K.,
Sato, Y.,
Discovering Objects of Joint Attention via First-Person Sensing,
Egocentric-C16(361-369)
IEEE DOI
1612
BibRef
Zhu, Y.X.[Yi-Xin],
Jiang, C.F.[Chen-Fanfu],
Zhao, Y.B.[Yi-Biao],
Terzopoulos, D.[Demetri],
Zhu, S.C.[Song-Chun],
Inferring Forces and Learning Human Utilities from Videos,
CVPR16(3823-3833)
IEEE DOI
1612
physical quantities when body interacts with objects.
BibRef
Pinto, L.[Lerrel],
Gandhi, D.[Dhiraj],
Han, Y.F.[Yuan-Feng],
Park, Y.L.[Yong-Lae],
Gupta, A.[Abhinav],
The Curious Robot:
Learning Visual Representations via Physical Interactions,
ECCV16(II: 3-18).
Springer DOI
1611
BibRef
Mallya, A.[Arun],
Lazebnik, S.[Svetlana],
Recurrent Models for Situation Recognition,
ICCV17(455-463)
IEEE DOI
1802
BibRef
Earlier:
Learning Models for Actions and Person-Object Interactions with
Transfer to Question Answering,
ECCV16(I: 414-428).
Springer DOI
1611
random processes, recurrent neural nets,
CRF-based models, Conditional Random Fields, RNN,
BibRef
Hassan, M.[Mahmudul],
Dharmaratne, A.[Anuja],
Attribute Based Affordance Detection from Human-Object Interaction
Images,
RV15(220-232).
Springer DOI
1603
BibRef
And:
Labeling abnormalities in video based complex Human-Object
Interactions by robust affordance modelling,
ICCVIA15(1-8)
IEEE DOI
1603
Bayes methods
BibRef
Chao, Y.W.,
Wang, Z.,
He, Y.,
Wang, J.,
Deng, J.,
HICO: A Benchmark for Recognizing Human-Object Interactions in Images,
ICCV15(1017-1025)
IEEE DOI
1602
Benchmark testing
BibRef
Sokeh, H.S.[Hajar Sadeghi],
Gould, S.[Stephen],
Renz, J.[Jochen],
Determining Interacting Objects in Human-Centric Activities via
Qualitative Spatio-Temporal Reasoning,
ACCV14(V: 550-563).
Springer DOI
1504
BibRef
Chen, C.Y.[Chao-Yeh],
Grauman, K.[Kristen],
Predicting the Location of 'interactees' in Novel Human-Object
Interactions,
ACCV14(I: 351-367).
Springer DOI
1504
BibRef
Yu, G.[Gang],
Liu, Z.C.[Zi-Cheng],
Yuan, J.S.[Jun-Song],
Discriminative Orderlet Mining for Real-Time Recognition of
Human-Object Interaction,
ACCV14(V: 50-65).
Springer DOI
1504
BibRef
Kluth, T.[Tobias],
Nakath, D.[David],
Reineking, T.[Thomas],
Zetzsche, C.[Christoph],
Schill, K.[Kerstin],
Affordance-Based Object Recognition Using Interactions Obtained from a
Utility Maximization Principle,
Affordance14(406-412).
Springer DOI
1504
BibRef
Amiri, S.M.[S. Mohsen],
Pourazad, M.T.[Mahsa T.],
Nasiopoulos, P.[Panos],
Leung, V.C.M.[Victor C.M.],
A similarity measure for analyzing human activities using
human-object interaction context,
ICIP14(2368-2372)
IEEE DOI
1502
Accuracy
BibRef
Parks, D.[Daniel],
Itti, L.[Laurent],
Integrating human context and occlusion reasoning to improve handheld
object tracking,
ICIP14(436-440)
IEEE DOI
1502
Cognition
BibRef
Liu, J.[Jing],
Wu, X.X.[Xin-Xiao],
Feng, Y.[Yang],
Modeling the Relationship of Action, Object, and Scene,
ICPR14(2005-2010)
IEEE DOI
1412
Accuracy
BibRef
Ubalde, S.[Sebastian],
Liu, Z.C.[Zi-Cheng],
Mejail, M.[Marta],
Detecting Subtle Human-Object Interactions Using Kinect,
CIARP14(770-777).
Springer DOI
1411
BibRef
Srikantha, A.[Abhilash],
Gall, J.[Juergen],
Discovering Object Classes from Activities,
ECCV14(VI: 415-430).
Springer DOI
1408
BibRef
Arteta, C.[Carlos],
Lempitsky, V.[Victor],
Zisserman, A.[Andrew],
Counting in the Wild,
ECCV16(VII: 483-498).
Springer DOI
1611
BibRef
Arteta, C.[Carlos],
Lempitsky, V.[Victor],
Noble, J.A.[J. Alison],
Zisserman, A.[Andrew],
Interactive Object Counting,
ECCV14(III: 504-518).
Springer DOI
1408
BibRef
Yang, G.[Guang],
Yin, Y.F.[Ya-Feng],
Man, H.[Hong],
Human object interactions recognition based on social network
analysis,
AIPR13(1-4)
IEEE DOI
1408
computer vision
BibRef
Rybok, L.[Lukas],
Schauerte, B.[Boris],
Al-Halah, Z.[Ziad],
Stiefelhagen, R.[Rainer],
'Important stuff, everywhere!' Activity recognition with salient
proto-objects as context,
WACV14(646-651)
IEEE DOI
1406
Accuracy
BibRef
Escorcia, V.,
Niebles, J.C.[Juan Carlos],
Spatio-temporal Human-Object Interactions for Action Recognition in
Videos,
HACI13(508-514)
IEEE DOI
1403
interactive systems
BibRef
Yao, B.P.[Bang-Peng],
Ma, J.Y.[Jia-Yuan],
Fei-Fei, L.[Li],
Discovering Object Functionality,
ICCV13(2512-2519)
IEEE DOI
1403
from dataset of interactions.
BibRef
Xie, D.[Dan],
Todorovic, S.[Sinisa],
Zhu, S.C.[Song-Chun],
Inferring 'Dark Matter' and 'Dark Energy' from Videos,
ICCV13(2224-2231)
IEEE DOI
1403
localizing functional objects in surveillance videos. Based on trajectories.
BibRef
Ni, B.B.[Bing-Bing],
Moulin, P.[Pierre],
Manipulation Pattern Discovery: A Nonparametric Bayesian Approach,
ICCV13(1361-1368)
IEEE DOI
1403
BibRef
Desai, C.[Chaitanya],
Ramanan, D.[Deva],
Detecting Actions, Poses, and Objects with Relational Phraselets,
ECCV12(IV: 158-172).
Springer DOI
1210
BibRef
Packer, B.[Ben],
Saenko, K.[Kate],
Koller, D.[Daphne],
A combined pose, object, and feature model for action understanding,
CVPR12(1378-1385).
IEEE DOI
1208
BibRef
Zhang, B.[Bang],
Ye, G.[Getian],
Wang, Y.[Yang],
Wang, W.[Wei],
Xu, J.[Jie],
Herman, G.[Gunawan],
Yang, Y.[Yun],
Multi-class Graph Boosting with Subgraph Sharing for Object Recognition,
ICPR10(1541-1544).
IEEE DOI
1008
BibRef
Young, D.L.,
When to engage video resilience options,
AIPR13(1-8)
IEEE DOI
1408
error statistics
BibRef
Young, D.L.,
Motion imagery metadata standards assist in object and activity
classification,
AIPR10(1-4).
IEEE DOI
1010
BibRef
Utsumi, Y.,
Katte, M.,
Iwamura, M.,
Kise, K.,
Event Detection Based on Noisy Object Information,
ACPR13(572-575)
IEEE DOI
1408
object detection
BibRef
Ren, S.G.[Shao-Gang],
Sun, Y.[Yu],
Human-object-object-interaction affordance,
WORV13(1-6)
IEEE DOI
1307
Interaction with objects.
BibRef
Kojima, A.[Atsuhiro],
Miki, H.[Hiroshi],
Kise, K.[Koichi],
Object Recognition Based on n-gram Expression of Human Actions,
ICPR10(372-375).
IEEE DOI
1008
BibRef
Tavakkoli, A.[Alireza],
Nicolescu, M.[Mircea],
Bebis, G.N.[George N.],
A Spatio-Spectral Algorithm for Robust and Scalable Object Tracking in
Videos,
ISVC10(III: 161-170).
Springer DOI
1011
BibRef
Higuchi, M.,
Aoki, S.,
Kojima, A.,
Fukunaga, K.,
Scene recognition based on relationship between human actions and
objects,
ICPR04(III: 73-78).
IEEE DOI
0409
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Actions, Grasping, Robot Grasping, Shape for Grasp .