Feng, J.,
Ni, B.,
Xu, D.,
Yan, S.,
Histogram Contextualization,
IP(21), No. 2, February 2012, pp. 778-788.
IEEE DOI
1201
Histogram loses the order. Technique to incoprorate spatial information.
BibRef
Lui, Y.M.[Yui Man],
Advances in matrix manifolds for computer vision,
IVC(30), No. 6-7, June 2012, pp. 380-388.
Elsevier DOI
1206
Lie groups; Stiefel manifolds; Grassmann manifolds; Riemannian
manifolds
BibRef
Wang, J.,
Gong, Y.,
Discovering Image Semantics in Codebook Derivative Space,
MultMed(14), No. 4, 2012, pp. 986-994.
IEEE DOI
1208
Sparse coding. Locality-constraint linear coding.
BibRef
Jing, L.,
Zhang, C.,
Ng, M.K.,
SNMFCA: Supervised NMF-Based Image Classification and Annotation,
IP(21), No. 11, November 2012, pp. 4508-4521.
IEEE DOI
1210
nonnegative matrix factorization. Classification and annotation.
BibRef
Chen, X.[Xi],
Zhang, J.S.[Jia-Shu],
Li, D.F.[De-Fang],
Direct Discriminant Locality Preserving Projection With Hammerstein
Polynomial Expansion,
IP(21), No. 12, December 2012, pp. 4858-4867.
IEEE DOI
1212
BibRef
Li, Q.,
Zhang, H.,
Guo, J.,
Bhanu, B.,
An, L.,
Reference-Based Scheme Combined With K-SVD for Scene Image
Categorization,
SPLetters(20), No. 1, January 2013, pp. 67-70.
IEEE DOI
1212
Locality-constrained Linear Coding (LLC) features
BibRef
Li, Q.[Qun],
Xu, D.[Ding],
An, L.[Le],
Discriminative Reference-Based Scene Image Categorization,
IEICE(E97-D), No. 10, October 2014, pp. 2823-2826.
WWW Link.
1411
BibRef
Duan, C.H.[Chih-Hsueh],
Chiang, C.K.[Chen-Kuo],
Lai, S.H.[Shang-Hong],
Face Verification With Local Sparse Representation,
SPLetters(20), No. 2, February 2013, pp. 177-180.
IEEE DOI
1302
BibRef
Tang, J.H.[Jin-Hui],
Yan, S.C.[Shui-Cheng],
Wright, J.[John],
Tian, Q.[Qi],
Pang, Y.W.[Yan-Wei],
Pissaloux, E.[Edwige],
Sparse representations for image and video analysis,
JVCIR(24), No. 2, February 2013, pp. 93-94.
Elsevier DOI
1302
BibRef
Ricci, E.[Elisa],
Zen, G.[Gloria],
Sebe, N.[Nicu],
Messelodi, S.,
A Prototype Learning Framework Using EMD:
Application to Complex Scenes Analysis,
PAMI(35), No. 3, March 2013, pp. 513-526.
IEEE DOI
1303
BibRef
Zen, G.[Gloria],
Ricci, E.[Elisa],
Sebe, N.[Nicu],
Exploiting Sparse Representations for Robust Analysis of Noisy Complex
Video Scenes,
ECCV12(VI: 199-213).
Springer DOI
1210
BibRef
Zen, G.[Gloria],
Rostamzadeh, N.[Negar],
Staiano, J.[Jacopo],
Ricci, E.[Elisa],
Sebe, N.[Nicu],
Enhanced semantic descriptors for functional scene categorization,
ICPR12(1985-1988).
WWW Link.
1302
BibRef
Ravishankar, S.[Saiprasad],
Bresler, Y.[Yoram],
Learning Doubly Sparse Transforms for Images,
IP(22), No. 12, 2013, pp. 4598-4612.
IEEE DOI
1312
BibRef
Earlier:
Learning sparsifying transforms for image processing,
ICIP12(681-684).
IEEE DOI
1302
BibRef
And:
Learning doubly sparse transforms for image representation,
ICIP12(685-688).
IEEE DOI
1302
image denoising
BibRef
Berthoumieu, Y.,
Dossal, C.,
Pustelnik, N.,
Ricoux, P.,
Turcu, F.,
An Evaluation of the Sparsity Degree for Sparse Recovery with
Deterministic Measurement Matrices,
JMIV(48), No. 2, February 2014, pp. 266-278.
Springer DOI
1402
BibRef
Chen, Y.J.[Yun-Jin],
Ranftl, R.[Rene],
Pock, T.[Thomas],
Insights Into Analysis Operator Learning:
From Patch-Based Sparse Models to Higher Order MRFs,
IP(23), No. 3, March 2014, pp. 1060-1072.
IEEE DOI
1403
image denoising
BibRef
Bako, L.,
Subspace Clustering Through Parametric Representation and Sparse
Optimization,
SPLetters(21), No. 3, March 2014, pp. 356-360.
IEEE DOI
1403
convex programming
BibRef
Park, S.[Soonyong],
Park, S.K.[Sung-Kee],
Hebert, M.,
Fast and Scalable Approximate Spectral Matching for Higher Order
Graph Matching,
PAMI(36), No. 3, March 2014, pp. 479-492.
IEEE DOI
1403
approximation theory. approximated affinity tensor.
BibRef
Zhang, C.J.[Chun-Jie],
Liu, J.[Jing],
Liang, C.[Chao],
Xue, Z.[Zhe],
Pang, J.B.[Jun-Biao],
Huang, Q.M.[Qing-Ming],
Image classification by non-negative sparse coding, correlation
constrained low-rank and sparse decomposition,
CVIU(123), No. 1, 2014, pp. 14-22.
Elsevier DOI
1405
Sparse coding
BibRef
Zhang, C.J.[Chun-Jie],
Liu, J.[Jing],
Tian, Q.[Qi],
Xu, C.S.[Chang-Sheng],
Lu, H.Q.[Han-Qing],
Ma, S.D.[Song-De],
Image classification by non-negative sparse coding, low-rank and sparse
decomposition,
CVPR11(1673-1680).
IEEE DOI
1106
BibRef
Zhang, T.Z.[Tian-Zhu],
Ghanem, B.[Bernard],
Liu, S.[Si],
Xu, C.S.[Chang-Sheng],
Ahuja, N.[Narendra],
Low-Rank Sparse Coding for Image Classification,
ICCV13(281-288)
IEEE DOI
1403
bow; image classification; low-rank
See also Robust Visual Tracking Via Consistent Low-Rank Sparse Learning.
BibRef
Somasundaram, G.[Guruprasad],
Cherian, A.[Anoop],
Morellas, V.[Vassilios],
Papanikolopoulos, N.[Nikolaos],
Action recognition using global spatio-temporal features derived from
sparse representations,
CVIU(123), No. 1, 2014, pp. 1-13.
Elsevier DOI
1405
BibRef
Earlier: A1, A3, A4, Only:
Object classification with efficient global self-similarity descriptors
based on sparse representations,
ICIP12(2165-2168).
IEEE DOI
1302
BibRef
And: A2, A3, A4, Only:
Robust Sparse Hashing,
ICIP12(2417-2420).
IEEE DOI
1302
Global spatio-temporal features
BibRef
Cherian, A.[Anoop],
Sra, S.[Suvrit],
Morellas, V.[Vassilios],
Papanikolopoulos, N.P.[Nikolaos P.],
Efficient Nearest Neighbors via Robust Sparse Hashing,
IP(23), No. 8, August 2014, pp. 3646-3655.
IEEE DOI
1408
cryptography
See also Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices.
BibRef
Zheng, N.[Ning],
Qi, L.[Lin],
Guan, L.[Ling],
Generalized multiple maximum scatter difference feature extraction
using QR decomposition,
JVCIR(25), No. 6, 2014, pp. 1460-1471.
Elsevier DOI
1407
Feature extraction
BibRef
Zheng, N.[Ning],
Guo, X.[Xin],
Tie, Y.[Yun],
Dong, N.[Nan],
Qi, L.[Lin],
Guan, L.[Ling],
Incremental generalized multiple maximum scatter difference with
applications to feature extraction,
JVCIR(55), 2018, pp. 67-79.
Elsevier DOI
1809
Feature extraction,
Generalized multiple maximum scatter difference, Incremental GMMSD+
BibRef
Zheng, N.[Ning],
Qi, L.[Lin],
Gao, L.[Lei],
Guan, L.[Ling],
Generalized MMSD feature extraction using QR decomposition,
VCIP12(1-5).
IEEE DOI
1302
Multiple Maximum scatter difference.
BibRef
Yang, W.K.[Wan-Kou],
Wang, Z.Y.[Zhen-Yu],
Sun, C.Y.[Chang-Yin],
A collaborative representation based projections method for feature
extraction,
PR(48), No. 1, 2015, pp. 20-27.
Elsevier DOI
1410
Sparse representation
BibRef
Jiang, R.,
Qiao, H.,
Zhang, B.,
Speeding Up Graph Regularized Sparse Coding by Dual Gradient Ascent,
SPLetters(22), No. 3, March 2015, pp. 313-317.
IEEE DOI
1410
Convergence
BibRef
Su, Y.[Ya],
Li, S.,
Wang, S.J.[Sheng-Jin],
Fu, Y.[Yun],
Submanifold Decomposition,
CirSysVideo(24), No. 11, November 2014, pp. 1885-1897.
IEEE DOI
1411
BibRef
Earlier: A1, A3, A4, Only:
Submanifold decomposition,
ICPR12(1755-1758).
WWW Link.
1302
BibRef
Liu, Y.[Yang],
Liu, C.Y.[Chen-Yu],
Tang, Y.F.[Yu-Fang],
Liu, H.[Haixu],
Ouyang, S.X.[Shu-Xin],
Li, X.M.[Xue-Ming],
Robust block sparse discriminative classification framework,
JOSA-A(31), No. 12, December 2014, pp. 2806-2813.
DOI Link
1412
Image processing; Pattern recognition; Machine vision; Algorithms
Apply to texture and face recognition.
BibRef
Liu, Y.[Yang],
Li, X.M.[Xue-Ming],
Liu, C.Y.[Chen-Yu],
Liu, H.[Haixu],
Structure-Constrained Low-Rank and Partial Sparse Representation with
Sample Selection for image classification,
PR(59), No. 1, 2016, pp. 5-13.
Elsevier DOI
1609
BibRef
Earlier: A1, A4, A3, A2:
Structure-constrained low-rank and partial sparse representation for
image classification,
ICIP14(5222-5226)
IEEE DOI
1502
Sparse coding
Accuracy
BibRef
Xu, Y.[Yi],
Yu, L.C.[Li-Cheng],
Xu, H.T.[Hong-Teng],
Zhang, H.[Hao],
Nguyen, T.[Truong],
Vector Sparse Representation of Color Image Using Quaternion Matrix
Analysis,
IP(24), No. 4, April 2015, pp. 1315-1329.
IEEE DOI
1503
channel coding
BibRef
Shen, X.Y.[Xin-Yue],
Gu, Y.T.[Yuan-Tao],
Restricted Isometry Property of Subspace Projection Matrix Under
Random Compression,
SPLetters(22), No. 9, September 2015, pp. 1326-1330.
IEEE DOI
1503
matrix algebra
BibRef
Zhou, X.W.[Xiao-Wei],
Yang, C.[Can],
Zhao, H.Y.[Hong-Yu],
Yu, W.C.[Wei-Chuan],
Low-Rank Modeling and Its Applications in Image Analysis,
Surveys(47), No. 2, January 2015, pp. Article No 36.
DOI Link
1503
Low-rank modeling generally refers to a class of methods that solves
problems by representing variables of interest as low-rank matrices. It
has achieved great success in various fields including computer vision,
data mining, signal processing, and bioinformatics.
BibRef
Srinivas, U.[Umamahesh],
Suo, Y.M.[Yuan-Ming],
Dao, M.[Minh],
Monga, V.[Vishal],
Tran, T.D.[Trac D.],
Structured Sparse Priors for Image Classification,
IP(24), No. 6, June 2015, pp. 1763-1776.
IEEE DOI
1504
BibRef
Earlier:
ICIP13(3211-3215)
IEEE DOI
1402
Class-specific priors
Algorithm design and analysis.
BibRef
Mousavi, H.S.,
Monga, V.,
Tran, T.D.,
Iterative Convex Refinement for Sparse Recovery,
SPLetters(22), No. 11, November 2015, pp. 1903-1907.
IEEE DOI
1509
Bayes methods
BibRef
Suo, Y.M.[Yuan-Ming],
Dao, M.[Minh],
Tran, T.D.[Trac D.],
Mousavi, H.S.[Hojjat S.],
Srinivas, U.[Umamahesh],
Monga, V.[Vishal],
Group structured dirty dictionary learning for classification,
ICIP14(150-154)
IEEE DOI
1502
Dictionaries
BibRef
Mousavi, H.S.[Hojjat S.],
Srinivas, U.[Umamahesh],
Monga, V.[Vishal],
Suo, Y.M.[Yuan-Ming],
Dao, M.[Minh],
Tran, T.D.[Trac D.],
Multi-task image classification via collaborative, hierarchical
spike-and-slab priors,
ICIP14(4236-4240)
IEEE DOI
1502
Bayes methods
BibRef
Zhi, R.C.[Rui-Cong],
Zhao, L.[Lei],
Shi, B.[Bolin],
Jin, Y.[Yi],
Learning a Two-Dimensional Fuzzy Discriminant Locality Preserving
Subspace for Visual Recognition,
IEICE(E97-D), No. 9, September 2014, pp. 2434-2442.
WWW Link.
1410
BibRef
Yang, J.Y.[Jing-Yu],
Gan, Z.Q.[Zi-Qiao],
Wu, Z.Y.[Zhao-Yang],
Hou, C.P.[Chun-Ping],
Estimation of Signal-Dependent Noise Level Function in Transform
Domain via a Sparse Recovery Model,
IP(24), No. 5, May 2015, pp. 1561-1572.
IEEE DOI
1504
BibRef
Earlier: A1, A3, A4, Only:
Estimation of signal-dependent sensor noise via sparse representation
of noise level functions,
ICIP12(673-676).
IEEE DOI
1302
discrete cosine transforms
BibRef
Ülkü, I.[Irem],
Töreyin, B.U.[Behçet Ugur],
Sparse coding of hyperspectral imagery using online learning,
SIViP(9), No. 4, May 2015, pp. 959-966.
Springer DOI
1504
BibRef
Gao, Q.X.[Quan-Xue],
Huang, Y.F.[Yun-Fang],
Zhang, H.L.[Hai-Lin],
Hong, X.[Xin],
Li, K.[Kui],
Wang, Y.[Yong],
Discriminative sparsity preserving projections for image recognition,
PR(48), No. 8, 2015, pp. 2543-2553.
Elsevier DOI
1505
Dimensionality reduction
BibRef
Hettiarachchi, R.,
Peters, J.F.,
Multi-manifold LLE learning in pattern recognition,
PR(48), No. 9, 2015, pp. 2947-2960.
Elsevier DOI
1506
Locally linear embedding.
Multi-manifolds
BibRef
Zhang, L.[Li],
Leng, Y.Q.[Yi-Qin],
Yang, J.W.[Ji-Wen],
Li, F.Z.[Fan-Zhang],
Supervised locally linear embedding algorithm based on orthogonal
matching pursuit,
IET-IPR(9), No. 8, 2015, pp. 626-633.
DOI Link
1506
image classification
BibRef
Qian, L.Q.[Li-Qiang],
Zhang, L.[Li],
Bao, X.[Xing],
Li, F.Z.[Fan-Zhang],
Yang, J.W.[Ji-Wen],
Supervised sparse neighbourhood preserving embedding,
IET-IPR(11), No. 3, March 2017, pp. 190-199.
DOI Link
1703
BibRef
Wen, B.[Bihan],
Ravishankar, S.[Saiprasad],
Bresler, Y.[Yoram],
Structured Overcomplete Sparsifying Transform Learning with Convergence
Guarantees and Applications,
IJCV(114), No. 2-3, September 2015, pp. 137-167.
Springer DOI
1509
BibRef
Earlier:
Learning overcomplete sparsifying transforms with block cosparsity,
ICIP14(803-807)
IEEE DOI
1502
Big data.
Analytical models
BibRef
Wen, B.[Bihan],
Ravishankar, S.[Saiprasad],
Bresler, Y.[Yoram],
Learning flipping and rotation invariant sparsifying transforms,
ICIP16(3857-3861)
IEEE DOI
1610
Clustering algorithms
BibRef
Wen, B.[Bihan],
Ravishankar, S.[Saiprasad],
Bresler, Y.[Yoram],
VIDOSAT: High-Dimensional Sparsifying Transform Learning for Online
Video Denoising,
IP(28), No. 4, April 2019, pp. 1691-1704.
IEEE DOI
1901
BibRef
Earlier:
Video denoising by online 3D sparsifying transform learning,
ICIP15(118-122)
IEEE DOI
1512
image denoising, image reconstruction,
learning (artificial intelligence), transforms,
video denoising
BibRef
Ravishankar, S.[Saiprasad],
Bresler, Y.[Yoram],
Efficient Blind Compressed Sensing Using Sparsifying Transforms with
Convergence Guarantees and Application to Magnetic Resonance Imaging,
SIIMS(8), No. 4, 2015, pp. 2519-2557.
DOI Link
1601
BibRef
Jahromi, M.N.S.[Mohammad N. S.],
Salman, M.S.[Mohammad Shukri],
Hocanin, A.[Aykut],
Kukrer, O.[Osman],
Convergence analysis of the zero-attracting variable step-size LMS
algorithm for sparse system identification,
SIViP(9), No. 6, September 2015, pp. 1353-1356.
Springer DOI
1509
BibRef
Eleyan, G.[Gülden],
Salman, M.S.[Mohammad Shukri],
Convergence analysis of the mixed-norm LMS and two versions for sparse
system identification,
SIViP(14), No. 5, July 2020, pp. 965-970.
Springer DOI
2006
BibRef
Jahromi, M.N.S.[Mohammad N. S.],
Salman, M.S.[Mohammad Shukri],
Hocanin, A.[Aykut],
Kukrer, O.[Osman],
Mean-square deviation analysis of the zero-attracting variable
step-size LMS algorithm,
SIViP(11), No. 3, March 2017, pp. 533-540.
Springer DOI
1702
BibRef
Aliyu, M.L.[Muhammad Lawan],
Alkassim, M.A.[Mujahid Ado],
Salman, M.S.[Mohammad Shukri],
A p-norm variable step-size LMS algorithm for sparse system
identification,
SIViP(9), No. 7, October 2015, pp. 1559-1565.
Springer DOI
1509
BibRef
Xie, J.N.[Jia-Nwen],
Hu, W.Z.[Wen-Ze],
Zhu, S.C.[Song-Chun],
Wu, Y.N.[Ying Nian],
Learning Sparse FRAME Models for Natural Image Patterns,
IJCV(114), No. 2-3, September 2015, pp. 91-112.
Springer DOI
1509
BibRef
Earlier:
Learning Inhomogeneous FRAME Models for Object Patterns,
CVPR14(1035-1042)
IEEE DOI
1409
Energy-based models
FRAME (Filters, Random field, And Maximum Entropy).
BibRef
Dai, J.F.[Ji-Feng],
Hong, Y.[Yi],
Hu, W.Z.[Wen-Ze],
Zhu, S.C.[Song-Chun],
Wu, Y.N.[Ying Nian],
Unsupervised Learning of Dictionaries of Hierarchical Compositional
Models,
CVPR14(2505-2512)
IEEE DOI
1409
BibRef
Chabiron, O.[Olivier],
Malgouyres, F.[François],
Tourneret, J.Y.[Jean-Yves],
Dobigeon, N.[Nicolas],
Toward Fast Transform Learning,
IJCV(114), No. 2-3, September 2015, pp. 195-216.
Springer DOI
1509
BibRef
Ji, J.Q.[Jian-Qiu],
Li, J.M.[Jian-Min],
Tian, Q.[Qi],
Yan, S.C.[Shui-Cheng],
Zhang, B.[Bo],
Angular-Similarity-Preserving Binary Signatures for Linear Subspaces,
IP(24), No. 11, November 2015, pp. 4372-4380.
IEEE DOI
1509
computer vision
BibRef
Fukui, K.,
Maki, A.,
Difference Subspace and Its Generalization for Subspace-Based Methods,
PAMI(37), No. 11, November 2015, pp. 2164-2177.
IEEE DOI
1511
feature extraction
BibRef
Camerlenghi, F.[Federico],
Villa, E.[Elena],
Optimal Bandwidth of the Minkowski Content-Based Estimator of the Mean
Density of Random Closed Sets: Theoretical Results and Numerical
Experiments,
JMIV(53), No. 3, November 2015, pp. 264-287.
Springer DOI
1511
BibRef
Tao, J.[Jian_Wen],
Wen, S.T.[Shi-Ting],
Hu, W.J.[Wen-Jun],
Robust domain adaptation image classification via sparse and low rank
representation,
JVCIR(33), No. 1, 2015, pp. 134-148.
Elsevier DOI
1512
Robust domain adaptation learning
BibRef
Tao, J.W.[Jian-Wen],
Song, D.W.[Da-Wei],
Wen, S.T.[Shi-Ting],
Hu, W.J.[Wen-Jun],
Robust multi-source adaptation visual classification using supervised
low-rank representation,
PR(61), No. 1, 2017, pp. 47-65.
Elsevier DOI
1705
Multiple source domain adaptation
BibRef
Li, X.[Xiao],
Fang, M.[Min],
Zhang, J.J.[Ju-Jie],
Projected Transfer Sparse Coding for cross domain image
representation,
JVCIR(33), No. 1, 2015, pp. 265-272.
Elsevier DOI
1512
Image representation
BibRef
Xu, Y.[Yong],
Zhang, B.[Bob],
Zhong, Z.F.[Zuo-Feng],
Multiple representations and sparse representation for image
classification,
PRL(68, Part 1), No. 1, 2015, pp. 9-14.
Elsevier DOI
1512
Image classification
BibRef
Kelly, P.A.,
Kibria, S.,
Complex Exponential Pseudomodes of LTI Operators Over Finite
Intervals,
SPLetters(23), No. 1, January 2016, pp. 135-138.
IEEE DOI
1601
linear, time-invariant. Radar, ultrasound.
Approximation methods
BibRef
Zheng, H.X.[Hai-Xia],
Ip, H.H.S.[Horace H.S.],
Image classification and annotation based on robust regularized coding,
SIViP(10), No. 1, January 2016, pp. 55-64.
Springer DOI
1601
Sparse coding. Geometric and local.
BibRef
Li, P.[Ping],
Bu, J.J.[Jia-Jun],
Yu, J.[Jun],
Chen, C.[Chun],
Towards robust subspace recovery via sparsity-constrained latent
low-rank representation,
JVCIR(37), No. 1, 2016, pp. 46-52.
Elsevier DOI
1603
Latent low-rank representation
BibRef
Karygianni, S.[Sofia],
Frossard, P.[Pascal],
Sparse molecular image representation,
JVCIR(36), No. 1, 2016, pp. 213-228.
Elsevier DOI
1603
BibRef
And:
Learning from sparse codes,
ICIP16(3862-3866)
IEEE DOI
1610
Algorithm design and analysis
BibRef
Yang, L.[Liu],
Jing, L.P.[Li-Ping],
Ng, M.K.[Michael K.],
Yu, J.[Jian],
A discriminative and sparse topic model for image classification and
annotation,
IVC(51), No. 1, 2016, pp. 22-35.
Elsevier DOI
1606
Graphical model
BibRef
Larsson, V.[Viktor],
Olsson, C.[Carl],
Convex Low Rank Approximation,
IJCV(120), No. 2, November 2016, pp. 194-214.
Springer DOI
1609
BibRef
Earlier:
Convex Envelopes for Low Rank Approximation,
EMMCVPR15(1-14).
Springer DOI
1504
BibRef
Larsson, V.[Viktor],
Olsson, C.[Carl],
Kahl, F.[Fredrik],
A Simple Method for Subspace Estimation with Corrupted Columns,
RSL-CV15(841-849)
IEEE DOI
1602
Closed-form solutions
BibRef
Olsson, C.,
Carlsson, M.,
Bylow, E.,
A Non-convex Relaxation for Fixed-Rank Approximation,
RSL-CV17(1809-1817)
IEEE DOI
1802
Level set, Noise measurement.
BibRef
Bylow, E.[Erik],
Olsson, C.[Carl],
Kahl, F.[Fredrik],
Nilsson, M.,
Minimizing the Maximal Rank,
CVPR16(5887-5895)
IEEE DOI
1612
BibRef
Larsson, V.[Viktor],
Olsson, C.[Carl],
Bylow, E.[Erik],
Kahl, F.[Fredrik],
Rank Minimization with Structured Data Patterns,
ECCV14(III: 250-265).
Springer DOI
1408
BibRef
Kim, E.[Eunwoo],
Lee, M.[Minsik],
Oh, S.H.[Song-Hwai],
Robust Elastic-Net Subspace Representation,
IP(25), No. 9, September 2016, pp. 4245-4259.
IEEE DOI
1609
data structures
BibRef
Gao, S.H.[Sheng-Hua],
Zeng, Z.N.[Zi-Nan],
Jia, K.[Kui],
Chan, T.H.[Tsung-Han],
Tang, J.H.[Jin-Hui],
Patch-Set-Based Representation for Alignment-Free Image Set
Classification,
CirSysVideo(26), No. 9, September 2016, pp. 1646-1658.
IEEE DOI
1609
Accuracy. sparse representation.
BibRef
Ji, H.K.[Hong-Kun],
Sun, Q.S.[Quan-Sen],
Yuan, Y.H.[Yun-Hao],
Ji, Z.X.[Ze-Xuan],
C2DMCP: View-consistent collaborative discriminative multiset
correlation projection for data representation,
JVCIR(40, Part B), No. 1, 2016, pp. 393-405.
Elsevier DOI
1610
Multiset correlation projection
Multi-view joint dimensionality reduction by maximizing linear
correlations among the projections.
BibRef
Shen, X.B.[Xiao-Bo],
Yuan, Y.H.[Yun-Hao],
Shen, F.M.[Fu-Min],
Xu, Y.[Yang],
Sun, Q.S.[Quan-Sen],
A novel multi-view dimensionality reduction and recognition framework
with applications to face recognition,
JVCIR(53), 2018, pp. 161-170.
Elsevier DOI
1805
Multi-view learning, Canonical correlations,
Dimensionality reduction, Face recognition
BibRef
Wang, Q.Q.[Qian-Qian],
Ma, L.[Lan],
Gao, Q.X.[Quan-Xue],
Li, Y.S.[Yun-Song],
Huang, Y.F.[Yun-Fang],
Liu, Y.[Yang],
Adaptive maximum margin analysis for image recognition,
PR(61), No. 1, 2017, pp. 339-347.
Elsevier DOI
1609
Maximum margin
BibRef
Zhan, Y.Z.[Yong-Zhao],
Liu, J.[Junqi],
Gou, J.P.[Jian-Ping],
Wang, M.C.[Min-Chao],
A video semantic detection method based on locality-sensitive
discriminant sparse representation and weighted KNN,
JVCIR(41), No. 1, 2016, pp. 65-73.
Elsevier DOI
1612
Locality-sensitive discriminant sparse representation method (LSDSR).
BibRef
Zhang, S.Z.[Shi-Zhou],
Wang, J.J.[Jin-Jun],
Tao, X.Y.[Xiao-Yu],
Gong, Y.H.[Yi-Hong],
Zheng, N.N.[Nan-Ning],
Constructing Deep Sparse Coding Network for image classification,
PR(64), No. 1, 2017, pp. 130-140.
Elsevier DOI
1701
Sparse Coding
BibRef
Luu, K.[Khoa],
Savvides, M.[Marios],
Bui, T.D.[Tien D.],
Suen, C.Y.[Ching Y.],
Compressed Submanifold Multifactor Analysis,
PAMI(39), No. 3, March 2017, pp. 444-456.
IEEE DOI
1702
BibRef
Earlier:
Compressed Submanifold Multifactor Analysis with adaptive factor
structures,
ICPR12(2715-2718).
WWW Link.
1302
Approximation algorithms
BibRef
Hsaio, W.H.[Wen-Hoar],
Liu, C.L.[Chien-Liang],
Wu, W.L.[Wei-Liang],
Locality-constrained max-margin sparse coding,
PR(65), No. 1, 2017, pp. 285-295.
Elsevier DOI
1702
Locality
BibRef
Lim, K.L.,
Wang, H.,
Sparse Coding Based Fisher Vector Using a Bayesian Approach,
SPLetters(24), No. 1, January 2017, pp. 91-95.
IEEE DOI
1702
BibRef
And:
Corrections:
SPLetters(24), No. 4, April 2017, pp. 520-520.
IEEE DOI
1704
Encoding; Signal processing algorithms; Sparse matrices.
Gaussian distribution
BibRef
Sankaran, A.[Anush],
Vatsa, M.[Mayank],
Singh, R.[Richa],
Majumdar, A.[Angshul],
Group sparse autoencoder,
IVC(60), No. 1, 2017, pp. 64-74.
Elsevier DOI
1704
Supervised autoencoder
BibRef
Yadav, S.,
Singh, M.,
Vatsa, M.[Mayank],
Singh, R.[Richa],
Majumdar, A.[Angshul],
Low rank group sparse representation based classifier for pose
variation,
ICIP16(2986-2990)
IEEE DOI
1610
Classification algorithms
BibRef
Liu, S.G.[Shi-Gang],
Li, L.J.[Ling-Jun],
Peng, Y.[Yali],
Qiu, G.Y.[Guo-Yong],
Lei, T.[Tao],
Improved sparse representation method for image classification,
IET-CV(11), No. 4, June 2017, pp. 319-330.
DOI Link
1705
BibRef
Peng, Y.[Yali],
Li, L.J.[Ling-Jun],
Liu, S.G.[Shi-Gang],
Li, J.[Jun],
Cao, H.[Han],
Virtual samples and sparse representation-based classification
algorithm for face recognition,
IET-CV(13), No. 2, March 2019, pp. 172-177.
DOI Link
1902
BibRef
Peng, Y.[Yali],
Li, L.J.[Ling-Jun],
Liu, S.G.[Shi-Gang],
Li, J.[Jun],
Wang, X.L.[Xi-Li],
Extended sparse representation-based classification method for face
recognition,
RealTimeIP(14), No. 1, January 2018, pp. 991-1007.
WWW Link.
1809
BibRef
Liao, Y.Y.[Yi-Yi],
Wang, Y.[Yue],
Liu, Y.[Yong],
Graph Regularized Auto-Encoders for Image Representation,
IP(26), No. 6, June 2017, pp. 2839-2852.
IEEE DOI
1705
Jacobian matrices, graph theory,
image classification, image coding, image representation,
learning (artificial intelligence), pattern clustering, GAE,
Jacobian matrix, clustering, complex modeling,
deep architectures, deep representation learning techniques,
encoder mapping, encoding model, graph regularized autoencoders,
hidden representation space, high-dimensional input space,
image classification, image clustering, image representation,
intrinsic low-dimensional manifold,
local invariant deep nonlinear mapping algorithm,
manifold learning, weight matrix, weighted Frobenius norm,
Algorithm design and analysis, Decoding, Image reconstruction,
Image representation, Inference algorithms, Jacobian matrices,
Manifolds, Auto-encoders, graph regularization, local, invariance
BibRef
Eftekhari, A.,
Balzano, L.,
Wakin, M.B.,
What to Expect When You Are Expecting on the Grassmannian,
SPLetters(24), No. 6, June 2017, pp. 872-876.
IEEE DOI
1705
Coherence, Estimation, Partitioning algorithms, Q measurement,
Signal processing algorithms, Size measurement, Standards,
Fréchet expectation, Grassmannian averaging, matrix completion,
principal component analysis, streaming algorithms, subspace identification
BibRef
Zhang, Y.[Yupei],
Xiang, M.[Ming],
Yang, B.[Bo],
Low-rank preserving embedding,
PR(70), No. 1, 2017, pp. 112-125.
Elsevier DOI
1706
Low-rank, representation
BibRef
Shu, Z.Q.[Zhen-Qiu],
Fan, H.F.[Hong-Fei],
Huang, P.[Pu],
Wu, D.[Dong],
Ye, F.Y.[Fei-Yue],
Wu, X.J.[Xiao-Jun],
Multiple Laplacian graph regularised low-rank representation with
application to image representation,
IET-IPR(11), No. 6, June 2017, pp. 370-378.
DOI Link
1706
BibRef
Qiao, X.[Xu],
Liu, X.Q.[Xiao-Qing],
Chen, Y.W.[Yen-Wei],
Liu, Z.P.[Zhi-Ping],
Multi-dimensional data representation using linear tensor coding,
IET-IPR(11), No. 7, July 2017, pp. 492-501.
DOI Link
1707
BibRef
Yao, C.[Chao],
Liu, Y.F.[Ya-Feng],
Jiang, B.[Bo],
Han, J.G.[Jun-Gong],
Han, J.W.[Jun-Wei],
LLE Score: A New Filter-Based Unsupervised Feature Selection Method
Based on Nonlinear Manifold Embedding and Its Application to Image
Recognition,
IP(26), No. 11, November 2017, pp. 5257-5269.
IEEE DOI
1709
feature selection, handwriting recognition, face image classification,
handwriting digits data set,
Correlation,
BibRef
Ji, R.,
Liu, H.,
Cao, L.,
Liu, D.,
Wu, Y.,
Huang, F.,
Toward Optimal Manifold Hashing via Discrete Locally Linear Embedding,
IP(26), No. 11, November 2017, pp. 5411-5420.
IEEE DOI
1709
Acceleration, Binary codes, Image reconstruction, Manifolds,
Matrix decomposition, Optimization,
Discrete locally linear embedding, hashing, manifold learning,
visual search
BibRef
Liu, H.,
Ji, R.,
Wu, Y.,
Huang, F.,
Zhang, B.,
Cross-Modality Binary Code Learning via Fusion Similarity Hashing,
CVPR17(6345-6353)
IEEE DOI
1711
Atmospheric measurements, Benchmark testing, Binary codes,
Matrix decomposition, Particle measurements, Symmetric matrices, Training
BibRef
Gu, J.[Jing],
Jiao, L.C.[Li-Cheng],
Liu, F.[Fang],
Yang, S.Y.[Shu-Yuan],
Wang, R.F.[Rong-Fang],
Chen, P.[Puhua],
Cui, Y.H.[Yuan-Hao],
Xie, J.H.[Jun-Hu],
Zhang, Y.[Yake],
Random subspace based ensemble sparse representation,
PR(74), No. 1, 2018, pp. 544-555.
Elsevier DOI
1711
Random subspace
BibRef
Yu, X.[Xiyu],
Liu, T.L.[Tong-Liang],
Wang, X.C.[Xin-Chao],
Tao, D.C.[Da-Cheng],
On Compressing Deep Models by Low Rank and Sparse Decomposition,
CVPR17(67-76)
IEEE DOI
1711
Computational modeling, Data models, Image reconstruction,
Matrix decomposition, Neurons, Redundancy, Sparse, matrices
BibRef
Wang, B.Y.[Bo-Yue],
Hu, Y.L.[Yong-Li],
Gao, J.B.[Jun-Bin],
Ali, M.[Muhammad],
Tien, D.[David],
Sun, Y.F.[Yan-Feng],
Yin, B.C.[Bao-Cai],
Low Rank Representation on SPD matrices with Log-Euclidean metric,
PR(76), No. 1, 2018, pp. 623-634.
Elsevier DOI
1801
BibRef
Earlier: A1, A2, A3, A6, A7, Only:
Low Rank Representation on Grassmann Manifolds,
ACCV14(I: 81-96).
Springer DOI
1504
Symmetrical positive definite matrices
BibRef
Piao, X.L.[Xing-Lin],
Hu, Y.L.[Yong-Li],
Gao, J.B.[Jun-Bin],
Sun, Y.F.[Yan-Feng],
Yang, X.[Xin],
Yin, B.C.[Bao-Cai],
A Spectral Clustering on Grassmann Manifold via Double Low Rank
Constraint,
ICPR21(9392-9398)
IEEE DOI
2105
BibRef
Earlier: A1, A2, A3, A4, A6, Only:
Double Nuclear Norm Based Low Rank Representation on Grassmann
Manifolds for Clustering,
CVPR19(12067-12076).
IEEE DOI
2002
Manifolds, Measurement, Clustering methods, Machine learning,
Euclidean distance, Data models, Data mining.
BibRef
Chen, B.H.[Bo-Heng],
Li, J.[Jie],
Wei, G.[Gang],
Ma, B.[Biyun],
A novel localized and second order feature coding network for image
recognition,
PR(76), No. 1, 2018, pp. 339-348.
Elsevier DOI
1801
BibRef
Earlier: A1, A2, A4, A3:
Convolutional sparse coding classification model for image
classification,
ICIP16(1918-1922)
IEEE DOI
1610
Deep neural network.
Convolution
BibRef
Osher, S.J.[Stanley J.],
Shi, Z.Q.[Zuo-Qiang],
Zhu, W.[Wei],
Low Dimensional Manifold Model for Image Processing,
SIIMS(10), No. 4, 2017, pp. 1669-1690.
DOI Link
1801
BibRef
Xue, S.K.[Sheng-Ke],
Jin, X.Y.[Xin-Yu],
Robust classwise and projective low-rank representation for image
classification,
SIViP(12), No. 1, January 2018, pp. 107-115.
Springer DOI
1801
BibRef
Hu, X.,
Heide, F.,
Dai, Q.,
Wetzstein, G.,
Convolutional Sparse Coding for RGB-NIR Imaging,
IP(27), No. 4, April 2018, pp. 1611-1625.
IEEE DOI
1802
filtering theory, image coding,
image colour analysis, image denoising, image representation,
structured illumination
BibRef
Choudhury, B.,
Swanson, R.,
Heide, F.,
Wetzstein, G.,
Heidrich, W.,
Consensus Convolutional Sparse Coding,
ICCV17(4290-4298)
IEEE DOI
1802
image coding, image colour analysis,
image reconstruction, image representation, image resolution,
BibRef
Lu, X.H.[Xiao-Huan],
He, Z.Y.[Zhen-Yu],
Yi, S.Y.[Shuang-Yan],
Chen, W.S.[Wen-Sheng],
Joint of locality- and globality-preserving projections,
SIViP(12), No. 3, March 2018, pp. 565-572.
WWW Link.
1804
Preserve global and local structure in sparse, lower dimensional
representation.
BibRef
Zhang, X.,
Sun, J.,
Ma, S.,
Lin, Z.,
Zhang, J.,
Wang, S.,
Gao, W.,
Globally Variance-Constrained Sparse Representation and Its
Application in Image Set Coding,
IP(27), No. 8, August 2018, pp. 3753-3765.
IEEE DOI
1806
Gaussian distribution, concave programming, data compression,
entropy, image coding, image representation,
alternating direction method of multipliers
BibRef
Hosny, K.M.[Khalid M.],
Darwish, M.M.[Mohamed M.],
New Set of Quaternion Moments for Color Images Representation and
Recognition,
JMIV(60), No. 5, June 2018, pp. 717-736.
Springer DOI
1806
BibRef
Hosny, K.M.[Khalid M.],
Darwish, M.M.[Mohamed M.],
New set of multi-channel orthogonal moments for color image
representation and recognition,
PR(88), 2019, pp. 153-173.
Elsevier DOI
1901
Multi-channel orthogonal moments,
Quaternion orthogonal moments, Chebyshev rational moments,
Recognition rates
BibRef
Hassan, G.[Gaber],
Hosny, K.M.[Khalid M.],
Farouk, R.M.,
Alzohairy, A.M.[Ahmed M.],
New Set of Invariant Quaternion Krawtchouk Moments for Color Image
Representation and Recognition,
IJIG(22), No. 4, July 2022, pp. 2250037.
DOI Link
2208
BibRef
Xie, Q.[Qi],
Zhao, Q.[Qian],
Meng, D.Y.[De-Yu],
Xu, Z.B.[Zong-Ben],
Kronecker-Basis-Representation Based Tensor Sparsity and Its
Applications to Tensor Recovery,
PAMI(40), No. 8, August 2018, pp. 1888-1902.
IEEE DOI
1807
Adaptation models, Algorithm design and analysis,
Analytical models, Correlation, Minimization, Noise reduction,
tucker decomposition
BibRef
Hong, W.X.[Wei-Xiang],
Yuan, J.S.[Jun-Song],
Fried Binary Embedding: From High-Dimensional Visual Features to
High-Dimensional Binary Codes,
IP(27), No. 10, October 2018, pp. 4825-4837.
IEEE DOI
1808
binary codes, computational complexity, data visualisation,
feature extraction, image coding, image retrieval,
image retrieval
BibRef
Hong, W.X.[Wei-Xiang],
Yuan, J.S.[Jun-Song],
Bhattacharjee, S.D.[Sreyasee Das],
Fried Binary Embedding for High-Dimensional Visual Features,
CVPR17(6221-6229)
IEEE DOI
1711
Binary codes, Encoding, Matrix decomposition, Optimization,
Sparse matrices, Transforms, Visualization
BibRef
Dornaika, F.,
El Traboulsi, Y.,
Proposals for local basis selection for the sparse representation-based
classifier,
SIViP(12), No. 8, November 2018, pp. 1595-1601.
WWW Link.
1809
BibRef
Wang, B.,
Hu, Y.,
Gao, J.,
Sun, Y.,
Yin, B.,
Localized LRR on Grassmann Manifold: An Extrinsic View,
CirSysVideo(28), No. 10, October 2018, pp. 2524-2536.
IEEE DOI
1811
LRR: Low-rank representation.
Manifolds, Symmetric matrices, Clustering algorithms,
Data models,
geodesic distance
BibRef
Yi, S.,
He, Z.,
Cheung, Y.,
Chen, W.,
Unified Sparse Subspace Learning via Self-Contained Regression,
CirSysVideo(28), No. 10, October 2018, pp. 2537-2550.
IEEE DOI
1811
Principal component analysis, Eigenvalues and eigenfunctions,
Robustness, Sparse matrices, Learning systems,
sparse subspace learning
BibRef
Wang, W.W.[Wei-Wei],
Zhang, B.B.[Bin-Bin],
Feng, X.C.[Xiang-Chu],
Subspace Segmentation by Correlation Adaptive Regression,
CirSysVideo(28), No. 10, October 2018, pp. 2612-2621.
IEEE DOI
1811
Correlation, Automobiles, Sparse matrices, Adaptation models,
Data models, Motion segmentation, Noise measurement,
grouping effect
BibRef
Dong, X.[Xiao],
Zhang, H.X.[Hua-Xiang],
Zhu, L.[Lei],
Wan, W.B.[Wen-Bo],
Wang, Z.H.[Zhen-Hua],
Wang, Q.A.[Qi-Ang],
Guo, P.L.[Pei-Lian],
Ji, H.[Hui],
Sun, J.D.[Jian-De],
Weighted locality collaborative representation based on sparse
subspace,
JVCIR(58), 2019, pp. 187-194.
Elsevier DOI
1901
Collaborative representation, Sparse subspace,
Linear representation, Face recognition
BibRef
Yin, W.B.[Wei-Bin],
Xu, D.S.[Dong-Sheng],
Wang, Z.[Zheng],
Zhao, Z.J.[Zhi-Jun],
Chen, C.[Chao],
Yao, Y.Y.[Yi-Yang],
Perceptually learning multi-view sparse representation for scene
categorization,
JVCIR(60), 2019, pp. 59-63.
Elsevier DOI
1903
Scene categorization, Scenery images.
BibRef
Plaut, E.[Elad],
Giryes, R.[Raja],
A Greedy Approach to Ll_(0,inf)-Based Convolutional Sparse Coding,
SIIMS(12), No. 1, 2019, pp. 186-210.
DOI Link
1904
BibRef
Teng, D.[Dan],
Chu, D.[Delin],
A Fast Frequent Directions Algorithm for Low Rank Approximation,
PAMI(41), No. 6, June 2019, pp. 1279-1293.
IEEE DOI
1905
Approximation algorithms, Computational efficiency,
Sparse matrices, Matrix decomposition,
sparse subspace embedding
BibRef
Shikhaliev, A.P.,
Potter, L.C.,
Chi, Y.,
Low-Rank Structured Covariance Matrix Estimation,
SPLetters(26), No. 5, May 2019, pp. 700-704.
IEEE DOI
1905
covariance matrices, eigenvalues and eigenfunctions,
maximum likelihood estimation, optimisation,
low rank
BibRef
Li, X.R.[Xiang-Rui],
Wang, A.D.[An-Dong],
Lu, J.F.[Jian-Feng],
Tang, Z.M.[Zhen-Min],
Statistical performance of convex low-rank and sparse tensor recovery,
PR(93), 2019, pp. 193-203.
Elsevier DOI
1906
Tensor recovery, Statistical performance, Tucker rank,
Tensor de-noising, Tensor compressive sensing
BibRef
Zhang, S.Z.[Shi-Zhou],
Wang, J.J.[Jin-Jun],
Shi, W.W.[Wei-Wei],
Gong, Y.H.[Yi-Hong],
Xia, Y.[Yong],
Zhang, Y.N.[Yan-Ning],
Normalized Non-Negative Sparse Encoder for Fast Image Representation,
CirSysVideo(29), No. 7, July 2019, pp. 1962-1972.
IEEE DOI
1907
Encoding, Image coding, Feature extraction, Computational modeling,
Neural networks, Image reconstruction, Training, Sparse coding,
shift-invariant constraint
BibRef
Kim, E.[Eunwoo],
Lee, M.[Minsik],
Oh, S.H.[Song-Hwai],
A Scalable Framework for Data-Driven Subspace Representation and
Clustering,
PRL(125), 2019, pp. 742-749.
Elsevier DOI
1909
BibRef
Yan, J.W.[Jing-Wen],
Chen, H.D.[Hong-Da],
Zhai, Y.K.[Yi-Kui],
Liu, Y.N.[Yi-Nan],
Liu, L.[Lei],
Region-Division-Based Joint Sparse Representation Classification for
Hyperspectral Images,
IET-IPR(13), No. 10, 22 August 2019, pp. 1694-1704.
DOI Link
1909
BibRef
de Souza, L.S.[Lincon Sales],
Gatto, B.B.[Bernardo B.],
Xue, J.H.[Jing-Hao],
Fukui, K.[Kazuhiro],
Enhanced Grassmann discriminant analysis with randomized time warping
for motion recognition,
PR(97), 2020, pp. 107028.
Elsevier DOI
1910
Enhanced GDA, Randomized time warping, Motion recognition
BibRef
de Souza, L.S.,
Bentes Gatto, B.,
Fukui, K.,
Enhancing discriminability of randomized time warping for motion
recognition,
MVA17(77-80)
DOI Link
1708
Covariance matrices, Databases, Image sequences, Kernel, Manifolds,
Principal component analysis, Training
BibRef
de Souza, L.S.[Lincon Sales],
Hino, H.[Hideitsu],
Fukui, K.[Kazuhiro],
3D Object Recognition with Enhanced Grassmann Discriminant Analysis,
HIS16(III: 345-359).
Springer DOI
1704
BibRef
Huang, Y.,
Liao, G.,
Xiang, Y.,
Zhang, L.,
Li, J.,
Nehorai, A.,
Low-Rank Approximation via Generalized Reweighted Iterative Nuclear
and Frobenius Norms,
IP(29), 2020, pp. 2244-2257.
IEEE DOI
2001
Minimization, Sparse matrices, Approximation algorithms,
Iterative algorithms, Matrix decomposition, Image decomposition,
generalized iterative reweighted Frobenius norm (GIRFN)
BibRef
Xiao, X.,
Chen, Y.,
Gong, Y.,
Zhou, Y.,
2D Quaternion Sparse Discriminant Analysis,
IP(29), 2020, pp. 2271-2286.
IEEE DOI
2001
Quaternions, Feature extraction, Dimensionality reduction,
Training, Correlation, Covariance matrices,
RGB-D image
BibRef
Lou, J.,
Cheung, Y.,
Robust Low-Rank Tensor Minimization via a New Tensor Spectral
k-Support Norm,
IP(29), 2020, pp. 2314-2327.
IEEE DOI
2001
Optimization, Computational modeling, Minimization,
Computer science, Task analysis,
conditional gradient descent
BibRef
Wang, Y.,
Kwok, J.T.,
Ni, L.M.,
Generalized Convolutional Sparse Coding With Unknown Noise,
IP(29), 2020, pp. 5386-5395.
IEEE DOI
2004
Convolutional sparse coding, noise modeling, Gaussian mixture model
BibRef
Tian, Z.B.[Zhi-Bao],
Zhang, H.[Hui],
Chen, Y.[Yong],
Zhang, D.[Dell],
Unsupervised hashing based on the recovery of subspace structures,
PR(103), 2020, pp. 107261.
Elsevier DOI
2005
Semantic hashing, Subspace learning, Low-rank representation,
Discrete optimization
BibRef
Azghani, M.,
Esmaeili, A.,
Behdin, K.,
Marvasti, F.,
Missing Low-Rank and Sparse Decomposition Based on Smoothed Nuclear
Norm,
CirSysVideo(30), No. 6, June 2020, pp. 1550-1558.
IEEE DOI
2006
Sparse matrices, Matrix decomposition, Minimization,
Lagrangian functions, Computational complexity,
missing observation
BibRef
Geng, X.R.[Xiu-Rui],
Wang, L.[Lei],
NPSA: Nonorthogonal Principal Skewness Analysis,
IP(29), 2020, pp. 6396-6408.
IEEE DOI
2007
Tensile stress, Feature extraction, Principal component analysis,
Indexes, Search problems, Covariance matrices,
subspace
BibRef
Chen, L.,
Jiang, X.,
Liu, X.,
Zhou, Z.,
Robust Low-Rank Tensor Recovery via Nonconvex Singular Value
Minimization,
IP(29), 2020, pp. 9044-9059.
IEEE DOI
2009
Tensile stress, Robustness, Optimization, Minimization,
Signal processing algorithms, Principal component analysis,
nonconvex optimization
BibRef
Wang, Y.,
Kou, K.I.,
Zou, C.,
Tang, Y.Y.,
Robust Sparse Representation in Quaternion Space,
IP(30), 2021, pp. 3637-3649.
IEEE DOI
2103
Quaternions, Color, Signal processing algorithms,
Matching pursuit algorithms, Image color analysis, Image coding,
color image processing
BibRef
Tan, J.[Jin],
Zhang, T.P.[Tai-Ping],
Zhao, L.C.[Lin-Chang],
Luo, X.L.[Xiao-Liu],
Tang, Y.Y.[Yuan Yan],
A robust image representation method against illumination and
occlusion variations,
IVC(112), 2021, pp. 104212.
Elsevier DOI
2107
Geometrical sparse representation.
Geometrical structure, Sparse coding, Illumination analysis, Occlusion
BibRef
Zhang, X.[Xiang],
Ma, S.W.[Si-Wei],
Wang, S.Q.[Shi-Qi],
Zhang, J.[Jian],
Sun, H.F.[Hui-Fang],
Gao, W.[Wen],
Divisively Normalized Sparse Coding: Toward Perceptual Visual Signal
Representation,
Cyber(51), No. 8, August 2021, pp. 4237-4250.
IEEE DOI
2108
Image coding, Visualization, Encoding, Indexes, Dictionaries,
Image quality, Matching pursuit algorithms,
visual perception
BibRef
Wang, B.[Bin],
Niu, H.F.[Hui-Fang],
Zeng, J.C.[Jian-Chao],
Bai, G.F.[Gui-Feng],
Lin, S.[Suzhen],
Wang, Y.B.[Yan-Bo],
Latent Representation Learning Model for Multi-Band Images Fusion via
Low-Rank and Sparse Embedding,
MultMed(23), 2021, pp. 3137-3152.
IEEE DOI
2109
Image fusion, Feature extraction, Dictionaries, Sparse matrices,
Machine learning, Neural networks, Tensile stress, Image fusion,
representation learning
BibRef
Mohideen, R.M.K.[Rahul Mohideen Kaja],
Peter, P.[Pascal],
Weickert, J.[Joachim],
A systematic evaluation of coding strategies for sparse binary images,
SP:IC(99), 2021, pp. 116424.
Elsevier DOI
2111
Compression, Sparse matrix, Binary image, Context mixing, Inpainting
BibRef
Mookambiga, A.,
Gomathi, V.,
Kernel eigenmaps based multiscale sparse model for hyperspectral
image classification,
SP:IC(99), 2021, pp. 116416.
Elsevier DOI
2111
Adaptive sparse representation, Schroedinger eigen maps,
Spatial-spectral? features, Hyperspectral image classification
BibRef
Veshki, F.G.[Farshad G.],
Vorobyov, S.A.[Sergiy A.],
Efficient ADMM-Based Algorithms for Convolutional Sparse Coding,
SPLetters(29), 2022, pp. 389-393.
IEEE DOI
2202
Convolution, Signal processing algorithms, Dictionaries,
Convolutional codes, Approximation algorithms, Optimization,
alternating direction method of multipliers
BibRef
Shen, Q.Q.[Qiang-Qiang],
Liang, Y.S.[Yong-Sheng],
Yi, S.[Shuangyan],
Zhao, J.[Jiaoyan],
Fast Universal Low Rank Representation,
CirSysVideo(32), No. 3, March 2022, pp. 1262-1272.
IEEE DOI
2203
Minimization, Linear programming, Null space,
Linear matrix inequalities, Data models, Solids, optimal mean
BibRef
Mazarguil, A.[Antoine],
Oudre, L.[Laurent],
Vayatis, N.[Nicolas],
An Uncertainty Principle for Lowband Graph Signals,
SPLetters(29), 2022, pp. 727-731.
IEEE DOI
2204
Uncertainty, Laplace equations, Eigenvalues and eigenfunctions,
Superluminescent diodes, Noise reduction, lowband graph signals
BibRef
Xu, S.X.[Si-Xiang],
Muselet, D.[Damien],
Trémeau, A.[Alain],
Sparse coding and normalization for deep Fisher score representation,
CVIU(220), 2022, pp. 103436.
Elsevier DOI
2206
BibRef
Earlier:
Deep Fisher Score Representation via Sparse Coding,
CAIP21(II:412-421).
Springer DOI
2112
Fisher score, Sparse coding, Orderless pooling,
Square root normalization, Classification
BibRef
Liu, M.M.[Mei-Mei],
Shang, Z.F.[Zuo-Feng],
Yang, Y.[Yun],
Cheng, G.[Guang],
Nonparametric Testing Under Randomized Sketching,
PAMI(44), No. 8, August 2022, pp. 4280-4290.
IEEE DOI
2207
Testing, Kernel, Smoothing methods, Computational modeling,
Estimation, Eigenvalues and eigenfunctions, Upper bound,
random sketch
BibRef
Zhang, X.Q.[Xiao-Qian],
Tan, Z.[Zhen],
Sun, H.J.[Huai-Jiang],
Wang, Z.G.[Zun-Gang],
Qin, M.W.[Ming-Wei],
Orthogonal Low-Rank Projection Learning for Robust Image Feature
Extraction,
MultMed(24), 2022, pp. 3882-3895.
IEEE DOI
2208
Feature extraction, Robustness, Data models,
Principal component analysis, Dimensionality reduction, projection learning
BibRef
Lu, Y.[Yuwu],
Wang, W.J.[Wen-Jing],
Zeng, B.Q.[Bi-Qing],
Lai, Z.H.[Zhi-Hui],
Shen, L.L.[Lin-Lin],
Li, X.L.[Xue-Long],
Canonical Correlation Analysis With Low-Rank Learning for Image
Representation,
IP(31), 2022, pp. 7048-7062.
IEEE DOI
2212
Correlation, Feature extraction, Principal component analysis,
Training, Kernel, Noise measurement, Learning systems,
image representation
BibRef
Bruhin, N.D.[Nina Dekoninck],
Davies, B.[Bryn],
Bioinspired Random Projections for Robust, Sparse Classification,
SIIMS(15), No. 4, 2022, pp. 1833-1850.
DOI Link
2212
BibRef
Fukui, K.[Kazuhiro],
Sogi, N.[Naoya],
Kobayashi, T.[Takumi],
Xue, J.H.[Jing-Hao],
Maki, A.[Atsuto],
Discriminant Feature Extraction by Generalized Difference Subspace,
PAMI(45), No. 2, February 2023, pp. 1618-1635.
IEEE DOI
2301
Principal component analysis, Image recognition,
Feature extraction, Kernel, Lighting, Face recognition,
PCA without data centering
BibRef
Yang, Z.X.[Zi-Xiang],
Shen, Q.[Qing],
Liu, W.[Wei],
Cui, W.[Wei],
A Sum-Difference Expansion Scheme for Sparse Array Construction Based
on the Fourth-Order Difference Co-Array,
SPLetters(29), 2022, pp. 2647-2651.
IEEE DOI
2301
Prototypes, Sensor arrays, Estimation, White noise, Sparse matrices,
Signal resolution, Signal processing algorithms, sum co-array
BibRef
Zha, Z.Y.[Zhi-Yuan],
Wen, B.[Bihan],
Yuan, X.[Xin],
Ravishankar, S.[Saiprasad],
Zhou, J.T.[Jian-Tao],
Zhu, C.[Ce],
Learning Nonlocal Sparse and Low-Rank Models for Image Compressive
Sensing: Nonlocal sparse and low-rank modeling,
SPMag(40), No. 1, January 2023, pp. 32-44.
IEEE DOI
2301
Deep learning, Computational modeling, Neural networks,
Sparse matrices, Imaging, Transforms, Sensors
BibRef
Zhang, J.H.[Jun-Hao],
Yap, K.H.[Kim-Hui],
Chau, L.P.[Lap-Pui],
Zhu, C.[Ce],
Nonlocal Low-Rank Residual Modeling for Image Compressive Sensing
Reconstruction,
ICIP23(1055-1059)
IEEE DOI
2312
BibRef
Zhou, J.H.[Jian-Hang],
Zhang, B.[Bob],
Zeng, S.N.[Shao-Ning],
Consensus Sparsity: Multi-Context Sparse Image Representation via
L8-Induced Matrix Variate,
IP(32), 2023, pp. 603-616.
IEEE DOI
2301
Image representation, Sparse matrices, Dictionaries, Optimization,
Minimization, Image coding, Bayes methods, Sparsity, image analysis
BibRef
Eamaz, A.[Arian],
Yeganegi, F.[Farhang],
Soltanalian, M.[Mojtaba],
On the Building Blocks of Sparsity Measures,
SPLetters(29), 2022, pp. 2667-2671.
IEEE DOI
2301
Energy measurement, Convergence, Particle measurements,
Noise measurement, Indexes, Economics, Behavioral sciences, vector norms
BibRef
Yu, Q.[Quan],
Yang, M.[Ming],
Low-rank tensor recovery via non-convex regularization, structured
factorization and spatio-temporal characteristics,
PR(137), 2023, pp. 109343.
Elsevier DOI
2302
Tensor completion, Tensor robust principle component analysis,
Low-rank approximation, Dynamic background, Spatio-temporal characteristics
BibRef
Zhao, J.[Jiaoyan],
Liang, Y.S.[Yong-Sheng],
Yi, S.[Shuangyan],
Shen, Q.Q.[Qiang-Qiang],
Cao, X.F.[Xiao-Feng],
Improving generalization of double low-rank representation using
Schatten-p norm,
PR(138), 2023, pp. 109352.
Elsevier DOI
2303
Low-rank representation, Schatten- norm, Feature extraction, Subspace clustering
BibRef
Peng, J.J.[Jiang-Jun],
Wang, Y.[Yao],
Zhang, H.Y.[Hong-Ying],
Wang, J.J.[Jian-Jun],
Meng, D.Y.[De-Yu],
Exact Decomposition of Joint Low Rankness and Local Smoothness Plus
Sparse Matrices,
PAMI(45), No. 5, May 2023, pp. 5766-5781.
IEEE DOI
2304
Sparse matrices, Matrix decomposition, TV,
Principal component analysis, Hyperspectral imaging, Histograms,
convergence guarantee
BibRef
Zou, C.M.[Cui-Ming],
Kou, K.I.[Kit Ian],
Tang, Y.Y.[Yuan Yan],
Deng, H.[Hao],
Adaptive reweighted quaternion sparse learning for data recovery and
classification,
PR(142), 2023, pp. 109653.
Elsevier DOI
2307
Quaternion sparse representation, Weight learning, Supervised learning
BibRef
Yaseen, H.[Hira],
Mahmood, A.[Arif],
Learning Structure Aware Deep Spectral Embedding,
IP(32), 2023, pp. 3939-3948.
IEEE DOI
2307
Clustering algorithms, Manifolds, Laplace equations,
Complexity theory, Training, Data structures, Scalability,
self-expression learning
BibRef
Shi, Z.L.[Zhang-Lei],
Li, X.P.[Xiao Peng],
Li, W.G.[Wei-Guo],
Yan, T.J.[Tong-Jiang],
Wang, J.[Jian],
Fu, Y.[Yaru],
Robust Low-Rank Matrix Recovery as Mixed Integer Programming via
L_0-Norm Optimization,
SPLetters(30), 2023, pp. 1012-1016.
IEEE DOI
2309
BibRef
Li, X.P.[Xiao Peng],
Yan, Y.[Yi],
Kuruoglu, E.E.[Ercan Engin],
So, H.C.[Hing Cheung],
Chen, Y.[Yuan],
Robust Recovery for Graph Signal via L_0-Norm Regularization,
SPLetters(30), 2023, pp. 1322-1326.
IEEE DOI
2310
BibRef
Fang, P.F.[Peng-Fei],
Harandi, M.[Mehrtash],
Lan, Z.Z.[Zhen-Zhong],
Petersson, L.[Lars],
Poincaré Kernels for Hyperbolic Representations,
IJCV(131), No. 1, January 2023, pp. 2770-2792.
Springer DOI
2310
Embedding data in hyperbolic spaces
BibRef
Ji, C.[Cheng],
Zhao, T.[Tao],
Sun, Q.Y.[Qing-Yun],
Fu, X.C.[Xing-Cheng],
Li, J.X.[Jian-Xin],
Higher-order memory guided temporal random walk for dynamic
heterogeneous network embedding,
PR(143), 2023, pp. 109766.
Elsevier DOI
2310
Higher order, Dynamic network, Heterogeneous network
BibRef
Song, Z.H.[Zi-Hao],
Xu, X.J.[Xiang-Jian],
Lian, H.[Heng],
Zhao, W.H.[Wei-Hua],
Robust low tubal rank tensor recovery via L2E criterion,
PR(149), 2024, pp. 110241.
Elsevier DOI
2403
Robust tensor recovery, Tensor factor Frobenius norm,
Low tubal rank, criterion, Nonconvex
BibRef
Chen, H.R.[Hao-Ran],
Chen, X.[Xu],
Tao, H.W.[Hong-Wei],
Li, Z.[Zuhe],
Wang, B.Y.[Bo-Yue],
PDRLRR: A novel low-rank representation with projection distance
regularization via manifold optimization for clustering,
PR(149), 2024, pp. 110198.
Elsevier DOI
2403
Low-rank representation, Schatten- norm,
Projection distance regularization, Manifold optimization, Data clustering
BibRef
Zhang, H.M.[Heng-Min],
Wen, B.[Bihan],
Zha, Z.Y.[Zhi-Yuan],
Zhang, B.[Bob],
Tang, Y.[Yang],
Yu, G.[Guo],
Du, W.L.[Wen-Li],
Accelerated PALM for Nonconvex Low-Rank Matrix Recovery With
Theoretical Analysis,
CirSysVideo(34), No. 4, April 2024, pp. 2304-2317.
IEEE DOI Code:
WWW Link.
2404
proximal alternating linearized minimization.
Linear matrix inequalities, Minimization, Optimization,
Matrix decomposition, Computational modeling, Convergence,
low-rank representation
BibRef
Wang, J.Y.[Jing-Yu],
Deng, T.Q.[Ting-Quan],
Yang, M.[Ming],
Nonconvex submodule clustering via joint sliced sparse gradient and
cluster-aware approach,
PR(154), 2024, pp. 110619.
Elsevier DOI
2406
Tensor based sparse representation, Submodule clustering,
Tensor schatten -norm, Union of free submodules, SSG, Cluster-aware
BibRef
Sarkar, R.[Rohan],
Kak, A.[Avinash],
Dual Pose-invariant Embeddings: Learning Category and Object-specific
Discriminative Representations for Recognition and Retrieval,
CVPR24(17077-17085)
IEEE DOI
2410
Training, Computer architecture, Object recognition, pose-invariant embeddings,
Dual embedding space
BibRef
Li, H.[Hanao],
Han, T.[Tian],
Enforcing Sparsity on Latent Space for Robust and Explainable
Representations,
WACV24(5270-5279)
IEEE DOI
2404
Codes, Sparse approximation, Computational modeling, Semantics,
Generators, Robustness, Noise robustness, Algorithms
BibRef
An, S.[Sungtae],
Jammalamadaka, N.[Nataraj],
Chong, E.[Eunji],
Maximum Entropy Information Bottleneck for Uncertainty-aware
Stochastic Embedding,
SAIAD23(3809-3818)
IEEE DOI
2309
BibRef
Nareddy, K.K.R.[Kartheek K Reddy],
Mache, S.[Swapnil],
Pokala, P.K.[Praveen Kumar],
Seelamantula, C.S.[Chandra Sekhar],
An Ensemble of Proximal Networks for Sparse Coding,
ICIP22(1251-1255)
IEEE DOI
2211
Training, Gradient methods, Image coding, Noise reduction,
Image restoration, Iterative methods, Task analysis, image denoising
BibRef
Zang, Z.L.[Ze-Lin],
Li, S.Y.[Si-Yuan],
Wu, D.[Di],
Wang, G.[Ge],
Wang, K.[Kai],
Shang, L.[Lei],
Sun, B.[Baigui],
Li, H.[Hao],
Li, S.Z.[Stan Z.],
DLME: Deep Local-Flatness Manifold Embedding,
ECCV22(XXI:576-592).
Springer DOI
2211
BibRef
Usvyatsov, M.[Mikhail],
Makarova, A.[Anastasia],
Ballester-Ripoll, R.[Rafael],
Rakhuba, M.[Maxim],
Krause, A.[Andreas],
Schindler, K.[Konrad],
Cherry-Picking Gradients: Learning Low-Rank Embeddings of Visual Data
via Differentiable Cross-Approximation,
ICCV21(11406-11415)
IEEE DOI
2203
Processes large-scale visual data tensors by looking at a fraction of
their entries only.
Training, Visualization, Tensors, Medical conditions,
Neural networks, Memory management, Optimization and learning methods
BibRef
Xu, Z.Q.[Zheng-Qin],
Xing, H.S.[Hua-Song],
Fang, S.[Shun],
Wu, S.Q.[Shi-Qian],
Xie, S.L.[Shou-Lie],
Double-Weighted Low-Rank Matrix Recovery Based on Rank Estimation,
RSLCV21(172-180)
IEEE DOI
2112
Adaptation models, Estimation, Sparse matrices, Data mining, Optimization
BibRef
Fu, Z.Q.[Zhi-Qiang],
Zhao, Y.[Yao],
Chang, D.X.[Dong-Xia],
Zhang, X.X.[Xing-Xing],
Wang, Y.M.[Yi-Ming],
Double low-rank representation with projection distance penalty for
clustering,
CVPR21(5316-5325)
IEEE DOI
2111
Laplace equations, Robustness,
Complexity theory, Noise measurement, Task analysis
BibRef
Botteghi, N.[Nicolò],
Obbink, R.[Ruben],
Geijs, D.[Daan],
Poel, M.[Mannes],
Sirmacek, B.[Beril],
Brune, C.[Christoph],
Mersha, A.[Abeje],
Stramigioli, S.[Stefano],
Low Dimensional State Representation Learning with Reward-shaped
Priors,
ICPR21(3736-3743)
IEEE DOI
2105
WWW Link. Navigation, Robot vision systems, Reinforcement learning,
Robot sensing systems, Trajectory, Topology, Task analysis, Robotics
BibRef
Kühnel, L.[Line],
Fletcher, T.[Tom],
Joshi, S.[Sarang],
Sommer, S.[Stefan],
Latent Space Geometric Statistics,
ManifLearn20(163-178).
Springer DOI
2103
BibRef
Souza, L.S.[Lincon S.],
Sogi, N.[Naoya],
Gatto, B.B.[Bernardo B.],
Kobayashi, T.[Takumi],
Fukui, K.[Kazuhiro],
An Interface between Grassmann manifolds and vector spaces,
Diff-CVML20(3695-3704)
IEEE DOI
2008
Manifolds, Image recognition, Tools, Computational modeling, Kernel,
Machine learning, Data models
BibRef
Zuo, Y.[Yan],
Avraham, G.[Gil],
Drummond, T.W.[Tom W.],
Traversing Latent Space Using Decision Ferns,
ACCV18(I:593-608).
Springer DOI
1906
Transforming raw data to a feature space.
BibRef
Hu, Z.,
Nie, F.,
Li, X.,
Robust Low Rank Approxiamtion via Inliers Selection,
ICIP18(3688-3692)
IEEE DOI
1809
Robustness, Sparse matrices, Approximation algorithms, Data models,
Principal component analysis, Structure from motion,
Subspace
BibRef
Sha, L.D.[Ling-Dao],
Schonfeld, D.[Dan],
Dual graph regularized sparse coding for image representation,
VCIP17(1-4)
IEEE DOI
1804
graph theory, image classification, image coding,
image representation, image texture, regression analysis, FS-LD,
sparse coding
BibRef
Kim, J.,
Tahboub, K.,
Delp, E.J.,
Spatial pyramid alignment for sparse coding based object
classification,
ICIP17(1950-1954)
IEEE DOI
1803
Computational modeling, Encoding, Feature extraction, Image coding,
Image representation, Layout, Vector quantization, feature coding,
spatial pyramid alignment
BibRef
Nascimento, G.[Guilherme],
Laranjeira, C.[Camila],
Braz, V.[Vinicius],
Lacerda, A.[Anisio],
Nascimento, E.R.[Erickson R.],
A Robust Indoor Scene Recognition Method Based on Sparse Representation,
CIARP17(408-415).
Springer DOI
1802
Combined with CNN.
BibRef
Chen, C.,
Zhang, B.,
del Bue, A.[Alessio],
Murino, V.,
Manifold Constrained Low-Rank Decomposition,
RSL-CV17(1800-1808)
IEEE DOI
1802
Data models, Manifolds, Matrix decomposition,
Optimization, Transmission line matrix methods, Videos
BibRef
Shaheen, S.,
Affara, L.,
Ghanem, B.,
Constrained Convolutional Sparse Coding for Parametric Based
Reconstruction of Line Drawings,
ICCV17(4434-4442)
IEEE DOI
1802
approximation theory, computer graphics,
convergence of numerical methods, convolution, data compression,
Standards
BibRef
Bibi, A.[Adel],
Ghanem, B.[Bernard],
High Order Tensor Formulation for Convolutional Sparse Coding,
ICCV17(1790-1798)
IEEE DOI
1802
To reconstruct color video.
image classification, image coding,
image colour analysis, image reconstruction,
BibRef
Dutta, A.[Aritra],
Richtárik, P.[Peter],
Online and Batch Supervised Background Estimation Via L1 Regression,
WACV19(541-550)
IEEE DOI
1904
expectation-maximisation algorithm, gradient methods,
learning (artificial intelligence), regression analysis,
Streaming media
BibRef
Li, X.,
Dutta, A.[Aritra],
Richtárik, P.[Peter],
A Batch-Incremental Video Background Estimation Model Using Weighted
Low-Rank Approximation of Matrices,
RSL-CV17(1835-1843)
IEEE DOI
1802
Adaptation models, Approximation algorithms, Estimation,
Matrix decomposition, Principal component analysis, Robustness, Video sequences
BibRef
Li, X.,
Dutta, A.,
Weighted Low Rank Approximation for Background Estimation Problems,
RSL-CV17(1853-1861)
IEEE DOI
1802
Approximation algorithms, Closed-form solutions,
Computational modeling, Estimation, Matrix converters,
Robustness
BibRef
Dutta, A.,
Li, X.,
A fast algorithm for a weighted low rank approximation,
MVA17(93-96)
DOI Link
1708
Algorithm design and analysis, Analytical models,
Approximation algorithms, Estimation, Matrix decomposition,
Principal component analysis, Robustness
BibRef
Zhang, L.F.[Li-Fang],
Shen, Q.[Qi],
Li, D.F.[De-Fang],
Tang, X.[Xin],
Wang, P.S.[Patrick S.],
Feng, G.C.[Guo-Can],
Adaptive Hashing with Sparse Modification,
ICPR16(3844-3849)
IEEE DOI
1705
Binary codes, Distortion, Hypercubes, Linear programming,
Principal component analysis, Quantization (signal), Sparse, matrices
BibRef
Wang, S.R.[Shu-Run],
Zhao, Z.H.[Zheng-Hui],
Zhang, X.[Xiang],
Zhang, J.[Jian],
Wang, S.Q.[Shi-Qi],
Ma, S.W.[Si-Wei],
Gao, W.[Wen],
Improved entropy of primitive for visual information estimation,
VCIP16(1-4)
IEEE DOI
1701
Convergence
BibRef
Qi, N.[Na],
Shi, Y.H.[Yun-Hui],
Sun, X.Y.[Xiao-Yan],
Yin, B.C.[Bao-Cai],
TenSR: Multi-dimensional Tensor Sparse Representation,
CVPR16(5916-5925)
IEEE DOI
1612
BibRef
Bernard, F.[Florian],
Gemmar, P.[Peter],
Hertel, F.[Frank],
Goncalves, J.[Jorge],
Thunberg, J.[Johan],
Linear Shape Deformation Models with Local Support Using Graph-Based
Structured Matrix Factorisation,
CVPR16(5629-5638)
IEEE DOI
1612
BibRef
Wei, X.[Xian],
Shen, H.[Hao],
Kleinsteuber, M.[Martin],
Trace Quotient with Sparsity Priors for Learning Low Dimensional
Image Representations,
PAMI(42), No. 12, December 2020, pp. 3119-3135.
IEEE DOI
2011
BibRef
Earlier:
Trace Quotient Meets Sparsity:
A Method for Learning Low Dimensional Image Representations,
CVPR16(5268-5277)
IEEE DOI
1612
Learning systems, Sparse matrices, Semantics, Machine learning,
Machine learning algorithms, Image processing,
semi-supervised learning
BibRef
Banerjee, M.,
Chakraborty, R.,
Vemuri, B.C.,
Sparse Exact PGA on Riemannian Manifolds,
ICCV17(5020-5028)
IEEE DOI
1802
differential geometry, principal component analysis, vectors,
PGA problem, Principal Component Analysis,
Principal component analysis
BibRef
Chakraborty, R.[Rudrasis],
Seo, D.H.[Do-Hyung],
Vemuri, B.C.[Baba C.],
An Efficient Exact-PGA Algorithm for Constant Curvature Manifolds,
CVPR16(3976-3984)
IEEE DOI
1612
A non-linear analog of the PCA algorithm, Principal Geodesic Analysis (PGA).
BibRef
Hsieh, S.H.[Sung-Hsien],
Lu, C.S.[Chun-Shien],
Pei, S.C.[Soo-Chang],
Fast binary embedding via circulant downsampled matrix,
ICIP16(1789-1793)
IEEE DOI
1610
Algorithm design and analysis
BibRef
Siyahjani, F.[Farzad],
Almohsen, R.[Ranya],
Sabri, S.[Sinan],
Doretto, G.[Gianfranco],
A Supervised Low-Rank Method for Learning Invariant Subspaces,
ICCV15(4220-4228)
IEEE DOI
1602
Matrix decomposition
BibRef
Chum, O.[Ondrej],
Low Dimensional Explicit Feature Maps,
ICCV15(4077-4085)
IEEE DOI
1602
Computer vision
BibRef
Sharma, G.,
Schiele, B.,
Scalable Nonlinear Embeddings for Semantic Category-Based Image
Retrieval,
ICCV15(1296-1304)
IEEE DOI
1602
Approximation algorithms
BibRef
Wang, X.F.[Xiao-Fei],
Navasca, C.[Carmeliza],
Adaptive Low Rank Approximation for Tensors,
RSL-CV15(939-945)
IEEE DOI
1602
Adaptation models
BibRef
Bian, X.[Xiao],
Krim, H.[Hamid],
Bi-sparsity pursuit for robust subspace recovery,
ICIP15(3535-3539)
IEEE DOI
1512
Sparse representation
BibRef
Provenzi, E.[Edoardo],
Delon, J.[Julie],
Gousseau, Y.[Yann],
Mazin, B.[Baptiste],
On Spatiochromatic Features in Natural Images Statistics,
CIAP15(II:46-55).
Springer DOI
1511
BibRef
Xiao, S.J.[Shi-Jie],
Li, W.[Wen],
Xu, D.[Dong],
Tao, D.C.[Da-Cheng],
FaLRR: A fast low rank representation solver,
CVPR15(4612-4620)
IEEE DOI
1510
BibRef
Heide, F.[Felix],
Heidrich, W.[Wolfgang],
Wetzstein, G.[Gordon],
Fast and flexible convolutional sparse coding,
CVPR15(5135-5143)
IEEE DOI
1510
BibRef
Zhang, X.[Xin],
Phung, D.Q.[Dinh Q.],
Venkatesh, S.[Svetha],
Pham, D.S.[Duc-Son],
Liu, W.Q.[Wan-Quan],
Multi-View Subspace Clustering for Face Images,
DICTA15(1-7)
IEEE DOI
1603
computer vision
BibRef
Zhang, X.[Xin],
Pham, D.S.[Duc-Son],
Phung, D.Q.[Dinh Q.],
Liu, W.Q.[Wan-Quan],
Saha, B.[Budhaditya],
Venkatesh, S.[Svetha],
Visual Object Clustering via Mixed-Norm Regularization,
WACV15(1030-1037)
IEEE DOI
1503
Clustering algorithms
BibRef
Zhang, H.[Heng],
Patel, V.M.[Vishal M.],
Shekhar, S.[Sumit],
Chellappa, R.[Rama],
Domain adaptive sparse representation-based classification,
FG15(1-8)
IEEE DOI
1508
biometrics (access control)
BibRef
Shekhar, S.[Sumit],
Patel, V.M.[Vishal M.],
Chellappa, R.[Rama],
Analysis sparse coding models for image-based classification,
ICIP14(5207-5211)
IEEE DOI
1502
Algorithm design and analysis
BibRef
Silva, R.F.[Rogers F.],
Plis, S.M.[Sergey M.],
Adali, T.[Tulay],
Calhoun, V.D.[Vince D.],
Multidataset independent subspace analysis extends independent vector
analysis,
ICIP14(2864-2868)
IEEE DOI
1502
Cost function
BibRef
Liu, G.W.[Gao-Wen],
Yan, Y.[Yan],
Song, J.K.[Jing-Kuan],
Sebe, N.[Nicu],
Minimizing dataset bias: Discriminative multi-task sparse coding
through shared subspace learning for image classification,
ICIP14(2869-2873)
IEEE DOI
1502
Accuracy
BibRef
Lin, T.Y.[Tsung-Yu],
Liu, T.L.[Tyng-Luh],
Efficient binary codes for extremely high-dimensional data,
ICIP14(2212-2216)
IEEE DOI
1502
Binary codes
First is a high-dimensional coding, how to deal with it.
BibRef
Qi, Y.G.[Yong-Gang],
Zheng, W.S.[Wei-Shi],
Xiang, T.[Tao],
Song, Y.Z.[Yi-Zhe],
Zhang, H.G.[Hong-Gang],
Guo, J.[Jun],
One-Shot Learning of Sketch Categories with Co-regularized Sparse
Coding,
ISVC14(II: 74-84).
Springer DOI
1501
BibRef
Wang, Y.Q.[Yu-Qi],
Gong, Y.F.[Yun-Fei],
Liu, Q.A.[Qi-Ang],
Robust Attribute-Based Visual Recognition Using Discriminative Latent
Representation,
MMMod15(I: 191-202).
Springer DOI
1501
Discriminative Latent Attribute (DLA)
BibRef
Xiang, W.[Wu],
Wang, J.M.[Jian-Min],
Long, M.S.[Ming-Sheng],
Local Hybrid Coding for Image Classification,
ICPR14(3744-3749)
IEEE DOI
1412
BibRef
Xing, S.[Sun],
Yung, N.H.C.[Nelson H.C.],
Large Scale Image Categorization in Sparse Nonparametric Bayesian
Representation,
ICPR14(1365-1370)
IEEE DOI
1412
Approximation algorithms
BibRef
Luo, L.[Lei],
Yang, J.[Jian],
Qian, J.J.[Jian-Jun],
Yang, J.Y.[Jing-Yu],
Nuclear Norm Regularized Sparse Coding,
ICPR14(1834-1839)
IEEE DOI
1412
Databases
BibRef
Li, W.[Wanyi],
Wang, P.[Peng],
Qiao, H.[Hong],
Visual Tracking via Saliency Weighted Sparse Coding Appearance Model,
ICPR14(4092-4097)
IEEE DOI
1412
Clutter
BibRef
Choi, J.H.[Jong-Hyun],
Cho, H.J.[Hyun-Jong],
Kwac, J.[Jungsuk],
Davis, L.S.[Larry S.],
Toward Sparse Coding on Cosine Distance,
ICPR14(4423-4428)
IEEE DOI
1412
Accuracy
BibRef
Tao, L.[Liang],
Ip, H.H.S.[Horace H.S.],
Wang, Y.L.[Ying-Lin],
Shu, X.[Xin],
Ensemble Manifold Structured Low Rank Approximation for Data
Representation,
ICPR14(744-749)
IEEE DOI
1412
Approximation methods
BibRef
Li, J.X.[Jun-Xia],
Rajan, D.[Deepu],
Yang, J.[Jian],
Local feature embedding for supervised image classification,
ICIP15(1300-1304)
IEEE DOI
1512
Class structure
BibRef
Johnson, J.[Jubin],
Varnousfaderani, E.S.,
Cholakkal, H.[Hisham],
Rajan, D.[Deepu],
Sparse Coding for Alpha Matting,
IP(25), No. 7, July 2016, pp. 3032-3043.
IEEE DOI
1606
BibRef
Earlier: A3, A4, A1, Only:
Top-down saliency with Locality-constrained Contextual Sparse Coding,
BMVC15(xx-yy).
DOI Link
1601
BibRef
And: A1, A4, A3, Only:
Temporal trimap propagation using motion-assisted shape blending,
VCIP15(1-4)
IEEE DOI
1605
BibRef
Earlier: A1, A4, A3, Only:
Sparse codes as Alpha Matte,
BMVC14(xx-yy).
HTML Version.
1410
graph theory.
Adaptive optics
BibRef
Johnson, J.[Jubin],
Cholakkal, H.[Hisham],
Rajan, D.[Deepu],
L1-Regularized Reconstruction Error as Alpha Matte,
SPLetters(24), No. 4, April 2017, pp. 407-411.
IEEE DOI
1704
estimation theory
BibRef
Zhao, Z.C.[Zhi-Chen],
Ma, H.M.[Hui-Min],
Chen, X.Z.[Xiao-Zhi],
Protected Pooling Method of Sparse Coding in Visual Classification,
ICCVG14(680-687).
Springer DOI
1410
BibRef
Chen, C.[Chen],
Huang, J.Z.[Jun-Zhou],
He, L.[Lei],
Li, H.S.[Hong-Sheng],
Preconditioning for Accelerated Iteratively Reweighted Least Squares
in Structured Sparsity Reconstruction,
CVPR14(2713-2720)
IEEE DOI
1409
BibRef
Mobahi, H.[Hossein],
Liu, C.[Ce],
Freeman, W.T.[William T.],
A Compositional Model for Low-Dimensional Image Set Representation,
CVPR14(1322-1329)
IEEE DOI
1409
BibRef
Izadinia, H.[Hamid],
Sadeghi, F.[Fereshteh],
Farhadi, A.[Ali],
Incorporating Scene Context and Object Layout into Appearance
Modeling,
CVPR14(232-239)
IEEE DOI
1409
BibRef
Niu, L.[Li],
Cai, J.F.[Jian-Fei],
Xu, D.[Dong],
Domain Adaptive Fisher Vector for Visual Recognition,
ECCV16(VI: 550-566).
Springer DOI
1611
BibRef
Niu, L.[Li],
Li, W.[Wen],
Xu, D.[Dong],
Multi-view Domain Generalization for Visual Recognition,
ICCV15(4193-4201)
IEEE DOI
1602
Linear matrix inequalities
BibRef
Xu, Z.[Zheng],
Li, W.[Wen],
Niu, L.[Li],
Xu, D.[Dong],
Exploiting Low-Rank Structure from Latent Domains for Domain
Generalization,
ECCV14(III: 628-643).
Springer DOI
1408
BibRef
Liu, B.D.[Bao-Di],
Wang, Y.X.[Yu-Xiong],
Shen, B.[Bin],
Zhang, Y.J.[Yu-Jin],
Hebert, M.[Martial],
Self-explanatory Sparse Representation for Image Classification,
ECCV14(II: 600-616).
Springer DOI
1408
BibRef
Landecker, W.[Will],
Chartrand, R.[Rick],
de Deo, S.[Simon],
Robust Sparse Coding and Compressed Sensing with the Difference Map,
ECCV14(III: 315-329).
Springer DOI
1408
BibRef
Talwalkar, A.[Ameet],
Mackey, L.[Lester],
Mu, Y.D.[Ya-Dong],
Chang, S.F.[Shih-Fu],
Jordan, M.I.[Michael I.],
Distributed Low-Rank Subspace Segmentation,
ICCV13(3543-3550)
IEEE DOI
1403
Distributed
BibRef
Huot, E.[Etienne],
Papari, G.[Giuseppe],
Herlin, I.[Isabelle],
Optimal Orthogonal Basis and Image Assimilation: Motion Modeling,
ICCV13(3352-3359)
IEEE DOI
1403
data assimilation
BibRef
Wang, Z.W.[Zhao-Wen],
Yang, J.C.[Jian-Chao],
Nasrabadi, N.[Nasser],
Huang, T.S.[Thomas S.],
A Max-Margin Perspective on Sparse Representation-Based
Classification,
ICCV13(1217-1224)
IEEE DOI
1403
BibRef
Wu, S.S.[Song-Song],
Jing, X.Y.[Xiao-Yuan],
Yang, J.[Jian],
Yang, J.Y.[Jing-Yu],
Learning image manifold using neighboring similarity integration,
ICIP14(1897-1901)
IEEE DOI
1502
Data visualization
BibRef
Liu, Q.[Qian],
Jing, X.Y.[Xiao-Yuan],
Hu, R.M.[Rui-Min],
Yao, Y.F.[Yong-Fang],
Yang, J.Y.[Jing-Yu],
Similarity preserving analysis based on sparse representation for
image feature extraction and classification,
ICIP13(3013-3016)
IEEE DOI
1402
Similarity preserving analysis
BibRef
Zhang, H.[Hong],
Chen, L.[Li],
Isomorphic and sparse multimodal data representation based on
correlation analysis,
ICIP13(3959-3962)
IEEE DOI
1402
correlation analysis
BibRef
Qi, N.[Na],
Shi, Y.H.[Yun-Hui],
Sun, X.Y.[Xiao-Yan],
Wang, J.D.[Jing-Dong],
Ding, W.[Wenpeng],
Two dimensional analysis sparse model,
ICIP13(310-314)
IEEE DOI
1402
Algorithm design and analysis
BibRef
Zonoobi, D.[Dornoosh],
Kassim, A.A.[Ashraf A.],
Low rank and sparse matrix reconstruction with partial support
knowledge for surveillance video processing,
ICIP13(335-339)
IEEE DOI
1402
Algorithm design and analysis
BibRef
Bo, L.F.[Lie-Feng],
Ren, X.F.[Xiao-Feng],
Fox, D.[Dieter],
Multipath Sparse Coding Using Hierarchical Matching Pursuit,
CVPR13(660-667)
IEEE DOI
1309
Deep Learning; Feature Learning; Object Recognition; Sparse Coding
BibRef
Bristow, H.[Hilton],
Eriksson, A.P.[Anders P.],
Lucey, S.[Simon],
Fast Convolutional Sparse Coding,
CVPR13(391-398)
IEEE DOI
1309
ADMM; convolution; deep learning; fourier; sparse coding
BibRef
Chi, Y.T.[Yu-Tseh],
Ali, M.[Mohsen],
Rushdi, M.[Muhammad],
Ho, J.[Jeffrey],
Affine-Constrained Group Sparse Coding and Its Application to
Image-Based Classifications,
ICCV13(681-688)
IEEE DOI
1403
Sparse coding; affine; classification; group
BibRef
Pang, J.B.[Jun-Biao],
Huang, Q.M.[Qing-Ming],
Yin, B.C.[Bao-Cai],
Qin, L.[Lei],
Wang, D.[Dan],
Stochastic boosting for large-scale image classification,
ICIP13(3274-3277)
IEEE DOI
1402
BibRef
Earlier:
Theoretical analysis of learning local anchors for classification,
ICPR12(1803-1806).
WWW Link.
1302
Boosting.
local coordinate coding.
BibRef
Wang, Y.M.[Yue-Ming],
Wang, X.G.[Xing-Gang],
Zhu, S.J.[Shao-Jun],
Bai, X.[Xiang],
Liu, W.Y.[Wen-Yu],
Adjacent coding for image classification,
ICPR12(1459-1462).
WWW Link.
1302
encode one descriptor and its adjacent neighbors.
BibRef
Ou, W.H.[Wei-Hua],
You, X.G.[Xin-Ge],
Cheung, Y.M.[Yiu-Ming],
Peng, Q.[Qinmu],
Gong, M.M.[Ming-Ming],
Jiang, X.[Xiubao],
Structured sparse coding for image representation based on L1-graph,
ICPR12(3220-3223).
WWW Link.
1302
BibRef
Han, X.H.[Xian-Hua],
Qiao, X.[Xu],
Chen, Y.W.[Yen-Wei],
Group sparse representation of adaptive sub-domain selection for image
classification,
ICPR12(1431-1434).
WWW Link.
1302
BibRef
Paris, S.[Sebastien],
Halkias, X.[Xanadu],
Glotin, H.[Herve],
Sparse coding for histograms of local binary patterns applied for image
categorization: Toward a Bag-of-Scenes analysis,
ICPR12(2817-2820).
WWW Link.
1302
BibRef
Wang, J.[Jin],
Sun, X.P.[Xiang-Ping],
Chen, R.H.[Rong-Hua],
She, M.[Mary],
Wang, Q.A.[Qi-Ang],
Object categorization via sparse representation of local features,
ICPR12(3005-3008).
WWW Link.
1302
BibRef
Guo, S.[Song],
Ruan, Q.Q.[Qiu-Qi],
Miao, Z.J.[Zhen-Jiang],
Similarity weighted sparse representation for classification,
ICPR12(1241-1244).
WWW Link.
1302
BibRef
Zheng, P.,
Aravkin, A.Y.,
Thiagarajan, J.J.[Jayaraman J.],
Ramamurthy, K.N.,
Learning Robust Representations for Computer Vision,
RSL-CV17(1784-1791)
IEEE DOI
1802
Dynamics, Optimization,
Principal component analysis, Robustness, TV
BibRef
Thiagarajan, J.J.[Jayaraman J.],
Ramamurthy, K.N.[Karthikeyan Natesan],
Sattigeri, P.[Prasanna],
Spanias, A.[Andreas],
Supervised local sparse coding of sub-image features for image
retrieval,
ICIP12(3117-3120).
IEEE DOI
1302
BibRef
Zhang, L.[Lihe],
Ma, C.[Chen],
Low-rank, sparse matrix decomposition and group sparse coding for image
classification,
ICIP12(669-672).
IEEE DOI
1302
BibRef
Raja, R.,
Mansoor Roomi, S.M.,
Dharmalakshmi, D.,
Robust indoor/outdoor scene classification,
ICAPR15(1-5)
IEEE DOI
1511
BibRef
Earlier:
Outdoor scene classification using invariant features,
NCVPRIPG13(1-4)
IEEE DOI
1408
Gabor filters.
feature extraction
BibRef
Sathyabama, B.,
Mansoor Roomi, S.M.,
Kamalam R, E.J.,
Geometric invariant Target classification using 2D Mellin cepstrum
with modified grid formation,
NCVPRIPG13(1-4)
IEEE DOI
1408
Fourier transforms
BibRef
Raja, R.,
Mansoor Roomi, S.M.,
Kalaiyarasi, D.,
Semantic modeling of natural scenes by local binary pattern,
IMVIP12(169-172).
IEEE DOI
1302
BibRef
Julazadeh, A.[Ali],
Marsousi, M.[Mahdi],
Alirezaie, J.[Javad],
Classification based on sparse representation and Euclidian distance,
VCIP12(1-5).
IEEE DOI
1302
BibRef
Zeng, Z.[Zinan],
Chan, T.H.[Tsung-Han],
Jia, K.[Kui],
Xu, D.[Dong],
Finding Correspondence from Multiple Images via Sparse and Low-Rank
Decomposition,
ECCV12(V: 325-339).
Springer DOI
1210
BibRef
Jiang, Z.L.[Zhuo-Lin],
Davis, L.S.[Larry S.],
Submodular Salient Region Detection,
CVPR13(2043-2050)
IEEE DOI
1309
BibRef
Cao, L.J.[Liu-Juan],
Ji, R.R.[Rong-Rong],
Gao, Y.[Yue],
Yang, Y.[Yi],
Tian, Q.[Qi],
Weakly supervised sparse coding with geometric consistency pooling,
CVPR12(3578-3585).
IEEE DOI
1208
BibRef
Liu, H.F.[Hai-Feng],
Yang, Z.[Zheng],
Wu, Z.H.[Zhao-Hui],
Li, X.L.[Xue-Long],
A-Optimal Non-negative Projection for image representation,
CVPR12(1592-1599).
IEEE DOI
1208
BibRef
Liu, R.S.[Ri-Sheng],
Lin, Z.C.[Zhou-Chen],
de la Torre, F.[Fernando],
Su, Z.X.[Zhi-Xun],
Fixed-rank representation for unsupervised visual learning,
CVPR12(598-605).
IEEE DOI
1208
BibRef
Liu, L.Q.[Ling-Qiao],
Wang, L.[Lei],
Liu, X.W.[Xin-Wang],
In defense of soft-assignment coding,
ICCV11(2486-2493).
IEEE DOI
1201
Computationally efficient, but not as accurate as sparse or local coding
(which is computationally more expensive)
BibRef
Sohn, K.[Kihyuk],
Jung, D.Y.[Dae Yon],
Lee, H.L.[Hong-Lak],
Hero, A.O.[Alfred O.],
Efficient learning of sparse, distributed, convolutional feature
representations for object recognition,
ICCV11(2643-2650).
IEEE DOI
1201
BibRef
Robles-Kelly, A.[Antonio],
Learning a Gaussian basis for spectra representation aimed at
reflectance classification,
OTCBVS11(88-95).
IEEE DOI
1106
BibRef
Zontak, M.[Maria],
Irani, M.[Michal],
Internal statistics of a single natural image,
CVPR11(977-984).
IEEE DOI
1106
From recurrence of small image patches. Priors for solving problems.
BibRef
Cai, D.[Deng],
Bao, H.J.[Hu-Jun],
He, X.F.[Xiao-Fei],
Sparse concept coding for visual analysis,
CVPR11(2905-2910).
IEEE DOI
1106
Sparse Concept Coding, to capture geometric structure more than SVD does.
BibRef
He, R.[Ran],
Zheng, W.S.[Wei-Shi],
Hu, B.G.[Bao-Gang],
Kong, X.W.[Xiang-Wei],
Nonnegative sparse coding for discriminative semi-supervised learning,
CVPR11(2849-2856).
IEEE DOI
1106
BibRef
Kulkarni, N.[Naveen],
Li, B.X.[Bao-Xin],
Discriminative affine sparse codes for image classification,
CVPR11(1609-1616).
IEEE DOI
1106
BibRef
Yu, K.[Kai],
Lin, Y.Q.[Yuan-Qing],
Lafferty, J.[John],
Learning image representations from the pixel level via hierarchical
sparse coding,
CVPR11(1713-1720).
IEEE DOI
1106
BibRef
Bespalov, D.[Dmitriy],
Dahl, A.L.[Anders Lindbjerg],
Bai, B.[Bing],
Shokoufandeh, A.[Ali],
On Inferring Image Label Information Using Rank Minimization for
Supervised Concept Embedding,
SCIA11(103-113).
Springer DOI
1105
BibRef
Wu, L.[Lina],
Luo, S.W.[Si-Wei],
Sun, W.[Wei],
Zheng, X.[Xiang],
Integrating ILSR to Bag-of-Visual Words Model Based on Sparse Codes of
SIFT Features Representations,
ICPR10(4283-4286).
IEEE DOI
1008
Implicit local spatial relationship. ILSR
Sparse codes of SIFT features.
BibRef
Han, X.H.[Xian-Hua],
Chen, Y.W.[Yen-Wei],
Ruan, X.[Xiang],
Image recognition by learned linear subspace of combined
bag-of-features and low-level features,
ICIP10(1049-1052).
IEEE DOI
1009
BibRef
And:
Image Categorization by Learned Nonlinear Subspace of Combined
Visual-Words and Low-Level Features,
ICPR10(3037-3040).
IEEE DOI
1008
Object and scene classes.
BibRef
Zhan, Y.B.[Yu-Bin],
Yin, J.P.[Jian-Ping],
Cluster Preserving Embedding,
ICPR10(621-624).
IEEE DOI
1008
BibRef
Przelaskowski, A.[Artur],
The Role of Sparse Data Representation in Semantic Image Understanding,
ICCVG10(I: 69-80).
Springer DOI
1009
BibRef
Huang, J.B.[Jia-Bin],
Yang, M.H.[Ming-Hsuan],
Fast sparse representation with prototypes,
CVPR10(3618-3625).
IEEE DOI
1006
BibRef
Liu, Y.[Yanan],
Wu, F.[Fei],
Zhang, Z.H.[Zhi-Hua],
Zhuang, Y.T.[Yue-Ting],
Yan, S.C.[Shui-Cheng],
Sparse representation using nonnegative curds and whey,
CVPR10(3578-3585).
IEEE DOI
1006
Set of sparse and nonnegative representations. Then incorporate these into
a sparse representation.
BibRef
Gong, D.[Dian],
Zhao, X.M.[Xue-Mei],
Yang, Q.[Qiong],
Sparse Non-negative Pattern Learning for image representation,
ICIP08(981-984).
IEEE DOI
0810
Patterns are learned, features are extracted then used for representation.
BibRef
Tsai, Y.T.[Yun-Ta],
Wang, Q.[Quan],
You, S.[Suya],
CDIKP: A highly-compact local feature descriptor,
ICPR08(1-4).
IEEE DOI
0812
SIFT combined with projection
BibRef
Heiler, M.[Matthias],
Schnörr, C.[Christoph],
Controlling Sparseness in Non-negative Tensor Factorization,
ECCV06(I: 56-67).
Springer DOI
0608
BibRef
Heiler, M.[Matthias],
Schnörr, C.[Christoph],
Reverse-Convex Programming for Sparse Image Codes,
EMMCVPR05(600-616).
Springer DOI
0601
BibRef
And:
Learning Non-Negative Sparse Image Codes by Convex Programming,
ICCV05(II: 1667-1674).
IEEE DOI
0510
Aim to preserve local structure, unlike PCA.
See also Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values.
BibRef
Polak, S.[Simon],
Shashua, A.[Amnon],
The Semi-explicit Shape Model for Multi-object Detection and
Classification,
ECCV10(II: 336-349).
Springer DOI
1009
BibRef
Shashua, A.[Amnon],
Zass, R.[Ron],
Hazan, T.[Tamir],
Multi-way Clustering Using Super-Symmetric Non-negative Tensor
Factorization,
ECCV06(IV: 595-608).
Springer DOI
0608
See also Probabilistic graph and hypergraph matching.
BibRef
Hazan, T.[Tamir],
Polak, S.[Simon],
Shashua, A.[Amnon],
Sparse Image Coding Using a 3D Non-Negative Tensor Factorization,
ICCV05(I: 50-57).
IEEE DOI
0510
Generate descriptions (e.g. bases) of images.
BibRef
Haasdonk, B.,
Halawani, A.,
Burkhardt, H.,
Adjustable Invariant Features by Partial Haar-Integration,
ICPR04(II: 769-774).
IEEE DOI
0409
BibRef
Molina-Gamez, M.,
Subirana-Vilanova, J.B.,
Sparse Groups:
A Polynomial Middle-Level Approach for Object Recognition,
ICPR96(I: 518-522).
IEEE DOI
9608
(Autonomous Univ. of Barcelona, E)
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Sparse Descriptions, Dictionary Descriptions .