Al-Shaykh, O.K.,
Doherty, J.F.,
Invariant Image-Analysis Based on Radon-Transform and SVD,
CirSysSignal(43), No. 2, February 1996, pp. 123-133.
9703
SVD.
BibRef
Murase, H., and
Nayar, S.K.,
Visual Learning And Recognition Of 3-D Objects From Appearance,
IJCV(14), No. 1, January 1995, pp. 5-24.
Springer DOI
PDF File.
BibRef
9501
Earlier:
Visual Learning Object Models from Appearance,
DARPA93(547-555).
BibRef
And:
Learning and Recognition of 3D Objects from Appearance,
WQV93(39-50).
BibRef
And:
Learning Object Models from Appearance,
AAAI-93(836-843)
Model Acquisition. A new representation that is parameterized by pose and
illumination.
BibRef
Murase, H.,
Nayar, S.K.,
Detection of 3D Objects in Cluttered Scenes
Using Hierarchical Eigenspace,
PRL(18), No. 4, April 1997, pp. 375-384.
9708
BibRef
Earlier:
Learning by a Generation Approach to Appearance-Based
Object Recognition,
ICPR96(I: 24-29).
IEEE DOI
9608
BibRef
Earlier:
Image Spotting of 3D Objects Using Parametric Eigenspace Representation,
SCIA95(325-332).
BibRef
Murase, H.,
Shi, M.[Musashino],
Nayar, S.K.,
Parametric Eigenspace Representation for Visual Learning
and Recognition,
SPIE(2031), 1993, pp. 378-391.
BibRef
9300
Murase, H.[Hiroshi],
Nayar, S.K.[Shree K.], and
Nene, S.A.[Sameer A.],
Software Library for Appearance Matching (SLAM),
ARPA94(I:733-737).
PDF File.
Code, Matching.
WWW Link.
BibRef
9400
Nayar, S.K.[Shree K.],
Nene, S.A.[Sameer A.],
Murase, H.,
Real-Time 100 Object Recognition System,
ARPA96(1223-1228).
BibRef
9600
And:
CRA96(III: 2321-2325).
PDF File. Generate Eigen space representation of the object.
BibRef
Nene, S.A.[Sameer A.],
Nayar, S.K.[Shree K.],
Closest Point Search in High Dimensions,
CVPR96(859-865).
IEEE DOI 100 object recognition and other applications.
BibRef
9600
Nayar, S.K.[Shree K.],
Nene, S.A.[Sameer A.],
Murase, H.[Hiroshi],
Subspace Methods for Robot Vision,
RA(12), No. 5, October 1996, pp. 750-758.
9610
BibRef
Earlier: A3, A1, A2:
General Learning Algorithm for Robot Vision,
ARPA94(I:753-763).
System: SLAM. Software Library for Appearance Matching
BibRef
Mukherjee, S.[Sayan],
Nayar, S.K.[Shree K.],
Optimal RBF Networks for Visual Learning,
ICCV95(794-800).
IEEE DOI
BibRef
9500
Paatero, P., and
Tapper, U.,
Positive matrix factorization:
A non-negative factor model with optimal utilization of error
estimates of data values,
Environmetrics(5), 1994, 111-126.
BibRef
9400
Flusser, J.,
Object Matching by Means of Matching Likelihood Coefficients,
PRL(16), 1995, pp. 893-900.
BibRef
9500
Chalmond, B.[Bernard],
Girard, S.C.[Stephane C.],
Nonlinear Modeling of Scattered Multivariate Data and Its Application
to Shape Change,
PAMI(21), No. 5, May 1999, pp. 422-432.
IEEE DOI PCA has problems. Introduce a non-linear "PCA" process.
BibRef
9905
Huttenlocher, D.P.,
Lilien, R.H.,
Olson, C.F.,
View-Based Recognition Using an Eigenspace Approximation to the
Hausdorff Measure,
PAMI(21), No. 9, September 1999, pp. 951-955.
IEEE DOI
PDF File.
PDF File.
BibRef
9909
Earlier:
Approximate Hausdorff Matching Using Eigenspaces,
ARPA96(1181-1186).
BibRef
And:
Object Recognition Using Subspace Methods,
ECCV96(I:536-545).
Springer DOI To counter the problems of view based (eigenspace) approaches when
there are occlusions, an eigenspace approximation to the Hausdorff measure.
Applies to edge maps.
BibRef
Leonardis, A.[Ales],
Bischof, H.[Horst],
Robust Recognition Using Eigenimages,
CVIU(78), No. 1, April 2000, pp. 99-118.
0004
DOI Link
BibRef
Earlier:
Computational complexity reduction in eigenspace approaches,
CAIP97(1-8).
Springer DOI
9709
Instead of computing coefficients with a projection of the
data onto the eigenimages, extract them with a hypothesize-and-test
using subsets of image points. Select from compteing hypotheses
using the MDL principle.
See also Efficient MDL-Based Construction of RBF Networks, An.
BibRef
Bischof, H.[Horst],
Leonardis, A.[Ales],
Robust Recognition of Scaled Eigenimages Through a
Hierarchical Approach,
CVPR98(664-670).
IEEE DOI Estimate both the scale of the object and the coefficients of
the eigenimages.
BibRef
9800
Leonardis, A.[Ales],
Bischof, H.[Horst],
Maver, J.[Jasna],
Multiple eigenspaces,
PR(35), No. 11, November 2002, pp. 2613-2627.
Elsevier DOI
0208
BibRef
Maver, J.[Jasna],
Leonardis, A.[Ales],
Recognizing 2-tone images in grey-level parametric eigenspaces,
PRL(23), No. 14, December 2002, pp. 1631-1640.
Elsevier DOI
0208
BibRef
Leonardis, A.[Ales],
Bischof, H.[Horst],
Multiple Eigenspaces by MDL,
ICPR00(Vol I: 233-237).
IEEE DOI
0009
BibRef
Leonardis, A.[Ales],
Bischof, H.[Horst],
Robust Recovery of Eigneimages in the Presence
of Outliers and Occlusions,
JCIT(4), No. 1, 1996, pp. 25-36.
BibRef
9600
Earlier:
Dealing with Occlusions in the Eigenspace Approach,
CVPR96(453-458).
IEEE DOI
BibRef
Sengel, M.,
Berger, M.,
Kravtchenko-Berejnoi, V.,
Bischof, H.,
Fast object recognition and pose determination,
ICIP02(III: 349-352).
IEEE DOI
0210
BibRef
Skoaj, D.,
Bischof, H.,
Leonardis, A.,
A Robust PCA Algorithm for Building Representations from Panoramic
Images,
ECCV02(IV: 761 ff.).
Springer DOI
0205
BibRef
Bischof, H.[Horst],
Wildenauer, H.[Horst],
Leonardis, A.[Ales],
Illumination insensitive recognition using eigenspaces,
CVIU(95), No. 1, July 2004, pp. 86-104.
Elsevier DOI
0407
BibRef
Earlier:
Illumination Insensitive Eigenspaces,
ICCV01(I: 233-238).
IEEE DOI
0106
Incorporate a gradient filter bank into the
eigenspace recognition.
BibRef
Costa, M.S.[Mauro S.],
Shapiro, L.G.[Linda G.],
3D Object Recognition and Pose with Relational Indexing,
CVIU(79), No. 3, September 2000, pp. 364-407.
DOI Link
0008
BibRef
Earlier:
Scene Analysis Using Appearance-Based Models and Relational Indexing,
SCV95(103-108).
IEEE DOI University of Washington.
Graph representations. Match with multiple objects in a scene.
BibRef
Costa, M.S.[Mauro S.],
Shapiro, L.G.[Linda G.],
Analysis of scenes containing multiple non-polyhedral 3D objects,
CIAP95(272-280).
Springer DOI
9509
BibRef
Shapiro, L.G.[Linda G.],
Costa, M.S.[Mauro S.],
Appearance-based 3D object recognition,
ORCV94(51-63).
Springer DOI
9412
BibRef
Ji, Q.,
Costa, M.S.,
Haralick, R.M.,
Shapiro, L.G.,
An Integrated Linear Technique for Pose Estimation from Different
Geometric Features,
PRAI(13), No. 5, August 1999, pp. 705.
0005
BibRef
Mustafa, A.A.Y.[Adnan A.Y.],
Shapiro, L.G.[Linda G.], and
Ganter, M.A.[Mark A.],
Matching Surface Signatures for Object Identification,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Borotschnig, H.,
Paletta, L.,
Prantl, M.,
Pinz, A.J.,
Appearance-based active object recognition,
IVC(18), No. 9, June 2000, pp. 715-727.
Elsevier DOI
0004
BibRef
Earlier:
Active Object Recognition in Parametric Eigenspace,
BMVC98(xx-yy).
BibRef
Paletta, L.[Lucas],
Fritz, G.[Gerald],
Seifert, C.[Christin],
Perception-Action Based Object Detection from Local Descriptor
Combination and Reinforcement Learning,
SCIA05(639-648).
Springer DOI
0506
BibRef
And:
Cascaded Sequential Attention for Object Recognition with Informative
Local Descriptors and Q-learning of Grouping Strategies,
AttenPerf05(III: 94-94).
IEEE DOI
0507
BibRef
Greindl, C.,
Goyal, A.,
Ogris, G.,
Paletta, L.,
Cascaded attention and grouping for object recognition from video,
CIAP03(448-453).
IEEE DOI
0310
BibRef
Fritz, G.,
Paletta, L.,
Bischof, H.,
Object recognition using local information content,
ICPR04(II: 15-18).
IEEE DOI
0409
BibRef
Hornegger, J.[Joachim],
Niemann, H.[Heinrich],
Risack, R.[Robert],
Appearance-based object recognition using optimal feature transforms,
PR(33), No. 2, February 2000, pp. 209-224.
Elsevier DOI
0001
BibRef
Reinhold, M.P.,
Paulus, D.,
Niemann, H.,
Improved Appearance-Based 3-D Object Recognition Using Wavelet Features,
VMV01(xx-yy).
PDF File.
0209
BibRef
And:
Appearance-Based Statistical Object Recognition
by Heterogenous Background and Occlusions,
DAGM01(254-261).
PS File.
BibRef
Reinhold, M.P.[Michael P.],
Grzegorzek, M.[Marcin],
Denzler, J.[Joachim],
Niemann, H.[Heinrich],
Appearance-based recognition of 3-D objects by cluttered background and
occlusions,
PR(38), No. 5, May 2005, pp. 739-753.
Elsevier DOI
0501
BibRef
Grzegorzek, M.[Marcin],
Niemann, H.[Heinrich],
Statistical Object Recognition Including Color Modeling,
ICIAR05(481-489).
Springer DOI
0509
BibRef
Worthington, P.L.[Philip L.],
Hancock, E.R.[Edwin R.],
Object Recognition Using Shape-from-Shading,
PAMI(23), No. 5, May 2001, pp. 535-542.
IEEE DOI
0105
BibRef
Earlier:
Structural Object Recognition Using Shape-from-shading,
ICPR00(Vol I: 738-741).
IEEE DOI
0009
BibRef
And:
Histogram-based Object Recognition using Shape-from-Shading,
CVPR00(I: 643-648).
IEEE DOI
0005
BibRef
Earlier:
Region-based Object Recognition using Shape-from-Shading,
ECCV00(I: 455-471).
Springer DOI
0003
Can surface topography from SfS be used for object recognition?
See also Facial Shape-from-shading and Recognition Using Principal Geodesic Analysis and Robust Statistics.
BibRef
Worthington, P.L.[Philip L.],
Hancock, E.R.[Edwin R.],
Synthesising Appearance Manifolds using Shape-from-Shading,
SCIA01(P-W4A).
0206
BibRef
Hancock, E.R.[Edwin R.],
Worthington, P.L.[Philip L.],
Huet, B.[Benoit],
Appearance-Based Object Recognition Using Shape-From-Shading,
ICPR98(Vol I: 412-416).
IEEE DOI
9808
BibRef
And: A2, A3, A1:
Increased Extent of Characteristic Views using Shape-from-shading
for Object Recognition,
BMVC98(xx-yy).
BibRef
Agarwal, M.[Mohit],
Jain, G.[Gaurav],
Chaudhury, S.[Santanu],
Indexing for local appearance-based recognition of planar objects,
PRL(23), No. 1-3, January 2002, pp. 311-317.
Elsevier DOI
0201
BibRef
Zhang, Z.F.M.[Zhong-Fei Mark],
Srihari, R.K.[Rohini K.],
Subspace morphing theory for appearance based object identification,
PR(35), No. 11, November 2002, pp. 2389-2396.
Elsevier DOI
0208
BibRef
Zhang, Z.F.[Zhong-Fei],
Srihari, R.K.[Rohini K.],
Computer based method and apparatus for object recognition,
US_Patent6,636,619, Oct 21, 2003
WWW Link.
BibRef
0310
Quick, P.[Philip],
Capson, D.W.[David W.],
Subspace position measurement in the presence of occlusion,
PRL(23), No. 14, December 2002, pp. 1721-1733.
Elsevier DOI
0208
Camera or object position with eigen based method.
BibRef
Stegmann, M.B.[Mikkel B.],
Larsen, R.[Rasmus],
Multi-band modelling of appearance,
IVC(21), No. 1, January 2003, pp. 61-67.
Elsevier DOI
0301
BibRef
Stegmann, M.B.[Mikkel B.],
Ersboll, B.K.[Bjarne K.],
Larsen, R.[Rasmus],
Fame: A flexible appearance modeling environment,
MedImg(22), No. 10, October 2003, pp. 1319-1331.
IEEE Abstract.
0310
BibRef
Darkner, S.[Sune],
Larsen, R.[Rasmus],
Stegmann, M.B.[Mikkel B.],
Ersboll, B.K.[Bjarne K.],
Wedgelet Enhanced Appearance Models,
GenModel04(177).
IEEE DOI
0406
BibRef
Larsen, R.[Rasmus],
Stegmann, M.B.[Mikkel B.],
Darkner, S.[Sune],
Forchhammer, S.[Soren],
Cootes, T.F.[Timothy F.],
Ersboll, B.K.[Bjarne Kjaer],
Texture enhanced appearance models,
CVIU(106), No. 1, April 2007, pp. 20-30.
Elsevier DOI
0704
Registration; Dimensionality reduction; Atlases; Deformable models;
Active appearance models; Wavelets; Wedgelets; Face images
BibRef
Chen, C.S.[Chu-Song],
Hsieh, W.T.[Wen-Teng],
Chen, J.H.[Jiun-Hung],
Panoramic Appearance-Based Recognition of Video Contents Using Matching
Graphs,
SMC-B(34), No. 1, February 2004, pp. 179-199.
IEEE Abstract.
0403
BibRef
Chen, C.S.[Chu-Song],
Chen, J.H.[Jiun-Hung],
Hsieh, W.T.[Wen-Teng],
A dynamic programming approach for appearance-based recognition of
environments,
ICPR02(II: 893-896).
IEEE DOI
0211
BibRef
Min, W.L.[Wan-Li],
Lu, K.[Ke],
He, X.F.[Xiao-Fei],
Locality pursuit embedding,
PR(37), No. 4, April 2004, pp. 781-788.
Elsevier DOI
0403
Linear embedding that respects the local geometrical structure
described by the Euclidean distances.
Rather than PCA for dimensionality reduction.
BibRef
Chen, J.H.[Jiun-Hung],
Chen, C.S.[Chu-Song],
Object Recognition Based on Image Sequences by Using Inter-Feature-Line
Consistencies,
PR(37), No. 9, September 2004, pp. 1913-1923.
Elsevier DOI
0407
BibRef
Earlier:
Using Inter-feature-Line Consistencies for Sequence-Based Object
Recognition,
ECCV04(Vol I: 108-120).
Springer DOI
0405
Appearance-based recognition in sequences.
Derived from nearest feature line.
See also Performance Evaluation of the Nearest Feature Line Method in Image Classification and Retrieval.
BibRef
Bicego, M.[Manuele],
Danese, S.[Stefano],
Melzi, S.[Simone],
Castellani, U.[Umberto],
A Bioinformatics Approach to 3D Shape Matching,
NORDIA14(313-325).
Springer DOI
1504
BibRef
van de Weijer, J.,
Gevers, T.,
Smeulders, A.W.M.,
Robust Photometric Invariant Features From the Color Tensor,
IP(15), No. 1, January 2006, pp. 118-127.
IEEE DOI
0601
BibRef
Autio, I.[Ilkka],
Using natural class hierarchies in multi-class visual classification,
PR(39), No. 7, July 2006, pp. 1290-1299.
Elsevier DOI
0606
Multi-object recognition; Hierarchic object recognition;
Efficient object recognition
BibRef
Verbeek, J.[Jakob],
Learning Nonlinear Image Manifolds by Global Alignment of Local Linear
Models,
PAMI(28), No. 8, August 2006, pp. 1236-1250.
IEEE DOI
0606
Appearence based models.
BibRef
Zivkovic, Z.[Zoran],
Verbeek, J.[Jakob],
Transformation invariant component analysis for binary images,
CVPR06(I: 254-259).
IEEE DOI
0606
BibRef
Khabou, M.A.,
Hermi, L.,
Rhouma, M.B.H.,
Shape recognition using eigenvalues of the Dirichlet Laplacian,
PR(40), No. 1, January 2007, pp. 141-153.
Elsevier DOI
0611
Shape recognition; Eigenvalues; Laplacian; Fixed membrane problem;
Dirichlet boundary condition; Neural networks
BibRef
Choi, H.[Heeyoul],
Choi, S.J.[Seung-Jin],
Robust kernel Isomap,
PR(40), No. 3, March 2007, pp. 853-862.
Elsevier DOI
0611
Isomap; Kernel PCA; Manifold learning; Multidimensional scaling (MDS);
Nonlinear dimensionality reduction
BibRef
Bishnu, A.[Arijit],
Bhattacharya, B.B.,
Stacked Euler Vector (SERVE): A Gray-Tone Image Feature Based on
Bit-Plane Augmentation,
PAMI(29), No. 2, February 2007, pp. 350-355.
IEEE DOI
0701
SERVE is a four-tuple, each integer representing the Euler number
of the partial binary image formed by pixel overlap relations
among the four most significant bit planes of the gray-tone image.
Apply to
See also Columbia Object Image Library (COIL-100).
BibRef
Sun, T.[Tingkai],
Chen, S.C.[Song-Can],
Locality preserving CCA with applications to data visualization and
pose estimation,
IVC(25), No. 5, 1 May 2007, pp. 531-543.
Elsevier DOI
0703
Canonical correlation analysis (CCA); Locality preservation;
Pose estimation; Data visualization; Dimensionality reduction
CCA (for dimensionality reduction) applied to image recognition.
BibRef
Vik, T.[Torbjorn],
Heitz, F.[Fabrice],
Charbonnier, P.[Pierre],
Robust Pose Estimation and Recognition Using Non-Gaussian Modeling of
Appearance Subspaces,
PAMI(29), No. 5, May 2007, pp. 901-905.
IEEE DOI
0704
Appearence model generalizes the Gaussian subspace model to
non-Gaussian and nonparametric distributions.
BibRef
Dahyot, R.[Rozenn],
Charbonnier, P.[Pierre],
Heitz, F.[Fabrice],
Robust Visual Recognition of Color Images,
CVPR00(I: 685-690).
IEEE DOI
0005
BibRef
Wang, X.[Xuan],
Xiao, B.[Bin],
Ma, J.F.[Jian-Feng],
Bi, X.L.[Xiu-Li],
Scaling and rotation invariant analysis approach to object recognition
based on Radon and Fourier-Mellin transforms,
PR(40), No. 12, December 2007, pp. 3503-3508.
Elsevier DOI
0709
Radon, then Fourier-Mellin. To get invariants.
Radon transform; Pattern recognition; Fourier-Mellin transform;
Invariant analysis
BibRef
Wang, X.[Xuan],
Guo, F.X.[Fang-Xia],
Xiao, B.[Bin],
Ma, J.F.[Jian-Feng],
Rotation invariant analysis and orientation estimation method for
texture classification based on Radon transform and correlation
analysis,
JVCIR(21), No. 1, January 2010, pp. 29-32.
Elsevier DOI
1002
Correlation analysis; Radon transform; Rotation invariance; Texture
analysis; Orientation estimation
BibRef
Mansur, A.[Al],
Kuno, Y.[Yoshinori],
Specific and Class Object Recognition for Service Robots through
Autonomous and Interactive Methods,
IEICE(E91-D), No. 6, June 2008, pp. 1793-1803.
DOI Link
0806
BibRef
Mansur, A.[Al],
Sakata, K.[Katsutoshi],
Das, D.[Dipankar],
Kuno, Y.[Yoshinori],
Recognition of Plain Objects Using Local Region Matching,
IEICE(E91-D), No. 7, July 2008, pp. 1906-1913.
DOI Link
0807
BibRef
Earlier: A1, A2, A4, Only:
Recognition of Household Objects by Service Robots Through Interactive
and Autonomous Methods,
ISVC07(II: 140-151).
Springer DOI
0711
BibRef
Das, D.[Dipankar],
Kobayashi, Y.[Yoshinori],
Kuno, Y.[Yoshinori],
Multiple Object Category Detection and Localization Using Generative
and Discriminative Models,
IEICE(E92-D), No. 10, October 2009, pp. 2112-2121.
WWW Link.
0910
BibRef
Earlier:
A Hybrid Model for Multiple Object Category Detection and Localization,
MVA09(431-).
PDF File.
0905
BibRef
Das, D.[Dipankar],
Kobayashi, Y.[Yoshinori],
Kuno, Y.[Yoshinori],
Sub-Category Optimization through Cluster Performance Analysis for
Multi-View Multi-Pose Object Detection,
IEICE(E94-D), No. 7, July 2011, pp. 1467-1478.
WWW Link.
1107
BibRef
Earlier:
Sub-Category Optimization for Multi-view Multi-pose Object Detection,
ICPR10(1405-1408).
IEEE DOI
1008
BibRef
Earlier:
Efficient Hypothesis Generation through Sub-categorization for Multiple
Object Detection,
ISVC09(II: 160-171).
Springer DOI
0911
BibRef
Das, D.[Dipankar],
Kobayashi, Y.[Yoshinori],
Kuno, Y.[Yoshinori],
Object Detection and Localization in Clutter Range Images Using Edge
Features,
ISVC09(II: 172-183).
Springer DOI
0911
BibRef
Das, D.[Dipankar],
Mansur, A.[Al],
Kobayashi, Y.[Yoshinori],
Kuno, Y.[Yoshinori],
An Integrated Method for Multiple Object Detection and Localization,
ISVC08(II: 133-144).
Springer DOI
0812
BibRef
Mansur, A.[Al],
Kuno, Y.[Yoshinori],
Improving Recognition through Object Sub-categorization,
ISVC08(II: 851-859).
Springer DOI
0812
BibRef
Mansur, A.[Al],
Hossain, M.A.[Mohammed Altab],
Kuno, Y.[Yoshinori],
Integration of Multiple Methods for Class and Specific Object
Recognition,
ISVC06(I: 841-849).
Springer DOI
0611
BibRef
Kurnia, R.[Rahmadi],
Hossain, M.A.[Mohammed Altab],
Kuno, Y.[Yoshinori],
Use of Spatial Reference Systems in Interactive Object Recognition,
CRV06(62-62).
IEEE DOI
0607
BibRef
Hossain, M.A.[Mohammed Altab],
Kurnia, R.[Rahmadi],
Nakamura, A.[Akio],
Kuno, Y.[Yoshinori],
Interactive Object Recognition through Hypothesis Generation and
Confirmation,
IEICE(E89-D), No. 7, July 2006, pp. 2197-2206.
DOI Link
0607
BibRef
Hossain, M.A.[Mohammed Altab],
Kurnia, R.[Rahmadi],
Kuno, Y.[Yoshinori],
Geometric and Photometric Analysis for Interactively Recognizing
Multicolor or Partially Occluded Objects,
ISVC05(134-142).
Springer DOI
0512
BibRef
Agarwal, A.[Ankur],
Triggs, B.[Bill],
Multilevel Image Coding with Hyperfeatures,
IJCV(78), No. 1, June 2008, pp. 15-27.
Springer DOI
0803
BibRef
Earlier:
Hyperfeatures: Multilevel Local Coding for Visual Recognition,
ECCV06(I: 30-43).
Springer DOI
0608
BibRef
And:
INRIARR-5655, 2005.
HTML Version. Hierarchical local appearance models.
BibRef
Wilson, R.C.[Richard C.],
Zhu, P.[Ping],
A study of graph spectra for comparing graphs and trees,
PR(41), No. 9, September 2008, pp. 2833-2841.
Elsevier DOI
0806
BibRef
Earlier: A2, A1:
A Study of Graph Spectra for Comparing Graphs,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
And: A2, A1:
Stability of the Eigenvalues of Graphs,
CAIP05(371).
Springer DOI
0509
Graph matching; Tree matching; Shape representation; Spectrum; Features
BibRef
Sidibe, D.[Desire],
Montesinos, P.[Philippe],
Janaqi, S.[Stefan],
Matching Local Invariant Features with Contextual Information:
An Experimental Evaluation,
ELCVIA(7), No. 1, November 2008, pp. 26-39.
DOI Link
0903
BibRef
Pinz, A.J.[Axel J.],
Bischof, H.[Horst],
Kropatsch, W.G.[Walter G.],
Schweighofer, G.[Gerald],
Haxhimusa, Y.[Yll],
Opelt, A.[Andreas],
Ion, A.[Adrian],
Representations for Cognitive Vision:
A Review of Appearance-Based, Spatio-Temporal, and Graph-Based Approaches,
ELCVIA(7), No. 2, 2008, pp. xx.
DOI Link
BibRef
0800
Li, J.[Jian],
Zhou, S.H.K.[Shao-Hua Kevin],
Chellappa, R.[Rama],
Appearance Modeling Using a Geometric Transform,
IP(18), No. 4, April 2009, pp. 889-902.
IEEE DOI
0903
BibRef
Earlier:
Appearance Modeling Under Geometric Context,
ICCV05(II: 1252-1259).
IEEE DOI
0510
Model the parts. Other techniques become a subset of this method.
BibRef
Laptev, I.[Ivan],
Improving object detection with boosted histograms,
IVC(27), No. 5, 2 April 2009, pp. 535-544.
Elsevier DOI
0904
BibRef
Earlier:
Improvements of Object Detection Using Boosted Histograms,
BMVC06(III:949).
PDF File.
0609
Object recognition; Machine learning; Histogram image features
Recognize objects in a class.
histograms of features in local regions.
BibRef
Chen, D.T.[Da-Tong],
Liu, Q.A.[Qi-Ang],
Sun, M.G.[Min-Gui],
Yang, J.[Jie],
Mining Appearance Models Directly From Compressed Video,
MultMed(10), No. 2, February 2008, pp. 268-276.
IEEE DOI
0905
BibRef
Koppal, S.J.[Sanjeev J.],
Narasimhan, S.G.[Srinivasa G.],
Appearance Derivatives for Isonormal Clustering of Scenes,
PAMI(31), No. 8, August 2009, pp. 1375-1385.
IEEE DOI
0906
BibRef
Earlier:
Clustering Appearance for Scene Analysis,
CVPR06(II: 1323-1330).
IEEE DOI
0606
Scene points clustered by surface normals even when geometry, material,
lighting are unknown.
BibRef
Lu, Z.W.[Zhi-Wu],
Peng, Y.X.[Yu-Xin],
Ip, H.H.S.[Horace H.S.],
Image categorization via robust pLSA,
PRL(31), No. 1, 1 January 2010, pp. 36-43.
Elsevier DOI
1001
pLSA. Image categorization; Probabilistic latent semantic analysis; Rival
penalized competitive learning; Ensemble learning
BibRef
Lu, Z.W.[Zhi-Wu],
Peng, Y.X.[Yu-Xin],
Ip, H.H.S.[Horace H.S.],
Gaussian mixture learning via robust competitive agglomeration,
PRL(31), No. 7, 1 May 2010, pp. 539-547.
Elsevier DOI
1004
Gaussian mixtures; Competitive agglomeration; Model selection;
Asymptotic analysis
BibRef
Lu, Z.W.[Zhi-Wu],
Ip, H.H.S.[Horace H.S.],
Combining Context, Consistency, and Diversity Cues for Interactive
Image Categorization,
MultMed(12), No. 3, March 2010, pp. 194-203.
IEEE DOI
1003
BibRef
Earlier:
Image categorization by learning with context and consistency,
CVPR09(2719-2726).
IEEE DOI
0906
BibRef
And:
Image categorization with spatial mismatch kernels,
CVPR09(397-404).
IEEE DOI
0906
spatial mismatch kernels for use with SVM classification.
Inter-image context and cluster consistency.
BibRef
Lu, Z.W.[Zhi-Wu],
Ip, H.H.S.[Horace H.S.],
Spatial Markov Kernels for Image Categorization and Annotation,
SMC-B(41), No. 4, August 2011, pp. 976-989.
IEEE DOI
1108
BibRef
Wang, L.H.[Li-Hua],
Lu, Z.W.[Zhi-Wu],
Ip, H.H.S.[Horace H.S.],
Image Categorization Based on a Hierarchical Spatial Markov Model,
CAIP09(766-773).
Springer DOI
0909
BibRef
Lu, Z.W.[Zhi-Wu],
Ip, H.H.S.[Horace H. S.],
He, Q.Z.[Qi-Zhen],
Context-based multi-label image annotation,
CIVR09(Article No 30).
DOI Link
0907
BibRef
Wang, Q.G.[Qing-Gang],
Li, J.W.[Jian-Wei],
Wang, X.C.[Xu-Chu],
Distinguishing variance embedding,
IVC(28), No. 6, June 2010, pp. 872-880.
Elsevier DOI
1003
Manifold learning; Dimensionality reduction; Maximum variance
unfolding; Laplacian eigenmaps; Variance analysis
BibRef
Parks, D.H.[Donovan H.],
Levine, M.D.[Martin D.],
Is local colour normalization good enough for local appearance-based
classification?,
MVA(21), No. 5, August 2010, pp. 789-796.
WWW Link.
1011
Color normalization applied to patches, not entire image.
BibRef
Brown, M.[Matthew],
Hua, G.[Gang],
Winder, S.A.J.[Simon A.J.],
Discriminative Learning of Local Image Descriptors,
PAMI(33), No. 1, January 2011, pp. 43-57.
IEEE DOI
1011
BibRef
Earlier: A2, A1, A3:
Discriminant Embedding for Local Image Descriptors,
ICCV07(1-8).
IEEE DOI
0710
Set of basic descriptors for combining.
BibRef
Winder, S.A.J.[Simon A. J.],
Brown, M.[Matthew],
Learning Local Image Descriptors,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Brown, M.[Matthew],
Szeliski, R.S.[Richard S.],
Winder, S.A.J.[Simon A.J.],
Multi-Image Matching Using Multi-Scale Oriented Patches,
CVPR05(I: 510-517).
IEEE DOI
0507
Feature matching. Use Harris corners (
See also Combined Corner and Edge Detector, A. ).
Use for stitching multiple images.
BibRef
Basri, R.[Ronen],
Hassner, T.[Tal],
Zelnik-Manor, L.[Lihi],
Approximate Nearest Subspace Search,
PAMI(33), No. 2, February 2011, pp. 266-278.
IEEE DOI
1101
BibRef
Earlier:
A general framework for Approximate Nearest Subspace search,
Subspace09(109-116).
IEEE DOI
0910
BibRef
Earlier:
Approximate Nearest Subspace Search with Applications to Pattern
Recognition,
CVPR07(1-8).
IEEE DOI
0706
Rather than the exact subspace.
BibRef
Hoover, R.C.[Randy C.],
Maciejewski, A.A.[Anthony A.],
Roberts, R.G.[Rodney G.],
Eigendecomposition of Images Correlated on S^1, S^2, and
SO(3) Using Spectral Theory,
IP(18), No. 11, November 2009, pp. 2562-2571.
IEEE DOI
0911
BibRef
Earlier:
An Analysis of Sphere Tessellations for Pose Estimation of 3-D Objects
Using Spherically Correlated Images,
Southwest08(41-44).
IEEE DOI
0803
BibRef
And:
Aerial Pose Detection of 3-D Objects Using Hemispherical Harmonics,
Southwest08(157-160).
IEEE DOI
0803
BibRef
Hoover, R.C.[Randy C.],
Maciejewski, A.A.[Anthony A.],
Roberts, R.G.[Rodney G.],
Fast Eigenspace Decomposition of Images of Objects With Variation in
Illumination and Pose,
SMC-B(41), No. 2, April 2011, pp. 318-329.
IEEE DOI
1103
BibRef
Gkalelis, N.,
Mezaris, V.,
Kompatsiaris, I.,
Mixture Subclass Discriminant Analysis,
SPLetters(18), No. 5, May 2011, pp. 319-322.
IEEE DOI
1104
Deal with shortcomings of subclass discriminant analysis (SDA).
BibRef
Wang, C.[Can],
He, X.F.[Xiao-Fei],
Bu, J.J.[Jia-Jun],
Chen, Z.G.[Zheng-Guang],
Chen, C.[Chun],
Guan, Z.Y.[Zi-Yu],
Image representation using Laplacian regularized nonnegative tensor
factorization,
PR(44), No. 10-11, October-November 2011, pp. 2516-2526.
Elsevier DOI
1101
Image representation; Image clustering; Tensor; Graph Laplacian; Manifold
BibRef
Chen, Y.[Yan],
Zhang, J.,
Cai, D.,
Liu, W.,
He, X.F.[Xiao-Fei],
Nonnegative Local Coordinate Factorization for Image Representation,
IP(22), No. 3, March 2013, pp. 969-979.
IEEE DOI
1302
BibRef
Chen, Y.[Yan],
Bao, H.J.[Hu-Jun],
He, X.F.[Xiao-Fei],
Non-negative local coordinate factorization for image representation,
CVPR11(569-574).
IEEE DOI
1106
BibRef
Xu, Y.L.[Yi-Lei],
Roy-Chowdhury, A.K.[Amit K.],
A Physics-Based Analysis of Image Appearance Models,
PAMI(33), No. 8, August 2011, pp. 1681-1688.
IEEE DOI
1107
BibRef
Earlier:
A theoretical analysis of linear and multi-linear models of image
appearance,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Xu, Y.L.[Yi-Lei],
Roy-Chowdhury, A.K.[Amit K.],
Learning a geometry integrated image appearance manifold from a small
training set,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Do, C.M.[Cuong M.],
Improved integral imaging approach for 3D object recognition,
SPIE(Newsroom), November 17, 2011
DOI Link
1111
BibRef
And:
3D object recognition with integral imaging using neural networks,
SPIE(8135), 2011, pp. 81350D.
DOI Link A new method for displaying 3D images uses principal component
analysis and neural networks to achieve accurate object recognition
while reducing memory requirements and computational time.
BibRef
de la Torre, F.[Fernando],
A Least-Squares Framework for Component Analysis,
PAMI(34), No. 6, June 2012, pp. 1041-1055.
IEEE DOI
1205
BibRef
Earlier:
A Least-Squares Unified View of PCA, LDA, CCA and
Spectral Graph Methods,
CMU-RI-TR-08-29, May, 2008
WWW Link.
BibRef
And:
Component Analysis methods for pattern recognition,
ICPR08(1-1).
IEEE DOI
0812
Analyze the representation. Relate component analysis techniques, derive
numerical solutions, deal with small sample sizes, extend methods.
Derive weighted generalizations of PCA, LDA, SC, and CCA, and several
new CA techniques.
BibRef
Miao, X.[Xu],
Rahimi, A.[Ali],
Rao, R.P.N.[Rajesh P.N.],
Complementary Kernel Density Estimation,
PRL(33), No. 10, 15 July 2012, pp. 1381-1387.
Elsevier DOI
1205
Generative models; Neural networks; Regression; Density estimation;
Denoising; Occlusions
Generative model that adopts features of discriminative models.
BibRef
Miao, X.[Xu],
Rao, R.P.N.[Rajesh P. N.],
Fast Structured Prediction Using Large Margin Sigmoid Belief Networks,
IJCV(99), No. 3, September 2012, pp. 302-318.
WWW Link.
1206
BibRef
Zhao, Z.Z.[Zhi-Zhen],
Singer, A.[Amit],
Fourier-Bessel rotational invariant eigenimages,
JOSA-A(30), No. 5, May 2013, pp. 871-877.
WWW Link.
1305
BibRef
Lee, J.G.[Jeong-Gon],
Kim, B.S.[Bum-Soo],
Choi, M.J.[Mi-Jung],
Moon, Y.S.[Yang-Sae],
Evaluation of Space Filling Curves for Lower-Dimensional Transformation
of Image Histogram Sequences,
IEICE(E96-D), No. 10, October 2013, pp. 2277-2281.
WWW Link.
1310
Use histogram features. Very high dimensional data source.
BibRef
Arandjelovic, O.D.[Ognjen D.],
Hallucinating optimal high-dimensional subspaces,
PR(47), No. 8, 2014, pp. 2662-2672.
Elsevier DOI
1405
BibRef
Earlier:
Recognition from Appearance Subspaces Across Image Sets of Variable
Scale,
BMVC10(xx-yy).
HTML Version.
1009
Projection
BibRef
Berger, B.[Benjamin],
Vais, A.[Alexander],
Wolter, F.E.[Franz-Erich],
Subimage sensitive eigenvalue spectra for image comparison,
VC(31), No. 2, February 2015, pp. 205-221.
WWW Link.
1503
BibRef
Berger, B.[Benjamin],
Wolter, F.E.[Franz-Erich],
Vais, A.[Alexander],
Colocalization structures and eigenvalue spectra for colour image
comparison,
VC(32), No. 6-8, June 2016, pp. 1057-1067.
WWW Link.
1608
BibRef
Chen, S.B.[Si-Bao],
Wang, J.[Jing],
Liu, C.Y.[Cai-Yin],
Luo, B.[Bin],
Two-Dimensional Discriminant Locality Preserving Projection Based on
l1-norm Maximization,
PRL(87), No. 1, 2017, pp. 147-154.
Elsevier DOI
1703
Discriminant Locality Preserving Projection (DLPP)
BibRef
Gasbarra, D.[Dario],
Pajevic, S.[Sinisa],
Basser, P.J.[Peter J.],
Eigenvalues of Random Matrices with Isotropic Gaussian Noise and the
Design of Diffusion Tensor Imaging Experiments,
SIIMS(10), No. 3, 2017, pp. 1511-1548.
DOI Link
1710
BibRef
Aujol, J.F.[Jean-Franois],
Gilboa, G.[Guy],
Papadakis, N.[Nicolas],
Theoretical Analysis of Flows Estimating Eigenfunctions of
One-Homogeneous Functionals,
SIIMS(11), No. 2, 2018, pp. 1416-1440.
DOI Link
1807
BibRef
Chen, R.[Rui],
Zhao, F.[Fei],
Yang, C.S.[Chang-Shui],
Li, Y.[Yuan],
Huang, T.J.[Tie-Jun],
Robust estimation for image noise based on eigenvalue distributions
of large sample covariance matrices,
JVCIR(63), 2019, pp. 102604.
Elsevier DOI
1909
Noise level estimation, Eigenvalue distributions,
Large sample covariance matrix, Random matrix theory
BibRef
Raninen, E.[Elias],
Ollila, E.[Esa],
Bias Adjusted Sign Covariance Matrix,
SPLetters(29), 2022, pp. 339-343.
IEEE DOI
2202
Covariance matrices, Eigenvalues and eigenfunctions, Shape,
Sensors, Indexes, Electric breakdown, Signal processing algorithms,
shrinkage
BibRef
Evert, E.[Eric],
Vandecappelle, M.[Michiel],
de Lathauwer, L.[Lieven],
Canonical Polyadic Decomposition via the Generalized Schur
Decomposition,
SPLetters(29), 2022, pp. 937-941.
IEEE DOI
2205
Fundamental tensor decomposition.
Tensors, Matrix decomposition, Signal processing algorithms,
Eigenvalues and eigenfunctions, Standards, Optimization, Indexes, tensors
BibRef
Song, Y.[Yue],
Sebe, N.[Nicu],
Wang, W.[Wei],
Batch-Efficient EigenDecomposition for Small and Medium Matrices,
ECCV22(XXIII:583-599).
Springer DOI
2211
BibRef
Rahman, S.[Saimunur],
Wang, L.[Lei],
Sun, C.M.[Chang-Ming],
Zhou, L.P.[Lu-Ping],
Redro: Efficiently Learning Large-sized SPD Visual Representation,
ECCV20(XV:1-17).
Springer DOI
2011
Symmetric positive definite matrix.
BibRef
Chumachenko, K.[Kateryna],
Raitoharju, J.[Jenni],
Gabbouj, M.[Moncef],
Iosifidis, A.[Alexandros],
Incremental Fast Subclass Discriminant Analysis,
ICIP20(1771-1775)
IEEE DOI
2011
FastSDA.
Kernel, Training, Feature extraction, Task analysis, Training data,
Computational modeling, Data models
BibRef
Yuan, G.Z.[Gan-Zhao],
Shen, L.[Li],
Zheng, W.S.[Wei-Shi],
A Decomposition Algorithm for the Sparse Generalized Eigenvalue Problem,
CVPR19(6106-6115).
IEEE DOI
2002
BibRef
Bungert, L.[Leon],
Burger, M.[Martin],
Tenbrinck, D.[Daniel],
Computing Nonlinear Eigenfunctions via Gradient Flow Extinction,
SSVM19(291-302).
Springer DOI
1909
BibRef
Streicher, O.[Or],
Cohen, I.[Ido],
Gilboa, G.[Guy],
BASiS: Batch Aligned Spectral Embedding Space,
CVPR23(10396-10405)
IEEE DOI
2309
BibRef
Cohen, I.[Ido],
Falik, A.[Adi],
Gilboa, G.[Guy],
Stable Explicit p-Laplacian Flows Based on Nonlinear Eigenvalue
Analysis,
SSVM19(315-327).
Springer DOI
1909
BibRef
Muravev, A.,
Tran, D.T.,
Iosifidis, A.,
Kiranyaz, S.,
Gabbouj, M.,
Acceleration Approaches for Big Data Analysis,
ICIP18(311-315)
IEEE DOI
1809
Kernel, Matrix decomposition, Training, Computational modeling,
Quantization (signal), Eigenvalues and eigenfunctions,
Neural Network Acceleration
BibRef
Sekikawa, Y.[Yusuke],
Suzuki, K.[Koichiro],
Yoshida, Y.[Yuichi],
Hara, K.[Kosuke],
Sato, I.[Ikuro],
Fast Eigen Matching,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Ghosh, A.[Abhijeet],
Measurement Based Appearance Modelling,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Li, Q.L.[Qi-Lin],
Liu, W.Q.[Wan-Quan],
Li, L.[Ling],
Wang, R.H.[Ru-Hua],
Towards Large Scale Spectral Problems via Diffusion Process,
DICTA17(1-7)
IEEE DOI
1804
approximation theory, eigenvalues and eigenfunctions,
extrapolation, matrix algebra, pattern clustering,
Symmetric matrices
BibRef
Nafees, W.,
Khalid, Z.,
Kennedy, R.A.,
Signal analysis on the ball: Design of optimal basis functions with
maximal multiplicative concentration in spatial and spectral domains,
WSSIP17(1-5)
IEEE DOI
1707
Eigenvalues and eigenfunctions, Harmonic analysis,
Image processing, Integral equations, Kernel, Spectral analysis,
Slepian concentration problem, ball, energy concentration,
localized spectral analysis, optimal basis, spatial-spectral, concentration
BibRef
Boukhayma, A.[Adnane],
Tsiminaki, V.[Vagia],
Franco, J.S.[Jean-Sébastien],
Boyer, E.[Edmond],
Eigen Appearance Maps of Dynamic Shapes,
ECCV16(I: 230-245).
Springer DOI
1611
BibRef
Hwang, S.J.,
Collins, M.D.,
Ravi, S.N.,
Ithapu, V.K.,
Adluru, N.,
Johnson, S.C.,
Singh, V.,
A Projection Free Method for Generalized Eigenvalue Problem with a
Nonsmooth Regularizer,
ICCV15(1841-1849)
IEEE DOI
1602
Computer vision
BibRef
Wu, R.B.[Ruo-Bing],
Yu, Y.Z.[Yi-Zhou],
Wang, W.P.[Wen-Ping],
SCaLE: Supervised and Cascaded Laplacian Eigenmaps for Visual Object
Recognition Based on Nearest Neighbors,
CVPR13(867-874)
IEEE DOI
1309
deep learning
BibRef
Boix, X.[Xavier],
Gygli, M.[Michael],
Roig, G.[Gemma],
Van Gool, L.J.[Luc J.],
Sparse Quantization for Patch Description,
CVPR13(2842-2849)
IEEE DOI
1309
patch descriptor; sparse quantization
BibRef
Boix, X.[Xavier],
Roig, G.[Gemma],
Leistner, C.[Christian],
Van Gool, L.J.[Luc J.],
Nested Sparse Quantization for Efficient Feature Coding,
ECCV12(II: 744-758).
Springer DOI
1210
BibRef
Liu, G.C.[Guang-Can],
Yan, S.C.[Shui-Cheng],
Latent Low-Rank Representation for subspace segmentation and feature
extraction,
ICCV11(1615-1622).
IEEE DOI
1201
BibRef
Gong, Y.C.[Yun-Chao],
Lazebnik, S.[Svetlana],
Comparing data-dependent and data-independent embeddings for
classification and ranking of Internet images,
CVPR11(2633-2640).
IEEE DOI
1106
BibRef
Jia, K.[Ke],
Wang, L.[Lei],
Liu, N.J.[Nian-Jun],
Efficient Structured Support Vector Regression,
ACCV10(III: 586-598).
Springer DOI
1011
BibRef
Tompkins, F.[Frank],
Wolfe, P.J.[Patrick J.],
Image analysis with regularized Laplacian eigenmaps,
ICIP10(1913-1916).
IEEE DOI
1009
BibRef
Zhao, H.T.[Hai-Tao],
Sun, S.Y.[Shao-Yuan],
Optimal Locality Preserving Projection,
ICIP10(1861-1864).
IEEE DOI
1009
LPP
BibRef
Li, Y.[Yin],
Yan, J.C.[Jun-Chi],
Zhou, Y.[Yue],
Yang, J.[Jie],
Optimum Subspace Learning and Error Correction for Tensors,
ECCV10(III: 790-803).
Springer DOI
1009
BibRef
Sankaranarayanan, A.C.[Aswin C.],
Veeraraghavan, A.[Ashok],
Tuzel, O.[Oncel],
Agrawal, A.[Amit],
Image Invariants for Smooth Reflective Surfaces,
ECCV10(II: 237-250).
Springer DOI
1009
BibRef
Xie, Y.C.[Yu-Chen],
Ho, J.[Jeffrey],
Vemuri, B.C.[Baba C.],
Image atlas construction via intrinsic averaging on the manifold of
images,
CVPR10(2933-2939).
IEEE DOI
1006
BibRef
Chu, X.Q.[Xin-Qi],
Yan, S.C.[Shui-Cheng],
Li, L.Y.[Li-Yuan],
Chan, K.L.[Kap Luk],
Huang, T.S.[Thomas S.],
Spatialized epitome and its applications,
CVPR10(311-318).
IEEE DOI
1006
Integrate appearance and spatial arrangement of patches.
BibRef
Liu, R.S.[Ri-Sheng],
Su, Z.X.[Zhi-Xun],
Lin, Z.C.[Zhou-Chen],
Hou, X.Y.[Xiao-Yu],
Lorentzian Discriminant Projection and Its Applications,
ACCV09(III: 311-320).
Springer DOI
0909
BibRef
Eichner, M.[Marcin],
Ferrari, V.[Vittorio],
Better appearance models for pictorial structures,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Yang, J.[Jie],
Bouzerdoum, A.[Abdesselam],
Phung, S.L.[Son Lam],
A New Approach to Sparse Image Representation Using MMV and K-SVD,
ACIVS09(200-209).
Springer DOI
0909
MMV: Multiple Measurement Vectors
BibRef
Gill, G.S.[Gurman S.],
Levine, M.D.[Martin D.],
Multi-view Object Detection Based on Spatial Consistency in a Low
Dimensional Space,
DAGM09(211-220).
Springer DOI
0909
BibRef
And:
Incorporating Shape Features in an Appearance-Based Object Detection
System,
CAIP09(269-276).
Springer DOI
0909
BibRef
Gill, G.S.[Gurman S.],
Levine, M.D.[Martin D.],
A Single Classifier for View-Invariant Multiple Object Class
Recognition,
BMVC06(I:257).
PDF File.
0609
To deal with multiple classes of objects.
Use locally linear embedding to reduce classification dimension.
BibRef
Butzer, J.S.,
Butler, A.P.H.,
Butler, P.H.,
Bones, P.J.,
Cook, N.,
Tlustos, L.,
Medipix imaging: Evaluation of datasets with PCA,
IVCNZ08(1-6).
IEEE DOI
0811
X-ray data.
BibRef
Brasnett, P.[Paul],
Bober, M.[Miroslaw],
Fast and robust image identification,
ICPR08(1-5).
IEEE DOI
0812
Trace transform.
BibRef
Nguyen, N.[Nam],
Liu, W.Q.[Wan-Quan],
Venkatesh, S.[Svetha],
Ridge Regression for Two Dimensional Locality Preserving Projection,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Mei, G.B.[Guo-Biao],
Shelton, C.R.[Christian R.],
Unsupervised image embedding using nonparametric statistics,
ICPR08(1-4).
IEEE DOI
0812
into low dimensional space
BibRef
Sharma, G.[Gaurav],
Chaudhury, S.[Santanu],
Srivastava1, J.B.,
Bag-of-features kernel eigen spaces for classification,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Kawabata, S.[Satoshi],
Hiura, S.[Shinsaku],
Sato, K.[Kosuke],
A rapid anomalous region extraction method by iterative projection onto
kernel eigenspace,
ICPR08(1-4).
IEEE DOI
0812
BibRef
He, Z.C.[Zhou-Can],
Wang, Q.[Qing],
A Fast and Effective Dichotomy Based Hash Algorithm for Image Matching,
ISVC08(I: 328-337).
Springer DOI
0812
BibRef
Chen, W.A.[Wen-An],
Zhang, H.B.[Hong-Bin],
The Condition of Kernelizing an Algorithm and an Equivalence Between
Kernel Methods,
IbPRIA07(I: 338-345).
Springer DOI
0706
E.g. kernel pca.
BibRef
Wolf, L.B.[Lior B.],
Jhuang, H.H.[Huei-Han],
Hazan, T.[Tamir],
Modeling Appearances with Low-Rank SVM,
CVPR07(1-6).
IEEE DOI
0706
BibRef
Hsiao, E.[Edward],
Collet, A.[Alvaro],
Hebert, M.[Martial],
Making specific features less discriminative to improve point-based 3D
object recognition,
CVPR10(2653-2660).
IEEE DOI
1006
Retain ambiguity in feature matching, resolve it later in hypothesis testing
phase.
BibRef
de la Torre, F.[Fernando],
Collet, A.[Alvaro],
Quero, M.[Manuel],
Cohn, J.F.[Jeffrey F.],
Kanade, T.[Takeo],
Filtered Component Analysis to Increase Robustness to Local Minima in
Appearance Models,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Felsberg, M.,
Enhanced Distribution Field Tracking Using Channel Representations,
VOT13(121-128)
IEEE DOI
1403
approximation theory
See also Reconstruction of Probability Density Functions from Channel Representations.
BibRef
Felsberg, M.[Michael],
Hedborg, J.[Johan],
Real-Time Visual Recognition of Objects and Scenes Using P-Channel
Matching,
SCIA07(908-917).
Springer DOI
0706
Combines advantages of histograms and local linear models.
Registration.
BibRef
Kaarna, A.[Arto],
Andriyashin, A.[Alexey],
Nakauchi, S.[Shigeki],
Parkkinen, J.[Jussi],
Multiresolution Approach in Computing NTF,
SCIA07(334-343).
Springer DOI
0706
Non-negative tensor factorization (NTF).
Efficient computation.
BibRef
Jain, P.K.[Paresh K.],
Rao, P.K.[P. Kartik],
Jawahar, C.V.,
Computing Eigen Space from Limited Number of Views for Recognition,
ICCVGIP06(662-673).
Springer DOI
0612
BibRef
Kalra, M.[Manisha],
Deepti, P.,
Abhilash, R.,
Das, S.[Sukhendu],
Pose Invariant Generic Object Recognition with Orthogonal Axis
Manifolds in Linear Subspace,
ICCVGIP06(619-630).
Springer DOI
0612
BibRef
Jain, V.[Varun],
Zhang, H.[Hao],
Shape-Based Retrieval of Articulated 3D Models Using Spectral Embedding,
GMP06(299-312).
Springer DOI
0607
Shape retrieval. Embed the description in spectral domain, match there.
BibRef
Rahman, M.M.,
Merging and Generalizing Eigenspace for Partially Occluded and
Destroyed Object Recognition,
ICIP06(2729-2732).
IEEE DOI
0610
BibRef
Gonzalez-Mora, J.[Jose],
Guil, N.[Nicolas],
Zapata, E.L.[Emilio L.],
Tracking of Linear Appearance Models Using Second Order Minimization,
ACIVS06(1002-1013).
Springer DOI
0609
BibRef
Zhang, D.Q.[Dong-Qing],
Chang, S.F.[Shih-Fu],
A Generative-Discriminative Hybrid Method for Multi-View Object
Detection,
CVPR06(II: 2017-2024).
IEEE DOI
0606
Generative model structure and appearance.
BibRef
Savarese, S.,
Winn, J.,
Criminisi, A.,
Discriminative Object Class Models of Appearance and Shape by
Correlatons,
CVPR06(II: 2033-2040).
IEEE DOI
0606
both appearance and shape info.
BibRef
Zhang, Q.N.[Qian-Ni],
Izquierdo, E.[Ebroul],
A Multi-feature Optimization Approach to Object-Based Image
Classification,
CIVR06(310-319).
Springer DOI
0607
BibRef
Qin, L.[Lei],
Gao, W.[Wen],
Image Matching Based on A Local Invariant Descriptor,
ICIP05(III: 377-380).
IEEE DOI
0512
BibRef
He, X.F.[Xiao-Fei],
Cai, D.[Deng],
Yan, S.C.[Shui-Cheng],
Zhang, H.J.[Hong-Jiang],
Neighborhood Preserving Embedding,
ICCV05(II: 1208-1213).
IEEE DOI
0510
Aims to preserve local structure, unlike PCA preserving global
structure.
BibRef
Plagemann, C.[Christian],
Müller, T.[Thomas],
Burgard, W.[Wolfram],
Vision-Based 3D Object Localization Using Probabilistic Models of
Appearance,
DAGM05(184).
Springer DOI
0509
BibRef
Montoliu, R.[Raúl],
Pla, F.[Filiberto],
Klaren, A.C.[Arnoud C.],
Illumination Intensity, Object Geometry and Highlights Invariance in
Multispectral Imaging,
IbPRIA05(I:36).
Springer DOI
0509
BibRef
Söderberg, R.[Robert],
Nordberg, K.[Klas],
Granlund, G.H.[Gösta H.],
An Invariant and Compact Representation for Unrestricted Pose
Estimation,
IbPRIA05(I:3).
Springer DOI
0509
BibRef
Nordberg, K.,
Granlund, G.H.,
Knutsson, H.,
Representation and learning of invariance,
ICIP94(II: 585-589).
IEEE DOI
9411
BibRef
Xu, D.[Dong],
Yan, S.C.[Shui-Cheng],
Zhang, L.[Lei],
Zhang, H.J.[Hong-Jiang],
Liu, Z.K.[Zheng-Kai],
Shum, H.Y.[Heung-Yeung],
Concurrent Subspaces Analysis,
CVPR05(II: 203-208).
IEEE DOI
0507
Encoding image objects as 2nd or even higher order tensors.
Performance better than PCA.
BibRef
Pless, R.[Robert],
Differential Structure in non-Linear Image Embedding Functions,
Non-Rigid04(10).
HTML Version.
0502
BibRef
Earlier:
Image spaces and video trajectories: Using isomap to explore video
sequences,
ICCV03(1433-1440).
IEEE DOI
0311
Video as a space of possible images and a path through that space.
Mappings (isomap) with deformations.
BibRef
Kim, H.[Hyundo],
Murphy-Chutorian, E.[Erik],
Triesch, J.[Jochen],
Semi-autonomous Learning of Objects,
V4HCI06(145).
IEEE DOI
0609
BibRef
Chen, H.J.[Huei-Ju],
Lee, K.C.[Kuang-Chih],
Murphy-Chutorian, E.[Erik],
Triesch, J.[Jochen],
Toward a Unified Probabilistic Framework for Object Recognition and
Segmentation,
ISVC05(108-117).
Springer DOI
0512
BibRef
Murphy-Chutorian, E.[Erik],
Triesch, J.[Jochen],
Shared Features for Scalable Appearance-Based Object Recognition,
WACV05(I: 16-21).
IEEE DOI
0502
BibRef
Thuresson, J.[Johan],
Carlsson, S.[Stefan],
Appearance Based Qualitative Image Description for Object Class
Recognition,
ECCV04(Vol II: 518-529).
Springer DOI
0405
Recognize classes of objects rather than individual instances.
BibRef
Gvili, Y.[Yaron],
Sochen, N.A.[Nir A.],
A Complete System of Measurement Invariants for Abelian Lie
Transformation Groups,
ScaleSpace03(72-85).
Springer DOI
0310
Build on steerable filters.
BibRef
Grimes, D.B.,
Shon, A.P.,
Rao, R.P.N.,
Probabilistic bilinear models for appearance-based vision,
ICCV03(1478-1485).
IEEE DOI
0311
BibRef
Rao, R.P.N.,
Dynamic Appearance-Based Recognition,
CVPR97(540-546).
IEEE DOI
9704
Recognize with occlusions
BibRef
Ababsa, F.,
Roussel, D.,
Mallem, M.,
Photometric Aspects: A New Approach For 3D Free Form Object
Recognition Using a Single Luminance Image,
AVSBS03(131-136).
IEEE DOI
0310
BibRef
Kinoshenko, D.[Dmitry],
Mashtalir, V.[Vladimir],
Orlov, A.[Alexander],
Yegorova, E.[Elena],
Method of Creating of Functional Invariants under One-Parameter
Geometric Image Transformations,
DAGM03(68-75).
Springer DOI
0310
BibRef
Morency, L.P.,
Rahimi, A.,
Darrell, T.J.,
Adaptive view-based appearance models,
CVPR03(I: 803-810).
IEEE DOI
0307
BibRef
Kitamoto, A.,
Fractional component analysis (FCA) for mixed signals,
ICPR02(III: 383-386).
IEEE DOI
0211
BibRef
Deselaers, T.[Thomas],
Keysers, D.[Daniel],
Paredes, R.[Roberto],
Vidal, E.[Enrique],
Ney, H.[Hermann],
Local Representations for Multi-object Recognition,
DAGM03(305-312).
Springer DOI
HTML Version.
0310
See also Deformation Models for Image Recognition.
BibRef
Keysers, D.[Daniel],
Motter, M.[Michael],
Deselaers, T.[Thomas],
Ney, H.[Hermann],
Training and Recognition of Complex Scenes Using a Holistic Statistical
Model,
DAGM03(52-59).
Springer DOI
0310
BibRef
Deselaers, T.[Thomas],
Keysers, D.[Daniel],
Ney, H.[Hermann],
Features for Image Retrieval: A Quantitative Comparison,
DAGM04(228-236).
Springer DOI
0505
Image Database.
BibRef
And:
Classification error rate for quantitative evaluation of content-based
image retrieval systems,
ICPR04(II: 505-508).
IEEE DOI
0409
BibRef
Keysers, D.,
Och, F.J.,
Ney, H.,
Maximum Entropy and Gaussian Models for Image Object Recognition,
DAGM02(498 ff.).
Springer DOI
0303
BibRef
Garg, G.,
Sharma, P.K.,
Chaudhury, S.,
Chowdhury, R.,
An appearance based approach for video object extraction and
representation,
ICPR02(II: 536-539).
IEEE DOI
0211
BibRef
Chennubhotla, C.,
Jepson, A.D.,
Midgley, J.,
Robust contrast-invariant eigendetection,
ICPR02(II: 745-748).
IEEE DOI
0211
BibRef
Shashua, A.,
Levin, A.,
Avidan, S.,
Manifold pursuit: a new approach to appearance based recognition,
ICPR02(III: 590-594).
IEEE DOI
0211
BibRef
Liu, X.W.[Xiu-Wen],
Srivastava, A.,
Spaces and subspaces of images for recognition,
ICIP02(III: 313-316).
IEEE DOI
0210
BibRef
Wu, J.N.[Jia-Ning],
Fukui, K.[Kazuhiro],
Multiple view based 3D object classification using ensemble learning of
local subspaces,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Niigaki, H.[Hitoshi], and
Fukui, K.[Kazuhiro],
Classification of Similar 3D Objects with Different Types of Features
from Multi-view Images:
An Approach to Classify 100 Apples,
PSIVT09(1046-1057).
Springer DOI
0901
o
BibRef
Sanei, S.,
Lee, T.K.,
Bayesian classification of eigencells,
ICIP02(II: 929-932).
IEEE DOI
0210
BibRef
Mae, Y.,
Umetani, T.,
Arai, T.,
Inoue, K.,
Object Recognition Using Appearance Models Accumulated Into Environment,
ICPR00(Vol IV: 845-848).
IEEE DOI
0009
Blocks.
BibRef
Romdhani, S.,
Psarrou, A.,
Gong, S.,
On Utilising Template and Feature-based Correspondence in Multi-view
Appearance Models,
ECCV00(I: 799-813).
Springer DOI
0003
BibRef
Jugessur, D.[Deeptiman],
Dudek, G.[Gregory],
Local Appearance for Robust Object Recognition,
CVPR00(I: 834-839).
IEEE DOI
0005
BibRef
Schiele, B.[Brent],
Pentland, A.P.,
Probabilistic Object Recognition and Localization,
ICCV99(177-182).
IEEE DOI
BibRef
9900
And:
Vismod--499, March 1999.
PS File. Represent objects by joint statistics of local operators.
BibRef
Hadjidemetriou, E.[Efstathios],
Nayar, S.K.[Shree K.],
Appearance Matching with Partial Data,
DARPA98(1071-1078).
BibRef
9800
Matas, J.G.,
Burianek, J.,
Kittler, J.V.,
Object Recognition using the Invariant Pixel-Set Signature,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Matas, J.G.[Jiri G.],
Reiter, M.[Michael],
Object-Detection with a Varying Number of Eigenspace Projections,
ICPR98(Vol I: 759-761).
IEEE DOI
9808
BibRef
Basri, R.[Ronen],
Roth, D.[Dan],
Jacobs, D.W.[David W.],
Clustering Appearances of 3D Objects,
CVPR98(414-420).
IEEE DOI
BibRef
9800
Verly, J.G.,
Delanoy, R.L.,
Appearance-Model-Based Representation and Matching of 3-D Objects,
ICCV90(248-256).
IEEE DOI
BibRef
9000
Subirana-Vilanova, J.B.[J. Brian],
Contour Texture and Frame Curves for the Recognition of
Non-Rigid Objects,
MDSG94(393)
BibRef
9400
Subirana-Vilanova, J.B.[J. Brian],
Mid-Level Vision and Recognition of Non-Rigid Objects,
MIT AI-TR-1442, January, 1993.
WWW Link.
BibRef
9301
Huang, C.Y.[Chien-Yuan],
Camps, O.I.[Octavia I.],
Kanungo, T.[Tapas],
Object Representation Using Appearance-based Parts and Relations,
UMD--TR3979, January 1999.
WWW Link.
WWW Link.
BibRef
9901
Earlier:
Object Recognition Using Appearance Based Parts and Relations,
CVPR97(877-883).
IEEE DOI
9704
BibRef
Camps, O.I.[Octavia I.],
Huang, C.Y.[Chien-Yuan],
Kanungo, T.[Tapas],
Hierarchical Organization of Appearance Based Parts and Relations
for Object Recognition,
CVPR98(685-691).
IEEE DOI
BibRef
9800
Vitriá, J.[Jordi],
Radeva, P.I.[Petia I.],
Binefa, X.[Xavier],
EigenHistograms: Using Low Dimensional Models of Color Distribution for
Real Time Object Recognition,
CAIP99(17-24).
Springer DOI
9909
BibRef
Ignasiak, K.[Krystian],
Skarbek, W.[Wladyslaw],
Ghuwar, M.[Miloud],
Invariant Reference Points Methodology and Applications,
CAIP99(259-266).
Springer DOI
9909
BibRef
Skarbek, W.[Wladyslaw],
Ghuwar, M.[Miloud],
Ignasiak, K.[Krystian],
Local subspace method for pattern recognition,
CAIP97(527-534).
Springer DOI
9709
BibRef
de Verdičre, V.C.[Vincent Colin],
Crowley, J.L.[James L.],
Visual Recognition Using Local Appearance,
ECCV98(I: 640).
Springer DOI
BibRef
9800
Sochen, N.A., and
Zeevi, Y.Y.,
Representation of colored images by manifolds
embedded in higher dimensional non-Euclidean space,
ICIP98(I: 166-170).
IEEE DOI
9810
BibRef
Bichsel, M.,
Illumination invariant object recognition,
ICIP95(III: 620-623).
IEEE DOI
9510
BibRef
Lei, T.H.[Tian-Hu],
Sewchand, W.,
Eigenstructure approach to region detection and segmentation,
ICIP94(III: 456-459).
IEEE DOI
9411
BibRef
Stone, J.V.[James V.],
Learning Spatio-Temporal Invariances,
BMVC94(xx-yy).
PDF File.
9409
BibRef
Tian, Q.,
Fainman, Y.,
Lee, S.H.,
Comparison of eigenvector-based pattern recognition algorithms for
hybrid systems,
ICPR88(I: 547-549).
IEEE DOI
8811
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Other Sparse Coding, Low Dimensional Representation, Invariants .