Csurka, G.[Gabriela],
Perronnin, F.[Florent],
An Efficient Approach to Semantic Segmentation,
IJCV(95), No. 2, November 2011, pp. 198-212.
WWW Link.
1109
BibRef
Earlier:
A Simple High Performance Approach to Semantic Segmentation,
BMVC08(xx-yy).
PDF File.
0809
Assign each pixel to a semantic class.
A local appearance model, a local consistency model and a global
consistency model.
See also Universal and Adapted Vocabularies for Generic Visual Categorization.
BibRef
Perronnin, F.[Florent],
Dance, C.R.[Christopher R.],
Fisher Kernels on Visual Vocabularies for Image Categorization,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Earlier:
Csurka, G.[Gabriela],
Bressan, M.[Marco],
Adapted Vocabularies for Generic Visual Categorization,
ECCV06(IV: 464-475).
Springer DOI
0608
BibRef
Csurka, G.[Gabriela],
Dance, C.R.[Christopher R.],
Perronnin, F.[Florent],
Willamowski, J.[Jutta],
Generic Visual Categorization Using Weak Geometry,
CLOR06(207-224).
Springer DOI
0711
BibRef
Earlier: A1, A4, A2, A3:
Incorporating Geometry Information with Weak Classifiers for Improved
Generic Visual Categorization,
CIAP05(612-620).
Springer DOI
0509
BibRef
Kemmler, M.[Michael],
Rodner, E.[Erik],
Wacker, E.S.[Esther-Sabrina],
Denzler, J.[Joachim],
One-Class Classification with Gaussian Processes,
PR(46), No. 12, 2013, pp. 3507-3518.
Elsevier DOI
1307
BibRef
Earlier: A1, A2, A4, Only:
ACCV10(II: 489-500).
Springer DOI
1011
BibRef
Earlier: A1, A2, A4, Only:
Global Context Extraction for Object Recognition Using a Combination of
Range and Visual Features,
Dyn3D09(96-109).
Springer DOI
0909
Combine range and visual, determine general class of scene.
One-class classification
BibRef
Bodesheim, P.[Paul],
Freytag, A.[Alexander],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Approximations of Gaussian Process Uncertainties for Visual Recognition
Problems,
SCIA13(182-194).
Springer DOI
1311
BibRef
Earlier: A1, A3, A2, A4:
Divergence-Based One-Class Classification Using Gaussian Processes,
BMVC12(50).
DOI Link
1301
See also Classification of Microorganisms via Raman Spectroscopy Using Gaussian Processes.
BibRef
Käding, C.[Christoph],
Freytag, A.[Alexander],
Rodner, E.[Erik],
Perino, A.[Andrea],
Denzler, J.[Joachim],
Large-Scale Active Learning with Approximations of Expected Model
Output Changes,
GCPR16(179-191).
Springer DOI
1611
BibRef
Freytag, A.[Alexander],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Selecting Influential Examples: Active Learning with Expected Model
Output Changes,
ECCV14(IV: 562-577).
Springer DOI
1408
BibRef
Rodner, E.[Erik],
Freytag, A.[Alexander],
Bodesheim, P.[Paul],
Fröhlich, B.[Björn],
Denzler, J.[Joachim],
Large-Scale Gaussian Process Inference with Generalized Histogram
Intersection Kernels for Visual Recognition Tasks,
IJCV(121), No. 2, January 2017, pp. 253-280.
Springer DOI
1702
BibRef
Freytag, A.[Alexander],
Rodner, E.[Erik],
Bodesheim, P.[Paul],
Denzler, J.[Joachim],
Labeling Examples That Matter:
Relevance-Based Active Learning with Gaussian Processes,
GCPR13(282-291).
Springer DOI
1311
BibRef
Earlier:
Rapid Uncertainty Computation with Gaussian Processes and Histogram
Intersection Kernels,
ACCV12(II:511-524).
Springer DOI
1304
BibRef
Freytag, A.[Alexander],
Frohlich, B.[Bjorn],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Efficient semantic segmentation with Gaussian processes and histogram
intersection kernels,
ICPR12(3313-3316).
WWW Link.
1302
BibRef
Rodner, E.[Erik],
Freytag, A.[Alexander],
Bodesheim, P.[Paul],
Denzler, J.[Joachim],
Large-Scale Gaussian Process Classification with Flexible Adaptive
Histogram Kernels,
ECCV12(IV: 85-98).
Springer DOI
1210
BibRef
Rodner, E.[Erik],
Hegazy, D.,
Denzler, J.[Joachim],
Multiple kernel Gaussian process classification for generic 3D object
recognition,
IVCNZ10(1-8).
IEEE DOI
1203
BibRef
Pei, D.L.[De-Li],
Li, Z.G.[Zhen-Guo],
Ji, R.R.[Rong-Rong],
Sun, F.C.[Fu-Chun],
Efficient semantic image segmentation with multi-class ranking prior,
CVIU(120), No. 1, 2014, pp. 81-90.
Elsevier DOI
1403
Computer vision
BibRef
Osuna-Enciso, V.[Valentín],
Bioinspired metaheuristics for image segmentation,
ELCVIA(13), No. 2, 2014, pp. xx-yy.
DOI Link
1407
Ph.D.. Thesis.
BibRef
Wang, L.[Le],
Hua, G.[Gang],
Xue, J.R.[Jian-Ru],
Gao, Z.N.[Zhan-Ning],
Zheng, N.N.[Nan-Ning],
Joint Segmentation and Recognition of Categorized Objects From Noisy
Web Image Collection,
IP(23), No. 9, September 2014, pp. 4070-4086.
IEEE DOI
1410
image retrieval
BibRef
Gould, S.[Stephen],
He, X.M.[Xu-Ming],
Scene Understanding by Labeling Pixels,
CACM(57), No. 11, November 2014, pp. 68-77.
DOI Link
1411
Pixels labeled with a scene's semantics and geometry let computers
describe what they see.
BibRef
Liu, Z.[Zhi],
Xu, S.Q.[Shu-Qiong],
Zhang, Y.[Yun],
Chen, C.L.P.,
A Multiple-Feature and Multiple-Kernel Scene Segmentation Algorithm
for Humanoid Robot,
Cyber(44), No. 11, November 2014, pp. 2232-2241.
IEEE DOI
1411
Gabor filters
BibRef
Kang, H.,
Hebert, M.,
Efros, A.A.,
Kanade, T.,
Data-Driven Objectness,
PAMI(37), No. 1, January 2015, pp. 189-195.
IEEE DOI
1412
Databases. Is it an object, not a specific object.
BibRef
Wang, L.L.[Li-Li],
Yung, N.H.C.[Nelson H.C.],
Hybrid graphical model for semantic image segmentation,
JVCIR(28), No. 1, 2015, pp. 83-96.
Elsevier DOI
1503
Semantic segmentation
BibRef
Wang, L.L.[Li-Li],
Yung, N.H.C.[Nelson H. C.],
Improved hierarchical conditional random field model for object
segmentation,
MVA(26), No. 7-8, November 2015, pp. 1027-1043.
WWW Link.
1511
BibRef
Xia, W.[Wei],
Domokos, C.[Csaba],
Cheong, L.F.[Loong-Fah],
Yan, S.C.[Shui-Cheng],
Background Context Augmented Hypothesis Graph for Object Segmentation,
CirSysVideo(25), No. 4, April 2015, pp. 582-594.
IEEE DOI
1504
Context
BibRef
Xia, W.[Wei],
Domokos, C.[Csaba],
Xiong, J.,
Cheong, L.F.[Loong-Fah],
Yan, S.C.[Shui-Cheng],
Segmentation Over Detection via Optimal Sparse Reconstructions,
CirSysVideo(25), No. 8, August 2015, pp. 1295-1308.
IEEE DOI
1508
Bismuth
BibRef
Xia, W.[Wei],
Domokos, C.[Csaba],
Dong, J.[Jian],
Cheong, L.F.[Loong-Fah],
Yan, S.C.[Shui-Cheng],
Semantic Segmentation without Annotating Segments,
ICCV13(2176-2183)
IEEE DOI
1403
Given object bounding box.
BibRef
Kumar, M.P.,
Turki, H.,
Preston, D.,
Koller, D.,
Parameter Estimation and Energy Minimization for Region-Based
Semantic Segmentation,
PAMI(37), No. 7, July 2015, pp. 1373-1386.
IEEE DOI
1506
Biological system modeling
BibRef
Mottaghi, R.[Roozbeh],
Fidler, S.[Sanja],
Yuille, A.L.,
Urtasun, R.[Raquel],
Parikh, D.[Devi],
Human-Machine CRFs for Identifying Bottlenecks in Scene Understanding,
PAMI(38), No. 1, January 2016, pp. 74-87.
IEEE DOI
1601
Analytical models
BibRef
Mottaghi, R.[Roozbeh],
Fidler, S.[Sanja],
Yao, J.[Jian],
Urtasun, R.[Raquel],
Parikh, D.[Devi],
Analyzing Semantic Segmentation Using Hybrid Human-Machine CRFs,
CVPR13(3143-3150)
IEEE DOI
1309
Explore effects by using humans in loop for parts of the problem.
BibRef
Ravě, D.,
Bober, M.,
Farinella, G.M.,
Guarnera, M.,
Battiato, S.,
Semantic segmentation of images exploiting DCT based features and
random forest,
PR(52), No. 1, 2016, pp. 260-273.
Elsevier DOI
1601
Semantic segmentation
BibRef
Tung, F.[Frederick],
Little, J.J.[James J.],
Scene parsing by nonparametric label transfer of content-adaptive
windows,
CVIU(143), No. 1, 2016, pp. 191-200.
Elsevier DOI
1601
BibRef
Earlier:
CollageParsing:
Nonparametric Scene Parsing by Adaptive Overlapping Windows,
ECCV14(VI: 511-525).
Springer DOI
1408
Image parsing
BibRef
Zarchi, M.S.,
Tan, R.T.,
van Gemeren, C.[Coert],
Monadjemi, A.,
Veltkamp, R.C.[Remco C.],
Understanding image concepts using ISTOP model,
PR(53), No. 1, 2016, pp. 174-183.
Elsevier DOI
1602
Visual term. Image parsing.
BibRef
Diebold, J.[Julia],
Nieuwenhuis, C.[Claudia],
Cremers, D.[Daniel],
Midrange Geometric Interactions for Semantic Segmentation,
IJCV(117), No. 3, May 2016, pp. 199-225.
Springer DOI
1605
See also Convex Optimization for Scene Understanding.
See also Proximity Priors for Variational Semantic Segmentation and Recognition.
BibRef
Nieuwenhuis, C.[Claudia],
Strekalovskiy, E.[Evgeny],
Cremers, D.[Daniel],
Proportion Priors for Image Sequence Segmentation,
ICCV13(2328-2335)
IEEE DOI
1403
BibRef
Earlier: A2, A1, A3:
Nonmetric Priors for Continuous Multilabel Optimization,
ECCV12(VII: 208-221).
Springer DOI
1210
BibRef
Hazirbas, C.[Caner],
Diebold, J.[Julia],
Cremers, D.[Daniel],
Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic
Segmentation,
SSVM15(243-255).
Springer DOI
1506
BibRef
Zand, M.,
Doraisamy, S.,
Halin, A.A.[A. Abdul],
Mustaffa, M.R.,
Ontology-Based Semantic Image Segmentation Using Mixture Models and
Multiple CRFs,
IP(25), No. 7, July 2016, pp. 3233-3248.
IEEE DOI
1606
image segmentation
BibRef
Pont-Tuset, J.[Jordi],
Arbeláez, P.[Pablo],
Barron, J.T.[Jon T.],
Marques, F.[Ferran],
Malik, J.[Jitendra],
Multiscale Combinatorial Grouping for Image Segmentation and Object
Proposal Generation,
PAMI(39), No. 1, January 2017, pp. 128-140.
IEEE DOI
1612
BibRef
Earlier: A2, A1, A3, A4, A5:
Multiscale Combinatorial Grouping,
CVPR14(328-335)
IEEE DOI
1409
Detectors.
Image Segmentation; Object Candidates
BibRef
Hu, R.,
Dollár, P.,
He, K.,
Darrell, T.J.,
Girshick, R.[Ross],
Learning to Segment Every Thing,
CVPR18(4233-4241)
IEEE DOI
1812
Training, Task analysis, Visualization, Transfer functions,
Predictive models, Image segmentation, Genomics
BibRef
Hariharan, B.[Bharath],
Arbeláez, P.[Pablo],
Girshick, R.[Ross],
Malik, J.[Jitendra],
Simultaneous Detection and Segmentation,
ECCV14(VII: 297-312).
Springer DOI
1408
See also Indoor Scene Understanding with RGB-D Images: Bottom-up Segmentation, Object Detection and Semantic Segmentation.
BibRef
Arbelaez, P.[Pablo],
Hariharan, B.[Bharath],
Gu, C.H.[Chun-Hui],
Gupta, S.[Saurabh],
Bourdev, L.[Lubomir],
Malik, J.[Jitendra],
Semantic segmentation using regions and parts,
CVPR12(3378-3385).
IEEE DOI
1208
BibRef
Czuni, L.[Laszlo],
Kiss, P.J.[Peter Jozsef],
Lipovits, A.[Agnes],
Gal, M.[Monika],
Lightweight mobile object recognition,
ICIP14(3426-3428)
IEEE DOI
1502
Cameras
CEDD (Color and Edge Directivity Descriptor).
BibRef
Marmanis, D.,
Schindler, K.,
Wegner, J.D.,
Galliani, S.,
Datcu, M.,
Stilla, U.,
Classification with an edge:
Improving semantic image segmentation with boundary detection,
PandRS(135), No. Supplement C, 2018, pp. 158-172.
Elsevier DOI
1712
BibRef
Zhang, J.[Jing],
Mu, Y.K.[Ya-Kun],
Feng, S.W.[Sheng-Wei],
Li, K.H.[Ke-Huang],
Yuan, Y.[Yubo],
Lee, C.H.[Chin-Hui],
Image region annotation based on segmentation and semantic correlation
analysis,
IET-IPR(12), No. 8, August 2018, pp. 1331-1337.
DOI Link
1808
BibRef
Shi, H.,
Li, H.,
Meng, F.,
Wu, Q.,
Xu, L.,
Ngan, K.N.,
Hierarchical Parsing Net:
Semantic Scene Parsing From Global Scene to Objects,
MultMed(20), No. 10, October 2018, pp. 2670-2682.
IEEE DOI
1810
backpropagation, feature extraction, image classification,
image coding, local appearance features, contextual feature,
context learning
BibRef
Noormohamadi, N.[Neda],
Adibi, P.[Peyman],
Ehsani, S.M.S.[Sayyed Mohammad Saeed],
Semantic image segmentation using an improved hierarchical graphical
model,
IET-IPR(12), No. 11, November 2018, pp. 1943-1950.
DOI Link
1810
BibRef
Ates, H.F.[Hasan F.],
Sunetci, S.[Sercan],
Multi-hypothesis contextual modeling for semantic segmentation,
PRL(117), 2019, pp. 104-110.
Elsevier DOI
1901
Image parsing, Segmentation, Superpixel, MRF
BibRef
Zhou, H.[Hao],
Han, A.[Anqi],
Yang, H.D.[Hao-Dong],
Zhang, J.[Jun],
Edge gradient feature and long distance dependency for image semantic
segmentation,
IET-CV(13), No. 1, February 2019, pp. 53-60.
DOI Link
1902
BibRef
Joy, T.[Thomas],
Desmaison, A.[Alban],
Ajanthan, T.[Thalaiyasingam],
Bunel, R.[Rudy],
Salzmann, M.[Mathieu],
Kohli, P.[Pushmeet],
Torr, P.H.S.[Philip H. S.],
Kumar, M.P.[M. Pawan],
Efficient Relaxations for Dense CRFs with Sparse Higher-Order
Potentials,
SIIMS(12), No. 1, 2019, pp. 287-318.
DOI Link
1904
Segmentation and stereo matching.
BibRef
Blott, G.[Gregor],
Takami, M.[Masato],
Heipke, C.[Christian],
Semantic Segmentation of Fisheye Images,
CVRoads18(I:181-196).
Springer DOI
1905
BibRef
Li, X.,
Ma, H.,
Luo, X.,
Weaklier Supervised Semantic Segmentation With Only One Image Level
Annotation per Category,
IP(29), No. 1, 2020, pp. 128-141.
IEEE DOI
1910
image recognition, image segmentation, object recognition,
supervised learning, weaklier supervised semantic segmentation,
dual-branch iterative learning
BibRef
Song, Y.,
Ou, Z.,
Semi-Supervised Seq2seq Joint-Stochastic-Approximation Autoencoders
With Applications to Semantic Parsing,
SPLetters(27), 2020, pp. 31-35.
IEEE DOI
2001
Semi-supervised learning, seq2seq, semantic parsing,
joint stochastic approximation, variational auto-encoder
BibRef
Yang, Z.E.[Zheng-Eng],
Yu, H.S.[Hong-Shan],
Feng, M.T.[Ming-Tao],
Sun, W.[Wei],
Lin, X.F.[Xue-Fei],
Sun, M.G.[Min-Gui],
Mao, Z.H.[Zhi-Hong],
Mian, A.[Ajmal],
Small Object Augmentation of Urban Scenes for Real-Time Semantic
Segmentation,
IP(29), 2020, pp. 5175-5190.
IEEE DOI
2004
For driving application.
Convolution, Image segmentation, Semantics, Real-time systems,
Standards, Training, Computational modeling, Semantic segmentation,
synthetic dataset
BibRef
Valada, A.[Abhinav],
Mohan, R.[Rohit],
Burgard, W.[Wolfram],
Self-Supervised Model Adaptation for Multimodal Semantic Segmentation,
IJCV(128), No. 5, May 2020, pp. 1239-1285.
Springer DOI
2005
BibRef
Mohan, R.[Rohit],
Valada, A.[Abhinav],
EfficientPS: Efficient Panoptic Segmentation,
IJCV(129), No. 5, May 2021, pp. 1551-1579.
Springer DOI
2105
BibRef
El Houfi, S.[Safae],
Majda, A.[Aicha],
Efficient use of recent progresses for Real-time Semantic segmentation,
MVA(31), No. 6, August 2020, pp. Article45.
WWW Link.
2008
BibRef
Chen, Y.[Yifu],
Dapogny, A.[Arnaud],
Cord, M.[Matthieu],
SEMEDA: Enhancing segmentation precision with semantic edge aware
loss,
PR(108), 2020, pp. 107557.
Elsevier DOI
2008
Semantic segmentation, Loss function
BibRef
Arunkumar, M.[Manonmani],
Pushparaj, V.[Vijayakumari],
Seed picking crossover optimisation algorithm for semantic segmentation
from images,
IET-IPR(14), No. 11, September 2020, pp. 2503-2511.
DOI Link
2009
BibRef
And:
Erratum (adds the authors):
IET-IPR(15), No. 13, November, pp. 3410-3410.
DOI Link
2110
BibRef
Oric, M.[Marin],
egvic, S.[Sinia],
Efficient semantic segmentation with pyramidal fusion,
PR(110), 2021, pp. 107611.
Elsevier DOI
2011
Semantic segmentation, Real-time inference,
Shared resolution pyramid, Deep learning
BibRef
Lian, X.[Xuhang],
Pang, Y.W.[Yan-Wei],
Han, J.G.[Jun-Gong],
Pan, J.[Jing],
Cascaded hierarchical atrous spatial pyramid pooling module for
semantic segmentation,
PR(110), 2021, pp. 107622.
Elsevier DOI
2011
Semantic segmentation, Atrous convolution,
Atrous spatial pyramid pooling(ASPP), Cascaded module
BibRef
Pemasiri, A.[Akila],
Nguyen, K.[Kien],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
Multi-modal semantic image segmentation,
CVIU(202), 2021, pp. 103085.
Elsevier DOI
2012
Segmentation, X-ray, Mask R-CNN, Neural networks
BibRef
Choi, H.[Hyunguk],
Ahn, H.[Hoyeon],
Kim, J.[Joonmo],
Jeon, M.[Moongu],
ADFNet:
Accumulated decoder features for real-time semantic segmentation,
IET-CV(14), No. 8, December 2020, pp. 555-563.
DOI Link
2012
BibRef
Zhang, Y.F.[Yi-Fei],
Sidibé, D.[Désiré],
Morel, O.[Olivier],
Mériaudeau, F.[Fabrice],
Deep multimodal fusion for semantic image segmentation: A survey,
IVC(105), 2021, pp. 104042.
Elsevier DOI
2101
Survey, Semantic Segmentation. Image fusion, Multi-modal, Deep learning, Semantic segmentation
BibRef
Hu, S.[Sijie],
Bonardi, F.[Fabien],
Bouchafa, S.[Samia],
Sidibé, D.[Désiré],
Multi-modal unsupervised domain adaptation for semantic image
segmentation,
PR(137), 2023, pp. 109299.
Elsevier DOI
2302
Unsupervised domain adaptation, Multi-modal learning,
Self-supervised learning, Knowledge transfer, Semantic segmentation
BibRef
Tasar, O.,
Giros, A.,
Tarabalka, Y.,
Alliez, P.,
Clerc, S.,
DAugNet: Unsupervised, Multisource, Multitarget, and Life-Long Domain
Adaptation for Semantic Segmentation of Satellite Images,
GeoRS(59), No. 2, February 2021, pp. 1067-1081.
IEEE DOI
2101
Satellites, Training, Semantics, Image segmentation,
Adaptation models, Remote sensing, Standardization,
semantic segmentation
BibRef
Zhou, W.,
Wang, Y.,
Chu, J.,
Yang, J.,
Bai, X.,
Xu, Y.,
Affinity Space Adaptation for Semantic Segmentation Across Domains,
IP(30), 2021, pp. 2549-2561.
IEEE DOI
2102
Semantics, Image segmentation, Cleaning, Annotations,
Adaptation models, Data models, Training,
affinity relationship
BibRef
Huang, L.[Li],
He, M.L.[Mei-Ling],
Tan, C.[Chong],
Jiang, D.[Du],
Li, G.F.[Gong-Fa],
Yu, H.[Hui],
Special Issue Retraction:
Jointly network image processing: multi-task image semantic
segmentation of indoor scene based on CNN,
IET-IPR(17), No. 1, January 2023, pp. 301.
DOI Link
2301
BibRef
And:
IET-IPR(14), No. 15, 15 December 2020, pp. 3689-3697.
DOI Link
2103
BibRef
Zheng, Z.D.[Zhe-Dong],
Yang, Y.[Yi],
Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain
Adaptive Semantic Segmentation,
IJCV(129), No. 4, April 2021, pp. 1106-1120.
Springer DOI
2104
BibRef
Ji, J.[Jian],
Shi, R.[Rui],
Li, S.T.[Si-Tong],
Chen, P.[Peng],
Miao, Q.G.[Qi-Guang],
Encoder-Decoder With Cascaded CRFs for Semantic Segmentation,
CirSysVideo(31), No. 5, 2021, pp. 1926-1938.
IEEE DOI
2105
BibRef
Yan, J.B.[Jie-Bin],
Zhong, Y.[Yu],
Fang, Y.M.[Yu-Ming],
Wang, Z.Y.[Zhang-Yang],
Ma, K.D.[Ke-De],
Exposing Semantic Segmentation Failures via Maximum Discrepancy
Competition,
IJCV(129), No. 5, May 2021, pp. 1768-1786.
Springer DOI
2105
BibRef
Feng, Y.C.[Ying-Chao],
Sun, X.[Xian],
Diao, W.H.[Wen-Hui],
Li, J.[Jihao],
Gao, X.[Xin],
Double Similarity Distillation for Semantic Image Segmentation,
IP(30), 2021, pp. 5363-5376.
IEEE DOI
2106
Knowledge engineering, Image segmentation, Correlation, Semantics,
Task analysis, Complexity theory, Training,
convolutional neural networks
BibRef
Weng, X.[Xi],
Yan, Y.[Yan],
Chen, S.[Si],
Xue, J.H.[Jing-Hao],
Wang, H.Z.[Han-Zi],
Stage-Aware Feature Alignment Network for Real-Time Semantic
Segmentation of Street Scenes,
CirSysVideo(32), No. 7, July 2022, pp. 4444-4459.
IEEE DOI
2207
Semantics, Decoding, Real-time systems, Image segmentation, Training,
Aggregates, Predictive models, Real-time semantic segmentation,
feature alignment and aggregation
BibRef
Dong, G.S.[Gen-Shun],
Yan, Y.[Yan],
Shen, C.H.[Chun-Hua],
Wang, H.Z.[Han-Zi],
Real-Time High-Performance Semantic Image Segmentation of Urban
Street Scenes,
ITS(22), No. 6, June 2021, pp. 3258-3274.
IEEE DOI
2106
Semantics, Real-time systems, Image segmentation, Convolution,
Intelligent transportation systems, Task analysis,
light-weight convolutional neural networks
BibRef
Weng, X.[Xi],
Yan, Y.[Yan],
Dong, G.S.[Gen-Shun],
Shu, C.[Chang],
Wang, B.[Biao],
Wang, H.Z.[Han-Zi],
Zhang, J.[Ji],
Deep Multi-Branch Aggregation Network for Real-Time Semantic
Segmentation in Street Scenes,
ITS(23), No. 10, October 2022, pp. 17224-17240.
IEEE DOI
2210
Semantics, Real-time systems, Image segmentation, Lattices, Decoding,
Task analysis, Feature extraction, Deep learning,
multi-branch aggregation
BibRef
Liu, M.Y.[Meng-Yu],
Yin, H.J.[Hu-Jun],
Efficient pyramid context encoding and feature embedding for semantic
segmentation,
IVC(111), 2021, pp. 104195.
Elsevier DOI
2106
Semantic segmentation, Convolutional neural networks,
Pyramid context encoding, Real-time processing
BibRef
Jin, Y.[Youngsaeng],
Han, D.[David],
Ko, H.S.[Han-Seok],
TrSeg: Transformer for semantic segmentation,
PRL(148), 2021, pp. 29-35.
Elsevier DOI
2107
Semantic segmentation, Scene understanding, Transformer,
Multi-scale contextual information
BibRef
Hu, J.[Jie],
Kong, H.F.[Hui-Fang],
Fan, L.[Lei],
Zhou, J.[Jun],
Enhancing feature fusion with spatial aggregation and channel fusion
for semantic segmentation,
IET-CV(15), No. 6, 2021, pp. 418-427.
DOI Link
2108
BibRef
Li, X.T.[Xiang-Tai],
Li, X.[Xia],
You, A.S.[An-Sheng],
Zhang, L.[Li],
Cheng, G.L.[Guang-Liang],
Yang, K.Y.[Kui-Yuan],
Tong, Y.H.[Yun-Hai],
Lin, Z.C.[Zhou-Chen],
Towards Efficient Scene Understanding via Squeeze Reasoning,
IP(30), 2021, pp. 7050-7063.
IEEE DOI
2108
Semantics, Cognition, Image segmentation, Task analysis,
Computational modeling, Convolution, Context modeling,
scene understanding
BibRef
Li, X.T.[Xiang-Tai],
Li, X.[Xia],
Zhang, L.[Li],
Cheng, G.L.[Guang-Liang],
Shi, J.P.[Jian-Ping],
Lin, Z.C.[Zhou-Chen],
Tan, S.H.[Shao-Hua],
Tong, Y.H.[Yun-Hai],
Improving Semantic Segmentation via Decoupled Body and Edge Supervision,
ECCV20(XVII:435-452).
Springer DOI
2011
BibRef
Hao, X.C.[Xiao-Chen],
Hao, X.J.[Xing-Jun],
Zhang, Y.[Yaru],
Li, Y.Y.[Yuan-Yuan],
Wu, C.[Chao],
Real-time semantic segmentation with weighted factorized-depthwise
convolution,
IVC(114), 2021, pp. 104269.
Elsevier DOI
2109
Semantic segmentation, Real-time, Pyramid fusion, Continuous separation
BibRef
Xiao, C.J.[Cun-Jun],
Hao, X.J.[Xing-Jun],
Li, H.B.[Hai-Bin],
Li, Y.Q.[Ya-Qian],
Zhang, W.M.[Wen-Ming],
Real-time semantic segmentation with local spatial pixel adjustment,
IVC(123), 2022, pp. 104470.
Elsevier DOI
2206
Semantic segmentation, Real-time, Local spatial adjustment, Dual-branch decoding
BibRef
Tang, Q.[Quan],
Liu, F.G.[Fa-Gui],
Zhang, T.[Tong],
Jiang, J.[Jun],
Zhang, Y.[Yu],
Attention-guided chained context aggregation for semantic
segmentation,
IVC(115), 2021, pp. 104309.
Elsevier DOI
2110
Semantic segmentation, Multi-scale contexts,
Series-parallel hybrid streams, Convolutional networks
BibRef
Cai, L.[Lile],
Xu, X.[Xun],
Zhang, L.N.[Li-Ning],
Foo, C.S.[Chuan-Sheng],
Exploring Spatial Diversity for Region-Based Active Learning,
IP(30), 2021, pp. 8702-8712.
IEEE DOI
2110
Uncertainty, Spatial diversity, Semantics, Image segmentation,
Task analysis, Labeling, Annotations, Active learning, semantic segmentation
BibRef
Zhang, J.[Jian],
Qi, L.[Lei],
Shi, Y.H.[Ying-Huan],
Gao, Y.[Yang],
Generalizable model-agnostic semantic segmentation via
target-specific normalization,
PR(122), 2022, pp. 108292.
Elsevier DOI
2112
Domain generalization, Semantic segmentation,
Model-agnostic learning, Target-specific normalization
BibRef
Yu, L.T.[Li-Tao],
Li, Z.B.[Zhi-Bin],
Xu, M.[Min],
Gao, Y.S.[Yong-Sheng],
Luo, J.B.[Jie-Bo],
Zhang, J.[Jian],
Distribution-Aware Margin Calibration for Semantic Segmentation in
Images,
IJCV(130), No. 1, January 2022, pp. 95-110.
Springer DOI
2201
BibRef
Zhou, Q.[Quan],
Wu, X.F.[Xiao-Fu],
Zhang, S.F.[Suo-Fei],
Kang, B.[Bin],
Ge, Z.Y.[Zong-Yuan],
Latecki, L.J.[Longin Jan],
Contextual ensemble network for semantic segmentation,
PR(122), 2022, pp. 108290.
Elsevier DOI
2112
Ensemble deconvolution, Semantic segmentation, FCNs,
Context aggregation, Encoder-decoder networks
BibRef
Liu, X.F.[Xiao-Feng],
Lu, Y.H.[Yun-Hong],
Liu, X.C.[Xiong-Chang],
Bai, S.[Song],
Li, S.[Site],
You, J.[Jane],
Wasserstein Loss With Alternative Reinforcement Learning for
Severity-Aware Semantic Segmentation,
ITS(23), No. 1, January 2022, pp. 587-596.
IEEE DOI
2201
Automobiles, Measurement, Roads, Semantics, Optimization, Training,
Histograms, Semantic segmentation, autonomous driving,
actor-critic
BibRef
Liu, X.F.[Xiao-Feng],
Ji, W.X.[Wen-Xuan],
You, J.[Jane],
El Fakhri, G.[Georges],
Woo, J.H.[Jong-Hye],
Severity-Aware Semantic Segmentation With Reinforced Wasserstein
Training,
CVPR20(12563-12572)
IEEE DOI
2008
Semantics, Autonomous vehicles, Measurement, Automobiles, Histograms,
Training, Roads
BibRef
Ma, T.Q.[Tian-Qi],
Wang, Q.L.[Qi-Long],
Zhang, H.Z.[Hong-Zhi],
Zuo, W.M.[Wang-Meng],
Delving Deeper Into Pixel Prior for Box-Supervised Semantic
Segmentation,
IP(31), 2022, pp. 1406-1417.
IEEE DOI
2202
Annotations, Semantics, Image segmentation, Training,
Benchmark testing, Predictive models, Convolution,
multiple instance learning
BibRef
Ge, C.[Ce],
Sun, H.F.[Hai-Feng],
Song, Y.Z.[Yi-Zhe],
Ma, Z.Y.[Zhan-Yu],
Liao, J.X.[Jian-Xin],
Exploring Local Detail Perception for Scene Sketch Semantic
Segmentation,
IP(31), 2022, pp. 1447-1461.
IEEE DOI
2202
Image segmentation, Semantics, Automobiles, Layout, Task analysis,
Feature extraction, Airplanes, Sketch dataset, scene sketch,
local detail perception
BibRef
Li, Q.[Qi],
Yang, W.X.[Wei-Xiang],
Liu, W.X.[Wen-Xi],
Yu, Y.L.[Yuan-Long],
He, S.F.[Sheng-Feng],
From Contexts to Locality: Ultra-high Resolution Image Segmentation
via Locality-aware Contextual Correlation,
ICCV21(7232-7241)
IEEE DOI
2203
Image segmentation, Image resolution, Correlation, Codes,
Computational modeling, Semantics, Segmentation,
Scene analysis and understanding
BibRef
Strudel, R.[Robin],
Garcia, R.[Ricardo],
Laptev, I.[Ivan],
Schmid, C.[Cordelia],
Segmenter: Transformer for Semantic Segmentation,
ICCV21(7242-7252)
IEEE DOI
2203
Image segmentation, Image coding, Semantics, Transformers, Encoding,
Decoding, Segmentation, grouping and shape,
Visual reasoning and logical representation
BibRef
Sakaridis, C.[Christos],
Dai, D.X.[Deng-Xin],
Van Gool, L.J.[Luc J.],
Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware
Evaluation for Semantic Nighttime Image Segmentation,
PAMI(44), No. 6, June 2022, pp. 3139-3153.
IEEE DOI
2205
BibRef
Earlier:
Guided Curriculum Model Adaptation and Uncertainty-Aware Evaluation
for Semantic Nighttime Image Segmentation,
ICCV19(7373-7382)
IEEE DOI
2004
Semantics, Image segmentation, Adaptation models, Annotations,
Task analysis, Measurement, Lighting, Domain adaptation,
curriculum learning.
image annotation, learning (artificial intelligence), Uncertainty
BibRef
Tan, Z.T.[Zhen-Tao],
Chen, D.D.[Dong-Dong],
Chu, Q.[Qi],
Chai, M.L.[Meng-Lei],
Liao, J.[Jing],
He, M.M.[Ming-Ming],
Yuan, L.[Lu],
Hua, G.[Gang],
Yu, N.H.[Neng-Hai],
Efficient Semantic Image Synthesis via Class-Adaptive Normalization,
PAMI(44), No. 9, September 2022, pp. 4852-4866.
IEEE DOI
2208
Semantics, Image synthesis, Modulation, Image segmentation,
Task analysis, Generators, Visualization, Semantic image synthesis,
Positional encoding
BibRef
Chen, M.H.[Ming-Hong],
Shu, R.J.[Rui-Jun],
Zhu, D.C.[Dong-Chen],
Li, J.[Jiamao],
Zhang, X.L.[Xiao-Lin],
CSF: Closed-mask-guided semantic fusion method for semantic
perception of unknown scenes,
PRL(161), 2022, pp. 101-107.
Elsevier DOI
2209
Semantic fusion, Information entropy, Mask completion, Semantic segmentation
BibRef
Rosas-Arias, L.[Leonel],
Benitez-Garcia, G.[Gibran],
Portillo-Portillo, J.[José],
Olivares-Mercado, J.[Jesus],
Sánchez-Pérez, G.[Gabriel],
Yanai, K.[Keiji],
FASSD-Net: Fast and Accurate Real-Time Semantic Segmentation for
Embedded Systems,
ITS(23), No. 9, September 2022, pp. 14349-14360.
IEEE DOI
2209
BibRef
Earlier: A1, A2, A3, A5, A6, Only:
Fast and Accurate Real-Time Semantic Segmentation with Dilated
Asymmetric Convolutions,
ICPR21(2264-2271)
IEEE DOI
2105
Real-time systems, Semantics, Convolutional codes,
Embedded systems, Decoding, Task analysis, Image segmentation.
Convolutional codes, Image resolution, Quantization (signal),
Real-time systems
BibRef
Zhang, X.[Xian],
Li, Q.[Qiang],
Quan, Z.B.[Zhi-Bin],
Yang, W.K.[Wan-Kou],
Pyramid Geometric Consistency Learning For Semantic Segmentation,
PR(133), 2023, pp. 109020.
Elsevier DOI
2210
Semantic segmentation, Consistency learning, Supervised contrastive learning
BibRef
Gao, G.Y.[Guang-Yu],
Fang, Z.Y.[Zhi-Yuan],
Han, C.[Cen],
Wei, Y.C.[Yun-Chao],
Liu, C.H.[Chi Harold],
Yan, S.C.[Shui-Cheng],
DRNet: Double Recalibration Network for Few-Shot Semantic
Segmentation,
IP(31), 2022, pp. 6733-6746.
IEEE DOI
2211
Convolution, Task analysis, Prototypes, Heating systems, Annotations,
Image color analysis, Robustness, Few-shot learning,
weakly-supervised learning
BibRef
Li, Z.[Zechao],
Sun, Y.P.[Yan-Ping],
Zhang, L.Y.[Li-Yan],
Tang, J.H.[Jin-Hui],
CTNet: Context-Based Tandem Network for Semantic Segmentation,
PAMI(44), No. 12, December 2022, pp. 9904-9917.
IEEE DOI
2212
Semantics, Image segmentation, Feature extraction, Correlation,
Computational modeling, Task analysis, Convolution, tandem network
BibRef
Quan, Y.[Yu],
Zhang, D.[Dong],
Zhang, L.Y.[Li-Yan],
Tang, J.H.[Jin-Hui],
Centralized Feature Pyramid for Object Detection,
IP(32), 2023, pp. 4341-4354.
IEEE DOI
2308
Feature extraction, Visualization, Object detection, Regulation,
Transformers, Task analysis, Detectors, Feature pyramid,
long-range dependencies
BibRef
Zhou, Q.[Quan],
Qiang, Y.[Yong],
Mo, Y.W.[Yu-Wei],
Wu, X.[Xiaofu],
Latecki, L.J.[Longin Jan],
BANet: Boundary-Assistant Encoder-Decoder Network for Semantic
Segmentation,
ITS(23), No. 12, December 2022, pp. 25259-25270.
IEEE DOI
2212
Semantics, Image segmentation, Feature extraction, Convolution,
Shape, Task analysis, Decoding, Semantic segmentation, dilated-ResNet101
BibRef
Tian, Z.T.[Zhuo-Tao],
Chen, P.G.[Peng-Guang],
Lai, X.[Xin],
Jiang, L.[Li],
Liu, S.[Shu],
Zhao, H.S.[Heng-Shuang],
Yu, B.[Bei],
Yang, M.C.[Ming-Chang],
Jia, J.Y.[Jia-Ya],
Adaptive Perspective Distillation for Semantic Segmentation,
PAMI(45), No. 2, February 2023, pp. 1372-1387.
IEEE DOI
2301
Semantics, Feature extraction, Training, Predictive models, Adaptation models,
Avalanche photodiodes, Context modeling, semantic segmentation
BibRef
Verelst, T.[Thomas],
Tuytelaars, T.[Tinne],
SegBlocks: Block-Based Dynamic Resolution Networks for Real-Time
Segmentation,
PAMI(45), No. 2, February 2023, pp. 2400-2411.
IEEE DOI
2301
Image segmentation, Complexity theory, Task analysis,
Computational efficiency, Semantics, Computational modeling, Costs,
semantic segmentation
BibRef
Seifi, S.[Soroush],
Tuytelaars, T.[Tinne],
Attend and Segment: Attention Guided Active Semantic Segmentation,
ECCV20(XXV:305-321).
Springer DOI
2011
BibRef
Cai, Y.X.[Yu-Xiang],
Yu, Y.[Yuanlong],
Jiang, W.J.[Wei-Jie],
Chen, R.[Rong],
Zheng, W.T.[Wei-Tao],
Wu, X.[Xi],
Su, R.J.[Ren-Jie],
A novel decoder based on Bayesian rules for task-driven object
segmentation,
IET-IPR(17), No. 3, 2023, pp. 832-848.
DOI Link
2303
BibRef
Liu, Z.[Zhi],
Zhang, Y.[Yi],
Guo, X.J.[Xiao-Jie],
Boosting semantic segmentation via feature enhancement,
JVCIR(92), 2023, pp. 103796.
Elsevier DOI
2303
Semantic segmentation, Feature enhancement, Deep learning
BibRef
Jin, Z.C.[Zhen-Chao],
Yu, D.D.[Dong-Dong],
Yuan, Z.H.[Ze-Huan],
Yu, L.Q.[Le-Quan],
MCIBI++: Soft Mining Contextual Information Beyond Image for Semantic
Segmentation,
PAMI(45), No. 5, May 2023, pp. 5988-6005.
IEEE DOI
2304
Image segmentation, Semantics, Memory modules, Task analysis,
Iterative methods, Benchmark testing, Transformers,
video semantic segmentation
BibRef
Jin, Z.C.[Zhen-Chao],
Gong, T.[Tao],
Yu, D.D.[Dong-Dong],
Chu, Q.[Qi],
Wang, J.[Jian],
Wang, C.H.[Chang-Hu],
Shao, J.[Jie],
Mining Contextual Information Beyond Image for Semantic Segmentation,
ICCV21(7211-7221)
IEEE DOI
2203
Training, Image segmentation, Lips, Semantics, Memory modules,
Data aggregation, Segmentation, grouping and shape,
BibRef
Huang, Z.L.[Zi-Long],
Wang, X.G.[Xing-Gang],
Wei, Y.C.[Yun-Chao],
Huang, L.C.[Li-Chao],
Shi, H.[Humphrey],
Liu, W.Y.[Wen-Yu],
Huang, T.S.[Thomas S.],
CCNet: Criss-Cross Attention for Semantic Segmentation,
PAMI(45), No. 6, June 2023, pp. 6896-6908.
IEEE DOI
2305
Semantics, Task analysis, Aggregates, Benchmark testing, Lips,
Image segmentation, Context modeling, Semantic segmentation,
context modeling
BibRef
Gao, S.H.[Shang-Hua],
Li, Z.Y.[Zhong-Yu],
Yang, M.H.[Ming-Hsuan],
Cheng, M.M.[Ming-Ming],
Han, J.W.[Jun-Wei],
Torr, P.H.S.[Philip H.S.],
Large-Scale Unsupervised Semantic Segmentation,
PAMI(45), No. 6, June 2023, pp. 7457-7476.
IEEE DOI
2305
Task analysis, Semantics, Benchmark testing, Shape, Annotations,
Representation learning, Training, Large-scale, unsupervised
BibRef
Liu, J.S.[Jin-Shi],
Jiang, Z.H.[Zhao-Hui],
Cao, T.[Ting],
Chen, Z.W.[Zhi-Wen],
Zhang, C.[Chaobo],
Gui, W.H.[Wei-Hua],
Generated Pseudo-Labels Guided by Background Skeletons for Overcoming
Under-Segmentation in Overlapping Particle Objects,
CirSysVideo(33), No. 6, June 2023, pp. 2906-2919.
IEEE DOI
2306
Image segmentation, Skeleton, Training, Data models,
Semantic segmentation, Task analysis, Training data,
leaf vertices
BibRef
Wu, D.Y.[Dong-Yue],
Guo, Z.[Zilin],
Li, A.[Aoyan],
Yu, C.Q.[Chang-Qian],
Gao, C.X.[Chang-Xin],
Sang, N.[Nong],
Conditional Boundary Loss for Semantic Segmentation,
IP(32), 2023, pp. 3717-3731.
IEEE DOI
2307
Task analysis, Semantic segmentation, Optimization, Semantics,
Training, Noise measurement, Feature extraction,
boundary
BibRef
Hu, X.G.[Xue-Gang],
Xu, S.H.[Shu-Han],
Jing, L.Y.[Li-Yuan],
Lightweight attention-guided redundancy-reuse network for real-time
semantic segmentation,
IET-IPR(17), No. 9, 2023, pp. 2649-2658.
DOI Link
2307
convolutional neural nets, image segmentation, neural net architecture
BibRef
An, T.H.[Taeg-Hyun],
Kang, J.[Jungyu],
Min, K.W.[Kyoung-Wook],
Network adaptation for color image semantic segmentation,
IET-IPR(17), No. 10, 2023, pp. 2972-2983.
DOI Link
2308
computer vision, image colour analysis, image segmentation
BibRef
Zhang, F.Y.[Feng-Yu],
Panahi, A.[Ashkan],
Gao, G.J.[Guang-Jun],
FsaNet: Frequency Self-Attention for Semantic Segmentation,
IP(32), 2023, pp. 4757-4772.
IEEE DOI
2309
BibRef
Lin, F.J.[Fang-Jian],
Wu, S.T.[Si-Tong],
Ma, Y.Z.[Yi-Zhe],
Tian, S.W.[Sheng-Wei],
Full-scale Selective Transformer for Semantic Segmentation,
ACCV22(VII:310-326).
Springer DOI
2307
BibRef
Dong, A.[Aimei],
Liu, S.[Sidi],
Research on Multi-task Semantic Segmentation Based on Attention and
Feature Fusion Method,
MMMod23(II: 362-373).
Springer DOI
2304
BibRef
Zabari, N.[Nir],
Hoshen, Y.[Yedid],
Open-vocabulary Semantic Segmentation Using Test-time Distillation,
LLID22(56-72).
Springer DOI
2304
BibRef
Zheng, Z.S.[Zi-Shuo],
Lin, C.Y.[Chun-Yu],
Nie, L.[Lang],
Liao, K.[Kang],
Shen, Z.J.[Zhi-Jie],
Zhao, Y.[Yao],
Complementary Bi-directional Feature Compression for Indoor 360°
Semantic Segmentation with Self-distillation,
WACV23(4490-4499)
IEEE DOI
2302
Visualization, Image coding, Semantic segmentation,
Bidirectional control, Distortion, Feature extraction,
Virtual/augmented reality
BibRef
Shen, F.Y.[Feng-Yi],
Pataki, Z.[Zador],
Gurram, A.[Akhil],
Liu, Z.Y.[Zi-Yuan],
Wang, H.[He],
Knoll, A.[Alois],
LoopDA: Constructing Self-loops to Adapt Nighttime Semantic
Segmentation,
WACV23(3255-3265)
IEEE DOI
2302
Training, Adaptation models, Codes, Semantic segmentation, Semantics,
Pipelines, Algorithms: Machine learning architectures, visual reasoning
BibRef
Sacha, M.[Mikolaj],
Rymarczyk, D.[Dawid],
Struski, L.[Lukasz],
Tabor, J.[Jacek],
Zielinski, B.[Bartosz],
ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts,
WACV23(1481-1492)
IEEE DOI
2302
Training, Adaptation models, Semantic segmentation, Semantics,
Prototypes, Algorithms: Explainable, fair, accountable, visual reasoning
BibRef
Kanakis, M.[Menelaos],
Huang, T.E.[Thomas E.],
Brüggemann, D.[David],
Yu, F.[Fisher],
Van Gool, L.J.[Luc J.],
Composite Learning for Robust and Effective Dense Predictions,
WACV23(2298-2307)
IEEE DOI
2302
Training, Semantic segmentation, Estimation, Multitasking,
Robustness, Labeling, Algorithms: Machine learning architectures,
and algorithms (including transfer)
BibRef
Brüggemann, D.[David],
Sakaridis, C.[Christos],
Truong, P.[Prune],
Van Gool, L.J.[Luc J.],
Refign: Align and Refine for Adaptation of Semantic Segmentation to
Adverse Conditions,
WACV23(3173-3183)
IEEE DOI
2302
Training, Visualization, Uncertainty, Semantic segmentation,
Semantics, Refining, Robotics
BibRef
Endo, K.[Kazuki],
Tanaka, M.[Masayuki],
Okutomi, M.[Masatoshi],
Semantic Segmentation of Degraded Images Using Layer-Wise Feature
Adjustor,
WACV23(3204-3212)
IEEE DOI
2302
Degradation, Knowledge engineering, Image recognition,
Semantic segmentation, Surveillance, Transform coding, segmentation)
BibRef
Rottmann, M.[Matthias],
Reese, M.[Marco],
Automated Detection of Label Errors in Semantic Segmentation Datasets
via Deep Learning and Uncertainty Quantification,
WACV23(3213-3222)
IEEE DOI
2302
Deep learning, Degradation, Uncertainty, Annotations,
Semantic segmentation, Neural networks, segmentation)
BibRef
Themyr, L.[Loic],
Rambour, C.[Clément],
Thome, N.[Nicolas],
Collins, T.[Toby],
Hostettler, A.[Alexandre],
Full Contextual Attention for Multi-resolution Transformers in
Semantic Segmentation,
WACV23(3223-3232)
IEEE DOI
2302
Training, Visualization, Solid modeling, Image resolution,
Semantic segmentation, Transformers
BibRef
Dong, L.[Lusen],
Wang, F.[Fei],
Zheng, J.[Jin],
Context and Apparent Features Aggregation Network for Semantic
Segmentation,
ICPR22(3858-3864)
IEEE DOI
2212
Convolution, Semantic segmentation, Aggregates,
Image edge detection, Neural networks, Feature extraction, Transformers
BibRef
Nunes, I.[Ian],
Pereira, M.B.[Matheus B.],
Oliveira, H.[Hugo],
dos Santos, J.A.[Jefersson A.],
Poggi, M.[Marcus],
Conditional Reconstruction for Open-Set Semantic Segmentation,
ICIP22(946-950)
IEEE DOI
2211
Adaptation models, Semantics, Time series analysis,
Data integration, Decoding, Task analysis, Image reconstruction, open world
BibRef
Wang, Z.C.[Zi-Chao],
Jiang, Z.Y.[Zhi-Yu],
Yuan, Y.[Yuan],
Prototype Queue Learning for Multi-Class Few-Shot Semantic
Segmentation,
ICIP22(1721-1725)
IEEE DOI
2211
Prototypes, Self-supervised learning, Feature extraction,
Task analysis, Few-shot segmentation, Multi-class segmentation,
Semantic segmentation
BibRef
Kwon, H.[Hyeongjun],
Song, T.[Taeyong],
Kim, S.[Sunok],
Sohn, K.H.[Kwang-Hoon],
Mask-Guided Attention and Episode Adaptive Weights for Few-Shot
Segmentation,
ICIP22(2611-2615)
IEEE DOI
2211
Training, Image segmentation, Adaptation models, Benchmark testing,
Feature extraction, Data mining, Few-shot segmentation,
adaptive learning
BibRef
Yang, X.H.[Xin-Hao],
Ma, L.Y.[Li-Yan],
Zhou, Y.[Yang],
Peng, Y.[Yan],
Xie, S.R.[Shao-Rong],
Prior Semantic Harmonization Network for Few-Shot Semantic
Segmentation,
ICIP22(1126-1130)
IEEE DOI
2211
Correlation, Semantics, Few-shot segmentation,
Semantic harmonization, Feature activation, Hierarchical aggregation
BibRef
Wang, B.[Bo],
Wang, S.[Shiang],
Yuan, C.F.[Chun-Feng],
Wu, Z.H.[Zhong-Hai],
Li, B.[Bing],
Hu, W.M.[Wei-Ming],
Xiong, J.[Jeffrey],
Learnable Pixel Clustering Via Structure and Semantic Dual
Constraints for Unsupervised Image Segmentation,
ICIP22(1041-1045)
IEEE DOI
2211
Representation learning, Image segmentation, Smoothing methods,
Annotations, Semantics, Proposals, Task analysis, image segmentation,
mutual information maximization
BibRef
Kuhn, C.B.[Christopher B.],
Hofbauer, M.[Markus],
Petrovic, G.[Goran],
Steinbach, E.[Eckehard],
Reverse Error Modeling for Improved Semantic Segmentation,
ICIP22(106-110)
IEEE DOI
2211
Image coding, Semantics, Predictive models, Data models,
Image reconstruction, Testing, Semantic Segmentation, Error Correction
BibRef
Dong, J.[Jianan],
Guo, J.[Jichang],
Yue, H.H.[Hui-Hui],
Gao, H.[Huan],
EANET: Efficient Attention-Augmented Network for Real-Time Semantic
Segmentation,
ICIP22(3968-3972)
IEEE DOI
2211
Strips, Costs, Semantics, Graphics processing units,
Real-time systems, Mobile handsets, Task analysis,
Multi-level Features
BibRef
Rossetti, S.[Simone],
Zappia, D.[Damiano],
Sanzari, M.[Marta],
Schaerf, M.[Marco],
Pirri, F.[Fiora],
Max Pooling with Vision Transformers Reconciles Class and Shape in
Weakly Supervised Semantic Segmentation,
ECCV22(XXX:446-463).
Springer DOI
2211
BibRef
Qin, J.[Jie],
Wu, J.[Jie],
Li, M.[Ming],
Xiao, X.F.[Xue-Feng],
Zheng, M.[Min],
Wang, X.G.[Xin-Gang],
Multi-granularity Distillation Scheme Towards Lightweight
Semi-supervised Semantic Segmentation,
ECCV22(XXX:481-498).
Springer DOI
2211
BibRef
Xu, M.D.[Meng-De],
Zhang, Z.[Zheng],
Wei, F.Y.[Fang-Yun],
Lin, Y.T.[Yu-Tong],
Cao, Y.[Yue],
Hu, H.[Han],
Bai, X.[Xiang],
A Simple Baseline for Open-Vocabulary Semantic Segmentation with
Pre-trained Vision-Language Model,
ECCV22(XXIX:736-753).
Springer DOI
2211
BibRef
Lin, Z.H.[Zi-Han],
Wang, Z.L.[Zi-Lei],
Zhang, Y.X.[Yi-Xin],
Continual Semantic Segmentation via Structure Preserving and Projected
Feature Alignment,
ECCV22(XXIX:345-361).
Springer DOI
2211
BibRef
Pissas, T.[Theodoros],
Ravasio, C.S.[Claudio S.],
da Cruz, L.[Lyndon],
Bergeles, C.[Christos],
Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation,
ECCV22(XXIX:413-429).
Springer DOI
2211
BibRef
Wu, T.[Tong],
Gao, G.Y.[Guang-Yu],
Huang, J.[Junshi],
Wei, X.L.[Xiao-Lin],
Wei, X.M.[Xiao-Ming],
Liu, C.H.[Chi Harold],
Adaptive Spatial-BCE Loss for Weakly Supervised Semantic Segmentation,
ECCV22(XXIX:199-216).
Springer DOI
2211
BibRef
Yin, Z.Y.[Zhao-Yuan],
Wang, P.[Pichao],
Wang, F.[Fan],
Xu, X.Z.[Xian-Zhe],
Zhang, H.L.[Han-Ling],
Li, H.[Hao],
Jin, R.[Rong],
TransFGU: A Top-Down Approach to Fine-Grained Unsupervised Semantic
Segmentation,
ECCV22(XXIX:73-89).
Springer DOI
2211
BibRef
Shi, B.[Bowen],
Jiang, D.S.[Dong-Sheng],
Zhang, X.P.[Xiao-Peng],
Li, H.[Han],
Dai, W.[Wenrui],
Zou, J.[Junni],
Xiong, H.K.[Hong-Kai],
Tian, Q.[Qi],
A Transformer-Based Decoder for Semantic Segmentation with Multi-level
Context Mining,
ECCV22(XXVIII:624-639).
Springer DOI
2211
BibRef
Huang, Y.[Ye],
Kang, D.[Di],
Chen, L.[Liang],
Zhe, X.F.[Xue-Fei],
Jia, W.J.[Wen-Jing],
Bao, L.C.[Lin-Chao],
He, X.J.[Xiang-Jian],
CAR: Class-Aware Regularizations for Semantic Segmentation,
ECCV22(XXVIII:518-534).
Springer DOI
2211
BibRef
Liu, Q.D.[Quan-De],
Wen, Y.P.[You-Peng],
Han, J.H.[Jian-Hua],
Xu, C.J.[Chun-Jing],
Xu, H.[Hang],
Liang, X.D.[Xiao-Dan],
Open-World Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding,
ECCV22(XX:275-292).
Springer DOI
2211
BibRef
Wang, F.[Feng],
Wang, H.Y.[Hui-Yu],
Wei, C.[Chen],
Yuille, A.L.[Alan L.],
Shen, W.[Wei],
CP 2: Copy-Paste Contrastive Pretraining for Semantic Segmentation,
ECCV22(XXX:499-515).
Springer DOI
2211
BibRef
Yang, F.Y.[Feng-Yu],
Ma, C.Y.[Chen-Yang],
Sparse and Complete Latent Organization for Geospatial Semantic
Segmentation,
CVPR22(1799-1808)
IEEE DOI
2210
Image segmentation, Computational modeling, Semantics, Prototypes,
Organizations, Geospatial analysis, Photogrammetry and remote sensing
BibRef
Brempong, E.A.[Emmanuel Asiedu],
Kornblith, S.[Simon],
Chen, T.[Ting],
Parmar, N.[Niki],
Minderer, M.[Matthias],
Norouzi, M.[Mohammad],
Denoising Pretraining for Semantic Segmentation,
L3D-IVU22(4174-4185)
IEEE DOI
2210
Training, Image segmentation, Noise reduction, Semantics,
Supervised learning, Transformers, Probabilistic logic
BibRef
Bär, A.[Andreas],
Klingner, M.[Marvin],
Löhdefink, J.[Jonas],
Hüger, F.[Fabian],
Schlicht, P.[Peter],
Fingscheidt, T.[Tim],
Performance Prediction for Semantic Segmentation by a Self-Supervised
Image Reconstruction Decoder,
WAD22(4398-4407)
IEEE DOI
2210
Training, Image segmentation, Semantics, Supervised learning,
Training data, Benchmark testing, Sensors
BibRef
Mehta, D.[Dushyant],
Skliar, A.[Andrii],
Ben Yahia, H.[Haitam],
Borse, S.[Shubhankar],
Porikli, F.M.[Fatih M.],
Habibian, A.[Amirhossein],
Blankevoort, T.[Tijmen],
Simple and Efficient Architectures for Semantic Segmentation,
ECV22(2627-2635)
IEEE DOI
2210
Image segmentation, Head, Semantics, Graphics processing units,
Computer architecture, Hardware, Distance measurement
BibRef
Liu, S.A.[Sun-Ao],
Xie, H.T.[Hong-Tao],
Xu, H.[Hai],
Zhang, Y.D.[Yong-Dong],
Tian, Q.[Qi],
Partial Class Activation Attention for Semantic Segmentation,
CVPR22(16815-16824)
IEEE DOI
2210
Location awareness, Image segmentation, Codes, Semantics,
Benchmark testing, Pattern recognition, grouping and shape analysis
BibRef
Gu, J.Q.[Jia-Qi],
Kwon, H.[Hyoukjun],
Wang, D.[Dilin],
Ye, W.[Wei],
Li, M.[Meng],
Chen, Y.H.[Yu-Hsin],
Lai, L.Z.[Liang-Zhen],
Chandra, V.[Vikas],
Pan, D.Z.[David Z.],
Multi-Scale High-Resolution Vision Transformer for Semantic
Segmentation,
CVPR22(12084-12093)
IEEE DOI
2210
Representation learning, Architecture, Semantics, Redundancy,
Computer architecture, Object detection,
grouping and shape analysis
BibRef
Ding, J.[Jian],
Xue, N.[Nan],
Xia, G.S.[Gui-Song],
Dai, D.X.[Deng-Xin],
Decoupling Zero-Shot Semantic Segmentation,
CVPR22(11573-11582)
IEEE DOI
2210
Training, Image segmentation, Codes, Shape, Semantics,
Pattern recognition, Segmentation, grouping and shape analysis
BibRef
Kwon, D.[Donghyeon],
Kwak, S.[Suha],
Semi-supervised Semantic Segmentation with Error Localization Network,
CVPR22(9947-9957)
IEEE DOI
2210
Training, Location awareness, Degradation, Heart, Image resolution,
Semisupervised learning, Pattern recognition,
grouping and shape analysis
BibRef
Melas-Kyriazi, L.[Luke],
Rupprecht, C.[Christian],
Laina, I.[Iro],
Vedaldi, A.[Andrea],
Deep Spectral Methods: A Surprisingly Strong Baseline for
Unsupervised Semantic Segmentation and Localization,
CVPR22(8354-8365)
IEEE DOI
2210
Location awareness, Deep learning, Image segmentation, Semantics,
Transformers, Graph theory, Self- semi- meta- Segmentation,
grouping and shape analysis
BibRef
Wang, Y.C.[Yu-Chao],
Wang, H.C.[Hao-Chen],
Shen, Y.J.[Yu-Jun],
Fei, J.J.[Jing-Jing],
Li, W.[Wei],
Jin, G.Q.[Guo-Qiang],
Wu, L.W.[Li-Wei],
Zhao, R.[Rui],
Le, X.[Xinyi],
Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels,
CVPR22(4238-4247)
IEEE DOI
2210
Training, Visualization, Shape, Semantics, Predictive models,
Semisupervised learning, Solids, Segmentation,
Self- semi- meta- unsupervised learning
BibRef
Zhao, Y.Y.[Yu-Yang],
Zhong, Z.[Zhun],
Sebe, N.[Nicu],
Lee, G.H.[Gim Hee],
Novel Class Discovery in Semantic Segmentation,
CVPR22(4330-4339)
IEEE DOI
2210
Training, Image segmentation, Uncertainty, Shape, Semantics,
Self-supervised learning, Benchmark testing, Segmentation,
Self- semi- meta- Transfer/low-shot/long-tail learning
BibRef
Kim, J.[Jin],
Lee, J.Y.[Ji-Young],
Park, J.[Jungin],
Min, D.B.[Dong-Bo],
Sohn, K.H.[Kwang-Hoon],
Pin the Memory: Learning to Generalize Semantic Segmentation,
CVPR22(4340-4350)
IEEE DOI
2210
Deep learning, Image analysis, Shape, Semantics, Neural networks,
Benchmark testing, Segmentation, grouping and shape analysis,
Self- semi- meta- unsupervised learning
BibRef
Zhang, Y.F.[Yi-Fan],
Pang, B.[Bo],
Lu, C.[Cewu],
Semantic Segmentation by Early Region Proxy,
CVPR22(1248-1258)
IEEE DOI
2210
Image segmentation, Shape, Computational modeling, Semantics, Layout,
Predictive models, Transformers, Segmentation, grouping and shape analysis
BibRef
Ke, T.W.[Tsung-Wei],
Hwang, J.J.[Jyh-Jing],
Guo, Y.H.[Yun-Hui],
Wang, X.D.[Xu-Dong],
Yu, S.X.[Stella X.],
Unsupervised Hierarchical Semantic Segmentation with Multiview
Cosegmentation and Clustering Transformers,
CVPR22(2561-2571)
IEEE DOI
2210
Representation learning, Image segmentation, Visualization,
Semantics, Benchmark testing, Transformers, Segmentation,
Self- semi- meta- unsupervised learning
BibRef
Ratajczak, R.[Rémi],
Crispim, C.[Carlos],
Fervers, B.[Béatrice],
Faure, E.[Elodie],
Tougne, L.[Laure],
Semantic Segmentation Post-processing with Colorized Pairwise
Potentials and Deep Edges,
IPTA20(1-6)
IEEE DOI
2206
Image segmentation, Image color analysis, Image edge detection,
Semantics, Gray-scale, Tools, Task analysis, semantic segmentation,
deep edges
BibRef
Jin, Z.C.[Zhen-Chao],
Liu, B.[Bin],
Chu, Q.[Qi],
Yu, N.H.[Neng-Hai],
ISNet: Integrate Image-Level and Semantic-Level Context for Semantic
Segmentation,
ICCV21(7169-7178)
IEEE DOI
2203
Image segmentation, Visualization, Lips, Aggregates, Semantics,
Benchmark testing, Segmentation, grouping and shape,
BibRef
Zhang, Y.[Yu],
Zhang, C.B.[Chang-Bin],
Jiang, P.T.[Peng-Tao],
Cheng, M.M.[Ming-Ming],
Mao, F.[Feng],
Personalized Image Semantic Segmentation,
ICCV21(10529-10539)
IEEE DOI
2203
Image segmentation, Correlation, Codes, Semantics,
Datasets and evaluation, Segmentation, grouping and shape
BibRef
Jain, S.[Shipra],
Paudel, D.P.[Danda Pani],
Danelljan, M.[Martin],
Van Gool, L.J.[Luc J.],
Scaling Semantic Segmentation Beyond 1K Classes on a Single GPU,
ICCV21(7406-7416)
IEEE DOI
2203
Training, Image segmentation, Computational modeling, Scalability,
Semantics, Graphics processing units, Object detection,
Representation learning
BibRef
Wang, W.G.[Wen-Guan],
Zhou, T.F.[Tian-Fei],
Yu, F.[Fisher],
Dai, J.F.[Ji-Feng],
Konukoglu, E.[Ender],
Van Gool, L.J.[Luc J.],
Exploring Cross-Image Pixel Contrast for Semantic Segmentation,
ICCV21(7283-7293)
IEEE DOI
2203
Training, Representation learning, Measurement, Image segmentation,
Semantics, Training data, Optical character recognition software,
Scene analysis and understanding
BibRef
Hsiao, C.W.[Chi-Wei],
Sun, C.[Cheng],
Chen, H.T.[Hwann-Tzong],
Sun, M.[Min],
Specialize and Fuse: Pyramidal Output Representation for Semantic
Segmentation,
ICCV21(7117-7126)
IEEE DOI
2203
Fuses, Aggregates, Semantics, Task analysis, Segmentation, grouping and shape
BibRef
Zhang, D.[Dong],
Zhang, H.[Hanwang],
Tang, J.H.[Jin-Hui],
Hua, X.S.[Xian-Sheng],
Sun, Q.[Qianru],
Self-Regulation for Semantic Segmentation,
ICCV21(6933-6943)
IEEE DOI
2203
Training, Visualization, Computational modeling, Semantics,
Neural networks, Performance gain, Segmentation,
Scene analysis and understanding
BibRef
Aakerberg, A.[Andreas],
Johansen, A.S.[Anders S.],
Nasrollahi, K.[Kamal],
Moeslund, T.B.[Thomas B.],
Semantic Segmentation Guided Real-World Super-Resolution,
RWSurvil22(449-458)
IEEE DOI
2202
Degradation, Training, Image segmentation, Adaptation models,
Visualization, Image color analysis, Superresolution
BibRef
Garcia, R.L.,
Happ, P.N.,
Feitosa, R.Q.,
Large Scale Semantic Segmentation of Virtual Environments to Facilitate
Corrosion Management,
ISPRS21(B2-2021: 465-470).
DOI Link
2201
BibRef
Pang, Y.T.[Yu-Ting],
Chang, J.[Jui],
Hsu, C.T.[Chiou-Ting],
Self-Guided Adversarial Learning for Domain Adaptive Semantic
Segmentation,
ICIP21(2249-2253)
IEEE DOI
2201
Learning systems, Image segmentation, Adaptation models, Semantics,
Benchmark testing, Reliability, Unsupervised domain adaptation,
self-guided adversarial learning
BibRef
Shiau, Z.Y.[Zu-Yun],
Lin, W.W.[Wei-Wei],
Lin, C.S.[Ci-Siang],
Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Meta-Learned Feature Critics for Domain Generalized Semantic
Segmentation,
ICIP21(2244-2248)
IEEE DOI
2201
Adaptation models, Visualization, Image segmentation, Semantics,
Benchmark testing, Feature extraction, domain generalization
BibRef
Lou, A.[Ange],
Loew, M.[Murray],
CFPNET: Channel-Wise Feature Pyramid for Real-Time Semantic
Segmentation,
ICIP21(1894-1898)
IEEE DOI
2201
Performance evaluation, Image segmentation, Convolution, Semantics,
Graphics processing units, Real-time semantic segmentation,
CFPNet
BibRef
Lee, H.J.[Hong Joo],
Ro, Y.M.[Yong Man],
Adversarially Robust Multi-Sensor Fusion Model Training Via Random
Feature Fusion for Semantic Segmentation,
ICIP21(339-343)
IEEE DOI
2201
Training, Image segmentation, Semantics, Data integration,
Object detection, Feature extraction, Multi-sensor data fusion,
random feature fusion
BibRef
Aakerberg, A.[Andreas],
Johansen, A.S.[Anders S.],
Nasrollahi, K.[Kamal],
Moeslund, T.B.[Thomas B.],
Single-Loss Multi-task Learning For Improving Semantic Segmentation
Using Super-Resolution,
CAIP21(II:403-411).
Springer DOI
2112
BibRef
Zhu, F.R.[Fang-Rui],
Zhu, Y.[Yi],
Zhang, L.[Li],
Wu, C.R.[Chong-Ruo],
Fu, Y.W.[Yan-Wei],
Li, M.[Mu],
A Unified Efficient Pyramid Transformer for Semantic Segmentation,
VSPW21(2667-2677)
IEEE DOI
2112
Adaptation models, Image segmentation,
Computational modeling, Semantics, Benchmark testing
BibRef
Dhingra, N.[Naina],
Chogovadze, G.[George],
Kunz, A.[Andreas],
Border-SegGCN: Improving Semantic Segmentation by Refining the Border
Outline using Graph Convolutional Network,
GSP-CV21(865-875)
IEEE DOI
2112
Computational modeling, Semantics,
Refining, Computer architecture, Prediction algorithms
BibRef
Shin, G.G.[Gyun-Gin],
Xie, W.[Weidi],
Albanie, S.[Samuel],
All you need are a few pixels: semantic segmentation with PixelPick,
ILDAV21(1687-1697)
IEEE DOI
2112
Training, Deep learning, Costs, Sensitivity, Annotations, Semantics,
Pipelines
BibRef
Holder, C.J.[Christopher J.],
Shafique, M.[Muhammad],
Efficient Uncertainty Estimation in Semantic Segmentation via
Distillation,
AVVision21(3080-3087)
IEEE DOI
2112
Training, Image segmentation, Uncertainty, Computational modeling,
Semantics, Predictive models, Data models
BibRef
Cho, J.H.[Jang Hyun],
Mall, U.[Utkarsh],
Bala, K.[Kavita],
Hariharan, B.[Bharath],
PiCIE: Unsupervised Semantic Segmentation using Invariance and
Equivariance in Clustering,
CVPR21(16789-16799)
IEEE DOI
2111
Training, Visualization, Image segmentation, Codes,
Clustering methods, Semantics
BibRef
Huynh, C.[Chuong],
Tran, A.T.[Anh Tuan],
Luu, K.[Khoa],
Hoai, M.[Minh],
Progressive Semantic Segmentation,
CVPR21(16750-16759)
IEEE DOI
2111
Image segmentation, Image resolution, Codes,
Magnetic separation, Magnetic resonance imaging, Semantics
BibRef
Liu, M.Y.[Ming-Yuan],
Schonfeld, D.[Dan],
Tang, W.[Wei],
Exploit Visual Dependency Relations for Semantic Segmentation,
CVPR21(9721-9730)
IEEE DOI
2111
Training, Deep learning, Visualization, Semantics,
Network architecture, Cognition
BibRef
Teja, S.P.[S. Prabhu],
Fleuret, F.[François],
Uncertainty Reduction for Model Adaptation in Semantic Segmentation,
CVPR21(9608-9618)
IEEE DOI
2111
Image segmentation, Adaptation models, Uncertainty, Semantics,
Urban areas, Feature extraction, Data models
BibRef
Li, S.[Shuang],
Gong, K.X.[Kai-Xiong],
Liu, C.H.[Chi Harold],
Wang, Y.L.[Yu-Lin],
Qiao, F.[Feng],
Cheng, X.[Xinjing],
MetaSAug:
Meta Semantic Augmentation for Long-Tailed Visual Recognition,
CVPR21(5208-5217)
IEEE DOI
2111
Training, Visualization, Semantics,
Supervised learning, Training data, Benchmark testing
BibRef
Yang, S.[Sibei],
Xia, M.[Meng],
Li, G.B.[Guan-Bin],
Zhou, H.Y.[Hong-Yu],
Yu, Y.Z.[Yi-Zhou],
Bottom-Up Shift and Reasoning for Referring Image Segmentation,
CVPR21(11261-11270)
IEEE DOI
2111
Location awareness, Visualization, Image segmentation,
Fuses, Message passing, Computational modeling
BibRef
Ma, H.Y.[Hao-Yu],
Lin, X.R.[Xiang-Ru],
Wu, Z.F.[Zi-Feng],
Yu, Y.Z.[Yi-Zhou],
Coarse-to-Fine Domain Adaptive Semantic Segmentation with Photometric
Alignment and Category-Center Regularization,
CVPR21(4050-4059)
IEEE DOI
2111
Image segmentation, Adaptation models,
Annotations, Computational modeling, Semantics, Pipelines
BibRef
Hänsch, R.[Ronny],
Looking Outside the Box: The Role of Context in Random Forest Based
Semantic Segmentation of PolSAR Images,
GCPR20(260-274).
Springer DOI
2110
BibRef
Zatsarynna, O.[Olga],
Sawatzky, J.[Johann],
Gall, J.[Juergen],
Discovering Latent Classes for Semi-supervised Semantic Segmentation,
GCPR20(202-217).
Springer DOI
2110
BibRef
Theodoridou, C.[Christina],
Kargakos, A.[Andreas],
Kostavelis, I.[Ioannis],
Giakoumis, D.[Dimitrios],
Tzovaras, D.[Dimitrios],
Spatially-Constrained Semantic Segmentation with Topological Maps and
Visual Embeddings,
CVS21(117-129).
Springer DOI
2109
BibRef
Szabó, A.[Attila],
Jamali-Rad, H.[Hadi],
Mannava, S.D.[Siva-Datta],
Tilted Cross-Entropy (TCE): Promoting Fairness in Semantic
Segmentation,
RCV21(2305-2310)
IEEE DOI
2109
Semantics, Performance analysis,
Pattern recognition, Risk management
BibRef
Adilova, L.[Linara],
Schulz, E.[Elena],
Akila, M.[Maram],
Houben, S.[Sebastian],
Schneider, J.D.[Jan David],
Hüger, F.[Fabian],
Wirtz, T.[Tim],
Plants Don't Walk on the Street: Common-Sense Reasoning for Reliable
Semantic Segmentation,
SAIAD21(85-92)
IEEE DOI
2109
Deep learning, Image segmentation, Semantics, Pipelines,
Probabilistic logic, Distortion
BibRef
Tavera, A.[Antonio],
Cermelli, F.[Fabio],
Masone, C.[Carlo],
Caputo, B.[Barbara],
Pixel-by-Pixel Cross-Domain Alignment for Few-Shot Semantic
Segmentation,
WACV22(1959-1968)
IEEE DOI
2202
Training, Image segmentation, Semantics,
Benchmark testing, Task analysis, Standards, Segmentation,
Grouping and Shape Scene Understanding
BibRef
Fontanel, D.[Dario],
Cermelli, F.[Fabio],
Mancini, M.[Massimiliano],
Caputo, B.[Barbara],
Detecting Anomalies in Semantic Segmentation with Prototypes,
SAIAD21(113-121)
IEEE DOI
2109
Training, Visualization, Computational modeling,
Semantics, Prototypes
BibRef
Arani, E.[Elahe],
Marzban, S.[Shabbir],
Pata, A.[Andrei],
Zonooz, B.[Bahram],
RGPNet: A Real-Time General Purpose Semantic Segmentation,
WACV21(3008-3017)
IEEE DOI
2106
Training, Performance evaluation, Adaptation models,
Computational modeling, Semantics, Green products
BibRef
Patel, Y.[Yash],
Appalaraju, S.[Srikar],
Manmatha, R.,
Saliency Driven Perceptual Image Compression,
WACV21(227-236)
IEEE DOI
2106
Measurement, Image segmentation, Image coding,
Computational modeling, Bit rate
BibRef
Sun, Z.T.[Zi-Tang],
Kamata, S.I.[Sei-Ichiro],
Wang, R.J.[Ruo-Jing],
Semantic Segmentation Refinement Using Entropy and Boundary-guided
Monte Carlo Sampling and Directed Regional Search,
ICPR21(3931-3938)
IEEE DOI
2105
Monte Carlo methods, Semantics, Logic gates, Prediction algorithms,
Search problems, Entropy, Classification algorithms
BibRef
Zhang, B.[Bin],
Zhao, S.J.[Sheng-Jie],
Zhang, R.Q.[Rong-Qing],
Cross-Domain Semantic Segmentation of Urban Scenes via Multi-Level
Feature Alignment,
ICPR21(1912-1917)
IEEE DOI
2105
Image segmentation, Solid modeling, Semantics, Neural networks,
Virtual reality, Feature extraction, Robustness
BibRef
Zhang, Y.F.[Yi-Fei],
Sidibé, D.[Désiré],
Morel, O.[Olivier],
Meriaudeau, F.[Fabrice],
Multiscale Attention-Based Prototypical Network For Few-Shot Semantic
Segmentation,
ICPR21(7372-7378)
IEEE DOI
2105
Training, Image segmentation, Adaptation models, Annotations,
Semantics, Prototypes, Feature extraction
BibRef
Nie, D.[Dong],
Xue, J.[Jia],
Ren, X.F.[Xiao-Feng],
Bidirectional Pyramid Networks for Semantic Segmentation,
ACCV20(I:654-671).
Springer DOI
2103
BibRef
Ouni, A.[Achref],
Royer, E.[Eric],
Chevaldonné, M.[Marc],
Dhome, M.[Michel],
A Hybrid Approach for Improved Image Similarity Using Semantic
Segmentation,
ISVC20(II:647-657).
Springer DOI
2103
BibRef
Mozaffari, M.H.[M. Hamed],
Lee, W.S.[Won-Sook],
Semantic Segmentation with Peripheral Vision,
ISVC20(II:421-429).
Springer DOI
2103
BibRef
Huang, H.[Hang],
Zhi, P.[Peng],
Zhou, H.R.[Hao-Ran],
Zhang, Y.J.[Yu-Jin],
Wu, Q.[Qiang],
Yong, B.B.[Bin-Bin],
Tan, W.J.[Wei-Jun],
Zhou, Q.G.[Qing-Guo],
An Efficient Tiny Feature Map Network for Real-time Semantic
Segmentation,
ISVC20(II:332-343).
Springer DOI
2103
BibRef
Wu, Y.,
Jiang, A.,
Tang, Y.,
Kwan, H.K.,
GRNet: Deep Convolutional Neural Networks based on Graph Reasoning
for Semantic Segmentation,
VCIP20(116-119)
IEEE DOI
2102
Semantics, Convolution, Cognition, Image segmentation,
Feature extraction, Training, Network architecture,
semantic segmentation
BibRef
Huang, Y.,
Tang, Z.,
Su, K.,
Balance-batch: An Optimized Method for Semantic Segmentation Loss
Functions,
CVIDL20(342-346)
IEEE DOI
2102
feature extraction, image classification, image representation,
image segmentation, learning (artificial intelligence),
loss function
BibRef
Jiang, S.L.,
Li, G.,
Yao, W.,
Hong, Z.H.,
Kuc, T.Y.,
Dual Pyramids Encoder-decoder Network for Semantic Segmentation In
Ground and Aerial View Images,
ISPRS20(B2:605-610).
DOI Link
2012
BibRef
Jing, Y.[Ya],
Kong, T.[Tao],
Wang, W.[Wei],
Wang, L.[Liang],
Li, L.[Lei],
Tan, T.N.[Tie-Niu],
Locate then Segment:
A Strong Pipeline for Referring Image Segmentation,
CVPR21(9853-9862)
IEEE DOI
2111
Location awareness, Image segmentation, Visualization, Fuses,
Pipelines, Object segmentation, Feature extraction
BibRef
Chen, W.L.[Wan-Li],
Zhu, X.G.[Xin-Ge],
Sun, R.Q.[Ruo-Qi],
He, J.J.[Jun-Jun],
Li, R.Y.[Rui-Yu],
Shen, X.Y.[Xiao-Yong],
Yu, B.[Bei],
Tensor Low-rank Reconstruction for Semantic Segmentation,
ECCV20(XVII:52-69).
Springer DOI
2011
BibRef
Hu, H.Z.[Han-Zhe],
Ji, D.Y.[De-Yi],
Gan, W.H.[Wei-Hao],
Bai, S.[Shuai],
Wu, W.[Wei],
Yan, J.J.[Jun-Jie],
Class-wise Dynamic Graph Convolution for Semantic Segmentation,
ECCV20(XVII:1-17).
Springer DOI
2011
BibRef
Yin, M.H.[Ming-Hao],
Yao, Z.L.[Zhu-Liang],
Cao, Y.[Yue],
Li, X.[Xiu],
Zhang, Z.[Zheng],
Lin, S.[Stephen],
Hu, H.[Han],
Disentangled Non-local Neural Networks,
ECCV20(XV:191-207).
Springer DOI
2011
Code, Segmentation.
WWW Link.
WWW Link.
BibRef
Lehman, C.,
Temel, D.,
Alregib, G.,
On the Structures of Representation for the Robustness of Semantic
Segmentation to Input Corruption,
ICIP20(3239-3243)
IEEE DOI
2011
Robustness, Semantics, Entropy, Training, Estimation, Task analysis,
Machine learning, Robustness in Machine Learning,
Sigmoid
BibRef
Zhang, B.,
Zhao, S.,
Zhang, R.,
Towards Adaptive Semantic Segmentation By Progressive Feature
Refinement,
ICIP20(2221-2225)
IEEE DOI
2011
Image segmentation, Semantics, Task analysis, Adaptation models,
Machine learning, Computational modeling, Feature extraction,
deep learning
BibRef
Li, S.,
Zhou, Q.,
Liu, J.,
Wang, J.,
Fan, Y.,
Wu, X.,
Latecki, L.J.,
DCM: A Dense-Attention Context Module For Semantic Segmentation,
ICIP20(1431-1435)
IEEE DOI
2011
Convolution, Feature extraction, Semantics, Data mining,
Image segmentation, Kernel, Decoding, Semantic segmentation, Attention
BibRef
Liu, J.B.[Jian-Bo],
He, J.J.[Jun-Jun],
Zhang, J.W.[Jia-Wei],
Ren, J.S.[Jimmy S.],
Li, H.S.[Hong-Sheng],
Efficientfcn: Holistically-guided Decoding for Semantic Segmentation,
ECCV20(XXVI:1-17).
Springer DOI
2011
BibRef
Wang, Y.K.[Yu-Kang],
Zhou, W.[Wei],
Jiang, T.[Tao],
Bai, X.[Xiang],
Xu, Y.C.[Yong-Chao],
Intra-class Feature Variation Distillation for Semantic Segmentation,
ECCV20(VII:346-362).
Springer DOI
2011
BibRef
Michieli, U.[Umberto],
Borsato, E.[Edoardo],
Rossi, L.[Luca],
Zanuttigh, P.[Pietro],
Gmnet: Graph Matching Network for Large Scale Part Semantic
Segmentation in the Wild,
ECCV20(VIII:397-414).
Springer DOI
2011
BibRef
Yang, B.[Boyu],
Liu, C.[Chang],
Li, B.[Bohao],
Jiao, J.B.[Jian-Bin],
Ye, Q.X.[Qi-Xiang],
Prototype Mixture Models for Few-shot Semantic Segmentation,
ECCV20(VIII:763-778).
Springer DOI
2011
BibRef
Yuan, Y.H.[Yu-Hui],
Chen, X.L.[Xi-Lin],
Wang, J.D.[Jing-Dong],
Object-contextual Representations for Semantic Segmentation,
ECCV20(VI:173-190).
Springer DOI
2011
BibRef
Kamann, C.[Christoph],
Rother, C.[Carsten],
Increasing the Robustness of Semantic Segmentation Models with
Painting-by-numbers,
ECCV20(X:369-387).
Springer DOI
2011
BibRef
Liu, Y.F.[Yong-Fei],
Zhang, X.Y.[Xiang-Yi],
Zhang, S.Y.[Song-Yang],
He, X.M.[Xu-Ming],
Part-aware Prototype Network for Few-Shot Semantic Segmentation,
ECCV20(IX:142-158).
Springer DOI
2011
BibRef
He, Y.[Yang],
Rahimian, S.[Shadi],
Schiele, B.[Bernt],
Fritz, M.[Mario],
Segmentations-leak: Membership Inference Attacks and Defenses in
Semantic Image Segmentation,
ECCV20(XXIII:519-535).
Springer DOI
2011
BibRef
Xia, Y.D.[Ying-Da],
Zhang, Y.[Yi],
Liu, F.Z.[Feng-Ze],
Shen, W.[Wei],
Yuille, A.L.[Alan L.],
Synthesize Then Compare: Detecting Failures and Anomalies for Semantic
Segmentation,
ECCV20(I:145-161).
Springer DOI
2011
BibRef
Luo, W.F.[Wen-Feng],
Yang, M.[Meng],
Semi-supervised Semantic Segmentation via Strong-weak Dual-branch
Network,
ECCV20(V:784-800).
Springer DOI
2011
BibRef
Cheng, H.K.[Ho Kei],
Chung, J.H.[Ji-Hoon],
Tai, Y.W.[Yu-Wing],
Tang, C.K.[Chi-Keung],
CascadePSP: Toward Class-Agnostic and Very High-Resolution
Segmentation via Global and Local Refinement,
CVPR20(8887-8896)
IEEE DOI
2008
Image segmentation, Image resolution, Semantics,
Computational modeling, Task analysis, Adaptation models, Feature extraction
BibRef
Oberdiek, P.,
Rottmann, M.,
Fink, G.A.,
Detection and Retrieval of Out-of-Distribution Objects in Semantic
Segmentation,
SAIAD20(1331-1340)
IEEE DOI
2008
Image segmentation, Feature extraction, Semantics, Visualization,
Agriculture, Machine learning, Image retrieval
BibRef
Zhen, M.,
Wang, J.,
Zhou, L.,
Li, S.,
Shen, T.,
Shang, J.,
Fang, T.,
Quan, L.,
Joint Semantic Segmentation and Boundary Detection Using Iterative
Pyramid Contexts,
CVPR20(13663-13672)
IEEE DOI
2008
Pattern recognition
BibRef
Kamann, C.,
Rother, C.,
Benchmarking the Robustness of Semantic Segmentation Models,
CVPR20(8825-8835)
IEEE DOI
2008
Robustness, Semantics, Computer architecture, Image segmentation,
Feature extraction, Benchmark testing, Cameras
BibRef
Siddiqui, Y.,
Valentin, J.,
Nießner, M.,
ViewAL: Active Learning With Viewpoint Entropy for Semantic
Segmentation,
CVPR20(9430-9440)
IEEE DOI
2008
Entropy, Uncertainty, Semantics, Labeling, Image segmentation,
Task analysis, Data models
BibRef
Zhang, Y.,
Qiu, Z.,
Yao, T.,
Ngo, C.,
Liu, D.,
Mei, T.,
Transferring and Regularizing Prediction for Semantic Segmentation,
CVPR20(9618-9627)
IEEE DOI
2008
Semantics, Image segmentation, Roads, Buildings, Visualization,
Labeling, Adaptation models
BibRef
Araslanov, N.,
Roth, S.,
Single-Stage Semantic Segmentation From Image Labels,
CVPR20(4252-4261)
IEEE DOI
2008
Image segmentation, Training, Semantics, Task analysis, Logic gates,
Stochastic processes, Decoding
BibRef
Wang, L.,
Li, D.,
Zhu, Y.,
Tian, L.,
Shan, Y.,
Dual Super-Resolution Learning for Semantic Segmentation,
CVPR20(3773-3782)
IEEE DOI
2008
Semantics, Image segmentation, Spatial resolution, Task analysis,
Pose estimation, Convolution
BibRef
Li, Z.,
Bao, W.,
Zheng, J.,
Xu, C.,
Deep Grouping Model for Unified Perceptual Parsing,
CVPR20(4052-4062)
IEEE DOI
2008
Semantics, Task analysis, Computational modeling,
Image segmentation, Adaptation models, Context modeling, Message passing
BibRef
Lin, P.,
Sun, P.,
Cheng, G.,
Xie, S.,
Li, X.,
Shi, J.,
Graph-Guided Architecture Search for Real-Time Semantic Segmentation,
CVPR20(4202-4211)
IEEE DOI
2008
Computer architecture, Microprocessors, Semantics, Convolution,
Image segmentation, Real-time systems, Random variables
BibRef
Rai, S.N.,
Balasubramanian, V.N.,
Subramanian, A.,
Jawahar, C.V.,
Munich to Dubai: How far is it for Semantic Segmentation?,
WACV20(2988-2997)
IEEE DOI
2006
Image restoration, Image segmentation, Atmospheric modeling,
Meteorology, Semantics, Adaptation models, Training
BibRef
Du, Y.M.[Yu-Ming],
Xiao, Y.[Yang],
Lepetit, V.[Vincent],
Learning to Better Segment Objects from Unseen Classes with Unlabeled
Videos,
ICCV21(3355-3364)
IEEE DOI
2203
Training, Shape, Video sequences, Training data, Manuals,
Object segmentation, Object detection,
grouping and shape
BibRef
Stekovic, S.,
Fraundorfer, F.,
Lepetit, V.[Vincent],
Casting Geometric Constraints in Semantic Segmentation as
Semi-Supervised Learning,
WACV20(1843-1852)
IEEE DOI
2006
Image segmentation, Semantics, Predictive models,
Semisupervised learning, Task analysis, Training,
BibRef
Lin, H.[Hubert],
Upchurch, P.[Paul],
Bala, K.[Kavita],
Block Annotation:
Better Image Annotation With Sub-Image Decomposition,
ICCV19(5289-5299)
IEEE DOI
2004
Generate the data needed to do semantic segmentation.
image retrieval, image segmentation, image texture,
block annotation, high-quality pixel-level annotations, Quality control
BibRef
Kalluri, T.,
Varma, G.,
Chandraker, M.,
Jawahar, C.V.,
Universal Semi-Supervised Semantic Segmentation,
ICCV19(5258-5269)
IEEE DOI
2004
entropy, image segmentation, unsupervised learning,
cross-domain unsupervised losses, segmentation datasets, Roads
BibRef
Cheng, B.,
Chen, L.,
Wei, Y.,
Zhu, Y.,
Huang, Z.,
Xiong, J.,
Huang, T.,
Hwu, W.,
Shi, H.,
Uiuc, U.,
SPGNet: Semantic Prediction Guidance for Scene Parsing,
ICCV19(5217-5227)
IEEE DOI
2004
feature extraction, image coding, image segmentation,
learning (artificial intelligence), pose estimation, Feature extraction
BibRef
He, J.,
Deng, Z.,
Qiao, Y.,
Dynamic Multi-Scale Filters for Semantic Segmentation,
ICCV19(3561-3571)
IEEE DOI
2004
convolutional neural nets, image filtering, image representation,
image segmentation, Dynamic multiscale filters, Computational efficiency
BibRef
Pang, Y.,
Li, Y.,
Shen, J.,
Shao, L.,
Towards Bridging Semantic Gap to Improve Semantic Segmentation,
ICCV19(4229-4238)
IEEE DOI
2004
feature extraction, image enhancement, image fusion,
image representation, image segmentation, object detection, Convolution
BibRef
Zhang, C.,
Liwicki, S.,
Smith, W.,
Cipolla, R.,
Orientation-Aware Semantic Segmentation on Icosahedron Spheres,
ICCV19(3532-3540)
IEEE DOI
2004
convolutional neural nets, feature extraction,
image classification, image resolution, image segmentation, Task analysis
BibRef
Marin, D.,
He, Z.,
Vajda, P.,
Chatterjee, P.,
Tsai, S.,
Yang, F.,
Boykov, Y.Y.,
Efficient Segmentation: Learning Downsampling Near Semantic
Boundaries,
ICCV19(2131-2141)
IEEE DOI
2004
image sampling, image segmentation,
learning (artificial intelligence), semantic boundaries, Image resolution
BibRef
Nakajima, Y.,
Kang, B.,
Saito, H.,
Kitani, K.,
Incremental Class Discovery for Semantic Segmentation With RGBD
Sensing,
ICCV19(972-981)
IEEE DOI
2004
image colour analysis, image representation, image segmentation,
learning (artificial intelligence), object recognition,
Image color analysis
BibRef
Han, Q.Y.[Qiu-Yuan],
Zheng, J.[Jin],
Multi-scale Spatial Location Preference for Semantic Segmentation,
MMMod20(I:593-604).
Springer DOI
2003
BibRef
Jiao, J.B.[Jian-Bo],
Wei, Y.C.[Yun-Chao],
Jie, Z.Q.[Ze-Qun],
Shi, H.H.[Hong-Hui],
Lau, R.W.H.[Rynson W.H.],
Huang, T.S.[Thomas S.],
Geometry-Aware Distillation for Indoor Semantic Segmentation,
CVPR19(2864-2873).
IEEE DOI
2002
BibRef
Liu, Y.F.[Yi-Fan],
Chen, K.[Ke],
Liu, C.[Chris],
Qin, Z.C.[Zeng-Chang],
Luo, Z.B.[Zhen-Bo],
Wang, J.D.[Jing-Dong],
Structured Knowledge Distillation for Semantic Segmentation,
CVPR19(2599-2608).
IEEE DOI
2002
BibRef
Tian, Z.[Zhi],
He, T.[Tong],
Shen, C.H.[Chun-Hua],
Yan, Y.[Youliang],
Decoders Matter for Semantic Segmentation: Data-Dependent Decoding
Enables Flexible Feature Aggregation,
CVPR19(3121-3130).
IEEE DOI
2002
BibRef
Zhou, Y.Z.[Yi-Zhou],
Sun, X.Y.[Xiao-Yan],
Zha, Z.J.[Zheng-Jun],
Zeng, W.J.[Wen-Jun],
Context-Reinforced Semantic Segmentation,
CVPR19(4041-4050).
IEEE DOI
2002
BibRef
Zhang, Z.Y.[Zhen-Yu],
Cui, Z.[Zhen],
Xu, C.Y.[Chun-Yan],
Yan, Y.[Yan],
Sebe, N.[Nicu],
Yang, J.[Jian],
Pattern-Affinitive Propagation Across Depth, Surface Normal and
Semantic Segmentation,
CVPR19(4101-4110).
IEEE DOI
2002
BibRef
Zhang, H.[Hang],
Zhang, H.[Han],
Wang, C.G.[Chen-Guang],
Xie, J.Y.[Jun-Yuan],
Co-Occurrent Features in Semantic Segmentation,
CVPR19(548-557).
IEEE DOI
2002
BibRef
He, T.[Tong],
Shen, C.H.[Chun-Hua],
Tian, Z.[Zhi],
Gong, D.[Dong],
Sun, C.M.[Chang-Ming],
Yan, Y.[Youliang],
Knowledge Adaptation for Efficient Semantic Segmentation,
CVPR19(578-587).
IEEE DOI
2002
BibRef
Chang, W.L.[Wei-Lun],
Wang, H.P.[Hui-Po],
Peng, W.H.[Wen-Hsiao],
Chiu, W.C.[Wei-Chen],
All About Structure: Adapting Structural Information Across Domains for
Boosting Semantic Segmentation,
CVPR19(1900-1909).
IEEE DOI
2002
BibRef
Schmitz, M.,
Brandenburger, W.,
Mayer, H.,
Semantic Segmentation of Airborne Images and Corresponding Digital
Surface Models - Additional Input Data Or Additional Task?,
PIA19(195-200).
DOI Link
1912
BibRef
Huang, Y.,
Proesmans, M.,
Georgoulis, S.,
Van Gool, L.J.,
Uncertainty based model selection for fast semantic segmentation,
MVA19(1-6)
DOI Link
1911
entropy, image segmentation, inference mechanisms, semantic labels,
baseline model, reasonable inference speeds,
Entropy
BibRef
Bevandic, P.[Petra],
Kreo, I.[Ivan],
Oric, M.[Marin],
egvic, S.[Sinia],
Simultaneous Semantic Segmentation and Outlier Detection in Presence of
Domain Shift,
GCPR19(33-47).
Springer DOI
1911
BibRef
Russo, P.[Paolo],
Tommasi, T.[Tatiana],
Caputo, B.[Barbara],
Towards Multi-source Adaptive Semantic Segmentation,
CIAP19(I:292-301).
Springer DOI
1909
BibRef
Leonardi, M.[Marco],
Mazzini, D.[Davide],
Schettini, R.[Raimondo],
Training Efficient Semantic Segmentation CNNs on Multiple Datasets,
CIAP19(II:303-314).
Springer DOI
1909
BibRef
Zhuang, P.C.[Peng-Cheng],
Sekikawa, Y.[Yusuke],
Hara, K.[Kosuke],
Saito, H.[Hideo],
Learning an Optimisable Semantic Segmentation Map with Image
Conditioned Variational Autoencoder,
CIAP19(II:379-389).
Springer DOI
1909
BibRef
Saha, S.[Sudipan],
Sudhakaran, S.[Swathikiran],
Banerjee, B.[Biplab],
Pendurkar, S.[Sumedh],
Semantic Guided Deep Unsupervised Image Segmentation,
CIAP19(II:499-510).
Springer DOI
1909
BibRef
Dias, P.A.[Philipe Ambrozio],
Medeiros, H.[Henry],
Semantic Segmentation Refinement by Monte Carlo Region Growing of High
Confidence Detections,
ACCV18(II:131-146).
Springer DOI
1906
BibRef
Falcăo, A.X.[Alexandre X.],
Bragantini, J.[Jordăo],
The Role of Optimum Connectivity in Image Segmentation:
Can the Algorithm Learn Object Information During the Process?,
DGCI19(180-194).
Springer DOI
1905
Feature space and image domain linkage.
BibRef
Guan, H.,
Zhang, Z.,
Tan, T.,
Inception Donut Convolution for Top-down Semantic Segmentation,
ICPR18(2492-2497)
IEEE DOI
1812
convolution, feature extraction, feedforward neural nets,
image representation, image segmentation, Streaming media
BibRef
Vallurupalli, N.,
Annamaneni, S.,
Varma, G.,
Jawahar, C.,
Mathew, M.,
Nagori, S.,
Efficient Semantic Segmentation Using Gradual Grouping,
ECVW18(711-7118)
IEEE DOI
1812
Training, Semantics, Computer architecture, Computational modeling,
Sparse matrices, Predictive models, Decoding
BibRef
Tsai, Y.,
Hung, W.,
Schulter, S.,
Sohn, K.,
Yang, M.,
Chandraker, M.,
Learning to Adapt Structured Output Space for Semantic Segmentation,
CVPR18(7472-7481)
IEEE DOI
1812
Image segmentation, Semantics, Adaptation models, Task analysis,
Training, Prediction algorithms, Layout
BibRef
Muralikrishnan, S.,
Kim, V.G.,
Chaudhuri, S.,
Tags2Parts: Discovering Semantic Regions from Shape Tags,
CVPR18(2926-2935)
IEEE DOI
1812
Shape, Computer architecture, Image segmentation, Convolution,
Semantics, Training
BibRef
Bilinski, P.,
Prisacariu, V.[Victor],
Dense Decoder Shortcut Connections for Single-Pass Semantic
Segmentation,
CVPR18(6596-6605)
IEEE DOI
1812
Decoding, Semantics, Image segmentation, Architecture,
Computer architecture, Fuses, Spatial resolution
BibRef
Zhang, H.,
Dana, K.,
Shi, J.,
Zhang, Z.,
Wang, X.,
Tyagi, A.,
Agrawal, A.,
Context Encoding for Semantic Segmentation,
CVPR18(7151-7160)
IEEE DOI
1812
Encoding, Semantics, Convolution, Image segmentation, Training,
Image coding, Feature extraction
BibRef
Casanova, A.,
Cucurull, G.,
Drozdzal, M.,
Romero, A.,
Bengio, Y.,
On the Iterative Refinement of Densely Connected Representation
Levels for Semantic Segmentation,
AutoDrive18(1091-109109)
IEEE DOI
1812
Semantics, Spatial resolution, Computer architecture,
Convolutional codes, Computational modeling, Image segmentation
BibRef
Huang, Y.,
Jia, X.,
Georgoulis, S.,
Tuytelaars, T.,
Van Gool, L.J.,
Error Correction for Dense Semantic Image Labeling,
AutoDrive18(1111-11118)
IEEE DOI
1812
Image segmentation, Labeling, Task analysis, Semantics,
Error correction, Pipelines, Probability distribution
BibRef
Yang, M.,
Yu, K.,
Zhang, C.,
Li, Z.,
Yang, K.,
DenseASPP for Semantic Segmentation in Street Scenes,
CVPR18(3684-3692)
IEEE DOI
1812
Convolution, Semantics, Image resolution, Kernel, Image segmentation,
Neurons, Autonomous vehicles
BibRef
Matsuzuki, D.[Daisuke],
Hotta, K.[Kazuhiro],
Semantic Segmentation by Integrating Classifiers for Different
Difficulty Levels,
ISVC18(607-615).
Springer DOI
1811
BibRef
Ke, T.W.[Tsung-Wei],
Hwang, J.J.[Jyh-Jing],
Liu, Z.[Ziwei],
Yu, S.X.[Stella X.],
Adaptive Affinity Fields for Semantic Segmentation,
ECCV18(I: 605-621).
Springer DOI
1810
BibRef
Zhao, H.S.[Heng-Shuang],
Qi, X.J.[Xiao-Juan],
Shen, X.Y.[Xiao-Yong],
Shi, J.P.[Jian-Ping],
Jia, J.Y.[Jia-Ya],
ICNet for Real-Time Semantic Segmentation on High-Resolution Images,
ECCV18(III: 418-434).
Springer DOI
1810
BibRef
Lin, D.[Di],
Ji, Y.[Yuanfeng],
Lischinski, D.[Dani],
Cohen-Or, D.[Daniel],
Huang, H.[Hui],
Multi-scale Context Intertwining for Semantic Segmentation,
ECCV18(III: 622-638).
Springer DOI
1810
BibRef
Zhu, X.G.[Xin-Ge],
Zhou, H.[Hui],
Yang, C.Y.[Ce-Yuan],
Shi, J.P.[Jian-Ping],
Lin, D.[Dahua],
Penalizing Top Performers:
Conservative Loss for Semantic Segmentation Adaptation,
ECCV18(VII: 587-603).
Springer DOI
1810
BibRef
Zhang, Z.Y.[Zhen-Yu],
Cui, Z.[Zhen],
Xu, C.Y.[Chun-Yan],
Jie, Z.Q.[Ze-Qun],
Li, X.[Xiang],
Yang, J.[Jian],
Joint Task-Recursive Learning for Semantic Segmentation and Depth
Estimation,
ECCV18(X: 238-255).
Springer DOI
1810
BibRef
Mehta, S.[Sachin],
Rastegari, M.[Mohammad],
Caspi, A.[Anat],
Shapiro, L.[Linda],
Hajishirzi, H.[Hannaneh],
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic
Segmentation,
ECCV18(X: 561-580).
Springer DOI
1810
BibRef
Zhang, Z.L.[Zhen-Li],
Zhang, X.Y.[Xiang-Yu],
Peng, C.[Chao],
Xue, X.Y.[Xiang-Yang],
Sun, J.[Jian],
ExFuse: Enhancing Feature Fusion for Semantic Segmentation,
ECCV18(X: 273-288).
Springer DOI
1810
BibRef
Sulimowicz, L.,
Ahmad, I.,
Aved, A.,
Superpixel-Enhanced Pairwise Conditional Random Field for Semantic
Segmentation,
ICIP18(271-275)
IEEE DOI
1809
Image segmentation, Semantics, Kernel, Labeling, Robustness,
Visualization, Image color analysis,
and Higher-order CRFs
BibRef
Lu, L.H.[Li-Hsien],
Hsu, C.T.[Chiou-Ting],
Semantic Segmentation for Real-World Data by Jointly Exploiting
Supervised andxs Transferrable Knowledge,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Chaurasia, A.,
Culurciello, E.,
LinkNet: Exploiting encoder representations for efficient semantic
segmentation,
VCIP17(1-4)
IEEE DOI
1804
image resolution, image segmentation,
learning (artificial intelligence), neural nets, LinkNet,
Training
BibRef
Zhang, Y.[Yu],
Ngan, K.N.[King Ngi],
Huynh, C.P.[Cong Phuoc],
Habili, N.[Nariman],
Learning Deep Spatial-Spectral Features for Material Segmentation in
Hyperspectral Images,
DICTA17(1-7)
IEEE DOI
1804
feature extraction, geophysical image processing,
image classification, image segmentation,
Training
BibRef
Cui, Z.,
Zhang, Q.,
Geng, S.,
Niu, X.,
Yang, J.,
Qiao, Y.,
Semantic segmentation with multi-path refinement and pyramid pooling
dilated-resnet,
ICIP17(3100-3104)
IEEE DOI
1803
Computer architecture, Convolution, Feature extraction,
Image segmentation, Semantics, Task analysis, Training,
Segmentation
BibRef
Zhu, Y.,
Tian, Y.,
Metaxas, D.,
Dollár, P.,
Semantic Amodal Segmentation,
CVPR17(3001-3009)
IEEE DOI
1711
Image edge detection, Image segmentation, Object detection,
Semantics, Tools, Visualization
BibRef
Shen, F.,
Gan, R.,
Yan, S.,
Zeng, G.,
Semantic Segmentation via Structured Patch Prediction, Context CRF
and Guidance CRF,
CVPR17(5178-5186)
IEEE DOI
1711
Complexity theory, Image segmentation, Message passing,
Predictive models, Semantics, Training
BibRef
Luo, P.[Ping],
Wang, G.R.[Guang-Run],
Lin, L.[Liang],
Wang, X.G.[Xiao-Gang],
Deep Dual Learning for Semantic Image Segmentation,
ICCV17(2737-2745)
IEEE DOI
1802
BibRef
Earlier: A2, A1, A3, A4:
Learning Object Interactions and Descriptions for Semantic Image
Segmentation,
CVPR17(5235-5243)
IEEE DOI
1711
image reconstruction, image segmentation,
learning (artificial intelligence), neural nets, DIS,
Cleaning, Cows, Feature extraction, Image segmentation, Semantics,
Streaming media.
BibRef
Wigness, M.,
Rogers, J.G.,
Unsupervised Semantic Scene Labeling for Streaming Data,
CVPR17(5910-5919)
IEEE DOI
1711
Adaptation models, Data models, Image segmentation, Labeling,
Semantics, Streaming media, Visualization
BibRef
Bulň, S.R.,
Neuhold, G.,
Kontschieder, P.,
Loss Max-Pooling for Semantic Image Segmentation,
CVPR17(7082-7091)
IEEE DOI
1711
Benchmark testing, Image segmentation, Semantics, Standards,
Training, Upper, bound
BibRef
He, Y.[Yang],
Keuper, M.[Margret],
Schiele, B.[Bernt],
Fritz, M.[Mario],
Learning Dilation Factors for Semantic Segmentation of Street Scenes,
GCPR17(41-51).
Springer DOI
1711
BibRef
Jégou, S.[Simon],
Drozdzal, M.[Michal],
Vazquez, D.[David],
Romero, A.[Adriana],
Bengio, Y.[Yoshua],
The One Hundred Layers Tiramisu:
Fully Convolutional DenseNets for Semantic Segmentation,
CVVT17(1175-1183)
IEEE DOI
1709
Benchmark testing, Computer architecture, Image segmentation,
Semantics, Spatial resolution, Standards
BibRef
Derue, F.X.[François-Xavier],
Dahmane, M.[Mohamed],
Lalonde, M.[Marc],
Foucher, S.[Samuel],
Exploiting Semantic Segmentation for Robust Camera Motion
Classification,
ICIAR17(173-181).
Springer DOI
1706
BibRef
Huang, Q.[Qin],
Xia, C.Y.[Chun-Yang],
Zheng, W.[Wenchao],
Song, Y.H.[Yu-Hang],
Xu, H.[Hao],
Kuo, C.C.J.[C.C. Jay],
Object Boundary Guided Semantic Segmentation,
ACCV16(I: 197-212).
Springer DOI
1704
BibRef
Hazirbas, C.[Caner],
Ma, L.N.[Ling-Ni],
Domokos, C.[Csaba],
Cremers, D.[Daniel],
FuseNet: Incorporating Depth into Semantic Segmentation via
Fusion-Based CNN Architecture,
ACCV16(I: 213-228).
Springer DOI
1704
BibRef
Bouachir, W.,
Torabi, A.,
Bilodeau, G.A.,
Blais, P.,
A bag of words approach for semantic segmentation of monitored scenes,
ISIVC16(88-93)
IEEE DOI
1704
Bayes methods
BibRef
Souly, N.[Nasim],
Shah, M.[Mubarak],
Scene Labeling Using Sparse Precision Matrix,
CVPR16(3650-3658)
IEEE DOI
1612
BibRef
Xu, C.,
Corso, J.J.[Jason J.],
Actor-Action Semantic Segmentation with Grouping Process Models,
CVPR16(3083-3092)
IEEE DOI
1612
BibRef
Gao, Y.[Yang],
Beijbom, O.[Oscar],
Zhang, N.[Ning],
Darrell, T.J.[Trevor J.],
Compact Bilinear Pooling,
CVPR16(317-326)
IEEE DOI
1612
BibRef
Bearman, A.[Amy],
Russakovsky, O.[Olga],
Ferrari, V.[Vittorio],
Fei-Fei, L.[Li],
What's the Point: Semantic Segmentation with Point Supervision,
ECCV16(VII: 549-565).
Springer DOI
1611
BibRef
Ghiasi, G.[Golnaz],
Fowlkes, C.C.[Charless C.],
Laplacian Pyramid Reconstruction and Refinement for Semantic
Segmentation,
ECCV16(III: 519-534).
Springer DOI
1611
BibRef
Fourure, D.[Damien],
Emonet, R.[Rémi],
Fromont, E.[Elisa],
Muselet, D.[Damien],
Trémeau, A.[Alain],
Wolf, C.[Christian],
Semantic Segmentation via Multi-task, Multi-domain Learning,
SSSPR16(333-343).
Springer DOI
1611
BibRef
Tarashima, S.,
Pan, J.,
Irie, G.,
Kurozumi, T.,
Kinebuchi, T.,
Joint object discovery and segmentation with image-wise
reconstruction error,
ICIP16(849-853)
IEEE DOI
1610
Airplanes
BibRef
Zhou, H.,
Zhang, J.[Jun],
Lei, J.[Jun],
Li, S.[Shuohao],
Tu, D.[Dan],
Image semantic segmentation based on FCN-CRF model,
ICIVC16(9-14)
IEEE DOI
1610
feature extraction
BibRef
Li, W.H.[Wei-Hao],
Yang, M.Y.[Michael Ying],
Efficient Semantic Segmentation Of Man-made Scenes Using
Fully-connected Conditional Random Field,
ISPRS16(B3: 633-640).
DOI Link
1610
BibRef
Tian, Q.,
Li, B.,
Simultaneous semantic segmentation of a set of partially labeled
images,
WACV16(1-9)
IEEE DOI
1606
Computer science
BibRef
Najafi, M.[Mohammad],
Namin, S.T.[Sarah Taghavi],
Salzmann, M.[Mathieu],
Petersson, L.[Lars],
Sample and Filter: Nonparametric Scene Parsing via Efficient
Filtering,
CVPR16(607-615)
IEEE DOI
1612
BibRef
Earlier: A2, A1, A3, A4:
Cutting Edge: Soft Correspondences in Multimodal Scene Parsing,
ICCV15(1188-1196)
IEEE DOI
1602
Feature extraction. combine modalities.
BibRef
Qi, X.J.[Xiao-Juan],
Liu, Z.Z.[Zheng-Zhe],
Shi, J.P.[Jian-Ping],
Zhao, H.S.[Heng-Shuang],
Jia, J.Y.[Jia-Ya],
Augmented Feedback in Semantic Segmentation Under Image Level
Supervision,
ECCV16(VIII: 90-105).
Springer DOI
1611
BibRef
Qi, X.J.[Xiao-Juan],
Shi, J.P.[Jian-Ping],
Liu, S.,
Liao, R.,
Jia, J.Y.[Jia-Ya],
Semantic Segmentation with Object Clique Potential,
ICCV15(2587-2595)
IEEE DOI
1602
Computational modeling
BibRef
Caesar, H.[Holger],
Uijlings, J.[Jasper],
Ferrari, V.[Vittorio],
Region-Based Semantic Segmentation with End-to-End Training,
ECCV16(I: 381-397).
Springer DOI
1611
BibRef
Earlier:
Joint Calibration for Semantic Segmentation,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Srivatsa, R.S.[R. Sai],
Babu, R.V.[R. Venkatesh],
Salient object detection via objectness measure,
ICIP15(4481-4485)
IEEE DOI
1512
Image Saliency; Image Segmentation; Objectness Proposals; Superpixels
BibRef
Ventura, C.[Carles],
Giro-i-Nieto, X.[Xavier],
Vilaplana, V.[Veronica],
McGuinness, K.[Kevin],
Marques, F.[Ferran],
O'Connor, N.E.[Noel E.],
Improving spatial codification in semantic segmentation,
ICIP15(3605-3609)
IEEE DOI
1512
Object recognition
BibRef
Zhao, N.[Nan],
Banerjee, C.[Chaity],
Liu, X.W.[Xiu-Wen],
Nano-scale context-sensitive semantic segmentation,
ICIP15(3062-3066)
IEEE DOI
1512
Nano-scale; context-sensitive; microvilli; semantic segmentation; spike
BibRef
Pieck, M.A.R.[Martin A.R.],
van der Sommen, F.[Fons],
Zinger, S.[Svitlana],
de With, P.H.N.[Peter H.N.],
Real-time semantic context labeling for image understanding,
ICIP15(3180-3184)
IEEE DOI
1512
Context classification; Gabor filtering; SVM; Segmentation
BibRef
Dai, J.F.[Ji-Feng],
He, K.M.[Kai-Ming],
Sun, J.[Jian],
Convolutional feature masking for joint object and stuff segmentation,
CVPR15(3992-4000)
IEEE DOI
1510
BibRef
Mostajabi, M.[Mohammadreza],
Yadollahpour, P.[Payman],
Shakhnarovich, G.[Gregory],
Feedforward semantic segmentation with zoom-out features,
CVPR15(3376-3385)
IEEE DOI
1510
BibRef
Ardeshir, S.[Shervin],
Collins-Sibley, K.M.[Kofi Malcolm],
Shah, M.[Mubarak],
Geo-semantic segmentation,
CVPR15(2792-2799)
IEEE DOI
1510
BibRef
Sharma, A.[Abhishek],
Tuzel, O.[Oncel],
Jacobs, D.W.[David W.],
Deep hierarchical parsing for semantic segmentation,
CVPR15(530-538)
IEEE DOI
1510
BibRef
Zhu, G.[Gao],
Ming, Y.S.[Yan-Sheng],
Li, H.D.[Hong-Dong],
Object category detection by incorporating mid-level grouping cues,
ICIP14(1604-1608)
IEEE DOI
1502
Computer vision
BibRef
Bassiouny, A.[Ahmed],
El-Saban, M.[Motaz],
Semantic segmentation as image representation for scene recognition,
ICIP14(981-985)
IEEE DOI
1502
Accuracy
BibRef
Tegen, A.[Agnes],
Weegar, R.[Rebecka],
Hammarlund, L.[Linus],
Oskarsson, M.[Magnus],
Jiang, F.Y.[Fang-Yuan],
Medved, D.[Dennis],
Nugues, P.[Pierre],
Astrom, K.[Kalle],
Image Segmentation and Labeling Using Free-Form Semantic Annotation,
ICPR14(2281-2286)
IEEE DOI
1412
Context
BibRef
Kroeger, T.[Thorben],
Kappes, J.H.[Jörg H.],
Beier, T.[Thorsten],
Koethe, U.[Ullrich],
Hamprecht, F.A.[Fred A.],
Asymmetric Cuts: Joint Image Labeling and Partitioning,
GCPR14(199-211).
Springer DOI
1411
BibRef
Ladicky, L.[Lubor],
Shi, J.B.[Jian-Bo],
Pollefeys, M.[Marc],
Pulling Things out of Perspective,
CVPR14(89-96)
IEEE DOI
1409
Depth Estimation; Object Recognition; Semantic Segmentation
BibRef
Mottaghi, R.[Roozbeh],
Chen, X.J.[Xian-Jie],
Liu, X.B.[Xiao-Bai],
Cho, N.G.[Nam-Gyu],
Lee, S.W.[Seong-Whan],
Fidler, S.[Sanja],
Urtasun, R.[Raquel],
Yuille, A.L.[Alan L.],
The Role of Context for Object Detection and Semantic Segmentation in
the Wild,
CVPR14(891-898)
IEEE DOI
1409
BibRef
Isola, P.[Phillip],
Zoran, D.[Daniel],
Krishnan, D.[Dilip],
Adelson, E.H.[Edward H.],
Crisp Boundary Detection Using Pointwise Mutual Information,
ECCV14(III: 799-814).
Springer DOI
1408
Between semantic objects.
BibRef
Li, Z.Y.[Zhen-Yang],
Gavves, E.[Efstratios],
Mensink, T.[Thomas],
Snoek, C.G.M.[Cees G.M.],
Attributes Make Sense on Segmented Objects,
ECCV14(VI: 350-365).
Springer DOI
1408
BibRef
Dong, J.[Jian],
Chen, Q.A.[Qi-Ang],
Yan, S.C.[Shui-Cheng],
Yuille, A.L.[Alan L.],
Towards Unified Object Detection and Semantic Segmentation,
ECCV14(V: 299-314).
Springer DOI
1408
Joint detect and segment.
BibRef
Riemenschneider, H.[Hayko],
Bódis-Szomorú, A.[András],
Weissenberg, J.[Julien],
Van Gool, L.J.[Luc J.],
Learning Where to Classify in Multi-view Semantic Segmentation,
ECCV14(V: 516-532).
Springer DOI
1408
BibRef
Tao, L.L.[Ling-Ling],
Porikli, F.M.[Fatih M.],
Vidal, R.[René],
Sparse Dictionaries for Semantic Segmentation,
ECCV14(V: 549-564).
Springer DOI
1408
BibRef
Zhu, S.Q.[Sheng-Qi],
Yang, Y.Q.[Yi-Qing],
Zhang, L.[Li],
From Label Maps to Label Strokes:
Semantic Segmentation for Street Scenes from Incomplete Training Data,
CVCP13(468-475)
IEEE DOI
1403
data handling
BibRef
Baek, S.[Seung_Ryul],
Lim, T.[Taegyu],
Heo, Y.S.[Yong Seok],
Park, S.B.[Sung-Bum],
Kwak, H.[Hantak],
Shim, W.[Woosung],
Superpixel Coherency and Uncertainty Models for Semantic Segmentation,
PGMs13(275-282)
IEEE DOI
1403
computational complexity
BibRef
Roig, G.[Gemma],
Boix, X.[Xavier],
de Nijs, R.[Roderick],
Ramos, S.[Sebastian],
Kuhnlenz, K.[Koljia],
Van Gool, L.J.[Luc J.],
Active MAP Inference in CRFs for Efficient Semantic Segmentation,
ICCV13(2312-2319)
IEEE DOI
1403
using expensive features.
BibRef
Barron, J.T.[Jonathan T.],
Biggin, M.D.[Mark D.],
Arbelaez, P.[Pablo],
Knowles, D.W.[David W.],
Keranen, S.V.E.[Soile V.E.],
Malik, J.[Jitendra],
Volumetric Semantic Segmentation Using Pyramid Context Features,
ICCV13(3448-3455)
IEEE DOI
1403
BibRef
Singh, G.[Gautam],
Kosecka, J.[Jana],
Introspective semantic segmentation,
WACV14(714-720)
IEEE DOI
1406
BibRef
Earlier:
Nonparametric Scene Parsing with Adaptive Feature Relevance and
Semantic Context,
CVPR13(3151-3157)
IEEE DOI
1309
feature relevance; scene understanding; semantic segmentation.
Small patches, simple features.
Accuracy.
BibRef
Csurka, G.[Gabriela],
Larlus, D.[Diane],
Perronnin, F.[Florent],
What is a good evaluation measure for semantic segmentation?,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Li, F.X.[Fu-Xin],
Carreira, J.[Joao],
Lebanon, G.[Guy],
Sminchisescu, C.[Cristian],
Composite Statistical Inference for Semantic Segmentation,
CVPR13(3302-3309)
IEEE DOI
1309
composite likelihood
BibRef
Zou, W.B.[Wen-Bin],
Kpalma, K.[Kidiyo],
Ronsin, J.[Joseph],
Semantic image segmentation using region bank,
ICPR12(922-925).
WWW Link.
1302
BibRef
And:
Semantic segmentation via sparse coding over hierarchical regions,
ICIP12(2577-2580).
IEEE DOI
1302
Hierarchical region segmentation, sparse coding of regions for recognition.
BibRef
Fröhlich, B.[Björn],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Semantic Segmentation with Millions of Features:
Integrating Multiple Cues in a Combined Random Forest Approach,
ACCV12(I:218-231).
Springer DOI
1304
BibRef
And:
As Time Goes by:
Anytime Semantic Segmentation with Iterative Context Forests,
DAGM12(1-10).
Springer DOI
1209
BibRef
Hariharan, B.[Bharath],
Zitnick, C.L.[C. Lawrence],
Dollar, P.[Piotr],
Detecting Objects Using Deformation Dictionaries,
CVPR14(1995-2002)
IEEE DOI
1409
BibRef
Fidler, S.[Sanja],
Mottaghi, R.[Roozbeh],
Yuille, A.L.[Alan L.],
Urtasun, R.[Raquel],
Bottom-Up Segmentation for Top-Down Detection,
CVPR13(3294-3301)
IEEE DOI
1309
Object detection; object class recognition; object segmentation
BibRef
Yao, J.[Jian],
Fidler, S.[Sanja],
Urtasun, R.[Raquel],
Describing the scene as a whole: Joint object detection, scene
classification and semantic segmentation,
CVPR12(702-709).
IEEE DOI
1208
BibRef
Pohlen, T.,
Badami, I.,
Mathias, M.,
Leibe, B.[Bastian],
Semantic segmentation of modular furniture,
WACV16(1-9)
IEEE DOI
1606
Face
BibRef
Floros, G.[Georgios],
Rematas, K.[Konstantinos],
Leibe, B.[Bastian],
Multi-Class Image Labeling with Top-Down Segmentation and Generalized
Robust P^N Potentials,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Passino, G.[Giuseppe],
Patras, I.[Ioannis],
Izquierdo, E.[Ebroul],
Pyramidal Model for Image Semantic Segmentation,
ICPR10(1554-1557).
IEEE DOI
1008
BibRef
Schnitman, Y.[Yaar],
Caspi, Y.[Yaron],
Cohen-Or, D.[Daniel],
Lischinski, D.[Dani],
Inducing Semantic Segmentation from an Example,
ACCV06(II:373-384).
Springer DOI
0601
BibRef
Zhang, H.H.[Hong-Hui],
Xiao, J.X.[Jian-Xiong],
Quan, L.[Long],
Supervised Label Transfer for Semantic Segmentation of Street Scenes,
ECCV10(V: 561-574).
Springer DOI
1009
Set of labelled images of street scenes. Recognition is by matching
at image level, then using the given lables.
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Domain Adaption for Semantic Segmentation .