16.7.4.2.8 Counting People, Crowds, Crowd Counting

Chapter Contents (Back)
Counting People. Crowd Counting.

Marcenaro, L., Marchesotti, L., Regazzoni, C.S.,
Self-organizing shape description for tracking and classifying multiple interacting objects,
IVC(24), No. 11, 1 November 2006, pp. 1179-1191.
Elsevier DOI 0610
BibRef
Earlier:
Tracking and Counting Multiple Interacting People in Indoor Scenes,
PETS02(56-61). 0207
BibRef

Morerio, P.[Pietro], Marcenaro, L.[Lucio], Regazzoni, C.S.[Carlo S.],
People Count Estimation In Small Crowds,
AVSS12(476-480).
IEEE DOI 1211
BibRef

Marchesotti, L., Piva, S., Regazzoni, C.S.,
An agent-based approach for tracking people in indoor complex environments,
CIAP03(99-102).
IEEE DOI 0310
BibRef

Alahi, A.[Alexandre], Jacques, L.[Laurent], Boursier, Y.[Yannick], Vandergheynst, P.[Pierre],
Sparsity Driven People Localization with a Heterogeneous Network of Cameras,
JMIV(41), No. 1-2, September 2011, pp. 39-58.
WWW Link. 1108
BibRef
Earlier:
Sparsity-driven people localization algorithm: Evaluation in crowded scenes environments,
PETS-Winter09(1-8).
IEEE DOI 0912
BibRef

Lee, G.G.[Gwang-Gook], Kim, W.Y.[Whoi-Yul],
A Statistical Method for Counting Pedestrians in Crowded Environments,
IEICE(E94-D), No. 6, June 2011, pp. 1357-1361.
WWW Link. 1101
BibRef

Zhang, J., Tan, B., Sha, F., He, L.,
Predicting Pedestrian Counts in Crowded Scenes With Rich and High-Dimensional Features,
ITS(12), No. 4, December 2011, pp. 1037-1046.
IEEE DOI 1112
BibRef

Chen, Z.[Zhuo], Wang, L.[Lu], Yung, N.H.C.[Nelson H.C.],
Adaptive human motion analysis and prediction,
PR(44), No. 12, December 2011, pp. 2902-2914.
Elsevier DOI 1107
Motion pattern; Pattern clustering; Pattern classification; Prediction BibRef

Sim, C.H.[Chern-Horng], Rajmadhan, E.[Ekambaram], Ranganath, S.[Surendra],
Detecting people in dense crowds,
MVA(23), No. 2, March 2012, pp. 243-253.
WWW Link. 1202
BibRef

Hung, D.H.[Dao-Huu], Hsu, G.S.[Gee-Sern], Chung, S.L.[Sheng-Luen], Saito, H.[Hideo],
Real-Time Counting People in Crowded Areas by Using Local Empirical Templates and Density Ratios,
IEICE(E95-D), No. 7, July 2012, pp. 1791-1803.
WWW Link. 1208
BibRef
Earlier: A1, A3, A2, Only:
Local Empirical Templates and Density Ratios for People Counting,
ACCV10(IV: 90-101).
Springer DOI 1011
BibRef

Wang, L.[Lu], Yung, N.H.C.[Nelson H.C.],
Three-Dimensional Model-Based Human Detection in Crowded Scenes,
ITS(13), No. 2, June 2012, pp. 691-703.
IEEE DOI 1206
BibRef
Earlier:
Bayesian 3D model based human detection in crowded scenes using efficient optimization,
WACV11(557-563).
IEEE DOI 1101
BibRef
Earlier:
Crowd counting and segmentation in visual surveillance,
ICIP09(2573-2576).
IEEE DOI 0911
BibRef

Ge, W.[Weina], Collins, R.T.[Robert T.], Ruback, R.B.[R. Barry],
Vision-Based Analysis of Small Groups in Pedestrian Crowds,
PAMI(34), No. 5, May 2012, pp. 1003-1016.
IEEE DOI 1204
BibRef
Earlier:
Automatically detecting the small group structure of a crowd,
WACV09(1-8).
IEEE DOI 0912
Not just single pedestrians, but small groups traveling together. Clustered by proxmimity and velocity. BibRef

Ge, W.[Weina], Collins, R.T.[Robert T.],
Crowd Detection with a Multiview Sampler,
ECCV10(V: 324-337).
Springer DOI 1009
BibRef
Earlier:
Evaluation of sampling-based pedestrian detection for crowd counting,
PETS-Winter09(1-7).
IEEE DOI 0912
Evaluation, Human Detection. BibRef
Earlier:
Marked point processes for crowd counting,
CVPR09(2913-2920).
IEEE DOI 0906
BibRef

Chan, A.B.[Antoni B.], Vasconcelos, N.M.[Nuno M.],
Counting People With Low-Level Features and Bayesian Regression,
IP(21), No. 4, April 2012, pp. 2160-2177.
IEEE DOI 1204
BibRef
Earlier:
Bayesian Poisson regression for crowd counting,
ICCV09(545-551).
IEEE DOI 0909
BibRef

Liu, B., Vasconcelos, N.M.,
Bayesian Model Adaptation for Crowd Counts,
ICCV15(4175-4183)
IEEE DOI 1602
Adaptation models BibRef

Conte, D.[Donatello], Foggia, P.[Pasquale], Percannella, G.[Gennaro], Vento, M.[Mario],
Counting moving persons in crowded scenes,
MVA(24), No. 5, July 2013, pp. 1029-1042.
Springer DOI 1306
BibRef
Earlier:
A Method Based on the Indirect Approach for Counting People in Crowded Scenes,
AVSS10(111-118).
IEEE DOI 1009

See also Graph-Kernel Method for Re-identification, A. BibRef

Conte, D.[Dajana], Foggia, P.[Pasquale], Percannella, G.[Gennaro], Tufano, F.[Francesco], Vento, M.[Mario],
Reflection Removal for People Detection in Video Surveillance Applications,
CIAP11(I: 178-186).
Springer DOI 1109
BibRef
Earlier:
Reflection Removal in Color Videos,
ICPR10(1788-1791).
IEEE DOI 1008
BibRef

Conte, D.[Donatello], Foggia, P.[Pasquale], Percannella, G.[Gennaro], Tufano, F.[Francesco], Vento, M.[Mario],
A Method for Counting People in Crowded Scenes,
AVSS10(225-232).
IEEE DOI 1009
BibRef
And:
Counting Moving People in Videos by Salient Points Detection,
ICPR10(1743-1746).
IEEE DOI 1008
BibRef
Earlier:
An Algorithm for Detection of Partially Camouflaged People,
AVSBS09(340-345).
IEEE DOI 0909

See also Reflection Removal in Color Videos. BibRef

Percannella, G.[Gennaro], Vento, M.[Mario],
A Self-trainable System for Moving People Counting by Scene Partitioning,
ICIAR11(II: 297-306).
Springer DOI 1106
BibRef

Ryan, D.[David], Denman, S.[Simon], Fookes, C.[Clinton], Sridharan, S.[Sridha],
Scene invariant multi camera crowd counting,
PRL(44), No. 1, 2014, pp. 98-112.
Elsevier DOI 1407
Crowd counting BibRef

Zhang, X.G.[Xu-Guang], He, H.M.[Hai-Ming], Cao, S.K.[Shu-Kai], Liu, H.H.[Hong-Hai],
Flow field texture representation-based motion segmentation for crowd counting,
MVA(26), No. 7-8, November 2015, pp. 871-883.
WWW Link. 1511
BibRef

Ryan, D.[David], Denman, S.[Simon], Sridharan, S.[Sridha], Fookes, C.[Clinton],
An evaluation of crowd counting methods, features and regression models,
CVIU(130), No. 1, 2015, pp. 1-17.
Elsevier DOI 1411
BibRef
Earlier:
Scene Invariant Crowd Counting,
DICTA11(237-242).
IEEE DOI 1205
BibRef
Earlier: A1, A2, A4, A3:
Crowd Counting Using Group Tracking and Local Features,
AVSS10(218-224).
IEEE DOI 1009
BibRef
Earlier: A1, A2, A4, A3:
Crowd Counting Using Multiple Local Features,
DICTA09(81-88).
IEEE DOI 0912

See also Textures of optical flow for real-time anomaly detection in crowds. Crowd counting BibRef

Xu, J.X.[Jing-Xin], Denman, S.[Simon], Sridharan, S.[Sridha], Fookes, C.[Clinton],
Activity Analysis in Complicated Scenes Using DFT Coefficients of Particle Trajectories,
AVSS12(82-87).
IEEE DOI 1211
BibRef
Earlier:
Activity Modelling in Crowded Environments: A Soft-Decision Approach,
DICTA11(107-112).
IEEE DOI 1205
BibRef

Hu, Y.C.[Yao-Cong], Chang, H.[Huan], Nian, F.D.[Fu-Dong], Wang, Y.[Yan], Li, T.[Teng],
Dense Crowd Counting from Still Images with Convolutional Neural Networks,
JVCIR(38), No. 1, 2016, pp. 530-539.
Elsevier DOI 1605
Crowd counting BibRef

Al-Zaydi, Z.Q.H.[Zeyad Q.H.], Ndzi, D.L.[David L.], Yang, Y.Y.[Yan-Yan], Kamarudin, M.L.[Munirah L.],
An adaptive people counting system with dynamic features selection and occlusion handling,
JVCIR(39), No. 1, 2016, pp. 218-225.
Elsevier DOI 1608
Crowd counting BibRef

Ma, Z.[Zheng], Chan, A.B.[Antoni B.],
Counting People Crossing a Line Using Integer Programming and Local Features,
CirSysVideo(26), No. 10, October 2016, pp. 1955-1969.
IEEE DOI 1610
BibRef
Earlier:
Crossing the Line: Crowd Counting by Integer Programming with Local Features,
CVPR13(2539-2546)
IEEE DOI 1309
Cameras. crowd counting; integer programming; local feature; regression BibRef

Gao, L.Q.[Li-Qing], Wang, Y.Z.[Yan-Zhang], Ye, X.[Xin], Wang, J.[Jian],
Crowd counting considering network flow constraints in videos,
IET-IPR(12), No. 1, January 2018, pp. 11-19.
DOI Link 1712
BibRef

Huang, S., Li, X., Zhang, Z., Wu, F., Gao, S., Ji, R., Han, J.,
Body Structure Aware Deep Crowd Counting,
IP(27), No. 3, March 2018, pp. 1049-1059.
IEEE DOI 1801
learning (artificial intelligence), neural nets, object detection, body structure aware deep crowd counting, visual context structure BibRef

Yang, B.[Biao], Cao, J.M.[Jin-Meng], Wang, N.[Nan], Zhang, Y.Y.[Yu-Yu], Zou, L.[Ling],
Counting Challenging Crowds Robustly Using a Multi-Column Multi-Task Convolutional Neural Network,
SP:IC(64), 2018, pp. 118-129.
Elsevier DOI 1804
Crowd counting, Multi-column CNN, Multi-task, Per-scale loss, Density map BibRef

Sindagi, V.A.[Vishwanath A.], Patel, V.M.[Vishal M.],
A survey of recent advances in CNN-based single image crowd counting and density estimation,
PRL(107), 2018, pp. 3-16.
Elsevier DOI 1805
Crowd counting, Density estimation, Crowd analysis BibRef

Sheng, B., Shen, C., Lin, G., Li, J., Yang, W., Sun, C.,
Crowd Counting via Weighted VLAD on a Dense Attribute Feature Map,
CirSysVideo(28), No. 8, August 2018, pp. 1788-1797.
IEEE DOI 1808
Semantics, Feature extraction, Image representation, Encoding, Roads, Neural networks, Image segmentation, Crowd counting, weighted vector of locally aggregated descriptor (W-VLAD) encoder BibRef

Kumagai, S.[Shohei], Hotta, K.[Kazuhiro], Kurita, T.[Takio],
Mixture of counting CNNs,
MVA(29), No. 7, October 2018, pp. 1119-1126.
Springer DOI 1810
For crowds. BibRef

Yudistira, N.[Novanto], Kurita, T.[Takio],
Correlation Net: Spatiotemporal multimodal deep learning for action recognition,
SP:IC(82), 2020, pp. 115731.
Elsevier DOI 2001
Correlation Net, CNN, Activity recognition, Deep learning, Fusion BibRef

Wang, Q., Wan, J., Yuan, Y.,
Deep Metric Learning for Crowdedness Regression,
CirSysVideo(28), No. 10, October 2018, pp. 2633-2643.
IEEE DOI 1811
Feature extraction, Training, Machine learning, Distance measurement, Learning systems, crowd counting BibRef

Ma, T.J.[Tian-Jun], Ji, Q.G.[Qing-Ge], Li, N.[Ning],
Scene invariant crowd counting using multi-scales head detection in video surveillance,
IET-IPR(12), No. 12, December 2018, pp. 2258-2263.
DOI Link 1812
BibRef

Wei, X.[Xinlei], Du, J.P.[Jun-Ping], Liang, M.[Meiyu], Ye, L.F.[Ling-Fei],
Boosting deep attribute learning via support vector regression for fast moving crowd counting,
PRL(119), 2019, pp. 12-23.
Elsevier DOI 1902
Deep learning, Boosting learning, Attribute learning, Fast moving crowd, Late fusion, BibRef

Zheng, H., Lin, Z., Cen, J., Wu, Z., Zhao, Y.,
Cross-Line Pedestrian Counting Based on Spatially-Consistent Two-Stage Local Crowd Density Estimation and Accumulation,
CirSysVideo(29), No. 3, March 2019, pp. 787-799.
IEEE DOI 1903
Estimation, Feature extraction, Scalability, Reliability, Cameras, Head, Support vector machines, Pedestrian counting, cross-line counting BibRef

Zhou, Q., Zhang, J., Che, L., Shan, H., Wang, J.Z.,
Crowd Counting With Limited Labeling Through Submodular Frame Selection,
ITS(20), No. 5, May 2019, pp. 1728-1738.
IEEE DOI 1905
Training, Task analysis, Image sequences, Redundancy, Intelligent transportation systems, Feature extraction, Labeling, semi-supervised learning BibRef

Kang, D., Ma, Z., Chan, A.B.,
Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks: Counting, Detection, and Tracking,
CirSysVideo(29), No. 5, May 2019, pp. 1408-1422.
IEEE DOI 1905
Feature extraction, Task analysis, Forestry, Estimation, Image resolution, Videos, Measurement, tracking BibRef

Chaudhry, H.[Huma], Rahim, M.S.M.[Mohd Shafry Mohd], Saba, T.[Tanzila], Rehman, A.[Amjad],
Crowd detection and counting using a static and dynamic platform: state of the art,
IJCVR(9), No. 3, 2019, pp. 228-259.
DOI Link 1906
BibRef

Ling, M., Geng, X.,
Indoor Crowd Counting by Mixture of Gaussians Label Distribution Learning,
IP(28), No. 11, November 2019, pp. 5691-5701.
IEEE DOI 1909
Videos, Head, Adaptation models, Feature extraction, Cameras, Estimation, Gaussian distribution, Label ambiguity, mixture of Gaussians model BibRef

Miao, Y.Q.[Yun-Qi], Han, J.G.[Jun-Gong], Gao, Y.S.[Yong-Sheng], Zhang, B.C.[Bao-Chang],
ST-CNN: Spatial-Temporal Convolutional Neural Network for crowd counting in videos,
PRL(125), 2019, pp. 113-118.
Elsevier DOI 1909
Crowd counting, Spatio-temporal feature, Crowd analysis BibRef

Xu, M.[Mingliang], Ge, Z.Y.[Zhao-Yang], Jiang, X.[Xiaoheng], Cui, G.[Gaoge], Lv, P.[Pei], Zhou, B.[Bing], Xu, C.S.[Chang-Sheng],
Depth Information Guided Crowd Counting for complex crowd scenes,
PRL(125), 2019, pp. 563-569.
Elsevier DOI 1909
Crowd counting, Depth information, Pedestrian detection, Density estimation BibRef

Shami, M.B., Maqbool, S., Sajid, H., Ayaz, Y., Cheung, S.S.,
People Counting in Dense Crowd Images Using Sparse Head Detections,
CirSysVideo(29), No. 9, September 2019, pp. 2627-2636.
IEEE DOI 1909
Head, Feature extraction, Training, Detectors, Support vector machines, Training data, Estimation, head detection BibRef

Sindagi, V.A., Patel, V.M.,
HA-CCN: Hierarchical Attention-Based Crowd Counting Network,
IP(29), No. , 2020, pp. 323-335.
IEEE DOI 1910
convolutional neural nets, feature extraction, image annotation, image segmentation, learning (artificial intelligence), crowd analytics BibRef

Li, H.[He], Zhang, S.H.[Shi-Hui], Kong, W.H.[Wei-Hang],
Crowd counting using a self-attention multi-scale cascaded network,
IET-CV(13), No. 6, September 2019, pp. 556-561.
DOI Link 1911
BibRef

Tian, Y., Lei, Y., Zhang, J., Wang, J.Z.,
PaDNet: Pan-Density Crowd Counting,
IP(29), 2020, pp. 2714-2727.
IEEE DOI 2001
Crowd counting, density level analysis, pan-density evaluation, convolutional neural networks BibRef

Zhao, M.M.[Mu-Ming], Zhang, J.[Jian], Zhang, C.Y.[Chong-Yang], Zhang, W.J.[Wen-Jun],
Leveraging Heterogeneous Auxiliary Tasks to Assist Crowd Counting,
CVPR19(12728-12737).
IEEE DOI 2002
BibRef

Zhang, W.[Wei], Wang, Y.J.[Yong-Jie], Liu, Y.Y.[Yan-Yan], Zhu, J.H.[Jiang-Hua],
Deep convolution network for dense crowd counting,
IET-IPR(14), No. 4, 27 March 2020, pp. 621-627.
DOI Link 2003
BibRef

Wu, Q.[Qin], Yan, F.F.[Fang-Fang], Chai, Z.[Zhilei], Guo, G.D.[Guo-Dong],
Crowd counting by the dual-branch scale-aware network with ranking loss constraints,
IET-CV(14), No. 3, April 2020, pp. 101-109.
DOI Link 2003
BibRef

Nguyen, V.[Vy], Ngo, T.D.[Thanh Duc],
Single-image crowd counting: a comparative survey on deep learning-based approaches,
MultInfoRetr(9), No. 2, June 2020, pp. 63-80.
Springer DOI 2005
BibRef

Zhu, M.[Ming], Wang, X.[Xuqing], Tang, J.[Jun], Wang, N.[Nian], Qu, L.[Lei],
Attentive multi-stage convolutional neural network for crowd counting,
PRL(135), 2020, pp. 279-285.
Elsevier DOI 2006
Crowd counting, Density estimation, Convolutional neural network, Soft attention mechanism BibRef

Liu, Y., Wen, Q., Chen, H., Liu, W., Qin, J., Han, G., He, S.,
Crowd Counting Via Cross-Stage Refinement Networks,
IP(29), 2020, pp. 6800-6812.
IEEE DOI 2007
Feature extraction, Convolution, Decoding, Clutter, Benchmark testing, Cameras, Network architecture, Crowd counting, image refinement BibRef

Mo, H., Ren, W., Xiong, Y., Pan, X., Zhou, Z., Cao, X., Wu, W.,
Background Noise Filtering and Distribution Dividing for Crowd Counting,
IP(29), 2020, pp. 8199-8212.
IEEE DOI 2008
Head, Noise measurement, Estimation, Robustness, Feature extraction, Crowd counting, head size estimation, head mask BibRef

Jiang, S., Lu, X., Lei, Y., Liu, L.,
Mask-Aware Networks for Crowd Counting,
CirSysVideo(30), No. 9, September 2020, pp. 3119-3129.
IEEE DOI 2009
Estimation, Neural networks, Training, Image segmentation, Feature extraction, Head, Videos, Crowd counting, mask-aware network, regression BibRef

Wu, X.J.[Xing-Jiao], Kong, S.C.[Shu-Chen], Zheng, Y.B.[Ying-Bin], Ye, H.[Hao], Yang, J.[Jing], He, L.[Liang],
Feature channel enhancement for crowd counting,
IET-IPR(14), No. 11, September 2020, pp. 2376-2382.
DOI Link 2009
BibRef

Lei, Y.J.[Yin-Jie], Liu, Y.[Yan], Zhang, P.P.[Ping-Ping], Liu, L.Q.[Ling-Qiao],
Towards using count-level weak supervision for crowd counting,
PR(109), 2021, pp. 107616.
Elsevier DOI 2009
Crowd counting, Count-level annotation, Weak supervision, Auxiliary tasks learning, Asymmetry training BibRef

Gao, J., Wang, Q., Li, X.,
PCC Net: Perspective Crowd Counting via Spatial Convolutional Network,
CirSysVideo(30), No. 10, October 2020, pp. 3486-3498.
IEEE DOI 2010
Estimation, Feature extraction, Image segmentation, Training, Task analysis, Head, Semantics, Crowd counting, crowd analysis, multi-task learning BibRef

Sajid, U., Sajid, H., Wang, H., Wang, G.,
ZoomCount: A Zooming Mechanism for Crowd Counting in Static Images,
CirSysVideo(30), No. 10, October 2020, pp. 3499-3512.
IEEE DOI 2010
Estimation, Computational modeling, Benchmark testing, Head, Training, Routing, Crowd counting, crowd density, zooming or normal patch-making blocks BibRef

Zhao, M.M.[Mu-Ming], Zhang, C.Y.[Chong-Yang], Zhang, J.[Jian], Porikli, F.M.[Fatih M.], Ni, B.B.[Bing-Bing], Zhang, W.J.[Wen-Jun],
Scale-Aware Crowd Counting via Depth-Embedded Convolutional Neural Networks,
CirSysVideo(30), No. 10, October 2020, pp. 3651-3662.
IEEE DOI 2010
Estimation, Distortion, Cameras, Task analysis, Convolutional neural networks, Australia, Fuses, Crowd counting, scale variation BibRef

Yilmaz, B.[Bedir], Sheikh Abdullah, S.N.H.[Siti Norul Huda], Kok, V.J.[Ven Jyn],
Vanishing region loss for crowd density estimation,
PRL(138), 2020, pp. 336-345.
Elsevier DOI 2010
Crowd counting, Crowd density estimation, Perspective distortion, Crowd analysis, Auxiliary loss BibRef

Wang, S.[Suyu], Yang, B.[Bin], Liu, B.[Bo], Zheng, G.H.[Guang-Hui],
Dual attention module and multi-label based fully convolutional network for crowd counting,
IET-CV(14), No. 7, October 2020, pp. 443-451.
DOI Link 2010
BibRef

Hacar, Ö.Ö.[Özge Öztürk], Gülgen, F.[Fatih], Bilgi, S.[Serdar],
Evaluation of the Space Syntax Measures Affecting Pedestrian Density through Ordinal Logistic Regression Analysis,
IJGI(9), No. 10, 2020, pp. xx-yy.
DOI Link 2010
BibRef

Li, H.[He], Kong, W.H.[Wei-Hang], Zhang, S.H.[Shi-Hui],
Effective crowd counting using multi-resolution context and image quality assessment-guided training,
CVIU(201), 2020, pp. 103065.
Elsevier DOI 2011
Crowd counting, Scale variant, Image quality assessment, Multi-resolution BibRef

Cao, Z.J.[Zhi-Jie], Shamsolmoali, P.[Pourya], Yang, J.[Jie],
Synthetic guided domain adaptive and edge aware network for crowd counting,
IVC(104), 2020, pp. 104026.
Elsevier DOI 2012
Crowd counintg, Synthetic guided, Edge aware, Domain adaption BibRef

Jiang, X.O.[Xia-Oheng], Zhang, L.[Li], Zhang, T.Z.[Tian-Zhu], Lv, P.[Pei], Zhou, B.[Bing], Pang, Y.W.[Yan-Wei], Xu, M.L.[Ming-Liang], Xu, C.S.[Chang-Sheng],
Density-Aware Multi-Task Learning for Crowd Counting,
MultMed(23), 2021, pp. 443-453.
IEEE DOI 2012
Task analysis, Semantics, Estimation, Feature extraction, Convolutional neural networks, Cameras, Head, multi-task learning BibRef

Ren, W., Wang, X., Tian, J., Tang, Y., Chan, A.B.,
Tracking-by-Counting: Using Network Flows on Crowd Density Maps for Tracking Multiple Targets,
IP(30), 2021, pp. 1439-1452.
IEEE DOI 2012
Target tracking, Tracking, Object detection, Trajectory, Detectors, Task analysis, Computational modeling, People tracking, flow tracking BibRef

Yang, Y., Li, G., Du, D., Huang, Q., Sebe, N.,
Embedding Perspective Analysis Into Multi-Column Convolutional Neural Network for Crowd Counting,
IP(30), 2021, pp. 1395-1407.
IEEE DOI 2012
Convolution, Estimation, Transforms, Kernel, Training, Standards, Smoothing methods, Crowd counting, multi-column network, transform dilated convolution BibRef


Liu, X.Y.[Xi-Yang], Yang, J.[Jie], Ding, W.R.[Wen-Rui], Wang, T.Q.[Tie-Qiang], Wang, Z.J.[Zhi-Jin], Xiong, J.J.[Jun-Jun],
Adaptive Mixture Regression Network with Local Counting Map for Crowd Counting,
ECCV20(XXIV:241-257).
Springer DOI 2012
BibRef

Sindagi, V.A.[Vishwanath A.], Yasarla, R.[Rajeev], Babu, D.S.[Deepak Sam], Babu, R.V.[R. Venkatesh], Patel, V.M.[Vishal M.],
Learning to Count in the Crowd from Limited Labeled Data,
ECCV20(XI:212-229).
Springer DOI 2011
BibRef

Liu, Y.[Yan], Liu, L.Q.[Ling-Qiao], Wang, P.[Peng], Zhang, P.P.[Ping-Ping], Lei, Y.[Yinjie],
Semi-Supervised Crowd Counting via Self-training on Surrogate Tasks,
ECCV20(XV:242-259).
Springer DOI 2011
BibRef

Liu, W.Z.[Wei-Zhe], Salzmann, M.[Mathieu], Fua, P.[Pascal],
Estimating People Flows to Better Count Them in Crowded Scenes,
ECCV20(XV:723-740).
Springer DOI 2011
BibRef

Wu, Q., Zhang, C., Kong, X., Zhao, M., Chen, Y.,
Triple Attention For Robust Video Crowd Counting,
ICIP20(1966-1970)
IEEE DOI 2011
TV, Facsimile, Crowd counting, Co-attention, Robustness BibRef

Xie, Y., Lu, Y., Wang, S.,
RSANet: Deep Recurrent Scale-Aware Network for Crowd Counting,
ICIP20(1531-1535)
IEEE DOI 2011
Convolution, Image restoration, Training, Task analysis, Decoding, Computer vision, Robustness, Crowd counting, Recurrent network BibRef

Shim, K., Byun, J., Kim, C.,
Multi-Step Quantization Of A Multi-Scale Network For Crowd Counting,
ICIP20(683-687)
IEEE DOI 2011
Quantization (signal), Training, Decoding, Visualization, Surveillance, Kernel, Head, Crowd counting, Crowd density estimation, Quantization BibRef

Zhao, Z.[Zhen], Shi, M.J.[Miao-Jing], Zhao, X.X.[Xiao-Xiao], Li, L.[Li],
Active Crowd Counting with Limited Supervision,
ECCV20(XX:565-581).
Springer DOI 2011
BibRef

Liu, L.[Liang], Lu, H.[Hao], Zou, H.W.[Hong-Wei], Xiong, H.P.[Hai-Peng], Cao, Z.G.[Zhi-Guo], Shen, C.H.[Chun-Hua],
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning,
ECCV20(X:164-181).
Springer DOI 2011
BibRef

Yang, Y.F.[Yi-Fan], Li, G.R.[Guo-Rong], Wu, Z.[Zhe], Su, L.[Li], Huang, Q.M.[Qing-Ming], Sebe, N.[Nicu],
Weakly-supervised Crowd Counting Learns from Sorting Rather Than Locations,
ECCV20(VIII:1-17).
Springer DOI 2011
BibRef

Jiang, X., Zhang, L., Xu, M., Zhang, T., Lv, P., Zhou, B., Yang, X., Pang, Y.,
Attention Scaling for Crowd Counting,
CVPR20(4705-4714)
IEEE DOI 2008
Task analysis, Estimation, Kernel, Training, Convolutional neural networks, Feature extraction, Computer vision BibRef

Reddy, M.K.K.[M. K. Krishna], Hossain, M.A.[M. Asiful], Rochan, M., Wang, Y.,
Few-Shot Scene Adaptive Crowd Counting Using Meta-Learning,
WACV20(2803-2812)
IEEE DOI 2006
Adaptation models, Training, Cameras, Task analysis, Data models, Surveillance, Training data BibRef

Sajid, U., Wang, G.,
Plug-and-Play Rescaling Based Crowd Counting in Static Images,
WACV20(2276-2285)
IEEE DOI 2006
Estimation, Switches, Detectors, Computer architecture, Image recognition, Benchmark testing, Measurement BibRef

Hossain, M.A., Reddy, M.K.K., Cannons, K., Xu, Z., Wang, Y.,
Domain Adaptation in Crowd Counting,
CRV20(150-157)
IEEE DOI 2006
domain adaptation, crowd counting, few-shot learning, density map BibRef

Phan, C., Hoang, A., Phan, D., Dao, H., Huynh, V.,
Human Density Estimation by Exploiting Deep Spatial Contextual Information,
IVCNZ19(1-5)
IEEE DOI 2004
convolutional neural nets, feature extraction, image capture, image classification, learning (artificial intelligence), Long Short-Term Memory (LSTM) BibRef

Xu, C., Qiu, K., Fu, J., Bai, S., Xu, Y., Bai, X.,
Learn to Scale: Generating Multipolar Normalized Density Maps for Crowd Counting,
ICCV19(8381-8389)
IEEE DOI 2004
image motion analysis, image resolution, learning (artificial intelligence), BibRef

Zhang, A., Shen, J., Xiao, Z., Zhu, F., Zhen, X., Cao, X., Shao, L.,
Relational Attention Network for Crowd Counting,
ICCV19(6787-6796)
IEEE DOI 2004
computer vision, image fusion, image representation, learning (artificial intelligence), neural nets, Image reconstruction BibRef

Cheng, Z., Li, J., Dai, Q., Wu, X., Hauptmann, A.G.[Alexander G.],
Learning Spatial Awareness to Improve Crowd Counting,
ICCV19(6151-6160)
IEEE DOI 2004
convolutional neural nets, gradient methods, learning (artificial intelligence), head size changes, Benchmark testing BibRef

Liu, J., Gao, C., Meng, D., Hauptmann, A.G.,
DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation,
CVPR18(5197-5206)
IEEE DOI 1812
Estimation, Detectors, Reliability, Head, Computer vision, Task analysis, Visualization BibRef

Ma, Z., Wei, X., Hong, X., Gong, Y.,
Bayesian Loss for Crowd Count Estimation With Point Supervision,
ICCV19(6141-6150)
IEEE DOI 2004
Bayes methods, learning (artificial intelligence), object detection, probability, Feature extraction BibRef

Zhang, A., Yue, L., Shen, J., Zhu, F., Zhen, X., Cao, X., Shao, L.,
Attentional Neural Fields for Crowd Counting,
ICCV19(5713-5722)
IEEE DOI 2004
computer vision, feature extraction, image representation, object detection, random processes, nonlocal attention mechanism, Machine learning BibRef

Yan, Z., Yuan, Y., Zuo, W., Tan, X., Wang, Y., Wen, S., Ding, E.,
Perspective-Guided Convolution Networks for Crowd Counting,
ICCV19(952-961)
IEEE DOI 2004
Code, Convolutional Networks.
WWW Link. convolutional neural nets, image resolution, object detection, perspective-guided convolution networks, Benchmark testing BibRef

Sindagi, V., Patel, V.,
Multi-Level Bottom-Top and Top-Bottom Feature Fusion for Crowd Counting,
ICCV19(1002-1012)
IEEE DOI 2004
feature extraction, image classification, image fusion, multiscale fusion, scale-aware ground-truth density maps, Training BibRef

Wan, J., Chan, A.,
Adaptive Density Map Generation for Crowd Counting,
ICCV19(1130-1139)
IEEE DOI 2004
computer vision, estimation theory, feature extraction, learning (artificial intelligence), neural nets, Feature extraction BibRef

Sindagi, V., Yasarla, R., Patel, V.,
Pushing the Frontiers of Unconstrained Crowd Counting: New Dataset and Benchmark Method,
ICCV19(1221-1231)
IEEE DOI 2004
Dataset, Crowd Counting. feature extraction, image classification, learning (artificial intelligence), object detection, Error analysis BibRef

Liu, L., Qiu, Z., Li, G., Liu, S., Ouyang, W., Lin, L.,
Crowd Counting With Deep Structured Scale Integration Network,
ICCV19(1774-1783)
IEEE DOI 2004
feature extraction, image enhancement, image fusion, image representation, learning (artificial intelligence), Head BibRef

Yang, S., Su, H., Hsu, W.H., Chen, W.,
DECCNet: Depth Enhanced Crowd Counting,
CroMoL19(4521-4530)
IEEE DOI 2004
feature extraction, image colour analysis, learning (artificial intelligence), neural nets, RGBD BibRef

Bai, H., Wen, S., Chan, S.G.,
Crowd Counting on Images with Scale Variation and Isolated Clusters,
VisDrone19(18-27)
IEEE DOI 2004
feature extraction, image classification, image segmentation, object detection, pattern clustering, Isolated Clusters BibRef

Wan, J.[Jia], Luo, W.[Wenhan], Wu, B.Y.[Bao-Yuan], Chan, A.B.[Antoni B.], Liu, W.[Wei],
Residual Regression With Semantic Prior for Crowd Counting,
CVPR19(4031-4040).
IEEE DOI 2002
BibRef

Lian, D.Z.[Dong-Ze], Li, J.[Jing], Zheng, J.[Jia], Luo, W.X.[Wei-Xin], Gao, S.H.[Sheng-Hua],
Density Map Regression Guided Detection Network for RGB-D Crowd Counting and Localization,
CVPR19(1821-1830).
IEEE DOI 2002
BibRef

Liu, C.C.[Chen-Chen], Weng, X.Y.[Xin-Yu], Mu, Y.D.[Ya-Dong],
Recurrent Attentive Zooming for Joint Crowd Counting and Precise Localization,
CVPR19(1217-1226).
IEEE DOI 2002
BibRef

Liu, W.[Weizhe], Salzmann, M.[Mathieu], Fua, P.[Pascal],
Context-Aware Crowd Counting,
CVPR19(5094-5103).
IEEE DOI 2002
BibRef

Jiang, X.L.[Xiao-Long], Xiao, Z.[Zehao], Zhang, B.C.[Bao-Chang], Zhen, X.T.[Xian-Tong], Cao, X.B.[Xian-Bin], Doermann, D.[David], Shao, L.[Ling],
Crowd Counting and Density Estimation by Trellis Encoder-Decoder Networks,
CVPR19(6126-6135).
IEEE DOI 2002
BibRef

Liu, Y.[Yuting], Shi, M.[Miaojing], Zhao, Q.[Qijun], Wang, X.F.[Xiao-Fang],
Point in, Box Out: Beyond Counting Persons in Crowds,
CVPR19(6462-6471).
IEEE DOI 2002
BibRef

Shi, M.[Miaojing], Yang, Z.H.[Zhao-Hui], Xu, C.[Chao], Chen, Q.[Qijun],
Revisiting Perspective Information for Efficient Crowd Counting,
CVPR19(7271-7280).
IEEE DOI 2002
BibRef

Wang, Q.[Qi], Gao, J.Y.[Jun-Yu], Lin, W.[Wei], Yuan, Y.[Yuan],
Learning From Synthetic Data for Crowd Counting in the Wild,
CVPR19(8190-8199).
IEEE DOI 2002
BibRef

Zhang, Q.[Qi], Chan, A.B.[Antoni B.],
Wide-Area Crowd Counting via Ground-Plane Density Maps and Multi-View Fusion CNNs,
CVPR19(8289-8298).
IEEE DOI 2002
BibRef

Yilmaz, B., Kok, V.J., Lim, M.K., Abdullah, S.N.H.S.,
Perspective-Aware Loss Function for Crowd Density Estimation,
MVA19(1-6)
DOI Link 1911
convolutional neural nets, estimation theory, image processing, learning (artificial intelligence), perspective distortion, Layout BibRef

Khan, S.D., Ullah, H., Uzair, M., Ullah, M., Ullah, R., Cheikh, F.A.,
Disam: Density Independent and Scale Aware Model for Crowd Counting and Localization,
ICIP19(4474-4478)
IEEE DOI 1910
Crowd counting, Convolution networks, Head detection, Classification BibRef

Vandoni, J., Aldea, E., Hégarat-Mascle, S.L.,
Evaluating Crowd Density Estimators Via Their Uncertainty Bounds,
ICIP19(4579-4583)
IEEE DOI 1910
density estimation, crowd counting, multi-scale evaluation, uncertainty bounds BibRef

Huynh, V., Tran, V., Huang, C.,
DAnet: Depth-Aware Network for Crowd Counting,
ICIP19(3001-3005)
IEEE DOI 1910
Deep learning, crowd counting, depth estimation, multi-task learning BibRef

Zhao, K., Liu, B., Song, L., Li, W., Yu, N.,
Cascaded Residual Density Network for Crowd Counting,
ICIP19(2199-2203)
IEEE DOI 1910
Crowd counting, Scale variation, CRD-Net, Local count loss BibRef

Rodriguez, A.C.[Andres C.], Wegner, J.D.[Jan D.],
Counting the Uncountable: Deep Semantic Density Estimation from Space,
GCPR18(351-362).
Springer DOI 1905
BibRef

Hossain, M., Hosseinzadeh, M., Chanda, O., Wang, Y.,
Crowd Counting Using Scale-Aware Attention Networks,
WACV19(1280-1288)
IEEE DOI 1904
learning (artificial intelligence), neural net architecture, object detection, crowded scene, crowd density, crowd counting, Computational modeling BibRef

Chen, X., Bin, Y., Sang, N., Gao, C.,
Scale Pyramid Network for Crowd Counting,
WACV19(1941-1950)
IEEE DOI 1904
computer vision, object detection, pedestrians, traffic engineering computing, Scale Pyramid Module, Computer vision BibRef

Shen, W., Qin, P., Zeng, J.,
An Indoor Crowd Detection Network Framework Based on Feature Aggregation Module and Hybrid Attention Selection Module,
VisDrone19(82-90)
IEEE DOI 2004
feature extraction, image fusion, object detection, indoor crowd detection network framework, Feature aggregation BibRef

Liciotti, D., Paolanti, M., Pietrini, R., Frontoni, E., Zingaretti, P.,
Convolutional Networks for Semantic Heads Segmentation using Top-View Depth Data in Crowded Environment,
ICPR18(1384-1389)
IEEE DOI 1812
Image segmentation, Semantics, Cameras, Fractals, Head, Computer architecture, Training BibRef

Ren, W., Kang, D., Tang, Y., Chan, A.B.,
Fusing Crowd Density Maps and Visual Object Trackers for People Tracking in Crowd Scenes,
CVPR18(5353-5362)
IEEE DOI 1812
Target tracking, Visualization, Correlation, Estimation, Adaptation models, Object detection, Lighting BibRef

Deb, D., Ventura, J.,
An Aggregated Multicolumn Dilated Convolution Network for Perspective-Free Counting,
Crowd18(308-30809)
IEEE DOI 1812
Convolution, Feature extraction, Training, Aggregates, Kernel, Data mining, Convolutional neural networks BibRef

Jeong, J., Jeong, H., Lim, J., Choi, J., Yun, S., Choi, J.Y.,
Selective Ensemble Network for Accurate Crowd Density Estimation,
ICPR18(320-325)
IEEE DOI 1812
Training, Estimation, Feature extraction, Image resolution, Network architecture, Surveillance, Cameras BibRef

Saqib, M., Daud Khan, S., Blumenstein, M.,
Texture-based feature mining for crowd density estimation: A study,
ICVNZ16(1-6)
IEEE DOI 1701
Cameras BibRef

Xu, B., Qiu, G.,
Crowd density estimation based on rich features and random projection forest,
WACV16(1-8)
IEEE DOI 1606
Computational modeling BibRef

Kaminski, L., Gardzinski, P., Kowalak, K., Mackowiak, S.,
Unsupervised abnormal crowd activity detection in surveillance systems,
WSSIP16(1-4)
IEEE DOI 1608
BibRef
Earlier: A2, A3, A1, A4:
Crowd density estimation based on voxel model in multi-view surveillance systems,
WSSIP15(216-219)
IEEE DOI 1603
image classification BibRef

Pham, V.Q., Kozakaya, T., Yamaguchi, O., Okada, R.,
COUNT Forest: CO-Voting Uncertain Number of Targets Using Random Forest for Crowd Density Estimation,
ICCV15(3253-3261)
IEEE DOI 1602
Computational modeling BibRef

Zhang, Y.Y.[Ying-Ying], Zhou, D.[Desen], Chen, S.Q.[Si-Qin], Gao, S.H.[Sheng-Hua], Ma, Y.[Yi],
Single-Image Crowd Counting via Multi-Column Convolutional Neural Network,
CVPR16(589-597)
IEEE DOI 1612
BibRef

Shi, Z., Zhang, L., Liu, Y., Cao, X., Ye, Y., Cheng, M., Zheng, G.,
Crowd Counting with Deep Negative Correlation Learning,
CVPR18(5382-5390)
IEEE DOI 1812
Training, Correlation, Computer vision, Decorrelation, Testing, Complexity theory, Visualization BibRef

Shen, Z., Xu, Y., Ni, B., Wang, M., Hu, J., Yang, X.,
Crowd Counting via Adversarial Cross-Scale Consistency Pursuit,
CVPR18(5245-5254)
IEEE DOI 1812
Estimation, Feature extraction, Training, Task analysis, Kernel, Generators, Switches BibRef

Marsden, M., McGuinness, K., Little, S., Keogh, C.E., O'Connor, N.E.,
People, Penguins and Petri Dishes: Adapting Object Counting Models to New Visual Domains and Object Types Without Forgetting,
CVPR18(8070-8079)
IEEE DOI 1812
Visualization, Task analysis, Training, Adaptation models, Wildlife, Computer architecture, Convolutional neural networks BibRef

Liu, X., van de Weijer, J., Bagdanov, A.D.,
Leveraging Unlabeled Data for Crowd Counting by Learning to Rank,
CVPR18(7661-7669)
IEEE DOI 1812
Task analysis, Training, Computer vision, Visualization, Estimation, Head, Context modeling BibRef

Yang, J., Zhou, Y., Kung, S.,
Multi-scale Generative Adversarial Networks for Crowd Counting,
ICPR18(3244-3249)
IEEE DOI 1812
Generators, Feature extraction, Estimation, Convolution, Generative adversarial networks, Task analysis, Training BibRef

Idrees, H.[Haroon], Tayyab, M.[Muhmmad], Athrey, K.[Kishan], Zhang, D.[Dong], Al-Maadeed, S.[Somaya], Rajpoot, N.[Nasir], Shah, M.[Mubarak],
Composition Loss for Counting, Density Map Estimation and Localization in Dense Crowds,
ECCV18(II: 544-559).
Springer DOI 1810
BibRef

Laradji, I.H.[Issam H.], Rostamzadeh, N.[Negar], Pinheiro, P.O.[Pedro O.], Vazquez, D.[David], Schmidt, M.[Mark],
Where Are the Blobs: Counting by Localization with Point Supervision,
ECCV18(II: 560-576).
Springer DOI 1810
BibRef

Ranjan, V.[Viresh], Le, H.[Hieu], Hoai, M.[Minh],
Iterative Crowd Counting,
ECCV18(VII: 278-293).
Springer DOI 1810
BibRef

Cao, X.K.[Xin-Kun], Wang, Z.P.[Zhi-Peng], Zhao, Y.Y.[Yan-Yun], Su, F.[Fei],
Scale Aggregation Network for Accurate and Efficient Crowd Counting,
ECCV18(VI: 757-773).
Springer DOI 1810
BibRef

Amirgholipour, S., He, X., Jia, W., Wang, D., Zeibots, M.,
A-CCNN: Adaptive CCNN for Density Estimation and Crowd Counting,
ICIP18(948-952)
IEEE DOI 1809
Head, Adaptation models, Training, Linguistics, Estimation, Testing, Australia, Crowd counting, Scale Variation, Adaptive Counting CNN BibRef

Liu, M., Liu, Y., Jiang, J., Guo, Z., Wang, Z.,
Crowd Counting with Fully Convolutional Neural Network,
ICIP18(953-957)
IEEE DOI 1809
Estimation, Testing, Training, Kernel, Feature extraction, Convolutional neural networks, Task analysis, Crowd counting, deep learning BibRef

Küchhold, M., Simon, M., Eiselein, V., Sikora, T.,
Scale-Adaptive Real-Time Crowd Detection and Counting for Drone Images,
ICIP18(943-947)
IEEE DOI 1809
Image segmentation, Drones, Feature extraction, Image resolution, Cameras, Real-time systems, Kernel, crowd counting, crowd detection, surveillance BibRef

Cao, J.M.[Jin-Meng], Yang, B.[Biao], Zhang, Y.Y.[Yu-Yu], Zou, L.[Ling],
Crowd Counting from a Still Image Using Multi-scale Fully Convolutional Network with Adaptive Human-Shaped Kernel,
PSIVTWS17(227-240).
Springer DOI 1806
BibRef

Pai, A.K., Karunakar, A.K., Raghavendra, U.,
A Novel Crowd Density Estimation Technique using Local Binary Pattern and Gabor Features,
AVSS17(1-6)
IEEE DOI 1806
Gabor filters, computer vision, feature extraction, image representation, image texture, pattern classification, Video surveillance BibRef

Vandoni, J., Aldea, E., Le Hégarat-Mascle, S.,
Active learning for high-density crowd count regression,
AVSS17(1-6)
IEEE DOI 1806
feature extraction, image recognition, learning (artificial intelligence), object detection, Training BibRef

Jiang, H., Jin, W., Yu, Z., Xu, P.,
Combing spatial and temporal features for crowd counting with point supervision,
AVSS17(1-6)
IEEE DOI 1806
feature extraction, image motion analysis, object detection, video signal processing, crowd counting map, crowd density map, Vegetation BibRef

Sindagi, V.A.[Vishwanath A.], Patel, V.M.[Vishal M.],
CNN-Based cascaded multi-task learning of high-level prior and density estimation for crowd counting,
AVSS17(1-6)
IEEE DOI 1806
convolution, image classification, learning (artificial intelligence), neural nets, Training BibRef

Marsden, M., McGuinness, K., Little, S., O'Connor, N.E.,
ResnetCrowd: A residual deep learning architecture for crowd counting, violent behaviour detection and crowd density level classification,
AVSS17(1-7)
IEEE DOI 1806
computer vision, estimation theory, feature extraction, image classification, learning (artificial intelligence), Urban areas BibRef

Fan, C., Tang, J., Wang, N., Liang, D.,
Rich Convolutional Features Fusion for Crowd Counting,
FG18(394-398)
IEEE DOI 1806
Computer architecture, Estimation, Feature extraction, Heating systems, Robustness, Task analysis, Training, CNN, features fusion BibRef

Zhang, L., Shi, M., Chen, Q.,
Crowd Counting via Scale-Adaptive Convolutional Neural Network,
WACV18(1113-1121)
IEEE DOI 1806
computer vision, feature extraction, image classification, learning (artificial intelligence), neural nets, Training BibRef

Olmschenk, G., Tang, H., Zhu, Z.,
Crowd Counting with Minimal Data Using Generative Adversarial Networks for Multiple Target Regression,
WACV18(1151-1159)
IEEE DOI 1806
feedforward neural nets, inference mechanisms, learning (artificial intelligence), object recognition, Training BibRef

Zeng, L., Xu, X., Cai, B., Qiu, S., Zhang, T.,
Multi-scale convolutional neural networks for crowd counting,
ICIP17(465-469)
IEEE DOI 1803
Convolutional neural networks, Feature extraction, Kernel, Optimization, Robustness, Training, Multi-scale CNN, crowd counting, scale-relevant architectures BibRef

Xiong, F., Shi, X., Yeung, D.Y.,
Spatiotemporal Modeling for Crowd Counting in Videos,
ICCV17(5161-5169)
IEEE DOI 1802
image sequences, learning (artificial intelligence), neural nets, regression analysis, video signal processing, CNN, Videos BibRef

Sam, D.B., Surya, S., Babu, R.V.,
Switching Convolutional Neural Network for Crowd Counting,
CVPR17(4031-4039)
IEEE DOI 1711
Computer architecture, Head, Neural networks, Relays, Switches, Training BibRef

Wang, T.[Tao], Li, G.[Guohui], Lei, J.[Jun], Li, S.[Shuohao], Xu, S.[Shukui],
Crowd Counting Based on MMCNN in Still Images,
SCIA17(I: 468-479).
Springer DOI 1706
BibRef

Elassal, N.[Nada], Elder, J.H.[James H.],
Unsupervised Crowd Counting,
ACCV16(V: 329-345).
Springer DOI 1704
BibRef

Siva, P., Shafiee, M.J., Jamieson, M., Wong, A.,
Real-Time, Embedded Scene Invariant Crowd Counting Using Scale-Normalized Histogram of Moving Gradients (HoMG),
ECVW16(885-892)
IEEE DOI 1612
BibRef

Shang, C., Ai, H., Bai, B.,
End-to-end crowd counting via joint learning local and global count,
ICIP16(1215-1219)
IEEE DOI 1610
Computational modeling BibRef

Zalluhoglu, C.[Cemil], Ikizler-Cinbis, N.[Nazli],
Counting People in Crowded Scenes via Detection and Regression Fusion,
ICIAR16(309-317).
Springer DOI 1608
BibRef

Khan, U.[Usman], Klette, R.[Reinhard],
Logarithmically Improved Property Regression for Crowd Counting,
PSIVT15(123-135).
Springer DOI 1602
BibRef

Yang, R.[Ren], Xu, H.Z.[Hua-Zhong], Wang, J.Q.[Jin-Qiao],
Robust Crowd Segmentation and Counting in Indoor Scenes,
MMMod16(I: 505-514).
Springer DOI 1601
BibRef

Zhao, Z.[Zhuoyi], Li, H.S.[Hong-Sheng], Zhao, R.[Rui], Wang, X.G.[Xiao-Gang],
Crossing-Line Crowd Counting with Two-Phase Deep Neural Networks,
ECCV16(VIII: 712-726).
Springer DOI 1611
BibRef

Zhang, C.[Cong], Li, H.S.[Hong-Sheng], Wang, X.G.[Xiao-Gang], Yang, X.K.[Xiao-Kang],
Cross-scene crowd counting via deep convolutional neural networks,
CVPR15(833-841)
IEEE DOI 1510
BibRef

Kumagai, S.[Shohei], Hotta, K.[Kazuhiro],
HLAC between Cells of HOG Feature for Crowd Counting,
ISVC14(I: 688-697).
Springer DOI 1501
BibRef

Pedersen, J.B., Markussen, J.B., Philipsen, M.P., Jensen, M.B., Moeslund, T.B.,
Counting the Crowd at a Carnival,
ISVC14(II: 706-715).
Springer DOI 1501
BibRef

Bondi, E.[Enrico], Seidenari, L.[Lorenzo], Bagdanov, A.D.[Andrew D.], del Bimbo, A.[Alberto],
Real-time people counting from depth imagery of crowded environments,
AVSS14(337-342)
IEEE DOI 1411
Cameras BibRef

Fradi, H.[Hajer], Dugelay, J.L.[Jean-Luc],
A new multiclass SVM algorithm and its application to crowd density analysis using LBP features,
ICIP13(4554-4558)
IEEE DOI 1402
Crowd density BibRef

Loy, C.C.[Chen Change], Gong, S.G.[Shao-Gang], Xiang, T.[Tao],
From Semi-supervised to Transfer Counting of Crowds,
ICCV13(2256-2263)
IEEE DOI 1403
crowd counting BibRef

Chen, K.[Ke], Loy, C.C.[Chen Change], Gong, S.G.[Shao-Gang], Xiang, T.[Tony],
Feature Mining for Localised Crowd Counting,
BMVC12(21).
DOI Link 1301
BibRef

Fu, H.Y.[Hui-Yuan], Ma, H.D.[Hua-Dong], Xiao, H.T.[Hong-Tian],
Real-time accurate crowd counting based on RGB-D information,
ICIP12(2685-2688).
IEEE DOI 1302
BibRef

Yogameena, B., Perumal, S.S.[S. Saravana], Packiyaraj, N., Saravanan, P.,
Ma-Th algorithm for people count in a dense crowd and their behaviour classification,
IMVIP12(17-20).
IEEE DOI 1302
BibRef

Scoleri, T., Henneberg, M.,
View-Independent Prediction of Body Dimensions in Crowded Environments,
DICTA12(1-8).
IEEE DOI 1303
BibRef

Kim, D.[Daehum], Lee, Y.H.[Young-Hyun], Ku, B.H.[Bon-Hwa], Ko, H.S.[Han-Seok],
Crowd Density Estimation Using Multi-class Adaboost,
AVSS12(447-451).
IEEE DOI 1211
BibRef

Zhang, Z.[Zhong], Yin, W.H.[Wei-Hong], Venetianer, P.L.[Peter L.],
Fast Crowd Density Estimation in Surveillance Videos without Training,
AVSS12(452-457).
IEEE DOI 1211
BibRef

Su, H.[Hang], Yang, H.[Hua], Zheng, S.[Shibao],
The Large-Scale Crowd Density Estimation Based on Effective Region Feature Extraction Method,
ACCV10(III: 302-313).
Springer DOI 1011
BibRef

Xing, J.L.[Jun-Liang], Ai, H.Z.[Hai-Zhou], Liu, L.W.[Li-Wei], Lao, S.H.[Shi-Hong],
Robust crowd counting using detection flow,
ICIP11(2061-2064).
IEEE DOI 1201
BibRef

Patzold, M., Evangelio, R.H.[Ruben Heras], Sikora, T.[Thomas],
Counting People in Crowded Environments by Fusion of Shape and Motion Information,
AVSS10(157-164).
IEEE DOI 1009
BibRef

Hou, Y.L.[Ya-Li], Pang, G.K.H.[Grantham K.H.],
Human detection in crowded scenes,
ICIP10(721-724).
IEEE DOI 1009
BibRef
Earlier:
Human detection in a challenging situation,
ICIP09(2561-2564).
IEEE DOI 0911
BibRef

Li, M.[Min], Zhang, Z.X.[Zhao-Xiang], Huang, K.Q.[Kai-Qi], Tan, T.N.[Tie-Niu],
Pyramidal Statistics of Oriented Filtering for robust pedestrian detection,
VS09(1153-1160).
IEEE DOI 0910
BibRef
And:
Rapid and robust human detection and tracking based on omega-shape features,
ICIP09(2545-2548).
IEEE DOI 0911
BibRef
Earlier:
Estimating the number of people in crowded scenes by MID based foreground segmentation and head-shoulder detection,
ICPR08(1-4).
IEEE DOI 0812

See also Robust automated ground plane rectification based on moving vehicles for traffic scene surveillance. BibRef

Dong, L.[Lan], Parameswaran, V.[Vasu], Ramesh, V.[Visvanathan], Zoghlami, I.[Imad],
Fast Crowd Segmentation Using Shape Indexing,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Bozzoli, M.[Massimiliano], Cinque, L.[Luigi],
A Statistical Method for People Counting in Crowded Environments,
CIAP07(506-511).
IEEE DOI 0709
BibRef

Sidla, O., Lypetskyy, Y., Brandle, N.[Norbert], Seer, S.[Stefan],
Pedestrian Detection and Tracking for Counting Applications in Crowded Situations,
AVSBS06(70-70).
IEEE DOI 0611
BibRef

Rabaud, V.[Vincent], Belongie, S.J.[Serge J.],
Counting Crowded Moving Objects,
CVPR06(I: 705-711).
IEEE DOI 0606
BibRef

Kong, D.[Dan], Gray, D.[Doug], Tao, H.[Hai],
A Viewpoint Invariant Approach for Crowd Counting,
ICPR06(III: 1187-1190).
IEEE DOI 0609
BibRef
Earlier:
Counting Pedestrians in Crowds Using Viewpoint Invariant Training,
BMVC05(xx-yy).
HTML Version. 0509
BibRef

Yang, D.B., Gonzalez-Banos, H.H.,
Counting people in crowds with a real-time network of simple image sensors,
ICCV03(122-129).
IEEE DOI 0311
BibRef

Faulhaber, D., Niemann, H., Weierich, P.,
Detection of Crowds of People by Use of Wavelet Features and Parameter Free Statistical Models,
MVA98(xx-yy). BibRef 9800

Khoudour, L., Deparis, J.P., Bruyelle, J.L., Cabestaing, F., Aubert, D., Bouchafa, S., Velastin, S.A.[Sergio A.], Vicencio-Silva, M.A., Wherett, M.,
Project CROMATICA,
CIAP97(II: 757-764).
Springer DOI 9709
Crowd density using flow. BibRef

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Crosswalk Detection, Zebra Crossings .


Last update:Jan 14, 2021 at 15:31:42