7.4 Symmetries in Two Dimensions

Chapter Contents (Back)
Symmetry. Symmetry, 2-D. See also General Three-Dimensional Symmetries, 3-D Symmetry.

Davis, L.S.,
Understanding Shape, II: Symmetry,
SMC(7), 1977, pp. 204-212. See also Understanding Shape: Angles and Sides. BibRef 7700

Wechsler, H.,
A Structural Approach to Shape Analysis Using Mirroring Axes,
CGIP(9), No. 3, March 1979, pp. 246-266.
WWW Link. BibRef 7903

Friedberg, S.A.,
Finding Axis of Skewed Symmetry,
CVGIP(34), No. 2, May 1986, pp. 138-155.
WWW Link. BibRef 8605
Earlier: With: Brown, C.M., ICPR84(322-325). BibRef

Marola, G.,
Using Symmetry for Detecting and Locating Objects in a Picture,
CVGIP(46), No. 2, May 1989, pp. 179-195.
WWW Link. BibRef 8905

Marola, G.,
On the Detection of the Axes of Symmetry of Symmetric and Almost Symmetric Planar Images,
PAMI(11), No. 1, January 1989, pp. 104-108.
IEEE DOI Find the axis of symmetry. BibRef 8901

Marola, G.[Giovanni],
A Technique for Finding the Symmetry Axes of Implicit Polynomial Curves under Perspective Projection,
PAMI(27), No. 3, March 2005, pp. 465-470.
IEEE Abstract. 0501
BibRef
Earlier:
Finding the Symmetry Axis of a Perspectively Projected Plane Curve,
CAIP03(9-16).
Springer DOI 0311
Deal with the distortions from perspective projections. BibRef

Brady, M.[Michael], and Asada, H.[Haruo],
Smoothed Local Symmetries and Their Implementation,
IJRR(3), No. 3, Fall 1984, pp. 36-61. BibRef 8400
Earlier: MIT AI Memo757, February, 1984.
WWW Link. Generation of something similar to the MAT from the boundaries. The computation uses the Gaussian smoothed boundaries. BibRef

Brady, M.[Michael],
Smoothed Local Symmetries and Local Frame Propagation,
PRIP82(629-633). BibRef 8200

Mukherjee, D.P., and Brady, M.,
Symmetry Analysis Through Wave Propagation,
PRAI(10), 1996, pp. 291-306. BibRef 9600

Krishnaswamy, R., Kim, C.E.,
Digital Parallelism, Perpendicularity, and Rectangles,
PAMI(9), No. 2, March 1987, pp. 316-321. BibRef 8703

Leyton, M.,
Symmetry-Curvature Duality,
CVGIP(38), No. 3, June 1987, pp. 327-341.
WWW Link. For later 3D version: See also 3D Symmetry-Curvature Duality Theorems. BibRef 8706

Hel-Or, Y., Peleg, S., and Avnir, D.,
Characterization of Right Handed and Left Handed Shapes,
CVGIP(53), No. 3, May 1991, pp. 297-302.
WWW Link. BibRef 9105

Bigün, J.,
Frequency and Orientation Sensitive Texture Measures Using Linear Symmetry,
SP(29), October 1992, pp. 1-16. BibRef 9210

Hansen, O., Bigün, J.,
Local Symmetry Modeling in Multi-Dimensional Images,
PRL(13), 1992, pp. 253-262. BibRef 9200

Bigün, J.[Josef],
Local Symmetry Features in Image Processing,
Ph.D.Thesis, Linkoping University, 1988.
HTML Version. BibRef 8800

Bigün, J.,
Recognition of Local Symmetries in Gray Value Images by Harmonic Functions,
ICPR88(I: 345-347).
IEEE DOI BibRef 8800

Jiang, X.Y., Bunke, H.,
A Simple and Efficient Algorithm for Determining the Symmetries of Polyhedra,
GMIP(54), No. 1, January 1992, pp. 91-96. BibRef 9201

Jiang, X.Y., Yu, K., and Bunke, H.,
Detection of Rotational and Involutional Symmetries and Congruity of Polyhedra,
VC(12), 1996, pp. 193-201. BibRef 9600

Zabrodsky, H.[Hagit], Peleg, S.[Shmuel], Avnir, D.[David],
Symmetry as a Continuous Feature,
PAMI(17), No. 12, December 1995, pp. 1154-1166.
IEEE DOI BibRef 9512
Earlier:
Symmetry of Fuzzy Data,
ICPR94(A:499-504).
IEEE DOI Measure how far something is from being symmetric. Has been applied to graphs for chemical diagram analysis. See also Symmetry as a Continuous Feature: Comment. BibRef

Zabrodsky, H., Peleg, S., and Avnir, D.,
Completion of Occluded Shapes Using Symmetry,
CVPR93(678-679).
IEEE DOI BibRef 9300

Zabrodsky, H.[Hagit], Peleg, S.[Shmuel], Avnir, D.[David],
A measure of symmetry based on shape similarity,
CVPR92(703-706).
IEEE DOI 0403
BibRef
And:
Hierarchical Symmetry,
ICPR92(III:9-12).
IEEE DOI BibRef

Kanatani, K.,
Symmetry as a Continuous Feature: Comment,
PAMI(19), No. 3, March 1997, pp. 246-247.
IEEE DOI 9704
Point out a theoretical difficulty and fix it. See also Symmetry as a Continuous Feature. BibRef

Yip, R.K.K.[Raymond K.K.], Tam, P.K.S.[Peter K.S.], and Leung, D.N.K.[Dennis N.K.],
Application of Elliptic Fourier Descriptors to Symmetry Detection under Parallel Projection,
PAMI(16), No. 3, March 1994, pp. 277-286.
IEEE DOI Fourier Descriptors. BibRef 9403

Fawcett, R.[Roger], Zisserman, A.[Andrew], Brady, J.M.[J. Michael],
Extracting Structure from an Affine View of a 3D Point Set with One or 2 Bilateral Symmetries,
IVC(12), No. 9, November 1994, pp. 615-622.
WWW Link. BibRef 9411
Earlier: BMVC93(xx-yy).
PDF File. 9309
BibRef

Van Gool, L.J., Moons, T., Ungureanu, D., Pauwels, E.J.,
Symmetry from Shape and Shape from Symmetry,
IJRR(14), No. 5, October 1995, pp. 407-424. BibRef 9510

Van Gool, L.J., Proesmans, M.[Marc], Moons, T.[Theo],
Mirror and Point Symmetry under Perspective Skewing,
CVPR96(285-292).
IEEE DOI BibRef 9600

Van Gool, L.J., Moons, T., Proesmans, M., Oosterlinck, A.,
Groups, fixed sets, symmetries, and invariants,
ICIP95(III: 356-359).
IEEE DOI 9510
BibRef

Sun, C.M.[Chang-Ming],
Symmetry Detection Using Gradient Information,
PRL(16), No. 9, September 1995, pp. 987-996.
PDF File. Histogram of orientation. BibRef 9509

Sun, C.M.[Chang-Ming],
Fast Recovery of Rotational Symmetry Parameters Using Gradient Orientation,
OptEng(36), No. 4, April 1997, pp. 1073-1077.
PDF File. 9705
BibRef

Shaked, D., Bruckstein, A.M.,
The Curve Axis,
CVIU(63), No. 2, March 1996, pp. 367-379.
DOI Link BibRef 9603

Bruckstein, A.M.[Alfred M.], Shaked, D.[Doron],
Skew Symmetry Detection via Invariant Signatures,
PR(31), No. 2, February 1998, pp. 181-192.
WWW Link. 9802
BibRef
Earlier: CAIP95(17-24).
Springer DOI 9509
BibRef

Robinson, J.J.,
Line Symmetry of Convex Digital Regions,
CVIU(64), No. 2, September 1996, pp. 263-285.
DOI Link BibRef 9609

Robinson, J.J., Kim, C.E.,
Point Symmetry of Convex Digital Regions,
CVPR88(604-609).
IEEE DOI BibRef 8800

Masuda, T., Yamamoto, K., Yamada, H.,
Detection of Partial Symmetry Using Correlation with Rotated-Reflected Images,
PR(26), No. 8, August 1993, pp. 1245-1253.
WWW Link. BibRef 9308

Parui, S.K., Majumder, D.D.,
Symmetry Analysis By Computer,
PR(16), No. 1, 1983, pp. 63-67.
WWW Link. 9611
BibRef

Ogawa, H.,
Symmetry Analysis of Line Drawings Using the Hough Transform,
PRL(12), 1991, pp. 9-12. BibRef 9100

Cho, K., Dunn, S.M.,
Hierarchical Local Symmetries,
PRL(12), 1991, pp. 343-347. BibRef 9100

Atallah, M.J.,
On Symmetry Detection,
TC(34), 1985, pp. 663-666. BibRef 8500

Kakarala, R., Cadzow, J.A.,
Estimation of Phase for Noisy Linear Phase Signals,
TSP(44), No. 10, October 1996, pp. 2483-2497. BibRef 9610

Tuzikov, A.V., Margolin, G.L., Grenov, A.I.,
Convex Set Symmetry Measurement via Minkowski Addition,
JMIV(7), No. 1, January 1997, pp. 53-68.
DOI Link 9703
BibRef

Tuzikov, A.V., Margolin, G.L., Heijmans, H.J.A.M.,
Efficient computation of a reflection symmetry measure for convex polygons based on Minkowski addition,
ICPR96(II: 236-240).
IEEE DOI 9608
(CWI, NL) BibRef

Margolin, G.L., Tuzikov, A.V., Grenov, A.I.,
Reflection symmetry measure for convex sets,
ICIP94(I: 691-695).
IEEE DOI 9411
BibRef

Tuzikov, A.V.[Alexander V.], Sheynin, S.A.[Stanislav A.],
Symmetry Measure Computation for Convex Polyhedra,
JMIV(16), No. 1, January 2002, pp. 41-56.
DOI Link 0202
BibRef

Sheynin, S.A.[Stanislav A.], Tuzikov, A.V.[Alexander V.], Volgin, D.[Denis],
Computation of Symmetry Measures for Polygonal Shapes,
CAIP99(183-190).
Springer DOI 9909
BibRef

Zabrodsky, H., Weinshall, D.,
Using Bilateral Symmetry to Improve 3D Reconstruction from Image Sequences,
CVIU(67), No. 1, July 1997, pp. 48-57.
DOI Link 9707
BibRef
Earlier:
Utilizing Symmetry in the Reconstruction of Three-Dimensional Shape from Noisy Images,
ECCV94(A:401-410).
Springer DOI BibRef

Shih, F.Y.[Frank Y.], Wong, W.T.[Wai-Tak],
A one-pass algorithm for local symmetry of contours from chain codes,
PR(32), No. 7, July 1999, pp. 1203-1210.
WWW Link. BibRef 9907

Shih, F.Y.[Frank Y.], Wong, W.T.[Wai-Tak],
An adaptive algorithm for conversion from quadtree to chain codes,
PR(34), No. 3, March 2001, pp. 631-639.
WWW Link. 0101
BibRef

Parsons, C.J., Nixon, M.S.,
Introducing Focus in the Generalized Symmetry Operator,
SPLetters(6), No. 3, March 1999, pp. 49.
IEEE Top Reference. BibRef 9903

Cross, A.D.J.[Andrew D.J.], Hancock, E.R.[Edwin R.],
Scale space vector fields for symmetry detection,
IVC(17), No. 5/6, April 1999, pp. 337-345.
WWW Link. BibRef 9904

Lei, Y.[Yiwu], Wong, K.C.[Kok Cheong],
Detection and localisation of reflectional and rotational symmetry under weak perspective projection,
PR(32), No. 2, February 1999, pp. 167-180.
WWW Link. BibRef 9902

Shen, D.G.[Ding-Gang], Ip, H.H.S.[Horace H.S.], Cheung, K.K.T.[Kent K.T.], Teoh, E.K.[Eam Khwang],
Symmetry Detection by Generalized Complex (GC) Moments: A Close-Form Solution,
PAMI(21), No. 5, May 1999, pp. 466-476.
IEEE DOI Reflection and rotation symmetry from moments. BibRef 9905

Cheung, K.K.T.[Kent K.T.], Ip, H.H.S.[Horace H.S.],
Symmetry Detection Using Complex Moments,
ICPR98(Vol II: 1473-1475).
IEEE DOI 9808
BibRef

Sun, C.M.[Chang-Ming], and Si, D.[Deyi],
Fast Reflectional Symmetry Detection Using Orientation Histograms,
RealTimeImg(5), No. 1, February 1999, pp. 63-74. BibRef 9902

Yip, R.K.K.[Raymond K.K.],
A Hough transform technique for the detection of reflectional symmetry and skew-symmetry,
PRL(21), No. 2, February 2000, pp. 117-130. 0003
BibRef

Tari, S.[Sibel], and Shah, J.[Jayant],
Nested Local Symmetry Set,
CVIU(79), No. 2, August 2000, pp. 267-280.
DOI Link 0008
BibRef
Earlier:
Local Symmetries of Shapes in Arbitrary Dimension,
ICCV98(1123-1128).
IEEE DOI BibRef

Aslan, C.[Cagri], Erdem, A.[Aykut], Erdem, E.[Erkut], Tari, S.[Sibel],
Disconnected Skeleton: Shape at Its Absolute Scale,
PAMI(30), No. 12, December 2008, pp. 2188-2203.
IEEE DOI 0811
BibRef
Earlier: A1, A4, Only:
An Axis-Based Representation for Recognition,
ICCV05(II: 1339-1346).
IEEE DOI 0510
Skeleton representation and matching technique. Depend more on global features for matching. BibRef

Kiryati, N.[Nahum], Gofman, Y.[Yossi],
Detecting Symmetry in Grey Level Images: The Global Optimization Approach,
IJCV(29), No. 1, August 1998, pp. 29-45.
DOI Link 0010
BibRef
Earlier: A2, A1: ICPR96(I: 889-894).
IEEE DOI 9608
BibRef
Earlier: A2, A1:
Detecting grey level symmetry: The frequency domain approach,
CAIP95(588-593).
Springer DOI 9509
(Technion, IL) BibRef

Shen, D.G.[Ding-Gang], Ip, H.H.S.[Horace H.S.], Teoh, E.K.[Eam Khwang],
Affine invariant detection of perceptually parallel 3D planar curves,
PR(33), No. 11, November 2000, pp. 1909-1918.
WWW Link. 0011
See also Generalized Affine Invariant Image Normalization. BibRef

Spinei, A., Pellerin, D., Fernandes, D., Herault, J.,
Fast hardware implementation of Gabor filter based motion estimation,
IntCAE(7), No. 1, 2000, pp. 67-77. 0001
BibRef

Shen, D.G.[Ding-Gang], Ip, H.H.S.[Horace H.S.], Teoh, E.K.[Eam Khwang],
An energy of asymmetry for accurate detection of global reflection axes,
IVC(19), No. 5, 1 April 2001, pp. 283-297.
WWW Link. 0102
BibRef
Earlier:
Detecting Reflection Axes by Energy Minimisation,
ICPR00(Vol II: 1026-1029).
IEEE DOI 0009
BibRef

Shen, D.G.[Ding-Gang], Ip, H.H.S.[Horace H.S.], Teoh, E.K.[Eam Khwang],
Robust detection of skewed symmetries by combining local and semi-local affine invariants,
PR(34), No. 7, July 2001, pp. 1417-1428.
WWW Link. 0105
BibRef
Earlier:
Robust Detection of Skewed Symmetries,
ICPR00(Vol III: 1010-1013).
IEEE DOI 0009
BibRef

Shen, D.G.[Ding-Gang], Ip, H.H.S.[Horace H.S.], Teoh, E.K.[Eam Khwang],
A Novel Theorem on Symmetries of 2D Images,
ICPR00(Vol III: 1002-1005).
IEEE DOI 0009
BibRef

Jenkinson, M.[Mark], Brady, M.[Michael],
A saliency-based hierarchy for local symmetries,
IVC(20), No. 2, February 2002, pp. 85-101.
WWW Link. 0202
BibRef

Geiger, D.[Davi], Liu, T.L.[Tyng-Luh], and Kohn, R.V.[Robert V.],
Representation and Self-Similarity of Shapes,
PAMI(25), No. 1, January 2003, pp. 86-99.
IEEE DOI 0301
BibRef
Earlier: A2, A1, A3: ICCV98(1129-1135).
IEEE DOI BibRef

Liu, T.L.[Tyng-Luh], Yuille, A.L.[Alan L.], Geiger, D.[Davi],
Segmenting by Seeking the Symmetry Axis,
ICPR98(Vol II: 994-998).
IEEE DOI 9808
BibRef

Liu, T.L., Geiger, D.,
Approximate Tree Matching and Shape Similarity,
ICCV99(456-462).
IEEE DOI BibRef 9900

François, A.R.J.[Alexandre R. J.], Medioni, G.G.[Gérard G.], Waupotitsch, R.[Roman],
Mirror symmetry ==> 2-view stereo geometry,
IVC(21), No. 2, February 2003, pp. 137-143.
WWW Link. 0301
BibRef
Earlier:
Reconstructing mirror symmetric scenes from a single view using 2-view stereo geometry,
ICPR02(IV: 12-16).
IEEE DOI 0211
BibRef

Zouaki, H.[Hamid],
Convex set symmetry measurement using Blaschke addition,
PR(36), No. 3, March 2003, pp. 753-763.
WWW Link. 0301
BibRef

Tek, H.[Hüseyin], Kimia, B.B.[Benjamin B.],
Symmetry Maps of Free-Form Curve Segments via Wave Propagation,
IJCV(54), No. 1-3, August 2003, pp. 35-81.
DOI Link 0306
BibRef
Earlier: ICCV99(362-369).
IEEE DOI BibRef

Tek, H., Stoll, P.A.[Perry A.], Kimia, B.B.,
Shocks from Images: Propagation of Orientation Elements,
CVPR97(839-845).
IEEE DOI 9704
BibRef

Wang, H.Z.[Han-Zi], Suter, D.[David],
Using symmetry in robust model fitting,
PRL(24), No. 16, December 2003, pp. 2953-2966.
WWW Link. 0310
BibRef

Choi, I., Chien, S.I.,
A Generalized Symmetry Transform With Selective Attention Capability for Specific Corner Angles,
SPLetters(11), No. 2, February 2004, pp. 255-257.
IEEE Abstract. 0402
BibRef

Lucchese, L.[Luca],
Frequency domain classification of cyclic and dihedral symmetries of finite 2-D patterns,
PR(37), No. 12, December 2004, pp. 2263-2280.
WWW Link. 0409
BibRef
Earlier:
A frequency domain algorithm for detection and classification of cyclic and dihedral symmetries in two-dimensional patterns,
ICIP02(II: 793-796).
IEEE DOI 0210
BibRef

di Gesu, V.[Vito], Zavidovique, B.[Bertrand],
A note on the iterative object symmetry transform,
PRL(25), No. 14, 15 October 2004, pp. 1533-1545.
WWW Link. 0410
BibRef

di Gesu, V., lo Bosco, G., Zavidovique, B.[Bertrand],
Classification based on iterative object symmetry transform,
CIAP03(44-49).
IEEE DOI 0310
BibRef

Zavidovique, B.[Bertrand], di Gesů, V.[Vito],
The S-kernel: A measure of symmetry of objects,
PR(40), No. 3, March 2007, pp. 839-852.
WWW Link. 0611
BibRef
Earlier:
Kernel Based Symmetry Measure,
CIAP05(261-268).
Springer DOI 0509
BibRef
And:
The S-Kernel and a Symmetry Measure Based on Correlation,
SCIA05(184-194).
Springer DOI 0506
BibRef
Earlier:
The iterative object symmetry transform,
ICIP04(IV: 2677-2680).
IEEE DOI 0505
Symmetry transforms; Symmetry measure; Erosion; Correlation; Feature extraction BibRef

Zavidovique, B.[Bertrand], di Gesú, V.[Vito],
Pyramid symmetry transforms: From local to global symmetry,
IVC(25), No. 2, February 2007, pp. 220-229.
WWW Link. 0701
Soft computing; Pyramid computation; Symmetry computation; Visual attention; Visual perception BibRef

Huang, K.[Kun], Hong, W.[Wei], Ma, Y.[Yi],
Symmetry-based photo-editing,
PR(38), No. 6, June 2005, pp. 825-834.
WWW Link. 0501
BibRef
Earlier: HLK03(21-28).
IEEE Abstract. 0402
BibRef

Xiao, Z.T.[Zhi-Tao], Hou, Z.X.[Zheng-Xin], Miao, C.Y.[Chang-Yun], Wang, J.M.[Jian-Ming],
Using phase information for symmetry detection,
PRL(26), No. 13, 1 October 2005, pp. 1985-1994.
WWW Link. 0509
BibRef

Poliannikov, O.V., Krim, H.,
Identification of a Discrete Planar Symmetric Shape From a Single Noisy View,
IP(14), No. 12, December 2005, pp. 2051-2059.
IEEE DOI 0512
BibRef

Lee, S.S.[Seung-Sin], Rao, R.M.[Raghuveer M.],
Self-Similar Random Field Models in Discrete Space,
IP(15), No. 1, January 2006, pp. 160-168.
IEEE DOI 0601
BibRef
Earlier:
Scale-based formulations of statistical self-similarity in images,
ICIP04(IV: 2323-2326).
IEEE DOI 0505
BibRef

Park, C.J.[Chang-Joon], Seo, K.S.[Kyung-Seok], Choi, H.M.[Heung-Moon],
Symmetric polarity in generalized symmetry transformation,
PRL(27), No. 7, May 2006, pp. 854-857.
WWW Link. Noise tolerance; Attentional operator; Object detection 0604
BibRef

Keller, Y., Shkolnisky, Y.,
A Signal Processing Approach to Symmetry Detection,
IP(15), No. 8, August 2006, pp. 2198-2207.
IEEE DOI 0606
BibRef
Earlier:
An algebraic approach to symmetry detection,
ICPR04(III: 186-189).
IEEE DOI 0409
BibRef

Chertok, M.[Michael], Keller, Y.[Yosi],
Spectral Symmetry Analysis,
PAMI(32), No. 7, July 2010, pp. 1227-1238.
IEEE DOI 1006
Rotational and reflective symmetries in N-D. Derive a symmetry detection scheme for sets of points. BibRef

Kuijper, A.[Arjan], Olsen, O.F.[Ole Fogh], Giblin, P.J.[Peter J.], Nielsen, M.[Mads],
Alternative 2D Shape Representations using the Symmetry Set,
JMIV(26), No. 1-2, November 2006, pp. 127-147.
Springer DOI 0701
BibRef

Kuijper, A.[Arjan], Olsen, O.F.[Ole Fogh], Giblin, P.J.[Peter J.], Bille, P.[Philip], Nielsen, M.[Mads],
From a 2D Shape to a String Structure Using the Symmetry Set,
ECCV04(Vol II: 313-325).
Springer DOI 0405
As an alternative to skeletons. For easier indexing. BibRef

Kuijper, A.[Arjan], Olsen, O.F.[Ole Fogh],
Geometric Skeletonization Using the Symmetry Set,
ICIP05(I: 497-500).
IEEE DOI 0512
See also Structure of Shapes Scale Space Aspects of the (pre-) Symmetry Set, The. BibRef

Kuijper, A.[Arjan], Olsen, O.F.[Ole Fogh], Bille, P.[Philip], Giblin, P.J.[Peter J.],
Matching 2D Shapes using their Symmetry Sets,
ICPR06(II: 179-182).
IEEE DOI 0609
BibRef

Kuijper, A.[Arjan],
Deriving the Medial Axis with geometrical arguments for planar shapes,
PRL(28), No. 15, 1 November 2007, pp. 2011-2018.
WWW Link. 0711
Medial Axis; Symmetry Set; Shape geometry, Skeletons BibRef

Baloch, S.H., Krim, H.,
Flexible Skew-Symmetric Shape Model for Shape Representation, Classification, and Sampling,
IP(16), No. 2, February 2007, pp. 317-328.
IEEE DOI 0702
BibRef

Baloch, S.H., Krim, H.,
Object Recognition Through Topo-Geometric Shape Models Using Error-Tolerant Subgraph Isomorphisms,
IP(19), No. 5, May 2010, pp. 1191-1200.
IEEE DOI 1004
BibRef

Milner, D.[David], Raz, S.[Shmuel], Hel-Or, H.[Hagit], Keren, D.[Daniel], Nevo, E.[Eviatar],
A new measure of symmetry and its application to classification of bifurcating structures,
PR(40), No. 8, August 2007, pp. 2237-2250.
WWW Link. 0704
BibRef
Earlier: A1, A3, A4, A2, A5:
Analyzing Symmetry in Biological Systems,
ICIP05(I: 361-364).
IEEE DOI 0512
Symmetry; Bifurcating structures; Graphs; Leaf veins; CSM; Shape characteristics; Continuous symmetry BibRef

Schmitt, O.[Oliver], Hasse, M.[Maria],
Radial symmetries based decomposition of cell clusters in binary and gray level images,
PR(41), No. 6, June 2008, pp. 1905-1923.
WWW Link. 0802
Image analysis; Radial symmetry; Saliency; Points of interest; Center of mass; Iterative voting; Decomposition; Separation; Subdivision; Splitting; Partitioning; Cell cluster BibRef

Schmitt, O.[Oliver], Reetz, S.[Stephan],
On the Decomposition of Cell Clusters,
JMIV(33), No. 1, January 2009, pp. xx-yy.
Springer DOI 0804
BibRef

Schmitt, O.[Oliver], Hasse, M.[Maria],
Morphological multiscale decomposition of connected regions with emphasis on cell clusters,
CVIU(113), No. 2, February 2009, pp. 188-201.
Elsevier DOI 0901
Image analysis; Multiscale morphology; Decomposition; Separation; Subdivision; Splitting; Partitioning; Decoupling; Cell clustering; Cell grouping BibRef

Lee, S.K.[Seung-Kyu], Liu, Y.X.[Yan-Xi],
Skewed Rotation Symmetry Group Detection,
PAMI(32), No. 9, September 2010, pp. 1659-1672.
IEEE DOI 1008
5 properties: center of R, affind deformation, type of symmetry, cardinality of the group, supporting region of the group in the image. BibRef

Park, M.W.[Min-Woo], Lee, S.K.[Seung-Kyu], Chen, P.C.[Po-Chun], Kashyap, S.[Somesh], Butt, A.A.[Asad A.], Liu, Y.X.[Yan-Xi],
Performance evaluation of state-of-the-art discrete symmetry detection algorithms,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Lee, S.K.[Seung-Kyu],
Symmetry-driven shape description for image retrieval,
IVC(31), No. 4, April 2013, pp. 357-363.
Elsevier DOI 1304
Shape description; Shape matching; Regular pattern BibRef

Guo, Q.[Qi], Guo, F.[Falei], Shao, J.Q.[Jia-Qing],
Irregular Shape Symmetry Analysis: Theory and Application to Quantitative Galaxy Classification,
PAMI(32), No. 10, October 2010, pp. 1730-1743.
IEEE DOI 1008
Imperfect transforms to measure how symmetric the shapes are. BibRef

Eidenberger, N.[Norbert], Schleicher, D.C.H.[Daniel C. H.], and Zagar, B.G.[Bernhard G.],
Composition and Detection Rate of a Symmetry Axis Localization Algorithm for Digital Images,
Sensors(Special: 9), December 2010, pp. 1-10.
HTML Version. BibRef 1012

Law, A.J.[Alvin J.], Aliaga, D.G.[Daniel G.],
Single viewpoint model completion of symmetric objects for digital inspection,
CVIU(115), No. 5, May 2011, pp. 603-610.
Elsevier DOI 1103
Single viewpoint acquisition; Model completion; Symmetry detection; Digital inspection BibRef

Trinh, N.H.[Nhon H.], Kimia, B.B.[Benjamin B.],
Skeleton Search: Category-Specific Object Recognition and Segmentation Using a Skeletal Shape Model,
IJCV(94), No. 2, September 2011, pp. 215-240.
WWW Link. 1101
BibRef
Earlier:
Category-specific Object Recognition and Segmentation Using a Skeletal Shape Model,
BMVC09(xx-yy).
PDF File. 0909
BibRef
And:
Learning prototypical shapes for object categories,
SMiCV10(1-8).
IEEE DOI 1006
BibRef
Earlier:
A Symmetry-Based Generative Model for Shape,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Sun, Y.[Yu], Bhanu, B.[Bir],
Reflection Symmetry-Integrated Image Segmentation,
PAMI(34), No. 9, September 2012, pp. 1827-1841.
IEEE DOI 1208
BibRef

Guo, X.J.[Xiao-Jie], Cao, X.C.[Xiao-Chun],
MIFT: A framework for feature descriptors to be mirror reflection invariant,
IVC(30), No. 8, August 2012, pp. 546-556.
Elsevier DOI 1209
BibRef
Earlier:
FIND: A Neat Flip Invariant Descriptor,
ICPR10(515-518).
IEEE DOI 1008
Mirror reflection invariance; Local image feature; MIFT BibRef

Zhang, H.[Hua], Guo, X.J.[Xiao-Jie], Cao, X.C.[Xiao-Chun],
Water Reflection Detection Using a Flip Invariant Shape Detector,
ICPR10(633-636).
IEEE DOI 1008
BibRef

Guo, X.J.[Xiao-Jie], Cao, X.C.[Xiao-Chun], Zhang, J.W.[Jia-Wan], Li, X.W.[Xue-Wei],
MIFT: A Mirror Reflection Invariant Feature Descriptor,
ACCV09(II: 536-545).
Springer DOI 0909
BibRef

He, B.[Bei], Wang, G.J.[Gui-Jin], Shi, C.B.[Chen-Bo], Yin, X.W.[Xuan-Wu], Liu, B.[Bo], Lin, X.G.[Xing-Gang],
Self-Clustering Symmetry Detection,
IEICE(E95-D), No. 9, September 2012, pp. 2359-2362.
WWW Link. 1209
BibRef

Kuijper, A.[Arjan],
On the Local Form and Transitions of Pre-symmetry Sets,
JMIV(45), No. 1, January 2013, pp. 13-30.
WWW Link. 1301
BibRef

Melkemi, M.[Mahmoud], Cordier, F.[Frédéric], Sapidis, N.S.[Nickolas S.],
A Provable Algorithm to Detect Weak Symmetry in a Polygon,
IJIG(13), No. 1, January 2013, pp. 1350002.
DOI Link 1305
BibRef
Earlier:
An Algorithm to Detect the Weak-Symmetry of a Simple Polygon,
ICIAR11(I: 365-374).
Springer DOI 1106
BibRef

Shiraishi, S.[Soma], Feng, Y.[Yaokai], Uchida, S.[Seiichi],
Skew Estimation by Parts,
IEICE(E96-D), No. 7, July 2013, pp. 1503-1512.
WWW Link. 1307
BibRef

Wang, Z.Z.[Zhao-Zhong], Fu, L.[Lianrui], Li, Y.F.,
Unified detection of skewed rotation, reflection and translation symmetries from affine invariant contour features,
PR(47), No. 4, 2014, pp. 1764-1776.
Elsevier DOI 1402
Symmetry detection BibRef

Liu, Y.X.[Yan-Xi], Hel-Or, H.[Hagit], Kaplan, C.S.[Craig S.], Van Gool, L.J.[Luc J.],
Computational Symmetry in Computer Vision and Computer Graphics,
FTCGV(5), Issue 1-2, 2009, pp. 1-195.
DOI Link 1410
Published August 2010. BibRef

Albert, F., Gómis, J.M., Blasco, J., Valiente, J.M., Aleixos, N.,
A new method to analyse mosaics based on Symmetry Group theory applied to Islamic Geometric Patterns,
CVIU(130), No. 1, 2015, pp. 54-70.
Elsevier DOI 1411
Mosaics BibRef

Widynski, N., Moevus, A., Mignotte, M.,
Local Symmetry Detection in Natural Images Using a Particle Filtering Approach,
IP(23), No. 12, December 2014, pp. 5309-5322.
IEEE DOI 1412
edge detection BibRef

Wang, Z.Z.[Zhao-Zhong], Tang, Z.S.[Ze-Sheng], Zhang, X.[Xiao],
Reflection Symmetry Detection Using Locally Affine Invariant Edge Correspondence,
IP(24), No. 4, April 2015, pp. 1297-1301.
IEEE DOI 1503
edge detection BibRef

Puspoki, Z., Unser, M.,
Template-Free Wavelet-Based Detection of Local Symmetries,
IP(24), No. 10, October 2015, pp. 3009-3018.
IEEE DOI 1507
Algorithm design and analysis BibRef

El ouaazizi, A.[Aziza], Nasri, A.[Abdelbar], Benslimane, R.[Rachid],
A rotation symmetry group detection technique for the characterization of Islamic Rosette Patterns,
PRL(68, Part 1), No. 1, 2015, pp. 111-117.
Elsevier DOI 1512
Islamic Rosette Pattern BibRef

Shen, W.[Wei], Bai, X.[Xiang], Hu, Z.H.[Zi-Hao], Zhang, Z.J.[Zhi-Jiang],
Multiple instance subspace learning via partial random projection tree for local reflection symmetry in natural images,
PR(52), No. 1, 2016, pp. 306-316.
Elsevier DOI 1601
Symmetry detection BibRef

Revollo, N.V.[Natalia V.], Delrieux, C.A.[Claudio A.], González-José, R.[Rolando],
Set of bilateral and radial symmetry shape descriptor based on contour information,
IET-CV(11), No. 3, April 2017, pp. 226-236.
DOI Link 1704
BibRef

Xie, L.X.[Ling-Xi], Wang, J.D.[Jing-Dong], Lin, W.Y.[Wei-Yao], Zhang, B.[Bo], Tian, Q.[Qi],
Towards Reversal-Invariant Image Representation,
IJCV(123), No. 2, June 2017, pp. 226-250.
Springer DOI 1705
Representation to allow other views. reversal-invariant representation of local patterns. BibRef

Cicconet, M.[Marcelo], Birodkar, V.[Vighnesh], Lund, M.[Mads], Werman, M.[Michael], Geiger, D.[Davi],
A convolutional approach to reflection symmetry,
PRL(95), No. 1, 2017, pp. 44-50.
Elsevier DOI 1708
Mirror symmetry BibRef

Nagar, R., Raman, S.,
Reflection Symmetry Axes Detection Using Multiple Model Fitting,
SPLetters(24), No. 10, October 2017, pp. 1438-1442.
IEEE DOI 1710
geometry, image matching, image representation, object detection, BibRef

Imani, M., Ghassemian, H.,
Weighted Joint Collaborative Representation Based On Median-Mean Line and Angular Separation,
GeoRS(55), No. 10, October 2017, pp. 5612-5624.
IEEE DOI 1710
feature extraction, hyperspectral imaging, statistics, AS, NRS, WJCR, angular separation, hyperspectral median-mean line, nearest regularized subspace, BibRef


Chiang, A., Liao, S.,
Image analysis with symmetry properties of Legendre moments,
ICIVC17(386-390)
IEEE DOI 1708
Digital images, Image analysis, Manganese, Measurement, image reconstruction, legendre moments, moment computing, symmetry properties BibRef

Guerrini, F., Gnutti, A., Leonardi, R.,
Image symmetries: The right balance between evenness and perception,
WSSIP17(1-5)
IEEE DOI 1707
Convolution, Correlation, Object recognition, Three-dimensional displays, Two dimensional displays, Symmetry detection, even-odd decomposition, gradient image analysis, object, detection BibRef

Lomeli-Rodriguez, J.[Jaime], Nixon, M.S.[Mark S.],
Learning Salient Structures for the Analysis of Symmetric Patterns,
ICIAR17(286-295).
Springer DOI 1706
BibRef

Migalska, A.[Agata], Lewis, J.[John],
An information theoretic approach to reflectional symmetry detection,
ICVNZ15(1-6)
IEEE DOI 1701
Gaussian processes BibRef

Stephenson, M., Clark, A., Green, R.,
Novel methods for reflective symmetry detection in scanned 3D models,
ICVNZ15(1-6)
IEEE DOI 1701
principal component analysis BibRef

Funk, C.[Christopher], Liu, Y.X.[Yan-Xi],
Symmetry reCAPTCHA,
CVPR16(5165-5174)
IEEE DOI 1612
BibRef

Elawady, M.[Mohamed], Alata, O.[Olivier], Ducottet, C.[Christophe], Barat, C.[Cécile], Colantoni, P.[Philippe],
Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation,
CAIP17(I: 344-355).
Springer DOI 1708
BibRef
Earlier: A1, A4, A3, A5, Only:
Global Bilateral Symmetry Detection Using Multiscale Mirror Histograms,
ACIVS16(14-24).
Springer DOI 1611
BibRef

Larsson, V.[Viktor], Ĺström, K.[Kalle],
Uncovering Symmetries in Polynomial Systems,
ECCV16(III: 252-267).
Springer DOI 1611
BibRef

Atadjanov, I.R.[Ibragim R.], Lee, S.K.[Seung-Kyu],
Reflection Symmetry Detection via Appearance of Structure Descriptor,
ECCV16(III: 3-18).
Springer DOI 1611
BibRef

Teo, C.L., Fermuller, C., Aloimonos, Y.,
Detection and Segmentation of 2D Curved Reflection Symmetric Structures,
ICCV15(1644-1652)
IEEE DOI 1602
Clutter BibRef

Atadjanov, I.[Ibragim], Lee, S.K.[Seung-Kyu],
Bilateral symmetry detection based on scale invariant structure feature,
ICIP15(3447-3451)
IEEE DOI 1512
reflection; structure feature; symmetry detection BibRef

Yang, H.[Heng], Patras, I.[Ioannis],
Mirror, mirror on the wall, tell me, is the error small?,
CVPR15(4685-4693)
IEEE DOI 1510
BibRef

Cai, D.Q.[Dong-Qi], Li, P.Y.[Peng-Yu], Su, F.[Fei], Zhao, Z.C.[Zhi-Cheng],
An adaptive symmetry detection algorithm based on local features,
VCIP14(478-481)
IEEE DOI 1504
feature extraction BibRef

Charan, S.G.,
Symmetric Feature Extraction for Pose Neutralization,
FSLCV14(III: 290-305).
Springer DOI 1504
BibRef

Shehu, A.[Aurela], Brunton, A.[Alan], Wuhrer, S.[Stefanie], Wand, M.[Michael],
Characterization of Partial Intrinsic Symmetries,
NORDIA14(267-282).
Springer DOI 1504
BibRef

Balzer, J.[Jonathan], Acevedo-Feliz, D.[Daniel], Soatto, S.[Stefano], Hofer, S.[Sebastian], Hadwiger, M.[Markus], Beyerer, J.[Jurgen],
Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects,
3DV14(448-455)
IEEE DOI 1503
Calibration BibRef

Kuang, Y.B.[Yu-Bin], Zheng, Y.Q.[Yin-Qiang], Astrom, K.[Kalle],
Partial Symmetry in Polynomial Systems and Its Applications in Computer Vision,
CVPR14(438-445)
IEEE DOI 1409
computer vision; partial symmetry; polynomial equation BibRef

Cicconet, M.[Marcelo], Geiger, D.[Davi], Gunsalus, K.C.[Kristin C.], Werman, M.[Michael],
Mirror Symmetry Histograms for Capturing Geometric Properties in Images,
CVPR14(2981-2986)
IEEE DOI 1409
biology BibRef

Kurtek, S.[Sebastian], Shen, M.[Mo], Laga, H.[Hamid],
Elastic reflection symmetry based shape descriptors,
WACV14(293-300)
IEEE DOI 1406
Biology BibRef

Tohl, D., Li, J.S.J., Shamiminoori, L., Bull, C.M.,
Image asymmetry measurement for the study of endangered Pygmy Bluetongue Lizard,
IVCNZ13(76-81)
IEEE DOI 1402
digital photography BibRef

Cao, X.C.[Xiao-Chun], Zhang, H.[Hua], Liu, S.[Si], Guo, X.J.[Xiao-Jie], Lin, L.[Liang],
SYM-FISH: A Symmetry-Aware Flip Invariant Sketch Histogram Shape Descriptor,
ICCV13(313-320)
IEEE DOI 1403
BibRef

Lee, T.S.H.[Tom Sie Ho], Fidler, S.[Sanja], Dickinson, S.J.[Sven J.],
Detecting Curved Symmetric Parts Using a Deformable Disc Model,
ICCV13(1753-1760)
IEEE DOI 1403
BibRef

Ming, Y.[Yansheng], Li, H.D.[Hong-Dong], He, X.M.[Xu-Ming],
Symmetry detection via contour grouping,
ICIP13(4259-4263)
IEEE DOI 1402
contour;symmetry detection BibRef

Teng, K.[Kezhen], Wang, J.Q.[Jin-Qiao], Tian, Q.[Qi], Lu, H.Q.[Han-Qing],
Improving scene classification with weakly spatial symmetry information,
ICIP13(3259-3263)
IEEE DOI 1402
scene classification;spatial symmetry BibRef

Negrinho, R.M.P.[Renato M.P.], Aguiar, P.M.Q.[Pedro M.Q.],
Symmetric polynomials for 2D shape representation,
ICIP14(4732-4736)
IEEE DOI 1502
BibRef
Earlier:
Shape representation via elementary symmetric polynomials: A complete invariant inspired by the bispectrum,
ICIP13(3518-3522)
IEEE DOI 1402
Arrays. Bispectrum BibRef

Salti, S.[Samuele], Lanza, A.[Alessandro], di Stefano, L.[Luigi],
Keypoints from Symmetries by Wave Propagation,
CVPR13(2898-2905)
IEEE DOI 1309
Detector; keypoints; symmetry; wave equation BibRef

Liu, J.C.[Jing-Chen], Slota, G.[George], Zheng, G.[Gang], Wu, Z.H.[Zhao-Hui], Park, M.W.[Min-Woo], Lee, S.K.[Seung-Kyu], Rauschert, I.[Ingmar], Liu, Y.X.[Yan-Xi],
Symmetry Detection from RealWorld Images Competition 2013: Summary and Results,
SUW13(200-205)
IEEE DOI 1309
BibRef

Michaelsen, E.[Eckart], Muench, D.[David], Arens, M.[Michael],
Recognition of Symmetry Structure by Use of Gestalt Algebra,
SUW13(206-210)
IEEE DOI 1309
algebraic approach;bottom-up search;mirror-symmetry;repetitive patters BibRef

Patraucean, V.[Viorica], Ovsjanikov, M.[Maks],
Affine invariant visual phrases for object instance recognition,
MVA15(14-17)
IEEE DOI 1507
Complexity theory BibRef

Patraucean, V.[Viorica], von Gioi, R.G.[Rafael Grompone], Ovsjanikov, M.[Maks],
Detection of Mirror-Symmetric Image Patches,
SUW13(211-216)
IEEE DOI 1309
a contrario;integral images;mirror symmetry BibRef

Kondra, S.[Shripad], Petrosino, A.[Alfredo], Iodice, S.[Sara],
Multi-scale Kernel Operators for Reflection and Rotation Symmetry: Further Achievements,
SUW13(217-222)
IEEE DOI 1309
BibRef

Xiang, Y.[Yin], Li, S.T.[Shu-Tao],
Symmetric object detection based on symmetry and centripetal-SIFT edge descriptor,
ICPR12(1403-1406).
WWW Link. 1302
BibRef

Tsogkas, S.[Stavros], Kokkinos, I.[Iasonas],
Learning-Based Symmetry Detection in Natural Images,
ECCV12(VII: 41-54).
Springer DOI 1210
BibRef

Tylecek, R.[Radim], Sara, R.[Radim],
Modeling symmetries for stochastic structural recognition,
SIG11(632-639).
IEEE DOI 1201
BibRef

Hooda, A.[Amit], Bronstein, M.M.[Michael M.], Bronstein, A.M.[Alexander M.], Horaud, R.P.[Radu P.],
Shape Palindromes: Analysis of Intrinsic Symmetries in 2D Articulated Shapes,
SSVM11(665-676).
Springer DOI 1201
BibRef

Zhao, P.[Peng], Quan, L.[Long],
Translation symmetry detection in a fronto-parallel view,
CVPR11(1009-1016).
IEEE DOI 1106
BibRef

Liu, J.C.[Jing-Chen], Liu, Y.X.[Yan-Xi],
Curved Reflection Symmetry Detection with Self-validation,
ACCV10(IV: 102-114).
Springer DOI 1011
BibRef

Mutch, J.[Jim], Leibo, J.Z.[Joel Z], Smale, S.[Steve], Rosasco, L.[Lorenzo], Poggio, T.[Tomaso],
Neurons That Confuse Mirror-Symmetric Object Views,
CSAIL(TR-2010-062). 2010-12-31
WWW Link. 1101
HVS analysis. BibRef

Ding, J.J.[Jian-Jiun], Chao, W.L.[Wei-Lun], Huang, J.D.[Jiun-De], Kuo, C.J.[Cheng-Jin],
Asymmetric fourier descriptor of non-closed segments,
ICIP10(1613-1616).
IEEE DOI 1009
BibRef

Zhang, H.[Hui], Dai, X.B.[Xiu-Bing], Sun, P.[Pei], Zhu, H.Q.[Hong-Qing], Shu, H.Z.[Hua-Zhong],
Symmetric image recognition by Tchebichef moment invariants,
ICIP10(2273-2276).
IEEE DOI 1009
BibRef

Cho, M.S.[Min-Su], Lee, K.M.[Kyoung Mu],
Bilateral Symmetry Detection via Symmetry-growing,
BMVC09(xx-yy).
PDF File. 0909
BibRef

Gong, Y.H.[Yuan-Hao], Wang, Q.C.[Qi-Cong], Yang, C.H.[Chen-Hui], Gao, Y.H.[Ya-Hui], Li, C.H.[Cui-Hua],
Symmetry Detection for Multi-object Using Local Polar Coordinate,
CAIP09(277-284).
Springer DOI 0909
BibRef

Teferi, D.[Dereje], Bigun, J.[Josef],
Multi-view and Multi-scale Recognition of Symmetric Patterns,
SCIA09(657-666).
Springer DOI 0906
Use of symmetries to compute camera pose. BibRef

Robert-Inacio, F., Le Fur, P.,
Symmetry detection for astronomical object study,
IVCNZ08(1-6).
IEEE DOI 0811
BibRef

Bitsakos, K., Yi, H., Yi, L., Fermuller, C.,
Bilateral symmetry of object silhouettes under perspective projection,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Yang, X.W.[Xing-Wei], Adluru, N.[Nagesh], Latecki, L.J.[Longin Jan], Bai, X.[Xiang], Pizlo, Z.[Zygmunt],
Symmetry of Shapes Via Self-Similarity,
ISVC08(II: 561-570).
Springer DOI 0812
BibRef

Albarelli, A.[Andrea], Pelillo, M.[Marcello], Viviani, S.[Sebastiano],
Consensus Graphs for Symmetry Plane Estimation,
SSPR08(197-206).
Springer DOI 0812
BibRef

Combes, B.[Benoit], Hennessy, R.[Robin], Waddington, J.[John], Roberts, N.[Neil], Prima, S.[Sylvain],
Automatic symmetry plane estimation of bilateral objects in point clouds,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Chen, P., Hays, J.H.[James H.], Lee, S., Park, M., and Liu, Y.X.[Yan-Xi],
A Quantitative Evaluation of Symmetry Detection Algorithms,
CMU-RI-TR-07-36, September, 2007.
WWW Link. BibRef 0709

Aggarwal, G.[Gaurav], Biswas, S.[Soma], Chellappa, R.[Rama],
Symmetric Objects are Hardly Ambiguous,
CVPR07(1-7).
IEEE DOI 0706
BibRef

Andres del Valle, A.C., Cano, J., Bekkali, A.,
Digital Reflection: Simulating the Mirroring Effect,
ICIP06(1021-1024).
IEEE DOI 0610
BibRef

Venkatesh, M.V., Cheung, S.E.S.,
Symmetric Shape Completion Under Severe Occlusions,
ICIP06(709-712).
IEEE DOI 0610
BibRef

Li, W.H.[Wai Ho], Zhang, A.M.[Alan M.], and Kleeman, L.[Lindsay],
Real Time Detection and Segmentation of Reflectionally Symmetric Objects in Digital Images,
IROS06(xx-yy).
PDF File. Real Time model-free segmentation of objects using symmetry and Dynamic Programming. Intended for use in robotic applications, such as grasp planning and object manipulation. BibRef 0600

Li, W.H.[Wai Ho], Zhang, A.M.[Alan M.], and Kleeman, L.[Lindsay],
Fast Global Reflectional Symmetry Detection for Robotic Grasping and Visual Tracking,
ACRA05(xx-yy).
PDF File. Fast symmetry detection using Hough Transform, applied to synthetic and real images. Tested against Reisfeld's 1995 Generalized Symmetry Transform. See also Context-Free Attentional Operators: The Generalized Symmetry Transform. BibRef 0500

Li, W.H.[Wai Ho], and Kleeman, L.[Lindsay],
Real Time Object Tracking using Reflectional Symmetry and Motion,
IROS06(xx-yy).
PDF File. Tracking of Moving Objects, Real-Time Computation Real Time model-free tracking using reflectional symmetry and motion. Intended for use in robotic applications. Videos of tracking results (also available in paper):
WWW Link. BibRef 0600

Lahdenoja, O.[Olli], Alhoniemi, E.[Esa], Laiho, M.[Mika], Paasio, A.[Ari],
A Shape-Preserving Non-parametric Symmetry Transform,
ICPR06(II: 373-377).
IEEE DOI 0609
BibRef

Perdoch, M.[Michal], Matas, J.G.[Jiri G.], Obdrzalek, S.[Stepan],
Stable Affine Frames on Isophotes,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Cornelius, H.[Hugo], Perdoch, M.[Michal], Matas, J.G.[Jirí G.], Loy, G.[Gareth],
Efficient Symmetry Detection Using Local Affine Frames,
SCIA07(152-161).
Springer DOI 0706
BibRef

Cornelius, H.[Hugo], Loy, G.[Gareth],
Detecting Rotational Symmetry Under Affine Projection,
ICPR06(II: 292-295).
IEEE DOI 0609
BibRef
And:
Detecting Bilateral Symmetry in Perspective,
PercOrg06(191).
IEEE DOI 0609
BibRef

Zhong, H., Sze, W.F., Hung, Y.S.,
Reconstruction from Plane Mirror Reflection,
ICPR06(I: 715-718).
IEEE DOI 0609
BibRef

Loy, G.[Gareth], Eklundh, J.O.[Jan-Olof],
Detecting Symmetry and Symmetric Constellations of Features,
ECCV06(II: 508-521).
Springer DOI 0608
BibRef

Kuijper, A.[Arjan], Olsen, O.F.[Ole Fogh],
Describing and Matching 2D Shapes by Their Points of Mutual Symmetry,
ECCV06(III: 213-225).
Springer DOI 0608
BibRef
Earlier:
Transitions of the pre-symmetry set,
ICPR04(III: 190-193).
IEEE DOI 0409
BibRef

Yuan, T.Q.[Tian-Qiang], Tang, X.[Xiaoou],
Efficient Local Reflectional Symmetries Detection,
ICIP05(III: 1180-1183).
IEEE DOI 0512
BibRef

Mellor, M.[Matthew], Brady, M.[Michael],
A New Technique for Local Symmetry Estimation,
ScaleSpace05(38-49).
Springer DOI 0505
BibRef

Yang, A.Y., Rao, S.[Shankar], Huang, K.[Kun], Hong, W.[Wei], Ma, Y.[Yi],
Geometric segmentation of perspective images based on symmetry groups,
ICCV03(1251-1258).
IEEE DOI 0311
BibRef

Zhang, Y.[Yan], Feng, J.F.[Ju-Fu],
Eliminating Variation of Face Images Using Face Symmetry,
AVBPA03(523-530).
Springer DOI 0310
BibRef

Kazhdan, M.[Michael], Chazelle, B., Dobkin, D., Finkelstein, A., Funkhouser, T.,
A Reflective Symmetry Descriptor,
ECCV02(II: 642 ff.).
Springer DOI 0205
BibRef

Chen, S.D.,
Extraction of Local Mirror-symmetric Feature by Odd-even Decomposition,
ICIP01(III: 756-759).
IEEE DOI 0108
BibRef

Liu, Y.,
Computational Symmetry,
CMU-RI-TR-00-31, December, 2000.
PDF File. 0102
BibRef

Ratnakar, V.[Viresh], Vasudev, B.[Bhaskaran], Ivashin, V.[Victor],
Fast dihedral symmetry operations on digital images in the compressed domain,
ICME00(MP0). 0007
BibRef

Imiya, A., Ueno, T., Fermin, I.,
Symmetry detection by random sampling and voting process,
CIAP99(400-405).
IEEE DOI 9909
BibRef

Cross, A.D.J., Hancock, E.R.,
Scale-Space Vector Fields for Feature Analysis,
CVPR97(738-743).
IEEE DOI 9704
Symmetrics from gradient field. BibRef

Thai, B.[Bea], Healey, G.[Glenn],
Extracting Symmetry Features from Color Images,
CVPR97(356-361).
IEEE DOI 9704
Abstract:
HTML Version. Textures within and between color bands; moments from orientation and scale filters. BibRef

Thorhallsson, T.[Torfi],
Symmetric Objects in Multiple Affine Views,
Ph.D.Thesis, University of Oxford, 2000.
HTML Version. BibRef 0001

Thorhallsson, T.,
Detecting Bilateral Symmetry of 3D Point Sets from Affine Views,
BMVC96(Shape).
HTML Version. 9608
University of Oxford BibRef

Nordberg, K.[Klas], Granlund, G.H.[Gosta H.],
Equivariance and Invariance: An Approach Based on Lie Groups,
ICIP96(III: 181-184).
IEEE DOI 9610
BibRef

Calway, A.D.,
Image Representation Based on the Affine Symmetry Group,
ICIP96(III: 189-192).
IEEE DOI BibRef 9600

Wilson, R.G.[Roland G.],
Symmetry and Locality: Uncertainty Revisited,
ICIP96(III: 207-210).
IEEE DOI BibRef 9600

Urieli, S., Porat, M., Cohen, N.,
Image characteristics and representation by phase: From Symmetric to Geometric Structure,
ICIP96(I: 705-708).
IEEE DOI 9610
BibRef

Kelly, M.F., Levine, M.D.,
Annular Symmetry Operators: A Method for Locating and Describing Objects,
ICCV95(1016-1021).
IEEE DOI Detect symmetrical enclosing edge configurations. BibRef 9500

Posch, S.,
Detecting skewed symmetries,
ICPR92(III:602-606).
IEEE DOI 9208
BibRef

Sugimoto, K., Tomita, F.,
Detection of skewed-symmetrical shape,
ICIP94(I: 696-700).
IEEE DOI 9411
BibRef

Wright, M.W.,
Computation of Smoothed Local Symmetries on a MIMD Architecture,
BMVC91(xx-yy).
PDF File. 9109
BibRef

Bruckstein, A.M.,
The self-similarity of digital straight lines,
ICPR90(I: 485-490).
IEEE DOI 9006
BibRef

Gauch, J.M., Pizer, S.M.,
Image Description Via the Multiresolution Intensity Axis of Symmetry,
ICCV88(269-274).
IEEE DOI BibRef 8800

Hel-Or, Y., Peleg, S., Zabrodsky, H.,
How To Tell Right From Left,
CVPR88(304-309).
IEEE DOI BibRef 8800

Okazaki, K., Kajimi, N., Fukui, Y., Tamura, S., Mitsumoto, H.,
Occlusion-free 3D recovery using mirror images,
ICPR88(I: 17-19).
IEEE DOI 8811
BibRef

Vasilier, A.A.,
Recognition of Symmetrical Patterns in Images,
ICPR84(1027-1029). BibRef 8400

Radig, B., Schlieder, C.,
RS-Automorphisms and Symmetrical Objects,
ICPR84(1138-1140). BibRef 8400

Bolles, R.C.,
Symmetry Analysis of Two-Dimensional Patterns for Computer Vision,
IJCAI79(70-72). BibRef 7900

Klinger, A.,
Symmetry in Visual Symbol Sets,
ICPR78(421-425). BibRef 7800

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Ribbon Descriptions .


Last update:Nov 11, 2017 at 13:31:57