20.4.3.4 Histopathology, Tissue Analysis

Chapter Contents (Back)
Histopathology. Pathology.

Chaudhuri, B.B., Rodenacker, K., Burger, G.,
Characterization and Featuring of Histological Section Images,
PRL(7), 1988, pp. 245-252. BibRef 8800

Bartels, P.H., Gahm, T., Thompson, D.,
Automated Microscopy in Diagnostic Histopathology: From Image-Processing to Automated Reasoning,
IJIST(8), No. 2, 1997, pp. 214-223. 9704
BibRef

Adiga, P.S.U.[P.S. Umesh], Chaudhuri, B.B.,
An efficient method based on watershed and rule-based merging for segmentation of 3-D histo-pathological images,
PR(34), No. 7, July 2001, pp. 1449-1458.
Elsevier DOI 0105
BibRef

Gurcan, M.N.[Metin N.], Boucheron, L.[Laura], Can, A.[Ali], Madabhushi, A.[Anant], Rajpoot, N.[Nasir], Yener, B.[Bulent],
Histopathological Image Analysis: A Review,
RevBiomedEng(2), 2009, pp. 147-171.
IEEE DOI
WWW Link. Survey, Histopathology. BibRef 0900

Brenner, J.F.[John F.], Lester, J.M.[James M.], Selles, W.D.[William D.],
Scene Segmentation in Automated Histopathology: Techniques Evolved from Cytology Automation,
PR(13), No. 1, 1981, pp. 65-77.
Elsevier DOI 0309
BibRef

Sertel, O., Kong, J., Shimada, H., Catalyurek, U.V., Saltz, J.H., Gurcan, M.N.,
Computer-aided prognosis of neuroblastoma on whole-slide images: Classification of stromal development,
PR(42), No. 6, June 2009, pp. 1093-1103.
Elsevier DOI 0902
Whole-slide histopathological image analysis; Texture analysis; Neuroblastoma BibRef

Kong, J.[Jun], Sertel, O.[Olcay], Shimada, H.[Hiroyuki], Boyer, K.L.[Kim L.], Saltz, J.[Joel], Gurcan, M.N.[Metin N.],
Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation,
PR(42), No. 6, June 2009, pp. 1080-1092.
Elsevier DOI 0902
BibRef
Earlier:
Computer-Aided Grading of Neuroblastic Differentiation: Multi-Resolution and Multi-Classifier Approach,
ICIP07(V: 525-528).
IEEE DOI 0709
Quantitative image analysis; Microscopy images; Neuroblastoma prognosis; Grade of differentiation; Multi-resolution pathological image analysis; Machine learning BibRef

Dundar, M.M.[M. Murat], Badve, S.I.[Sun-Il], Raykar, V.C.[Vikas C.], Jain, R.K.[Rohit K.], Sertel, O.[Olcay], Gurcan, M.N.[Metin N.],
A Multiple Instance Learning Approach toward Optimal Classification of Pathology Slides,
ICPR10(2732-2735).
IEEE DOI 1008
BibRef

Kong, H., Gurcan, M., Belkacem-Boussaid, K.,
Partitioning Histopathological Images: An Integrated Framework for Supervised Color-Texture Segmentation and Cell Splitting,
MedImg(30), No. 9, September 2011, pp. 1661-1677.
IEEE DOI 1109
BibRef

Ali, S., Madabhushi, A.,
An Integrated Region-, Boundary-, Shape-Based Active Contour for Multiple Object Overlap Resolution in Histological Imagery,
MedImg(31), No. 7, July 2012, pp. 1448-1460.
IEEE DOI 1208
BibRef

Loménie, N.[Nicolas], Racoceanu, D.[Daniel],
Point set morphological filtering and semantic spatial configuration modeling: Application to microscopic image and bio-structure analysis,
PR(45), No. 8, August 2012, pp. 2894-2911.
Elsevier DOI 1204
Shape analysis; Mesh analysis; Unorganized point set; Spatial relation modeling; Mathematical morphological operator; Image exploration; Graph representation; Semantic query; Visual reasoning; Digital histopathology BibRef

Srinivas, U., Mousavi, H.S., Monga, V., Hattel, A., Jayarao, B.,
Simultaneous Sparsity Model for Histopathological Image Representation and Classification,
MedImg(33), No. 5, May 2014, pp. 1163-1179.
IEEE DOI 1405
Biomedical image processing BibRef

Gultekin, T., Koyuncu, C.F., Sokmensuer, C., Gunduz-Demir, C.,
Two-Tier Tissue Decomposition for Histopathological Image Representation and Classification,
MedImg(34), No. 1, January 2015, pp. 275-283.
IEEE DOI 1502
biological organs BibRef

Vu, T.H., Mousavi, H.S., Monga, V., Rao, G., Rao, U.K.A.,
Histopathological Image Classification Using Discriminative Feature-Oriented Dictionary Learning,
MedImg(35), No. 3, March 2016, pp. 738-751.
IEEE DOI 1603
Biomedical imaging BibRef

Su, H., Xing, F., Yang, L.,
Robust Cell Detection of Histopathological Brain Tumor Images Using Sparse Reconstruction and Adaptive Dictionary Selection,
MedImg(35), No. 6, June 2016, pp. 1575-1586.
IEEE DOI 1606
Dictionaries BibRef

Shi, X.S.[Xiao-Shuang], Sapkota, M.[Manish], Xing, F.Y.[Fu-Yong], Liu, F.J.[Fu-Jun], Cui, L.[Lei], Yang, L.[Lin],
Pairwise based deep ranking hashing for histopathology image classification and retrieval,
PR(81), 2018, pp. 14-22.
Elsevier DOI 1806
Histopathology images, Classification, Retrieval, Ranking hashing, Deep learning BibRef

Zhu, S.J.[Shu-Jin], Li, Y.H.[Yue-Hua], Kalra, S.[Shivam], Tizhoosh, H.R.,
Multiple disjoint dictionaries for representation of histopathology images,
JVCIR(55), 2018, pp. 243-252.
Elsevier DOI 1809
Image retrieval, Image representation, Histopathology, Wholeslide imaging, Bag-of-words, Dictionary learning, LBP, SVM, Deep learning BibRef

Kumar, N.[Neeraj], Uppala, P.[Phanikrishna], Duddu, K.[Karthik], Sreedhar, H.[Hari], Varma, V.[Vishal], Guzman, G.[Grace], Walsh, M.[Michael], Sethi, A.[Amit],
Hyperspectral Tissue Image Segmentation Using Semi-Supervised NMF and Hierarchical Clustering,
MedImg(38), No. 5, May 2019, pp. 1304-1313.
IEEE DOI 1905
Image segmentation, Imaging, Diseases, Spatial resolution, Chemicals, Biological tissues, Quantum cascade lasers, hierarchical clustering BibRef

Lahiani, A.[Amal], Gildenblat, J.[Jacob], Klaman, I.[Irina], Navab, N.[Nassir], Klaiman, E.[Eldad],
Generalising multistain immunohistochemistry tissue segmentation using end-to-end colour deconvolution deep neural networks,
IET-IPR(13), No. 7, 30 May 2019, pp. 1066-1073.
DOI Link 1906
BibRef

Katouzian, A.[Amin], Karamalis, A.[Athanasios], Lisauskas, J.[Jennifer], Eslami, A.[Abouzar], Navab, N.[Nassir],
IVUS-Histology Image Registration,
WBIR12(141-149).
Springer DOI 1208
BibRef

Maji, P., Mahapatra, S.,
Circular Clustering in Fuzzy Approximation Spaces for Color Normalization of Histological Images,
MedImg(39), No. 5, May 2020, pp. 1735-1745.
IEEE DOI 2005
Image color analysis, Histograms, Image analysis, Clustering algorithms, Rough sets, Uncertainty, Fuzzy sets, rough sets BibRef

Li, X.[Xiao], Tang, H.Z.[Hong-Zhong], Zhang, D.B.[Dong-Bo], Liu, T.[Ting], Mao, L.Z.[Li-Zhen], Chen, T.Y.[Tian-Yu],
Histopathological Image Classification Through Discriminative Feature Learning and Mutual Information-Based Multi-Channel Joint Sparse Representation,
JVCIR(70), 2020, pp. 102799.
Elsevier DOI 2007
Discriminative feature learning, Stack-based discriminative prediction sparse decomposition (SDPSD), Histopathological image classification BibRef

Vu, T., Lai, P., Raich, R., Pham, A., Fern, X.Z., Rao, U.A.,
A Novel Attribute-Based Symmetric Multiple Instance Learning for Histopathological Image Analysis,
MedImg(39), No. 10, October 2020, pp. 3125-3136.
IEEE DOI 2010
Cancer, Image analysis, Training, Task analysis, Support vector machines, Image segmentation, dynamic programming BibRef

Mahmood, F., Borders, D., Chen, R.J., Mckay, G.N., Salimian, K.J., Baras, A., Durr, N.J.,
Deep Adversarial Training for Multi-Organ Nuclei Segmentation in Histopathology Images,
MedImg(39), No. 11, November 2020, pp. 3257-3267.
IEEE DOI 2011
Image segmentation, Pathology, Training, Diseases, Task analysis, Generative adversarial networks, Morphology, Nuclei segmentation, synthetic pathology data BibRef

Shafiei, S., Safarpoor, A., Jamalizadeh, A., Tizhoosh, H.R.,
Class-Agnostic Weighted Normalization of Staining in Histopathology Images Using a Spatially Constrained Mixture Model,
MedImg(39), No. 11, November 2020, pp. 3355-3366.
IEEE DOI 2011
Image color analysis, Parameter estimation, Pathology, Gaussian mixture model, Probability density function, spatial information BibRef

Qu, H., Wu, P., Huang, Q., Yi, J., Yan, Z., Li, K., Riedlinger, G.M., De, S., Zhang, S., Metaxas, D.N.,
Weakly Supervised Deep Nuclei Segmentation Using Partial Points Annotation in Histopathology Images,
MedImg(39), No. 11, November 2020, pp. 3655-3666.
IEEE DOI 2011
Image segmentation, Annotations, Training, Task analysis, Cancer, Biomedical imaging, Deep learning, Nuclei detection, conditional random field BibRef

Graham, S., Epstein, D., Rajpoot, N.,
Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology Images,
MedImg(39), No. 12, December 2020, pp. 4124-4136.
IEEE DOI 2012
Image segmentation, Standards, Task analysis, Pathology, Harmonic analysis, Computer architecture, Machine learning, computational pathology BibRef

Gunesli, G.N., Sokmensuer, C., Gunduz-Demir, C.,
AttentionBoost: Learning What to Attend for Gland Segmentation in Histopathological Images by Boosting Fully Convolutional Networks,
MedImg(39), No. 12, December 2020, pp. 4262-4273.
IEEE DOI 2012
Glands, Task analysis, Image segmentation, Adaptation models, Training, Boosting, Deep learning, instance segmentation BibRef

Zheng, Y., Jiang, Z., Xie, F., Shi, J., Zhang, H., Huai, J., Cao, M., Yang, X.,
Diagnostic Regions Attention Network (DRA-Net) for Histopathology WSI Recommendation and Retrieval,
MedImg(40), No. 3, March 2021, pp. 1090-1103.
IEEE DOI 2103
Histopathology, Cancer, Feature extraction, Databases, Solid modeling, Image analysis, Annotations, Digital pathology, RNN BibRef

Koohbanani, N.A.[Navid Alemi], Unnikrishnan, B.[Balagopal], Khurram, S.A.[Syed Ali], Krishnaswamy, P.[Pavitra], Rajpoot, N.[Nasir],
Self-Path: Self-Supervision for Classification of Pathology Images With Limited Annotations,
MedImg(40), No. 10, October 2021, pp. 2845-2856.
IEEE DOI 2110
Task analysis, Annotations, Histopathology, Semisupervised learning, Training, Tumors, Labeling, domain adaptation BibRef

Mahapatra, D.[Dwarikanath], Poellinger, A.[Alexander], Shao, L.[Ling], Reyes, M.[Mauricio],
Interpretability-Driven Sample Selection Using Self Supervised Learning for Disease Classification and Segmentation,
MedImg(40), No. 10, October 2021, pp. 2548-2562.
IEEE DOI 2110
Uncertainty, Feature extraction, Histograms, Training, Image segmentation, Histopathology, Entropy, Interpretability, Histopathology segmentation BibRef

Song, J.[Jie], Xiao, L.[Liang], Molaei, M.[Mohsen], Lian, Z.C.[Zhi-Chao],
Sparse Coding Driven Deep Decision Tree Ensembles for Nucleus Segmentation in Digital Pathology Images,
IP(30), 2021, pp. 8088-8101.
IEEE DOI 2110
Pathology, Image segmentation, Decoding, Decision trees, Convolutional codes, Feature extraction, Computer architecture, feature reuse BibRef

Adu, K.[Kwabena], Yu, Y.B.[Yong-Bin], Cai, J.Y.[Jing-Ye], Owusu-Agyemang, K.[Kwabena], Twumasi, B.A.[Baidenger Agyekum], Wang, X.X.[Xiang-Xiang],
DHS-CapsNet: Dual horizontal squash capsule networks for lung and colon cancer classification from whole slide histopathological images,
IJIST(31), No. 4, 2021, pp. 2075-2092.
DOI Link 2112
artificial intelligence, capsule network, colon cancer, convolutional neural network, histopathological images, lung cancer BibRef

Chen, Z.N.[Zhi-Neng], Zhao, S.[Shuai], Hu, K.[Kai], Han, J.[Jing], Ji, Y.[Yuan], Ling, S.P.[Shao-Ping], Gao, X.[Xieping],
A hierarchical and multi-view registration of serial histopathological images,
PRL(152), 2021, pp. 210-217.
Elsevier DOI 2112
Image registration, Histopathological image, Multi-view, Elastic registration, Biomarker colocalization BibRef

Xie, Y.T.[Yu-Tong], Zhang, J.P.[Jian-Peng], Liao, Z.B.[Zhi-Bin], Verjans, J.[Johan], Shen, C.H.[Chun-Hua], Xia, Y.[Yong],
Intra- and Inter-Pair Consistency for Semi-Supervised Gland Segmentation,
IP(31), 2022, pp. 894-905.
IEEE DOI 2201
Glands, Image segmentation, Semantics, Feature extraction, Histopathology, Training, Data models, Gland segmentation, deep convolutional neural network BibRef

Belharbi, S.[Soufiane], Rony, J.[Jérôme], Dolz, J.[Jose], Ben Ayed, I.[Ismail], Mccaffrey, L.[Luke], Granger, E.[Eric],
Deep Interpretable Classification and Weakly-Supervised Segmentation of Histology Images via Max-Min Uncertainty,
MedImg(41), No. 3, March 2022, pp. 702-714.
IEEE DOI 2203
Image segmentation, Uncertainty, Histopathology, Predictive models, Standards, Training, Solid modeling, interpretability BibRef

Zhu, C.[Chuang], Chen, W.K.[Wen-Kai], Peng, T.[Ting], Wang, Y.[Ying], Jin, M.[Mulan],
Hard Sample Aware Noise Robust Learning for Histopathology Image Classification,
MedImg(41), No. 4, April 2022, pp. 881-894.
IEEE DOI 2204
Noise measurement, Training, Histopathology, Noise robustness, Image classification, Data models, Predictive models, label correction BibRef

Li, W.Y.[Wen-Yuan], Li, J.[Jiayun], Wang, Z.C.[Zi-Chen], Polson, J.[Jennifer], Sisk, A.E.[Anthony E.], Sajed, D.P.[Dipti P.], Speier, W.[William], Arnold, C.W.[Corey W.],
PathAL: An Active Learning Framework for Histopathology Image Analysis,
MedImg(41), No. 5, May 2022, pp. 1176-1187.
IEEE DOI 2205
Noise measurement, Annotations, Training, Biomedical imaging, Uncertainty, Image segmentation, Task analysis, curriculum learning BibRef

Chattopadhyay, A.[Aratrik], Paul, A.[Angshuman], Mukherjee, D.P.[Dipti Prasad],
Detail preserving conditional random field as 2-D RNN for gland segmentation in histology images,
PRL(159), 2022, pp. 38-45.
Elsevier DOI 2206
2-D RNN, Conditional random field, Detail preservation, Gland segmentation, Histology BibRef

Xiang, T.[Tiange], Song, Y.[Yang], Zhang, C.Y.[Chao-Yi], Liu, D.[Dongnan], Chen, M.[Mei], Zhang, F.[Fan], Huang, H.[Heng], O'Donnell, L.[Lauren], Cai, W.D.[Wei-Dong],
DSNet: A Dual-Stream Framework for Weakly-Supervised Gigapixel Pathology Image Analysis,
MedImg(41), No. 8, August 2022, pp. 2180-2190.
IEEE DOI 2208
Visualization, Encoding, Annotations, Redundancy, Pathology, Metastasis, Image analysis, Weakly-supervised training, whole slide images BibRef

Xu, Y.Z.[Yong-Zhao], dos Santos, M.A.[Matheus A.], Souza, L.F.F.[Luís Fabrício F.], Marques, A.G.[Adriell G.], Zhang, L.J.[Li-Juan], da Costa Nascimento, J.J.[José Jerovane], de Albuquerque, V.H.C.[Victor Hugo C.], Filho, P.P.R.[Pedro P. Rebouças],
New fully automatic approach for tissue identification in histopathological examinations using transfer learning,
IET-IPR(16), No. 11, 2022, pp. 2875-2889.
DOI Link 2208
BibRef

Lin, J.[Jiatai], Han, G.Q.[Guo-Qiang], Pan, X.P.[Xi-Peng], Liu, Z.[Zaiyi], Chen, H.[Hao], Li, D.[Danyi], Jia, X.P.[Xi-Ping], Shi, Z.W.[Zhen-Wei], Wang, Z.Z.[Zhi-Zhen], Cui, Y.F.[Yan-Fen], Li, H.M.[Hai-Ming], Liang, C.H.[Chang-Hong], Liang, L.[Li], Wang, Y.[Ying], Han, C.[Chu],
PDBL: Improving Histopathological Tissue Classification With Plug-and-Play Pyramidal Deep-Broad Learning,
MedImg(41), No. 9, September 2022, pp. 2252-2262.
IEEE DOI 2209
Feature extraction, Computational modeling, Training, Adaptation models, Biomedical imaging, Annotations, Deep learning, broad learning system BibRef

Ge, L.[Lin], Wei, X.Y.[Xing-Yue], Hao, Y.[Yayu], Luo, J.W.[Jian-Wen], Xu, Y.[Yan],
Unsupervised Histological Image Registration Using Structural Feature Guided Convolutional Neural Network,
MedImg(41), No. 9, September 2022, pp. 2414-2431.
IEEE DOI 2209
Image registration, Strain, Convolutional neural networks, Task analysis, Image resolution, Feature extraction, unsupervised learning BibRef

Zhang, Y.L.[Yun-Long], Lin, X.[Xin], Zhuang, Y.H.[Yi-Hong], Sun, L.Y.[Li-Yan], Huang, Y.[Yue], Ding, X.[Xinghao], Wang, G.S.[Gui-Sheng], Yang, L.[Lin], Yu, Y.Z.[Yi-Zhou],
Harmonizing Pathological and Normal Pixels for Pseudo-Healthy Synthesis,
MedImg(41), No. 9, September 2022, pp. 2457-2468.
IEEE DOI 2209
Pathology, Image segmentation, Training, Lesions, Biomedical imaging, Generators, Measurement, Medical image synthesis, label noise BibRef

Zheng, Y.[Yi], Gindra, R.H.[Rushin H.], Green, E.J.[Emily J.], Burks, E.J.[Eric J.], Betke, M.[Margrit], Beane, J.E.[Jennifer E.], Kolachalama, V.B.[Vijaya B.],
A Graph-Transformer for Whole Slide Image Classification,
MedImg(41), No. 11, November 2022, pp. 3003-3015.
IEEE DOI 2211
Pathology, Feature extraction, Transformers, Tumors, Deep learning, Training, Lung, Digital pathology, graph convolutional network, lung cancer BibRef

Shen, Y.Q.[Yi-Qing], Shen, D.G.[Ding-Gang], Ke, J.[Jing],
Identify Representative Samples by Conditional Random Field of Cancer Histology Images,
MedImg(41), No. 12, December 2022, pp. 3835-3848.
IEEE DOI 2212
Histopathology, Training, Task analysis, Convolutional neural networks, Deep learning, Correlation, active learning BibRef

Zhang, W.H.[Wen-Hua], Zhang, J.[Jun], Yang, S.[Sen], Wang, X.[Xiyue], Yang, W.[Wei], Huang, J.Z.[Jun-Zhou], Wang, W.P.[Wen-Ping], Han, X.[Xiao],
Knowledge-Based Representation Learning for Nucleus Instance Classification From Histopathological Images,
MedImg(41), No. 12, December 2022, pp. 3939-3951.
IEEE DOI 2212
Pathology, Task analysis, Feature extraction, Data models, Representation learning, Labeling, Annotations, Triplet learning, digital pathology BibRef

Gao, Z.[Zeyu], Jia, C.[Chang], Li, Y.[Yang], Zhang, X.L.[Xian-Li], Hong, B.Y.[Bang-Yang], Wu, J.[Jialun], Gong, T.L.[Tie-Liang], Wang, C.B.[Chun-Bao], Meng, D.Y.[De-Yu], Zheng, Y.F.[Ye-Feng], Li, C.[Chen],
Unsupervised Representation Learning for Tissue Segmentation in Histopathological Images: From Global to Local Contrast,
MedImg(41), No. 12, December 2022, pp. 3611-3623.
IEEE DOI 2212
Task analysis, Image segmentation, Annotations, Decoding, Tumors, Representation learning, Cancer, Contrastive learning, superpixel BibRef

Yang, M.[Mei], Xie, Z.[Zhiying], Wang, Z.X.[Zhao-Xia], Yuan, Y.[Yun], Zhang, J.[Jue],
Su-MICL: Severity-Guided Multiple Instance Curriculum Learning for Histopathology Image Interpretable Classification,
MedImg(41), No. 12, December 2022, pp. 3533-3543.
IEEE DOI 2212
Histopathology, Lesions, Training, Diseases, Annotations, Task analysis, Supervised learning, Multiple instance learning, interpretability BibRef

Wang, Z.Z.[Zhen-Zhen], Saoud, C.[Carla], Wangsiricharoen, S.[Sintawat], James, A.W.[Aaron W.], Popel, A.S.[Aleksander S.], Sulam, J.[Jeremias],
Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images,
MedImg(41), No. 12, December 2022, pp. 3952-3968.
IEEE DOI 2212
Annotations, Cancer, Pathology, Training, Tumors, Refining, Predictive models, Whole-slide image segmentation, label cleaning BibRef

Chen, Y.[Yi], Dong, Y.[Yang], Si, L.[Lu], Yang, W.M.[Wen-Ming], Du, S.[Shan], Tian, X.[Xuewu], Li, C.[Chao], Liao, Q.M.[Qing-Min], Ma, H.[Hui],
Dual Polarization Modality Fusion Network for Assisting Pathological Diagnosis,
MedImg(42), No. 1, January 2023, pp. 304-316.
IEEE DOI 2301
Cancer, Pathology, Imaging, Feature extraction, Microstructure, Optical switches, Image classification, switched attention BibRef

Lou, W.[Wei], Li, H.F.[Hao-Feng], Li, G.B.[Guan-Bin], Han, X.G.[Xiao-Guang], Wan, X.[Xiang],
Which Pixel to Annotate: A Label-Efficient Nuclei Segmentation Framework,
MedImg(42), No. 4, April 2023, pp. 947-958.
IEEE DOI 2304
Image segmentation, Training, Labeling, Annotations, Histopathology, Generative adversarial networks, Big Data, Nuclei segmentation, generative adversarial networks BibRef

Sabban, D.[David], Shimshoni, I.[Ilan],
Segmenting Glandular Biopsy Images Using the Separate Merged Objects Algorithm,
MCV22(466-481).
Springer DOI 2304
BibRef

Ding, M.[Meidan], Qu, A.[Aiping], Zhong, H.Q.[Hai-Qin], Lai, Z.H.[Zhi-Hui], Xiao, S.[Shuomin], He, P.[Penghui],
An enhanced vision transformer with wavelet position embedding for histopathological image classification,
PR(140), 2023, pp. 109532.
Elsevier DOI 2305
Histopathological image classification, Vision transformer, Convolutional neural network, Wavelet position embedding, External multi-head attention BibRef

Kadirappa, R.[Ravindranath], Subbian, D.[Deivalakshmi], Ramasamy, P.[Pandeeswari], Ko, S.B.[Seok-Bum],
Histopathological carcinoma classification using parallel, cross-concatenated and grouped convolutions deep neural network,
IJIST(33), No. 3, 2023, pp. 1048-1061.
DOI Link 2305
colon adenocarcinoma, deep learning, hepatocellular carcinoma, lung adenocarcinoma, lung squamous carcinoma BibRef

Jiang, Y.H.[Ying-Hai], Cui, R.[Rongsheng], Liu, F.[Feng],
Multi-resolutional human visual perception optimized pathology image progressive coding based on JPEG2000,
SP:IC(115), 2023, pp. 116960.
Elsevier DOI 2306
Image coding, Multi-resolution, JPEG2000, Perception-based image quality, Visibility threshold, Whole-slide pathology image BibRef

Yu, J.G.[Jin-Gang], Wu, Z.[Zihao], Ming, Y.[Yu], Deng, S.[Shule], Wu, Q.H.[Qi-Hang], Xiong, Z.T.[Zhong-Tang], Yu, T.Y.[Tian-You], Xia, G.S.[Gui-Song], Jiang, Q.P.[Qing-Ping], Li, Y.Q.[Yuan-Qing],
Bayesian Collaborative Learning for Whole-Slide Image Classification,
MedImg(42), No. 6, June 2023, pp. 1809-1821.
IEEE DOI 2306
Federated learning, Bayes methods, Pathology, Training, Probabilistic logic, Task analysis, Graphics processing units, multiple instance learning (MIL) BibRef

Mahapatra, S.[Suman], Maji, P.[Pradipta],
Truncated Normal Mixture Prior Based Deep Latent Model for Color Normalization of Histology Images,
MedImg(42), No. 6, June 2023, pp. 1746-1757.
IEEE DOI 2306
Image color analysis, Histopathology, Data mining, Biological system modeling, Image coding, Image analysis, truncated normal mixture model BibRef

Hosseini, S.M.[S. Maryam], Sikaroudi, M.[Milad], Babaie, M.[Morteza], Tizhoosh, H.R.,
Proportionally Fair Hospital Collaborations in Federated Learning of Histopathology Images,
MedImg(42), No. 7, July 2023, pp. 1982-1995.
IEEE DOI 2307
Federated learning, Hospitals, Training, Data models, Servers, Histopathology, Optimization BibRef

Shen, Y.Q.[Yi-Qing], Sowmya, A.[Arcot], Luo, Y.L.[Yu-Lin], Liang, X.Y.[Xiao-Yao], Shen, D.G.[Ding-Gang], Ke, J.[Jing],
A Federated Learning System for Histopathology Image Analysis With an Orchestral Stain-Normalization GAN,
MedImg(42), No. 7, July 2023, pp. 1969-1981.
IEEE DOI 2307
Histopathology, Training, Generators, Federated learning, Servers, Generative adversarial networks, Cancer, Federated learning, stain normalization BibRef

Li, S.R.[Sheng-Rui], Zhao, Y.N.[Yi-Ning], Zhang, J.[Jun], Yu, T.[Ting], Zhang, J.[Ji], Gao, Y.[Yue],
High-Order Correlation-Guided Slide-Level Histology Retrieval With Self-Supervised Hashing,
PAMI(45), No. 9, September 2023, pp. 11008-11023.
IEEE DOI 2309
BibRef

Zheng, Y.S.[Yu-Shan], Li, J.[Jun], Shi, J.[Jun], Xie, F.[Fengying], Huai, J.G.[Jian-Guo], Cao, M.[Ming], Jiang, Z.G.[Zhi-Guo],
Kernel Attention Transformer for Histopathology Whole Slide Image Analysis and Assistant Cancer Diagnosis,
MedImg(42), No. 9, September 2023, pp. 2726-2739.
IEEE DOI 2310
BibRef

Li, Z.Y.[Zhong-Yu], Li, C.Q.[Chao-Qun], Luo, X.D.[Xiang-De], Zhou, Y.T.[Yi-Tian], Zhu, J.[Jihua], Xu, C.[Cunbao], Yang, M.[Meng], Wu, Y.[Yenan], Chen, Y.F.[Yi-Feng],
Toward Source-Free Cross Tissues Histopathological Cell Segmentation via Target-Specific Finetuning,
MedImg(42), No. 9, September 2023, pp. 2666-2677.
IEEE DOI 2310
BibRef

Wang, Z.[Zhao], Feng, Q.Y.[Qian-Yu], Corredor, G.[Germán], Koyuncu, C.[Can], Lu, C.[Cheng],
Measuring dense false positive regions from segmentation result for whole slide tissue histology image,
JVCIR(96), 2023, pp. 103929.
Elsevier DOI 2310
Image segmentation, Evaluation metric, Histology image BibRef

Sayaheen, Y.O.[Yasmeen O.],
Texture-based approach to classification meningioma using pathology images,
IJCVR(13), No. 6, 2023, pp. 677-692.
DOI Link 2310
BibRef

Yu, J.H.[Jia-Hui], Ma, T.Y.[Tian-Yu], Chen, H.[Hang], Lai, M.[Maode], Ju, Z.J.[Zhao-Jie], Xu, Y.K.[Ying-Ke],
Marrying Global-Local Spatial Context for Image Patches in Computer-Aided Assessment,
SMCS(53), No. 11, November 2023, pp. 7099-7111.
IEEE DOI 2310
BibRef


Sun, K.[Kexin], Chen, Z.[Zhineng], Wang, G.[Gongwei], Liu, J.[Jun], Ye, X.J.[Xiong-Jun], Jiang, Y.G.[Yu-Gang],
Bi-directional Feature Fusion Generative Adversarial Network for Ultra-high Resolution Pathological Image Virtual Re-Staining,
CVPR23(3904-3913)
IEEE DOI 2309
BibRef

Chan, T.H.[Tsai Hor], Cendra, F.J.[Fernando Julio], Ma, L.[Lan], Yin, G.S.[Guo-Sheng], Yu, L.[Lequan],
Histopathology Whole Slide Image Analysis with Heterogeneous Graph Representation Learning,
CVPR23(15661-15670)
IEEE DOI 2309
BibRef

Lin, T.[Tiancheng], Yu, Z.[Zhimiao], Hu, H.Y.[Hong-Yu], Xu, Y.[Yi], Chen, C.W.[Chang Wen],
Interventional Bag Multi-Instance Learning On Whole-Slide Pathological Images,
CVPR23(19830-19839)
IEEE DOI 2309
BibRef

Chen, Y.C.[Yuan-Chih], Lu, C.S.[Chun-Shien],
RankMix: Data Augmentation for Weakly Supervised Learning of Classifying Whole Slide Images with Diverse Sizes and Imbalanced Categories,
CVPR23(23936-23945)
IEEE DOI 2309
BibRef

Li, H.[Honglin], Zhu, C.[Chenglu], Zhang, Y.L.[Yun-Long], Sun, Y.X.[Yu-Xuan], Shui, Z.Y.[Zhong-Yi], Kuang, W.W.[Wen-Wei], Zheng, S.[Sunyi], Yang, L.[Lin],
Task-Specific Fine-Tuning via Variational Information Bottleneck for Weakly-Supervised Pathology Whole Slide Image Classification,
CVPR23(7454-7463)
IEEE DOI 2309
BibRef

Kang, M.[Mingu], Song, H.[Heon], Park, S.[Seonwook], Yoo, D.G.[Dong-Geun], Pereira, S.[Sérgio],
Benchmarking Self-Supervised Learning on Diverse Pathology Datasets,
CVPR23(3344-3354)
IEEE DOI 2309
BibRef

Lu, M.Y.[Ming Y.], Chen, B.[Bowen], Zhang, A.[Andrew], Williamson, D.F.K.[Drew F.K.], Chen, R.J.[Richard J.], Ding, T.[Tong], Le, L.P.[Long Phi], Chuang, Y.S.[Yung-Sung], Mahmood, F.[Faisal],
Visual Language Pretrained Multiple Instance Zero-Shot Transfer for Histopathology Images,
CVPR23(19764-19775)
IEEE DOI 2309
BibRef

Qin, W.K.[Wen-Kang], Xu, R.[Rui], Jiang, S.[Shan], Jiang, T.T.[Ting-Ting], Luo, L.[Lin],
Pathtr: Context-aware Memory Transformer for Tumor Localization in Gigapixel Pathology Images,
ACCV22(VI:115-131).
Springer DOI 2307
BibRef

Wang, Q.[Qian], Chen, Z.[Zhao],
A Deep Wavelet Network for High-resolution Microscopy Hyperspectral Image Reconstruction,
MIA-COVID19D22(648-662).
Springer DOI 2304
BibRef

Singh, P.[Pranav], Cirrone, J.[Jacopo],
A Data-efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images,
MCV22(385-405).
Springer DOI 2304
BibRef

Wibawa, M.S.[Made Satria], Lo, K.W.[Kwok-Wai], Young, L.S.[Lawrence S.], Rajpoot, N.[Nasir],
Multi-scale Attention-based Multiple Instance Learning for Classification of Multi-gigapixel Histology Images,
MIA-COVID19D22(635-647).
Springer DOI 2304
BibRef

Mormont, R.[Romain], Testouri, M.[Mehdi], Marée, R.[Raphaël], Geurts, P.[Pierre],
Relieving Pixel-wise Labeling Effort for Pathology Image Segmentation with Self-training,
MIA-COVID19D22(577-592).
Springer DOI 2304
BibRef

Kang, C.M.[Chol-Min], Lee, C.G.[Chung-Gi], Song, H.[Heon], Ma, M.[Minuk], Pereira, S.[Sérgio],
Variability Matters: Evaluating Inter-rater Variability in Histopathology for Robust Cell Detection,
MIA-COVID19D22(552-565).
Springer DOI 2304
BibRef

Wölflein, G.[Georg], Um, I.H.[In Hwa], Harrison, D.J.[David J.], Arandjelovic, O.[Ognjen],
HoechstGAN: Virtual Lymphocyte Staining Using Generative Adversarial Networks,
WACV23(4986-4996)
IEEE DOI 2302
Measurement, Generative adversarial networks, Task analysis, Signal to noise ratio, Cancer. BibRef

Stegmüller, T.[Thomas], Bozorgtabar, B.[Behzad], Spahr, A.[Antoine], Thiran, J.P.[Jean-Philippe],
ScoreNet: Learning Non-Uniform Attention and Augmentation for Transformer-Based Histopathological Image Classification,
WACV23(6159-6168)
IEEE DOI 2302
Costs, Histopathology, Semantics, Transformers, Throughput, Applications: Biomedical/healthcare/medicine BibRef

Liu, K.[Kechun], Li, B.[Beibin], Wu, W.J.[Wen-Jun], May, C.[Caitlin], Chang, O.[Oliver], Knezevich, S.[Stevan], Reisch, L.[Lisa], Elmore, J.[Joann], Shapiro, L.[Linda],
VSGD-Net: Virtual Staining Guided Melanocyte Detection on Histopathological Images,
WACV23(1918-1927)
IEEE DOI 2302
Visualization, Pathology, Image synthesis, Biological system modeling, Source coding, Biopsy, Melanoma, visual reasoning BibRef

Moghadam, P.A.[Puria Azadi], van Dalen, S.[Sanne], Martin, K.C.[Karina C.], Lennerz, J.[Jochen], Yip, S.[Stephen], Farahani, H.[Hossein], Bashashati, A.[Ali],
A Morphology Focused Diffusion Probabilistic Model for Synthesis of Histopathology Images,
WACV23(1999-2008)
IEEE DOI 2302
Visualization, Histopathology, Image color analysis, Computational modeling, Microscopy, Morphology, Brain modeling, Applications: Biomedical/healthcare/medicine BibRef

Guan, R.W.[Run-Wei], Fei, Y.H.[Yan-Hua], Zhu, X.H.[Xiao-Hui], Yao, S.L.[Shan-Liang], Yue, Y.[Yong], Ma, J.M.[Jie-Ming],
CPNet: A Hybrid Neural Network for Identification of Carcinoma Pathological Slices,
ICIVC22(599-604)
IEEE DOI 2301
Training, Deep learning, Pathology, Costs, Codes, Computational modeling, Transfer learning, intelligent medicine, CNN-ViT hybrid NN BibRef

Teh, E.W.[Eu Wern], Taylor, G.W.[Graham W.],
Understanding the impact of image and input resolution on deep digital pathology patch classifiers,
CRV22(159-166)
IEEE DOI 2301
Pathology, Image resolution, Correlation, Annotations, Data models, Tuning, Robots, Digital Pathology, Patch Classification, Annotation-efficient Learning BibRef

Li, M.[Meng], Li, C.Y.[Chao-Yi], Hobson, P.[Peter], Jennings, T.[Tony], Lovell, B.C.[Brian C.],
MedViTGAN: End-to-End Conditional GAN for Histopathology Image Augmentation with Vision Transformers,
ICPR22(4406-4413)
IEEE DOI 2212
Training, Adaptation models, Histopathology, Image synthesis, Semantic segmentation, Computer architecture, Transformers, Vision transformer BibRef

Alhammad, S.[Sarah], Zhang, T.[Teng], Zhao, K.[Kun], Hobson, P.[Peter], Jennings, A.[Anthony], Lovell, B.C.[Brian C.],
Efficient Cell Labelling for Gram Stain WSIs,
ICPR22(4226-4233)
IEEE DOI 2212
Training, Pathology, Annotations, Scholarships, Manuals, Detectors, Transformers, WSI, Gram Stain Analysis, Detection, CNN, Cell Counting, Microbiology BibRef

Launet, L.[Laëtitia], Colomer, A.[Adrián], Mosquera-Zamudio, A.[Andrés], Moscardó, A.[Anaďs], Monteagudo, C.[Carlos], Naranjo, V.[Valery],
A Self-Training Weakly-Supervised Framework for Pathologist-Like Histopathological Image Analysis,
ICIP22(3401-3405)
IEEE DOI 2211
Training, Pathology, Image analysis, Annotations, Biological system modeling, Data models, Skin, self-training, whole slide images BibRef

Si, Y.X.[Yu-Xuan], Fang, Z.Q.[Zheng-Qing], Kuang, K.[Kun], Huang, Z.X.[Zheng-Xing], Yao, Y.F.[Yu-Feng], Wu, F.[Fei],
Disentangled Sequential Autoencoder with Local Consistency for Infectious Keratitis Diagnosis,
ICIP22(3893-3897)
IEEE DOI 2211
Deep learning, Pathology, Pathogens, Shape, Visual impairment, Time series analysis, Inference algorithms, Infectious Keratitis BibRef

Lotfollahi, M.[Mahsa], Tran, N.[Nguyen], Gajjela, C.[Chalapathi], Berisha, S.[Sebastian], Han, Z.[Zhu], Mayerich, D.[David], Reddy, R.[Rohith],
Adaptive Compressive Sampling for Mid-Infrared Spectroscopic Imaging,
ICIP22(2336-2340)
IEEE DOI 2211
Measurement, Tensors, Image coding, Image synthesis, Histopathology, Training data, Spatial resolution, Adaptive Sampling, SVM Classification Metric BibRef

Dwivedi, C.[Chaitanya], Nofallah, S.[Shima], Pouryahya, M.[Maryam], Iyer, J.[Janani], Leidal, K.[Kenneth], Chung, C.H.[Chu-Han], Watkins, T.[Timothy], Billin, A.[Andrew], Myers, R.[Robert], Abel, J.[John], Behrooz, A.[Ali],
Multi stain graph fusion for multimodal integration in pathology,
CVMI22(1834-1844)
IEEE DOI 2210
Weight measurement, Histopathology, Computational modeling, Conferences, Liver, Predictive models BibRef

Alali, M.H.[Mohammed H.], Roohi, A.[Arman], Deogun, J.S.[Jitender S.],
Enabling Efficient Training of Convolutional Neural Networks for Histopathology Images,
DeepHealth22(533-544).
Springer DOI 2208
BibRef

Gräbel, P.[Philipp], Thull, J.[Julian], Crysandt, M.[Martina], Klinkhammer, B.M.[Barbara M.], Boor, P.[Peter], Brümmendorf, T.H.[Tim H.], Merhof, D.[Dorit],
Spatial Maturity Regression for the Classification of Hematopoietic Cells,
IPTA22(1-6)
IEEE DOI 2206
Visualization, Microscopy, Image processing, Neural networks, Cells (biology), Bones, Blood, representation learning, em-bedding guides BibRef

Azizi, S.[Shekoofeh], Mustafa, B.[Basil], Ryan, F.[Fiona], Beaver, Z.[Zachary], Freyberg, J.[Jan], Deaton, J.[Jonathan], Loh, A.[Aaron], Karthikesalingam, A.[Alan], Kornblith, S.[Simon], Chen, T.[Ting], Natarajan, V.[Vivek], Norouzi, M.[Mohammad],
Big Self-Supervised Models Advance Medical Image Classification,
ICCV21(3458-3468)
IEEE DOI 2203
Pathology, Image recognition, Annotations, Dermatology, Digital cameras, Task analysis, Medical, biological, BibRef

Abousamra, S.[Shahira], Belinsky, D.[David], van Arnam, J.[John], Allard, F.[Felicia], Yee, E.[Eric], Gupta, R.[Rajarsi], Kurc, T.[Tahsin], Samaras, D.[Dimitris], Saltz, J.[Joel], Chen, C.[Chao],
Multi-Class Cell Detection Using Spatial Context Representation,
ICCV21(3985-3994)
IEEE DOI 2203
Representation learning, Multiplexing, Pathology, Clustering methods, Topology, Task analysis, Medical, biological, BibRef

Wang, H.T.[Hao-Tian], Xian, M.[Min], Vakanski, A.[Aleksandar],
TA-Net: Topology-Aware Network for Gland Segmentation,
WACV22(3241-3249)
IEEE DOI 2202
Image segmentation, Network topology, Histopathology, Semantics, Glands, Morphology, Computer architecture, Grouping and Shape BibRef

Sahel, Y.B.[Yair Ben], Dardikman-Yoffe, G.[Gilli], Eldar, Y.C.[Yonina C.], Gosh, S.[Shirsendu], Haran, G.[Gilad],
Super-Resolved Imaging of Early-Stage Dynamics in the Immune Response,
ICIP21(3468-3472)
IEEE DOI 2201
Location awareness, Surface reconstruction, Diffraction, Microscopy, Superresolution, Real-time systems, Surface topography, High-Resolution Imaging BibRef

Alhammad, S.[Sarah], Zhao, K.[Kun], Jennings, A.[Anthony], Hobson, P.[Peter], Smith, D.F.[Daniel F.], Baker, B.[Brett], Staweno, J.[Justin], Lovell, B.C.[Brian C.],
Efficient DNN-Based Classification of Whole Slide Gram Stain Images for Microbiology,
DICTA21(01-08)
IEEE DOI 2201
Training, Deep learning, Pathology, Microorganisms, Protocols, Oils, Microscopy, Bacteria Classification, DNN, Computer Aided Diagnosis, Digital Pathology BibRef

Shen, Y.Q.[Yi-Qing], Ke, J.[Jing],
Su-Sampling Based Active Learning for Large-Scale Histopathology Image,
ICIP21(116-120)
IEEE DOI 2201
Deep learning, Image segmentation, Uncertainty, Monte Carlo methods, Annotations, Histopathology, Neural networks, convolutional neural network BibRef

Dodballapur, V.[Veena], Song, Y.[Yang], Huang, H.[Heng], Chen, M.[Mei], Chrzanowski, W.[Wojciech], Cai, W.D.[Wei-Dong],
Dual-Stage Domain Adaptive Mitosis Detection for Histopathology Images,
DICTA20(1-7)
IEEE DOI 2201
Training, Adaptive systems, Histopathology, Neural networks, Pipelines, Machine learning, Testing, Domain adaptation, mitosis, convolutional neural networks BibRef

Gräbel, P.[Philipp], Crysandt, M.[Martina], Klinkhammer, B.M.[Barbara M.], Boor, P.[Peter], Brümmendorf, T.H.[Tim H.], Merhof, D.[Dorit],
Guided Representation Learning for the Classification of Hematopoietic Cells,
CDPath21(545-551)
IEEE DOI 2112
Training, Dimensionality reduction, Image analysis, Microscopy, Knowledge based systems, Throughput BibRef

Pahwa, E.[Esha], Mehta, D.[Dwij], Kapadia, S.[Sanjeet], Jain, D.[Devansh], Luthra, A.[Achleshwar],
MedSkip: Medical Report Generation Using Skip Connections and Integrated Attention,
CVAMD21(3402-3408)
IEEE DOI 2112
Visualization, Pathology, Computer architecture, Radiology, Transformers, Feature extraction BibRef

Dawood, M.[Muhammad], Branson, K.[Kim], Rajpoot, N.M.[Nasir M.], Minhas, F.U.A.A.[Fayyaz Ul Amir Afsar],
ALBRT: Cellular Composition Prediction in Routine Histology Images,
CDPath21(664-673)
IEEE DOI 2112
Codes, Histopathology, Topology, Task analysis, Tumors BibRef

Jahanifar, M.[Mostafa], Tajeddin, N.Z.[Neda Zamani], Koohbanani, N.A.[Navid Alemi], Rajpoot, N.[Nasir],
Robust Interactive Semantic Segmentation of Pathology Images with Minimal User Input,
CDPath21(674-683)
IEEE DOI 2112
Geometry, Deep learning, Image segmentation, Histopathology, Annotations, Computational modeling, Semantics BibRef

Jewsbury, R.[Robert], Bhalerao, A.[Abhir], Rajpoot, N.[Nasir],
A QuadTree Image Representation for Computational Pathology,
CDPath21(648-656)
IEEE DOI 2112
Visualization, Histopathology, Pipelines, Data visualization, Image representation, Prediction algorithms BibRef

Boyd, J.[Joseph], Liashuha, M.[Mykola], Deutsch, E.[Eric], Paragios, N.[Nikos], Christodoulidis, S.[Stergios], Vakalopoulou, M.[Maria],
Self-Supervised Representation Learning using Visual Field Expansion on Digital Pathology,
CDPath21(639-647)
IEEE DOI 2112
Visualization, Codes, Histopathology, Computational modeling, Tools BibRef

Lai, Z.F.[Zheng-Feng], Wang, C.[Chao], Oliveira, L.C.[Luca Cerny], Dugger, B.N.[Brittany N.], Cheung, S.C.[Sen-Ching], Chuah, C.N.[Chen-Nee],
Joint Semi-supervised and Active Learning for Segmentation of Gigapixel Pathology Images with Cost-Effective Labeling,
CDPath21(591-600)
IEEE DOI 2112
Training, Deep learning, Pathology, Image segmentation, Image analysis, Manuals BibRef

Marini, N.[Niccolň], Atzori, M.[Manfredo], Otálora, S.[Sebastian], Marchand-Maillet, S.[Stephane], Müller, H.[Henning],
H&E-adversarial network: a convolutional neural network to learn stain-invariant features through Hematoxylin & Eosin regression,
CDPath21(601-610)
IEEE DOI 2112
Training, Image segmentation, Image color analysis, Histopathology, Neural networks, Convolutional neural networks BibRef

Weitz, P.[Philippe], Wang, Y.[Yinxi], Hartman, J.[Johan], Rantalainen, M.[Mattias],
An investigation of attention mechanisms in histopathology whole-slide-image analysis for regression objectives,
CDPath21(611-619)
IEEE DOI 2112
Analytical models, Histopathology, Computational modeling, Focusing, Predictive models BibRef

Deuschel, J.[Jessica], Firmbach, D.[Daniel], Geppert, C.I.[Carol I.], Eckstein, M.[Markus], Hartmann, A.[Arndt], Bruns, V.[Volker], Kuritcyn, P.[Petr], Dexl, J.[Jakob], Hartmann, D.[David], Perrin, D.[Dominik], Wittenberg, T.[Thomas], Benz, M.[Michaela],
Multi-Prototype Few-shot Learning in Histopathology,
CDPath21(620-628)
IEEE DOI 2112
Training, Degradation, Histopathology, Neural networks, Prototypes, Distributed databases BibRef

Srinidhi, C.L.[Chetan L.], Martel, A.L.[Anne L.],
Improving Self-supervised Learning with Hardness-aware Dynamic Curriculum Learning: An Application to Digital Pathology,
CDPath21(562-571)
IEEE DOI 2112
Training, Visualization, Histopathology, Annotations, Benchmark testing, Robustness, Complexity theory BibRef

Tang, S.[Sheyang], Hosseini, M.S.[Mahdi S.], Chen, L.[Lina], Varma, S.[Sonal], Rowsell, C.[Corwyn], Damaskinos, S.[Savvas], Plataniotis, K.N.[Konstantinos N.], Wang, Z.[Zhou],
Probeable DARTS with Application to Computational Pathology,
CDPath21(572-581)
IEEE DOI 2112
Measurement, Knowledge engineering, Pathology, Computer network reliability, Robustness BibRef

Gamper, J.[Jevgenij], Rajpoot, N.[Nasir],
Multiple Instance Captioning: Learning Representations from Histopathology Textbooks and Articles,
CVPR21(16544-16554)
IEEE DOI 2111
Histopathology, Computational modeling, Estimation, Pattern recognition, Task analysis BibRef

Zhang, J.W.[Jing-Wei], Ma, K.[Ke], van Arnam, J.[John], Gupta, R.[Rajarsi], Saltz, J.[Joel], Vakalopoulou, M.[Maria], Samaras, D.[Dimitris],
A Joint Spatial and Magnification Based Attention Framework for Large Scale Histopathology Classification,
CVMI21(3771-3779)
IEEE DOI 2109
Training, Deep learning, Histopathology, Microscopy, Tools, Probability distribution, Pattern recognition BibRef

Štepec, D.[Dejan], Skocaj, D.[Danijel],
Unsupervised Detection of Cancerous Regions in Histology Imagery using Image-to-Image Translation,
CVMI21(3780-3787)
IEEE DOI 2109
Visualization, Image analysis, Histopathology, Biomedical measurement, Pattern recognition BibRef

Wei, J.[Jerry], Suriawinata, A.[Arief], Ren, B.[Bing], Liu, X.Y.[Xiao-Ying], Lisovsky, M.[Mikhail], Vaickus, L.[Louis], Brown, C.[Charles], Baker, M.[Michael], Nasir-Moin, M.[Mustafa], Tomita, N.[Naofumi], Torresani, L.[Lorenzo], Wei, J.[Jason], Hassanpour, S.[Saeed],
Learn like a Pathologist: Curriculum Learning by Annotator Agreement for Histopathology Image Classification,
WACV21(2472-2482)
IEEE DOI 2106
Training, Learning systems, Histopathology, Task analysis, Image classification BibRef

Belharbi, S.[Soufiane], Ben Ayed, I.[Ismail], McCaffrey, L.[Luke], Granger, E.[Eric],
Deep Active Learning for Joint Classification Segmentation with Weak Annotator,
WACV21(3337-3346)
IEEE DOI 2106
Training, Image segmentation, Visualization, Protocols, Annotations, Histopathology, Training data BibRef

Gong, X.[Xuan], Chen, S.Y.[Shu-Yan], Zhang, B.C.[Bao-Chang], Doermann, D.[David],
Style Consistent Image Generation for Nuclei Instance Segmentation,
WACV21(3993-4002)
IEEE DOI 2106
Training, Image segmentation, Image analysis, Histopathology, Shape, Image synthesis, Pipelines BibRef

Zhao, S.[Shuai], Li, X.[Xuanya], Chen, Z.N.[Zhi-Neng], Liu, C.[Chang], Peng, C.G.[Chang-Gen],
Res2-unet: An Enhanced Network for Generalized Nuclear Segmentation in Pathological Images,
MMMod21(II:87-98).
Springer DOI 2106
BibRef

Luo, J.Q.[Jia-Qi], Zhao, Z.C.[Zhi-Cheng], Su, F.[Fei], Guo, L.[Limei],
Triplet-path Dilated Network for Detection and Segmentation of General Pathological Images,
ICPR21(1452-1459)
IEEE DOI 2105
Image segmentation, Pathology, Visualization, Object detection, Feature extraction, Robustness BibRef

Yao, Z.Y.[Ze-Yi], Li, K.Q.[Kai-Qi], Luo, Y.[Yiwen], Zhou, X.G.[Xiao-Guang], Sun, M.[Muyi], Zhang, G.H.[Guan-Hong],
Accurate Cell Segmentation in Digital Pathology Images via Attention Enforced Networks,
ICPR21(1590-1595)
IEEE DOI 2105
Pathology, Image segmentation, Solid modeling, Design automation, Image color analysis, Pipelines, Prediction algorithms, digital pathology images BibRef

Shin, B.[Beomjo], Cho, J.[Junsu], Yu, H.[Hwanjo], Choi, S.J.[Seung-Jin],
Sparse Network Inversion for Key Instance Detection in Multiple Instance Learning,
ICPR21(4083-4090)
IEEE DOI 2105
Training, Gradient methods, Histopathology, Neural networks, Predictive models, Pattern recognition, Numerical models BibRef

Ozen, Y.[Yigit], Aksoy, S.[Selim], Kösemehmetoglu, K.[Kemal], Önder, S.[Sevgen], Üner, A.[Aysegül],
Self-Supervised Learning with Graph Neural Networks for Region of Interest Retrieval in Histopathology,
ICPR21(6329-6334)
IEEE DOI 2105
Training, Learning systems, Histopathology, Shape, Transfer learning, Image retrieval, Breast, Digital pathology, content-based image retrieval BibRef

Sikaroudi, M.[Milad], Ghojogh, B.[Benyamin], Karray, F.[Fakhri], Crowley, M.[Mark], Tizhoosh, H.R.,
Batch-Incremental Triplet Sampling for Training Triplet Networks Using Bayesian Updating Theorem,
ICPR21(7080-7086)
IEEE DOI 2105
Training, Histopathology, Training data, Stochastic processes, Gaussian distribution, Bayes methods, Data mining BibRef

Bussola, N.[Nicole], Marcolini, A.[Alessia], Maggio, V.[Valerio], Jurman, G.[Giuseppe], Furlanello, C.[Cesare],
AI Slipping on Tiles: Data Leakage in Digital Pathology,
AIDP20(167-182).
Springer DOI 2103
Reproducible results. BibRef

Sikaroudi, M.[Milad], Ghojogh, B.[Benyamin], Safarpoor, A.[Amir], Karray, F.[Fakhri], Crowley, M.[Mark], Tizhoosh, H.R.[Hamid R.],
Offline Versus Online Triplet Mining Based on Extreme Distances of Histopathology Patches,
ISVC20(I:333-345).
Springer DOI 2103
BibRef

Maleki, D.[Danial], Afshari, M.[Mehdi], Babaie, M.[Morteza], Tizhoosh, H.R.,
Ink Marker Segmentation in Histopathology Images Using Deep Learning,
ISVC20(I:359-368).
Springer DOI 2103
BibRef

Cheng, H.T.[Hsien-Tzu], Yeh, C.F.[Chun-Fu], Kuo, P.C.[Po-Chen], Wei, A.[Andy], Liu, K.C.[Keng-Chi], Ko, M.C.[Mong-Chi], Chao, K.H.[Kuan-Hua], Peng, Y.C.[Yu-Ching], Liu, T.L.[Tyng-Luh],
Self-similarity Student for Partial Label Histopathology Image Segmentation,
ECCV20(XXV:117-132).
Springer DOI 2011
BibRef

Xiang, Y., Chen, J., Liu, Q., Liang, Y.,
Disentangled Representation Learning Based Multidomain Stain Normalization For Histological Images,
ICIP20(360-364)
IEEE DOI 2011
Image color analysis, Image reconstruction, Generative adversarial networks, Training, Decoding, Generators, Deep Learning BibRef

Hosseini, M.S.[Mahdi S.], Chan, L.[Lyndon], Huang, W.M.[Wei-Min], Wang, Y.C.[Yi-Chen], Hasan, D.[Danial], Rowsell, C.[Corwyn], Damaskinos, S.[Savvas], Plataniotis, K.N.[Konstantinos N.],
On Transferability of Histological Tissue Labels in Computational Pathology,
ECCV20(XXIX: 453-469).
Springer DOI 2010
BibRef

Cheeseman, A.K.[Alison K.], Tizhoosh, H.R.[Hamid R.], Vrscay, E.R.[Edward R.],
Studying the Effect of Digital Stain Separation of Histopathology Images on Image Search Performance,
ICIAR20(II:262-273).
Springer DOI 2007
BibRef

Alinsaif, S., Lang, J.,
Histological Image Classification using Deep Features and Transfer Learning,
CRV20(101-108)
IEEE DOI 2006
Deep learning, Fine-tuning, CNN-Based Features, histopathological, SVM, classification BibRef

Hosseini, M.S.[Mahdi S.], Chan, L.[Lyndon], Tse, G.[Gabriel], Tang, M.[Michael], Deng, J.[Jun], Norouzi, S.[Sajad], Rowsell, C.[Corwyn], Plataniotis, K.N.[Konstantinos N.], Damaskinos, S.[Savvas],
Atlas of Digital Pathology: A Generalized Hierarchical Histological Tissue Type-Annotated Database for Deep Learning,
CVPR19(11739-11748).
IEEE DOI 2002
BibRef

Hou, L.[Le], Agarwal, A.[Ayush], Samaras, D.[Dimitris], Kurc, T.M.[Tahsin M.], Gupta, R.R.[Rajarsi R.], Saltz, J.H.[Joel H.],
Robust Histopathology Image Analysis: To Label or to Synthesize?,
CVPR19(8525-8534).
IEEE DOI 2002
BibRef

Cheeseman, A.K.[Alison K.], Tizhoosh, H.[Hamid], Vrscay, E.R.[Edward R.],
A Compact Representation of Histopathology Images Using Digital Stain Separation and Frequency-Based Encoded Local Projections,
ICIAR19(II:147-158).
Springer DOI 1909
BibRef

Stanisavljevic, M.[Milos], Anghel, A.[Andreea], Papandreou, N.[Nikolaos], Andani, S.[Sonali], Pati, P.[Pushpak], Rüschoff, J.H.[Jan Hendrik], Wild, P.[Peter], Gabrani, M.[Maria], Pozidis, H.[Haralampos],
A Fast and Scalable Pipeline for Stain Normalization of Whole-Slide Images in Histopathology,
BioIm18(VI:424-436).
Springer DOI 1905
BibRef

Kieffer, B., Babaie, M., Kalra, S., Tizhoosh, H.R.,
Convolutional neural networks for histopathology image classification: Training vs. Using pre-trained networks,
IPTA17(1-6)
IEEE DOI 1804
feature extraction, image classification, image representation, learning (artificial intelligence), medical image processing, medical imaging BibRef

Valkonen, M., Kartasalo, K., Liimatainen, K., Nykter, M., Latonen, L., Ruusuvuori, P.,
Dual Structured Convolutional Neural Network with Feature Augmentation for Quantitative Characterization of Tissue Histology,
BioIm17(27-35)
IEEE DOI 1802
Biological system modeling, Feature extraction, Histograms, Image analysis, Pathology, Training BibRef

Li, W., Qian, X., Ji, J.,
Noise-tolerant deep learning for histopathological image segmentation,
ICIP17(3075-3079)
IEEE DOI 1803
Diseases, Image color analysis, Image segmentation, Machine learning, Muscles, Noise measurement, Training, noisy labels BibRef

Astola, L.[Laura],
Stain separation in digital bright field histopathology,
IPTA16(1-6)
IEEE DOI 1703
biological tissues BibRef

Agarwal, N.[Nitin], Xu, X.M.[Xiang-Min], Gopi, M.,
Automatic Detection of Histological Artifacts in Mouse Brain Slice Images,
MCV16(105-115).
Springer DOI 1711
BibRef

Corredor, G.[German], Romero, E.[Eduardo],
Learning histopathological regions of interest by fusing bottom-up and top-down information,
ICIP15(3200-3204)
IEEE DOI 1512
Histopathology BibRef

Li, X.Y.[Xing-Yu], Plataniotis, K.N.[Konstantinos N.],
Diagnostic color estimation of tissue components in pathology images via von Mises mixture model,
ICIP15(2060-2064)
IEEE DOI 1512
Pathology image BibRef

Hatipoglu, N., Bilgin, G.,
Classification of histopathological images using convolutional neural network,
IPTA14(1-6)
IEEE DOI 1503
image classification BibRef

McCann, M.T.[Michael T.], Majumdar, J.[Joshita], Peng, C.[Cheng], Castro, C.A.[Carlos A.], Kovacevic, J.[Jelena],
Algorithm and benchmark dataset for stain separation in histology images,
ICIP14(3953-3957)
IEEE DOI 1502
Accuracy BibRef

Sommer, C.[Christoph], Fiaschi, L.[Luca], Hamprecht, F.A.[Fred A.], Gerlich, D.W.[Daniel W.],
Learning-based mitotic cell detection in histopathological images,
ICPR12(2306-2309).
WWW Link. 1302
BibRef

Toutain, M., Lézoray, O., Audigié, F., Busoni, V., Rossi, G., Parillo, F., El Moataz, A.,
Analysis of Whole Slide Images of Equine Tendinopathy,
ICIAR12(II: 440-447).
Springer DOI 1206
BibRef

Díaz, G.[Gloria], Romero, E.[Eduardo],
Histopathological Image Classification Using Stain Component Features on a pLSA Model,
CIARP10(55-62).
Springer DOI 1011
BibRef

Cooper, L.[Lee], Saltz, J.[Joel], Machiraju, R.[Raghu], Huang, K.[Kun],
Two-point correlation as a feature for histology images: Feature space structure and correlation updating,
MMBIA10(79-86).
IEEE DOI 1006
BibRef

Graf, F.[Felix], Grzegorzek, M.[Marcin], Paulus, D.[Dietrich],
Counting Lymphocytes in Histopathology Images Using Connected Components,
ICPR-Contests10(263-269).
Springer DOI 1008
BibRef

Cheng, J.[Jierong], Veronika, M.[Merlin], Rajapakse, J.C.[Jagath C.],
Identifying Cells in Histopathological Images,
ICPR-Contests10(244-252).
Springer DOI 1008
BibRef

Kuse, M.[Manohar], Sharma, T.[Tanuj], Gupta, S.[Sudhir],
A Classification Scheme for Lymphocyte Segmentation in H&E Stained Histology Images,
ICPR-Contests10(235-243).
Springer DOI 1008
BibRef

Gurcan, M.N.[Metin N.], Madabhushi, A.[Anant], Rajpoot, N.[Nasir],
Pattern Recognition in Histopathological Images: An ICPR 2010 Contest,
ICPR-Contests10(226-234).
Springer DOI 1008
BibRef

Thomas, K.A.[Kristine A.], Sottile, M.J.[Matthew J.], Salafia, C.M.[Carolyn M.],
Unsupervised Segmentation for Inflammation Detection in Histopathology Images,
ICISP10(541-549).
Springer DOI 1006
BibRef

Noah, S.A.[Shahrul Azman], Yaakob, S.[Suraya], Shahar, S.[Suzana],
Application of Information Visualization Techniques in Representing Patients' Temporal Personal History Data,
IVIC09(168-179).
Springer DOI 0911
BibRef

Cosatto, E.[Eric], Miller, M.[Matt], Graf, H.P.[Hans Peter], Meyer, J.S.[John S.],
Grading nuclear pleomorphism on histological micrographs,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Canada, B.A.[Brian A.], Thomas, G.K.[Georgia K.], Cheng, K.C.[Keith C.], Wang, J.Z.[James Z.], Liu, Y.X.[Yan-Xi],
Automatic lattice detection in near-regular histology array images,
ICIP08(1452-1455).
IEEE DOI 0810
BibRef
And:
Towards efficient automated characterization of irregular histology images via transformation to frieze-like patterns,
CIVR08(581-590). 0807
BibRef

Zhao, D.H.[De-Hua], Chen, Y.X.[Yi-Xin], Correa, H.,
Statistical Categorization of Human Histological Images,
ICIP05(III: 628-631).
IEEE DOI 0512
BibRef

Roula, M.A., Bouridane, A., Kurugollu, F.,
An evolutionary snake algorithm for the segmentation of nuclei in histopathological images,
ICIP04(I: 127-130).
IEEE DOI 0505
BibRef

Nedzved, A., Ablameyko, S.V., Pitas, I.,
Morphological Segmentation of Histology Cell Images,
ICPR00(Vol I: 500-503).
IEEE DOI 0009
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Fluorescence Analysis, Microscopic Analysis, Cells .


Last update:Oct 29, 2023 at 22:16:34