22.9.4.2 ATR -- Vehicles, Aerial Images, Ship Detection

Chapter Contents (Back)
Ship Detection. ATR. See also Radar, SAR, Ship Detection.

Boat Detection,
Online2019
HTML Version. Dataset, Ships. 1911

WWW Link. Public video dataset for boat detection/tracking from UAV video footage See also MULTIDRONE. See also Racing Bicycle Detection/Tracking from UAV Footage, UAV Detection. BibRef

Lee, H.J.[Hsi-Jian], Huang, L.F.[Lung-Fa], Chen, Z.[Zen],
Multi-frame ship detection and tracking in an infrared image sequence,
PR(23), No. 7, 1990, pp. 785-798.
Elsevier DOI 0401
BibRef

Zhu, C., Zhou, H., Wang, R., Guo, J.,
A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features,
GeoRS(48), No. 9, September 2010, pp. 3446-3456.
IEEE DOI 1008
BibRef

Liu, Z.Y.[Zhao-Ying], Zhou, F.[Fugen], Chen, X.W.[Xiao-Wu], Bai, X.Z.[Xiang-Zhi], Sun, C.M.[Chang-Ming],
Iterative infrared ship target segmentation based on multiple features,
PR(47), No. 9, 2014, pp. 2839-2852.
Elsevier DOI 1406
Infrared ship target BibRef

Liu, Z.Y.[Zhao-Ying], Bai, X.Z.[Xiang-Zhi], Sun, C.M.[Chang-Ming], Zhou, F.[Fugen], Li, Y.J.[Yu-Jian],
Infrared ship target segmentation through integration of multiple feature maps,
IVC(48-49), No. 1, 2016, pp. 14-25.
Elsevier DOI 1604
Infrared images BibRef

Bai, X.Z.[Xiang-Zhi], Chen, Z.G.[Zhi-Guo], Zhang, Y.[Yu], Liu, Z.Y.[Zhao-Ying], Lu, Y.[Yi],
Infrared Ship Target Segmentation Based on Spatial Information Improved FCM,
Cyber(46), No. 12, December 2016, pp. 3259-3271.
IEEE DOI 1612
BibRef
Earlier:
Spatial information based FCM for infrared ship target segmentation,
ICIP14(5127-5131)
IEEE DOI 1502
Euclidean distance Active contours BibRef

Shi, Z., Yu, X., Jiang, Z., Li, B.,
Ship Detection in High-Resolution Optical Imagery Based on Anomaly Detector and Local Shape Feature,
GeoRS(52), No. 8, August 2014, pp. 4511-4523.
IEEE DOI 1403
Detectors BibRef

Teng, F.[Fei], Liu, Q.[Qing],
Multi-scale ship tracking via random projections,
SIViP(8), No. 6, September 2014, pp. 1069-1076.
WWW Link. 1408
BibRef

Teng, F.[Fei], Liu, Q.[Qing],
Robust multi-scale ship tracking via multiple compressed features fusion,
SP:IC(31), No. 1, 2015, pp. 76-85.
Elsevier DOI 1502
Compressive sensing theory BibRef

Tang, J.X.[Jie-Xiong], Deng, C.W.[Chen-Wei], Huang, G.B.[Guang-Bin], Zhao, B.J.[Bao-Jun],
Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine,
GeoRS(53), No. 3, March 2015, pp. 1174-1185.
IEEE DOI 1412
compressed sensing BibRef

Elvidge, C.D.[Christopher D.], Zhizhin, M.[Mikhail], Baugh, K.[Kimberly], Hsu, F.C.[Feng-Chi],
Automatic Boat Identification System for VIIRS Low Light Imaging Data,
RS(7), No. 3, 2015, pp. 3020-3036.
DOI Link 1504
BibRef

Wu, F.[Fan], Wang, C.[Chao], Jiang, S.F.[Shao-Feng], Zhang, H.[Hong], Zhang, B.[Bo],
Classification of Vessels in Single-Pol COSMO-SkyMed Images Based on Statistical and Structural Features,
RS(7), No. 5, 2015, pp. 5511-5533.
DOI Link 1506
BibRef

Holtzhausen, P.J., Crnojevic, V., Herbst, B.M.,
An illumination invariant framework for real-time foreground detection,
RealTimeIP(10), No. 2, June 2015, pp. 423-433.
WWW Link. 1506
BibRef
Earlier:
The detection of naval vessels by fusion of edge and color background models,
IPTA12(147-152)
IEEE DOI 1503
Gaussian processes BibRef

Gómez-Enri, J.[Jesús], Scozzari, A.[Andrea], Soldovieri, F.[Francesco], Coca, J.[Josep], Vignudelli, S.[Stefano],
Detection and Characterization of Ship Targets Using CryoSat-2 Altimeter Waveforms,
RS(8), No. 3, 2016, pp. 193.
DOI Link 1604
BibRef

Gómez-Enri, J.[Jesús], Cipollini, P., Passaro, M., Vignudelli, S.[Stefano], Tejedor, B., Coca, J.[Josep],
Coastal Altimetry Products in the Strait of Gibraltar,
GeoRS(54), No. 9, September 2016, pp. 5455-5466.
IEEE DOI 1609
height measurement BibRef

Zou, Z., Shi, Z.,
Ship Detection in Spaceborne Optical Image With SVD Networks,
GeoRS(54), No. 10, October 2016, pp. 5832-5845.
IEEE DOI 1610
neural nets BibRef

Heiselberg, H.[Henning],
A Direct and Fast Methodology for Ship Recognition in Sentinel-2 Multispectral Imagery,
RS(8), No. 12, 2016, pp. 1033.
DOI Link 1612
BibRef

Dijk, J.[Judith], Schutte, K.[Klamer], Nieuwenhuizen, R.[Robert], Gagnon, M.A.[Marc-André], Gagnon, J.P.[Jean-Philippe], Tremblay, P.[Pierre], Savary, S.[Simon], Farley, V.[Vincent], Lagueux, P.[Philippe], Chamberland, M.[Martin],
Infrared hyperspectral imaging of ship plumes,
SPIE(Newsroom), November 22, 2016.
DOI Link 1612
Characterizing the spectral features of exhaust gases via IR hyperspectral detection enables the standoff detection of distant ships. BibRef

Gan, S., Liang, S., Li, K., Deng, J., Cheng, T.,
Long-Term Ship Speed Prediction for Intelligent Traffic Signaling,
ITS(18), No. 1, January 2017, pp. 82-91.
IEEE DOI 1701
Communication system signaling BibRef

Gan, S., Liang, S., Li, K., Deng, J., Cheng, T.,
Trajectory Length Prediction for Intelligent Traffic Signaling: A Data-Driven Approach,
ITS(19), No. 2, February 2018, pp. 426-435.
IEEE DOI 1802
Intelligent transportation systems, Marine vehicles, Prediction algorithms, Predictive models, Rivers, intelligent traffic signalling system (ITSS) BibRef

Patroumpas, K.[Kostas], Alevizos, E.[Elias], Artikis, A.[Alexander], Vodas, M.[Marios], Pelekis, N.[Nikos], Theodoridis, Y.[Yannis],
Online event recognition from moving vessel trajectories,
GeoInfo(21), No. 2, April 2017, pp. 389-427.
Springer DOI 1702
BibRef

Bloisi, D.D., Previtali, F., Pennisi, A., Nardi, D., Fiorini, M.,
Enhancing Automatic Maritime Surveillance Systems With Visual Information,
ITS(18), No. 4, April 2017, pp. 824-833.
IEEE DOI 1704
Artificial intelligence BibRef

Xu, F.[Fang], Liu, J.H.[Jing-Hong], Sun, M.C.[Ming-Chao], Zeng, D.D.[Dong-Dong], Wang, X.[Xuan],
A Hierarchical Maritime Target Detection Method for Optical Remote Sensing Imagery,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Xu, F.[Fang], Liu, J.H.[Jing-Hong], Dong, C.[Chao], Wang, X.[Xuan],
Ship Detection in Optical Remote Sensing Images Based on Wavelet Transform and Multi-Level False Alarm Identification,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Dong, C.[Chao], Liu, J.H.[Jing-Hong], Xu, F.[Fang],
Ship Detection in Optical Remote Sensing Images Based on Saliency and a Rotation-Invariant Descriptor,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Dong, L., Wang, B., Zhao, M., Xu, W.,
Robust Infrared Maritime Target Detection Based on Visual Attention and Spatiotemporal Filtering,
GeoRS(55), No. 5, May 2017, pp. 3037-3050.
IEEE DOI 1705
fog, geophysical image processing, image filtering, object detection, ocean waves, remote sensing, antivibration pipeline-filtering algorithm, image background smoothness, image border, infrared imager, infrared maritime target detection method, multiframe-based clutter removal method, ocean wave, pipeline-filtering model, saliency map, saliency singularity evaluation, sea fog, sea glint, BibRef

He, H., Lin, Y., Chen, F., Tai, H.M., Yin, Z.,
Inshore Ship Detection in Remote Sensing Images via Weighted Pose Voting,
GeoRS(55), No. 6, June 2017, pp. 3091-3107.
IEEE DOI 1706
Marine vehicles, Remote sensing, Robustness, Satellites, Shape, Surveillance, Inshore ship detection, pose weighted voting, radial gradient angle (RGA), satellite image, shape-similar, distractor BibRef

Lin, H.N.[Hao-Ning], Shi, Z.W.[Zhen-Wei], Zou, Z.X.[Zheng-Xia],
Maritime Semantic Labeling of Optical Remote Sensing Images with Multi-Scale Fully Convolutional Network,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link 1706
sea-land segmentation and ship detection. BibRef

Nie, T.[Ting], He, B.[Bin], Bi, G.[Guoling], Zhang, Y.[Yu], Wang, W.[Wensheng],
A Method of Ship Detection under Complex Background,
IJGI(6), No. 6, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Prasad, D.K., Rajan, D., Rachmawati, L., Rajabally, E., Quek, C.,
Video Processing From Electro-Optical Sensors for Object Detection and Tracking in a Maritime Environment: A Survey,
ITS(18), No. 8, August 2017, pp. 1993-2016.
IEEE DOI 1708
Cameras, Image edge detection, Intelligent sensors, Marine vehicles, Object detection, Radar tracking, Maritime vehicles, autonomous automobiles, computer vision, maritime navigation, video, signal, processing BibRef

Yao, S.[Shun], Chang, X.L.[Xue-Li], Cheng, Y.F.[Yu-Feng], Jin, S.Y.[Shu-Ying], Zuo, D.S.[De-Shan],
Detection of Moving Ships in Sequences of Remote Sensing Images,
IJGI(6), No. 11, 2017, pp. xx-yy.
DOI Link 1712
BibRef

Yang, X.[Xue], Sun, H.[Hao], Fu, K.[Kun], Yang, J.R.[Ji-Rui], Sun, X.[Xian], Yan, M.L.[Meng-Long], Guo, Z.[Zhi],
Automatic Ship Detection in Remote Sensing Images from Google Earth of Complex Scenes Based on Multiscale Rotation Dense Feature Pyramid Networks,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Fu, K.[Kun], Chang, Z.H.[Zhong-Han], Zhang, Y.[Yue], Xu, G.L.[Guang-Luan], Zhang, K.[Keshu], Sun, X.[Xian],
Rotation-Aware and Multi-Scale Convolutional Neural Network for Object Detection in Remote Sensing Images,
PandRS(161), 2020, pp. 294-308.
Elsevier DOI 2002
Convolutional neural networks, Objection detection, Remote sensing images, Rotation aware, Multi-scale BibRef

Fu, K.[Kun], Chen, Z.[Zhuo], Zhang, Y.[Yue], Sun, X.[Xian],
Enhanced Feature Representation in Detection for Optical Remote Sensing Images,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Gallego, A.J.[Antonio-Javier], Pertusa, A.[Antonio], Gil, P.[Pablo],
Automatic Ship Classification from Optical Aerial Images with Convolutional Neural Networks,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Shao, Z., Wu, W., Wang, Z., Du, W., Li, C.,
SeaShips: A Large-Scale Precisely Annotated Dataset for Ship Detection,
MultMed(20), No. 10, October 2018, pp. 2593-2604.
IEEE DOI 1810
image segmentation, object detection, ships, video signal processing, video surveillance, ship types, SeaShips, ship detection BibRef

Li, Q., Mou, L., Liu, Q., Wang, Y., Zhu, X.X.,
HSF-Net: Multiscale Deep Feature Embedding for Ship Detection in Optical Remote Sensing Imagery,
GeoRS(56), No. 12, December 2018, pp. 7147-7161.
IEEE DOI 1812
Marine vehicles, Feature extraction, Remote sensing, Object detection, Proposals, Optical sensors, Optical imaging, remote sensing BibRef

Zhu, C.Y.[Chen-Yang], Garcia, H.[Heriberto], Kaplan, A.[Anna], Schinault, M.[Matthew], Handegard, N.O.[Nils Olav], Godř, O.R.[Olav Rune], Huang, W.[Wei], Ratilal, P.[Purnima],
Detection, Localization and Classification of Multiple Mechanized Ocean Vessels over Continental-Shelf Scale Regions with Passive Ocean Acoustic Waveguide Remote Sensing,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Zhao, M., Yao, X., Sun, J., Zhang, S., Bai, J.,
GIS-Based Simulation Methodology for Evaluating Ship Encounters Probability to Improve Maritime Traffic Safety,
ITS(20), No. 1, January 2019, pp. 323-337.
IEEE DOI 1901
Marine vehicles, Transportation, Analytical models, Accidents, Object oriented modeling, Geographic information systems, Safety, maritime traffic safety BibRef

Alessandrini, A., Mazzarella, F., Vespe, M.,
Estimated Time of Arrival Using Historical Vessel Tracking Data,
ITS(20), No. 1, January 2019, pp. 7-15.
IEEE DOI 1901
Artificial intelligence, Marine vehicles, Estimation, Safety, Security, Data mining, Radar tracking, Estimated time of arrival, port operations BibRef

Fu, K.[Kun], Li, Y.[Yang], Sun, H.[Hao], Yang, X.[Xue], Xu, G.L.[Guang-Luan], Li, Y.T.[Yu-Ting], Sun, X.[Xian],
A Ship Rotation Detection Model in Remote Sensing Images Based on Feature Fusion Pyramid Network and Deep Reinforcement Learning,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Wang, N.[Nan], Li, B.[Bo], Xu, Q.Z.[Qi-Zhi], Wang, Y.H.[Yong-Hua],
Automatic Ship Detection in Optical Remote Sensing Images Based on Anomaly Detection and SPP-PCANet,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Xu, X.D.[Xiao-Dong], Li, W.[Wei], Ran, Q.[Qiong], Du, Q.[Qian], Gao, L.R.[Lian-Ru], Zhang, B.[Bing],
Multisource Remote Sensing Data Classification Based on Convolutional Neural Network,
GeoRS(56), No. 2, February 2018, pp. 937-949.
IEEE DOI 1802
Convolution, Data mining, Feature extraction, Laser radar, Neural networks, Remote sensing, Support vector machines, hyperspectral imagery (HSI) BibRef

Shi, Q.Q.[Qiao-Qiao], Li, W.[Wei], Tao, R.[Ran], Sun, X.[Xu], Gao, L.R.[Lian-Ru],
Ship Classification Based on Multifeature Ensemble with Convolutional Neural Network,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Wang, Y.Y.[Yuan-Yuan], Wang, C.[Chao], Zhang, H.[Hong], Dong, Y.[Yingbo], Wei, S.[Sisi],
Automatic Ship Detection Based on RetinaNet Using Multi-Resolution Gaofen-3 Imagery,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Zhang, S.M.[Shao-Ming], Wu, R.[Ruize], Xu, K.[Kunyuan], Wang, J.M.[Jian-Mei], Sun, W.W.[Wei-Wei],
R-CNN-Based Ship Detection from High Resolution Remote Sensing Imagery,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Wen, Y.Q.[Yuan-Qiao], Zhang, Y.M.[Yi-Meng], Huang, L.[Liang], Zhou, C.H.[Chun-Hui], Xiao, C.S.[Chang-Shi], Zhang, F.[Fan], Peng, X.[Xin], Zhan, W.Q.[Wen-Qiang], Sui, Z.Y.[Zhong-Yi],
Semantic Modelling of Ship Behavior in Harbor Based on Ontology and Dynamic Bayesian Network,
IJGI(8), No. 3, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Yao, Y.[Yuan], Jiang, Z.G.[Zhi-Guo], Zhang, H.[Haopeng], Zhou, Y.[Yu],
On-Board Ship Detection in Micro-Nano Satellite Based on Deep Learning and COTS Component,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904
BibRef

Caillec, J.M.L.[Jean-Marc Le], Habonneau, J.[Jérôme], Khenchaf, A.[Ali],
Ship Profile Imaging Using Multipath Backscattering,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904
BibRef

Prasad, D.K., Prasath, C.K., Rajan, D., Rachmawati, L., Rajabally, E., Quek, C.,
Object Detection in a Maritime Environment: Performance Evaluation of Background Subtraction Methods,
ITS(20), No. 5, May 2019, pp. 1787-1802.
IEEE DOI 1905
Adaptation models, Videos, Gaussian distribution, Object detection, Benchmark testing, Cameras, Vehicle dynamics, Maritime vehicles, computer vision BibRef

Wang, L., Zhang, M., Chen, J.,
Investigation on the Electromagnetic Scattering From the Accurate 3-D Breaking Ship Waves Generated by CFD Simulation,
GeoRS(57), No. 5, May 2019, pp. 2689-2699.
IEEE DOI 1905
computational fluid dynamics, electromagnetic wave scattering, flow simulation, geometry, iterative methods, physical optics, ships, composite scattering BibRef

Hsu, F.C.[Feng-Chi], Elvidge, C.D.[Christopher D.], Baugh, K.[Kimberly], Zhizhin, M.[Mikhail], Ghosh, T.[Tilottama], Kroodsma, D.[David], Susanto, A.[Adi], Budy, W.[Wiryawan], Riyanto, M.[Mochammad], Nurzeha, R.[Ridwan], Sudarja, Y.[Yeppi],
Cross-Matching VIIRS Boat Detections with Vessel Monitoring System Tracks in Indonesia,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Wang, W.X.[Wen-Xiu], Fu, Y.T.[Yu-Tian], Dong, F.[Feng], Li, F.[Feng],
Semantic segmentation of remote sensing ship image via a convolutional neural networks model,
IET-IPR(13), No. 6, 10 May 2019, pp. 1016-1022.
DOI Link 1906
BibRef

Zhou, H., Jiang, T.,
Decision Tree Based Sea-Surface Weak Target Detection With False Alarm Rate Controllable,
SPLetters(26), No. 6, June 2019, pp. 793-797.
IEEE DOI 1906
decision trees, feature extraction, fractals, learning (artificial intelligence), object detection, decision tree BibRef

Liu, Z.Q.[Zhi-Quan],
Practical backstepping control for underactuated ship path following associated with disturbances,
IET-ITS(13), No. 5, May 2019, pp. 834-840.
DOI Link 1906
BibRef

Wen, G., Ge, S.S., Chen, C.L.P., Tu, F., Wang, S.,
Adaptive Tracking Control of Surface Vessel Using Optimized Backstepping Technique,
Cyber(49), No. 9, Sep. 2019, pp. 3420-3431.
IEEE DOI 1907
adaptive control, control nonlinearities, control system synthesis, feedback, surface vessel BibRef

Dong, C.[Chao], Liu, J.[Jinghong], Xu, F.[Fang], Liu, C.L.[Cheng-Long],
Ship Detection from Optical Remote Sensing Images Using Multi-Scale Analysis and Fourier HOG Descriptor,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Wang, B., Motai, Y., Dong, L., Xu, W.,
Detecting Infrared Maritime Targets Overwhelmed in Sun Glitters by Antijitter Spatiotemporal Saliency,
GeoRS(57), No. 7, July 2019, pp. 5159-5173.
IEEE DOI 1907
Sun, Spatiotemporal phenomena, Visualization, Jitter, Object detection, Imaging, Generators, Image segmentation, target detection BibRef

Yan, Y.M.[Yi-Ming], Tan, Z.[Zhichao], Su, N.[Nan],
A Data Augmentation Strategy Based on Simulated Samples for Ship Detection in RGB Remote Sensing Images,
IJGI(8), No. 6, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Feng, Y.[Yingchao], Diao, W.H.[Wen-Hui], Sun, X.[Xian], Yan, M.L.[Meng-Long], Gao, X.[Xin],
Towards Automated Ship Detection and Category Recognition from High-Resolution Aerial Images,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Cruz, G., Bernardino, A.,
Learning Temporal Features for Detection on Maritime Airborne Video Sequences Using Convolutional LSTM,
GeoRS(57), No. 9, September 2019, pp. 6565-6576.
IEEE DOI 1909
Feature extraction, Aircraft, Boats, Visualization, Video sequences, Detectors, Monitoring, Object detection, recurrent neural networks, remote monitoring BibRef

Zhou, X.Y.[Xing-Yue], Yang, K.[Kunde], Duan, R.[Rui],
Deep Learning Based on Striation Images for Underwater and Surface Target Classification,
SPLetters(26), No. 9, September 2019, pp. 1378-1382.
IEEE DOI 1909
belief networks, convolutional neural nets, image classification, interference (signal), learning (artificial intelligence), sonar images BibRef

You, Y.[Yanan], Li, Z.[Zezhong], Ran, B.[Bohao], Cao, J.Y.[Jing-Yi], Lv, S.[Sudi], Liu, F.[Fang],
Broad Area Target Search System for Ship Detection via Deep Convolutional Neural Network,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Ma, J.L.[Jin-Lei], Zhou, Z.Q.[Zhi-Qiang], Wang, B.[Bo], Zong, H.[Hua], Wu, F.[Fei],
Ship Detection in Optical Satellite Images via Directional Bounding Boxes Based on Ship Center and Orientation Prediction,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Ribeiro, R., Cruz, G., Matos, J., Bernardino, A.,
A Data Set for Airborne Maritime Surveillance Environments,
CirSysVideo(29), No. 9, September 2019, pp. 2720-2732.
IEEE DOI 1909
Cameras, Surveillance, Aircraft, Boats, Hyperspectral imaging, Labeling, Image databases, hyperspectral imaging, video surveillance BibRef

Xiao, X.[Xiaowu], Zhou, Z.Q.[Zhi-Qiang], Wang, B.[Bo], Li, L.H.[Lin-Hao], Miao, L.J.[Ling-Juan],
Ship Detection under Complex Backgrounds Based on Accurate Rotated Anchor Boxes from Paired Semantic Segmentation,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Chen, H., Gao, T., Chen, W., Zhang, Y., Zhao, J.,
Contour Refinement and EG-GHT-Based Inshore Ship Detection in Optical Remote Sensing Image,
GeoRS(57), No. 11, November 2019, pp. 8458-8478.
IEEE DOI 1911
Marine vehicles, Feature extraction, Head, Shape, Indexes, Training, Strain, Border scoring, curvature filtering, structured binarization feature (SBF) BibRef

Du, J., Hu, X., Sun, Y.,
Adaptive Robust Nonlinear Control Design for Course Tracking of Ships Subject to External Disturbances and Input Saturation,
SMCS(50), No. 1, January 2020, pp. 193-202.
IEEE DOI 2001
Marine vehicles, Adaptive systems, Control design, Nonlinear dynamical systems, Adaptation models, Navigation, ship steering system BibRef

Tian, T.[Tian], Pan, Z.H.[Zhi-Hong], Tan, X.Y.[Xiang-Yu], Chu, Z.Q.[Zheng-Quan],
Arbitrary-Oriented Inshore Ship Detection based on Multi-Scale Feature Fusion and Contextual Pooling on Rotation Region Proposals,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Wu, Y.[Yue], Ma, W.P.[Wen-Ping], Gong, M.[Maoguo], Bai, Z.F.[Zhuang-Fei], Zhao, W.[Wei], Guo, Q.Q.[Qiong-Qiong], Chen, X.B.[Xiao-Bo], Miao, Q.G.[Qi-Guang],
A Coarse-to-Fine Network for Ship Detection in Optical Remote Sensing Images,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Nie, T.[Ting], Han, X.[Xiyu], He, B.[Bin], Li, X.S.[Xian-Sheng], Liu, H.X.[Hong-Xing], Bi, G.L.[Guo-Ling],
Ship Detection in Panchromatic Optical Remote Sensing Images Based on Visual Saliency and Multi-Dimensional Feature Description,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Ruiz, J.[Javier], Caballero, I.[Isabel], Navarro, G.[Gabriel],
Sensing the Same Fishing Fleet with AIS and VIIRS: A Seven-Year Assessment of Squid Jiggers in FAO Major Fishing Area 41,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link 2001
BibRef

Zhang, W.[Wen], He, X.[Xujie], Li, W.[Wanyi], Zhang, Z.[Zhi], Luo, Y.[Yongkang], Su, L.[Li], Wang, P.[Peng],
An integrated ship segmentation method based on discriminator and extractor,
IVC(93), 2020, pp. 103824.
Elsevier DOI 2001
Ship segmentation, Sea fog, Classification, Interference Factor Discriminator, Ship extractor BibRef

Wang, Z.W.[Zi-Wei], Yang, T.[Ting], Zhang, H.[Hong],
Land contained sea area ship detection using spaceborne image,
PRL(130), 2020, pp. 125-131.
Elsevier DOI 2002
Synthetic aperture radar, Image understanding, Ship detection, Land contained sea area BibRef

Chen, Y.T.[Yan-Tong], Li, Y.Y.[Yu-Yang], Wang, J.S.[Jun-Sheng], Chen, W.N.[Wei-Nan], Zhang, X.Z.[Xian-Zhong],
Remote Sensing Image Ship Detection under Complex Sea Conditions Based on Deep Semantic Segmentation,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Zhang, T.[Tao], Zhao, S.[Shuai], Cheng, B.[Bo], Chen, J.L.[Jun-Liang],
Detection of AIS Closing Behavior and MMSI Spoofing Behavior of Ships Based on Spatiotemporal Data,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Shao, Z., Wang, L., Wang, Z., Du, W., Wu, W.,
Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video,
CirSysVideo(30), No. 3, March 2020, pp. 781-794.
IEEE DOI 2003
Marine vehicles, Feature extraction, Real-time systems, Surveillance, Visualization, Object detection, Remote sensing, CNN BibRef

Xie, X.Y.[Xiao-Yang], Li, B.[Bo], Wei, X.X.[Xing-Xing],
Ship Detection in Multispectral Satellite Images Under Complex Environment,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Xiao, Z., Fu, X., Zhang, L., Goh, R.S.M.,
Traffic Pattern Mining and Forecasting Technologies in Maritime Traffic Service Networks: A Comprehensive Survey,
ITS(21), No. 5, May 2020, pp. 1796-1825.
IEEE DOI 2005
Maritime traffic service networks, intelligent maritime transportation, knowledge based systems, sensor systems BibRef

Xiao, Y.[Yijia], Chen, Y.M.[Yan-Ming], Liu, X.Q.[Xiao-Qiang], Yan, Z.J.[Zhao-Jin], Cheng, L.[Liang], Li, M.[Manchun],
Oil Flow Analysis in the Maritime Silk Road Region Using AIS Data,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Song, J.[Juyoung], Kim, D.J.[Duk-Jin], Kang, K.M.[Ki-Mook],
Automated Procurement of Training Data for Machine Learning Algorithm on Ship Detection Using AIS Information,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Chénier, R.[René], Sagram, M.[Mesha], Omari, K.[Khalid], Jirovec, A.[Adam],
Earth Observation and Artificial Intelligence for Improving Safety to Navigation in Canada Low-Impact Shipping Corridors,
IJGI(9), No. 6, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Guo, H., Yang, X., Wang, N., Song, B., Gao, X.,
A Rotational Libra R-CNN Method for Ship Detection,
GeoRS(58), No. 8, August 2020, pp. 5772-5781.
IEEE DOI 2007
Marine vehicles, Feature extraction, Proposals, Object detection, Reliability, Semantics, Machine learning, Deep learning, ship detection BibRef

Zhou, A., Xie, W., Pei, J.,
Background Modeling in the Fourier Domain for Maritime Infrared Target Detection,
CirSysVideo(30), No. 8, August 2020, pp. 2634-2649.
IEEE DOI 2008
Biological system modeling, Adaptation models, Heuristic algorithms, Gaussian distribution, Entropy, Correlation, entropy filter BibRef

Farahnakian, F.[Fahimeh], Heikkonen, J.[Jukka],
Deep Learning Based Multi-Modal Fusion Architectures for Maritime Vessel Detection,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Park, J.J.[Jae-Jin], Kim, T.S.[Tae-Sung], Park, K.A.[Kyung-Ae], Oh, S.[Sangwoo], Lee, M.[Moonjin], Foucher, P.Y.[Pierre-Yves],
Application of Spectral Mixture Analysis to Vessel Monitoring Using Airborne Hyperspectral Data,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef


Santos, C.E., Bhanu, B.,
Dyfusion: Dynamic IR/RGB Fusion for Maritime Vessel Recognition,
ICIP18(1328-1332)
IEEE DOI 1809
Training, Probabilistic logic, Context modeling, Sensor fusion, Pipelines, Robustness, Image recognition, probabilistic models BibRef

Aziz, K.[Kheireddine], Bouchara, F.[Frédéric],
Multimodal Deep Learning for Robust Recognizing Maritime Imagery in the Visible and Infrared Spectrums,
ICIAR18(235-244).
Springer DOI 1807
BibRef

Brauchle, J.[Jörg], Bayer, S.[Steven], Berger, R.[Ralf],
Automatic Ship Detection on Multispectral and Thermal Infrared Aerial Images Using MACS-Mar Remote Sensing Platform,
PSIVTWS17(382-395).
Springer DOI 1806
BibRef

Liu, Z., Hu, J., Weng, L., Yang, Y.,
Rotated region based CNN for ship detection,
ICIP17(900-904)
IEEE DOI 1803
Convolution, Feature extraction, Marine vehicles, Object detection, Proposals, Task analysis, Training, Rotated region, ship detection BibRef

van Persie, M., Noorbergen, H.H.S., Oostdijk, A.,
Harbour pattern of life analysis with time series of medium resolution satellite images,
MultiTemp17(1-3)
IEEE DOI 1712
remote sensing, Erdas imagine environment, Harbour Pattern, Landsat imagery, Sentinel imagery, UrtheCast, ship detection BibRef

Chen, Z.C.[Ze-Chuang], Li, B.[Bin], Tian, L.F.[Lian Fang], Chao, D.[Dong],
Automatic detection and tracking of ship based on mean shift in corrected video sequences,
ICIVC17(449-453)
IEEE DOI 1708
Complexity theory, Image segmentation, Imaging, Marine vehicles, Mathematical model, Target tracking, Transforms, image correction, image segmentation, mean shift algorithm, ship, tracking BibRef

Gundogdu, E.[Erhan], Solmaz, B.[Berkan], Yücesoy, V.[Veysel], Koç, A.[Aykut],
MARVEL: A Large-Scale Image Dataset for Maritime Vessels,
ACCV16(V: 165-180).
Springer DOI 1704
Dataset, Ships. BibRef

Cane, T., Ferryman, J.M.,
Saliency-Based Detection for Maritime Object Tracking,
PETS16(1257-1264)
IEEE DOI 1612
BibRef

Cruz, G.[Gonçalo], Bernardino, A.[Alexandre],
Aerial Detection in Maritime Scenarios Using Convolutional Neural Networks,
ACIVS16(373-384).
Springer DOI 1611
BibRef

Bousetouane, F., Morris, B.,
Fast CNN surveillance pipeline for fine-grained vessel classification and detection in maritime scenarios,
AVSS16(242-248)
IEEE DOI 1611
Detectors BibRef

Haigang, S.[Sui], Zhina, S.[Song],
A Novel Ship Detection Method For Large-scale Optical Satellite Images Based On Visual Lbp Feature And Visual Attention Model,
ISPRS16(B3: 917-921).
DOI Link 1610
BibRef

Zhang, R.Q.[Rui-Qian], Yao, J.[Jian], Zhang, K.[Kao], Feng, C.[Chen], Zhang, J.D.[Jia-Dong],
S-CNN-Based Ship Detection from High-Resolution Remote Sensing Images,
ISPRS16(B7: 423-430).
DOI Link 1610
BibRef

Schaum, A., Allman, E., Leathers, R.A.,
Spectral ship surveillance from space,
AIPR15(1-8)
IEEE DOI 1605
aerospace instrumentation BibRef

Bousetouane, F.[Fouad], Morris, B.[Brendan],
Off-the-Shelf CNN Features for Fine-Grained Classification of Vessels in a Maritime Environment,
ISVC15(II: 379-388).
Springer DOI 1601
BibRef

Arguedas, V.F.[Virginia Fernandez],
Texture-based vessel classifier for electro-optical satellite imagery,
ICIP15(3866-3870)
IEEE DOI 1512
SAR BibRef

Osborne, C., Cane, T., Nawaz, T., Ferryman, J.M.,
Temporally stable feature clusters for maritime object tracking in visible and thermal imagery,
AVSS15(1-6)
IEEE DOI 1511
infrared imaging BibRef

Zhang, M.M.[Mabel M.], Choi, J.[Jean], Daniilidis, K.[Kostas], Wolf, M.T.[Michael T.], Kanan, C.[Christopher],
VAIS: A dataset for recognizing maritime imagery in the visible and infrared spectrums,
PBVS15(10-16)
IEEE DOI 1510
Cameras BibRef

Grimaldi, M., Bechar, I., Lelore, T., Guis, V., Bouchara, F.,
An unsupervised approach to automatic object extraction from a maritime video scene,
IPTA14(1-6)
IEEE DOI 1503
geometry BibRef

Wang, T.[Tao], Bai, X.Z.[Xiang-Zhi], Zhang, Y.[Yu],
Multiple Features Based Low-Contrast Infrared Ship Image Segmentation Using Fuzzy Inference System,
DICTA14(1-6)
IEEE DOI 1502
feature extraction BibRef

Liu, Z.Y.[Zhao-Ying], Sun, C.M.[Chang-Ming], Bai, X.Z.[Xiang-Zhi], Zhou, F.[Fugen],
Infrared Ship Target Image Smoothing Based on Adaptive Mean Shift,
DICTA14(1-8)
IEEE DOI 1502
image denoising BibRef

Sun, Y.[Yuan], Zhang, B.[Bo], Wang, C.[Chao], Wu, F.[Fan],
Ship detection based on eigenvalue-eigenvector decomposition and OS-CFAR detector,
CVRS12(350-355).
IEEE DOI 1302
BibRef

Lu, C.Y.[Chun-Yan], Zou, H.X.[Huan-Xin], Zhou, S.L.[Shi-Lin], Sun, H.[Hao],
An association algorithm of ship-group targets based on topological and attributive characteristics,
CVRS12(34-38).
IEEE DOI 1302
BibRef

Jiang, S.F.[Shao-Feng], Wu, F.[Fan], Wang, C.[Chao], Zhang, B.[Bo],
Civilian vessel classification with COSMO-SkyMed images based on feature analysis,
CVRS12(279-284).
IEEE DOI 1302
BibRef

Huang, G.P.[Gao-Pan], Wang, Y.Q.[Yan-Qing], Zhang, Y.S.[Yu-Shuang], Tian, Y.[Yuan],
Ship Detection Using Texture Statistics from Optical Satellite Images,
DICTA11(507-512).
IEEE DOI 1205
BibRef

Rainey, K.[Katie], Stastny, J.[John],
Object recognition in ocean imagery using feature selection and compressive sensing,
AIPR11(1-6).
IEEE DOI 1204
BibRef

Harguess, J.[Josh], Rainey, K.[Katie],
Are face recognition methods useful for classifying ships?,
AIPR11(1-7).
IEEE DOI 1204
BibRef

Yang, G.[Guang], Lu, Q.[Qichao], Gao, F.[Feng],
A Novel Ship Detection Method Based on Sea State Analysis from Optical Imagery,
ICIG11(466-471).
IEEE DOI 1109
BibRef

You, X.[Xin], Yu, N.H.[Neng-Hai],
An Automatic Matching Algorithm Based on SIFT Descriptors for Remote Sensing Ship Image,
ICIG11(377-381).
IEEE DOI 1109
BibRef

Xia, Y.[Yu], Wan, S.H.[Shou-Hong], Yue, L.[Lihua],
A Novel Algorithm for Ship Detection Based on Dynamic Fusion Model of Multi-feature and Support Vector Machine,
ICIG11(521-526).
IEEE DOI 1109
BibRef

Xie, H.[Hong], Li, L.L.[Lin-Lin], Bo, H.[Hua], Zhang, Y.N.[Yun-Nong],
A Novel Method for Ship Detection Based on NSCT and ACO,
CISP09(1-4).
IEEE DOI 0910
BibRef

Osman, H.[Hossam], Pan, L., Blostein, S.D.[Steven D.], Gagnon, L.,
Classification of Ships in Airborne SAR Imagery Using Backpropagation Neural Networks,
SPIE(3161), July 1997 pp. 126-136. BibRef 9707

Gouaillier, V., Gagnon, L.,
Ship Silhouette Recognition Using Principal Components Analysis,
SPIE(3164), July 1997, pp. 59-69.
PDF File. BibRef 9707

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Radar, SAR, Ship Detection .


Last update:Sep 28, 2020 at 12:04:43