Listopad, C.,
Drake, J.,
Masters, R.,
Weishampel, J.,
Portable and Airborne Small Footprint LiDAR:
Forest Canopy Structure Estimation of Fire Managed Plots,
RS(3), No. 7, July 2011, pp. 1284-1307.
DOI Link
1203
BibRef
Lewis, S.,
Robichaud, P.,
Hudak, A.,
Austin, B.,
Liebermann, R.,
Utility of Remotely Sensed Imagery for Assessing the Impact of Salvage
Logging after Forest Fires,
RS(4), No. 7, July 2012, pp. 2112-2132.
DOI Link
1208
BibRef
Bisquert, M.[Mar],
Sánchez, J.M.[Juan Manuel],
Caselles, V.[Vicente],
Modeling Fire Danger in Galicia and Asturias (Spain) from MODIS
Images,
RS(6), No. 1, 2014, pp. 540-554.
DOI Link
1402
BibRef
Freeborn, P.H.[Patrick H.],
Cochrane, M.A.[Mark A.],
Wooster, M.J.[Martin J.],
A Decade Long, Multi-Scale Map Comparison of Fire Regime Parameters
Derived from Three Publically Available Satellite-Based Fire
Products: A Case Study in the Central African Republic,
RS(6), No. 5, 2014, pp. 4061-4089.
DOI Link
1407
BibRef
Ling, B.[Bohua],
Goodin, D.G.[Douglas G.],
Mohler, R.L.[Rhett L.],
Laws, A.N.[Angela N.],
Joern, A.[Anthony],
Estimating Canopy Nitrogen Content in a Heterogeneous Grassland with
Varying Fire and Grazing Treatments: Konza Prairie, Kansas, USA,
RS(6), No. 5, 2014, pp. 4430-4453.
DOI Link
1407
BibRef
Katagis, T.[Thomas],
Gitas, I.Z.[Ioannis Z.],
Mitri, G.H.[George H.],
An Object-Based Approach for Fire History Reconstruction by Using
Three Generations of Landsat Sensors,
RS(6), No. 6, 2014, pp. 5480-5496.
DOI Link
1407
BibRef
Daldegan, G.A.[Gabriel Antunes],
de Carvalho, O.A.[Osmar Abílio],
Guimarães, R.F.[Renato Fontes],
Gomes, R.A.T.[Roberto Arnaldo Trancoso],
de Figueiredo Ribeiro, F.[Fernanda],
McManus, C.[Concepta],
Spatial Patterns of Fire Recurrence Using Remote Sensing and GIS in
the Brazilian Savanna: Serra do Tombador Nature Reserve, Brazil,
RS(6), No. 10, 2014, pp. 9873-9894.
DOI Link
1411
BibRef
Chowdhury, E.H.[Ehsan H.],
Hassan, Q.K.[Quazi K.],
Development of a New Daily-Scale Forest Fire Danger Forecasting
System Using Remote Sensing Data,
RS(7), No. 3, 2015, pp. 2431-2448.
DOI Link
1504
BibRef
Chowdhury, E.H.[Ehsan H.],
Hassan, Q.K.[Quazi K.],
Operational perspective of remote sensing-based forest fire danger
forecasting systems,
PandRS(104), No. 1, 2015, pp. 224-236.
Elsevier DOI
1505
Fire occurrence
BibRef
Abdollahi, M.[Masoud],
Islam, T.[Tanvir],
Gupta, A.[Anil],
Hassan, Q.K.[Quazi K.],
An Advanced Forest Fire Danger Forecasting System: Integration of
Remote Sensing and Historical Sources of Ignition Data,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Borrelli, P.[Pasquale],
Armenteras, D.[Dolors],
Panagos, P.[Panos],
Modugno, S.[Sirio],
Schütt, B.[Brigitta],
The Implications of Fire Management in the Andean Paramo: A
Preliminary Assessment Using Satellite Remote Sensing,
RS(7), No. 9, 2015, pp. 11061.
DOI Link
1511
BibRef
Bui, D.T.[Dieu Tien],
Le, K.T.T.[Kim-Thoa Thi],
Nguyen, V.C.[Van Cam],
Le, H.D.[Hoang Duc],
Revhaug, I.[Inge],
Tropical Forest Fire Susceptibility Mapping at the Cat Ba National
Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic
Regression,
RS(8), No. 4, 2016, pp. 347.
DOI Link
1604
BibRef
García, M.[Mariano],
Saatchi, S.[Sassan],
Casas, A.[Angeles],
Koltunov, A.[Alexander],
Ustin, S.L.[Susan L.],
Ramirez, C.[Carlos],
Balzter, H.[Heiko],
Extrapolating Forest Canopy Fuel Properties in the California Rim
Fire by Combining Airborne LiDAR and Landsat OLI Data,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Myoung, B.[Boksoon],
Kim, S.H.[Seung Hee],
Nghiem, S.V.[Son V.],
Jia, S.[Shenyue],
Whitney, K.[Kristen],
Kafatos, M.C.[Menas C.],
Estimating Live Fuel Moisture from MODIS Satellite Data for Wildfire
Danger Assessment in Southern California USA,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Jia, S.[Shenyue],
Kim, S.H.[Seung Hee],
Nghiem, S.V.[Son V.],
Kafatos, M.[Menas],
Estimating Live Fuel Moisture Using SMAP L-Band Radiometer Soil
Moisture for Southern California, USA,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Kelly, M.[Maggi],
Su, Y.J.[Yan-Jun],
Di Tommaso, S.[Stefania],
Fry, D.L.[Danny L.],
Collins, B.M.[Brandon M.],
Stephens, S.L.[Scott L.],
Guo, Q.H.[Qing-Hua],
Impact of Error in Lidar-Derived Canopy Height and Canopy Base Height
on Modeled Wildfire Behavior in the Sierra Nevada, California, USA,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Rozario, P.F.[Papia F.],
Madurapperuma, B.D.[Buddhika D.],
Wang, Y.J.[Yi-Jun],
Remote Sensing Approach to Detect Burn Severity Risk Zones in Palo
Verde National Park, Costa Rica,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Kim, S.J.[Sea Jin],
Lim, C.H.[Chul-Hee],
Kim, G.S.[Gang Sun],
Lee, J.Y.[Jong-Yeol],
Geiger, T.[Tobias],
Rahmati, O.[Omid],
Son, Y.[Yowhan],
Lee, W.K.[Woo-Kyun],
Multi-Temporal Analysis of Forest Fire Probability Using
Socio-Economic and Environmental Variables,
RS(11), No. 1, 2019, pp. xx-yy.
DOI Link
1901
BibRef
Ying, H.[Hong],
Shan, Y.[Yu],
Zhang, H.Y.[Hong-Yan],
Yuan, T.[Tao],
Rihan, W.[Wu],
Deng, G.R.[Guo-Rong],
The Effect of Snow Depth on Spring Wildfires on the Hulunbuir from
2001-2018 Based on MODIS,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Abdollahi, M.[Masoud],
Dewan, A.[Ashraf],
Hassan, Q.K.[Quazi K.],
Applicability of Remote Sensing-Based Vegetation Water Content in
Modeling Lightning-Caused Forest Fire Occurrences,
IJGI(8), No. 3, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Jaafari, A.[Abolfazl],
Mafi-Gholami, D.[Davood],
Pham, B.T.[Binh Thai],
Bui, D.T.[Dieu Tien],
Wildfire Probability Mapping: Bivariate vs. Multivariate Statistics,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Carvajal-Ramírez, F.[Fernando],
Marques da Silva, J.R.[José Rafael],
Agüera-Vega, F.[Francisco],
Martínez-Carricondo, P.[Patricio],
Serrano, J.[João],
Moral, F.J.[Francisco Jesús],
Evaluation of Fire Severity Indices Based on Pre- and Post-Fire
Multispectral Imagery Sensed from UAV,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Parks, S.A.[Sean A.],
Holsinger, L.M.[Lisa M.],
Koontz, M.J.[Michael J.],
Collins, L.[Luke],
Whitman, E.[Ellen],
Parisien, M.A.[Marc-André],
Loehman, R.A.[Rachel A.],
Barnes, J.L.[Jennifer L.],
Bourdon, J.F.[Jean-François],
Boucher, J.[Jonathan],
Boucher, Y.[Yan],
Caprio, A.C.[Anthony C.],
Collingwood, A.[Adam],
Hall, R.J.[Ron J.],
Park, J.[Jane],
Saperstein, L.B.[Lisa B.],
Smetanka, C.[Charlotte],
Smith, R.J.[Rebecca J.],
Soverel, N.[Nick],
Giving Ecological Meaning to Satellite-Derived Fire Severity Metrics
across North American Forests,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Wei, X.Y.[Xin-Yuan],
Larsen, C.P.S.[Chris P. S.],
Methods to Detect Edge Effected Reductions in Fire Frequency in
Simulated Forest Landscapes,
IJGI(8), No. 6, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Ahmed, M.R.[M. Razu],
Hassan, Q.K.[Quazi K.],
Abdollahi, M.[Masoud],
Gupta, A.[Anil],
Introducing a New Remote Sensing-Based Model for Forecasting Forest
Fire Danger Conditions at a Four-Day Scale,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Rihan, W.[Wu],
Zhao, J.J.[Jian-Jun],
Zhang, H.Y.[Hong-Yan],
Guo, X.Y.[Xiao-Yi],
Ying, H.[Hong],
Deng, G.R.[Guo-Rong],
Li, H.[Hui],
Wildfires on the Mongolian Plateau: Identifying Drivers and Spatial
Distributions to Predict Wildfire Probability,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Szpakowski, D.M.[David M.],
Jensen, J.L.R.[Jennifer L. R.],
A Review of the Applications of Remote Sensing in Fire Ecology,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Stefanidou, A.[Alexandra],
Gitas, I.Z.[Ioannis Z.],
Stavrakoudis, D.[Dimitris],
Eftychidis, G.[Georgios],
Midterm Fire Danger Prediction Using Satellite Imagery and Auxiliary
Thematic Layers,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Pérez-Rodríguez, L.A.[Luis A.],
Quintano, C.[Carmen],
Marcos, E.[Elena],
Suarez-Seoane, S.[Susana],
Calvo, L.[Leonor],
Fernández-Manso, A.[Alfonso],
Evaluation of Prescribed Fires from Unmanned Aerial Vehicles (UAVs)
Imagery and Machine Learning Algorithms,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Farahmand, A.[Alireza],
Stavros, E.N.[E. Natasha],
Reager, J.T.[John T.],
Behrangi, A.[Ali],
Introducing Spatially Distributed Fire Danger from Earth Observations
(FDEO) Using Satellite-Based Data in the Contiguous United States,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Razavi-Termeh, S.V.[Seyed Vahid],
Sadeghi-Niaraki, A.[Abolghasem],
Choi, S.M.[Soo-Mi],
Ubiquitous GIS-Based Forest Fire Susceptibility Mapping Using
Artificial Intelligence Methods,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Donovan, V.M.[Victoria M.],
Wonkka, C.L.[Carissa L.],
Wedin, D.A.[David A.],
Twidwell, D.[Dirac],
Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S.
Great Plains,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
García, M.[Mariano],
Riaño, D.[David],
Yebra, M.[Marta],
Salas, J.[Javier],
Cardil, A.[Adrián],
Monedero, S.[Santiago],
Ramirez, J.[Joaquín],
Martín, M.P.[M. Pilar],
Vilar, L.[Lara],
Gajardo, J.[John],
Ustin, S.[Susan],
A Live Fuel Moisture Content Product from Landsat TM Satellite Time
Series for Implementation in Fire Behavior Models,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Li, Z.P.[Zheng-Peng],
Shi, H.[Hua],
Vogelmann, J.E.[James E.],
Hawbaker, T.J.[Todd J.],
Peterson, B.[Birgit],
Assessment of Fire Fuel Load Dynamics in Shrubland Ecosystems in the
Western United States Using MODIS Products,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Guldåker, N.[Nicklas],
Geovisualization and Geographical Analysis for Fire Prevention,
IJGI(9), No. 6, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Graff, C.A.,
Coffield, S.R.,
Chen, Y.,
Foufoula-Georgiou, E.,
Randerson, J.T.,
Smyth, P.,
Forecasting Daily Wildfire Activity Using Poisson Regression,
GeoRS(58), No. 7, July 2020, pp. 4837-4851.
IEEE DOI
2006
Predictive models, Weather forecasting, MODIS,
Atmospheric modeling, Forecasting, Satellites,
vapor pressure deficit (VPD)
BibRef
Marino, E.[Eva],
Yebra, M.[Marta],
Guillén-Climent, M.[Mariluz],
Algeet, N.[Nur],
Tomé, J.L.[José Luis],
Madrigal, J.[Javier],
Guijarro, M.[Mercedes],
Hernando, C.[Carmen],
Investigating Live Fuel Moisture Content Estimation in Fire-Prone
Shrubland from Remote Sensing Using Empirical Modelling and RTM
Simulations,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Song, Y.J.[Yong-Jia],
Wang, Y.H.[Yu-Hang],
Global Wildfire Outlook Forecast with Neural Networks,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Laneve, G.[Giovanni],
Pampanoni, V.[Valerio],
Shaik, R.U.[Riyaaz Uddien],
The Daily Fire Hazard Index: A Fire Danger Rating Method for
Mediterranean Areas,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Aubard, V.[Valentine],
Pereira-Pires, J.E.[João E.],
Campagnolo, M.L.[Manuel L.],
Pereira, J.M.C.[José M. C.],
Mora, A.[André],
Silva, J.M.N.[João M. N.],
Fully Automated Countrywide Monitoring of Fuel Break Maintenance
Operations,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Afonso, R.[Ricardo],
Neves, A.[André],
Damásio, C.V.[Carlos Viegas],
Pires, J.M.[João Moura],
Birra, F.[Fernando],
Santos, M.Y.[Maribel Yasmina],
Assessment of Interventions in Fuel Management Zones Using Remote
Sensing,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Adaktylou, N.[Nektaria],
Stratoulias, D.[Dimitris],
Landenberger, R.[Rick],
Wildfire Risk Assessment Based on Geospatial Open Data: Application
on Chios, Greece,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Domingo, D.[Darío],
de la Riva, J.[Juan],
Lamelas, M.T.[María Teresa],
García-Martín, A.[Alberto],
Ibarra, P.[Paloma],
Echeverría, M.[Maite],
Hoffrén, R.[Raúl],
Fuel Type Classification Using Airborne Laser Scanning and Sentinel 2
Data in Mediterranean Forest Affected by Wildfires,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Kalantar, B.[Bahareh],
Ueda, N.[Naonori],
Idrees, M.O.[Mohammed O.],
Janizadeh, S.[Saeid],
Ahmadi, K.[Kourosh],
Shabani, F.[Farzin],
Forest Fire Susceptibility Prediction Based on Machine Learning
Models with Resampling Algorithms on Remote Sensing Data,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
See also Forest Fire Susceptibility Prediction Based on Machine Learning Models with Resampling Algorithms on Remote Sensing Data.
BibRef
Novo, A.[Ana],
Fariñas-Álvarez, N.[Noelia],
Martínez-Sánchez, J.[Joaquín],
González-Jorge, H.[Higinio],
Fernández-Alonso, J.M.[José María],
Lorenzo, H.[Henrique],
Mapping Forest Fire Risk: A Case Study in Galicia (Spain),
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Alonso-Rego, C.[Cecilia],
Arellano-Pérez, S.[Stéfano],
Cabo, C.[Carlos],
Ordoñez, C.[Celestino],
Álvarez-González, J.G.[Juan Gabriel],
Díaz-Varela, R.A.[Ramón Alberto],
Ruiz-González, A.D.[Ana Daría],
Estimating Fuel Loads and Structural Characteristics of Shrub
Communities by Using Terrestrial Laser Scanning,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Barreto, J.S.[Joan Sebastian],
Armenteras, D.[Dolors],
Open Data and Machine Learning to Model the Occurrence of Fire in the
Ecoregion of 'Llanos Colombo-Venezolanos',
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Krsnik, G.[Goran],
Olivé, E.B.[Eduard Busquets],
Nicolau, M.P.[Míriam Piqué],
Larrañaga, A.[Asier],
Cardil, A.[Adrián],
García-Gonzalo, J.[Jordi],
Olabarría, J.R.G.[José Ramón González],
Regional Level Data Server for Fire Hazard Evaluation and Fuel
Treatments Planning,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Mathews, L.E.H.[Lauren E. H.],
Kinoshita, A.M.[Alicia M.],
Urban Fire Severity and Vegetation Dynamics in Southern California,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Sulova, A.[Andrea],
Arsanjani, J.J.[Jamal Jokar],
Exploratory Analysis of Driving Force of Wildfires in Australia:
An Application of Machine Learning within Google Earth Engine,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Mauro, F.[Francisco],
Hudak, A.T.[Andrew T.],
Fekety, P.A.[Patrick A.],
Frank, B.[Bryce],
Temesgen, H.[Hailemariam],
Bell, D.M.[David M.],
Gregory, M.J.[Matthew J.],
McCarley, T.R.[T. Ryan],
Regional Modeling of Forest Fuels and Structural Attributes Using
Airborne Laser Scanning Data in Oregon,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Revilla, S.[Sergio],
Lamelas, M.T.[María Teresa],
Domingo, D.[Darío],
de la Riva, J.[Juan],
Montorio, R.[Raquel],
Montealegre, A.L.[Antonio Luis],
García-Martín, A.[Alberto],
Assessing the Potential of the DART Model to Discrete Return LiDAR
Simulation: Application to Fuel Type Mapping,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Smith, C.W.[Christopher William],
Panda, S.K.[Santosh K.],
Bhatt, U.S.[Uma Suren],
Meyer, F.J.[Franz J.],
Improved Boreal Forest Wildfire Fuel Type Mapping in Interior Alaska
Using AVIRIS-NG Hyperspectral Data,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Li, Y.X.[Yan-Xi],
Quan, X.W.[Xing-Wen],
Liao, Z.M.[Zhan-Mang],
He, B.B.[Bin-Bin],
Forest Fuel Loads Estimation from Landsat ETM+ and ALOS PALSAR Data,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Moyo, T.,
Musakwa, W.,
Nyathi, N.A.,
Mpofu, E.,
Gumbo, T.,
Modelling of Natural Fire Occurrences: A Case of South Africa,
ISPRS20(B3:1477-1482).
DOI Link
2012
BibRef
Nasanbat, E.,
Lkhamjav, O.,
Balkhai, A.,
Tsevee-Oirov, C.,
Purev, A.,
Dorjsuren, M.,
A Spatial Distributionmap Of The Wildfire Risk In Mongolia Using
Decision Support System,
Gi4DM18(357-362).
DOI Link
1805
BibRef
Nasanbat, E.[Elbegjargal],
Lkhamjav, O.[Ochirkhuyag],
Wild Fire Risk Map In The Eastern Steppe Of Mongolia Using Spatial
Multi-criteria Analysis,
ISPRS16(B1: 469-473).
DOI Link
1610
BibRef
Shadlouei, A.J.[A. Jalilzadeh],
Delavar, M.R.,
The Zoning of Forest Fire Potential of Gulestan Province Forests Using
Granular Computing and MODIS Images,
SMPR13(365-370).
HTML Version.
1311
BibRef
Canale, S.,
de Santis, A.,
Iacoviello, D.,
Pirri, F.,
Sagratella, S.,
High-Resolution SAR images for fire susceptibility estimation in urban
forestry,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Burned Area Detection, Fire Damage Assessment, Post-Fire Analysis .