Nascimento, J.C.[Jacinto C.],
Figueiredo, M.A.T.[Mario A.T.],
Marques, J.S.[Jorge S.],
Independent increment processes for human motion recognition,
CVIU(109), No. 2, February 2008, pp. 126-138.
Elsevier DOI
0711
BibRef
Earlier:
Semi-Supervised Learning of Switched Dynamical Models for
Classification of Human Activities in Surveillance Applications,
ICIP07(III: 197-200).
IEEE DOI
0709
BibRef
Earlier:
On-Line Classification of Human Activities,
IbPRIA07(II: 444-451).
Springer DOI
0706
BibRef
Earlier:
Recognition of Human Activities Using Space Dependent Switched
Dynamical Models,
ICIP05(III: 852-855).
IEEE DOI
0512
Surveillance; Human motion; Activity recognition;
Independent increment processes; Minimum description length
BibRef
Nascimento, J.C.[Jacinto C.],
Marques, J.S.[Jorge S.],
Figueiredo, M.A.T.[Mario A. T.],
Discriminative model selection using a modified Bayesian criterion:
Application to trajectory modeling,
ICIP11(1429-1432).
IEEE DOI
1201
BibRef
Earlier:
Classification of complex pedestrian activities from trajectories,
ICIP10(3481-3484).
IEEE DOI
1009
BibRef
And:
Discriminative model selection for object motion recognition,
ICIP10(3953-3956).
IEEE DOI
1009
BibRef
Nascimento, J.C.[Jacinto C.],
Figueiredo, M.A.T.[Mario A.T.],
Marques, J.S.[Jorge S.],
Unsupervised learning of motion patterns using generative models,
ICIP08(761-764).
IEEE DOI
0810
BibRef
Escobar, M.J.[Maria-Jose],
Masson, G.S.[Guillaume S.],
Vieville, T.[Thierry],
Kornprobst, P.[Pierre],
Action Recognition Using a Bio-Inspired Feedforward Spiking Network,
IJCV(82), No. 3, May 2009, pp. xx-yy.
Springer DOI
0903
BibRef
Medathati, N.V.K.[N. V. Kartheek],
Neumann, H.[Heiko],
Masson, G.S.[Guillaume S.],
Kornprobst, P.[Pierre],
Bio-inspired computer vision: Towards a synergistic approach of
artificial and biological vision,
CVIU(150), No. 1, 2016, pp. 1-30.
Elsevier DOI
1608
Canonical computations
BibRef
Escobar, M.J.[María-José],
Kornprobst, P.[Pierre],
Action recognition via bio-inspired features:
The richness of center-surround interaction,
CVIU(116), No. 5, May 2012, pp. 593-605.
Elsevier DOI
1203
BibRef
Earlier:
Action Recognition with a Bio-inspired Feedforward Motion Processing
Model: The Richness of Center-Surround Interactions,
ECCV08(IV: 186-199).
Springer DOI
0810
Action recognition; Bio-inspired models; V1; MT; Motion analysis;
Center-surround interaction
BibRef
Liang, Y.M.[Yu-Ming],
Shih, S.W.[Sheng-Wen],
Shih, C.C.[Chun-Chieh],
Liao, H.Y.M.,
Lin, C.C.[Cheng-Chung],
Learning Atomic Human Actions Using Variable-Length Markov Models,
SMC-B(39), No. 1, February 2009, pp. 268-280.
IEEE DOI
0902
BibRef
Patricio, M.A.[Miguel A.],
García, J.[Jesús],
Berlanga, A.[Antonio],
Molina, J.M.[José M.],
Visual data association for real-time video tracking using genetic and
estimation of distribution algorithms,
IJIST(19), No. 3, September 2009, pp. 208-220.
DOI Link
0909
BibRef
Loza, A.,
Patricio, M.A.[Miguel A.],
García, J.[Jesús],
Molina, J.M.[José M.],
Advanced algorithms for real-time video tracking with multiple targets,
ICARCV08(125-131).
IEEE DOI
1109
BibRef
Perez Concha, O.[Oscar],
Xu, R.Y.D.[Richard Yi Da],
Piccardi, M.[Massimo],
Robust Dimensionality Reduction for Human Action Recognition,
DICTA10(349-356).
IEEE DOI
1012
BibRef
Pérez, Ó.[Óscar],
Piccardi, M.[Massimo],
García, J.[Jesús],
Patricio, M.Á.[Miguel Ángel],
Molina, J.M.[José Manuel],
Comparison Between Genetic Algorithms and the Baum-Welch Algorithm in
Learning HMMs for Human Activity Classification,
EvoIASP07(399-406).
Springer DOI
0704
BibRef
Piccardi, M.[Massimo],
Perez, O.[Oscar],
Hidden Markov Models with Kernel Density Estimation of Emission
Probabilities and their Use in Activity Recognition,
VS07(1-8).
IEEE DOI
0706
BibRef
Liu, C.[Chang],
Yuen, P.C.[Pong C.],
Human action recognition using boosted EigenActions,
IVC(28), No. 5, May 2010, pp. 825-835.
Elsevier DOI
1003
BibRef
Earlier:
Boosting EigenActions: A new algorithm for human action categorization,
FG08(1-6).
IEEE DOI
0809
Human action recognition; Salient action unit; Adaboost
BibRef
Liu, C.[Chang],
Yuen, P.C.[Pong C.],
A Boosted Co-Training Algorithm for Human Action Recognition,
CirSysVideo(21), No. 9, September 2011, pp. 1203-1213.
IEEE DOI
1109
BibRef
Han, L.[Lei],
Wu, X.X.[Xin-Xiao],
Liang, W.[Wei],
Hou, G.M.[Guang-Ming],
Jia, Y.D.[Yun-De],
Discriminative human action recognition in the learned hierarchical
manifold space,
IVC(28), No. 5, May 2010, pp. 836-849.
Elsevier DOI
1003
BibRef
Earlier: A1, A3, A2, A5, Only:
Human action recognition using discriminative models in the learned
hierarchical manifold space,
FG08(1-6).
IEEE DOI
0809
Human action recognition; Discriminative model; Hierarchical manifold
learning; Mutual invariant; Motion pattern
See also Action recognition feedback-based framework for human pose reconstruction from monocular images.
BibRef
Song, Y.[Yan],
Zheng, Y.T.[Yan-Tao],
Tang, S.[Sheng],
Zhou, X.D.[Xiang-Dong],
Zhang, Y.D.[Yong-Dong],
Lin, S.X.[Shou-Xun],
Chua, T.S.[Tat-Seng],
Localized Multiple Kernel Learning for Realistic Human Action
Recognition in Videos,
CirSysVideo(21), No. 9, September 2011, pp. 1193-1202.
IEEE DOI
1109
BibRef
Liu, A.A.[An-An],
Xu, N.[Ning],
Nie, W.Z.[Wei-Zhi],
Su, Y.T.[Yu-Ting],
Zhang, Y.D.[Yong-Dong],
Multi-Domain and Multi-Task Learning for Human Action Recognition,
IP(28), No. 2, February 2019, pp. 853-867.
IEEE DOI
1811
Task analysis, Training data, Feature extraction, Visualization,
Data mining, Data models,
human action recognition
See also Benchmarking a Multimodal and Multiview and Interactive Dataset for Human Action Recognition.
See also Hierarchical Clustering Multi-Task Learning for Joint Human Action Grouping and Recognition.
BibRef
Seo, H.J.[Hae Jong],
Milanfar, P.[Peyman],
Action Recognition from One Example,
PAMI(33), No. 1, January 2011, pp. 867-882.
IEEE DOI
1104
BibRef
Earlier:
Detection of human actions from a single example,
ICCV09(1965-1970).
IEEE DOI
0909
Single example as query to find others
BibRef
Gilbert, A.[Andrew],
Illingworth, J.[John],
Bowden, R.[Richard],
Action Recognition Using Mined Hierarchical Compound Features,
PAMI(33), No. 1, January 2011, pp. 883-897.
IEEE DOI
1104
BibRef
Earlier:
Fast realistic multi-action recognition using mined dense
spatio-temporal features,
ICCV09(925-931).
IEEE DOI
0909
BibRef
Earlier:
Scale Invariant Action Recognition Using Compound Features Mined from
Dense Spatio-temporal Corners,
ECCV08(I: 222-233).
Springer DOI
0810
Start from basic feature points as in 2D recognition.
BibRef
Gilbert, A.[Andrew],
Bowden, R.[Richard],
Data Mining for Action Recognition,
ACCV14(V: 290-303).
Springer DOI
1504
BibRef
Oshin, O.[Olusegun],
Gilbert, A.[Andrew],
Bowden, R.[Richard],
Capturing relative motion and finding modes for action recognition in
the wild,
CVIU(125), No. 1, 2014, pp. 155-171.
Elsevier DOI
1406
BibRef
Earlier:
There Is More Than One Way to Get Out of a Car:
Automatic Mode Finding for Action Recognition in the Wild,
IbPRIA11(41-48).
Springer DOI
1106
BibRef
And:
Capturing the relative distribution of features for action recognition,
FG11(111-116).
IEEE DOI
1103
Action recognition
BibRef
Oshin, O.[Olusegun],
Gilbert, A.[Andrew],
Illingworth, J.[John],
Bowden, R.[Richard],
Action recognition using Randomised Ferns,
ObjectEvent09(530-537).
IEEE DOI
0910
BibRef
Earlier:
Spatio-temporal feature recognition using randomised Ferns,
MLMotion08(xx-yy).
0810
BibRef
Liu, J.G.[Jin-Gen],
Yang, Y.[Yang],
Saleemi, I.[Imran],
Shah, M.[Mubarak],
Learning semantic features for action recognition via diffusion maps,
CVIU(116), No. 3, March 2012, pp. 361-377.
Elsevier DOI
1201
BibRef
Earlier: A1, A2, A4, Only:
Learning semantic visual vocabularies using diffusion distance,
CVPR09(461-468).
IEEE DOI
0906
Action recognition; Bag of video words; Semantic visual vocabulary;
Diffusion Maps; Pointwise Mutual Information
BibRef
Yang, Y.[Yang],
Shah, M.[Mubarak],
Learning discriminative features and metrics for measuring action
similarity,
ICIP14(1555-1559)
IEEE DOI
1502
Accuracy
BibRef
Reddy, K.K.[Kishore K.],
Liu, J.G.[Jin-Gen],
Shah, M.[Mubarak],
Incremental action recognition using feature-tree,
ICCV09(1010-1017).
IEEE DOI
0909
BibRef
Liu, J.G.[Jin-Gen],
Luo, J.B.[Jie-Bo],
Shah, M.[Mubarak],
Recognizing realistic actions from videos 'in the wild',
CVPR09(1996-2003).
IEEE DOI
0906
BibRef
Liu, J.G.[Jin-Gen],
Ali, S.[Saad],
Shah, M.[Mubarak],
Recognizing human actions using multiple features,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Ali, S.[Saad],
Basharat, A.[Arslan],
Shah, M.[Mubarak],
Chaotic Invariants for Human Action Recognition,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Guha, T.[Tanaya],
Ward, R.K.[Rabab K.],
Learning Sparse Representations for Human Action Recognition,
PAMI(34), No. 8, August 2012, pp. 1576-1588.
IEEE DOI
1206
BibRef
Earlier:
Action recognition by learnt class-specific overcomplete dictionaries,
FG11(143-148).
IEEE DOI
1103
sparse representation from dictionary in action recognition. Human movement,
facial expressions. 3 frameworks. Each descriptor is linear combination of
dictionary elements.
BibRef
Guha, T.[Tanaya],
Ward, R.K.[Rabab K.],
Image Similarity Using Sparse Representation and Compression Distance,
MultMed(16), No. 4, June 2014, pp. 980-987.
IEEE DOI
1407
Approximation methods
BibRef
Lu, Z.W.[Zhi-Wu],
Peng, Y.X.[Yu-Xin],
Latent semantic learning with structured sparse representation for
human action recognition,
PR(46), No. 7, July 2013, pp. 1799-1809.
Elsevier DOI
1303
Human action recognition; Latent semantic learning; Spectral embedding;
Structured sparse representation; L 1 - norm hypergraph regularization
BibRef
Lu, Z.W.[Zhi-Wu],
Peng, Y.X.[Yu-Xin],
Ip, H.H.S.[Horace H.S.],
Spectral learning of latent semantics for action recognition,
ICCV11(1503-1510).
IEEE DOI
1201
See also Contextual Kernel and Spectral Methods for Learning the Semantics of Images.
BibRef
Zhang, J.G.[Jian-Gen],
Yao, B.[Benjamin],
Wang, Y.T.[Yong-Tian],
Auto learning temporal atomic actions for activity classification,
PR(46), No. 7, July 2013, pp. 1789-1798.
Elsevier DOI
1303
Activity classification; Atomic action; Temporal-HDP
BibRef
Wang, L.[Liang],
Wang, Y.Z.[Yi-Zhou],
Jiang, T.T.[Ting-Ting],
Zhao, D.B.[De-Bin],
Gao, W.[Wen],
Learning discriminative features for fast frame-based action
recognition,
PR(46), No. 7, July 2013, pp. 1832-1840.
Elsevier DOI
1303
Frame-based action recognition; Feature mining
BibRef
Wu, J.Z.[Jian-Zhai],
Hu, D.[Dewen],
Learning Effective Event Models to Recognize a Large Number of Human
Actions,
MultMed(16), No. 1, January 2014, pp. 147-158.
IEEE DOI
1402
image motion analysis
BibRef
Chen, C.H.[Chang-Hong],
Yang, S.Q.[Shun-Qing],
Gan, Z.L.[Zong-Liang],
Topic-Based Knowledge Transfer Algorithm for Cross-View Action
Recognition,
IEICE(E97-D), No. 3, March 2014, pp. 614-617.
WWW Link.
1403
BibRef
Luo, G.[Guan],
Yang, S.,
Tian, G.,
Yuan, C.F.[Chun-Feng],
Hu, W.M.[Wei-Ming],
Maybank, S.J.[Steve J.],
Learning Human Actions by Combining Global Dynamics and Local
Appearance,
PAMI(36), No. 12, December 2014, pp. 2466-2482.
IEEE DOI
1411
Behavioral science
BibRef
Luo, G.[Guan],
Wei, J.T.[Jiu-Tong],
Hu, W.M.[Wei-Ming],
Maybank, S.J.[Stephen J.],
Tangent Fisher Vector on Matrix Manifolds for Action Recognition,
IP(29), 2020, pp. 3052-3064.
IEEE DOI
2002
Manifolds, Video sequences, Observability, Videos,
Covariance matrices, Kernel, Computational modeling,
matrix manifold
BibRef
Vrigkas, M.[Michalis],
Karavasilis, V.[Vasileios],
Nikou, C.[Christophoros],
Kakadiaris, I.A.[Ioannis A.],
Matching mixtures of curves for human action recognition,
CVIU(119), No. 1, 2014, pp. 27-40.
Elsevier DOI
1402
Human action recognition
See also novel framework for motion segmentation and tracking by clustering incomplete trajectories, A.
BibRef
Vrigkas, M.[Michalis],
Nikou, C.[Christophoros],
Kakadiaris, I.A.[Ioannis A.],
Identifying Human Behaviors Using Synchronized Audio-Visual Cues,
AffCom(8), No. 1, January 2017, pp. 54-66.
IEEE DOI
1703
BibRef
Earlier:
Active privileged learning of human activities from weakly labeled
samples,
ICIP16(3036-3040)
IEEE DOI
1610
Computational modeling.
Entropy
BibRef
Vrigkas, M.[Michalis],
Mastora, E.[Ermioni],
Nikou, C.[Christophoros],
Kakadiaris, I.A.[Ioannis A.],
Robust Incremental Hidden Conditional Random Fields for Human Action
Recognition,
ISVC18(126-136).
Springer DOI
1811
BibRef
Vrigkas, M.[Michalis],
Kazakos, E.,
Nikou, C.[Christophoros],
Kakadiaris, I.A.[Ioannis A.],
Inferring Human Activities Using Robust Privileged Probabilistic
Learning,
TASKCV17(2658-2665)
IEEE DOI
1802
Activity recognition, Probabilistic logic, Robustness, Testing,
Training, Videos, Visualization
BibRef
Chen, F.F.[Fei-Fei],
Sang, N.[Nong],
Kuang, X.Q.[Xiao-Qin],
Gan, H.T.[Hai-Tao],
Gao, C.X.[Chang-Xin],
Action recognition through discovering distinctive action parts,
JOSA-A(32), No. 2, February 2015, pp. 173-185.
DOI Link
1502
BibRef
Earlier: A1, A2, A5, A3, Only:
Discovering distinctive action parts for action recognition,
ICIP14(1520-1524)
IEEE DOI
1502
Pattern recognition.
Computer vision
BibRef
Zhang, S.W.[Shi-Wei],
Gao, C.X.[Chang-Xin],
Chen, F.F.[Fei-Fei],
Luo, S.H.[Si-Hui],
Sang, N.[Nong],
Group Sparse-Based Mid-Level Representation for Action Recognition,
SMCS(47), No. 4, April 2017, pp. 660-672.
IEEE DOI
1704
Detectors
BibRef
Zhang, S.W.[Shi-Wei],
Gao, C.X.[Chang-Xin],
Zhang, J.,
Chen, F.F.[Fei-Fei],
Sang, N.[Nong],
Discriminative Part Selection for Human Action Recognition,
MultMed(20), No. 4, April 2018, pp. 769-780.
IEEE DOI
1804
Correlation, Feature extraction, Solid modeling,
Support vector machines, Training, Trajectory, Videos, Mid-level,
recursive part elimination (RPE)
BibRef
Zhou, Z.,
Shi, F.,
Wu, W.,
Learning Spatial and Temporal Extents of Human Actions for Action
Detection,
MultMed(17), No. 4, April 2015, pp. 512-525.
IEEE DOI
1503
Discrete cosine transforms
BibRef
Feng, Y.[Yang],
Wu, X.X.[Xin-Xiao],
Jia, Y.,
Multi-group-multi-class domain adaptation for event recognition,
IET-CV(10), No. 1, 2016, pp. 60-66.
DOI Link
1601
neural nets
BibRef
Feng, Y.[Yang],
Wu, X.X.[Xin-Xiao],
Wang, H.[Han],
Liu, J.[Jing],
Multi-group Adaptation for Event Recognition from Videos,
ICPR14(3915-3920)
IEEE DOI
1412
Events in consumer videos. Based on loosely labeld web videos.
BibRef
Qin, J.,
Liu, L.,
Zhang, Z.,
Wang, Y.,
Shao, L.,
Compressive Sequential Learning for Action Similarity Labeling,
IP(25), No. 2, February 2016, pp. 756-769.
IEEE DOI
1601
Boosting
BibRef
Zhang, J.G.[Jian-Guang],
Han, Y.H.[Ya-Hong],
Tang, J.H.[Jin-Hui],
Hu, Q.H.[Qing-Hua],
Jiang, J.M.[Jian-Min],
Semi-Supervised Image-to-Video Adaptation for Video Action
Recognition,
Cyber(47), No. 4, April 2017, pp. 960-973.
IEEE DOI
1704
Cameras
BibRef
Liu, J.J.[Jing-Jing],
Chen, C.[Chao],
Zhu, Y.[Yan],
Liu, W.[Wei],
Metaxas, D.N.[Dimitris N.],
Video Classification via Weakly Supervised Sequence Modeling,
CVIU(152), No. 1, 2016, pp. 79-87.
Elsevier DOI
1609
Video classification.
for gesture and action classification.
BibRef
Xu, Z.[Zhe],
Wei, K.[Kun],
Yang, E.[Erkun],
Deng, C.[Cheng],
Liu, W.[Wei],
Bilateral Relation Distillation for Weakly Supervised Temporal Action
Localization,
PAMI(45), No. 10, October 2023, pp. 11458-11471.
IEEE DOI
2310
BibRef
Pei, L.S.[Li-Shen],
Ye, M.[Mao],
Zhao, X.Z.[Xue-Zhuan],
Dou, Y.M.[Yu-Min],
Bao, J.[Jiao],
Action recognition by learning temporal slowness invariant features,
VC(32), No. 11, November 2016, pp. 1395-1404.
WWW Link.
1611
BibRef
Tzelepis, C.[Christos],
Galanopoulos, D.[Damianos],
Mezaris, V.[Vasileios],
Patras, I.[Ioannis],
Learning to detect video events from zero or very few video examples,
IVC(53), No. 1, 2016, pp. 35-44.
Elsevier DOI
1610
Video event detection
BibRef
Gkalelis, N.[Nikolaos],
Goulas, A.[Andreas],
Galanopoulos, D.[Damianos],
Mezaris, V.[Vasileios],
ObjectGraphs: Using Objects and a Graph Convolutional Network for the
Bottom-up Recognition and Explanation of Events in Video,
HVU21(3370-3378)
IEEE DOI
2109
Computational modeling, Detectors,
Cognition, Object recognition
BibRef
Zhou, Q.A.[Qi-Ang],
Zhao, Q.[Qi],
Flexible Clustered Multi-Task Learning by Learning Representative
Tasks,
PAMI(38), No. 2, February 2016, pp. 266-278.
IEEE DOI
1601
Covariance matrices
BibRef
Zhou, Q.A.[Qi-Ang],
Wang, G.[Gang],
Jia, K.[Kui],
Zhao, Q.[Qi],
Learning to Share Latent Tasks for Action Recognition,
ICCV13(2264-2271)
IEEE DOI
1403
Action Recognition; Latent Task
BibRef
Yi, Y.[Yang],
Lin, M.Q.[Mao-Qing],
Human action recognition with graph-based multiple-instance learning,
PR(53), No. 1, 2016, pp. 148-162.
Elsevier DOI
1602
Action recognition
BibRef
Guo, Z.X.[Zi-Xin],
Yi, Y.[Yang],
Graph-based multiple instance learning for action recognition,
ICIP13(3745-3749)
IEEE DOI
1402
Action Recognition
BibRef
Sigari, M.H.[Mohamad-Hoseyn],
Soltanian-Zadeh, H.[Hamid],
Pourreza, H.R.[Hamid-Reza],
A framework for dynamic restructuring of semantic video analysis
systems based on learning attention control,
IVC(53), No. 1, 2016, pp. 20-34.
Elsevier DOI
1610
Attention control
BibRef
Yuan, Y.[Yuan],
Qi, L.[Lei],
Lu, X.Q.[Xiao-Qiang],
Action recognition by joint learning,
IVC(55, Part 2), No. 1, 2016, pp. 77-85.
Elsevier DOI
1612
Computer vision
BibRef
Tang, J.[Jun],
Jin, H.Q.[Hai-Qun],
Tan, S.B.[Shou-Biao],
Liang, D.[Dong],
Cross-domain action recognition via collective matrix factorization
with graph Laplacian regularization,
IVC(55, Part 2), No. 1, 2016, pp. 119-126.
Elsevier DOI
1612
Action recognition
BibRef
Xu, T.T.[Tian-Tian],
Zhu, F.[Fan],
Wong, E.K.[Edward K.],
Fang, Y.[Yi],
Dual many-to-one-encoder-based transfer learning for cross-dataset
human action recognition,
IVC(55, Part 2), No. 1, 2016, pp. 127-137.
Elsevier DOI
1612
Cross-dataset
BibRef
Richard, A.[Alexander],
Gall, J.[Juergen],
A bag-of-words equivalent recurrent neural network for action
recognition,
CVIU(156), No. 1, 2017, pp. 79-91.
Elsevier DOI
1702
BibRef
Earlier:
Temporal Action Detection Using a Statistical Language Model,
CVPR16(3131-3140)
IEEE DOI
1612
BibRef
Earlier:
A BoW-equivalent Recurrent Neural Network for Action Recognition,
BMVC15(xx-yy).
DOI Link
1601
Action recognition.
untrimmed videos.
BibRef
Kuehne, H.[Hilde],
Richard, A.[Alexander],
Gall, J.[Juergen],
Weakly supervised learning of actions from transcripts,
CVIU(163), No. 1, 2017, pp. 78-89.
Elsevier DOI
1712
Weak learning
BibRef
Kuehne, H.[Hilde],
Richard, A.[Alexander],
Gall, J.[Juergen],
A Hybrid RNN-HMM Approach for Weakly Supervised Temporal Action
Segmentation,
PAMI(42), No. 4, April 2020, pp. 765-779.
IEEE DOI
2003
Videos, Hidden Markov models, Task analysis, Training,
Supervised learning, Training data, Computational modeling,
action recognition
BibRef
Panareda Busto, P.,
Iqbal, A.[Ahsan],
Gall, J.[Juergen],
Open Set Domain Adaptation for Image and Action Recognition,
PAMI(42), No. 2, February 2020, pp. 413-429.
IEEE DOI
2001
Videos, Feature extraction, Image recognition, Training,
Task analysis, Face recognition, Protocols, Domain adaptation,
action recognition
BibRef
Iqbal, A.[Ahsan],
Richard, A.[Alexander],
Kuehne, H.[Hilde],
Gall, J.[Juergen],
Recurrent Residual Learning for Action Recognition,
GCPR17(126-137).
Springer DOI
1711
BibRef
Earlier: A2, A3, A4, Only:
Weakly Supervised Action Learning with RNN Based Fine-to-Coarse
Modeling,
CVPR17(1273-1282)
IEEE DOI
1711
Assistive technology, Data models, Hidden Markov models,
Supervised learning, Training, Videos
BibRef
Kim, M.Y.[Min-Young],
Dual soft assignment clustering algorithm for human action video
clustering,
CVIU(155), No. 1, 2017, pp. 106-112.
Elsevier DOI
1702
Dual assignment clustering
BibRef
Yang, Y.H.[Yan-Hua],
Deng, C.[Cheng],
Tao, D.P.[Da-Peng],
Zhang, S.T.[Shao-Ting],
Liu, W.[Wei],
Gao, X.B.[Xin-Bo],
Latent Max-Margin Multitask Learning with Skelets for 3-D Action
Recognition,
Cyber(47), No. 2, February 2017, pp. 439-448.
IEEE DOI
1702
cameras
BibRef
Yang, Y.,
Deng, C.,
Gao, S.,
Liu, W.,
Tao, D.,
Gao, X.,
Discriminative Multi-instance Multitask Learning for 3D Action
Recognition,
MultMed(19), No. 3, March 2017, pp. 519-529.
IEEE DOI
1702
Correlation
BibRef
Gibson, J.[James],
Katsamanis, A.[Athanasios],
Romero, F.[Francisco],
Xiao, B.[Bo],
Georgiou, P.[Panayiotis],
Narayanan, S.[Shrikanth],
Multiple Instance Learning for Behavioral Coding,
AffCom(8), No. 1, January 2017, pp. 81-94.
IEEE DOI
1703
Acoustics
BibRef
Xu, K.[Ke],
Jiang, X.H.[Xing-Hao],
Sun, T.F.[Tan-Feng],
Two-Stream Dictionary Learning Architecture for Action Recognition,
CirSysVideo(27), No. 3, March 2017, pp. 567-576.
IEEE DOI
1703
Cameras
BibRef
Xu, K.[Ke],
Jiang, X.H.[Xing-Hao],
Sun, T.F.[Tan-Feng],
Gait Recognition Based on Local Graphical Skeleton Descriptor With
Pairwise Similarity Network,
MultMed(24), 2022, pp. 3265-3275.
IEEE DOI
2207
Skeleton, Feature extraction, Gait recognition, Dynamics, Legged locomotion,
Deep learning, Gait recognition, skeleton, LGSD, pairwise similarity network
BibRef
Ma, Z.G.[Zhi-Gang],
Chang, X.J.[Xiao-Jun],
Yang, Y.[Yi],
Sebe, N.[Nicu],
Hauptmann, A.G.[Alexander G.],
The Many Shades of Negativity,
MultMed(19), No. 7, July 2017, pp. 1558-1568.
IEEE DOI
1706
Training, negative examples.
Animals, Detectors, Event detection, Feature extraction, Semantics,
Support vector machines, Training, Attribute representation,
attribute selection, complex event detection, selective,
fine-grained, labeling
BibRef
Chang, X.J.[Xiao-Jun],
Yu, Y.L.[Yao-Liang],
Yang, Y.[Yi],
Xing, E.P.[Eric P.],
Semantic Pooling for Complex Event Analysis in Untrimmed Videos,
PAMI(39), No. 8, August 2017, pp. 1617-1632.
IEEE DOI
1707
BibRef
Earlier:
They are Not Equally Reliable:
Semantic Event Search Using Differentiated Concept Classifiers,
CVPR16(1884-1893)
IEEE DOI
1612
Algorithm design and analysis, Event detection,
Feature extraction, Hidden Markov models, Semantics,
Support vector machines, Videos, Complex event detection,
event recognition, event recounting, nearly-isotonic SVM, semantic saliency.
Fewer training samples for events.
BibRef
Luvizon, D.C.[Diogo Carbonera],
Tabia, H.[Hedi],
Picard, D.[David],
Learning features combination for human action recognition from
skeleton sequences,
PRL(99), No. 1, 2017, pp. 13-20.
Elsevier DOI
1710
Action recognition
BibRef
Mokhtari, V.[Vahid],
Lopes, L.S.[Luís Seabra],
Pinho, A.J.[Armando J.],
Learning robot tasks with loops from experiences to enhance robot
adaptability,
PRL(99), No. 1, 2017, pp. 57-66.
Elsevier DOI
1710
Robot task learning with loops
BibRef
Zhang, H.B.[Hong-Bo],
Lei, Q.,
Chen, D.S.,
Zhong, B.N.,
Peng, J.,
Du, J.X.,
Su, S.Z.[Song-Zhi],
Probability-based method for boosting human action recognition using
scene context,
IET-CV(10), No. 6, 2016, pp. 528-536.
DOI Link
1609
Bayes methods
BibRef
Zhang, H.B.[Hong-Bo],
Li, S.Z.[Shao-Zi],
Chen, S.Y.[Shu-Yuan],
Su, S.Z.[Song-Zhi],
Lin, X.M.[Xian-Ming],
Cao, D.L.[Dong-Lin],
Locating and recognizing multiple human actions by searching for
maximum score subsequences,
SIViP(9), No. 3, March 2015, pp. 705-714.
Springer DOI
1503
BibRef
Song, H.,
Wu, X.,
Yu, W.,
Jia, Y.,
Extracting Key Segments of Videos for Event Detection by Learning
From Web Sources,
MultMed(20), No. 5, May 2018, pp. 1088-1100.
IEEE DOI
1805
Adaptation models, Event detection, Image segmentation, Semantics,
Support vector machines, Training, Videos, Event detection,
transfer learning
BibRef
Wang, T.W.[Ting-Wei],
Liu, C.C.[Chuan-Cai],
Wang, L.T.[Lian-Tao],
Ma, B.X.[Bing-Xian],
Gu, X.J.[Xing-Jian],
Evolution modeling with multi-scale smoothing for action recognition,
JVCIR(55), 2018, pp. 778-788.
Elsevier DOI
1809
Action recognition, Multi-scale representation, Rank pooling,
Evolution modeling, Dynamics
BibRef
Zhang, L.,
Zhen, X.,
Shao, L.,
Song, J.,
Learning Match Kernels on Grassmann Manifolds for Action Recognition,
IP(28), No. 1, January 2019, pp. 205-215.
IEEE DOI
1810
Kernel, Manifolds, Feature extraction, Computational modeling,
Image recognition, Semantics,
neural networks
BibRef
Zhang, H.[Hong],
Xin, M.[Miao],
Wang, S.H.[Shu-Hang],
Yang, Y.F.[Yi-Fan],
Zhang, L.[Lei],
Wang, H.L.[He-Long],
End-to-End Temporal Attention Extraction and Human Action Recognition,
MVA(29), No. 7, October 2018, pp. 1127-1142.
Springer DOI
1810
BibRef
Chesneau, N.[Nicolas],
Alahari, K.[Karteek],
Schmid, C.[Cordelia],
Learning From Web Videos for Event Classification,
CirSysVideo(28), No. 10, October 2018, pp. 3019-3029.
IEEE DOI
1811
Use web videos for training.
Videos, Training, Tires, Metadata, Visualization, YouTube,
Feature extraction, Event classification,
self-supervised learning
BibRef
Rupprecht, C.[Christian],
Kapil, A.[Ansh],
Liu, N.[Nan],
Ballan, L.[Lamberto],
Tombari, F.[Federico],
Learning without prejudice:
Avoiding bias in webly-supervised action recognition,
CVIU(173), 2018, pp. 24-32.
Elsevier DOI
1901
From data from the web.
Action recognition, Webly-supervised learning
BibRef
Huang, W.,
Fan, L.,
Harandi, M.,
Ma, L.,
Liu, H.,
Liu, W.,
Gan, C.,
Toward Efficient Action Recognition:
Principal Backpropagation for Training Two-Stream Networks,
IP(28), No. 4, April 2019, pp. 1773-1782.
IEEE DOI
1901
backpropagation, feature extraction, image motion analysis,
image recognition, image representation, object recognition,
temporal pooling strategy
BibRef
Zhang, J.X.[Jun-Xuan],
Hu, H.F.[Hai-Feng],
Domain learning joint with semantic adaptation for human action
recognition,
PR(90), 2019, pp. 196-209.
Elsevier DOI
1903
Knowledge adaptation, Two-stream network, Video representation,
Action recognition, Cascaded convolution fusion strategy
BibRef
Wang, Z.[Zheng],
Chen, K.[Kai],
Zhang, M.X.[Ming-Xing],
He, P.L.[Pei-Lin],
Wang, Y.J.[Ya-Jie],
Zhu, P.[Ping],
Yang, Y.[Yang],
Multi-Scale Aggregation Network for Temporal Action Proposals,
PRL(122), 2019, pp. 60-65.
Elsevier DOI
1904
BibRef
Liu, Y.[Yang],
Lu, Z.Y.[Zhao-Yang],
Li, J.[Jing],
Yang, T.[Tao],
Hierarchically Learned View-Invariant Representations for Cross-View
Action Recognition,
CirSysVideo(29), No. 8, August 2019, pp. 2416-2430.
IEEE DOI
1908
Videos, Dictionaries, Robustness, Machine learning, Sparse matrices,
Noise reduction, Cameras, Action recognition, cross-view,
distribution adaptation
BibRef
Xu, B.H.[Bao-Han],
Ye, H.[Hao],
Zheng, Y.B.[Ying-Bin],
Wang, H.[Heng],
Luwang, T.Y.[Tian-Yu],
Jiang, Y.G.[Yu-Gang],
Dense Dilated Network for Video Action Recognition,
IP(28), No. 10, October 2019, pp. 4941-4953.
IEEE DOI
1909
image recognition, image representation, neural nets,
video signal processing, video surveillance,
video analysis
BibRef
Liu, J.Y.[Jia-Ying],
Li, Y.H.[Yang-Hao],
Song, S.J.[Si-Jie],
Xing, J.L.[Jun-Liang],
Lan, C.L.[Cui-Ling],
Zeng, W.J.[Wen-Jun],
Multi-Modality Multi-Task Recurrent Neural Network for Online Action
Detection,
CirSysVideo(29), No. 9, September 2019, pp. 2667-2682.
IEEE DOI
1909
Skeleton, Feature extraction, Recurrent neural networks,
Hidden Markov models, Task analysis, Streaming media, Forecasting,
joint classification-regression
BibRef
Liu, H.J.[Hai-Jun],
Wang, S.G.[Shi-Guang],
Wang, W.[Wen],
Cheng, J.[Jian],
Multi-Scale Based Context-Aware Net for Action Detection,
MultMed(22), No. 2, February 2020, pp. 337-348.
IEEE DOI
2001
Proposals, Feature extraction, Object detection, Logic gates,
Message passing, Streaming media, gate function
BibRef
Kong, Y.[Yu],
Tao, Z.Q.[Zhi-Qiang],
Fu, Y.[Yun],
Adversarial Action Prediction Networks,
PAMI(42), No. 3, March 2020, pp. 539-553.
IEEE DOI
2002
Videos, Feature extraction, Decoding, Accidents, Prediction methods,
Training, Task analysis, Action prediction, action recognition,
adversarial learning
BibRef
Yang, Z.G.[Zhen-Guo],
Li, Q.[Qing],
Liu, W.Y.[Wen-Yin],
Lv, J.M.[Jian-Ming],
Shared Multi-View Data Representation for Multi-Domain Event
Detection,
PAMI(42), No. 5, May 2020, pp. 1243-1256.
IEEE DOI
2004
Data models, Dictionaries, Event detection,
Social network services, Computational modeling, Task analysis,
data representation learning
BibRef
Yang, Z.G.[Zhen-Guo],
Li, Q.[Qing],
Xie, H.R.[Hao-Ran],
Wang, Q.[Qi],
Liu, W.Y.[Wen-Yin],
Learning representation from multiple media domains for enhanced
event discovery,
PR(110), 2021, pp. 107640.
Elsevier DOI
2011
Data representation learning, Event detection, Social media, Multi-modality data
BibRef
Hou, J.,
Wu, X.,
Wang, R.,
Luo, J.,
Jia, Y.,
Confidence-Guided Self Refinement for Action Prediction in Untrimmed
Videos,
IP(29), 2020, pp. 6017-6031.
IEEE DOI
2005
Videos, Predictive models, Task analysis, Training,
Hybrid power systems, Psychology, Machine learning,
attention mechanism
BibRef
Cai, J.H.[Jia-Hui],
Hu, J.G.[Jian-Guo],
3D RANs: 3D Residual Attention Networks for action recognition,
VC(36), No. 6, June 2020, pp. 1261-1270.
WWW Link.
2005
BibRef
Spampinato, C.[Concetto],
Palazzo, S.[Simone],
d'Oro, P.,
Giordano, D.,
Shah, M.,
Adversarial Framework for Unsupervised Learning of Motion Dynamics in
Videos,
IJCV(128), No. 5, May 2020, pp. 1378-1397.
Springer DOI
2005
BibRef
Castagnolo, G.[Giulia],
Spampinato, C.[Concetto],
Rundo, F.[Francesco],
Giordano, D.[Daniela],
Palazzo, S.[Simone],
A Baseline on Continual Learning Methods for Video Action Recognition,
ICIP23(3240-3244)
IEEE DOI
2312
BibRef
Palazzo, S.,
Spampinato, C.,
Kavasidis, I.,
Giordano, D.,
Shah, M.,
Generative Adversarial Networks Conditioned by Brain Signals,
ICCV17(3430-3438)
IEEE DOI
1802
EEG while users look at images.
brain, electroencephalography, image representation,
learning (artificial intelligence), medical image processing,
Visualization
BibRef
Zheng, Y.D.[Yin-Dong],
Liu, Z.Y.[Zhao-Yang],
Lu, T.[Tong],
Wang, L.M.[Li-Min],
Dynamic Sampling Networks for Efficient Action Recognition in Videos,
IP(29), 2020, pp. 7970-7983.
IEEE DOI
2007
Videos, Learning (artificial intelligence), Training, Testing,
Machine learning, Image recognition,
efficient action recognition
BibRef
Jia, C.,
Ding, Z.,
Kong, Y.,
Fu, Y.,
Semi-Supervised Cross-Modality Action Recognition by Latent Tensor
Transfer Learning,
CirSysVideo(30), No. 9, September 2020, pp. 2801-2814.
IEEE DOI
2009
Correlation, Training, Feature extraction, Target recognition,
Tensors, Testing, Semantics, RGB-D action, cross-modality,
low-rank tensor
BibRef
Ng, Y.B.,
Fernando, B.,
Forecasting Future Action Sequences With Attention:
A New Approach to Weakly Supervised Action Forecasting,
IP(29), 2020, pp. 8880-8891.
IEEE DOI
2009
Forecasting, Predictive models, Training, Uncertainty, Task analysis,
Robots, Data models, Action forecasting,
action sequence forecasting
BibRef
Aliakbarian, M.S.[Mohammad Sadegh],
Saleh, F.S.[Fatemeh Sadat],
Salzmann, M.[Mathieu],
Fernando, B.[Basura],
Petersson, L.[Lars],
Andersson, L.[Lars],
Encouraging LSTMs to Anticipate Actions Very Early,
ICCV17(280-289)
IEEE DOI
1802
Anticipate, don't need the whold sequence.
feature extraction, image motion analysis,
image recognition, image sequences, recurrent neural nets,
Videos
BibRef
Zhao, H.H.[Hao-Hua],
Xue, W.C.[Wei-Chen],
Li, X.B.[Xiao-Bo],
Gu, Z.X.[Zhang-Xuan],
Niu, L.[Li],
Zhang, L.Q.[Li-Qing],
Multi-mode neural network for human action recognition,
IET-CV(14), No. 8, December 2020, pp. 587-596.
DOI Link
2012
BibRef
Wu, Q.Y.[Qian-Yu],
Zhu, A.C.[Ai-Chun],
Cui, R.[Ran],
Wang, T.[Tian],
Hu, F.Q.[Fang-Qiang],
Bao, Y.P.[Ya-Ping],
Snoussi, H.[Hichem],
Pose-Guided Inflated 3D ConvNet for action recognition in videos,
SP:IC(91), 2021, pp. 116098.
Elsevier DOI
2012
Action recognition, Pose estimation,
Spatial-temporal information, Feature fusion
BibRef
Zong, M.[Ming],
Wang, R.[Ruili],
Chen, X.[Xiubo],
Chen, Z.[Zhe],
Gong, Y.H.[Yuan-Hao],
Motion saliency based multi-stream multiplier ResNets for action
recognition,
IVC(107), 2021, pp. 104108.
Elsevier DOI
2103
Action recognition, Motion saliency,
Spatiotemporal interactive information, Multiplicative connections
BibRef
Chen, Y.S.[Yao-Sen],
Guo, B.[Bing],
Shen, Y.[Yan],
Wang, W.[Wei],
Lu, W.C.[Wei-Chen],
Suo, X.H.[Xin-Hua],
Boundary graph convolutional network for temporal action detection,
IVC(109), 2021, pp. 104144.
Elsevier DOI
2105
Temporal action detection, Graph convolutional network,
Temproal action proposals, Video features
BibRef
Paoletti, G.[Giancarlo],
Cavazza, J.[Jacopo],
Beyan, C.[Cigdem],
del Bue, A.[Alessio],
Subspace Clustering for Action Recognition with Covariance
Representations and Temporal Pruning,
ICPR21(6035-6042)
IEEE DOI
2105
Protocols, Laplace equations, Data analysis, Clustering methods,
Pipelines, Supervised learning, Machine learning
BibRef
Su, H.S.[Hai-Sheng],
Zhao, X.[Xu],
Lin, T.W.[Tian-Wei],
Liu, S.M.[Shu-Ming],
Hu, Z.L.[Zhi-Lan],
Transferable Knowledge-Based Multi-Granularity Fusion Network for
Weakly Supervised Temporal Action Detection,
MultMed(23), 2021, pp. 1503-1515.
IEEE DOI
2106
Feature extraction, Task analysis, Training, Object detection,
Kernel, Convolution, Visualization, Boundary regression, weak supervision
BibRef
Lai, K.[Kenneth],
Yanushkevich, S.N.[Svetlana N.],
Shmerko, V.[Vlad],
Hou, M.[Ming],
Capturing causality and bias in human action recognition,
PRL(147), 2021, pp. 164-171.
Elsevier DOI
2106
Machine learning, Decision support, Human action recognition,
Machine reasoning, Belief networks
BibRef
Kim, J.H.[Jong-Hyun],
Li, G.[Gen],
Yun, I.[Inyong],
Jung, C.[Cheolkon],
Kim, J.[Joongkyu],
Weakly-supervised temporal attention 3D network for human action
recognition,
PR(119), 2021, pp. 108068.
Elsevier DOI
2106
Action recognition, Temporal attention,
Convolutional neural network, Weakly-supervised learning,
Video classification
BibRef
Yang, W.F.[Wen-Fei],
Zhang, T.Z.[Tian-Zhu],
Mao, Z.D.[Zhen-Dong],
Zhang, Y.D.[Yong-Dong],
Tian, Q.[Qi],
Wu, F.[Feng],
Multi-Scale Structure-Aware Network for Weakly Supervised Temporal
Action Detection,
IP(30), 2021, pp. 5848-5861.
IEEE DOI
2106
Proposals, Feature extraction, Image segmentation, Scalability,
Noise measurement, Graph neural networks, GSM, Weakly supervised,
structure-aware
BibRef
Wu, J.M.[Jia-Min],
Zhang, T.Z.[Tian-Zhu],
Zhang, Z.[Zhe],
Wu, F.[Feng],
Zhang, Y.D.[Yong-Dong],
Motion-modulated Temporal Fragment Alignment Network For Few-Shot
Action Recognition,
CVPR22(9141-9150)
IEEE DOI
2210
Image recognition, Motion segmentation, Modulation,
Benchmark testing, Task analysis,
Action and event recognition
BibRef
Yang, W.F.[Wen-Fei],
Zhang, T.Z.[Tian-Zhu],
Yu, X.Y.[Xiao-Yuan],
Qi, T.[Tian],
Zhang, Y.D.[Yong-Dong],
Wu, F.[Feng],
Uncertainty Guided Collaborative Training for Weakly Supervised
Temporal Action Detection,
CVPR21(53-63)
IEEE DOI
2111
Training, Uncertainty, Collaboration,
Benchmark testing, Reliability engineering
BibRef
Leng, C.J.[Chuan-Jiang],
Ding, Q.C.[Qi-Chuan],
Wu, C.D.[Cheng-Dong],
Chen, A.[Ange],
Augmented two stream network for robust action recognition adaptive
to various action videos,
JVCIR(81), 2021, pp. 103344.
Elsevier DOI
2112
Two-stream network, Action recognition, Data skew
BibRef
Zhang, C.Y.[Chun-Yang],
Xiao, Y.Y.[Yong-Yi],
Lin, J.C.[Jin-Cheng],
Chen, C.L.P.[C. L. Philip],
Liu, W.X.[Wen-Xi],
Tong, Y.H.[Yu-Hong],
3-D Deconvolutional Networks for the Unsupervised Representation
Learning of Human Motions,
Cyber(52), No. 1, January 2022, pp. 398-410.
IEEE DOI
2201
Machine learning, Task analysis, Correlation, Optimization,
Feature extraction, Convolution, Data models,
video representation learning
BibRef
Liu, Y.[Yuan],
Chen, J.Y.[Jing-Yuan],
Chen, X.P.[Xin-Peng],
Deng, B.[Bing],
Huang, J.Q.[Jian-Qiang],
Hua, X.S.[Xian-Sheng],
Centerness-Aware Network for Temporal Action Proposal,
CirSysVideo(32), No. 1, January 2022, pp. 5-16.
IEEE DOI
2201
Proposals, Feature extraction, Detectors, Task analysis,
Visualization, Video sequences, Object detection,
multi-scale center detector
BibRef
Gao, J.Y.[Jun-Yu],
Xu, C.S.[Chang-Sheng],
Learning Video Moment Retrieval Without a Single Annotated Video,
CirSysVideo(32), No. 3, March 2022, pp. 1646-1657.
IEEE DOI
2203
Visualization, Task analysis, Generators, Training,
Graph neural networks, Semantics, Detectors,
unpaired learning
BibRef
Sun, B.[Bin],
Kong, D.[Dehui],
Wang, S.[Shaofan],
Li, J.H.[Jing-Hua],
Yin, B.C.[Bao-Cai],
Luo, X.N.[Xiao-Nan],
GAN for vision, KG for relation:
A two-stage network for zero-shot action recognition,
PR(126), 2022, pp. 108563.
Elsevier DOI
2204
Action recognition, Zero-shot learning,
Generative adversarial networks, Graph convolution network
BibRef
Luo, H.[Haonan],
Lin, G.S.[Guo-Sheng],
Yao, Y.Z.[Ya-Zhou],
Tang, Z.M.[Zhen-Min],
Wu, Q.Y.[Qing-Yao],
Hua, X.S.[Xian-Sheng],
Dense Semantics-Assisted Networks for Video Action Recognition,
CirSysVideo(32), No. 5, May 2022, pp. 3073-3084.
IEEE DOI
2205
Semantics, Image segmentation,
Streaming media, Image recognition, Training, Target recognition,
feature fusion
BibRef
He, C.[Chen],
Zhang, J.[Jing],
Yao, J.C.[Jia-Cheng],
Zhuo, L.[Li],
Tian, Q.[Qi],
Meta-Learning Paradigm and CosAttn for Streamer Action Recognition in
Live Video,
SPLetters(29), 2022, pp. 1097-1101.
IEEE DOI
2205
Streaming media, Training, Feature extraction, Testing, Prototypes,
Task analysis, Optimization, Live video,
CosAttn
BibRef
Wang, W.N.[Wei-Ning],
Lin, T.W.[Tian-Wei],
He, D.L.[Dong-Liang],
Li, F.[Fu],
Wen, S.L.[Shi-Lei],
Wang, L.[Liang],
Liu, J.[Jing],
Semi-Supervised Temporal Action Proposal Generation via Exploiting
2-D Proposal Map,
MultMed(24), 2022, pp. 3624-3635.
IEEE DOI
2207
Proposals, Data models, Task analysis, Semisupervised learning,
Training, Supervised learning, Predictive models, pseudo label
BibRef
Tang, Y.P.[Ye-Peng],
Wang, W.N.[Wei-Ning],
Zhang, C.J.[Chun-Jie],
Liu, J.[Jing],
Zhao, Y.[Yao],
Temporal Action Proposal Generation With Action Frequency Adaptive
Network,
MultMed(26), 2024, pp. 2340-2353.
IEEE DOI
2402
Proposals, Task analysis, Data models, Time-frequency analysis,
Representation learning, Predictive models, Information science,
action frequency
BibRef
Li, B.R.[Bai-Rong],
Liu, R.X.[Rui-Xin],
Chen, T.Q.[Tian-Quan],
Zhu, Y.S.[Yue-Sheng],
Weakly Supervised Temporal Action Detection With Temporal Dependency
Learning,
CirSysVideo(32), No. 7, July 2022, pp. 4473-4485.
IEEE DOI
2207
Videos, Proposals, Transformers, Task analysis, Annotations, Training,
Semantics, Weakly supervised learning, temporal action detection
BibRef
Li, B.R.[Bai-Rong],
Guo, B.[Biao],
Zhu, Y.S.[Yue-Sheng],
Yin, J.F.[Jian-Feng],
Ji, X.L.[Xiang-Li],
Superframe-Based Temporal Proposals for Weakly Supervised Temporal
Action Detection,
MultMed(25), 2023, pp. 3628-3641.
IEEE DOI
2310
BibRef
Kumawat, S.[Sudhakar],
Verma, M.[Manisha],
Nakashima, Y.[Yuta],
Raman, S.[Shanmuganathan],
Depthwise Spatio-Temporal STFT Convolutional Neural Networks for
Human Action Recognition,
PAMI(44), No. 9, September 2022, pp. 4839-4851.
IEEE DOI
2208
Convolution, Kernel, Correlation, Complexity theory, Standards,
Short-term fourier transform, human action recognition
BibRef
Chen, B.[Bo],
Tang, H.Y.[Hong-Ying],
Zhang, Z.B.[Ze-Bin],
Tong, G.J.[Guan-Jun],
Li, B.Q.[Bao-Qing],
Video-based action recognition using spurious-3D residual attention
networks,
IET-IPR(16), No. 11, 2022, pp. 3097-3111.
DOI Link
2208
BibRef
Fu, J.[Jie],
Gao, J.Y.[Jun-Yu],
Xu, C.S.[Chang-Sheng],
Learning Semantic-Aware Spatial-Temporal Attention for Interpretable
Action Recognition,
CirSysVideo(32), No. 8, August 2022, pp. 5213-5224.
IEEE DOI
2208
Visualization, Semantics, Task analysis, Feature extraction,
Solid modeling, Predictive models, Semantic-aware, action recognition
BibRef
Wei, D.F.[Da-Feng],
Tian, Y.[Ye],
Wei, L.Q.[Li-Qing],
Zhong, H.[Hong],
Chen, S.Q.[Si-Qian],
Pu, S.L.[Shi-Liang],
Lu, H.T.[Hong-Tao],
Efficient dual attention SlowFast networks for video action
recognition,
CVIU(222), 2022, pp. 103484.
Elsevier DOI
2209
Learn temporal and spatial together.
Efficient video action recognition, Dual attention mechanism,
Efficient SlowFast networks
BibRef
Nie, L.S.[Lan-Shun],
Li, X.[Xue],
Gong, T.Y.[Tian-Ying],
Zhan, D.[Dechen],
Few shot learning-based fast adaptation for human activity
recognition,
PRL(159), 2022, pp. 100-107.
Elsevier DOI
2206
BibRef
Monfort, M.[Mathew],
Pan, B.[Bowen],
Ramakrishnan, K.[Kandan],
Andonian, A.[Alex],
McNamara, B.A.[Barry A.],
Lascelles, A.[Alex],
Fan, Q.F.[Quan-Fu],
Gutfreund, D.[Dan],
Feris, R.S.[Rogerio Schmidt],
Oliva, A.[Aude],
Multi-Moments in Time: Learning and Interpreting Models for
Multi-Action Video Understanding,
PAMI(44), No. 12, December 2022, pp. 9434-9445.
IEEE DOI
2212
Visualization, Annotations, Training, Analytical models, Semantics,
Convolutional neural networks, machine learning, video, neural nets
BibRef
Meng, Y.[Yue],
Lin, C.C.[Chung-Ching],
Panda, R.[Rameswar],
Sattigeri, P.[Prasanna],
Karlinsky, L.[Leonid],
Oliva, A.[Aude],
Saenko, K.[Kate],
Feris, R.S.[Rogerio S.],
Ar-net: Adaptive Frame Resolution for Efficient Action Recognition,
ECCV20(VII:86-104).
Springer DOI
2011
BibRef
Tang, Y.P.[Yi-Ping],
Zheng, Y.[Yang],
Wei, C.[Chen],
Guo, K.T.[Kai-Tai],
Hu, H.H.[Hai-Hong],
Liang, J.[Jimin],
Video representation learning for temporal action detection using
global-local attention,
PR(134), 2023, pp. 109135.
Elsevier DOI
2212
Temporal action detection, Video representation, Untrimmed video analysis
BibRef
Gao, Z.[Zan],
Zhao, Y.[Yibo],
Zhang, H.[Hua],
Chen, D.[Da],
Liu, A.A.[An-An],
Chen, S.Y.[Sheng-Yong],
A Novel Multiple-View Adversarial Learning Network for Unsupervised
Domain Adaptation Action Recognition,
Cyber(52), No. 12, December 2022, pp. 13197-13211.
IEEE DOI
2212
Feature extraction, Convolution, Training,
Adversarial machine learning, Target recognition, Robustness,
unsupervised domain adaptation action recognition
BibRef
Omi, K.[Kazuki],
Kimata, J.[Jun],
Tamaki, T.[Toru],
Model-Agnostic Multi-Domain Learning with Domain-Specific Adapters for
Action Recognition,
IEICE(E105-D), No. 12, December 2022, pp. 2119-2126.
WWW Link.
2212
BibRef
Yang, Y.[Yang],
Liu, G.J.[Guang-Jun],
Gao, X.H.[Xue-Hao],
Motion Guided Attention Learning for Self-Supervised 3D Human Action
Recognition,
CirSysVideo(32), No. 12, December 2022, pp. 8623-8634.
IEEE DOI
2212
Task analysis, Semantics, Generators, Costs, Representation learning,
Recurrent neural networks, Self-supervised learning,
motion attention
BibRef
Konforti, Y.[Yael],
Shpigler, A.[Alon],
Lerner, B.[Boaz],
Bar-Hillel, A.[Aharon],
SIGN: Statistical Inference Graphs Based on Probabilistic Network
Activity Interpretation,
PAMI(45), No. 3, March 2023, pp. 3783-3797.
IEEE DOI
2302
Visualization, Hidden Markov models, Training, Neural networks,
Probabilistic logic, Convolutional neural networks, statistical inference
BibRef
Yu, B.X.B.[Bruce X.B.],
Liu, Y.[Yan],
Zhang, X.[Xiang],
Zhong, S.H.[Sheng-Hua],
Chan, K.C.C.[Keith C.C.],
MMNet: A Model-Based Multimodal Network for Human Action Recognition
in RGB-D Videos,
PAMI(45), No. 3, March 2023, pp. 3522-3538.
IEEE DOI
2302
Skeleton, Videos, Data models, Computational modeling,
Hidden Markov models, Writing, Solid modeling, ensemble learning
BibRef
Tong, A.[Anyang],
Tang, C.[Chao],
Wang, W.J.[Wen-Jian],
Semi-Supervised Action Recognition From Temporal Augmentation Using
Curriculum Learning,
CirSysVideo(33), No. 3, March 2023, pp. 1305-1319.
IEEE DOI
2303
Training, Labeling, Data models, Feature extraction, Noise measurement,
Image recognition, Image classification, temporal augmentation
BibRef
Nitta, T.[Tomoya],
Hirakawa, T.[Tsubasa],
Fujiyoshi, H.[Hironobu],
Tamaki, T.[Toru],
Object-ABN: Learning to Generate Sharp Attention Maps for Action
Recognition,
IEICE(E106-D), No. 3, March 2023, pp. 391-400.
WWW Link.
2303
Attention Branch Network. Instance segmentation
BibRef
Korban, M.[Matthew],
Li, X.[Xin],
Semantics-enhanced early action detection using dynamic dilated
convolution,
PR(140), 2023, pp. 109595.
Elsevier DOI
2305
Early action detection, Action semantics, Dilated convolutional network
BibRef
Wu, J.L.[Jian-Long],
Sun, W.[Wei],
Gan, T.[Tian],
Ding, N.[Ning],
Jiang, F.[Feijun],
Shen, J.[Jialie],
Nie, L.Q.[Li-Qiang],
Neighbor-Guided Consistent and Contrastive Learning for
Semi-Supervised Action Recognition,
IP(32), 2023, pp. 2215-2227.
IEEE DOI
2305
Training, Task analysis, Semisupervised learning, Convolution,
Computational modeling, contrastive learning
BibRef
Zhong, Z.K.[Zhuo-Kun],
Hou, Z.J.[Zhen-Jie],
Liang, J.Z.[Jiu-Zhen],
Lin, E.[En],
Shi, H.Y.[Hai-Yong],
Multimodal cooperative self-attention network for action recognition,
IET-IPR(17), No. 6, 2023, pp. 1775-1783.
DOI Link
2305
image fusion
BibRef
Yang, M.[Min],
Chen, G.[Guo],
Zheng, Y.D.[Yin-Dong],
Lu, T.[Tong],
Wang, L.M.[Li-Min],
BasicTAD: An astounding RGB-Only baseline for temporal action
detection,
CVIU(232), 2023, pp. 103692.
Elsevier DOI
2305
BibRef
Wang, W.Q.[Wen-Qian],
Chang, F.L.[Fa-Liang],
Zhang, J.H.[Jun-Hao],
Yan, R.[Rui],
Liu, C.S.[Chun-Sheng],
Wang, B.[Bin],
Shou, M.Z.[Mike Zheng],
Magi-Net: Meta Negative Network for Early Activity Prediction,
IP(32), 2023, pp. 3254-3265.
IEEE DOI
2306
Predictive models, Video sequences, Task analysis, Optimization,
Prediction algorithms, Adaptation models, Training,
meta learning
BibRef
Hu, Y.F.[Yu-Fan],
Gao, J.Y.[Jun-Yu],
Xu, C.S.[Chang-Sheng],
Learning Scene-Aware Spatio-Temporal GNNs for Few-Shot Early Action
Prediction,
MultMed(25), 2023, pp. 2061-2073.
IEEE DOI
2306
Videos, Task analysis, Graph neural networks, Feature extraction,
Predictive models, Visualization, Convolution, Few-shot learning,
graph neural network
BibRef
Li, S.[Shibao],
Wang, Z.Y.[Zhao-Yu],
Liu, Y.X.[Yi-Xuan],
Zhang, Y.[Yunwu],
Zhu, J.Z.[Jin-Ze],
Cui, X.R.[Xue-Rong],
Liu, J.H.[Jian-Hang],
FSformer: Fast-Slow Transformer for video action recognition,
IVC(137), 2023, pp. 104740.
Elsevier DOI
2309
Action recognition, Two-stream, Transformer, Self-attention
BibRef
Wang, H.F.[Hua-Feng],
Li, H.L.[Han-Lin],
Liu, W.Q.[Wan-Quan],
Gu, X.F.[Xian-Feng],
Temporal information oriented motion accumulation and selection
network for RGB-based action recognition,
IVC(137), 2023, pp. 104785.
Elsevier DOI
2309
Action recognition, Motion accumulation, Selective network, Motion
BibRef
Quan, Z.Z.[Zhen-Zhen],
Chen, Q.S.[Qing-Shan],
Li, Y.J.[Yu-Jun],
Liu, Z.[Zhi],
Cui, Y.[Yan],
ARCTIC: A knowledge distillation approach via attention-based
relation matching and activation region constraint for
RGB-to-Infrared videos action recognition,
CVIU(237), 2023, pp. 103853.
Elsevier DOI
2311
Action recognition, Attention, Knowledge distillation, Infrared
BibRef
Zhou, J.Q.[Jia-Qi],
Fu, Z.[Zehua],
Huang, Q.Y.[Qiu-Yu],
Liu, Q.J.[Qing-Jie],
Wang, Y.H.[Yun-Hong],
LgNet: A Local-Global Network for Action Recognition and Beyond,
MultMed(25), 2023, pp. 5192-5205.
IEEE DOI
2311
BibRef
Assefa, M.[Maregu],
Jiang, W.[Wei],
Gedamu, K.[Kumie],
Yilma, G.[Getinet],
Kumeda, B.[Bulbula],
Ayalew, M.[Melese],
Self-Supervised Scene-Debiasing for Video Representation Learning via
Background Patching,
MultMed(25), 2023, pp. 5500-5515.
IEEE DOI
2311
Supress background influence in action learning.
BibRef
Bousmina, A.[Abir],
Selmi, M.[Mouna],
Ben Rhaiem, M.A.[Mohamed Amine],
Farah, I.R.[Imed Riadh],
A Hybrid Approach Based on GAN and CNN-LSTM for Aerial Activity
Recognition,
RS(15), No. 14, 2023, pp. 3626.
DOI Link
2307
From overhead views, UAV.
BibRef
Assefa, M.[Maregu],
Jiang, W.[Wei],
Zhan, J.[Jinyu],
Gedamu, K.[Kumie],
Yilma, G.[Getinet],
Ayalew, M.[Melese],
Adhikari, D.[Deepak],
Audio-Visual Contrastive and Consistency Learning for Semi-Supervised
Action Recognition,
MultMed(26), 2024, pp. 3491-3504.
IEEE DOI
2402
Task analysis, Predictive models, Visualization,
Semisupervised learning, Correlation, Reliability, Optical flow.
BibRef
Wang, X.[Xiang],
Zhang, S.W.[Shi-Wei],
Qing, Z.W.[Zhi-Wu],
Zuo, Z.R.[Zheng-Rong],
Gao, C.X.[Chang-Xin],
Jin, R.[Rong],
Sang, N.[Nong],
HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-Shot
Action Recognition,
PR(147), 2024, pp. 110110.
Elsevier DOI Code:
WWW Link.
2312
Few-shot action recognition, Set matching,
Semi-supervised few-shot action recognition,
Unsupervised few-shot action recognition
BibRef
Wang, X.[Xiang],
Zhang, S.W.[Shi-Wei],
Qing, Z.W.[Zhi-Wu],
Tang, M.Q.[Ming-Qian],
Zuo, Z.R.[Zheng-Rong],
Gao, C.X.[Chang-Xin],
Jin, R.[Rong],
Sang, N.[Nong],
Hybrid Relation Guided Set Matching for Few-shot Action Recognition,
CVPR22(19916-19925)
IEEE DOI
2210
Measurement, Training, Semantics, Benchmark testing,
Kinetic theory, Task analysis,
Self- semi- meta- unsupervised learning
BibRef
Wang, X.[Xiang],
Zhang, S.W.[Shi-Wei],
Cen, J.[Jun],
Gao, C.X.[Chang-Xin],
Zhang, Y.Y.[Ying-Ya],
Zhao, D.L.[De-Li],
Sang, N.[Nong],
CLIP-guided Prototype Modulating for Few-shot Action Recognition,
IJCV(132), No. 6, June 2024, pp. 1899-1912.
Springer DOI
2406
BibRef
Su, T.[Taiyi],
Wang, H.[Hanli],
Qi, Q.P.[Qiu-Ping],
Wang, L.[Lei],
He, B.[Bin],
Transductive Learning With Prior Knowledge for Generalized Zero-Shot
Action Recognition,
CirSysVideo(34), No. 1, January 2024, pp. 260-273.
IEEE DOI Code:
WWW Link.
2401
BibRef
Zheng, Z.W.[Zi-Wei],
Yang, L.[Le],
Wang, Y.L.[Yu-Lin],
Zhang, M.[Miao],
He, L.J.[Li-Jun],
Huang, G.[Gao],
Li, F.[Fan],
Dynamic Spatial Focus for Efficient Compressed Video Action
Recognition,
CirSysVideo(34), No. 2, February 2024, pp. 695-708.
IEEE DOI
2402
Image coding, Task analysis, Optical flow, Decoding,
Feature extraction, Dynamics, Video action recognition,
dynamic neural networks
BibRef
Wang, Y.L.[Yu-Lin],
Yue, Y.[Yang],
Lin, Y.Z.[Yuan-Ze],
Jiang, H.J.[Hao-Jun],
Lai, Z.H.[Zi-Hang],
Kulikov, V.[Victor],
Orlov, N.[Nikita],
Shi, H.[Humphrey],
Huang, G.[Gao],
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for
Video Recognition,
CVPR22(20030-20040)
IEEE DOI
2210
Training, Adaptation models, Computational modeling, Redundancy,
Pipelines, Reinforcement learning, Benchmark testing,
Efficient learning and inferences
BibRef
Wang, Y.L.[Yu-Lin],
Yue, Y.[Yang],
Xu, X.H.[Xin-Hong],
Hassani, A.[Ali],
Kulikov, V.[Victor],
Orlov, N.[Nikita],
Song, S.[Shiji],
Shi, H.[Humphrey],
Huang, G.[Gao],
AdaFocusV3: On Unified Spatial-Temporal Dynamic Video Recognition,
ECCV22(IV:226-243).
Springer DOI
2211
BibRef
Gao, Y.[Yue],
Lu, J.X.[Jia-Xuan],
Li, S.Q.[Si-Qi],
Ma, N.[Nan],
Du, S.Y.[Shao-Yi],
Li, Y.P.[Yi-Peng],
Dai, Q.H.[Qiong-Hai],
Action Recognition and Benchmark Using Event Cameras,
PAMI(45), No. 12, December 2023, pp. 14081-14097.
IEEE DOI
2311
BibRef
Gao, Y.[Yue],
Lu, J.X.[Jia-Xuan],
Li, S.Q.[Si-Qi],
Li, Y.P.[Yi-Peng],
Du, S.[Shaoyi],
Hypergraph-Based Multi-View Action Recognition Using Event Cameras,
PAMI(46), No. 10, October 2024, pp. 6610-6622.
IEEE DOI
2409
Cameras, Feature extraction, Neural networks, Vision sensors,
Task analysis, Semantics, Robot vision systems,
hypergraph neural network
BibRef
Ma, N.[Nan],
Wu, Z.X.[Zhi-Xuan],
Feng, Y.F.[Yi-Fan],
Wang, C.[Cheng],
Gao, Y.[Yue],
Multi-View Time-Series Hypergraph Neural Network for Action
Recognition,
IP(33), 2024, pp. 3301-3313.
IEEE DOI
2405
Neural networks, Feature extraction, Correlation,
Adaptation models, Training, Heuristic algorithms, Data models,
multi-view time-series hypergraph neural network
BibRef
Di, J.[Jirui],
Hu, Z.P.[Zheng-Ping],
Bi, S.[Shuai],
Zhang, H.[Hehao],
Wang, Y.[Yulu],
Sun, Z.[Zhe],
Temporal refinement network: Combining dynamic convolution and
multi-scale information for fine-grained action recognition,
IVC(147), 2024, pp. 105058.
Elsevier DOI
2406
Fine-grained action recognition, Temporal refinement block,
Temporal pyramidal network
BibRef
Zhu, H.[Hao],
Xie, S.W.[Shao-Wen],
Liu, Z.[Zhen],
Liu, F.Y.[Feng-Yi],
Zhang, Q.[Qi],
Zhou, Y.[You],
Lin, Y.[Yi],
Ma, Z.[Zhan],
Cao, X.[Xun],
Disorder-Invariant Implicit Neural Representation,
PAMI(46), No. 8, August 2024, pp. 5463-5478.
IEEE DOI
2407
BibRef
Earlier: A2, A1, A3, A5, A6, A9, A8, Only:
DINER: Disorder-Invariant Implicit Neural Representation,
CVPR23(6143-6152)
IEEE DOI
2309
Encoding, Task analysis, Optimization, Inverse problems,
Frequency modulation, Training, Disorder-invariance, hash-table,
inverse problem optimization
BibRef
Zou, M.H.[Ming-Hao],
Zeng, Q.T.[Qing-Tian],
Zhang, X.[Xue],
Weakly-Supervised Action Learning in Procedural Task Videos via
Process Knowledge Decomposition,
CirSysVideo(34), No. 7, July 2024, pp. 5575-5588.
IEEE DOI
2407
Task analysis, Annotations, Training, Predictive models, Costs,
Context modeling, Prediction algorithms, local attention
BibRef
Liu, Z.S.[Zhi-Song],
Courant, R.[Robin],
Kalogeiton, V.[Vicky],
FunnyNet-W: Multimodal Learning of Funny Moments in Videos in the Wild,
IJCV(132), No. 8, August 2024, pp. 2885-2906.
Springer DOI
2408
BibRef
Zhang, X.M.[Xue-Mei],
Zhao, P.[Peng],
Ji, J.S.[Jin-Sheng],
Lu, X.[Xiankai],
Yin, Y.L.[Yi-Long],
Video Corpus Moment Retrieval via Deformable Multigranularity Feature
Fusion and Adversarial Training,
CirSysVideo(34), No. 8, August 2024, pp. 6686-6698.
IEEE DOI
2408
Training, Task analysis, Location awareness, Feature extraction,
Semantics, Visualization, Transformers, adversarial training
BibRef
Alfasly, S.[Saghir],
Lu, J.[Jian],
Xu, C.[Chen],
Li, Y.[Yu],
Zou, Y.[Yuru],
Auxiliary audio-textual modalities for better action recognition on
vision-specific annotated videos,
PR(156), 2024, pp. 110808.
Elsevier DOI
2408
BibRef
Earlier: A1, A2, A3, A5, Only:
Learnable Irrelevant Modality Dropout for Multimodal Action
Recognition on Modality-Specific Annotated Videos,
CVPR22(20176-20185)
IEEE DOI
2210
Action recognition, Multimodal training, Large language models,
Video transformer, Audio-visual training.
Training, Bridges, Visualization, Fuses, Computational modeling,
Semantics, Transfer learning, Action and event recognition,
Vision applications and systems
BibRef
Wang, R.M.[Ruo-Mei],
Feng, J.W.[Jia-Wei],
Zhang, F.[Fuwei],
Luo, X.N.[Xiao-Nan],
Luo, Y.M.[Yuan-Mao],
Modality-Aware Heterogeneous Graph for Joint Video Moment Retrieval
and Highlight Detection,
CirSysVideo(34), No. 9, September 2024, pp. 8896-8911.
IEEE DOI
2410
Task analysis, Correlation, Feature extraction, Cognition,
Decoding, Generators, Video moment retrieval,
cross-modal interaction
BibRef
Zhu, A.[Anlei],
Wang, Y.H.[Ying-Hui],
Yang, J.L.[Jin-Long],
Yan, T.[Tao],
Ma, H.[Haomiao],
Li, W.[Wei],
YOWOv3: A Lightweight Spatio-Temporal Joint Network for Video Action
Detection,
CirSysVideo(34), No. 9, September 2024, pp. 8148-8160.
IEEE DOI
2410
Feature extraction, Convolution, Computational modeling,
Solid modeling, Load modeling, Real-time systems, edge devices
BibRef
Bicsi, L.[Lucian],
Alexe, B.[Bogdan],
Ionescu, R.T.[Radu Tudor],
Leordeanu, M.[Marius],
JEDI: Joint Expert Distillation in a Semi-Supervised Multi-Dataset
Student-Teacher Scenario for Video Action Recognition,
LIMIT23(953-962)
IEEE DOI
2401
BibRef
Ming, Y.[Yue],
Xiong, L.[Lu],
Jia, X.[Xia],
Zheng, Q.F.[Qing-Fang],
Zhou, J.W.[Jiang-Wan],
Feng, F.[Fan],
Hu, N.N.[Nan-Nan],
Frequency Enhancement Network for Efficient Compressed Video Action
Recognition,
ICIP23(825-829)
IEEE DOI
2312
BibRef
Hasan, Z.[Zahid],
Ahmed, M.[Masud],
Faridee, A.Z.M.[Abu Zaher Md],
Purushotham, S.[Sanjay],
Kwon, H.S.[Hee-Sung],
Lee, H.[Hyungtae],
Roy, N.[Nirmalya],
NEV-NCD: Negative Learning, Entropy, and Variance Regularization
Based Novel Action Categories Discovery,
ICIP23(2720-2724)
IEEE DOI
2312
BibRef
Zhang, J.H.[Jiang-Hao],
Zhong, X.[Xian],
Liu, W.X.[Wen-Xuan],
Jiang, K.[Kui],
Yang, Z.W.[Zheng-Wei],
Wang, Z.[Zheng],
Implicit Attention-Based Cross-Modal Collaborative Learning for
Action Recognition,
ICIP23(3020-3024)
IEEE DOI
2312
BibRef
Chang, S.[Shuning],
Wang, P.[Pichao],
Wang, F.[Fan],
Feng, J.S.[Jia-Shi],
Shou, M.Z.[Mike Zheng],
DOAD: Decoupled One Stage Action Detection Network,
HVU23(3123-3232)
IEEE DOI
2309
BibRef
Liu, S.M.[Shu-Ming],
Xu, M.M.[Meng-Meng],
Zhao, C.[Chen],
Zhao, X.[Xu],
Ghanem, B.[Bernard],
ETAD: Training Action Detection End to End on a Laptop,
ECV23(4525-4534)
IEEE DOI
2309
BibRef
He, B.[Bo],
Yang, X.T.[Xi-Tong],
Wang, H.Y.[Han-Yu],
Wu, Z.X.[Zu-Xuan],
Chen, H.[Hao],
Huang, S.[Shuaiyi],
Ren, Y.X.[Yi-Xuan],
Lim, S.N.[Ser-Nam],
Shrivastava, A.[Abhinav],
Towards Scalable Neural Representation for Diverse Videos,
CVPR23(6132-6142)
IEEE DOI
2309
BibRef
Zhang, C.H.[Chu-Han],
Gupta, A.[Ankush],
Zisserman, A.[Andrew],
Is an Object-centric Video Representation Beneficial for Transfer?,
ACCV22(IV:379-397).
Springer DOI
2307
BibRef
Ye, N.[Na],
Zhang, X.[Xing],
Yan, D.W.[Da-Wei],
Dong, W.[Wei],
Yan, Q.S.[Qing-Sen],
SCOAD: Single-Frame Click Supervision for Online Action Detection,
ACCV22(IV:223-238).
Springer DOI
2307
BibRef
Han, H.F.[Hong-Feng],
Lu, Z.W.[Zhi-Wu],
Wen, J.R.[Ji-Rong],
Binary Neural Network for Video Action Recognition,
MMMod23(I: 95-106).
Springer DOI
2304
BibRef
Guo, J.X.[Jin-Xin],
Zhang, J.Q.[Jia-Qiang],
Zhang, X.J.[Xiao-Jing],
Ma, M.[Ming],
LAE-Net: Light and Efficient Network for Compressed Video Action
Recognition,
MMMod23(II: 265-276).
Springer DOI
2304
BibRef
Shah, K.[Ketul],
Shah, A.[Anshul],
Lau, C.P.[Chun Pong],
de Melo, C.M.[Celso M.],
Chellapp, R.[Rama],
Multi-View Action Recognition using Contrastive Learning,
WACV23(3370-3380)
IEEE DOI
2302
Training, Synchronization, Standards, Videos, Synthetic data,
Algorithms: Video recognition and understanding (tracking
BibRef
Lu, Y.F.[Yi-Fan],
Singh, G.[Gurkirt],
Saha, S.[Suman],
Van Gool, L.J.[Luc J.],
Exploiting Instance-based Mixed Sampling via Auxiliary Source Domain
Supervision for Domain-adaptive Action Detection,
WACV23(4134-4145)
IEEE DOI
2302
Training, Protocols, Semantic segmentation, Source coding,
Self-supervised learning
BibRef
Conte, D.[Donatello],
Fioretti, G.G.[Giuliano Giovanni],
Sansone, C.[Carlo],
On the Importance of Temporal Features in Domain Adaptation Methods for
Action Recognition,
SSSPR22(264-273).
Springer DOI
2301
BibRef
Gebotys, B.[Brennan],
Wong, A.[Alexander],
Clausi, D.A.[David A.],
M2A: Motion Aware Attention for Accurate Video Action Recognition,
CRV22(83-89)
IEEE DOI
2301
Codes, Computational modeling, Neural networks, Machine learning,
Benchmark testing, video action recognition, motion, attention
BibRef
Tai, T.M.[Tsung-Ming],
Fiameni, G.[Giuseppe],
Lee, C.K.[Cheng-Kuang],
See, S.[Simon],
Lanz, O.[Oswald],
Unified Recurrence Modeling for Video Action Anticipation,
ICPR22(3273-3279)
IEEE DOI
2212
Annotations, Message passing,
Computational modeling, Decision making, Predictive models
BibRef
Han, Y.F.[Yun-Fei],
Tan, S.[Shan],
TwinLSTM: Two-channel LSTM Network for Online Action Detection,
ICPR22(3310-3317)
IEEE DOI
2212
Recurrent neural networks, Fuses, Feature extraction,
History, Long short term memory
BibRef
Vu, D.Q.[Duc-Quang],
Le, N.T.H.[Ngan T.H.],
Wang, J.C.[Jia-Ching],
(2+1)D Distilled ShuffleNet: A Lightweight Unsupervised Distillation
Network for Human Action Recognition,
ICPR22(3197-3203)
IEEE DOI
2212
Knowledge engineering, Training, Performance evaluation,
Computational modeling, Self-supervised learning
BibRef
Li, X.X.[Xiu-Xiu],
Zhang, P.[Pu],
Wang, C.X.[Chao-Xian],
Wu, S.J.[Sheng-Jun],
Similarity Measurement Human Actions with GNN,
ICIVC22(825-830)
IEEE DOI
2301
Convolution, Feature extraction, Skeleton, Graph neural networks,
Motion capture, Motion measurement, Reliability, human skeleton, LSTM
BibRef
Shalmani, S.M.[Shervin Manzuri],
Chiang, F.[Fei],
Zheng, R.[Rong],
Efficient Action Recognition Using Confidence Distillation,
ICPR22(3362-3369)
IEEE DOI
2212
Training, Computational modeling, Neural networks,
Machine learning, Predictive models, Sampling methods
BibRef
Mao, Y.Y.[Yun-Yao],
Zhou, W.G.[Wen-Gang],
Lu, Z.B.[Zhen-Bo],
Deng, J.J.[Jia-Jun],
Li, H.Q.[Hou-Qiang],
CMD: Self-supervised 3D Action Representation Learning with Cross-Modal
Mutual Distillation,
ECCV22(III:734-752).
Springer DOI
2211
BibRef
Weng, Y.T.[Yue-Tian],
Pan, Z.Z.[Zi-Zheng],
Han, M.F.[Ming-Fei],
Chang, X.J.[Xiao-Jun],
Zhuang, B.[Bohan],
An Efficient Spatio-Temporal Pyramid Transformer for Action Detection,
ECCV22(XXXIV:358-375).
Springer DOI
2211
BibRef
Li, Z.[Zhi],
He, L.[Lu],
Xu, H.J.[Hui-Juan],
Weakly-Supervised Temporal Action Detection for Fine-Grained Videos
with Hierarchical Atomic Actions,
ECCV22(X:567-584).
Springer DOI
2211
BibRef
Pu, S.[Shi],
Zhao, K.[Kaili],
Zheng, M.[Mao],
Alignment-Uniformity aware Representation Learning for Zero-shot
Video Classification,
CVPR22(19936-19945)
IEEE DOI
2210
Representation learning, Measurement, Analytical models, Codes,
Computational modeling, Semantics, Action and event recognition,
Video analysis and understanding
BibRef
Lin, C.C.[Chung-Ching],
Lin, K.[Kevin],
Wang, L.J.[Li-Juan],
Liu, Z.C.[Zi-Cheng],
Li, L.J.[Lin-Jie],
Crossmodal Representation Learning for Zero-shot Action Recognition,
CVPR22(19946-19956)
IEEE DOI
2210
Training, Representation learning, Visualization, Text recognition,
Computational modeling, Semantics, Benchmark testing,
Video analysis and understanding
BibRef
Truong, T.D.[Thanh-Dat],
Bui, Q.H.[Quoc-Huy],
Duong, C.N.[Chi Nhan],
Seo, H.S.[Han-Seok],
Phung, S.L.[Son Lam],
Li, X.[Xin],
Luu, K.[Khoa],
DirecFormer: A Directed Attention in Transformer Approach to Robust
Action Recognition,
CVPR22(19998-20008)
IEEE DOI
2210
Correlation, Benchmark testing, Transformers, Robustness,
Kinetic theory,
Video analysis and understanding
BibRef
Dai, R.[Rui],
Das, S.[Srijan],
Kahatapitiya, K.[Kumara],
Ryoo, M.S.[Michael S.],
Brémond, F.[François],
MS-TCT: Multi-Scale Temporal ConvTransformer for Action Detection,
CVPR22(20009-20019)
IEEE DOI
2210
Fuses, Computational modeling, Benchmark testing,
Task analysis, Mixers,
Behavior analysis
BibRef
Guo, H.J.[Hong-Ji],
Wang, H.J.[Han-Jing],
Ji, Q.[Qiang],
Uncertainty-Guided Probabilistic Transformer for Complex Action
Recognition,
CVPR22(20020-20029)
IEEE DOI
2210
Training, Analytical models, Uncertainty, Computational modeling,
Training data, Predictive models, Transformers,
Video analysis and understanding
BibRef
Thatipelli, A.[Anirudh],
Narayan, S.[Sanath],
Khan, S.[Salman],
Anwer, R.M.[Rao Muhammad],
Khan, F.S.[Fahad Shahbaz],
Ghanem, B.[Bernard],
Spatio-temporal Relation Modeling for Few-shot Action Recognition,
CVPR22(19926-19935)
IEEE DOI
2210
Representation learning, Codes, Computational modeling, Aggregates,
Benchmark testing, retrieval,
Recognition: detection
BibRef
Khorasgani, S.H.[Salar Hosseini],
Chen, Y.X.[Yu-Xuan],
Shkurti, F.[Florian],
SLIC: Self-Supervised Learning with Iterative Clustering for Human
Action Videos,
CVPR22(16070-16080)
IEEE DOI
2210
Supervised learning, Self-supervised learning,
Iterative methods, Videos,
Self- semi- meta- Video analysis and understanding
BibRef
Kumar, A.[Akash],
Rawat, Y.S.[Yogesh Singh],
End-to-End Semi-Supervised Learning for Video Action Detection,
CVPR22(14680-14690)
IEEE DOI
2210
Location awareness, Codes, Annotations, Object segmentation,
Semisupervised learning, Benchmark testing,
Video analysis and understanding
BibRef
Min, S.[Sunah],
Moon, J.[Jinyoung],
Information Elevation Network for Online Action Detection and
Anticipation,
Precognition22(2549-2557)
IEEE DOI
2210
Visualization, Surveillance, Color, Streaming media, Logic gates
BibRef
Yang, L.J.[Li-Jin],
Huang, Y.F.[Yi-Fei],
Sugano, Y.[Yusuke],
Sato, Y.[Yoichi],
Interact before Align: Leveraging Cross-Modal Knowledge for Domain
Adaptive Action Recognition,
CVPR22(14702-14712)
IEEE DOI
2210
Adaptation models, Target recognition, Annotations, Semantics,
Benchmark testing, Data models, Video analysis and understanding
BibRef
Gong, X.Y.[Xin-Yu],
Wang, H.[Heng],
Shou, Z.[Zheng],
Feiszli, M.[Matt],
Wang, Z.Y.[Zhang-Yang],
Yan, Z.C.[Zhi-Cheng],
Searching for Two-Stream Models in Multivariate Space for Video
Recognition,
ICCV21(8013-8022)
IEEE DOI
2203
Computational modeling, Manuals,
Streaming media, Benchmark testing, Space exploration,
BibRef
Liu, B.[Bo],
Li, H.X.[Hao-Xiang],
Kang, H.[Hao],
Hua, G.[Gang],
Vasconcelos, N.M.[Nuno M.],
GistNet: a Geometric Structure Transfer Network for Long-Tailed
Recognition,
ICCV21(8189-8198)
IEEE DOI
2203
Training, Geometry, Transfer learning,
Manuals, Sampling methods,
Recognition and classification
BibRef
Wang, X.[Xiang],
Zhang, S.W.[Shi-Wei],
Qing, Z.W.[Zhi-Wu],
Shao, Y.J.[Yuan-Jie],
Zuo, Z.R.[Zheng-Rong],
Gao, C.X.[Chang-Xin],
Sang, N.[Nong],
OadTR: Online Action Detection with Transformers,
ICCV21(7545-7555)
IEEE DOI
2203
Training, Visualization, Recurrent neural networks,
Streaming media, Transformers, Encoding, Spatiotemporal phenomena,
Action and behavior recognition
BibRef
Shi, B.F.[Bai-Feng],
Dai, Q.[Qi],
Hoffman, J.[Judy],
Saenko, K.[Kate],
Darrell, T.J.[Trevor J.],
Xu, H.J.[Hui-Juan],
Temporal Action Detection with Multi-level Supervision,
ICCV21(8002-8012)
IEEE DOI
2203
Training, Costs, Annotations, Semisupervised learning,
Feature extraction, Information filters, Motion and tracking
BibRef
Li, R.[Rui],
Zhang, Y.H.[Yi-Heng],
Qiu, Z.F.[Zhao-Fan],
Yao, T.[Ting],
Liu, D.[Dong],
Mei, T.[Tao],
Motion-Focused Contrastive Learning of Video Representations*,
ICCV21(2085-2094)
IEEE DOI
2203
How important is the actual motion in learning.
Representation learning, Protocols, Feature extraction,
Spatiotemporal phenomena, Motion measurement,
BibRef
Qian, Y.J.[Yi-Jun],
Kang, G.L.[Guo-Liang],
Yu, L.J.[Li-Jun],
Liu, W.H.[Wen-He],
Hauptmann, A.G.[Alexander G.],
TRM: Temporal Relocation Module for Video Recognition,
Activity22(151-160)
IEEE DOI
2202
An approach to get video into neural network learning system.
Adaptation models, Convolution,
Computational modeling, Benchmark testing, Transmission line measurements
BibRef
Degardin, B.[Bruno],
Neves, J.C.[João C.],
Lopes, V.[Vasco],
Brito, J.[João],
Yaghoubi, E.[Ehsan],
Proença, H.[Hugo],
Generative Adversarial Graph Convolutional Networks for Human Action
Synthesis,
WACV22(2753-2762)
IEEE DOI
2202
Convolutional codes, Measurement, Shape,
Stochastic processes, GANs
BibRef
Leong, M.C.[Mei Chee],
Tan, H.L.[Hui Li],
Zhang, H.S.[Hao-Song],
Li, L.Y.[Li-Yuan],
Lin, F.[Feng],
Lim, J.H.[Joo Hwee],
Joint Learning on the Hierarchy Representation for Fine-Grained Human
Action Recognition,
ICIP21(1059-1063)
IEEE DOI
2201
Training, Image recognition, Image coding, Semantics, Task analysis,
Action recognition, fine-grained action recognition,
joint representation
BibRef
Singh, A.[Ankit],
Chakraborty, O.[Omprakash],
Varshney, A.[Ashutosh],
Panda, R.[Rameswar],
Feris, R.S.[Rogerio S.],
Saenko, K.[Kate],
Das, A.[Abir],
Semi-Supervised Action Recognition with Temporal Contrastive Learning,
CVPR21(10384-10394)
IEEE DOI
2111
Image recognition, Semantics,
Network architecture, Benchmark testing, Robustness
BibRef
Wang, X.[Xiang],
Zhang, S.W.[Shi-Wei],
Qing, Z.W.[Zhi-Wu],
Shao, Y.J.[Yuan-Jie],
Gao, C.X.[Chang-Xin],
Sang, N.[Nong],
Self-Supervised Learning for Semi-Supervised Temporal Action Proposal,
CVPR21(1905-1914)
IEEE DOI
2111
Codes, Perturbation methods,
Proposals, Task analysis
BibRef
Perrett, T.[Toby],
Masullo, A.[Alessandro],
Burghardt, T.[Tilo],
Mirmehdi, M.[Majid],
Damen, D.[Dima],
Temporal-Relational CrossTransformers for Few-Shot Action Recognition,
CVPR21(475-484)
IEEE DOI
2111
Prototypes, Kinetic theory,
Spatiotemporal phenomena, Videos
BibRef
Ben-Ari, R.[Rami],
Nacson, M.S.[Mor Shpigel],
Azulai, O.[Ophir],
Barzelay, U.[Udi],
Rotman, D.[Daniel],
TAEN: Temporal Aware Embedding Network for Few-Shot Action
Recognition,
LLID21(2780-2788)
IEEE DOI
2109
Training, Semantics, Benchmark testing,
Extraterrestrial measurements
BibRef
Rana, A.J.[Aayush J],
Rawat, Y.S.[Yogesh S],
We don't Need Thousand Proposals:
Single Shot Actor-Action Detection in Videos,
WACV21(2959-2968)
IEEE DOI
2106
Convolutional codes, Scalability,
Computational modeling, Memory management, Proposals
BibRef
Alibayev, M.[Maxat],
Paulius, D.[David],
Sun, Y.[Yu],
Developing Motion Code Embedding for Action Recognition in Videos,
ICPR21(7529-7536)
IEEE DOI
2105
Visualization, Taxonomy, Semantics, Neural networks,
Machine learning, Feature extraction
BibRef
Shao, J.[Jie],
Xue, X.Y.[Xiang-Yang],
Learnable Higher-Order Representation for Action Recognition,
ICPR21(9038-9045)
IEEE DOI
2105
Visualization, Computational modeling, Architecture,
Spatiotemporal phenomena,
Kinetic theory
BibRef
Roitberg, A.[Alina],
Haurilet, M.[Monica],
Martinez, M.[Manuel],
Stiefelhagen, R.[Rainer],
Uncertainty-sensitive Activity Recognition:
A Reliability Benchmark and the CARING Models,
ICPR21(3814-3821)
IEEE DOI
2105
Calibrated Action Recognition with Input Guidance.
Temperature dependence, Uncertainty, Transforms,
Activity recognition, Predictive models, Benchmark testing, Calibration
BibRef
Gao, H.Y.[Hao-Yuan],
Zhang, Y.F.[Yi-Fan],
Sun, L.H.[Lin-Hui],
Cheng, J.[Jian],
Action Representing by Constrained Conditional Mutual Information,
ACCV22(IV:291-306).
Springer DOI
2307
BibRef
Cheng, K.[Ke],
Zhang, Y.F.[Yi-Fan],
Li, C.H.[Cheng-Hua],
Cheng, J.[Jian],
Lu, H.Q.[Han-Qing],
Motion Complementary Network for Efficient Action Recognition,
ICPR21(1543-1549)
IEEE DOI
2105
Convolution, Graphics processing units, Throughput, Computational efficiency,
Kinetic theory
BibRef
Tsiaousis, M.[Michail],
Burghouts, G.[Gertjan],
Hillerström, F.[Fieke],
van der Putten, P.[Peter],
Spot What Matters: Learning Context Using Graph Convolutional Networks
for Weakly-Supervised Action Detection,
HCAU20(115-130).
Springer DOI
2103
BibRef
Li, H.S.[Hong-Sheng],
Zhang, W.W.[Wei-Wei],
Zhu, G.M.[Guang-Ming],
Zhang, L.[Liang],
Shen, P.[Peiyi],
Song, J.[Juan],
Nonlinear Temporal Correlation Based Network for Action Recognition,
FBE20(748-763).
Springer DOI
2103
BibRef
Ma, H.D.[Han-Dong],
Duan, L.X.[Li-Xin],
Temporal Action Proposal Generation via Multi-Task Feature Learning,
VCIP20(399-402)
IEEE DOI
2102
Proposals, Correlation, Feature extraction, Task analysis,
Fuses, Convolution, correlation loss
BibRef
Zhi, Y.[Yuan],
Tong, Z.[Zhan],
Wang, L.M.[Li-Min],
Wu, G.S.[Gang-Shan],
MGSampler: An Explainable Sampling Strategy for Video Action
Recognition,
ICCV21(1493-1502)
IEEE DOI
2203
Adaptation models, Codes, Motion segmentation,
Computational modeling, Redundancy,
Recognition and classification
BibRef
Wang, Z.Z.[Zhen-Zhi],
Gao, Z.T.[Zi-Teng],
Wang, L.M.[Li-Min],
Li, Z.F.[Zhi-Feng],
Wu, G.S.[Gang-Shan],
Boundary-aware Cascade Networks for Temporal Action Segmentation,
ECCV20(XXV:34-51).
Springer DOI
2011
BibRef
Huang, X.,
Mousavi, H.,
Roig, G.,
Predictive Coding Networks Meet Action Recognition,
ICIP20(793-797)
IEEE DOI
2011
Feature extraction, Videos, Adaptive optics, Optical imaging,
Optical network units, Training, Computational modeling,
Optical flow
BibRef
Weng, J.W.[Jun-Wu],
Luo, D.H.[Dong-Hao],
Wang, Y.B.[Ya-Biao],
Tai, Y.[Ying],
Wang, C.J.[Cheng-Jie],
Li, J.L.[Ji-Lin],
Huang, F.Y.[Fei-Yue],
Jiang, X.D.[Xu-Dong],
Yuan, J.S.[Jun-Song],
Temporal Distinct Representation Learning for Action Recognition,
ECCV20(VII:363-378).
Springer DOI
2011
BibRef
Si, C.Y.[Chen-Yang],
Nie, X.C.[Xue-Cheng],
Wang, W.[Wei],
Wang, L.[Liang],
Tan, T.N.[Tie-Niu],
Feng, J.S.[Jia-Shi],
Adversarial Self-supervised Learning for Semi-Supervised 3d Action
Recognition,
ECCV20(VII:35-51).
Springer DOI
2011
BibRef
Piergiovanni, A.J.,
Angelova, A.[Anelia],
Toshev, A.[Alexander],
Ryoo, M.S.[Michael S.],
Adversarial Generative Grammars for Human Activity Prediction,
ECCV20(II:507-523).
Springer DOI
2011
BibRef
Bai, Y.R.[Yue-Ran],
Wang, Y.Y.[Ying-Ying],
Tong, Y.H.[Yun-Hai],
Yang, Y.[Yang],
Liu, Q.Y.[Qi-Yue],
Liu, J.H.[Jun-Hui],
Boundary Content Graph Neural Network for Temporal Action Proposal
Generation,
ECCV20(XXVIII:121-137).
Springer DOI
2011
BibRef
Long, T.,
Mettes, P.S.,
Shen, H.T.,
Snoek, C.G.M.,
Searching for Actions on the Hyperbole,
CVPR20(1138-1147)
IEEE DOI
2008
Prototypes, Image recognition, Standards,
Mathematical model, Training, Semantics
BibRef
Lin, T.,
Zhao, X.,
Fan, Z.,
Temporal action localization with two-stream segment-based RNN,
ICIP17(3400-3404)
IEEE DOI
1803
Bidirectional control, Feature extraction,
Recurrent neural networks, Task analysis, Training, Videos, LSTM, RNN,
Two-stream ConvNet
BibRef
Xu, M.,
Gao, M.,
Chen, Y.,
Davis, L.S.,
Crandall, D.J.[David J.],
Temporal Recurrent Networks for Online Action Detection,
ICCV19(5531-5540)
IEEE DOI
2004
image motion analysis, recurrent neural nets,
video signal processing, Temporal Recurrent Networks,
Predictive models
BibRef
Xu, M.,
Sharghi, A.,
Chen, X.,
Crandall, D.J.,
Fully-Coupled Two-Stream Spatiotemporal Networks for Extremely Low
Resolution Action Recognition,
WACV18(1607-1615)
IEEE DOI
1806
feature extraction, image motion analysis,
image recognition, image sequences, spatiotemporal phenomena,
Videos
BibRef
García, R.O.[Reinier Oves],
Sucar, L.E.[L. Enrique],
What the Appearance Channel from Two-stream Architectures for Activity
Recognition Is Learning?,
MCPR20(251-260).
Springer DOI
2007
BibRef
Biswas, S.[Sovan],
Souri, Y.,
Gall, J.[Juergen],
Hierarchical Graph-RNNS for Action Detection of Multiple Activities,
ICIP19(1-5)
IEEE DOI
1910
Spatio-temporal action detection, Graph-RNN
BibRef
Peng, W.,
Hong, X.,
Zhao, G.,
Video Action Recognition Via Neural Architecture Searching,
ICIP19(11-15)
IEEE DOI
1910
Automated machine learning, neural architecture search, video action recognition
BibRef
Wang, H.,
Wang, L.,
Modeling Temporal Dynamics and Spatial Configurations of Actions
Using Two-Stream Recurrent Neural Networks,
CVPR17(3633-3642)
IEEE DOI
1711
Hidden Markov models, Logic gates,
Recurrent neural networks, Skeleton, Videos
BibRef
Khatir, N.[Nadjia],
López-Sastre, R.J.[Roberto J.],
Baptista-Ríos, M.[Marcos],
Nait-Bahloul, S.[Safia],
Acevedo-Rodríguez, F.J.[Francisco Javier],
Combining Online Clustering and Rank Pooling Dynamics for Action
Proposals,
IbPRIA19(I:77-88).
Springer DOI
1910
BibRef
Esser, P.[Patrick],
Haux, J.[Johannes],
Milbich, T.[Timo],
Ommer, B.[Björn],
Towards Learning a Realistic Rendering of Human Behavior,
HBU18(II:409-425).
Springer DOI
1905
BibRef
Kundu, J.N.,
Gor, M.,
Uppala, P.K.,
Radhakrishnan, V.B.,
Unsupervised Feature Learning of Human Actions As Trajectories in
Pose Embedding Manifold,
WACV19(1459-1467)
IEEE DOI
1904
feature extraction, image motion analysis, image recognition,
image representation, image sequences,
Dynamics
BibRef
Kim, T.S.[Tae Soo],
Peven, M.[Mike],
Qiu, W.C.[Wei-Chao],
Yuille, A.L.[Alan L.],
Hager, G.D.[Gregory D.],
Synthesizing Attributes with Unreal Engine for Fine-grained Activity
Analysis,
HADCV19(35-37)
IEEE DOI
1902
Training with simulated data.
Automobiles, Visualization, Geometry, Engines,
Training, Cameras
BibRef
Khalid, M.U.,
Yu, J.,
Multi-Modal Three-Stream Network for Action Recognition,
ICPR18(3210-3215)
IEEE DOI
1812
Tensile stress, Interpolation, Feature extraction,
Training
BibRef
Zhu, J.,
Zou, W.,
Zhu, Z.,
Two-Stream Gated Fusion ConvNets for Action Recognition,
ICPR18(597-602)
IEEE DOI
1812
Logic gates, Videos, Training, Feature extraction, Fuses,
Learning systems
BibRef
Wang, Y.,
Zhou, L.,
Qiao, Y.,
Temporal Hallucinating for Action Recognition with Few Still Images,
CVPR18(5314-5322)
IEEE DOI
1812
Videos, Training, Image recognition, Memory modules, Optical imaging, Kernel
BibRef
Coskun, H.[Huseyin],
Zareian, A.[Alireza],
Moore, J.L.[Joshua L.],
Tombari, F.[Federico],
Wang, C.[Chen],
GOCA: Guided Online Cluster Assignment for Self-Supervised Video
Representation Learning,
ECCV22(XXXI:1-22).
Springer DOI
2211
BibRef
Cai, H.Y.[Hao-Ye],
Bai, C.Y.[Chun-Yan],
Tai, Y.W.[Yu-Wing],
Tang, C.K.[Chi-Keung],
Deep Video Generation, Prediction and Completion of Human Action
Sequences,
ECCV18(II: 374-390).
Springer DOI
1810
BibRef
Andonian, A.[Alex],
Fosco, C.[Camilo],
Monfort, M.[Mathew],
Lee, A.[Allen],
Feris, R.S.[Rogerio S.],
Vondrick, C.[Carl],
Oliva, A.[Aude],
We Have So Much in Common:
Modeling Semantic Relational Set Abstractions in Videos,
ECCV20(XVIII:18-34).
Springer DOI
2012
BibRef
Zhou, B.[Bolei],
Andonian, A.[Alex],
Oliva, A.[Aude],
Torralba, A.B.[Antonio B.],
Temporal Relational Reasoning in Videos,
ECCV18(I: 831-846).
Springer DOI
1810
learn and reason about temporal dependencies between video frames
BibRef
Wang, L.[Lan],
Gao, C.Q.[Chen-Qiang],
Yang, L.[Luyu],
Zhao, Y.[Yue],
Zuo, W.M.[Wang-Meng],
Meng, D.Y.[De-Yu],
PM-GANs: Discriminative Representation Learning for Action Recognition
Using Partial-Modalities,
ECCV18(VI: 389-406).
Springer DOI
1810
BibRef
Qiao, X.,
Zhou, C.,
Xu, C.,
Cui, Z.,
Yang, J.,
Action Recognition with Spatial-Temporal Representation Analysis
Across Grassmannian Manifold and Euclidean Space,
ICIP18(3448-3452)
IEEE DOI
1809
Manifolds, Feature extraction, Trajectory, Support vector machines,
Measurement, Task analysis, Neural networks, Action recognition,
Temporal information
BibRef
Zhang, T.,
Li, N.,
Huang, J.,
Zhong, J.,
Li, G.,
An Active Action Proposal Method Based on Reinforcement Learning,
ICIP18(4053-4057)
IEEE DOI
1809
Proposals, Training, Task analysis, Feature extraction,
Learning (artificial intelligence), Q-learning
BibRef
Mehrseresht, N.[Nagita],
Action Parsing Using Context Features,
DICTA17(1-7)
IEEE DOI
1804
dynamic programming, feature extraction, image classification,
image segmentation, image sequences, program compilers,
Video sequences
BibRef
Pan, R.,
Ma, L.,
Zhan, Y.,
Cai, S.,
A Novel Orientation-Context Descriptor and Locality-Preserving Fisher
Discrimination Dictionary Learning for Action Recognition,
DICTA17(1-8)
IEEE DOI
1804
feature extraction, image coding, image motion analysis,
image recognition, image representation, FDDL method,
Training
BibRef
Ge, R.Z.[Run-Zhou],
Gao, J.Y.[Ji-Yang],
Chen, K.[Kan],
Nevatia, R.[Ram],
MAC: Mining Activity Concepts for Language-Based Temporal
Localization,
WACV19(245-253)
IEEE DOI
1904
data mining, image representation,
learning (artificial intelligence),
Task analysis
BibRef
Gao, J.Y.[Ji-Yang],
Chen, K.[Kan],
Nevatia, R.[Ram],
CTAP: Complementary Temporal Action Proposal Generation,
ECCV18(II: 70-85).
Springer DOI
1810
BibRef
Gao, J.Y.[Ji-Yang],
Yang, Z.H.[Zhen-Heng],
Sun, C.[Chen],
Chen, K.[Kan],
Nevatia, R.[Ram],
TURN TAP: Temporal Unit Regression Network for Temporal Action
Proposals,
ICCV17(3648-3656)
IEEE DOI
1802
Predicts action proposals and refines the temporal boundaries.
Unit feature reuse.
feature extraction, gesture recognition, image classification,
image colour analysis, image motion analysis, object detection,
Windows
BibRef
Yang, J.,
Yuan, J.,
Common Action Discovery and Localization in Unconstrained Videos,
ICCV17(2176-2185)
IEEE DOI
1802
computational complexity, graph theory, optimisation,
video signal processing, affinity graph, common action discovery,
Videos
BibRef
Yeung, S.[Serena],
Ramanathan, V.[Vignesh],
Russakovsky, O.[Olga],
Shen, L.Y.[Li-Yue],
Mori, G.[Greg],
Fei-Fei, L.[Li],
Learning to Learn from Noisy Web Videos,
CVPR17(7455-7463)
IEEE DOI
1711
Animals, Data models, Labeling, Noise measurement, Training,
Videos, Visualization
BibRef
Shi, Z.,
Kim, T.K.,
Learning and Refining of Privileged Information-Based RNNs for Action
Recognition from Depth Sequences,
CVPR17(4684-4693)
IEEE DOI
1711
Data models, Feature extraction, Hidden Markov models,
Recurrent neural networks, Skeleton, Training
BibRef
Choi, J.,
Sharma, G.,
Chandraker, M.,
Huang, J.,
Unsupervised and Semi-Supervised Domain Adaptation for Action
Recognition from Drones,
WACV20(1706-1715)
IEEE DOI
2006
Videos, Drones, Task analysis, Training, Adaptation models,
Feature extraction, Optimization
BibRef
Yan, X.,
Hu, S.,
Ye, Y.,
Multi-task Clustering of Human Actions by Sharing Information,
CVPR17(4049-4057)
IEEE DOI
1711
Clustering methods, Correlation, Linear programming,
Mutual information, Videos, Vocabulary
BibRef
Gao, J.Y.[Ji-Yang],
Nevatia, R.[Ram],
Learning Action Concept Trees and Semantic Alignment Networks from
Image-Description Data,
ACCV16(II: 19-34).
Springer DOI
1704
BibRef
Dayrit, F.L.[Fabian Lorenzo],
Kimura, R.[Ryosuke],
Nakashima, Y.[Yuta],
Blanco, A.[Ambrosio],
Kawasaki, H.[Hiroshi],
Ikeuchi, K.[Katsushi],
Sato, T.[Tomokazu],
Yokoya, N.[Naokazu],
ReMagicMirror:
Action Learning Using Human Reenactment with the Mirror Metaphor,
MMMod17(I: 303-315).
Springer DOI
1701
BibRef
Yeung, S.,
Russakovsky, O.,
Mori, G.,
Fei-Fei, L.[Li],
End-to-End Learning of Action Detection from Frame Glimpses in Videos,
CVPR16(2678-2687)
IEEE DOI
1612
BibRef
Singh, B.,
Marks, T.K.,
Jones, M.,
Tuzel, O.[Oncel],
Shao, M.,
A Multi-stream Bi-directional Recurrent Neural Network for
Fine-Grained Action Detection,
CVPR16(1961-1970)
IEEE DOI
1612
BibRef
Misra, I.[Ishan],
Zitnick, C.L.[C. Lawrence],
Hebert, M.[Martial],
Shuffle and Learn:
Unsupervised Learning Using Temporal Order Verification,
ECCV16(I: 527-544).
Springer DOI
1611
Action recognition
BibRef
Yu, T.S.[Tian-Shu],
Li, Y.K.[Yi-Kang],
Li, B.X.[Bao-Xin],
Rhyrnn: Rhythmic RNN for Recognizing Events in Long and Complex Videos,
ECCV20(X:127-144).
Springer DOI
2011
BibRef
Cai, J.J.[Jun-Jie],
Yu, J.[Jie],
Imai, F.[Francisco],
Tian, Q.[Qi],
Towards temporal adaptive representation for video action recognition,
ICIP16(4155-4159)
IEEE DOI
1610
Computational modeling
BibRef
Chen, J.L.[Jia-Lin],
Lin, Z.Y.[Zhi-Yi],
Wan, Y.C.[Yi-Chen],
Chen, L.G.[Liang-Gee],
Accelerated local feature extraction in a reuse scheme for efficient
action recognition,
ICIP16(296-299)
IEEE DOI
1610
Acceleration
BibRef
Park, E.[Eunbyung],
Berg, A.C.[Alexander C.],
Meta-tracker: Fast and Robust Online Adaptation for Visual Object
Trackers,
ECCV18(III: 587-604).
Springer DOI
1810
BibRef
Bagheri, M.A.,
Gao, Q.,
Escalera, S.,
Support vector machines with time series distance kernels for action
classification,
WACV16(1-7)
IEEE DOI
1606
Kernel
BibRef
Bozorgtabar, B.[Behzad],
Goecke, R.[Roland],
Multi-level action detection via learning latent structure,
ICIP15(3004-3008)
IEEE DOI
1512
Action detection
BibRef
Lee, H.Y.[Hsin-Ying],
Huang, J.B.[Jia-Bin],
Singh, M.[Maneesh],
Yang, M.H.[Ming-Hsuan],
Unsupervised Representation Learning by Sorting Sequences,
ICCV17(667-676)
IEEE DOI
1802
Learn the temporal sequence.
feature extraction, image classification, image representation,
image sequences, neural nets, object detection, sorting,
Visualization
BibRef
Ji, J.,
Cao, K.,
Niebles, J.C.[Juan Carlos],
Learning Temporal Action Proposals With Fewer Labels,
ICCV19(7072-7081)
IEEE DOI
2004
image motion analysis, image sequences, object detection,
supervised learning, video signal processing,
BibRef
Tahmoush, D.[David],
Bonial, C.,
Applying attributes to improve human activity recognition,
AIPR15(1-4)
IEEE DOI
1605
feature extraction
BibRef
Tahmoush, D.[David],
Applying action attribute class validation to improve human activity
recognition,
ChaLearn15(15-21)
IEEE DOI
1510
Accuracy; Databases; Joints; Ontologies; Training; Training data.
Dealing with noisy training data for actions.
BibRef
Ramanathan, V.[Vignesh],
Tang, K.[Kevin],
Mori, G.[Greg],
Fei-Fei, L.[Li],
Learning Temporal Embeddings for Complex Video Analysis,
ICCV15(4471-4479)
IEEE DOI
1602
Coherence
BibRef
Ramanathan, V.[Vignesh],
Li, C.C.[Cong-Cong],
Deng, J.[Jia],
Han, W.[Wei],
Li, Z.[Zhen],
Gu, K.L.[Kun-Long],
Song, Y.[Yang],
Bengio, S.[Samy],
Rossenberg, C.[Chuck],
Fei-Fei, L.[Li],
Learning semantic relationships for better action retrieval in images,
CVPR15(1100-1109)
IEEE DOI
1510
BibRef
Wu, X.Q.[Xu-Qing],
Shah, S.K.[Shishir K.],
Regularized Multi-view Multi-metric Learning for Action Recognition,
ICPR14(471-476)
IEEE DOI
1412
Cameras
BibRef
Wu, Z.M.[Zi-Ming],
Ng, W.W.Y.[Wing W.Y.],
Human action recognition using action bank and RBFNN trained by L-GEM,
ICWAPR14(30-35)
IEEE DOI
1402
BibRef
Jones, S.[Simon],
Shao, L.[Ling],
Unsupervised Spectral Dual Assignment Clustering of Human Actions in
Context,
CVPR14(604-611)
IEEE DOI
1409
Human Action Analysis; Unsupervised Learning; Video Clustering
BibRef
Chen, Y.B.[Yuan-Bo],
Guo, X.[Xin],
Learning non-negative locality-constrained Linear Coding for human
action recognition,
VCIP13(1-6)
IEEE DOI
1402
behavioural sciences computing
BibRef
lo Presti, L.[Liliana],
Sclaroff, S.[Stan],
Rozga, A.,
Joint Alignment and Modeling of Correlated Behavior Streams,
SocialInter13(730-737)
IEEE DOI
1403
correlation methods
BibRef
Cai, Q.[Qiao],
Yin, Y.F.[Ya-Feng],
Man, H.[Hong],
Learning spatio-temporal dependencies for action recognition,
ICIP13(3740-3744)
IEEE DOI
1402
Spatio-temporal dependencies; action recognition; self-organizing map
BibRef
Zhou, W.[Wen],
Wang, C.H.[Chun-Heng],
Xiao, B.H.[Bai-Hua],
Zhang, Z.[Zhong],
Ma, L.[Long],
Learning weighted features for human action recognition,
ICPR12(1160-1163).
WWW Link.
1302
BibRef
Baccouche, M.[Moez],
Mamalet, F.[Franck],
Wolf, C.[Christian],
Garcia, C.[Christophe],
Baskurt, A.[Atilla],
Sparse shift-invariant representation of local 2D patterns and sequence
learning for human action recognition,
ICPR12(3823-3826).
WWW Link.
1302
BibRef
Wolf, C.[Christian],
Baskurt, A.[Atilla],
Action recognition in videos,
IPTA12(3-4)
IEEE DOI
1503
graph theory
BibRef
Possegger, H.[Horst],
Mauthner, T.[Thomas],
Roth, P.M.[Peter M.],
Bischof, H.[Horst],
Occlusion Geodesics for Online Multi-object Tracking,
CVPR14(1306-1313)
IEEE DOI
1409
Multi-Object Tracking;Occlusion Geodesics;Online Tracking
BibRef
Mauthner, T.[Thomas],
Roth, P.M.[Peter M.],
Bischof, H.[Horst],
Learn to Move:
Activity Specific Motion Models for Tracking by Detection,
ARTEMIS12(III: 183-192).
Springer DOI
1210
BibRef
Roth, P.M.[Peter M.],
Mauthner, T.[Thomas],
Khan, I.[Inayatullah],
Bischof, H.[Horst],
Efficient human action recognition by cascaded linear classifcation,
ObjectEvent09(546-553).
IEEE DOI
0910
BibRef
Mauthner, T.[Thomas],
Roth, P.M.[Peter M.],
Bischof, H.[Horst],
Temporal Feature Weighting for Prototype-Based Action Recognition,
ACCV10(II: 566-579).
Springer DOI
1011
BibRef
Earlier:
Instant Action Recognition,
SCIA09(1-10).
Springer DOI
0906
BibRef
Ablavsky, V.[Vitaly],
Sclaroff, S.[Stan],
Learning parameterized histogram kernels on the simplex manifold for
image and action classification,
ICCV11(1473-1480).
IEEE DOI
1201
See also Layered Graphical Models for Tracking Partially Occluded Objects.
BibRef
Kovashka, A.[Adriana],
Grauman, K.[Kristen],
Learning a hierarchy of discriminative space-time neighborhood features
for human action recognition,
CVPR10(2046-2053).
IEEE DOI
1006
BibRef
Yao, B.[Benjamin],
Zhu, S.C.[Song-Chun],
Learning deformable action templates from cluttered videos,
ICCV09(1507-1514).
IEEE DOI
0909
Sequence of image templates with shape and motion primitives (Gabor wavelets,
and optical flow).
BibRef
Connolly, C.I.[Christopher I.],
Learning to Recognize Complex Actions Using Conditional Random Fields,
ISVC07(II: 340-348).
Springer DOI
0711
BibRef
Jung, S.H.[Sang-Hack],
Guo, Y.L.[Yan-Lin],
Sawhney, H.S.[Harpreet S.],
Kumar, R.T.[Rakesh T.],
Action exemplar based real-time action detection,
MLMotion09(498-505).
IEEE DOI
0910
BibRef
Earlier:
Multiple Cue Integrated Action Detection,
CVHCI07(108-117).
Springer DOI
0710
BibRef
Yang, C.J.[Chang-Jiang],
Guo, Y.L.[Yan-Lin],
Sawhney, H.S.[Harpreet S.],
Kumar, R.T.[Rakesh T.],
Learning Actions Using Robust String Kernels,
HUMO07(313-327).
Springer DOI
0710
BibRef
Lee, C.,
Learning Reduced-Dimension Models of Human Actions,
CMU-RI-TR-00-17, May 2000.
BibRef
0005
Ph.D.Thesis.
PDF File.
0102
BibRef
Bobick, A.F.[Aaron F.],
Pentland, A.P.[Alex P.],
Poggio, T.[Tommy],
VSAM at the MIT Media Laboratory and CBCL: Learning and Understanding
Action in Video Imagery PI Report 1998,
DARPA98(85-91).
BibRef
9800
And:
VSAM at the MIT Media laboratory and CBCL:
Learning and Understanding Action in Video Imagery,
DARPA97(25-30).
BibRef
Feichtenhofer, C.[Christoph],
Fan, H.,
Malik, J.,
He, K.,
SlowFast Networks for Video Recognition,
ICCV19(6201-6210)
IEEE DOI
2004
Code, Video Processing.
WWW Link. image capture, image classification, image motion analysis,
learning (artificial intelligence), video signal processing,
Channel capacity
BibRef
Feichtenhofer, C.[Christoph],
Pinz, A.[Axel],
Wildes, R.P.[Richard P.],
Dynamically encoded actions based on spacetime saliency,
CVPR15(2755-2764)
IEEE DOI
1510
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Deep Networks, Deep Learning for Human Action Recognition .