Birman, K.P.,
Rule-Based Learning for More Accurate ECG Analysis,
PAMI(4), No. 4, July 1982, pp. 369-380.
BibRef
8207
Skordalakis, E.,
Syntactic ECG processing: A review,
PR(19), No. 4, 1986, pp. 305-313.
Elsevier DOI
0309
BibRef
Trahanias, P.,
Skordalakis, E.,
An efficient sequential clustering method,
PR(22), No. 4, 1989, pp. 449-453.
Elsevier DOI
0309
BibRef
Trahanias, P., and
Skordalakis, E.,
Syntactic Pattern Recognition of the ECG,
PAMI(12), No. 7, July 1990, pp. 648-657.
IEEE DOI
BibRef
9007
Pietka, E.[Ewa],
Feature extraction in computerized approach to the ECG analysis,
PR(24), No. 2, 1991, pp. 139-146.
Elsevier DOI
0401
BibRef
Koski, A.,
Juhola, M.,
Meriste, M.,
Syntactic Recognition of ECG Signals by Attributed Finite Automata,
PR(28), No. 12, December 1995, pp. 1927-1940.
Elsevier DOI
BibRef
9512
Koski, A.,
Primitive Coding of Structural ECG Features,
PRL(17), No. 11, September 16 1996, pp. 1215-1222.
9611
BibRef
Kundu, M.[Mahantapas],
Nasipuri, M.[Mita],
Basu, D.K.[Dipak Kumar],
Knowledge-based ECG interpretation: a critical review,
PR(33), No. 3, March 2000, pp. 351-373.
Elsevier DOI
0001
BibRef
Kachelriess, M.,
Ulzheimer, S.,
Kalender, W.A.,
ECG-correlated imaging of the heart with subsecond multislice spiral CT,
MedImg(19), No. 9, September 2000, pp. 888-901.
IEEE Top Reference.
0110
BibRef
Israel, S.A.[Steven A.],
Irvine, J.M.[John M.],
Cheng, A.[Andrew],
Wiederhold, M.D.[Mark D.],
Wiederhold, B.K.[Brenda K.],
ECG to identify individuals,
PR(38), No. 1, January 2005, pp. 133-142.
Elsevier DOI
0410
BibRef
Güler, I.[Inan],
Übeyli, E.D.[Elif Derya],
ECG beat classifier designed by combined neural network model,
PR(38), No. 2, February 2005, pp. 199-208.
Elsevier DOI
0411
See also recurrent neural network classifier for Doppler ultrasound blood flow signals, A.
See also Features extracted by eigenvector methods for detecting variability of EEG signals.
BibRef
Engin, M.[Mehmet],
ECG beat classification using neuro-fuzzy network,
PRL(25), No. 15, November 2004, pp. 1715-1722.
Elsevier DOI
0411
BibRef
Froese, T.[Tom],
Hadjiloucas, S.[Sillas],
Galvăo, R.K.H.[Roberto K.H.],
Becerra, V.M.[Victor M.],
Coelho, C.J.[Clarimar José],
Comparison of extrasystolic ECG signal classifiers using discrete
wavelet transforms,
PRL(27), No. 5, 1 April 2006, pp. 393-407.
Elsevier DOI
0604
Discrete wavelet transform; Neural networks; Genetic algorithms;
Linear discriminant analysis
BibRef
Zandi, A.S.[Ali Shahidi],
Moradi, M.H.[Mohammad Hassan],
Quantitative evaluation of a wavelet-based method in ventricular late
potential detection,
PR(39), No. 7, July 2006, pp. 1369-1379.
Elsevier DOI
0606
Ventricular late potentials (VLPs); High-resolution ECG (HRECG);
Wavelet transform (WT); Artificial neural network (ANN);
Principal component analysis (PCA)
BibRef
Liu, Z.,
Liu, C.,
He, B.,
Noninvasive Reconstruction of Three-Dimensional Ventricular Activation
Sequence From the Inverse Solution of Distributed Equivalent Current
Density,
MedImg(25), No. 10, October 2006, pp. 1307-1318.
IEEE DOI
0609
BibRef
Benzid, R.,
Marir, F.,
Bouguechal, N.E.,
Electrocardiogram Compression Method Based on the Adaptive Wavelet
Coefficients Quantization Combined to a Modified Two-Role Encoder,
SPLetters(14), No. 6, June 2007, pp. 373-376.
IEEE DOI
0706
BibRef
Yu, S.N.[Sung-Nien],
Chen, Y.H.[Ying-Hsiang],
Electrocardiogram beat classification based on wavelet transformation
and probabilistic neural network,
PRL(28), No. 10, 15 July 2007, pp. 1142-1150.
Elsevier DOI
0706
Electrocardiogram; RR interval; Discrete wavelet transform;
Probabilistic neural network; Pattern classification
BibRef
Boucheham, B.[Bachir],
Matching of quasi-periodic time series patterns by exchange of
block-sorting signatures,
PRL(29), No. 4, 1 March 2008, pp. 501-514.
Elsevier DOI
0711
Pattern matching; Time series; Block-sorting signature; Shape exchange; DTW
ECG application
BibRef
Boucheham, B.[Bachir],
Reduced data similarity-based matching for time series patterns
alignment,
PRL(31), No. 7, 1 May 2010, pp. 629-638.
Elsevier DOI
1004
Time series similarity; Pattern matching; Data reduction; Datamining;
Data retrieval; Person identification using ECG
BibRef
Noponen, K.[Kai],
Kortelainen, J.[Jukka],
Seppanen, T.[Tapio],
Invariant trajectory classification of dynamical systems with a case
study on ECG,
PR(42), No. 9, September 2009, pp. 1832-1844.
Elsevier DOI
0905
Eigenvalues and eigenfunctions; Electrocardiography; Group theory;
Least squares methods; Multidimensional signal processing; Nonlinear
systems; Pattern recognition; Shape
BibRef
Martis, R.J.[Roshan Joy],
Chakraborty, C.[Chandan],
Ray, A.K.[Ajoy K.],
A two-stage mechanism for registration and classification of ECG using
Gaussian mixture model,
PR(42), No. 11, November 2009, pp. 2979-2988.
Elsevier DOI
0907
ECG; Pan Tompkins algorithm; Linear prediction; PCA; GMM; Chernoff
bound; Bhattacharya bound
BibRef
Camargo-Olivares, J.L.,
Martin-Clemente, R.,
Hornillo-Mellado, S.,
Elena, M.M.,
Roman, I.,
The Maternal Abdominal ECG as Input to MICA in the Fetal ECG Extraction
Problem,
SPLetters(18), No. 3, March 2011, pp. 161-164.
IEEE DOI
1102
BibRef
Janssen, J.H.,
Bailenson, J.N.,
Ijsselsteijn, W.A.,
Westerink, J.H.D.M.,
Intimate Heartbeats:
Opportunities for Affective Communication Technology,
AffCom(1), No. 2, July-December 2010, pp. 72-80.
IEEE DOI
1202
BibRef
Lekadir, K.,
Hoogendoorn, C.,
Pereanez, M.,
Alba, X.,
Pashaei, A.,
Frangi, A.F.,
Statistical Personalization of Ventricular Fiber Orientation Using
Shape Predictors,
MedImg(33), No. 4, April 2014, pp. 882-890.
IEEE DOI
1404
Diffusion tensor imaging
BibRef
Liu, C.,
Eggen, M.D.,
Swingen, C.M.,
Iaizzo, P.A.,
He, B.,
Noninvasive Mapping of Transmural Potentials During Activation in Swine
Hearts From Body Surface Electrocardiograms,
MedImg(31), No. 9, September 2012, pp. 1777-1785.
IEEE DOI
1209
BibRef
Kurihara, Y.,
Watanabe, K.,
Sleep-Stage Decision Algorithm by Using Heartbeat and Body-Movement
Signals,
SMC-A(42), No. 6, November 2012, pp. 1450-1459.
IEEE DOI
1210
BibRef
Dong, J.[Jun],
Zhang, J.W.[Jia-Wei],
Zhu, H.H.[Hong-Hai],
Wang, L.P.[Li-Ping],
Liu, X.[Xia],
Li, Z.J.[Zhen-Jiang],
A Remote Diagnosis Service Platform for Wearable ECG Monitors,
IEEE_Int_Sys(27), No. 6, November-December 2012, pp. 36-43.
IEEE DOI
1212
BibRef
Zhao, J.,
Butters, T.D.,
Zhang, H.,
Le Grice, I.J.,
Sands, G.B.,
Smaill, B.H.,
Image-Based Model of Atrial Anatomy and Electrical Activation: A
Computational Platform for Investigating Atrial Arrhythmia,
MedImg(32), No. 1, January 2013, pp. 18-27.
IEEE DOI
1301
BibRef
Sharma, L.N.,
Dandapat, S.,
Mahanta, A.,
Kurtosis-based noise estimation and multiscale energy to denoise ECG
signal,
SIViP(7), No. 2, March 2013, pp. 235-245.
WWW Link.
1303
BibRef
Zou, Y.,
Han, J.,
Weng, X.Z.,
Zeng, X.,
An Ultra-Low Power QRS Complex Detection Algorithm Based on
Down-Sampling Wavelet Transform,
SPLetters(20), No. 5, May 2013, pp. 515-518.
IEEE DOI
1304
electrocardiogram related applications
BibRef
Xu, G.W.[Gao-Wei],
Han, J.[Jun],
Zou, Y.[Yao],
Zeng, X.Y.[Xiao-Yang],
A 1.5-D Multi-Channel EEG Compression Algorithm Based on NLSPIHT,
SPLetters(22), No. 8, August 2015, pp. 1118-1122.
IEEE DOI
1502
computational complexity
BibRef
Nielsen, B.F.,
Lysaker, M.,
Grottum, P.,
Computing Ischemic Regions in the Heart With the Bidomain Model:
First Steps Towards Validation,
MedImg(32), No. 6, 2013, pp. 1085-1096.
IEEE DOI
1307
bioelectric potentials; electrocardiography;
ischemic region identification
BibRef
Frank, J.,
Mannor, S.,
Pineau, J.,
Precup, D.,
Time Series Analysis Using Geometric Template Matching,
PAMI(35), No. 3, March 2013, pp. 740-754.
IEEE DOI
1303
wearable sensor, ECG data.
BibRef
Ramakrishnan, A.G.,
Prathosh, A.P.,
Ananthapadmanabha, T.V.,
Threshold-Independent QRS Detection Using the Dynamic Plosion Index,
SPLetters(21), No. 5, May 2014, pp. 554-558.
IEEE DOI
1404
electrocardiography
BibRef
Geselowitz, D.B.,
STARS: Electrocardiography,
PIEEE(102), No. 3, March 2014, pp. 399-404.
IEEE DOI
1404
Review of our past articles.
Biomedical equipment; Cardiography; Electrocardiography; History
BibRef
Erem, B.,
van Dam, P.M.,
Brooks, D.H.,
Identifying Model Inaccuracies and Solution Uncertainties in
Noninvasive Activation-Based Imaging of Cardiac Excitation Using
Convex Relaxation,
MedImg(33), No. 4, April 2014, pp. 902-912.
IEEE DOI
1404
Heart
BibRef
Erem, B.,
Coll-Font, J.,
Martinez Orellana, R.,
St'ovicek, P.,
Brooks, D.H.,
Using Transmural Regularization and Dynamic Modeling for Noninvasive
Cardiac Potential Imaging of Endocardial Pacing With Imprecise
Thoracic Geometry,
MedImg(33), No. 3, March 2014, pp. 726-738.
IEEE DOI
1404
bioelectric potentials
BibRef
Jung, S.J.[Sang-Joong],
Shin, H.S.[Heung-Sub],
Chung, W.Y.[Wan-Young],
Driver fatigue and drowsiness monitoring system with embedded
electrocardiogram sensor on steering wheel,
IET-ITS(8), No. 1, February 2014, pp. 43-50.
DOI Link
1406
Award, IET IT Premium. automotive components
BibRef
Alajlan, N.[Naif],
Bazi, Y.[Yakoub],
Melgani, F.[Farid],
Malek, S.[Salim],
Bencherif, M.A.[Mohamed A.],
Detection of premature ventricular contraction arrhythmias in
electrocardiogram signals with kernel methods,
SIViP(8), No. 5, July 2014, pp. 931-942.
Springer DOI
1407
BibRef
Baali, H.,
Akmeliawati, R.,
Salami, M.J.E.,
Khorshidtalab, A.,
Lim, E.,
ECG Parametric Modeling Based on Signal Dependent Orthogonal
Transform,
SPLetters(21), No. 10, October 2014, pp. 1293-1297.
IEEE DOI
1407
Biological system modeling
BibRef
Balouchestani, M.[Mohammadreza],
Raahemifar, K.[Kaamran],
Krishnan, S.[Sridhar],
Low sampling rate algorithm for wireless ECG systems based on
compressed sensing theory,
SIViP(9), No. 3, March 2015, pp. 527-533.
Springer DOI
1503
BibRef
Balouchestani, M.[Mohammadreza],
Krishnan, S.[Sridhar],
Advanced K-means clustering algorithm for large ECG data sets based on
a collaboration of compressed sensing theory and K-SVD approach,
SIViP(10), No. 1, January 2016, pp. 113-120.
WWW Link.
1601
BibRef
Dasilva, P.[Patrick],
Fortier, P.[Paul],
Sethares, K.[Kristen],
Electrocardiogram Classification Sensor System Supporting an
Autonomous Mobile Cardiovascular Disease Detection Aid,
Sensors(184), No. 1, January 2015, pp. 92-100.
HTML Version.
1504
BibRef
Laguna, P.,
Cortes, J.P.M.[J.P. Martinez],
Pueyo, E.,
Techniques for Ventricular Repolarization Instability Assessment From
the ECG,
PIEEE(104), No. 2, February 2016, pp. 392-415.
IEEE DOI
1601
Arrhythmia
BibRef
Porta, A.,
Faes, L.,
Wiener-Granger Causality in Network Physiology With Applications to
Cardiovascular Control and Neuroscience,
PIEEE(104), No. 2, February 2016, pp. 282-309.
IEEE DOI
1601
Biomedical signal processing
BibRef
Afkhami, R.G.[Rashid Ghorbani],
Azarnia, G.[Ghanbar],
Tinati, M.A.[Mohammad Ali],
Cardiac arrhythmia classification using statistical and mixture
modeling features of ECG signals,
PRL(70), No. 1, 2016, pp. 45-51.
Elsevier DOI
1602
Decision tree
BibRef
Kang, S.J.,
Lee, S.Y.,
Cho, H.I.,
Park, H.,
ECG Authentication System Design Based on Signal Analysis in Mobile
and Wearable Devices,
SPLetters(23), No. 6, June 2016, pp. 805-808.
IEEE DOI
1606
authorisation
BibRef
Alessandrini, M.,
Heyde, B.,
Queirós, S.,
Cygan, S.,
Zontak, M.,
Somphone, O.,
Bernard, O.,
Sermesant, M.,
Delingette, H.,
Barbosa, D.,
de Craene, M.,
O'Donnell, M.,
d'Hooge, J.,
Detailed Evaluation of Five 3D Speckle Tracking Algorithms Using
Synthetic Echocardiographic Recordings,
MedImg(35), No. 8, August 2016, pp. 1915-1926.
IEEE DOI
1608
Optical imaging
BibRef
Gravina, R.,
Fortino, G.,
Automatic Methods for the Detection of Accelerative Cardiac Defense
Response,
AffCom(7), No. 3, July 2016, pp. 286-298.
IEEE DOI
1609
Acceleration
BibRef
Rajankar, S.[Supriya],
Talbar, S.[Sanjay],
A quality-on-demand electrocardiogram signal compression using modified
set partitioning in hierarchical tree,
SIViP(10), No. 8, November 2016, pp. 1559-1566.
WWW Link.
1610
BibRef
Charvátová, H.[Hana],
Procházka, A.[Ale],
Vaseghi, S.[Saeed],
Vyata, O.[Oldrich],
Vali, M.[Martin],
GPS-based analysis of physical activities using positioning and heart
rate cycling data,
SIViP(11), No. 2, February 2017, pp. 251-258.
Springer DOI
1702
BibRef
Milchevski, A.[Aleksandar],
Gusev, M.[Marjan],
Improved pipelined wavelet implementation for filtering ECG signals,
PRL(95), No. 1, 2017, pp. 85-90.
Elsevier DOI
1708
DSP
BibRef
Rodrigo, M.,
Climent, A.M.,
Liberos, A.,
Hernandez-Romero, I.,
Arenal, Á.,
Bermejo, J.,
Fernandez-Aviles, F.,
Atienza, F.,
Guillem, M.S.,
Solving Inaccuracies in Anatomical Models for Electrocardiographic
Inverse Problem Resolution by Maximizing Reconstruction Quality,
MedImg(37), No. 3, March 2018, pp. 733-740.
IEEE DOI
1804
diseases, electrocardiography, image reconstruction,
inverse problems, medical image processing, AF patients,
inverse methods
BibRef
Bassiouni, M.M.[Mahmoud M.],
El-Dahshan, E.S.A.[El-Sayed A.],
Khalefa, W.[Wael],
Salem, A.M.[Abdelbadeeh M.],
Intelligent hybrid approaches for human ECG signals identification,
SIViP(12), No. 5, July 2018, pp. 941-949.
Springer DOI
1806
BibRef
Fu, D.P.[Da-Peng],
Xia, Z.R.[Zhou-Rui],
Gao, P.F.[Peng-Fei],
Wang, H.Q.[Hai-Qing],
Lin, J.P.[Jian-Ping],
Sun, L.[Li],
ECG Delineation with Randomly Selected Wavelet Feature and Random
Forest Classifier,
IEICE(E101-D), No. 8, August 2018, pp. 2082-2091.
WWW Link.
1808
BibRef
Carrera, D.[Diego],
Rossi, B.[Beatrice],
Fragneto, P.[Pasqualina],
Boracchi, G.[Giacomo],
Online anomaly detection for long-term ECG monitoring using wearable
devices,
PR(88), 2019, pp. 482-492.
Elsevier DOI
1901
Online and long-term ECG monitoring, Anomaly detection,
Domain adaptation, Wearable devices, Sparse representations
BibRef
Xiong, F.[Fan],
Chen, D.Y.[Dong-Yi],
Chen, Z.H.[Zheng-Hao],
Dai, S.[Shumei],
Cancellation of motion artifacts in ambulatory ECG signals using
TD-LMS adaptive filtering techniques,
JVCIR(58), 2019, pp. 606-618.
Elsevier DOI
1901
Adaptive cancellation algorithm, Motion artifacts,
Auxiliary dry electrode, Cosine transform
BibRef
Li, C.,
Lin, D.,
Lü, J.,
Hao, F.,
Cryptanalyzing an Image Encryption Algorithm Based on Autoblocking
and Electrocardiography,
MultMedMag(25), No. 4, October 2018, pp. 46-56.
IEEE DOI
1901
Encryption, Electrocardiography, Chaotic communication,
Feature extraction, Logistics, *
BibRef
Yang, T.,
Pogwizd, S.M.,
Walcott, G.P.,
Yu, L.,
He, B.,
Noninvasive Activation Imaging of Ventricular Arrhythmias by Spatial
Gradient Sparse in Frequency Domain: Application to Mapping Reentrant
Ventricular Tachycardia,
MedImg(38), No. 2, February 2019, pp. 525-539.
IEEE DOI
1902
Imaging, Electric potential, Myocardium, Frequency-domain analysis,
Electrodes, Inverse problems, Image reconstruction,
ventricular arrhythmia
BibRef
Yousofvand, L.[Leila],
Fathi, A.[Abdolhossein],
Abdali-Mohammadi, F.[Fardin],
Person identification using ECG signal's symbolic representation and
dynamic time warping adaptation,
SIViP(13), No. 2, March 2019, pp. 245-251.
Springer DOI
1904
BibRef
Goshvarpour, A.[Ateke],
Goshvarpour, A.[Atefeh],
Gender and age classification using a new Poincare section-based
feature set of ECG,
SIViP(13), No. 3, April 2019, pp. 531-539.
WWW Link.
1904
BibRef
Alawad, M.,
Wang, L.,
Learning Domain Shift in Simulated and Clinical Data: Localizing the
Origin of Ventricular Activation From 12-Lead Electrocardiograms,
MedImg(38), No. 5, May 2019, pp. 1172-1184.
IEEE DOI
1905
Data models, Electrocardiography, Adaptation models,
Solid modeling, Torso, Real-time systems,
domain adaptation
BibRef
Dinakarrao, S.M.P.[Sai Manoj Pudukotai],
Jantsch, A.[Axel],
Shafique, M.[Muhammad],
Computer-aided Arrhythmia Diagnosis with Bio-signal Processing:
A Survey of Trends and Techniques,
Surveys(51), No. 1, February 2019, pp. Article No 23.
DOI Link
1906
Signals obtained from a patient, i.e., bio-signals, are utilized to
analyze the health of patient. One such bio-signal of paramount
importance is the electrocardiogram (ECG)
BibRef
Feli, M.[Mohammad],
Abdali-Mohammadi, F.[Fardin],
A novel recursive backtracking genetic programming-based algorithm for
12-lead ECG compression,
SIViP(13), No. 5, July 2019, pp. 1029-1036.
WWW Link.
1906
BibRef
Srivastva, R.[Ranjeet],
Singh, Y.N.[Yogendra Narain],
ECG analysis for human recognition using non-fiducial methods,
IET-Bio(8), No. 5, September 2019, pp. 295-305.
DOI Link
1908
BibRef
Zhang, Y.[Yue],
Xiao, Z.B.[Zhi-Bo],
Guo, Z.H.[Zhen-Hua],
Wang, Z.L.[Zi-Liang],
ECG-based personal recognition using a convolutional neural network,
PRL(125), 2019, pp. 668-676.
Elsevier DOI
1909
Deep convolutional neural network, ECG, Feature representation,
Personal recognition, Voting
BibRef
Sharma, M.[Manish],
Acharya, U.R.[U. Rajendra],
A new method to identify coronary artery disease with ECG signals and
time-Frequency concentrated antisymmetric biorthogonal wavelet filter
bank,
PRL(125), 2019, pp. 235-240.
Elsevier DOI
1909
Coronary artery disease, ECG, Time-frequency concentration,
Support Vector Machine (SVM)
BibRef
Ghimire, S.,
Sapp, J.L.,
Horácek, B.M.,
Wang, L.,
Noninvasive Reconstruction of Transmural Transmembrane Potential With
Simultaneous Estimation of Prior Model Error,
MedImg(38), No. 11, November 2019, pp. 2582-2595.
IEEE DOI
1911
Electrocardiography, Predictive models, Mathematical model,
Data models, Heart, Inverse problems, Image reconstruction,
graphical model
BibRef
Tseng, C.H.[Chi-Ho],
Lin, C.[Chen],
Chang, H.C.[Hsiang-Chih],
Liu, C.C.[Cyuan-Cin],
Serafico, B.M.F.[Bess Ma F.],
Wu, L.C.[Li-Ching],
Lin, C.T.[Chih-Ting],
Hsu, T.[Tien],
Huang, C.Y.[Chun-Yao],
Lo, M.T.[Men-Tzung],
Cloud-Based Artificial Intelligence System for Large-Scale Arrhythmia
Screening,
Computer(52), No. 11, November 2019, pp. 40-51.
IEEE DOI
1911
Electrocardiography, Monitoring, Cloud computing, Servers,
Biomedical monitoring, Databases, Artificial intelligence
BibRef
Kim, J.[Jeehoon],
Sung, D.[Dongsuk],
Koh, M.[MyungJun],
Kim, J.[Jason],
Park, K.S.[Kwang Suk],
Electrocardiogram authentication method robust to dynamic morphological
conditions,
IET-Bio(8), No. 6, November 2019, pp. 401-410.
DOI Link
1911
BibRef
Abdalla, F.Y.O.[Fakheraldin Y. O.],
Wu, L.[Longwen],
Ullah, H.[Hikmat],
Ren, G.H.[Guang-Hui],
Noor, A.[Alam],
Zhao, Y.Q.[Ya-Qin],
ECG arrhythmia classification using artificial intelligence and
nonlinear and nonstationary decomposition,
SIViP(13), No. 7, October 2019, pp. 1283-1291.
Springer DOI
1911
BibRef
Li, R.[Rui],
Yang, G.[Gongping],
Wang, K.[Kuikui],
Huang, Y.[Yuwen],
Yuan, F.[Feng],
Yin, Y.L.[Yi-Long],
Robust ECG biometrics using GNMF and sparse representation,
PRL(129), 2020, pp. 70-76.
Elsevier DOI
2001
ECG, Biometrics, GNMF, Sparse representation, 1 norm
BibRef
Mo, X.Z.[Xiao-Zhu],
Ling, B.W.K.[Bingo Wing-Kuen],
Ye, Q.L.[Qiu-Liang],
Zhou, Y.[Yang],
Linear phase properties of the singular spectrum analysis components
for the estimations of the RR intervals of electrocardiograms,
SIViP(14), No. 2, March 2020, pp. 325-332.
Springer DOI
2003
BibRef
Ullah, A.[Amin],
Anwar, S.M.[Syed Muhammad],
Bilal, M.[Muhammad],
Mehmood, R.M.[Raja Majid],
Classification of Arrhythmia by Using Deep Learning with 2-D ECG
Spectral Image Representation,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Hsieh, J.,
Hung, K.,
Liu, J.,
Wu, T.,
Wavelet-Based Quality-Constrained ECG Data Compression System Without
Decoding Process,
MultMedMag(27), No. 2, April 2020, pp. 33-45.
IEEE DOI
2006
Electrocardiography, Encoding, Quantization (signal),
Data compression, Discrete wavelet transforms, genetic algorithm
BibRef
Jagannath, D.J.,
Dolly, D.R.J.[D. Raveena Judie],
Peter, J.D.[J. Dinesh],
Deep learning strategies for foetal electrocardiogram signal
synthesis,
PRL(136), 2020, pp. 286-292.
Elsevier DOI
2008
Deep learning, Foetal electrocardiogram,
Convolutional neural network, Deep belief neural network,
Back propagation neural network
BibRef
Pandey, S.K.[Saroj Kumar],
Janghel, R.R.[Rekh Ram],
Automatic arrhythmia recognition from electrocardiogram signals using
different feature methods with long short-term memory network model,
SIViP(14), No. 6, September 2020, pp. 1255-1263.
WWW Link.
2008
BibRef
Kheirati Roonizi, A.,
A New Approach to Gaussian Signal Smoothing:
Application to ECG Components Separation,
SPLetters(27), 2020, pp. 1924-1928.
IEEE DOI
2011
Electrocardiography, Kalman filters, Noise measurement,
State estimation, Mathematical model, Atmospheric modeling,
state estimation
BibRef
Tripathi, K.[Kirthi],
Sohal, H.[Harsh],
Jain, S.[Shruti],
Statistical Analysis of HRV Parameters for the Detection of Arrhythmia,
IJIG(20), No. 4, October 2020, pp. 2050036.
DOI Link
2011
BibRef
Mathivanan, P.,
Ganesh, A.B.[A. Balaji],
ECG steganography based on tunable Q-factor wavelet transform and
singular value decomposition,
IJIST(31), No. 1, 2021, pp. 270-287.
DOI Link
2102
ECG steganography, scaling factor and performance metrics,
singular value decomposition (SVD), tunable Q-factor wavelet transform (TQWT)
BibRef
El Ogri, O.[Omar],
Karmouni, H.[Hicham],
Sayyouri, M.[Mhamed],
Qjidaa, H.[Hassan],
3D image recognition using new set of fractional-order Legendre
moments and deep neural networks,
SP:IC(98), 2021, pp. 116410.
Elsevier DOI
2109
Fractional-order orthogonal polynomials,
Fractional-order moment invariants, 3D image analysis,
Deep neural networks
BibRef
Daoui, A.,
Yamni, M.,
Karmouni, H.[Hicham],
El Ogri, O.[Omar],
Sayyouri, M.[Mhamed],
Qjidaa, H.[Hassan],
Efficient Reconstruction and Compression of Large Size ECG Signal by
Tchebichef Moments,
ISCV20(1-6)
IEEE DOI
2011
data compression, electrocardiography, signal reconstruction,
ECG signal, Thebichef moments, reconstruction methods,
discrete orthogonal polynomials
BibRef
Daoui, A.,
Karmouni, H.,
Azzayani, A.,
Sayyouri, M.,
Qjidaa, H.,
Large Size 1D Signal Analysis by Hybrid Tchebichef-Charlier Moments,
ISCV20(1-6)
IEEE DOI
2011
image reconstruction, image representation, polynomials,
hybrid Tchebichef-Charlier moments,
fast 1D signal reconstruction
BibRef
Chen, H.[Hui],
Wang, G.J.[Gui-Jin],
Zhang, G.D.[Guo-Dong],
Zhang, P.[Ping],
Yang, H.Z.[Hua-Zhong],
CLECG: A Novel Contrastive Learning Framework for Electrocardiogram
Arrhythmia Classification,
SPLetters(28), 2021, pp. 1993-1997.
IEEE DOI
2110
Electrocardiography, Training, Crops, Wavelet transforms,
Task analysis, Signal processing algorithms, Rhythm,
arrhythmia classification
BibRef
Neeraj,
Satija, U.[Udit],
Mathew, J.[Jimson],
Behera, R.K.,
A Unified Attentive Cycle-Generative Adversarial Framework for
Deriving Electrocardiogram From Seismocardiogram Signal,
SPLetters(29), 2022, pp. 802-806.
IEEE DOI
2204
Electrocardiography, Generators, Databases, Training,
Generative adversarial networks, Convolution,
cycle-generative adversarial (CGAN)
BibRef
Kim, H.[Hanvit],
Phan, T.Q.[Thanh Quoc],
Hong, W.[Wonjae],
Chun, S.Y.[Se Young],
Physiology-based augmented deep neural network frameworks for ECG
biometrics with short ECG pulses considering varying heart rates,
PRL(156), 2022, pp. 1-6.
Elsevier DOI
2205
Biometrics, Electrocardiogram, QT interval correction,
Deep learning, Short ECG pulses
BibRef
Wang, L.[Lu],
Ohtsuki, T.[Tomoaki],
Owada, K.[Kazunari],
Honma, N.[Naoki],
Hayashi, H.[Hayato],
A Multi-Layer Hybrid Network With Its Application in Fetal Heart Rate
Monitoring,
SPLetters(29), 2022, pp. 1207-1211.
IEEE DOI
2206
Electrocardiography, Heart beat, Reservoirs, Morphology, Recording,
Monitoring, Signal to noise ratio, Discriminator,
multi-layer hybrid network
BibRef
Jiang, X.J.[Xia-Jun],
Toloubidokhti, M.[Maryam],
Bergquist, J.A.[Jake A.],
Zenger, B.[Brian],
Good, W.W.[Wilson W.],
MacLeod, R.S.[Rob S.],
Wang, L.W.[Lin-Wei],
Improving Generalization by Learning Geometry-Dependent and
Physics-Based Reconstruction of Image Sequences,
MedImg(42), No. 2, February 2023, pp. 403-415.
IEEE DOI
2302
Geometry, Heart, Image reconstruction, Physics, Training data, Imaging,
Torso, Geometric deep learning, inverse problems, physics-based deep learning
BibRef
Toloubidokhti, M.[Maryam],
Gyawali, P.K.[Prashnna K.],
Gharbia, O.A.[Omar A.],
Jiang, X.[Xiajun],
Font, J.C.[Jaume Coll],
Bergquist, J.A.[Jake A.],
Zenger, B.[Brian],
Good, W.W.[Wilson W.],
Brooks, D.H.[Dana H.],
MacLeod, R.S.[Rob S.],
Wang, L.W.[Lin-Wei],
Deep Adaptive Electrocardiographic Imaging with Generative Forward
Model for Error Reduction,
FIMH21(471-481).
Springer DOI
2108
BibRef
Dissanayake, T.[Theekshana],
Fernando, T.[Tharindu],
Denman, S.[Simon],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
Multi-stage stacked temporal convolution neural networks (MS-S-TCNs)
for biosignal segmentation and anomaly localization,
PR(139), 2023, pp. 109440.
Elsevier DOI
2304
Deep learning, Electrocardiogram, Heart sounds, Lung sounds,
Segmentation, Model interpretation
BibRef
Prabhakararao, E.[Eedara],
Dandapat, S.[Samarendra],
Congestive Heart Failure Detection From ECG Signals Using Deep
Residual Neural Network,
SMCS(53), No. 5, May 2023, pp. 3008-3018.
IEEE DOI
2305
Electrocardiography, Feature extraction,
Recurrent neural networks, Heart beat,
transparent diagnostic system
BibRef
Gedon, D.[Daniel],
Ribeiro, A.H.[Antônio H.],
Wahlström, N.[Niklas],
Schön, T.B.[Thomas B.],
Invertible Kernel PCA With Random Fourier Features,
SPLetters(30), 2023, pp. 563-567.
IEEE DOI
2305
Principal component analysis, Kernel, Image reconstruction,
Dimensionality reduction, Noise reduction, Electrocardiography,
reconstruction
BibRef
Ekiz, D.[Deniz],
Can, Y.S.[Yekta Said],
Ersoy, C.[Cem],
Long Short-Term Memory Network Based Unobtrusive Workload Monitoring
With Consumer Grade Smartwatches,
AffCom(14), No. 2, April 2023, pp. 895-905.
IEEE DOI
2306
Electrocardiography, Heart rate variability, Task analysis,
Biomedical monitoring, Monitoring, Logic gates, Accelerometers,
psychophysiology
BibRef
Pelegrina, G.D.[Guilherme D.],
Duarte, L.T.[Leonardo T.],
Grabisch, M.[Michel],
Interpreting the Contribution of Sensors in Blind Source Extraction
by Means of Shapley Values,
SPLetters(30), 2023, pp. 878-882.
IEEE DOI
2308
Sensors, Proposals, Games, Sensor arrays, Game theory,
Electrocardiography, Data mining, Signal extraction,
Shapley value
BibRef
Ristov, S.[Sashko],
Gusev, M.[Marjan],
Hohenegger, A.[Armin],
Prodan, R.[Radu],
Mileski, D.[Dimitar],
Gushev, P.[Pano],
Temelkov, G.[Goran],
Serverless Electrocardiogram Stream Processing in Federated Clouds
With Lambda Architecture,
Computer(56), No. 9, September 2023, pp. 18-27.
IEEE DOI
2309
BibRef
Donida-Labati, R.[Ruggero],
Piuri, V.[Vincenzo],
Rundo, F.[Francesco],
Scotti, F.[Fabio],
MultiCardioNet: Interoperability between ECG and PPG biometrics,
PRL(175), 2023, pp. 1-7.
Elsevier DOI
2311
Biometrics, ECG, PPG, Interoperability, Siamese networks
BibRef
Alizadeh, N.,
Afrakhteh, S.,
Mosavi, M.R.,
Deep CNN-based classification of motor imagery tasks from EEG signals
using 2D wavelet transformed images of adaptively reconstructed
signals from MVMD decomposed modes,
IJIST(33), No. 6, 2023, pp. 1988-2011.
DOI Link
2311
brain-computer interface,
continuous wavelet transform filter bank,
multiclass common spatial pattern
BibRef
Yin, K.[Kang],
Lim, E.Y.T.[Elissa Yan-Ting],
Lee, S.W.[Seong-Whan],
GITGAN: Generative inter-subject transfer for EEG motor imagery
analysis,
PR(146), 2024, pp. 110015.
Elsevier DOI Code:
WWW Link.
2311
BibRef
And:
Corrigendum:
PR(148), 2024, pp. 110217.
Elsevier DOI
2402
Brain-computer interface (BCI), Electroencephalogram (EEG),
Unsupervised domain adaptation (UDA), Generative adversarial learning
BibRef
Sharma, M.[Manish],
Lodhi, H.[Harsh],
Yadav, R.[Rishita],
Acharya, U.R.[U. Rajendra],
Sleep disorder identification using wavelet scattering on ECG signals,
IJIST(34), No. 1, 2024, pp. e22980.
DOI Link
2401
electrocardiogram, ensemble of bagged trees, insomnia,
machine learning, narcolepsy, nocturnal frontal lobe epilepsy,
sleep disorder identification
BibRef
Ahmed, A.F.[Anas Fouad],
An efficient wavelet thresholding strategy and robust shrinkage
approach for de-noising ECG signal,
IJIST(34), No. 1, 2024, pp. e23009.
DOI Link
2401
de-noising, dynamic threshold, electrocardiogram,
mother wavelet, shrinkage method
BibRef
Wang, S.L.[Sheng-Lun],
Ding, C.[Chun],
Wang, Z.Z.[Zhao-Ze],
Shen, L.[Lu],
Wang, J.S.[Jun-Song],
Using normalized echo state network to detect abnormal ECG patterns,
IJIST(34), No. 1, 2024, pp. e22940.
DOI Link
2401
abnormal ECG patterns, ECG, normalized echo state network, reservoir parameters
BibRef
Li, Q.[Qince],
Liu, Y.[Yang],
Zhang, Z.[Ze],
Liu, J.[Jun],
Yuan, Y.F.[Yong-Feng],
Wang, K.Q.[Kuan-Quan],
He, R.[Runnan],
Learning with incomplete labels of multisource datasets for ECG
classification,
PR(150), 2024, pp. 110321.
Elsevier DOI
2403
Electrocardiogram, Multilabel classification,
Incomplete labels, Multisource data mining
BibRef
Alekhya, L.[Lanka],
Kumar, P.R.[P. Rajesh],
A new approach to detect cardiovascular diseases using ECG scalograms
and ML-based CNN algorithm,
IJCVR(14), No. 3, 2024, pp. 304-324.
DOI Link
2405
BibRef
Jiang, X.J.[Xia-Jun],
Missel, R.[Ryan],
Toloubidokhti, M.[Maryam],
Gillette, K.[Karli],
Prassl, A.J.[Anton J.],
Plank, G.[Gernot],
Horácek, B.M.[B. Milan],
Sapp, J.L.[John L.],
Wang, L.W.[Lin-Wei],
Hybrid Neural State-Space Modeling for Supervised and Unsupervised
Electrocardiographic Imaging,
MedImg(43), No. 8, August 2024, pp. 2733-2744.
IEEE DOI
2408
Electrocardiography, Bayes methods, Heart, Filtering, Data models,
Image reconstruction, Physics, Image reconstruction, graph convolution
BibRef
Shen, Y.T.[Yan-Ting],
Lu, L.[Lei],
Zhu, T.T.[Ting-Ting],
Wang, X.S.[Xin-Shao],
Clifton, L.[Lei],
Chen, Z.M.[Zheng-Ming],
Clarke, R.[Robert],
Clifton, D.A.[David A.],
AutoNet-Generated Deep Layer-Wise Convex Networks for ECG
Classification,
PAMI(46), No. 10, October 2024, pp. 6542-6558.
IEEE DOI
2409
Training, Electrocardiography, Deep learning,
Computer architecture, Medical services, Data models,
electrocardiogram classification
BibRef
Patro, K.K.[Kiran Kumar],
Prakash, A.J.[Allam Jaya],
Tummalapalli, G.[Geetamma],
Kumari, P.L.[P. Lalitha],
Rao, M.J.M.[M. Jaya Manmadha],
Detection of cardiac abnormalities in ECG signal using time-based
signal processing algorithm,
IJCVR(15), No. 1, 2025, pp. 59-74.
DOI Link
2501
BibRef
Nam, J.H.[Ju-Hyeon],
Park, S.H.[Seo-Hyung],
Kim, S.J.[Su Jung],
Lee, S.C.[Sang-Chul],
Vizecgnet: Visual ECG Image Network for Cardiovascular Diseases
Classification with Multi-Modal Training and Knowledge Distillation,
ICIP24(3219-3223)
IEEE DOI
2411
Training, Knowledge engineering, Heart, Visualization,
Electrocardiography, Streaming media, Cardiovascular diseases,
ECG Classification
BibRef
Nguyen, V.D.[Vuong D.],
Fetal ECG Extraction on Time-Frequency Domain using Conditional GAN,
DEF-AI-MIA24(4943-4949)
IEEE DOI
2410
Time-frequency analysis, Visualization, Accuracy, Noise,
Interference, Electrocardiography, Time-Frequency Domain
BibRef
Akouz, N.[Nouhaila],
El Ghazi, A.[Asmae],
Moutaouakil, W.[Wassima],
Hamida, S.[Soufiane],
Cherradi, B.[Bouchaib],
Raihani, A.[Abdelhadi],
Predicting Cardiovascular Disease: A Scoping Survey on different
Datasets and DL/ML Models using ECG,
ISCV24(1-6)
IEEE DOI
2408
Support vector machines, Heart, Surveys, Reviews, Medical services,
Electrocardiography, Predictive models,
Deep Learning (DL)
BibRef
Pais, D.[Daniela],
Sebastiăo, R.[Raquel],
ECG Feature-based Classification of Induced Pain Levels,
CIARP23(II:45-59).
Springer DOI
2312
BibRef
Henriques, B.[Beatriz],
Brás, S.[Susana],
Gouveia, S.[Sónia],
Clustering ECG Time Series for the Quantification of Physiological
Reactions to Emotional Stimuli,
IbPRIA23(680-692).
Springer DOI
2307
BibRef
Gu, K.[Kang],
Prioleau, T.[Temiloluwa],
Vosoughi, S.[Soroush],
Going Beyond Accuracy: Interpretability Metrics for CNN
Representations of Physiological Signals,
ICPR22(4507-4513)
IEEE DOI
2212
Measurement, Deep learning, Visualization, Time series analysis,
Neural networks, Electrocardiography, Physiology
BibRef
Islam, M.F.[Md. Farhadul],
Zabeen, S.[Sarah],
Mehedi, M.H.K.[Md. Humaion Kabir],
Iqbal, S.[Shadab],
Rasel, A.A.[Annajiat Alim],
Monte Carlo Dropout for Uncertainty Analysis and ECG Trace Image
Classification,
SSSPR22(173-182).
Springer DOI
2301
BibRef
Sraitih, M.[Mohamed],
Jabrane, Y.[Younes],
A survey of deep learning approaches for classifying ECG heartbeat
arrhythmias,
ISCV22(1-8)
IEEE DOI
2208
Deep learning, Heart, Recurrent neural networks, Heart beat,
Medical services, Electrocardiography, Multilayer perceptrons,
Long Short-Term Memory.
BibRef
Pais, D.[Daniela],
Brás, S.[Susana],
Sebastiăo, R.[Raquel],
Exploring Alterations in Electrocardiogram During the Postoperative
Pain,
IbPRIA22(171-181).
Springer DOI
2205
BibRef
Gupta, P.[Priyanka],
Bhaskarpandit, S.[Sathvik],
Gupta, M.[Manik],
Similarity Learning based Few Shot Learning for ECG Time Series
Classification,
DICTA21(1-8)
IEEE DOI
2201
Deep learning, Training, Databases, Digital images,
Time series analysis, Euclidean distance, Electrocardiography
BibRef
Wang, L.[Lei],
Wang, Z.J.[Zhinuo J.],
Doste, R.[Ruben],
Santiago, A.[Alfonso],
Zhou, X.[Xin],
Quintanas, A.[Adria],
Vazquez, M.[Mariano],
Rodriguez, B.[Blanca],
Effects of Fibre Orientation on Electrocardiographic and Mechanical
Functions in a Computational Human Biventricular Model,
FIMH21(351-361).
Springer DOI
2108
BibRef
Multerer, M.[Michael],
Pezzuto, S.[Simone],
Fast and Accurate Uncertainty Quantification for the ECG with Random
Electrodes Location,
FIMH21(561-572).
Springer DOI
2108
BibRef
Diallo, M.M.[Mohamadou Malal],
Coudičre, Y.[Yves],
Dubois, R.[Rémi],
A Volume Source Method for Solving ECGI Inverse Problem,
FIMH21(551-560).
Springer DOI
2108
BibRef
Tate, J.D.[Jess D.],
Good, W.W.[Wilson W.],
Zemzemi, N.[Nejib],
Boonstra, M.[Machteld],
van Dam, P.[Peter],
Brooks, D.H.[Dana H.],
Narayan, A.[Akil],
MacLeod, R.S.[Rob S.],
Uncertainty Quantification of the Effects of Segmentation Variability
in ECGI,
FIMH21(515-522).
Springer DOI
2108
BibRef
Ogiermann, D.[Dennis],
Balzani, D.[Daniel],
Perotti, L.E.[Luigi E.],
The Effect of Modeling Assumptions on the ECG in Monodomain and
Bidomain Simulations,
FIMH21(503-514).
Springer DOI
2108
BibRef
Bergquist, J.A.[Jake A.],
Coll-Font, J.[Jaume],
Zenger, B.[Brian],
Rupp, L.C.[Lindsay C.],
Good, W.W.[Wilson W.],
Brooks, D.H.[Dana H.],
MacLeod, R.S.[Rob S.],
Simultaneous Multi-heartbeat ECGI Solution with a Time-Varying Forward
Model: A Joint Inverse Formulation,
FIMH21(493-502).
Springer DOI
2108
BibRef
Kashtanova, V.[Victoriya],
Ayed, I.[Ibrahim],
Cedilnik, N.[Nicolas],
Gallinari, P.[Patrick],
Sermesant, M.[Maxime],
EP-Net 2.0: Out-of-Domain Generalisation for Deep Learning Models of
Cardiac Electrophysiology,
FIMH21(482-492).
Springer DOI
2108
BibRef
Gassa, N.[Narimane],
Zemzemi, N.[Nejib],
Corrado, C.[Cesare],
Coudičre, Y.[Yves],
Spiral Waves Generation Using an Eikonal-Reaction Cardiac
Electrophysiology Model,
FIMH21(523-530).
Springer DOI
2108
BibRef
Kharche, S.R.[Sanjay R.],
Mironova, G.Y.[Galina Yu.],
Goldman, D.[Daniel],
McIntyre, C.W.[Christopher W.],
Welsh, D.G.[Donald G.],
Sensitivity Analysis of a Smooth Muscle Cell Electrophysiological Model,
FIMH21(540-550).
Springer DOI
2108
BibRef
Zhang, H.J.[Hao-Jie],
Yang, G.P.[Gong-Ping],
Huang, Y.[Yuwen],
Yuan, F.[Feng],
Yin, Y.L.[Yi-Long],
Multi-Scale and Attention based ResNet for Heartbeat Classification,
ICPR21(1529-1535)
IEEE DOI
2105
Pregnancy, Deep learning, Heart beat, Convolution,
Electrocardiography, Benchmark testing, Feature extraction
BibRef
Rodrigues, T.[Tiago],
Samoutphonh, S.[Sirisack],
Silva, H.[Hugo],
Fred, A.[Ana],
A Low-Complexity R-peak Detection Algorithm with Adaptive
Thresholding for Wearable Devices,
ICPR21(1-8)
IEEE DOI
2105
Heart rate, Sensitivity, Databases, Wearable computers, Detectors,
Electrocardiography, Real-time systems
BibRef
Dasgupta, S.[Subhrajyoti],
Das, S.[Sudip],
Bhattacharya, U.[Ujjwal],
CardioGAN: An Attention-based Generative Adversarial Network for
Generation of Electrocardiograms,
ICPR21(3193-3200)
IEEE DOI
2105
Training, Heart, Measurement, Privacy, Data privacy, Machine learning,
Electrocardiography
BibRef
Han, C.Q.[Chuan-Qi],
Huang, R.[Ruoran],
Yu, F.[Fang],
Huang, X.[Xi],
Cui, L.[Li],
EasiECG: A Novel Inter-Patient Arrhythmia Classification Method using
ECG Waves,
ICPR21(1-8)
IEEE DOI
2105
Pregnancy, Adaptation models, Heart beat, Databases, Convolution,
Linear regression, Electrocardiography
BibRef
Bitetto, A.[Alessandro],
Bianchi, E.[Elena],
Dondi, P.[Piercarlo],
Bianchi, L.[Luca],
Tolgyesi, J.[Janos],
Ferri, D.[Diego],
Lombardi, L.[Luca],
Cerchiello, P.[Paola],
Marceca, A.[Azzurra],
Barosi, A.[Alberto],
Deep Learning Detection of Cardiac Akinesis in Echocardiograms,
AIHA20(503-514).
Springer DOI
2103
BibRef
Tate, J.D.[Jess D.],
Schuler, S.[Steffen],
Dössel, O.[Olaf],
MacLeod, R.S.[Robert S.],
Oostendorp, T.F.[Thom F.],
Correcting Undersampled Cardiac Sources in Equivalent Double Layer
Forward Simulations,
FIMH19(147-155).
Springer DOI
1906
BibRef
Schuler, S.[Steffen],
Tate, J.D.[Jess D.],
Oostendorp, T.F.[Thom F.],
MacLeod, R.S.[Robert S.],
Dössel, O.[Olaf],
Spatial Downsampling of Surface Sources in the Forward Problem of
Electrocardiography,
FIMH19(29-36).
Springer DOI
1906
BibRef
Karoui, A.[Amel],
Bendahmane, M.[Mostafa],
Zemzemi, N.[Nejib],
A Spatial Adaptation of the Time Delay Neural Network for Solving ECGI
Inverse Problem,
FIMH19(94-102).
Springer DOI
1906
BibRef
Rababah, A.[Ali],
Finlay, D.[Dewar],
Bear, L.[Laura],
Bond, R.[Raymond],
Rjoob, K.[Khaled],
Mclaughlin, J.[James],
Interpolating Low Amplitude ECG Signals Combined with Filtering
According to International Standards Improves Inverse Reconstruction of
Cardiac Electrical Activity,
FIMH19(112-120).
Springer DOI
1906
BibRef
Abdeldayem, S.S.,
Bourlai, T.,
Automatically Detecting Arrhythmia-related Irregular Patterns using
the Temporal and Spectro-Temporal Textures of ECG Signals,
ICPR18(2301-2307)
IEEE DOI
1812
Electrocardiography, Feature extraction, Heart beat,
Time-frequency analysis, Medical services, Wavelet transforms
BibRef
Wang, H.,
ReNN: Rule-embedded Neural Networks,
ICPR18(824-829)
IEEE DOI
1812
Artificial neural networks, Electrocardiography,
Feature extraction, Heart rate, Computational modeling,
interpretability
BibRef
El Bouny, L.,
Khalil, M.,
Adib, A.,
Performance analysis of ECG signal denoising methods in transform
domain,
ISCV18(1-8)
IEEE DOI
1807
AWGN, discrete wavelet transforms, electrocardiography,
mean square error methods, medical signal processing,
Thresholding
BibRef
Bacoyannis, T.[Tania],
Krebs, J.[Julian],
Cedilnik, N.[Nicolas],
Cochet, H.[Hubert],
Sermesant, M.[Maxime],
Deep Learning Formulation of ECGI for Data-Driven Integration of
Spatiotemporal Correlations and Imaging Information,
FIMH19(20-28).
Springer DOI
1906
BibRef
Constantinescu, M.[Mihaela],
Lee, S.L.[Su-Lin],
Ernst, S.[Sabine],
Yang, G.Z.[Guang-Zhong],
Statistical Atlases for Electroanatomical Mapping of Cardiac
Arrhythmias,
FIMH17(301-310).
Springer DOI
1706
BibRef
Chamorro-Servent, J.[Judit],
Dubois, R.[Rémi],
Potse, M.[Mark],
Coudičre, Y.[Yves],
Improving the Spatial Solution of Electrocardiographic Imaging: A New
Regularization Parameter Choice Technique for the Tikhonov Method,
FIMH17(289-300).
Springer DOI
1706
BibRef
Ravon, G.[Gwladys],
Dubois, R.[Rémi],
Coudičre, Y.[Yves],
Potse, M.[Mark],
A Parameter Optimization to Solve the Inverse Problem in
Electrocardiography,
FIMH17(219-229).
Springer DOI
1706
BibRef
Ben Salah, I.,
Ouni, K.,
Ben Salah, R.,
Cardiac anomalies detection by cepstral analysis of ICG signal,
ISIVC16(82-87)
IEEE DOI
1704
Bioimpedance
BibRef
Tlili, M.,
Maalej, A.,
Ben Romdhane, M.,
Rivet, F.,
Dallet, D.,
Rebai, C.,
Mathematical modeling of clean and noisy ECG signals in a
level-crossing sampling context,
ISIVC16(359-363)
IEEE DOI
1704
Biomedical measurement
BibRef
Kalra, A.,
Lowe, A.,
Al-Jumaily, A.,
Point Tracking on a thin elastomer to emulate Skin-stretch induced
motion artifacts in Electrocardiogram measurements,
ICVNZ15(1-6)
IEEE DOI
1701
elastomers
BibRef
Akbari, H.,
Shamsollahi, M.B.,
Phlypo, R.,
Fetal ECG extraction using pi-Tucker decomposition,
WSSIP15(174-178)
IEEE DOI
1603
electrocardiography
BibRef
Kharche, S.R.[Sanjay R.],
Biktasheva, I.V.[Irina V.],
Seemann, G.[Gunnar],
Zhang, H.G.[Heng-Gui],
Zhao, J.[Jichao],
Biktashev, V.N.[Vadim N.],
Computational Modelling of Low Voltage Resonant Drift of Scroll Waves
in the Realistic Human Atria,
FIMH15(421-429).
Springer DOI
1507
BibRef
Loewe, A.[Axel],
Krueger, M.W.[Martin W.],
Platonov, P.G.[Pyotr G.],
Holmqvist, F.[Fredrik],
Dössel, O.[Olaf],
Seemann, G.[Gunnar],
Left and Right Atrial Contribution to the P-wave in Realistic
Computational Models,
FIMH15(439-447).
Springer DOI
1507
BibRef
Chabiniok, R.,
Sammut, E.,
Hadjicharalambous, M.,
Asner, L.,
Nordsletten, D.,
Razavi, R.,
Smith, N.,
Steps Towards Quantification of the Cardiological Stress Exam,
FIMH15(12-20).
Springer DOI
1507
BibRef
Sanchez-Martinez, S.[Sergio],
Duchateau, N.[Nicolas],
Bijnens, B.[Bart],
Erdei, T.[Tamás],
Fraser, A.[Alan],
Piella, G.[Gemma],
Characterization of Myocardial Velocities by Multiple Kernel Learning:
Application to Heart Failure with Preserved Ejection Fraction,
FIMH15(65-73).
Springer DOI
1507
BibRef
Chávez, C.E.[Carlos Eduardo],
Zemzemi, N.[Nejib],
Coudičre, Y.[Yves],
Alonso-Atienza, F.[Felipe],
Álvarez, D.[Diego],
Inverse Problem of Electrocardiography: Estimating the Location of
Cardiac Ischemia in a 3D Realistic Geometry,
FIMH15(393-401).
Springer DOI
1507
BibRef
Lange, M.[Matthias],
Palamara, S.[Simone],
Lassila, T.[Toni],
Vergara, C.[Christian],
Quarteroni, A.[Alfio],
Frangi, A.F.[Alejandro F.],
Efficient Numerical Schemes for Computing Cardiac Electrical Activation
over Realistic Purkinje Networks: Method and Verification,
FIMH15(430-438).
Springer DOI
1507
BibRef
Zemzemi, N.,
Aboulaich, R.,
Fikal, N.,
El Guarmah, E.,
Sensitivity of the Electrocardiography Inverse Solution to the Torso
Conductivity Uncertainties,
FIMH15(475-483).
Springer DOI
1507
BibRef
Colli-Franzone, P.[Piero],
Pavarino, L.F.[Luca F.],
Scacchi, S.[Simone],
Relationship Between Cardiac Electrical and Mechanical Activation
Markers by Coupling Bidomain and Deformation Models,
FIMH15(304-312).
Springer DOI
1507
BibRef
Soto-Iglesias, D.[David],
Duchateau, N.[Nicolas],
Butakoff, C.[Constantine],
Andreu, D.[David],
Fernández-Armenta, J.[Juan],
Bijnens, B.[Bart],
Berruezo, A.[Antonio],
Sitges, M.[Marta],
Camara, O.[Oscar],
Quantitative Analysis of Lead Position vs. Correction of Electrical
Dyssynchrony in an Experimental Model of LBBB/CRT,
FIMH15(74-82).
Springer DOI
1507
BibRef
Danudibroto, A.,
Gerard, O.,
Alessandrini, M.,
Mirea, O.,
d'Hooge, J.,
Samset, E.,
3D Farnebäck Optic Flow for Extended Field of
View of Echocardiography,
FIMH15(129-136).
Springer DOI
1507
BibRef
Cao, Y.[Yu],
McNeillie, P.[Patrick],
Syeda-Mahmood, T.[Tanveer],
Segmentation of Anatomical Structures in Four-Chamber View
Echocardiogram Images,
ICPR14(568-573)
IEEE DOI
1412
Anatomical structure
BibRef
Landgren, M.[Matilda],
Overgaard, N.C.[Niels Chr.],
Heyden, A.[Anders],
A Measure of Septum Shape Using Shortest Path Segmentation in
Echocardiographic Images of LVAD Patients,
ICPR14(3398-3403)
IEEE DOI
1412
Echocardiography
BibRef
Collazos-Huertas, D.F.,
Álvarez-Meza, A.M.,
Gaviria-Gómez, N.,
Castellanos-Dominguez, G.,
Kernel-Based Feature Relevance Analysis for ECG Beat Classification,
IbPRIA15(291-299).
Springer DOI
1506
BibRef
Vázquez-Seisdedos, C.R.[Carlos R.],
León, A.A.S.[Alexander A. Suárez],
Neto, J.E.[Joao Evangelista],
A Comparison of Different Classifiers Architectures for
Electrocardiogram Artefacts Recognition,
CIARP13(II:254-261).
Springer DOI
1311
BibRef
Rodríguez-Alvarez, B.[Beatriz],
Ledea-Vargas, J.R.[José R.],
Valdés-Pérez, F.E.[Fernando E.],
Method to Correct Artifacts in Multilead ECG Using Signal Entropy,
CIARP13(I:512-518).
Springer DOI
1311
BibRef
Kumar, R.G.[R. Ganesh],
Kumaraswamy, Y.S.,
Investigation and classification of ECG beat using Input Output
Additional Weighted Feed Forward Neural Network,
ICSIPR13(200-205).
IEEE DOI
1304
BibRef
Ye, C.[Can],
Kumar, B.V.K.V.[B.V.K. Vijaya],
Coimbra, M.T.[Miguel Tavares],
Combining general multi-class and specific two-class classifiers for
improved customized ECG heartbeat classification,
ICPR12(2428-2431).
WWW Link.
1302
BibRef
Bhagavatula, M.[Madhusudan],
Savvides, M.[Marios],
Bhagavatula, V.[Vijayakumar],
Friedman, R.[Robert],
Blue, R.[Rebecca],
Griofa, M.O.[Marc O.],
Second-degree correlation surface features from Optimal Trade-off
Synthetic Discriminant Function filters for subject identification
using radio frequency cardiosynchronous waveforms,
ICIP12(269-272).
IEEE DOI
1302
BibRef
Bhagavatula, C.[Chandrasekhar],
Jaech, A.[Aaron],
Savvides, M.[Marios],
Bhagavatula, V.[Vijayakumar],
Friedman, R.[Robert],
Blue, R.[Rebecca],
Griofa, M.O.[Marc O.],
Automatic segmentation of cardiosynchronous waveforms using cepstral
analysis and continuous wavelet transforms,
ICIP12(2045-2048).
IEEE DOI
1302
BibRef
Simske, S.J.[Steven J.],
Blakley, D.R.[Daniel R.],
Using the vectorcardiogram to remove ECG noise,
ICIP12(2301-2304).
IEEE DOI
1302
BibRef
Azzini, A.[Antonia],
Dragoni, M.[Mauro],
Tettamanzi, A.G.B.[Andrea G. B.],
Electrocardiographic Signal Classification with Evolutionary Artificial
Neural Networks,
EvoIASP12(295-304).
Springer DOI
1204
BibRef
Pramanik, S.[Sayak],
Mitra, R.N.[Rupendra Nath],
Mitra, S.[Sucharita],
Chaudhuri, B.B.[Bidyut Baran],
A novel approach for delineation and feature extraction in QRS complex
of ECG signal,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Elshrif, M.[Mohamed],
Wang, L.W.[Lin-Wei],
Shi, P.C.[Peng-Cheng],
Dynamic Classification of Cellular Transmural TransMembrane Potential
(TMP) Activity of the Heart,
FIMH11(36-46).
Springer DOI
1105
BibRef
Wallman, M.[Mikael],
Smith, N.[Nic],
Rodriguez, B.[Blanca],
Estimation of Activation Times in Cardiac Tissue Using Graph Based
Methods,
FIMH11(71-79).
Springer DOI
1105
BibRef
Martin, V.,
Drochon, A.,
Fokapu, O.,
Gerbeau, J.F.,
MagnetoHemoDynamics Effect on Electrocardiograms,
FIMH11(325-332).
Springer DOI
1105
BibRef
Zemzemi, N.,
Bernabeu, M.O.,
Saiz, J.,
Rodriguez, B.,
Simulating Drug-Induced Effects on the Heart:
From Ion Channel to Body Surface Electrocardiogram,
FIMH11(259-266).
Springer DOI
1105
BibRef
Wilhelms, M.[Mathias],
Dössel, O.[Olaf],
Seemann, G.[Gunnar],
Comparing Simulated Electrocardiograms of Different Stages of Acute
Cardiac Ischemia,
FIMH11(11-19).
Springer DOI
1105
BibRef
Jalil, B.[Bushra],
Laligant, O.[Olivier],
Fauvet, E.[Eric],
Beya, O.[Ouadi],
Detection of QRS complex in ECG signal based on classification approach,
ICIP10(345-348).
IEEE DOI
1009
BibRef
Jalil, B.[Bushra],
Beya, O.[Ouadi],
Fauvet, E.[Eric],
Laligant, O.[Olivier],
QRS Complex Detection by Non Linear Thresholding of Modulus Maxima,
ICPR10(4500-4503).
IEEE DOI
1008
BibRef
Li, X.K.[Xiao-Kun],
Porikli, F.M.[Fatih M.],
Human State Classification and Predication for Critical Care Monitoring
by Real-Time Bio-signal Analysis,
ICPR10(2460-2463).
IEEE DOI
1008
BibRef
Kumar, D.,
Carvalho, P.,
Couceiro, R.,
Antunes, M.,
Paiva, R.P.,
Henriques, J.,
Heart Murmur Classification Using Complexity Signatures,
ICPR10(2564-2567).
IEEE DOI
1008
BibRef
Ozcan, N.O.[N. Ozlem],
Gurgen, F.[Fikret],
Fuzzy Support Vector Machines for ECG Arrhythmia Detection,
ICPR10(2973-2976).
IEEE DOI
1008
BibRef
Szczepanski, A.[Adam],
Saeed, K.[Khalid],
Ferscha, A.[Alois],
A New Method for ECG Signal Feature Extraction,
ICCVG10(II: 334-341).
Springer DOI
1009
BibRef
Zhang, S.[Shi],
Zhao, J.S.[Jin-Shuan],
She, L.H.[Li-Huang],
Wang, G.H.[Guo-Hua],
A Novel Pocket Intelligent One Lead ECG Monitor Based on Fingers
Touching,
CISP09(1-3).
IEEE DOI
0910
BibRef
Dai, M.[Min],
Lian, S.L.[Shi-Liu],
Removal of Baseline Wander from Dynamic Electrocardiogram Signals,
CISP09(1-4).
IEEE DOI
0910
BibRef
Wang, F.[Fei],
Syeda-Mahmood, T.F.[Tanveer F.],
Beymer, D.[David],
Information Extraction from Multimodal ECG Documents,
ICDAR09(381-385).
IEEE DOI
0907
BibRef
Syeda-Mahmood, T.[Tanveer],
Wang, F.[Fei],
Shape-based matching of heart sounds,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Singh, Y.N.[Yogendra Narain],
Gupta, P.[Phalguni],
ECG to Individual Identification,
BTAS08(1-8).
IEEE DOI
0809
BibRef
Syeda-Mahmood, T.[Tanveer],
Wang, F.[Fei],
Shape-Based Retrieval of Heart Sounds for Disease Similarity Detection,
ECCV08(II: 568-581).
Springer DOI
0810
BibRef
Mitra, S.,
Mitra, M.,
Chaudhuri, B.B.,
Computation of QRS Vector of ECG Signal for Observation of It's
Clinical Significance,
PReMI07(439-446).
Springer DOI
0712
BibRef
Zhang, Y.[Yu],
Xia, L.[Ling],
Gong, Y.L.[Ying-Lan],
Chen, L.G.[Li-Gang],
Hou, G.H.[Guang-Huan],
Tang, M.[Min],
Parallel Solution in Simulation of Cardiac Excitation Anisotropic
Propagation,
FIMH07(170-179).
Springer DOI
0706
BibRef
Nobuaki, Y.[Yutaka],
Amano, A.[Akira],
Shimayoshi, T.[Takao],
Lu, J.Y.[Jian-Yin],
Shim, E.B.[Eun B.],
Matsuda, T.[Tetsuya],
A Model for Simulation of Infant Cardiovascular Response to Orthostatic
Stress,
FIMH07(190-199).
Springer DOI
0706
BibRef
Remme, E.W.[Espen W.],
Smiseth, O.A.[Otto A.],
Characteristic Strain Pattern of Moderately Ischemic Myocardium
Investigated in a Finite Element Simulation Model,
FIMH07(330-339).
Springer DOI
0706
BibRef
Grandi, E.[Eleonora],
Puglisi, J.L.[Jose L.],
Severi, S.[Stefano],
Bers, D.M.[Donald M.],
Computer Simulation of Altered Sodium Channel Gating in Rabbit and
Human Ventricular Myocytes,
FIMH07(120-128).
Springer DOI
0706
BibRef
Trew, M.L.[Mark L.],
Smaill, B.H.[Bruce H.],
Pullan, A.J.[Andrew J.],
Relating Discontinuous Cardiac Electrical Activity to Mesoscale Tissue
Structures: Detailed Image Based Modeling,
FIMH07(220-229).
Springer DOI
0706
BibRef
Boulakia, M.[Muriel],
Fernández, M.A.[Miguel A.],
Gerbeau, J.F.[Jean-Frédéric],
Zemzemi, N.[Nejib],
Towards the Numerical Simulation of Electrocardiograms,
FIMH07(240-249).
Springer DOI
0706
BibRef
Sohn, K.H.[Kwang-Hyun],
Sutherland, D.R.[David R.],
Liang, Q.S.[Qian-Sheng],
Punske, B.B.[Bonnie B.],
Experimental Measures of the Minimum Time Derivative of the
Extracellular Potentials as an Index of Electrical Activity During
Metabolic and Hypoxic Stress,
FIMH07(250-259).
Springer DOI
0706
BibRef
Jiang, M.F.[Ming-Feng],
Xia, L.[Ling],
Shou, G.[Guofa],
Noninvasive Electroardiographic Imaging: Application of Hybrid Methods
for Solving the Electrocardiography Inverse Problem,
FIMH07(269-279).
Springer DOI
0706
BibRef
Shou, G.[Guofa],
Xia, L.[Ling],
Jiang, M.F.[Ming-Feng],
Liu, F.[Feng],
Crozier, S.[Stuart],
Forward and Inverse Solutions of Electrocardiography Problem Using an
Adaptive BEM Method,
FIMH07(290-299).
Springer DOI
0706
BibRef
Requena-Carrión, J.[Jesús],
Väisänen, J.H.[Ju-Ho],
Rojo-Álvarez, J.L.[José Luis],
Hyttinen, J.[Jari],
Alonso-Atienza, F.[Felipe],
Malmivuo, J.[Jaakko],
Numerical Analysis of the Resolution of Surface Electrocardiographic
Lead Systems,
FIMH07(310-319).
Springer DOI
0706
BibRef
Shome, S.[Shibaji],
Macleod, R.[Rob],
Simultaneous High-Resolution Electrical Imaging of Endocardial,
Epicardial and Torso-Tank Surfaces Under Varying Cardiac Metabolic Load
and Coronary Flow,
FIMH07(320-329).
Springer DOI
0706
BibRef
Jolley, M.[Matthew],
Stinstra, J.[Jeroen],
Weinstein, D.[David],
Pieper, S.[Steve],
Estepar, R.S.J.[Raul San Jose],
Kindlmann, G.[Gordon],
MacLeod, R.[Rob],
Brooks, D.H.[Dana H.],
Triedman, J.K.[John K.],
Open-Source Environment for Interactive Finite Element Modeling of
Optimal ICD Electrode Placement,
FIMH07(373-382).
Springer DOI
0706
BibRef
Katsnelson, L.B.[Leonid B.],
Sulman, T.[Tatiana],
Solovyova, O.[Olga],
Markhasin, V.S.[Vladimir S.],
Mathematical Modeling of Electromechanical Function Disturbances and
Recovery in Calcium-Overloaded Cardiomyocytes,
FIMH07(383-392).
Springer DOI
0706
BibRef
Colli-Franzone, P.[Piero],
Pavarino, L.F.[Luca F.],
Scacchi, S.[Simone],
Anode Make and Break Excitation Mechanisms and Strength-Interval Curves:
Bidomain Simulations in 3D Rotational Anisotropy,
FIMH11(1-10).
Springer DOI
1105
BibRef
Colli-Franzone, P.[Piero],
Pavarino, L.F.[Luca F.],
Scacchi, S.[Simone],
Taccardi, B.[Bruno],
Determining Recovery Times from Transmembrane Action Potentials and
Unipolar Electrograms in Normal Heart Tissue,
FIMH07(139-149).
Springer DOI
0706
BibRef
Henriques, J.,
Brito, M.,
Gil, P.,
Carvalho, P.,
Antunes, M.,
Searching for Similarities in Nearly Periodic Signals With Application
to ECG Data Compression,
ICPR06(III: 942-945).
IEEE DOI
0609
BibRef
Zhou, X.B.[Xin-Biao],
Li, H.Y.[Hong-Yan],
Liu, H.B.[Hai-Bin],
Li, M.M.[Mei-Mei],
Tang, L.[Lvan],
Fan, Y.[Yu],
Hu, Z.J.[Zi-Jing],
Monitoring Abnormal Patterns with Complex Semantics over ICU Data
Streams,
IWICPAS06(185-194).
Springer DOI
0608
BibRef
Moreau-Villéger, V.[Valérie],
Delingette, H.[Hervé],
Sermesant, M.[Maxime],
Faris, O.[Owen],
McVeigh, E.R.[Elliot R.],
Ayache, N.J.[Nicholas J.],
Global and local parameter estimation of a model of the electrical activity of the heart,
INRIARR-5269, 2004.
HTML Version.
BibRef
0400
Jia, S.[Sen],
Qian, Y.T.[Yun-Tao],
Dai, G.[Guang],
An advanced segmental semi-Markov model based online series pattern
detection,
ICPR04(III: 634-637).
IEEE DOI
0409
Time alignment of sequences.
ECG data.
BibRef
Micó, P.[Pau],
Cuesta, D.[David],
Novák, D.[Daniel],
Clustering Improvement for Electrocardiographic Signals,
CIAP05(892-899).
Springer DOI
0509
BibRef
Novak, D.,
Lhotska, L.,
Al-Ani, T.,
Hamam, Y.,
Cuesta-Frau, D.,
Mico, P.,
Aboy, M.,
Morphology analysis of physiological signals using hidden Markov models,
ICPR04(III: 754-757).
IEEE DOI
0409
BibRef
Cuesta-Frau, D.,
Perez-Cortes, J.C.,
Andreu-Garcia, G.,
Novak, D.,
Feature extraction methods applied to the clustering of
electrocardiographi signals. a comparative study,
ICPR02(III: 961-964).
IEEE DOI
0211
BibRef
Kowalski, H.A.[Henryk A.],
Skorupski, A.[Andrzej],
Szymanski, Z.[Zbigniew],
Ziembla, W.[Wojciech],
Wojciechowski, D.[Dariusz],
Sionek, P.[Piotr],
Jedrasik, P.[Piotr],
Cardiac Rhythm Analysis Using Spatial ECG Parameters and SPART Method,
CAIP01(290 ff.).
Springer DOI
0210
BibRef
Nygaard, R.[Ranveig],
Melnikov, G.[Gerry],
Katsaggelos, A.K.[Aggelos K.],
Rate distortion optimal ECG signal compression,
ICIP99(II:348-351).
IEEE DOI
BibRef
9900
Ouyang, N.[Ning],
Lam, W.K.[Wing-Kai],
Xu, L.[Lei],
Application of Bayesian Ying-Yang Criteria for Selecting the Number of
Hidden Units with Backpropagation Learning to
Electrocardigram Classification,
ICPR98(Vol II: 1686-1688).
IEEE DOI
9808
BibRef
Valev, V.,
Radeva, P.I.,
Construction of Boolean Decision Rules for ECG Recognition by
Non-Reducible Descriptors,
ICPR96(II: 111-115).
IEEE DOI
9608
(Bulgarian Academy of Sciences, BG)
BibRef
Fainzilberg, L.S.[Leonid S.],
Potapova, T.[Tatiana],
Computer analysis and recognition of cognitive phase space
electro-cardio graphic image,
CAIP95(668-673).
Springer DOI
9509
BibRef
Mohamed, A.S.A.,
Raafat, H.M.,
Recognition of heart sounds and murmurs for cardiac diagnosis,
ICPR88(II: 1009-1011).
IEEE DOI
8811
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
ECG, Electrocardiogram for Biometrics .