Neuromaters, LLC,
2009.
WWW Link.
Vendor, Neuroengineering. From the Columbia Neuroengineering group.
Cortically Coupled Computer Vision
Kumar, A.[Anand],
A real-time system for pattern recognition of human sleep stages by
fuzzy system analysis,
PR(9), No. 1, January 1977, pp. 43-46.
Elsevier DOI
0309
BibRef
Ferber, G.,
Classifying and validating intermittent EEG patterns with syntactic
methods,
PR(19), No. 4, 1986, pp. 289-295.
Elsevier DOI
0309
BibRef
Liang, J.J.[Joseph J.],
Clarson, V.[Virginia],
A new approach to classification of brainwaves,
PR(22), No. 6, 1989, pp. 767-774.
Elsevier DOI
0309
BibRef
Obermaier, B.,
Guger, C.,
Neuper, C.,
Pfurtscheller, G.,
Hidden Markov models for online classification of single trial EEG data,
PRL(22), No. 12, October 2001, pp. 1299-1309.
Elsevier DOI
0108
BibRef
Samardzic, A.B.[Aleksandar B.],
Jovanov, E.S.[Emil S.],
Starcevic, D.B.[Dusan B.],
Real-time Visualization of Brain Electrical Activity,
RealTimeImg(6), No. 1, February 2000, pp. 69-76.
0003
BibRef
Schmitt, U.,
Louis, A.K.,
Darvas, F.,
Buchner, H.,
Fuchs, M.,
Numerical aspects of spatio-temporal current density reconstruction
from EEG-/MEG-data,
MedImg(20), No. 4, April 2001, pp. 314-324.
IEEE Top Reference.
0110
BibRef
Jirsa, V.K.,
Jantzen, K.J.,
Fuchs, A.,
Kelso, J.A.S.,
Spatiotemporal forward solution of the EEG and MEG using network
modeling,
MedImg(21), No. 5, May 2002, pp. 493-504.
IEEE Top Reference.
0206
BibRef
Wu, W.,
Black, M.J.,
Mumford, D.,
Gao, Y.,
Bienenstock, E.,
Donoghue, J.P.,
Modeling and decoding motor cortical activity using a
switching Kalman filter,
BiomedEng(51), No. 6, June 2004, pp. 933-942.
WWW Link.
PDF File.
BibRef
0406
Wu, W.,
Gao, Y.,
Bienenstock, E.,
Donoghue, J.P.,
Black, M.J.,
Bayesian population coding of motor cortical
activity using a Kalman filter,
NeurComp(18), 2005, pp. 80-118.
WWW Link.
PDF File.
BibRef
0500
Wood, F.,
Black, M.J.,
Vargas-Irwin, C.,
Fellows, M.,
Donoghue, J.P.,
On the variability of manual spike sorting,
BiomedEng(51), No. 6, June 2004, pp. 912-918.
IEEE DOI
PDF File.
BibRef
0406
Kybic, J.[Jan],
Clerc, M.[Maureen],
Abboud, T.[Toufic],
Faugeras, O.D.[Olivier D.],
Keriven, R.[Renaud],
Papadopoulo, T.[Théo],
A common formalism for the Integral formulations of the forward EEG
problem,
MedImg(24), No. 1, January 2005, pp. 12-28.
IEEE Abstract.
0501
BibRef
Earlier:
Integral Formulations for the EEG Problem,
INRIARR-4735, Février 2003.
HTML Version.
0306
BibRef
Faugeras, O.D.,
Clement, F.,
Deriche, R.,
Keriven, R.,
Papadopoulo, T.,
Roberts, J.,
Vieville, T.,
Devernay, F.,
Gomes, J.,
Hermosillo, G.,
Kornprobst, P., and
Lingrand, D.,
The Inverse EEG and MEG Problems:
The Adjoint State Approach I: The Continuous Case,
INRIA--RR-3673, May 1999.
HTML Version. Determine the 3-D structure of the signals from the EEG signals.
BibRef
9905
Kook, H.S.[Hyun-Seok],
Gupta, L.[Lalit],
Molfese, D.[Dennis],
Fadem, K.C.,
Multi-stimuli multi-channel data and decision fusion strategies for
dyslexia prediction using neonatal ERPs,
PR(38), No. 11, November 2005, pp. 2174-2184.
Elsevier DOI
0509
BibRef
Gupta, L.[Lalit],
Kota, S.[Srinivas],
Yarlagadda, P.[Phani],
Molfese, D.L.[Dennis L.],
Central-tendency estimation and nearest-estimate classification of
event related potentials,
PR(44), No. 7, July 2011, pp. 1418-1425.
Elsevier DOI
1103
Decision fusion; ERP classification; ERP estimation; Event related
potentials; Multivariate central-tendency estimation
BibRef
Kook, H.S.[Hyun-Seok],
Gupta, L.[Lalit],
Kota, S.[Srinivas],
Molfese, D.[Dennis],
Lyytinen, H.,
An offline/real-time artifact rejection strategy to improve the
classification of multi-channel evoked potentials,
PR(41), No. 6, June 2008, pp. 1985-1996.
Elsevier DOI
0802
Artifact detection; Evoked potentials; Decision fusion
BibRef
Shoker, L.,
Sanei, S.,
Chambers, J.,
Artifact removal from electroencephalograms using a hybrid BSS-SVM
algorithm,
SPLetters(12), No. 10, October 2005, pp. 721-724.
IEEE DOI
0510
BibRef
Puthusserypady, S.,
Ratnarajah, T.,
Hinf-Adaptive Filters for Eye Blink Artifact Minimization From
Electroencephalogram,
SPLetters(12), No. 12, December 2005, pp. 816-819.
IEEE DOI
0512
BibRef
Latif, M.A.,
Sanei, S.,
Chambers, J.,
Shoker, L.,
Localization of abnormal EEG sources using blind source separation
partially constrained by the locations of known sources,
SPLetters(13), No. 3, March 2006, pp. 117-120.
IEEE DOI
0604
BibRef
Ubeyli, E.D.[Elif Derya],
Guler, I.[Inan],
Features extracted by eigenvector methods for detecting variability of
EEG signals,
PRL(28), No. 5, 1 April 2007, pp. 592-603.
Elsevier DOI
0703
Mixture of experts (ME); Modified mixture of experts (MME);
Eigenvector methods; Electroencephalogram (EEG) signals
See also ECG beat classifier designed by combined neural network model.
See also recurrent neural network classifier for Doppler ultrasound blood flow signals, A.
BibRef
Barriga, E.S.,
Pattichis, M.,
Ts'o, D.,
Abramoff, M.,
Kardon, R.,
Kwon, Y.,
Soliz, P.,
Spatiotemporal Independent Component Analysis for the Detection of
Functional Responses in Cat Retinal Images,
MedImg(26), No. 8, August 2007, pp. 1035-1045.
IEEE DOI
0709
BibRef
Sun, S.L.[Shi-Liang],
Zhang, C.S.[Chang-Shui],
Lu, Y.[Yue],
The random electrode selection ensemble for EEG signal classification,
PR(41), No. 5, May 2008, pp. 1680-1692.
Elsevier DOI
0711
EEG signal classification; Classifier ensemble; Bayesian classifier;
Gaussian mixture model; Fisher discriminant analysis
BibRef
Alba, A.[Alfonso],
Marroquin, J.L.[Jose L.],
Arce-Santana, E.[Edgar],
Harmony, T.[Thalia],
Classification and interactive segmentation of EEG synchrony patterns,
PR(43), No. 2, February 2010, pp. 530-544.
Elsevier DOI
0910
Interactive segmentation; Seeded region growing; Bayesian
regularization; EEG synchrony; Electroencephalograpy;
Psychophysiological experiment
BibRef
Calvetti, D.[Daniela],
Hakula, H.[Harri],
Pursiainen, S.[Sampsa],
Somersalo, E.[Erkki],
Conditionally Gaussian Hypermodels For Cerebral Source Localization,
SIIMS(2), No. 3, 2009, pp. 879-909.
electroencephalography/magnetoencephalography; Markov chain Monte
Carlo; finite element methods
DOI Link
BibRef
0903
Hu, S.,
Stead, M.,
Dai, Q.,
Worrell, G.A.,
On the Recording Reference Contribution to EEG Correlation, Phase
Synchorony, and Coherence,
SMC-B(40), No. 5, October 2010, pp. 1294-1304.
IEEE DOI
1003
BibRef
Nezamfar, H.[Hooman],
Orhan, U.[Umut],
Purwar, S.[Shalini],
Hild, K.[Kenneth],
Oken, B.[Barry],
Erdogmus, D.[Deniz],
Decoding of multichannel EEG activity from the visual cortex in
response to pseudorandom binary sequences of visual stimuli,
IJIST(21), No. 2, June 2011, pp. 139-147.
DOI Link
1101
BibRef
Venkatakrishnan, P.,
Sukanesh, R.,
Sangeetha, S.,
Detection of quadratic phase coupling from human EEG signals using
higher order statistics and spectra,
SIViP(5), No. 2, June 2011, pp. 217-229.
WWW Link.
1101
BibRef
Wang, Q.A.[Qi-Ang],
Sourina, O.[Olga],
Nguyen, M.K.[Minh Khoa],
Fractal dimension based neurofeedback in serious games,
VC(27), No. 4, April 2011, pp. 299-309.
WWW Link.
1101
BibRef
Chaovalitwongse, W.A.,
Pottenger, R.S.,
Wang, S.,
Fan, Y.J.,
Iasemidis, L.D.,
Pattern- and Network-Based Classification Techniques for Multichannel
Medical Data Signals to Improve Brain Diagnosis,
SMC-A(41), No. 5, September 2011, pp. 977-988.
IEEE DOI
1109
BibRef
Hu, B.[Bin],
Majoe, D.[Dennis],
Ratcliffe, M.[Martyn],
Qi, Y.B.[Yan-Bing],
Zhao, Q.[Qinglin],
Peng, H.[Hong],
Fan, D.[Dangping],
Zheng, F.[Fang],
Jackson, M.[Mike],
Moore, P.[Philip],
EEG-Based Cognitive Interfaces for Ubiquitous Applications:
Developments and Challenges,
IEEE_Int_Sys(26), No. 5, September-October 2011, pp. 46-53.
IEEE DOI
1110
BibRef
Anderson, J.[John],
Betts, S.[Shawn],
Ferris, J.[Jennifer],
Fincham, J.[Jon],
Yang, J.[Jian],
Using Brain Imaging to Interpret Student Problem Solving,
IEEE_Int_Sys(26), No. 5, September-October 2011, pp. 22-29.
IEEE DOI
1110
BibRef
Astolfi, L.[Laura],
Toppi, J.[Jlenia],
de Vico Fallani, F.[Fabrizio],
Vecchiato, G.[Giovanni],
Cincotti, F.[Febo],
Wilke, C.[Christopher],
Yuan, H.[Han],
Mattia, D.[Donatella],
Salinari, S.[Serenella],
He, B.[Bin],
Babiloni, F.[Fabio],
Imaging the Social Brain by Simultaneous Hyperscanning during Subject
Interaction,
IEEE_Int_Sys(26), No. 5, September-October 2011, pp. 38-45.
IEEE DOI
1110
BibRef
Ranta, R.,
Madhu, N.,
Reference Estimation in EEG: Analysis of Equivalent Approaches,
SPLetters(19), No. 1, January 2012, pp. 12-15.
IEEE DOI
1112
BibRef
Gibson, S.,
Judy, J.W.,
Markovic, D.,
Spike Sorting: The First Step in Decoding the Brain,
SPMag(29), No. 1, 2012, pp. 124-143.
IEEE DOI
1112
BibRef
Tzovara, A.[Athina],
Murray, M.M.[Micah M.],
Plomp, G.[Gijs],
Herzog, M.H.[Michael H.],
Michel, C.M.[Christoph M.],
de Lucia, M.[Marzia],
Decoding stimulus-related information from single-trial EEG responses
based on voltage topographies,
PR(45), No. 6, June 2012, pp. 2109-2122.
Elsevier DOI
1202
Decoding; Single-trial; EEG; Topographic analysis; Classification;
Gaussian Mixture Model
BibRef
Olivetti, E.[Emanuele],
Veeramachaneni, S.[Sriharsha],
Nowakowska, E.[Ewa],
Bayesian hypothesis testing for pattern discrimination in brain
decoding,
PR(45), No. 6, June 2012, pp. 2075-2084.
Elsevier DOI
1202
Interpretability and validation; Brain decoding; Generalization error;
Hypothesis testing
BibRef
Mórocz, I.Á.[István Ákos],
Janoos, F.[Firdaus],
van Gelderen, P.[Peter],
Manor, D.[David],
Karni, A.[Avi],
Breznitz, Z.[Zvia],
von Aster, M.[Michael],
Kushnir, T.[Tammar],
Shalev, R.[Ruth],
Time-resolved and spatio-temporal analysis of complex cognitive
processes and their role in disorders like developmental dyscalculia,
IJIST(22), No. 1, March 2012, pp. 81-96.
DOI Link
1202
BibRef
Campisi, P.,
La Rocca, D.,
Scarano, G.,
EEG for Automatic Person Recognition,
Computer(45), No. 7, July 2012, pp. 87-89.
IEEE DOI
1208
BibRef
Caponetto, R.,
Dongola, G.,
Pappalardo, F.,
Fractional-order simulation tool for the brainstem vestibulo-ocular
reflex (VOR),
SIViP(6), No. 3, September 2012, pp. 429-436.
WWW Link.
1209
BibRef
Ng, K.S.[Kam Swee],
Yang, H.J.[Hyung-Jeong],
Kim, S.H.[Soo-Hyung],
Kim, S.H.[Sun-Hee],
Incremental Non-Gaussian Analysis on Multivariate EEG Signal Data,
IEICE(E95-D), No. 12, December 2012, pp. 3010-3016.
WWW Link.
1212
BibRef
Sanei, S.,
Ferdowsi, S.,
Nazarpour, K.,
Cichocki, A.,
Advances in Electroencephalography Signal Processing,
SPMag(30), No. 1, 2012, pp. 170-176.
IEEE DOI
1212
Survey, EEG.
BibRef
Alameer, A.[Ali],
Ghazaei, G.,
Degenaar, P.[Patrick],
Chambers, J.A.,
Nazarpour, K.[Kianoush],
Object Recognition With an Elastic Net-Regularized Hierarchical MAX
Model of the Visual Cortex,
SPLetters(23), No. 8, August 2016, pp. 1062-1066.
IEEE DOI
1608
image classification
BibRef
Alameer, A.[Ali],
Degenaar, P.[Patrick],
Nazarpour, K.[Kianoush],
Objects and scenes classification with selective use of central and
peripheral image content,
JVCIR(66), 2020, pp. 102698.
Elsevier DOI
2003
Visual recognition, Image understanding, Visual-data reduction,
Biological visual-systems, Visual perception, Scene analysis
BibRef
Chen, J.,
Zhong, N.,
Toward the Data-Brain Driven Systematic Brain Data Analysis,
SMCS(43), No. 1, January 2013, pp. 222-228.
IEEE DOI
1301
BibRef
Kar, S.,
Routray, A.,
Effect of Sleep Deprivation on Functional Connectivity of EEG Channels,
SMCS(43), No. 3, May 2013, pp. 666-672.
IEEE DOI
1305
BibRef
Zhao, Q.B.[Qi-Bin],
Caiafa, C.F.,
Mandic, D.P.,
Chao, Z.C.,
Nagasaka, Y.,
Fujii, N.,
Zhang, L.Q.[Li-Qing],
Cichocki, A.,
Higher Order Partial Least Squares (HOPLS):
A Generalized Multilinear Regression Method,
PAMI(35), No. 7, 2013, pp. 1660-1673.
IEEE DOI
1307
computational complexity; electroencephalography;
BibRef
Hadjidimitriou, S.K.[Stelios K.],
Hadjileontiadis, L.J.[Leontios J.],
EEG-Based Classification of Music Appraisal Responses Using
Time-Frequency Analysis and Familiarity Ratings,
AffCom(4), No. 2, 2013, pp. 161-172.
IEEE DOI
1307
Appraisal classification
BibRef
Cong, F.,
Alluri, V.,
Nandi, A.K.,
Toiviainen, P.,
Fa, R.,
Abu-Jamous, B.,
Gong, L.,
Craenen, B.G.W.,
Poikonen, H.,
Huotilainen, M.,
Ristaniemi, T.,
Linking Brain Responses to Naturalistic Music Through Analysis of
Ongoing EEG and Stimulus Features,
MultMed(15), No. 5, 2013, pp. 1060-1069.
IEEE DOI
1307
Brain
BibRef
Chen, X.,
Chen, X.,
Ward, R.K.,
Wang, Z.J.,
A Joint Multimodal Group Analysis Framework for Modeling
Corticomuscular Activity,
MultMed(15), No. 5, 2013, pp. 1049-1059.
IEEE DOI
1307
Brain models
BibRef
Huttunen, H.[Heikki],
Manninen, T.[Tapio],
Kauppi, J.P.[Jukka-Pekka],
Tohka, J.[Jussi],
Mind reading with regularized multinomial logistic regression,
MVA(24), No. 6, August 2013, pp. 1311-1325.
Springer DOI
1307
MEG mind reading competition of ICANN 2011.
BibRef
Hammond, D.K.,
Scherrer, B.,
Warfield, S.K.,
Cortical Graph Smoothing: A Novel Method for Exploiting DWI-Derived
Anatomical Brain Connectivity to Improve EEG Source Estimation,
MedImg(32), No. 10, 2013, pp. 1952-1963.
IEEE DOI
1311
Poisson equation
BibRef
Zivanovic, M.,
Time-Varying Multicomponent Signal Modeling for Analysis of Surface
EMG Data,
SPLetters(21), No. 6, June 2014, pp. 692-696.
IEEE DOI
1404
Discrete wavelet transforms
BibRef
Choi, Y.S.[Young-Seok],
Adaptive Subscale Entropy Based Quantification of EEG,
IEICE(E97-D), No. 5, May 2014, pp. 1398-1401.
WWW Link.
1405
BibRef
Li, Y.,
Yu, Z.,
Bi, N.,
Xu, Y.,
Gu, Z.,
Amari, S.,
Sparse Representation for Brain Signal Processing:
A tutorial on methods and applications,
SPMag(31), No. 3, May 2014, pp. 96-106.
IEEE DOI
1405
Brain modeling
BibRef
Ting, C.M.,
Salleh, S.H.,
Zainuddin, Z.M.,
Bahar, A.,
Artifact Removal from Single-Trial ERPs using Non-Gaussian Stochastic
Volatility Models and Particle Filter,
SPLetters(21), No. 8, August 2014, pp. 923-927.
IEEE DOI
1406
Biological system modeling
Event-related potentials.
BibRef
Jamal, W.,
Das, S.,
Oprescu, I.A.[I-A],
Maharatna, K.,
Prediction of Synchrostate Transitions in EEG Signals Using Markov
Chain Models,
SPLetters(22), No. 2, February 2015, pp. 149-152.
IEEE DOI
1410
Markov processes
BibRef
Boashash, B.[Boualem],
Azemi, G.[Ghasem],
Khan, N.A.[Nabeel Ali],
Principles of time-frequency feature extraction for change detection
in non-stationary signals: Applications to newborn EEG abnormality
detection,
PR(48), No. 3, 2015, pp. 616-627.
Elsevier DOI
1412
Time-frequency feature extraction
BibRef
Saha, A.,
Konar, A.,
Chatterjee, A.,
Ralescu, A.,
Nagar, A.K.,
EEG Analysis for Olfactory Perceptual-Ability Measurement Using a
Recurrent Neural Classifier,
HMS(44), No. 6, December 2014, pp. 717-730.
IEEE DOI
1412
Lyapunov methods
BibRef
Wu, W.,
Chen, Z.,
Gao, X.,
Li, Y.,
Brown, E.N.,
Gao, S.,
Probabilistic Common Spatial Patterns for Multichannel EEG Analysis,
PAMI(37), No. 3, March 2015, pp. 639-653.
IEEE DOI
1502
Algorithm design and analysis
BibRef
Idaji, M.J.[Mina Jamshidi],
Shamsollahi, M.B.[Mohammad B.],
Sardouie, S.H.[Sepideh Hajipour],
Higher order spectral regression discriminant analysis (HOSRDA):
A tensor feature reduction method for ERP detection,
PR(70), No. 1, 2017, pp. 152-162.
Elsevier DOI
1706
HOSRDA
BibRef
Farina, D.,
Holobar, A.,
Human-Machine Interfacing by Decoding the Surface Electromyogram,
SPMag(32), No. 1, January 2015, pp. 115-120.
IEEE DOI
1502
Life Sciences.
biomedical electrodes
BibRef
Farina, D.,
Holobar, A.,
Characterization of Human Motor Units From Surface EMG Decomposition,
PIEEE(104), No. 2, February 2016, pp. 353-373.
IEEE DOI
1601
Biomedical signal processing
BibRef
Arjunan, S.P.[Sridhar Poosapadi],
Kumar, D.K.[Dinesh Kant],
Wheeler, K.[Katherine],
Shimada, H.[Hirokazu],
Spectral properties of surface electromyogram signal and change in
muscle conduction velocity during isometric muscle contraction,
SIViP(9), No. 2, February 2015, pp. 261-266.
Springer DOI
1503
BibRef
Cassidy, B.,
Solo, V.,
Spatially Sparse, Temporally Smooth MEG Via Vector L_0,
MedImg(34), No. 6, June 2015, pp. 1282-1293.
IEEE DOI
1506
inverse problems
BibRef
Mihandoost, S.[Sara],
Amirani, M.C.[Mehdi Chehel],
EEG signal analysis using spectral correlation
function & GARCH model,
SIViP(9), No. 6, September 2015, pp. 1461-1472.
WWW Link.
1509
BibRef
Nouira, I.[Ibtihel],
Ben Abdallah, A.[Asma],
Layouni, S.[Siham],
Bedoui, M.H.[Mohamed Hédi],
Dogui, M.[Mohamed],
Spectral density variation mapping of cerebral waves by
three-dimensional interpolation techniques,
IJIST(25), No. 3, 2015, pp. 191-198.
DOI Link
1509
EEG
BibRef
Kang, J.S.[Jun-Su],
Park, U.[Ukeob],
Gonuguntla, V.,
Veluvolu, K.C.,
Lee, M.H.[Min-Ho],
Human implicit intent recognition based on the phase synchrony of EEG
signals,
PRL(66), No. 1, 2015, pp. 144-152.
Elsevier DOI
1511
Human implicit intent
BibRef
Rozado, D.[David],
Dunser, A.[Andreas],
Combining EEG with Pupillometry to Improve Cognitive Workload
Detection,
Computer(48), No. 10, October 2015, pp. 18-25.
IEEE DOI
1511
BCI
BibRef
Delaherche, E.[Emilie],
Dumas, G.[Guillaume],
Nadel, J.[Jacqueline],
Chetouani, M.[Mohamed],
Automatic measure of imitation during social interaction:
A behavioral and hyperscanning-EEG benchmark,
PRL(66), No. 1, 2015, pp. 118-126.
Elsevier DOI
1511
Imitation
BibRef
Wu, W.,
Nagarajan, S.,
Chen, Z.,
Bayesian Machine Learning: EEG/MEG signal processing measurements,
SPMag(33), No. 1, January 2016, pp. 14-36.
IEEE DOI
1601
BibRef
Leistritz, L.,
Schiecke, K.,
Astolfi, L.,
Witte, H.,
Time-Variant Modeling of Brain Processes,
PIEEE(104), No. 2, February 2016, pp. 262-281.
IEEE DOI
1601
Analytical models
BibRef
Arndt, S.[Sebastian],
Antons, J.N.[Jan-Niklas],
Schleicher, R.[Robert],
Möller, S.[Sebastian],
Using electroencephalography to analyze sleepiness due to low-quality
audiovisual stimuli,
SP:IC(42), No. 1, 2016, pp. 120-129.
Elsevier DOI
1603
Quality of experience
BibRef
Jatoi, M.A.[Munsif Ali],
Kamel, N.[Nidal],
Malik, A.S.[Aamir Saeed],
Faye, I.[Ibrahima],
Bornot, J.M.[Jose M.],
Begum, T.[Tahamina],
EEG-based brain source localization using visual stimuli,
IJIST(26), No. 1, 2016, pp. 55-64.
DOI Link
1604
brain activation
BibRef
Jatoi, M.A.[Munsif Ali],
Kamel, N.[Nidal],
Brain source localization using reduced EEG sensors,
SIViP(12), No. 8, November 2018, pp. 1447-1454.
WWW Link.
1809
BibRef
He, L.,
Hu, D.,
Wan, M.,
Wen, Y.,
von Deneen, K.M.,
Zhou, M.,
Common Bayesian Network for Classification of EEG-Based Multiclass
Motor Imagery BCI,
SMCS(46), No. 6, June 2016, pp. 843-854.
IEEE DOI
1605
Bayes methods
BibRef
Wang, S.,
Gwizdka, J.,
Chaovalitwongse, W.A.,
Using Wireless EEG Signals to Assess Memory Workload in the n-Back
Task,
HMS(46), No. 3, June 2016, pp. 424-435.
IEEE DOI
1605
Accuracy
BibRef
Nouira, I.[Ibtihel],
Ben Abdallah, A.[Asma],
Bedoui, M.H.[Mohamed Hedi],
Three-dimensional interpolation methods to spatiotemporal EEG mapping
during various behavioral states,
SIViP(10), No. 5, May 2016, pp. 943-949.
Springer DOI
1608
BibRef
Strohmeier, D.,
Bekhti, Y.,
Haueisen, J.,
Gramfort, A.,
The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal
MEG/EEG Source Reconstruction,
MedImg(35), No. 10, October 2016, pp. 2218-2228.
IEEE DOI
1610
Brain modeling
BibRef
Dong, S.Y.,
Kim, B.K.,
Lee, S.Y.,
EEG-Based Classification of Implicit Intention During Self-Relevant
Sentence Reading,
Cyber(46), No. 11, November 2016, pp. 2535-2542.
IEEE DOI
1609
electroencephalography
BibRef
Pacola, E.[Edras],
Quandt, V.[Veronica],
Liberalesso, P.[Paulo],
Pichorim, S.[Sérgio],
Schneider, F.[Fábio],
Gamba, H.[Humberto],
A versatile EEG spike detector with multivariate matrix of features
based on the linear discriminant analysis, combined wavelets, and
descriptors,
PRL(86), No. 1, 2017, pp. 31-37.
Elsevier DOI
1702
EEG
BibRef
Naruniec, J.[Jacek],
Wieczorek, M.[Michal],
Szlufik, S.[Stanislaw],
Koziorowski, D.[Dariusz],
Tomaszewski, M.[Michal],
Kowalski, M.[Marek],
Przybyszewski, A.[Andrzej],
Webcam-based system for video-oculography,
IET-CV(11), No. 2, March 2017, pp. 173-180.
DOI Link
1703
BibRef
Saha, S.[Sajib],
Rana, R.[Rajib],
Nesterets, Y.[Yakov],
Tahtali, M.[Murat],
de Hoog, F.[Frank],
Gureyev, T.[Timur],
Evaluating the performance of BSBL methodology for EEG source
localization on a realistic head model,
IJIST(27), No. 1, 2017, pp. 46-56.
DOI Link
1704
electroencephalography
BibRef
Saha, S.[Sajib],
Nesterets, Y.[Yakov],
Rana, R.[Rajib],
Tahtali, M.[Murat],
de Hoog, F.[Frank],
Gureyev, T.[Timur],
EEG source localization using a sparsity prior based on Brodmann
areas,
IJIST(27), No. 4, 2017, pp. 333-344.
DOI Link
1712
Brodmann map, electroencephalography, inverse problem,
source localization, sparse reconstruction
BibRef
Costa, F.,
Batatia, H.,
Oberlin, T.,
Tourneret, J.Y.,
Skull Conductivity Estimation for EEG Source Localization,
SPLetters(24), No. 4, April 2017, pp. 422-426.
IEEE DOI
1704
Bayes methods
BibRef
Vorwerk, J.,
Engwer, C.,
Pursiainen, S.,
Wolters, C.H.,
A Mixed Finite Element Method to Solve the EEG Forward Problem,
MedImg(36), No. 4, April 2017, pp. 930-941.
IEEE DOI
1704
Brain models
BibRef
Mohanty, M.N.[Mihir Narayan],
Routray, A.[Aurobinda],
Kabisatpathy, P.[Prithviraj],
Optimisation of features using evolutionary algorithm for EEG signal
classification,
IJCVR(1), No. 3, 2010, pp. 297-310.
DOI Link
1102
BibRef
Santillán-Guzmán, A.[Alina],
Heute, U.[Ulrich],
Stephani, U.[Ulrich],
Galka, A.[Andreas],
Comparison of different methods to suppress muscle artifacts in EEG
signals,
SIViP(11), No. 4, May 2017, pp. 761-768.
Springer DOI
1704
BibRef
Haor, D.,
Shavit, R.,
Shapiro, M.,
Geva, A.B.,
Back-Projection Cortical Potential Imaging: Theory and Results,
MedImg(36), No. 7, July 2017, pp. 1583-1595.
IEEE DOI
1707
Brain modeling, Electric potential, Electroencephalography,
Estimation, Imaging, Scalp, Cortical potential imaging,
backprojection, finite element method, head modeling, surface, Laplacian
BibRef
Li, F.,
Zhang, G.,
Wang, W.,
Xu, R.,
Schnell, T.,
Wen, J.,
McKenzie, F.,
Li, J.,
Deep Models for Engagement Assessment With Scarce Label Information,
HMS(47), No. 4, August 2017, pp. 598-605.
IEEE DOI
1708
Brain models, Data models, Electroencephalography,
Feature extraction, Machine learning, Training, Deep learning,
electroencephalography (EEG), engagement assessment, scarce, label, information
BibRef
Gupta, V.[Vipin],
Priya, T.[Tanvi],
Yadav, A.K.[Abhishek Kumar],
Pachori, R.B.[Ram Bilas],
Acharya, U.R.[U. Rajendra],
Automated detection of focal EEG signals using features extracted
from flexible analytic wavelet transform,
PRL(94), No. 1, 2017, pp. 180-188.
Elsevier DOI
1708
EEG
BibRef
Arunkumar, N.,
Ramkumar, K.,
Venkatraman, V.,
Abdulhay, E.[Enas],
Fernandes, S.L.[Steven Lawrence],
Kadry, S.[Seifedine],
Segal, S.[Sophia],
Classification of focal and non focal EEG using entropies,
PRL(94), No. 1, 2017, pp. 112-117.
Elsevier DOI
1708
Classification
BibRef
Muhammad Umar Saeed, S.[Sanay],
Muhammad Anwar, S.[Syed],
Majid, M.[Muhammad],
Quantification of Human Stress Using Commercially Available Single
Channel EEG Headset,
IEICE(E100-D), No. 9, September 2017, pp. 2241-2244.
WWW Link.
1709
BibRef
Khan, M.S.,
Deng, H.,
Design and Prototyping a Smart Deep Brain Stimulator:
An Autonomous Neuro-Sensing and Stimulating Electrode System,
IEEE_Int_Sys(32), No. 5, September 2017, pp. 14-27.
IEEE DOI
1710
Artificial intelligence, Brain models, Electrodes, Implants,
Micromechanical devices, Process control,
BibRef
Mu, Z.D.[Zhen-Dong],
Hu, J.F.[Jian-Feng],
Min, J.L.[Jian-Liang],
Yin, J.H.[Jing-Hai],
Comparison of different entropies as features for person authentication
based on EEG signals,
IET-Bio(6), No. 6, November 2017, pp. 409-417.
DOI Link
1711
BibRef
Hashemi, S.[Soheil],
Abdolali, A.[Ali],
Three-dimensional FDTD modeling of neurons to solve EEG and MEG
forward problem,
IJIST(27), No. 4, 2017, pp. 361-367.
DOI Link
1712
brain function,
electroencephalogram and magnetoencephalography analysis,
neurons
BibRef
Jiao, Z.C.[Zhi-Cheng],
Gao, X.B.[Xin-Bo],
Wang, Y.[Ying],
Li, J.[Jie],
Xu, H.J.[Hao-Jun],
Deep Convolutional Neural Networks for mental load classification
based on EEG data,
PR(76), No. 1, 2018, pp. 582-595.
Elsevier DOI
1801
Deep learning
BibRef
Xu, M.Y.[Mei-Yan],
Yao, J.F.[Jun-Feng],
Zhang, Z.H.[Zhi-Hong],
Li, R.[Rui],
Yang, B.R.[Bao-Rong],
Li, C.Y.[Chun-Yan],
Li, J.[Jun],
Zhang, J.S.[Jun-Song],
Learning EEG Topographical Representation for Classification Via
Convolutional Neural Network,
PR(105), 2020, pp. 107390.
Elsevier DOI
2006
Motor imagery, Electroencephalography topographical representation,
Signal pre-processing
BibRef
Rutigliano, T.,
Rivolta, M.W.,
Pizzi, R.,
Sassi, R.,
Composition of Feature Extraction Methods Shows Interesting
Performances in Discriminating Wakefulness and NREM Sleep,
SPLetters(25), No. 2, February 2018, pp. 204-208.
IEEE DOI
1802
brain, electroencephalography, feature extraction,
medical signal processing, neural nets, neurophysiology, sleep,
wavelet transforms (WT)
BibRef
Tsumugiwa, T.,
Shibata, A.,
Yokogawa, R.,
Analysis of Upper-Extremity Motion and Muscle and Brain Activation
During Machine Operation in Consideration of Mass and Friction,
HMS(48), No. 2, April 2018, pp. 161-171.
IEEE DOI
1804
Brain, Extremities, Force, Friction, Impedance, Muscles, Task analysis,
Brain activity, electromyography (EMG),
near-infrared spectroscopy (NIRS)
BibRef
Chauhan, M.,
Indahlastari, A.,
Kasinadhuni, A.K.,
Schär, M.,
Mareci, T.H.,
Sadleir, R.J.,
Low-Frequency Conductivity Tensor Imaging of the Human Head In Vivo
Using DT-MREIT: First Study,
MedImg(37), No. 4, April 2018, pp. 966-976.
IEEE DOI
1804
Conductivity, Electrodes, Image reconstruction, Tensile stress,
Tomography, Inverse electroencephalogram (EEG), MREIT,
tDCS
BibRef
Hassan, M.,
Wendling, F.,
Electroencephalography Source Connectivity: Aiming for High
Resolution of Brain Networks in Time and Space,
SPMag(35), No. 3, May 2018, pp. 81-96.
IEEE DOI
1805
Biomedical signal processing, Brain modeling, Couplings,
Electrodes, Electroencephalography, Neuroimaging, Neuroscience,
Time series analysis
BibRef
Mheich, A.,
Hassan, M.,
Khalil, M.,
Gripon, V.,
Dufor, O.,
Wendling, F.,
SimiNet: A Novel Method for Quantifying Brain Network Similarity,
PAMI(40), No. 9, September 2018, pp. 2238-2249.
IEEE DOI
1808
Indexes, Algorithm design and analysis, Brain,
Image edge detection, Visualization, Animals, Tools,
spatial information
BibRef
Wu, H.Y.[Hui-Ying],
Xu, Y.K.[Yi-Kai],
Xu, W.[Wenbiao],
Imaging manifestations of sepsis-associated encephalopathy,
IJIST(28), No. 3, September 2018, pp. 196-206.
WWW Link.
1808
BibRef
Bosse, S.,
Acqualagna, L.,
Samek, W.,
Porbadnigk, A.K.,
Curio, G.,
Blankertz, B.,
Müller, K.,
Wiegand, T.,
Assessing Perceived Image Quality Using Steady-State Visual Evoked
Potentials and Spatio-Spectral Decomposition,
CirSysVideo(28), No. 8, August 2018, pp. 1694-1706.
IEEE DOI
1808
Visualization, Electroencephalography, Electric potential,
Quality assessment, Correlation, Distortion, Electrodes, EEG, SSVEP,
spatio-spectral decomposition
BibRef
Mert, A.[Ahmet],
Akan, A.[Aydin],
Seizure onset detection based on frequency domain metric of empirical
mode decomposition,
SIViP(12), No. 8, November 2018, pp. 1489-1496.
WWW Link.
1809
BibRef
Ranjan, R.[Rakesh],
Arya, R.[Rajeev],
Fernandes, S.L.[Steven Lawrence],
Sravya, E.[Erukonda],
Jain, V.[Vinay],
A fuzzy neural network approach for automatic K-complex detection in
sleep EEG signal,
PRL(115), 2018, pp. 74-83.
Elsevier DOI
1812
K-complex, Sleep EEG, Savitzky-Golay filter, NREM sleep,
Fuzzy neural system, Artificial neural network, Back Proportion algorithm
BibRef
Kim, S.,
Ba, D.,
Brown, E.N.,
A Multitaper Frequency-Domain Bootstrap Method,
SPLetters(25), No. 12, December 2018, pp. 1805-1809.
IEEE DOI
1812
bioelectric potentials, bootstrapping, electroencephalography,
inference mechanisms, medical signal processing,
spectra resampling
BibRef
Labyt, E.,
Corsi, M.,
Fourcault, W.,
Palacios Laloy, A.,
Bertrand, F.,
Lenouvel, F.,
Cauffet, G.,
Le Prado, M.,
Berger, F.,
Morales, S.,
Magnetoencephalography With Optically Pumped4He Magnetometers at
Ambient Temperature,
MedImg(38), No. 1, January 2019, pp. 90-98.
IEEE DOI
1901
Magnetometers, Magnetic fields, Magnetic field measurement,
Phantoms, SQUIDs, Optical pumping, Temperature measurement,
spontaneous activity
BibRef
Arapakis, I.,
Barreda-Ángeles, M.,
Pereda-Baños, A.,
Interest as a Proxy of Engagement in News Reading:
Spectral and Entropy Analyses of EEG Activity Patterns,
AffCom(10), No. 1, January 2019, pp. 100-114.
IEEE DOI
1903
Media, FAA, Electroencephalography, Psychology, Hip, Entropy,
User engagement, news consumption, EEG, spectral analysis,
predictive modelling
BibRef
Hatipoglu, B.[Bahar],
Yilmaz, C.M.[Cagatay Murat],
Kose, C.[Cemal],
A signal-to-image transformation approach for EEG and MEG signal
classification,
SIViP(13), No. 3, April 2019, pp. 483-490.
WWW Link.
1904
BibRef
Al-dabag, M.L.[Mohand Lokman],
Ozkurt, N.[Nalan],
EEG motor movement classification based on cross-correlation with
effective channel,
SIViP(13), No. 3, April 2019, pp. 567-573.
WWW Link.
1904
BibRef
Pander, T.[Tomasz],
EEG signal improvement with cascaded filter based on OWA operator,
SIViP(13), No. 6, September 2019, pp. 1165-1171.
WWW Link.
1908
BibRef
Rodrigues, J.D.[Jardel Das_C.],
Filho, P.P.R.[Pedro P. Rebouças],
Peixoto, E.[Eugenio],
Kumar, N.A.[N. Arun],
de Albuquerque, V.H.C.[Victor Hugo C.],
Classification of EEG signals to detect alcoholism using machine
learning techniques,
PRL(125), 2019, pp. 140-149.
Elsevier DOI
1909
Electroencephalogram (EEG), Alcoholic signals,
Wavelet packet decomposition, Support Vector Machine (SVM),
Multi-layer Perceptron (MLP)
BibRef
Fraschini, M.[Matteo],
Pani, S.M.[Sara Maria],
Didaci, L.[Luca],
Marcialis, G.L.[Gian Luca],
Robustness of functional connectivity metrics for EEG-based personal
identification over task-induced intra-class and inter-class
variations,
PRL(125), 2019, pp. 49-54.
Elsevier DOI
1909
BibRef
Thilagaraj, M.,
Rajasekaran, M.P.[M. Pallikonda],
An empirical mode decomposition (EMD)-based scheme for alcoholism
identification,
PRL(125), 2019, pp. 133-139.
Elsevier DOI
1909
ElectroEncephaloGram, k-Nearest-neighbour,
Independent component analysis, Empirical mode decomposition
BibRef
Bhalerao, S.[Siddharth],
Ansari, I.A.[Irshad Ahmad],
Kumar, A.[Anil],
Jain, D.K.[Deepak Kumar],
A reversible and multipurpose ECG data hiding technique for
telemedicine applications,
PRL(125), 2019, pp. 463-473.
Elsevier DOI
1909
Medical data hiding, Deep neural network,
Reversible data hiding, Ownership detection, Tamper detection
BibRef
Sawata, R.,
Ogawa, T.,
Haseyama, M.,
Novel Audio Feature Projection Using KDLPCCA-Based Correlation with
EEG Features for Favorite Music Classification,
AffCom(10), No. 3, July 2019, pp. 430-444.
IEEE DOI
1909
Electroencephalography, Music, Correlation, Feature extraction,
Multiple signal classification, Support vector machines,
support vector machine (SVM)
BibRef
Yang, W.[Wei],
Yang, D.P.[Da-Peng],
Liu, Y.[Yu],
Liu, H.[Hong],
Decoding Simultaneous Multi-DOF Wrist Movements From Raw EMG Signals
Using a Convolutional Neural Network,
HMS(49), No. 5, October 2019, pp. 411-420.
IEEE DOI
1909
Electromyography, Wrist, Training, Decoding, Feature extraction, Force,
Convolutional neural network (CNN),
simultaneous control
BibRef
Samadzadehaghdam, N.[Nasser],
Makkiabadi, B.[Bahador],
Masjoodi, S.[Sadegh],
Mohammadi, M.[Mohammad],
Mohagheghian, F.[Fahimeh],
A new linearly constrained minimum variance beamformer for
reconstructing EEG sparse sources,
IJIST(29), No. 4, 2019, pp. 686-700.
DOI Link
1911
EEG forward problem, EEG inverse problem,
L1-norm regularization,
source reconstruction
BibRef
Besedová, P.[Petra],
Vyšata, O.[Oldrich],
Mazurová, R.[Radka],
Kopal, J.[Jakub],
Ondráková, J.[Jana],
Vališ, M.[Martin],
Procházka, A.[Aleš],
Classification of brain activities during language and music perception,
SIViP(13), No. 8, November 2019, pp. 1559-1567.
Springer DOI
1911
BibRef
Monteiro, T.G.,
Skourup, C.,
Zhang, H.,
Using EEG for Mental Fatigue Assessment: A Comprehensive Look Into
the Current State of the Art,
HMS(49), No. 6, December 2019, pp. 599-610.
IEEE DOI
1912
Electroencephalography, Feature extraction, Human factors,
Sensor fusion, Fatigue, Risk management,
sensor fusion
BibRef
Jiang, J.,
Fares, A.,
Zhong, S.,
A Context-Supported Deep Learning Framework for Multimodal Brain
Imaging Classification,
HMS(49), No. 6, December 2019, pp. 611-622.
IEEE DOI
1912
Electroencephalography, Brain, Deep learning, Feature extraction,
Functional magnetic resonance imaging, Image classification,
object classification
BibRef
Munia, T.T.K.,
Aviyente, S.,
Comparison of Wavelet and RID-Rihaczek Based Methods for
Phase-Amplitude Coupling,
SPLetters(26), No. 12, December 2019, pp. 1897-1901.
IEEE DOI
2001
band-pass filters, electroencephalography, Hilbert transforms,
interference (signal), medical signal processing, EEG
BibRef
Jatoi, M.A.[Munsif Ali],
Kamel, N.[Nidal],
López, J.D.[José D.],
Multiple sparse priors technique with optimized patches for brain
source localization,
IJIST(30), No. 1, 2020, pp. 154-167.
DOI Link
2002
Bayesian framework, EEG, free energy, MSP, source localization
BibRef
Zheng, X.[Xiao],
Chen, W.Z.[Wan-Zhong],
You, Y.[Yang],
Jiang, Y.[Yun],
Li, M.Y.[Ming-Yang],
Zhang, T.[Tao],
Ensemble deep learning for automated visual classification using EEG
signals,
PR(102), 2020, pp. 107147.
Elsevier DOI
2003
Ensemble deep learning, Bagging algorithm, EEG, Automated visual classification
BibRef
Cai, C.,
Diwakar, M.,
Chen, D.,
Sekihara, K.,
Nagarajan, S.S.,
Robust Empirical Bayesian Reconstruction of Distributed Sources for
Electromagnetic Brain Imaging,
MedImg(39), No. 3, March 2020, pp. 567-577.
IEEE DOI
2004
Bayes methods, Kernel, Brain modeling, Image reconstruction,
Electroencephalography, Imaging, Electromagnetic brain mapping,
electroencephalography
BibRef
Cai, C.[Chang],
Long, Y.S.[Yuan-Shun],
Ghosh, S.[Sanjay],
Hashemi, A.[Ali],
Gao, Y.J.[Yi-Jing],
Diwakar, M.[Mithun],
Haufe, S.[Stefan],
Sekihara, K.[Kensuke],
Wu, W.[Wei],
Nagarajan, S.S.[Srikantan S.],
Bayesian Adaptive Beamformer for Robust Electromagnetic Brain Imaging
of Correlated Sources in High Spatial Resolution,
MedImg(42), No. 9, September 2023, pp. 2502-2512.
IEEE DOI
2310
BibRef
Maksymenko, K.,
Clerc, M.,
Papadopoulo, T.,
Fast Approximation of EEG Forward Problem and Application to Tissue
Conductivity Estimation,
MedImg(39), No. 4, April 2020, pp. 888-897.
IEEE DOI
2004
Conductivity, Lead, Electroencephalography, Head, Brain modeling,
Finite element analysis, Electric potential, EEG forward problem,
lead field matrix approximation
BibRef
Hatamimajoumerd, E.[Elaheh],
Talebpour, A.[Alireza],
Mohsenzadeh, Y.[Yalda],
Enhancing multivariate pattern analysis for magnetoencephalography
through relevant sensor selection,
IJIST(30), No. 2, 2020, pp. 473-494.
DOI Link
2005
dimensionality reduction, feature selection, MEG analysis,
MEG sensor selection, multivariate pattern analysis,
statistical dependency
BibRef
Mahmoodian, N.[Naghmeh],
Haddadnia, J.[Javad],
Illanes, A.[Alfredo],
Boese, A.[Axel],
Friebe, M.[Michael],
Seizure prediction with cross-higher-order spectral analysis of EEG
signals,
SIViP(14), No. 4, June 2020, pp. 821-828.
Springer DOI
2005
BibRef
Sharma, M.[Manish],
Patel, S.[Sohamkumar],
Acharya, U.R.[U. Rajendra],
Automated detection of abnormal EEG signals using localized wavelet
filter banks,
PRL(133), 2020, pp. 188-194.
Elsevier DOI
2005
EEG, Energy localization, Support vector machine (SVM), Wavelet-based features
BibRef
Wu, E.Q.,
Zhu, L.,
Zhang, W.,
Deng, P.,
Jia, B.,
Chen, S.,
Ren, H.,
Zhou, G.,
Novel Nonlinear Approach for Real-Time Fatigue EEG Data: An
Infinitely Warped Model of Weighted Permutation Entropy,
ITS(21), No. 6, June 2020, pp. 2437-2448.
IEEE DOI
2006
Fatigue, Electroencephalography, Entropy, Brain modeling, Sleep,
Feature extraction, Shape, Pilots' fatigue,
Gaussian mixture model
BibRef
Kohan, M.D.[Marzieh Daneshi],
Nasrabadi, A.M.[Ali Motie],
Shamsollahi, M.B.[Mohammad Bagher],
Sharifi, A.[Ali],
EEG/PPG effective connectivity fusion for analyzing deception in
interview,
SIViP(14), No. 5, July 2020, pp. 907-914.
Springer DOI
2006
BibRef
Chacon-Murguia, M.I.[Mario I.],
Olivas-Padilla, B.E.[Brenda E.],
Ramirez-Quintana, J.[Juan],
A new approach for multiclass motor imagery recognition using pattern
image features generated from common spatial patterns,
SIViP(14), No. 5, July 2020, pp. 915-923.
Springer DOI
2006
BibRef
Jiménez-Guarneros, M.[Magdiel],
Gómez-Gil, P.[Pilar],
Custom Domain Adaptation: A New Method for Cross-Subject, EEG-Based
Cognitive Load Recognition,
SPLetters(27), 2020, pp. 750-754.
IEEE DOI
2006
Unsupervised domain adaptation, EEG-based classification,
cognitive load, deep learning
BibRef
Jiménez-Guarneros, M.[Magdiel],
Gómez-Gil, P.[Pilar],
Standardization-refinement domain adaptation method for cross-subject
EEG-based classification in imagined speech recognition,
PRL(141), 2021, pp. 54-60.
Elsevier DOI
2101
Unsupervised domain adaptation, EEG, Classification,
Imagined speech, Deep learning
BibRef
Radüntz, T.,
Meffert, B.,
Cross-Modality Matching for Evaluating User Experience of Emerging
Mobile EEG Technology,
HMS(50), No. 4, August 2020, pp. 298-305.
IEEE DOI
2007
Electroencephalography, Mood, Headphones, Force, User experience,
Usability, Electrodes, Dry sensors, electroencephalography (EEG),
wearable devices
BibRef
Rong, Y.Y.[Yu-Ying],
Wu, X.J.[Xiao-Jun],
Zhang, Y.[Yumei],
Classification of motor imagery electroencephalography signals using
continuous small convolutional neural network,
IJIST(30), No. 3, 2020, pp. 653-659.
DOI Link
2008
BCI, CSCNN, EEG classification, motor imagery EEG signals
BibRef
Ramdani, S.[Sofiane],
Boyer, A.[Anthony],
Caron, S.[Stéphane],
Bonnetblanc, F.[François],
Bouchara, F.[Frédéric],
Duffau, H.[Hugues],
Lesne, A.[Annick],
Parametric recurrence quantification analysis of autoregressive
processes for pattern recognition in multichannel
electroencephalographic data,
PR(109), 2021, pp. 107572.
Elsevier DOI
2009
Recurrence plots, Recurrence quantification analysis,
Autoregressive stochastic processes, EEG Data
BibRef
Mohagheghian, F.[Fahimeh],
Deevband, M.R.[Mohammad Reza],
Samadzadehaghdam, N.[Nasser],
Khajehpour, H.[Hassan],
Makkiabadi, B.[Bahador],
An enhanced weighted greedy analysis pursuit algorithm with
application to EEG signal reconstruction,
IJIST(30), No. 4, 2020, pp. 1243-1255.
DOI Link
2011
compressed sensing, cosparse analysis model,
EEG signal reconstruction, Greedy Analysis Pursuit, sparsity
BibRef
Li, R.[Ren],
Johansen, J.S.[Jared S.],
Ahmed, H.[Hamad],
Ilyevsky, T.V.[Thomas V.],
Wilbur, R.B.[Ronnie B.],
Bharadwaj, H.M.[Hari M.],
Siskind, J.M.[Jeffrey Mark],
The Perils and Pitfalls of Block Design for EEG Classification
Experiments,
PAMI(43), No. 1, January 2021, pp. 316-333.
IEEE DOI
2012
Electroencephalography, Visualization, Training, Correlation,
Neuroimaging, Task analysis, Manifolds, Object classification, EEG, neuroimaging
BibRef
Liu, F.,
Wang, L.,
Lou, Y.,
Li, R.C.,
Purdon, P.L.,
Probabilistic Structure Learning for EEG/MEG Source Imaging With
Hierarchical Graph Priors,
MedImg(40), No. 1, January 2021, pp. 321-334.
IEEE DOI
2012
Brain modeling, Probabilistic logic, Imaging, Inverse problems,
Electromagnetics, Uncertainty, EEG/MEG source imaging,
graph structure learning
BibRef
Qi, F.,
Wu, W.,
Yu, Z.L.,
Gu, Z.,
Wen, Z.,
Yu, T.,
Li, Y.,
Spatiotemporal-Filtering-Based Channel Selection for Single-Trial EEG
Classification,
Cyber(51), No. 2, February 2021, pp. 558-567.
IEEE DOI
2101
Spatiotemporal phenomena, Electroencephalography, Optimization,
Covariance matrices, Cybernetics, Finance, Feature extraction,
spatiotemporal filtering
BibRef
Fernandes, C.M.,
Migotina, D.,
Rosa, A.C.,
Brain's Night Symphony (BraiNSy): A Methodology for EEG Sonification,
AffCom(12), No. 1, January 2021, pp. 103-112.
IEEE DOI
2103
Electroencephalography, Sleep, Multiple signal classification,
Sonification, Music, Feature extraction, Frequency modulation,
signal processing
BibRef
Jao, P.K.[Ping-Keng],
Chavarriaga, R.[Ricardo],
Dell'Agnola, F.[Fabio],
Arza, A.[Adriana],
Atienza, D.[David],
del R. Millán, J.[José],
EEG Correlates of Difficulty Levels in Dynamical Transitions of
Simulated Flying and Mapping Tasks,
HMS(51), No. 2, April 2021, pp. 99-108.
IEEE DOI
2103
Task analysis, Electroencephalography, Protocols, Drones, Games,
Electrooculography, Compounds, Cognitive, difficulty,
workload
BibRef
Zheng, Q.,
Wang, Y.,
Heng, P.A.,
Multitask Feature Learning Meets Robust Tensor Decomposition for EEG
Classification,
Cyber(51), No. 4, April 2021, pp. 2242-2252.
IEEE DOI
2103
Task analysis, Electroencephalography, Feature extraction,
Brain modeling, Optimization, Training,
tensor classification
BibRef
Jiang, J.M.[Jian-Min],
Fares, A.[Ahmed],
Zhong, S.H.[Sheng-Hua],
A Brain-Media Deep Framework Towards Seeing Imaginations Inside
Brains,
MultMed(23), 2021, pp. 1454-1465.
IEEE DOI
2105
Electroencephalography, Visualization, Brain, Deep learning,
Feature extraction, Decoding, EEG, image generation,
variant LSTM
BibRef
Meng, X.J.[Xian-Jia],
Qiu, S.[Shi],
Wan, S.H.[Shao-Hua],
Cheng, K.[Keyang],
Cui, L.[Lei],
A motor imagery EEG signal classification algorithm based on
recurrence plot convolution neural network,
PRL(146), 2021, pp. 134-141.
Elsevier DOI
2105
EEG signal, Recurrence plot, Convolution neural network,
Classification, Motor imagery
BibRef
Huang, C.B.[Cheng-Bin],
Chen, W.T.[Wei-Ting],
Chen, M.S.[Ming-Song],
Yuan, B.H.[Bin-Hang],
A Feature Fusion Framework and Its Application to Automatic Seizure
Detection,
SPLetters(28), 2021, pp. 753-757.
IEEE DOI
2105
Feature extraction, Medical services, Transforms, Training,
Optimization, Indexes, Deep learning, Feature fusion,
seizure detection
BibRef
Soundirarajan, M.[Mirra],
Babini, M.H.[Mohammad Hossein],
Sim, S.[Sue],
Nathan, V.[Visvamba],
Subasi, A.[Abdulhamit],
Namazi, H.[Hamidreza],
Analysis of brain-facial muscle connection in the static fractal
visual stimulation,
IJIST(31), No. 2, 2021, pp. 548-554.
DOI Link
2105
brain, complexity, EEG signals, EMG signals, facial muscles,
fractal analysis, static visual stimuli
BibRef
Geirnaert, S.[Simon],
Vandecappelle, S.[Servaas],
Alickovic, E.[Emina],
de Cheveigne, A.[Alain],
Lalor, E.[Edmund],
Meyer, B.T.[Bernd T.],
Miran, S.[Sina],
Francart, T.[Tom],
Bertrand, A.[Alexander],
Electroencephalography-Based Auditory Attention Decoding:
Toward Neurosteered Hearing Devices,
SPMag(38), No. 4, July 2021, pp. 89-102.
IEEE DOI
2107
Signal processing algorithms, Auditory system,
biomedical signal processing, Electroencephalography, Decoding,
Noise measurement
BibRef
Huang, S.L.[Shou-Lin],
Cai, G.Q.[Guo-Qing],
Wang, T.[Tong],
Ma, T.[Ting],
Amplitude-Phase Information Measurement on Riemannian Manifold for
Motor Imagery-Based BCI,
SPLetters(28), 2021, pp. 1310-1314.
IEEE DOI
2107
Electroencephalography, Covariance matrices, Manifolds, Training,
Phase measurement, Signal processing algorithms, Synchronization,
common spatial pattern (CSP)
BibRef
Lan, Z.[Zhen],
Yan, C.[Chao],
Li, Z.X.[Zi-Xing],
Tang, D.Q.[Deng-Qing],
Xiang, X.J.[Xiao-Jia],
MACRO: Multi-Attention Convolutional Recurrent Model for
Subject-Independent ERP Detection,
SPLetters(28), 2021, pp. 1505-1509.
IEEE DOI
2108
Electroencephalography, Integrated circuits, Feature extraction,
Convolution, Kernel, Brain modeling, Training, EEG, ERP detection,
deep learning
BibRef
Thomas, K.P.[Kavitha P.],
Robinson, N.[Neethu],
Prasad, V.A.[Vinod A.],
Separability of Motor Imagery Directions Using Subject-Specific
Discriminative EEG Features,
HMS(51), No. 5, October 2021, pp. 544-553.
IEEE DOI
2109
Electroencephalography, Feature extraction, Kinematics,
Task analysis, Man-machine systems, Data mining, Trajectory,
phase locking values (PLVs)
BibRef
Behrouzi, T.[Tina],
Hatzinakos, D.[Dimitrios],
Graph variational auto-encoder for deriving EEG-based graph embedding,
PR(121), 2022, pp. 108202.
Elsevier DOI
2109
Biometrics, Functional connectivity, Electroencephalogram (EEG),
Graph deep learning
BibRef
Palazzo, S.[Simone],
Spampinato, C.[Concetto],
Kavasidis, I.[Isaak],
Giordano, D.[Daniela],
Schmidt, J.[Joseph],
Shah, M.[Mubarak],
Decoding Brain Representations by Multimodal Learning of Neural
Activity and Visual Features,
PAMI(43), No. 11, November 2021, pp. 3833-3849.
IEEE DOI
2110
BibRef
And:
Rebuttal to Comments,
PAMI(46), No. 12, December 2024, pp. 11540-11542.
IEEE DOI
2411
Visualization, Brain modeling, Electroencephalography,
Computational modeling, Neural activity, Machine learning,
unsupervised learning
See also Confounds in the Data: Comments on Decoding Brain Representations by Multimodal Learning of Neural Activity and Visual Features. Comments:
See also Still an Ineffective Method With Supertrials/ERPs: Comments on Decoding Brain Representations by Multimodal Learning of Neural Activity and Visual Features.
BibRef
Gao, Z.K.[Zhong-Ke],
Dang, W.D.[Wei-Dong],
Liu, M.X.[Ming-Xu],
Guo, W.[Wei],
Ma, K.[Kai],
Chen, G.R.[Guan-Rong],
Classification of EEG Signals on VEP-Based BCI Systems With Broad
Learning,
SMCS(51), No. 11, November 2021, pp. 7143-7151.
IEEE DOI
2110
Electroencephalography, Visualization, Feature extraction,
Steady-state, Time series analysis, Bars, Complex networks,
steady-state VEP (SSVEP)
BibRef
Bore, J.C.[Joyce Chelangat],
Li, P.Y.[Pei-Yang],
Jiang, L.[Lin],
Ayedh, W.M.A.[Walid M. A.],
Chen, C.L.[Chun-Li],
Harmah, D.J.[Dennis Joe],
Yao, D.Z.[De-Zhong],
Cao, Z.[Zehong],
Xu, P.[Peng],
A Long Short-Term Memory Network for Sparse Spatiotemporal EEG Source
Imaging,
MedImg(40), No. 12, December 2021, pp. 3787-3800.
IEEE DOI
2112
Electroencephalography, Imaging, Scalp, Lead, Deep learning,
Spatiotemporal phenomena, Inverse problems,
spatiotemporal EEG sources
BibRef
Brusini, L.[Lorenza],
Stival, F.[Francesca],
Setti, F.[Francesco],
Menegatti, E.[Emanuele],
Menegaz, G.[Gloria],
Storti, S.F.[Silvia Francesca],
A Systematic Review on Motor-Imagery Brain-Connectivity-Based
Computer Interfaces,
HMS(51), No. 6, December 2021, pp. 725-733.
IEEE DOI
2112
Electroencephalography, Feature extraction, Brain modeling,
Deep learning, Machine learning, Real-time systems,
motor imagery (MI)
BibRef
Türk, Ö.[Ömer],
Classification of electroencephalogram records related to cursor
movements with a hybrid method based on deep learning,
IJIST(31), No. 4, 2021, pp. 2322-2333.
DOI Link
2112
classification, CNN, cursor movement, k-NN, raw EEG, SVM
BibRef
Reddy, T.K.[Tharun Kumar],
Arora, V.[Vipul],
Gupta, V.[Vinay],
Biswas, R.[Rupam],
Behera, L.[Laxmidhar],
EEG-Based Drowsiness Detection With Fuzzy Independent Phase-Locking
Value Representations Using Lagrangian-Based Deep Neural Networks,
SMCS(52), No. 1, January 2022, pp. 101-111.
IEEE DOI
2112
Electroencephalography, Artificial neural networks, Optimization,
Feature extraction, Signal processing algorithms,
reaction time (RT)
BibRef
Wu, E.Q.[Edmond Q.],
Xiong, P.W.[Peng-Wen],
Tang, Z.R.[Zhi-Ri],
Li, G.J.[Gui-Jiang],
Song, A.[Aiguo],
Zhu, L.M.[Li-Min],
Detecting Dynamic Behavior of Brain Fatigue Through 3-D-CNN-LSTM,
SMCS(52), No. 1, January 2022, pp. 90-100.
IEEE DOI
2112
Fatigue, Electroencephalography, Rhythm, Brain modeling,
Deep learning, Feature extraction, Time-frequency analysis, RNN
BibRef
Kumari, N.[Nandini],
Anwar, S.[Shamama],
Bhattacharjee, V.[Vandana],
Automated visual stimuli evoked multi-channel EEG signal
classification using EEGCapsNet,
PRL(153), 2022, pp. 29-35.
Elsevier DOI
2201
Visual stimuli, Electroencephalogram signal, Deep learning,
Capsule Network, Dynamic routing, Primary capsule, EEGCapsNet
BibRef
Dai, C.L.[Cheng-Long],
Wu, J.[Jia],
Pi, D.C.[De-Chang],
Becker, S.I.[Stefanie I.],
Cui, L.[Lin],
Zhang, Q.[Qin],
Johnson, B.[Blake],
Brain EEG Time-Series Clustering Using Maximum-Weight Clique,
Cyber(52), No. 1, January 2022, pp. 357-371.
IEEE DOI
2201
Electroencephalography, Time series analysis, Electrodes,
Feature extraction, Correlation, Clustering algorithms, Australia,
weighted EEG graph
BibRef
Bao, T.Z.[Tian-Zhe],
Zaidi, S.A.R.[Syed Ali Raza],
Xie, S.Q.[Sheng Quan],
Yang, P.F.[Peng-Fei],
Zhang, Z.Q.[Zhi-Qiang],
CNN Confidence Estimation for Rejection-Based Hand Gesture
Classification in Myoelectric Control,
HMS(52), No. 1, February 2022, pp. 99-109.
IEEE DOI
2201
Convolutional neural networks, Estimation, Neural networks,
Entropy, Linear programming, Task analysis, Optimization,
surface electromyography (sEMG)
BibRef
Li, P.W.[Pei-Wen],
Cai, S.Q.[Si-Qi],
Su, E.[Enze],
Xie, L.H.[Long-Han],
A Biologically Inspired Attention Network for EEG-Based Auditory
Attention Detection,
SPLetters(29), 2022, pp. 284-288.
IEEE DOI
2202
Electroencephalography, Decoding, Brain modeling,
Frequency modulation, Speech processing, Training,
electroencephalography
BibRef
Cai, S.Q.[Si-Qi],
Li, P.W.[Pei-Wen],
Su, E.[Enze],
Liu, Q.[Qi],
Xie, L.H.[Long-Han],
A Neural-Inspired Architecture for EEG-Based Auditory Attention
Detection,
HMS(52), No. 4, August 2022, pp. 668-676.
IEEE DOI
2208
Electroencephalography, Brain modeling, Neurons,
Feature extraction, Training, Computational modeling, Decoding,
neural-inspired architecture
BibRef
Cai, S.Q.[Si-Qi],
Su, E.[Enze],
Xie, L.H.[Long-Han],
Li, H.Z.[Hai-Zhou],
EEG-Based Auditory Attention Detection via Frequency and Channel
Neural Attention,
HMS(52), No. 2, April 2022, pp. 256-266.
IEEE DOI
2203
Electroencephalography, Brain modeling, Frequency modulation,
Convolution, Decoding, Correlation, Representation learning,
frequency attention
BibRef
Ye, J.A.[Jian-An],
Xiao, Q.F.[Qin-Feng],
Wang, J.[Jing],
Zhang, H.J.[Hong-Jun],
Deng, J.X.[Jiao-Xue],
Lin, Y.F.[You-Fang],
CoSleep: A Multi-View Representation Learning Framework for
Self-Supervised Learning of Sleep Stage Classification,
SPLetters(29), 2022, pp. 189-193.
IEEE DOI
2202
Sleep, Task analysis, Physiology, Electroencephalography, Training,
Annotations, Time-frequency analysis, Self-supervised learning,
representation learning
BibRef
Li, J.[Jie],
Wang, Z.L.[Zhe-Long],
Qiu, S.[Sen],
Zhao, H.Y.[Hong-Yu],
Wang, J.X.[Jia-Xin],
Shi, X.[Xin],
Liu, L.[Long],
Yang, N.[Ning],
Study on Horse-Rider Interaction Based on Body Sensor Network in
Competitive Equitation,
AffCom(13), No. 1, January 2022, pp. 553-567.
IEEE DOI
2203
Magnetometers, Electroencephalography, Gyroscopes,
Legged locomotion, Accelerometers, Training, Hardware,
extend kalman filter
BibRef
Chen, X.[Xun],
Li, C.[Chang],
Liu, A.[Aiping],
McKeown, M.J.[Martin J.],
Qian, R.[Ruobing],
Wang, Z.J.[Z. Jane],
Toward Open-World Electroencephalogram Decoding Via Deep Learning:
A comprehensive survey,
SPMag(39), No. 2, March 2022, pp. 117-134.
IEEE DOI
2203
Survey, EEG. Deep learning, Brain models, Systematics, Semantics, Tutorials,
WWW Link. ction, Electroencephalography, Decoding
BibRef
Yi, C.Z.[Chun-Zhi],
Jiang, F.[Feng],
Zhang, S.P.[Sheng-Ping],
Guo, H.[Hao],
Yang, C.[Chifu],
Ding, Z.[Zhen],
Wei, B.[Baichun],
Lan, X.Y.[Xiang-Yuan],
Zhou, H.Y.[Hui-Yu],
Continuous Prediction of Lower-Limb Kinematics From Multi-Modal
Biomedical Signals,
CirSysVideo(32), No. 5, May 2022, pp. 2592-2602.
IEEE DOI
2205
Kinematics, Electromyography, Feature extraction, Delays,
Prediction algorithms, Exoskeletons, Predictive models,
long short-term memory
BibRef
Bagchi, S.[Subhranil],
Bathula, D.R.[Deepti R.],
EEG-ConvTransformer for single-trial EEG-based visual stimulus
classification,
PR(129), 2022, pp. 108757.
Elsevier DOI
2206
EEG, Visual stimulus classification, Deep learning, Transformer,
Multi-head attention, Inter-region similarity, Head representations
BibRef
Liu, J.B.[Jin-Biao],
Tan, G.S.[Gan-Sheng],
Wang, J.X.[Ji-Xian],
Wei, Y.[Yina],
Sheng, Y.X.[Yi-Xuan],
Chang, H.[Hui],
Xie, Q.[Qing],
Liu, H.H.[Hong-Hai],
Closed-Loop Construction and Analysis of Cortico-Muscular-Cortical
Functional Network After Stroke,
MedImg(41), No. 6, June 2022, pp. 1575-1586.
IEEE DOI
2206
Muscles, Brain modeling, Frequency-domain analysis,
Electroencephalography, Couplings, Electromyography, Hospitals,
repetitive transcranial magnetic stimulation
BibRef
Jindal, K.[Komal],
Upadhyay, R.[Rahul],
Singh, H.S.[Hari Shankar],
A novel EEG channel selection and classification methodology for
multi-class motor imagery-based BCI system design,
IJIST(32), No. 4, 2022, pp. 1318-1337.
DOI Link
2207
brain computer interface, channel selection,
electroencephalogram, machine learning, motor imagery, wavelet transform
BibRef
Dovedi, T.[Tanvi],
Upadhyay, R.[Rahul],
Kumar, V.[Vinay],
Hybrid time-reassigned multisynchrosqueezing transform-Picard-based
automated electroencephalography artifact correction methodology for
brain-computer interface applications,
IJIST(32), No. 4, 2022, pp. 1338-1356.
DOI Link
2207
artifact removal, electroencephalogram,
independent component analysis, sparse entropy,
time reassigned multisynchrosqueezing transform
BibRef
Samanta, K.[Kaniska],
Chatterjee, S.[Soumya],
Bose, R.[Rohit],
Neuromuscular disease detection based on feature extraction from
time-frequency images of EMG signals employing robust hyperbolic
Stockwell transform,
IJIST(32), No. 4, 2022, pp. 1251-1262.
DOI Link
2207
classification, EMG signals,
feature selection and genetic algorithm, Stockwell transform
BibRef
Chen, P.Y.[Pei-Yin],
Gao, Z.K.[Zhong-Ke],
Yin, M.M.[Miao-Miao],
Wu, J.L.[Jia-Ling],
Ma, K.[Kai],
Grebogi, C.[Celso],
Multiattention Adaptation Network for Motor Imagery Recognition,
SMCS(52), No. 8, August 2022, pp. 5127-5139.
IEEE DOI
2208
Electroencephalography, Feature extraction, Training,
Task analysis, Transfer learning, Signal resolution, Deep learning,
transfer learning
BibRef
Kotas, M.P.[Marian P.],
Piela, M.[Michal],
Contreras-Ortiz, S.H.[Sonia H.],
Modified Spatio-Temporal Matched Filtering for Brain Responses
Classification,
HMS(52), No. 4, August 2022, pp. 677-686.
IEEE DOI
2208
Ash, Visualization, Electroencephalography, Man-machine systems,
Estimation, Testing, Linear programming,
visual evoked potentials (EPs)
BibRef
Choo, S.[Sanghyun],
Nam, C.S.[Chang S.],
Detecting Human Trust Calibration in Automation:
A Convolutional Neural Network Approach,
HMS(52), No. 4, August 2022, pp. 774-783.
IEEE DOI
2208
Automation, Electroencephalography, Calibration,
Feature extraction, Convolutional neural networks,
trust estimation
BibRef
Li, Y.[Yang],
Liu, Y.[Yu],
Guo, Y.Z.[Yu-Zhu],
Liao, X.F.[Xiao-Feng],
Hu, B.[Bin],
Yu, T.[Tao],
Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network
with Semisupervised Active Learning for Patient-Specific Seizure
Prediction,
Cyber(52), No. 11, November 2022, pp. 12189-12204.
IEEE DOI
2211
Electroencephalography, Spatiotemporal phenomena,
Integrated circuits, Convolution, Scalp, Training, Logic gates,
spatio-temporal-spectral dependencies
BibRef
Chang, S.[Shuohua],
Yang, Z.H.[Zhi-Hong],
You, Y.Y.[Yu-Yang],
Guo, X.Y.[Xiao-Yu],
DSSNet: A Deep Sequential Sleep Network for Self-Supervised
Representation Learning Based on Single-Channel EEG,
SPLetters(29), 2022, pp. 2143-2147.
IEEE DOI
2211
Sleep, Electroencephalography, Brain modeling, Task analysis,
Convolution, Self-supervised learning, Representation learning,
sleep staging
BibRef
Hu, S.[Shuzhan],
Duan, Y.P.[Yi-Ping],
Tao, X.M.[Xiao-Ming],
Li, G.Y.[Geoffrey Ye],
Lu, J.H.[Jian-Hua],
Human Perception Measurement by Electroencephalography for Facial
Image Compression,
SPLetters(29), 2022, pp. 2148-2152.
IEEE DOI
2211
Electroencephalography, Distortion, Image coding,
Distortion measurement, Resource management, Videoconferences,
data rate allocation
BibRef
Ahmed, H.[Hamad],
Wilbur, R.B.[Ronnie B.],
Bharadwaj, H.M.[Hari M.],
Siskind, J.M.[Jeffrey Mark],
Confounds in the Data: Comments on 'Decoding Brain Representations by
Multimodal Learning of Neural Activity and Visual Features',
PAMI(44), No. 12, December 2022, pp. 9217-9220.
IEEE DOI
2212
Electroencephalography, Support vector machines, Training,
Neuroscience, Codes, Auditory system, Welding, Object classification,
brain-computer interface
See also Decoding Brain Representations by Multimodal Learning of Neural Activity and Visual Features.
BibRef
Yi, C.[Chanlin],
Yao, R.W.[Ru-Wei],
Song, L.[Liuyi],
Jiang, L.[Lin],
Si, Y.J.[Ya-Jing],
Li, P.Y.[Pei-Yang],
Li, F.[Fali],
Yao, D.Z.[De-Zhong],
Zhang, Y.[Yu],
Xu, P.[Peng],
A Novel Method for Constructing EEG Large-Scale Cortical Dynamical
Functional Network Connectivity (dFNC): WTCS,
Cyber(52), No. 12, December 2022, pp. 12869-12881.
IEEE DOI
2212
Electroencephalography, Brain, Correlation, Couplings,
Spatial resolution, Coherence, Cognition,
wavelet coherence-S estimator (WTCS)
BibRef
Cho, J.H.[Jeong-Hyun],
Jeong, J.H.[Ji-Hoon],
Lee, S.W.[Seong-Whan],
NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery
Tasks Using a Dual-Stage Deep Learning Framework,
Cyber(52), No. 12, December 2022, pp. 13279-13292.
IEEE DOI
2212
Electroencephalography, Brain-computer interfaces, Deep learning,
Brain-computer interface (BCI), deep learning,
real-time classification
BibRef
Gohel, B.[Bakul],
Khare, M.[Mahish],
EEG/MEG source imaging in the absence of subject's brain MRI scan:
Perspective on co-registration and MRI selection approach,
IJIST(33), No. 1, 2023, pp. 287-298.
DOI Link
2301
EEG, forward model, ICP, inverse modelling, MEG, MRI co-registration
BibRef
Günel, S.[Semih],
Aymanns, F.[Florian],
Honari, S.[Sina],
Ramdya, P.[Pavan],
Fua, P.[Pascal],
Overcoming the Domain Gap in Neural Action Representations,
IJCV(131), No. 3, March 2023, pp. 813-833.
Springer DOI
2302
Electrocorticography.
Relating behavior to brain activity.
BibRef
Liu, Y.X.[Ying-Xin],
Yu, Y.[Yang],
Ye, Z.[Zeqi],
Li, M.[Ming],
Zhang, Y.F.[Yi-Fan],
Zhou, Z.T.[Zong-Tan],
Hu, D.[Dewen],
Zeng, L.L.[Ling-Li],
Fusion of Spatial, Temporal, and Spectral EEG Signatures Improves
Multilevel Cognitive Load Prediction,
HMS(53), No. 2, April 2023, pp. 357-366.
IEEE DOI
2303
Task analysis, Cognitive load, Electroencephalography, Games,
Man-machine systems, Indexes, Feature extraction, Classification,
power spectral density (PSD)
BibRef
Lerogeron, H.[Hugo],
Picot-Clémente, R.[Romain],
Rakotomamonjy, A.[Alain],
Heutte, L.[Laurent],
Approximating dynamic time warping with a convolutional neural
network on EEG data,
PRL(171), 2023, pp. 162-169.
Elsevier DOI
2306
DTW, EEG, Similarity learning
BibRef
Tang, Y.[Yunbo],
Chen, D.[Dan],
Liu, H.H.[Hong-Hai],
Cai, C.[Chang],
Li, X.L.[Xiao-Li],
Deep EEG Superresolution via Correlating Brain Structural and
Functional Connectivities,
Cyber(53), No. 7, July 2023, pp. 4410-4422.
IEEE DOI
2307
Electroencephalography, Convolution, Electrodes,
Image reconstruction, Brain modeling, Interpolation, Scalp,
spatial localization
BibRef
Pancholi, S.[Sidharth],
Giri, A.[Amita],
Jain, A.[Anant],
Kumar, L.[Lalan],
Roy, S.[Sitikantha],
Source Aware Deep Learning Framework for Hand Kinematic
Reconstruction Using EEG Signal,
Cyber(53), No. 7, July 2023, pp. 4094-4106.
IEEE DOI
2307
Electroencephalography, Brain modeling, Kinematics, Trajectory,
Deep learning, Convolutional neural networks, Location awareness,
source localization
BibRef
Karimi, S.[Sajjad],
Shamsollahi, M.B.[Mohammad Bagher],
Tractable Maximum Likelihood Estimation for Latent Structure
Influence Models With Applications to EEG and ECoG Processing,
PAMI(45), No. 8, August 2023, pp. 10466-10477.
IEEE DOI
2307
Hidden Markov models, Brain modeling, Inference algorithms,
Approximation algorithms, Convergence, Electroencephalography,
learning problem
BibRef
Du, J.Z.[Jun-Zhen],
Tai, Y.H.[Yong-Hang],
Li, F.[Fei],
Chen, Z.Q.[Zai-Qing],
Ren, X.Q.[Xu-Qing],
Li, C.L.[Chang-Le],
Using Beta Rhythm From EEG to Assess Physicians' Operative Skills in
Virtual Surgical Training,
HMS(53), No. 4, August 2023, pp. 688-696.
IEEE DOI
2308
Electroencephalography, Training, Rhythm, Medical services, Indexes,
Electrodes, Task analysis, Electroencephalograph (EEG),
virtual reality
BibRef
Bharadwaj, H.M.[Hari M.],
Wilbur, R.B.[Ronnie B.],
Siskind, J.M.[Jeffrey Mark],
Still an Ineffective Method With Supertrials/ERPs: Comments on
'Decoding Brain Representations by Multimodal Learning of Neural
Activity and Visual Features',
PAMI(45), No. 11, November 2023, pp. 14052-14054.
IEEE DOI
2310
See also Decoding Brain Representations by Multimodal Learning of Neural Activity and Visual Features.
BibRef
Huang, W.Q.[Wen-Qie],
Yan, G.H.[Guang-Hui],
Chang, W.W.[Wen-Wen],
Zhang, Y.[Yuchan],
Yuan, Y.T.[Yue-Ting],
EEG-based classification combining Bayesian convolutional neural
networks with recurrence plot for motor movement/imagery,
PR(144), 2023, pp. 109838.
Elsevier DOI
2310
Electroencephalogram (EEG), Real execution, Motor imagery (MI),
Deep learning (DL),
Classification
BibRef
Kim, B.H.[Byung Hyung],
Choi, J.W.[Jin Woo],
Lee, H.G.[Hong-Gu],
Jo, S.[Sungho],
A discriminative SPD feature learning approach on Riemannian
manifolds for EEG classification,
PR(143), 2023, pp. 109751.
Elsevier DOI
2310
Discriminative, EEG, Non-stationary, SPD Matrix, Riemannian, Barycenter
BibRef
Wang, W.L.[Wen-Long],
Qi, F.F.[Fei-Fei],
Wipf, D.P.[David Paul],
Cai, C.[Chang],
Yu, T.Y.[Tian-You],
Li, Y.Q.[Yuan-Qing],
Zhang, Y.[Yu],
Yu, Z.L.[Zhu-Liang],
Wu, W.[Wei],
Sparse Bayesian Learning for End-to-End EEG Decoding,
PAMI(45), No. 12, December 2023, pp. 15632-15649.
IEEE DOI
2311
BibRef
Seraphim, M.[Mathieu],
Dequidt, P.[Paul],
Lechervy, A.[Alexis],
Yger, F.[Florian],
Brun, L.[Luc],
Etard, O.[Olivier],
Temporal Sequences of EEG Covariance Matrices for Automated Sleep Stage
Scoring with Attention Mechanisms,
CAIP23(II:67-76).
Springer DOI
2312
BibRef
Dolzhikova, I.[Irina],
Abibullaev, B.[Berdakh],
Zollanvari, A.[Amin],
A Jackknife-Inspired Deep Learning Approach to Subject-Independent
Classification of EEG,
PRL(176), 2023, pp. 28-33.
Elsevier DOI
2312
Convolutional neural network, Delete-a-Subject-Jackknife,
Deep learning, Subject-independent
BibRef
Li, C.F.[Cheng-Fang],
Fang, G.Y.[Gao-Yun],
Liu, Y.[Yang],
Liu, J.[Jing],
Song, L.[Liang],
Decoding Silent Reading EEG Signals Using Adaptive Feature Graph
Convolutional Network,
SPLetters(31), 2024, pp. 1-5.
IEEE DOI
2401
BibRef
Liu, Z.Y.[Ze-Yi],
Xiao, F.Y.[Fu-Yuan],
Lin, C.T.[Chin-Teng],
Cao, Z.[Zehong],
A Robust Evidential Multisource Data Fusion Approach Based on
Cooperative Game Theory and Its Application in EEG,
SMCS(54), No. 2, February 2024, pp. 729-740.
IEEE DOI
2402
Data integration, Evidence theory, Electroencephalography,
Time complexity, Resource management, Measurement uncertainty,
Shapley function
BibRef
Hou, K.[Kechen],
Zhang, X.W.[Xiao-Wei],
Yang, Y.K.[Yi-Kun],
Zhao, Q.Q.[Qi-Qi],
Yuan, W.J.[Wen-Jie],
Zhou, Z.Y.[Zhong-Yi],
Zhang, S.[Sipo],
Li, C.[Chen],
Shen, J.[Jian],
Hu, B.[Bin],
Emotion Recognition From Multimodal Physiological Signals via
Discriminative Correlation Fusion With a Temporal Alignment Mechanism,
Cyber(54), No. 5, May 2024, pp. 3079-3092.
IEEE DOI
2405
Physiology, Correlation, Emotion recognition, Nervous system,
Electroencephalography, Feature extraction, Brain modeling, temporal alignment
BibRef
Shin, D.H.[Dong-Hee],
Son, Y.H.[Young-Han],
Kim, J.M.[Jun-Mo],
Ahn, H.J.[Hee-Jun],
Seo, J.H.[Jun-Ho],
Ji, C.H.[Chang-Hoon],
Han, J.W.[Ji-Wung],
Lee, B.J.[Byung-Jun],
Won, D.O.[Dong-Ok],
Kam, T.E.[Tae-Eui],
MARS: Multiagent Reinforcement Learning for Spatial: Spectral and
Temporal Feature Selection in EEG-Based BCI,
SMCS(54), No. 5, May 2024, pp. 3084-3096.
IEEE DOI
2405
Feature extraction, Electroencephalography, Task analysis, Robots,
Reinforcement learning, Mars, Data mining,
multiagent reinforcement learning (RL)
BibRef
Sun, K.[Ke],
Peng, C.[Ciyuan],
Yu, S.[Shuo],
Han, Z.Y.[Zhuo-Yang],
Xia, F.[Feng],
From Electroencephalogram Data to Brain Networks:
Graph-Learning-Based Brain Disease Diagnosis,
IEEE_Int_Sys(39), No. 2, March 2024, pp. 21-29.
IEEE DOI
2405
Electroencephalography, Brain modeling, Adaptation models,
Convolution, Electrodes, Topology, Medical diagnosis,
Classification algorithms
BibRef
Zhang, Z.[Zirui],
Wu, W.M.[Wei-Ming],
Sun, C.[Chen],
Wang, C.[Cong],
Seizure detection via deterministic learning feature extraction,
PR(153), 2024, pp. 110466.
Elsevier DOI
2405
Seizure detection, Feature extraction,
Nonlinear system dynamics, Deterministic learning
BibRef
Dang, W.D.[Wei-Dong],
Lv, D.M.[Dong-Mei],
Tang, M.X.[Meng-Xiao],
Sun, X.L.[Xin-Lin],
Liu, Y.[Yong],
Grebogi, C.[Celso],
Gao, Z.K.[Zhong-Ke],
Flashlight-Net: A Modular Convolutional Neural Network for Motor
Imagery EEG Classification,
SMCS(54), No. 7, July 2024, pp. 4507-4516.
IEEE DOI
2406
Brain modeling, Feature extraction, Electroencephalography,
Convolutional neural networks, Convolution, Transfer learning,
transfer learning
BibRef
Ji, Y.[Youshuo],
Li, F.[Fu],
Fu, B.[Boxun],
Zhou, Y.J.[Yi-Jin],
Wu, H.[Hao],
Li, Y.[Yang],
Li, X.L.[Xiao-Li],
Shi, G.M.[Guang-Ming],
A novel hybrid decoding neural network for EEG signal representation,
PR(155), 2024, pp. 110726.
Elsevier DOI Code:
WWW Link.
2408
EEG representation, Hybrid decoding network, Depthwise separable convolution,
Multi-head attention, Spatial-temporal information
BibRef
Bhalerao, S.V.[Shailesh Vitthalrao],
Pachori, R.B.[Ram Bilas],
Automated Classification of Cognitive Visual Objects Using
Multivariate Swarm Sparse Decomposition From Multichannel EEG-MEG
Signals,
HMS(54), No. 4, August 2024, pp. 455-464.
IEEE DOI
2408
Visualization, Electroencephalography, Vectors, Object recognition,
Support vector machines, Optimization, Neural activity,
visual object recognition
BibRef
Fang, Z.,
Albera, L.,
Kachenoura, A.,
Shu, H.,
Kang, Y.,
Jeannès, R.L.B.[R. Le Bouquin],
High-Dimensional MVAR Model Identification Based on Structured
Sparsity Penalization,
SPLetters(31), 2024, pp. 1975-1979.
IEEE DOI
2408
Brain modeling, Numerical models, Estimation, Linear programming,
Electroencephalography, Convergence, Computational modeling,
sparsity
BibRef
Tabejamaat, M.[Mohsen],
Mohammadzade, H.[Hoda],
Negin, F.[Farhood],
Bremond, F.[Francois],
EEG classification with limited data: A deep clustering approach,
PR(157), 2025, pp. 110934.
Elsevier DOI
2409
Deep neural network, Overfitting issue, Electroencephalography, Data scarcity
BibRef
Takagi, Y.[Yu],
Nishimoto, S.[Shinji],
High-resolution image reconstruction with latent diffusion models
from human brain activity,
CVPR23(14453-14463)
IEEE DOI
2309
BibRef
Zhang, M.J.[Mei-Juan],
Liu, J.[Jun],
Liu, C.[Chuang],
Wu, T.[Ting],
Peng, X.P.[Xue-Ping],
An Efficient CADNet for Classification of High-frequency Oscillations
in Magnetoencephalography,
ICRVC22(25-30)
IEEE DOI
2301
Training, Time-frequency analysis, Magnetoencephalography,
Epilepsy, Hafnium oxide, Feature extraction, Dendrites (neurons),
Dendrite Net
BibRef
Delvigne, V.[Victor],
Wannous, H.[Hazem],
Vandeborre, J.P.[Jean-Philippe],
Ris, L.[Laurence],
Dutoit, T.[Thierry],
Spatio-Temporal Analysis of Transformer based Architecture for
Attention Estimation from EEG,
ICPR22(1076-1082)
IEEE DOI
2212
Time-frequency analysis, Machine learning,
Information representation, Brain modeling, Transformers, Feature extraction
BibRef
Lotey, T.[Taveena],
Keserwani, P.[Prateek],
Wasnik, G.[Gaurav],
Roy, P.P.[Partha Pratim],
Cross-Session Motor Imagery EEG Classification using Self-Supervised
Contrastive Learning,
ICPR22(975-981)
IEEE DOI
2212
Training, Representation learning, Supervised learning,
Neural networks, Self-supervised learning, Recording
BibRef
Tamekue, C.[Cyprien],
Prandi, D.[Dario],
Chitour, Y.[Yacine],
Reproducing Sensory Induced Hallucinations via Neural Fields,
ICIP22(3326-3330)
IEEE DOI
2211
Visualization, Pattern formation, Numerical simulation,
Presence network agents, Physiology, Mathematical models, neural field equation
BibRef
Shah, D.[Darshil],
Govind, M.[Meghna],
Gopan, K.G.[K. Gopika],
Sinha, N.[Neelam],
Deep Learning Based EEG Analysis Using Video Analytics,
ICIP22(536-540)
IEEE DOI
2211
Deep learning, Interpolation, Visual analytics,
Electroencephalography, Arithmetic, EEG, Deep Learning, Classification
BibRef
Avola, D.[Danilo],
Cascio, M.[Marco],
Cinque, L.[Luigi],
Fagioli, A.[Alessio],
Foresti, G.L.[Gian Luca],
Marini, M.R.[Marco Raoul],
Pannone, D.[Daniele],
Analyzing EEG Data with Machine and Deep Learning: A Benchmark,
CIAP22(I:335-345).
Springer DOI
2205
BibRef
Ahmed, H.[Hamad],
Wilbur, R.B.[Ronnie B.],
Bharadwaj, H.M.[Hari M.],
Siskind, J.M.[Jeffrey Mark],
Object classification from randomized EEG trials,
CVPR21(3844-3853)
IEEE DOI
2111
Support vector machines, Training, Recurrent neural networks,
Training data, Electroencephalography,
Convolutional neural networks
BibRef
Lemkhenter, A.[Abdelhak],
Favaro, P.[Paolo],
Boosting Generalization in Bio-signal Classification by Learning the
Phase-Amplitude Coupling,
GCPR20(72-85).
Springer DOI
2110
BibRef
Solórzano-Espíndola, C.E.[Carlos Emiliano],
Sossa, H.[Humberto],
Zamora, E.[Erik],
A Comparison Study of EEG Signals Classifiers for Inter-subject
Generalization,
MCPR21(305-315).
Springer DOI
2108
BibRef
Kim, B.H.[Byung Hyung],
Suh, Y.J.[Yoon-Je],
Lee, H.[Honggu],
Jo, S.H.[Sung-Ho],
Nonlinear Ranking Loss on Riemannian Potato Embedding,
ICPR21(4348-4355)
IEEE DOI
2105
Manifolds, Training, Learning systems, Loss measurement,
Electroencephalography, Sensors, Data mining
BibRef
Chakladar, D.D.[Debashis Das],
Dey, S.[Shubhashis],
Roy, P.P.[Partha Pratim],
Iwamura, M.[Masakazu],
EEG-Based Cognitive State Assessment Using Deep Ensemble Model and
Filter Bank Common Spatial Pattern,
ICPR21(4107-4114)
IEEE DOI
2105
Solid modeling, Computational modeling, Filter banks,
Predictive models, Brain modeling, Feature extraction, Electroencephalography
BibRef
Bria, A.[Alessandro],
Marrocco, C.[Claudio],
Tortorella, F.[Francesco],
Sinc-based Convolutional Neural Networks for EEG-BCI-based Motor
Imagery Classification,
AIHA20(526-535).
Springer DOI
2103
BibRef
Awrangjeb, M.,
Rodrigues, J.d.C.,
Stantic, B.,
Estivill-Castro, V.,
A fair comparison of the EEG signal classification methods for
alcoholic subject identification,
IVCNZ20(1-6)
IEEE DOI
2012
Training, Pattern classification, Feature extraction,
Electroencephalography, Wavelet packets, classification
BibRef
Pilz, C.S.,
Ben Makhlouf, I.,
Habel, U.,
Leonhardt, S.,
Predicting Brainwaves from Face Videos,
CVPM20(1139-1147)
IEEE DOI
2008
Electroencephalography, Entropy, Organisms, Physiology, Sleep, Videos, Sensors
BibRef
Kim, J.,
Kim, W.,
Oh, H.,
Lee, S.,
Lee, S.,
A Deep Cybersickness Predictor Based on Brain Signal Analysis for
Virtual Reality Contents,
ICCV19(10579-10588)
IEEE DOI
2004
cognition, convolutional neural nets, electroencephalography,
image sequences, medical image processing, recurrent neural nets,
Feature extraction
BibRef
Healy, G.[Graham],
Wang, Z.W.[Zheng-Wei],
Ward, T.[Tomas],
Smeaton, A.[Alan],
Gurrin, C.[Cathal],
Experiences and Insights from the Collection of a Novel Multimedia EEG
Dataset,
MMMod20(II:475-486).
Springer DOI
2003
BibRef
Murashov, D.,
Obukhov, Y.,
Kershner, I.,
Sinkin, M.,
Detecting Events in Video Sequence of Video-EEG Monitoring,
PTVSBB19(155-159).
DOI Link
1912
BibRef
Mukherjee, P.,
Das, A.,
Bhunia, A.K.,
Roy, P.P.,
Cogni-Net: Cognitive Feature Learning Through Deep Visual Perception,
ICIP19(4539-4543)
IEEE DOI
1910
Knowledge-distillation, Teacher-Student network, EEG Signal, Knowledge Transfer
BibRef
Kanwal, S.,
Uzair, M.,
Ullah, H.,
Khan, S.D.,
Ullah, M.,
Cheikh, F.A.,
An Image Based Prediction Model for Sleep Stage Identification,
ICIP19(1366-1370)
IEEE DOI
1910
Sleep stage identification, Electroencephalography,
Dense convolutional neural networks
BibRef
Orrú, G.[Giulia],
Garau, M.[Marco],
Fraschini, M.[Matteo],
Acedo, J.[Javier],
Didaci, L.[Luca],
Ibáñez, D.[David],
Soria-Frish, A.[Aureli],
Marcialis, G.L.[Gian Luca],
Personal Identity Verification by EEG-Based Network Representation on a
Portable Device,
CAIP19(II:164-171).
Springer DOI
1909
BibRef
Nguyen, B.,
Ma, W.,
Tran, D.,
Impact of lossy data compression techniques on EEG-based pattern
recognition systems,
ICPR18(2308-2313)
IEEE DOI
1812
Electroencephalography, Discrete wavelet transforms,
Identification of persons, Image coding,
Person recognition
BibRef
Mutasim, A.K.,
RaihanulBashar, M.,
SardarTipu, R.,
KafiulIslam, M.,
AshrafulAmin, M.,
Effect of Artefact Removal Techniques on EEG Signals for Video
Category Classification,
ICPR18(3513-3518)
IEEE DOI
1812
Feature extraction, Electroencephalography,
Classification algorithms, Signal processing algorithms,
SWTSD
BibRef
Liu, X.,
Tao, X.,
Zhan, Y.,
Calibrating Human Perception Threshold of Video Distortion Using EEG,
ICIP18(3543-3547)
IEEE DOI
1809
Distortion, Electroencephalography, Distortion measurement,
Covariance matrices, Visualization, Quality assessment,
LDA
BibRef
Hernández, L.G.[Luis G.],
Antelis, J.M.[Javier M.],
A Comparison of Deep Neural Network Algorithms for Recognition of EEG
Motor Imagery Signals,
MCPR18(126-134).
Springer DOI
1807
BibRef
Gharbali, A.A.[Ali Abdollahi],
Najdi, S.[Shirin],
Fonseca, J.M.[José Manuel],
Transfer Learning of Spectrogram Image for Automatic Sleep Stage
Classification,
ICIAR18(522-528).
Springer DOI
1807
BibRef
Qin, J.,
Liu, F.,
Wang, S.,
Rosenberger, J.,
EEG source imaging based on spatial and temporal graph structures,
IPTA17(1-6)
IEEE DOI
1804
electroencephalography, graph theory, inverse problems,
medical signal processing, neurophysiology, signal resolution,
Graph Regularization
BibRef
Toyoda, A.,
Ogawa, T.,
Haseyama, M.,
MvLFDA-based video preference estimation using complementary
properties of features,
ICIP17(635-639)
IEEE DOI
1803
Correlation, Electroencephalography, Estimation,
Feature extraction, Music, Transforms, Visualization,
individual preference
BibRef
Orjuela-Cañón, A.D.[Alvaro D.],
Renteria-Meza, O.[Osvaldo],
Hernández, L.G.[Luis G.],
Ruíz-Olaya, A.F.[Andrés F.],
Cerquera, A.[Alexander],
Antelis, J.M.[Javier M.],
Self-organizing Maps for Motor Tasks Recognition from Electrical Brain
Signals,
CIARP17(458-465).
Springer DOI
1802
BibRef
Murabito, F.[Francesca],
Palazzo, S.[Simone],
Spampinato, C.[Concetto],
Giordano, D.[Daniela],
Generating Knowledge-Enriched Image Annotations for Fine-Grained Visual
Classification,
CIAP17(I:332-344).
Springer DOI
1711
BibRef
Spampinato, C.[Concetto],
Palazzo, S.[Simone],
Kavasidis, I.,
Giordano, D.[Daniela],
Souly, N.,
Shah, M.,
Deep Learning Human Mind for Automated Visual Classification,
CVPR17(4503-4511)
IEEE DOI
1711
Brain modeling, Electroencephalography,
Feature extraction, Machine learning, Manifolds, Visualization
BibRef
Cirett-Galán, F.[Federico],
Torres-Peralta, R.[Raquel],
Beal, C.R.[Carole R.],
Language Proficiency Classification During Computer-Based Test with EEG
Pattern Recognition Methods,
MCPR17(288-296).
Springer DOI
1706
BibRef
Sarker, T.,
Paul, S.,
Rayhan, A.,
Zabir, I.,
Shahnaz, C.,
Bi-spectral higher order statistics and time-frequency domain
features for arithmetic task classification from EEG signals,
IVPR17(1-4)
IEEE DOI
1704
Data mining
BibRef
Torres-Valencia, C.,
Hernandez-Muriel, J.,
Gonzalez-Vanegas, W.,
Alvarez-Meza, A.,
Orozco, A.A.,
Alvarez, M.A.,
Non-parametric Source Reconstruction via Kernel Temporal Enhancement
for EEG Data,
CIARP16(443-450).
Springer DOI
1703
BibRef
Davis, P.,
Creusere, C.D.,
Kroger, J.,
The effect of perceptual video quality on EEG power distribution,
ICIP16(2420-2424)
IEEE DOI
1610
Degradation
BibRef
Betül Yüce, A.,
Yaslan, Y.,
A disagreement based co-active learning method for sleep stage
classification,
WSSIP16(1-4)
IEEE DOI
1608
frequency-domain analysis
BibRef
Khouaja, I.,
Nouira, I.,
Bedoui, M.H.,
Akil, M.,
Enhancing EEG Surface Resolution by Using a Combination of Kalman
Filter and Interpolation Method,
CGiV16(353-357)
IEEE DOI
1608
Kalman filters
BibRef
Pinto, D.[David],
Vilariño, D.[Darnes],
Morales, I.[Illiana],
Aguilar, C.[Cristina],
Tovar, M.[Mireya],
Using N-Grams of Quantized EEG Values for Happiness Detection,
MCPR16(270-279).
Springer DOI
1608
BibRef
Avilés-Cruz, C.[Carlos],
Villegas-Cortez, J.[Juan],
Ferreyra-Ramírez, A.[Andrés],
López, A.Z.[Arturo Zúñiga],
EEG Pattern Recognition: An Efficient Improvement Combination of
ERD/ERS/Laterality Features to Create a Self-paced BCI System,
MCPR16(231-240).
Springer DOI
1608
BibRef
Meloni, P.,
Tuveri, G.,
Pani, D.,
Raffo, L.,
Palumbo, F.,
Exploring custom heterogeneous MPSoCs for real-time neural signal
decoding,
DASIP15(1-8)
IEEE DOI
1605
biomedical electronics
BibRef
Hassen, A.E.,
Histace, A.,
Terosiet, M.,
Romain, O.,
FPGA-based detection of QRS complexes in ECG signal,
DASIP15(1-7)
IEEE DOI
1605
electrocardiography
BibRef
Davis, P.,
Creusere, C.D.,
Kroger, J.,
Assessing cross frequency coupling in EEG collected from subjects
viewing video using a modified metric,
Southwest16(17-20)
IEEE DOI
1605
Band-pass filters
BibRef
Davis, P.[Philip],
Creusere, C.D.[Charles D.],
Kroger, J.[Jim],
Subject identification based on EEG responses to video stimuli,
ICIP15(1523-1527)
IEEE DOI
1512
BibRef
Ghaemmaghami, P.[Pouya],
Abadi, M.K.[Mojtaba Khomami],
Kia, S.M.[Seyed Mostafa],
Avesani, P.[Paolo],
Sebe, N.[Nicu],
Movie Genre Classification by Exploiting MEG Brain Signals,
CIAP15(I:683-693).
Springer DOI
1511
BibRef
Patrone, M.[Martín],
Lecumberry, F.[Federico],
Martín, Á.[Álvaro],
Ramirez, I.[Ignacio],
Seroussi, G.[Gadiel],
EEG Signal Pre-Processing for the P300 Speller,
CIARP15(559-566).
Springer DOI
1511
BibRef
Valadez, S.[Sergio],
Sossa, H.[Humberto],
Santiago-Montero, R.[Raúl],
Guevara, E.[Elizabeth],
Encoding Polysomnographic Signals into Spike Firing Rate for Sleep
Staging,
MCPR15(282-291).
Springer DOI
1506
BibRef
Gudiño-Mendoza, B.[Berenice],
Sossa, H.[Humberto],
Sanchez-Ante, G.[Gildardo],
Antelis, J.M.[Javier M.],
Classification of Motor States from Brain Rhythms Using Lattice Neural
Networks,
MCPR16(303-312).
Springer DOI
1608
BibRef
Ojeda, L.[Leonardo],
Vega, R.[Roberto],
Falcon, L.E.[Luis Eduardo],
Sanchez-Ante, G.[Gildardo],
Sossa, H.[Humberto],
Antelis, J.M.[Javier M.],
Classification of Hand Movements from Non-invasive Brain Signals Using
Lattice Neural Networks with Dendritic Processing,
MCPR15(23-32).
Springer DOI
1506
BibRef
Bozhkov, L.[Lachezar],
Georgieva, P.[Petia],
Brain Neural Data Analysis with Feature Space Defined by Descriptive
Statistics,
IbPRIA15(415-422).
Springer DOI
1506
BibRef
Zammouri, A.,
Aitmoussa, A.,
Chevallier, S.,
Monacelli, E.,
Intelligentocular artifacts removal in a noninvasive singlechannel
EEG recording,
ISCV15(1-5)
IEEE DOI
1506
brain
BibRef
Moon, J.Y.[Jin-Young],
Kwon, Y.J.[Yong-Jin],
Kang, K.[Kyuchang],
Bae, C.[Changseok],
Yoon, W.C.[Wan Chul],
Recognition of Meaningful Human Actions for Video Annotation Using EEG
Based User Responses,
MMMod15(II: 447-457).
Springer DOI
1501
BibRef
Zhao, R.[Rui],
Schalk, G.[Gerwin],
Ji, Q.A.[Qi-Ang],
Coupled Hidden Markov Model for Electrocorticographic Signal
Classification,
ICPR14(1858-1862)
IEEE DOI
1412
Accuracy
BibRef
García-Vega, S.,
Álvarez-Meza, A.M.,
Castellanos-Domínguez, G.[Germán],
Neural Decoding Using Kernel-Based Functional Representation of ECoG
Recordings,
CIARP14(247-254).
Springer DOI
1411
BibRef
Kunze, K.,
Shiga, Y.,
Ishimaru, S.,
Kise, K.,
Reading Activity Recognition Using an Off-the-Shelf EEG:
Detecting Reading Activities and Distinguishing Genres of Documents,
ICDAR13(96-100)
IEEE DOI
1312
electroencephalography
BibRef
Relvas, V.[Vânia],
Sanches, J.M.[J. Miguel],
Figueiredo, P.[Patrícia],
Scalp EEG Continuous Space ERD/ERS Quantification,
IbPRIA13(616-623).
Springer DOI
1307
BibRef
Rothlübbers, S.[Sven],
Relvas, V.[Vânia],
Leal, A.[Alberto],
Figueiredo, P.[Patrícia],
Characterization and Reduction of MR-Environment-Related EEG Artefacts,
IbPRIA13(808-818).
Springer DOI
1307
BibRef
Sivarajah, Y.,
Holden, E.J.,
Kovesi, P.,
Togneri, R.,
Tan, T.,
Price, G.,
Studying the Impact of Feature Saliency for Geoscientific Target
Detection Using Electroencephalography (EEG),
DICTA12(1-6).
IEEE DOI
1303
BibRef
Yang, H.J.[Hui-Juan],
Guan, C.T.[Cun-Tai],
Ang, K.K.[Kai Keng],
Zhang, H.[Haihong],
Wang, C.C.[Chuan Chu],
Iterative clustering and support vectors-based high-confidence query
selection for motor imagery EEG signals classification,
ICPR12(2169-2172).
WWW Link.
1302
BibRef
Lotte, F.[Fabien],
A new feature and associated optimal spatial filter for EEG signal
classification: Waveform Length,
ICPR12(1302-1305).
WWW Link.
1302
BibRef
Khushaba, R.N.[Rami N.],
Elliott, R.[Rosalind],
Al Sukker, A.[Akram],
Al-Ani, A.[Ahmed],
McKinley, S.[Sharon],
Orthogonal Locality Sensitive Fuzzy Discriminant Analysis in
Sleep-Stage Scoring,
ICPR10(165-168).
IEEE DOI
1008
BibRef
Iturralde, P.A.[Pablo A.],
Patrone, M.[Martín],
Lecumberry, F.[Federico],
Fernández, A.[Alicia],
Motor Intention Recognition in EEG:
In Pursuit of a Relevant Feature Set,
CIARP12(551-558).
Springer DOI
1209
BibRef
Fernandez, A.,
Penedo, M.G.,
Ortega, M.,
Cancela, B.,
Vazquez, C.,
Gigirey, L.M.,
Automatic Analysis of the Patient's Conscious Responses to the Emission
of Auditory Stimuli during the Performance of an Audiometry,
DICTA11(291-296).
IEEE DOI
1205
BibRef
Bhattacharyya, S.,
Roy, A.,
Dogra, D.P.,
Biswas, A.,
Mukherjee, J.,
Majumdar, A.K.,
Majumdar, B.,
Mukherjee, S.,
Singh, A.K.,
Summarization of Neonatal Video EEG for Seizure and Artifact Detection,
NCVPRIPG11(134-137).
IEEE DOI
1205
BibRef
Ito, S.,
Mitsukura, Y.,
Fukumi, M.,
A basic method for classifying humans based on an EEG analysis,
ICARCV08(1783-1786).
IEEE DOI
1109
BibRef
Metzen, J.H.[Jan Hendrik],
Kim, S.K.[Su Kyoung],
Kirchner, E.A.[Elsa Andrea],
Minimizing Calibration Time for Brain Reading,
DAGM11(366-375).
Springer DOI
1109
direct brain interface
BibRef
Li, M.Z.[Ming-Zhao],
Pan, J.[Jing],
An Effective Classification Approach for EEG-based BCI System,
ICIG11(897-901).
IEEE DOI
1109
BibRef
Kim, S.P.[Sung-Phil],
Kim, M.K.[Min-Ki],
Park, G.T.[Gwi-Tae],
A Simulation Study on the Generative Neural Ensemble Decoding
Algorithms,
ICPR10(3797-3800).
IEEE DOI
1008
cortical activity decoding.
BibRef
Mehta, N.A.[Nishant Ajay],
Starner, T.E.[Thad E.],
Jackson, M.M.[Melody Moore],
Babalola, K.O.[Karolyn O.],
James, G.A.[George Andrew],
Recognizing Sign Language from Brain Imaging,
ICPR10(3842-3845).
IEEE DOI
1008
BibRef
Lotte, F.[Fabien],
Guan, C.T.[Cun-Tai],
Spatially Regularized Common Spatial Patterns for EEG Classification,
ICPR10(3712-3715).
IEEE DOI
1008
BibRef
Su, F.[Fei],
Xia, L.W.[Li-Wen],
Cai, A.N.[An-Ni],
Wu, Y.B.[Yi-Bing],
Ma, J.S.[Jun-Shui],
EEG-based Personal Identification: from Proof-of-Concept to A Practical
System,
ICPR10(3728-3731).
IEEE DOI
1008
BibRef
Wang, Z.[Zuoguan],
Ji, Q.A.[Qi-Ang],
Miller, K.J.[Kai J.],
Schalk, G.[Gerwin],
Decoding Finger Flexion from Electrocorticographic Signals Using a
Sparse Gaussian Process,
ICPR10(3756-3759).
IEEE DOI
1008
BibRef
Al-ani, T.[Tarik],
Drouot, X.[Xavier],
Huynh, T.T.T.[Thi Thuy Trang],
Non-linear EEG Analysis of Idiopathic Hypersomnia,
ICISP10(297-306).
Springer DOI
1006
BibRef
Bokehi, J.R.,
Vasconcellos, N.C.M.,
Conci, A.,
Use of Coherence Measurements between EEG and EMG on Identification of
the Myoclonus Locus,
WSSIP09(1-4).
IEEE DOI
0906
BibRef
Koroutchev, K.[Kostadin],
Korutcheva, E.[Elka],
Kanev, K.[Kamen],
Albariño, A.R.[Apolinar Rodríguez],
Gutierrez, J.L.M.[Jose Luis Muñiz],
Balseiro, F.F.[Fernando Fariñaz],
Detection of Unusual Objects and Temporal Patterns in EEG Video
Recordings,
ISVC09(I: 965-974).
Springer DOI
0911
BibRef
Li, X.X.[Xiao-Xia],
Xu, G.Z.[Gui-Zhi],
Shuo, Y.[Yang],
Shang, X.K.[Xiu-Kui],
Effect of EEG with the Acupuncture of Neiguan and Shenmen,
CISP09(1-5).
IEEE DOI
0910
BibRef
Mu, Z.D.[Zhen-Dong],
Xiao, D.[Dan],
Hu, J.F.[Jian-Feng],
Classification of Motor Imagery EEG Signals Based on STFTs,
CISP09(1-4).
IEEE DOI
0910
BibRef
Lv, C.Z.[Chang-Zhi],
Fan, D.[Di],
Wang, M.[Min],
Gao, G.H.[Guang-Heng],
A Wireless Collector for EEG Signal of Freely Behaving White Mice,
CISP09(1-4).
IEEE DOI
0910
BibRef
Sourina, O.[Olga],
Sourin, A.[Alexei],
Kulish, V.[Vladimir],
EEG Data Driven Animation and Its Application,
MIRAGE09(380-388).
Springer DOI
0905
BibRef
Pires, P.[Pedro],
Paiva, T.[Teresa],
Sanches, J.M.[João M.],
Sleep/Wakefulness State from Actigraphy,
IbPRIA09(362-369).
Springer DOI
0906
BibRef
Rafik, K.[Khemakhem],
Ahmed, B.H.[Ben Hamida],
Imed, F.[Feki],
Abdelmalik, T.A.[Taleb-Ahmed],
Recursive sLORETA-FOCUSS Algorithm for EEG Dipoles Localization,
IPTA08(1-5).
IEEE DOI
0811
BibRef
Alba, A.[Alfonso],
Arce-Santana, E.[Edgar],
Visualization of Dynamic Connectivity in High Electrode-Density EEG,
ISVC08(I: 1040-1050).
Springer DOI
0812
BibRef
Chacón, M.[Max],
Severino, M.[Mariela],
Panerai, R.[Ronney],
Gray Box Model with an SVM to Represent the Influence of PaCO2 on the
Cerebral Blood Flow Autoregulation,
CIARP11(630-637).
Springer DOI
1111
BibRef
Chacón, M.[Max],
Diaz, D.[Darwin],
Ríos, L.[Luis],
Evans, D.[David],
Panerai, R.[Ronney],
Support Vector Machine with External Recurrences for Modeling Dynamic
Cerebral Autoregulation,
CIARP06(954-963).
Springer DOI
0611
BibRef
Breun, P.[Peter],
Grosse-Wentrup, M.[Moritz],
Utschick, W.[Wolfgang],
Buss, M.[Martin],
Robust MEG Source Localization of Event Related Potentials:
Identifying Relevant Sources by Non-Gaussianity,
DAGM06(394-403).
Springer DOI
0610
ICA analysis of MEG/EEG.
BibRef
Hill, N.J.[N. Jeremy],
Lal, T.N.[Thomas Navin],
Schröder, M.[Michael],
Hinterberger, T.[Thilo],
Widman, G.[Guido],
Elger, C.E.[Christian E.],
Schölkopf, B.[Bernhard],
Birbaumer, N.[Niels],
Classifying Event-Related Desynchronization in EEG, ECoG and MEG
Signals,
DAGM06(404-413).
Springer DOI
0610
BibRef
Tomioka, R.[Ryota],
Dornhege, G.[Guido],
Nolte, G.[Guido],
Aihara, K.[Kazuyuki],
Müller, K.R.[Klaus-Robert],
Optimizing Spectral Filters for Single Trial EEG Classification,
DAGM06(414-423).
Springer DOI
0610
BibRef
Yun, M.H.[Myung Hwan],
Lee, J.H.[Joo Hwan],
Lee, H.J.[Hyoung-Joo],
Cho, S.Z.[Sung-Zoon],
Classification of Bluffing Behavior and Affective Attitude from
Prefrontal Surface Encephalogram During On-Line Game,
ICB06(706-712).
Springer DOI
0601
BibRef
Xu, W.J.[Wen-Jie],
Guan, C.T.[Cun-Tai],
Siong, C.E.[Chng Eng],
Ranganatha, S.,
Thulasidas, M.,
Wu, J.K.[Jian-Kang],
High accuracy classification of EEG signal,
ICPR04(II: 391-394).
IEEE DOI
0409
BibRef
Mattout, J.,
Garnero, L.,
Pelegrini-Issac, M.,
Benali, H.,
Statistical Method for Source Localization in MEG/EEG Tomographic
Reconstruction Problem,
ICIP01(I: 714-717).
IEEE DOI
0108
BibRef
Singh, S.,
EEG Data Classification with Localised Structural Information,
ICPR00(Vol II: 271-274).
IEEE DOI
0009
BibRef
Li, T.H.,
Klemm, W.R.,
Detection of Cognitive Binding During Ambiguous Figure Tasks by Wavelet
Coherence Analysis of EEG Signals,
ICPR00(Vol III: 94-97).
IEEE DOI
0009
BibRef
Chitti, Y.[Yasmina],
Application of image processing in neurobiology: Detection of low
signals with high spatial resolution and a non-uniform variance,
CIAP95(253-257).
Springer DOI
9509
BibRef
Cong, Z.X.[Zhang-Xin],
The study of human brain electrical activity:
A topographic mapping approach,
ICPR88(II: 649-651).
IEEE DOI
8811
BibRef
Zhong, C.X.[Chun Xiang],
Ping, X.[Xiao],
Wu, X.M.[Xiao Ming],
Wu, L.Y.[Lei Yi],
A contextual method for electroencephalogram recognition,
ICPR88(II: 911-913).
IEEE DOI
8811
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain Waves, EEG Analysis, Electroencephalogram for Biometrics .