22.5.11.7 Forest Fire Evaluation, Wildfire Analysis, Fire Detection

Chapter Contents (Back)
Forest. Forest Fires. Smoke Detection. Fire Detection. See also Forest Fire Prediction, Fire Hazard, Mitigation, Risk. See also Burned Area Detection, Fire Damage Assessment, Post-Fire Analysis. Mostly for non-fire changes: See also Forest Change Evaluation, Change Detection, Temporal Analysis. See also Surveillance Systems, Applied to Fire and Flame Detection.

Shephard, M.W., Kennelly, E.J.,
Effect of band-to-band coregistration on fire property retrievals,
GeoRS(41), No. 11, November 2003, pp. 2648-2661.
IEEE Abstract. 0311
BibRef

Mims, S.R., Kahn, R.A., Moroney, C.M., Gaitley, B.J., Nelson, D.L., Garay, M.J.,
MISR Stereo Heights of Grassland Fire Smoke Plumes in Australia,
GeoRS(48), No. 1, January 2010, pp. 25-35.
IEEE DOI 1001
BibRef

Harris, S., Veraverbeke, S., Hook, S.,
Evaluating Spectral Indices for Assessing Fire Severity in Chaparral Ecosystems (Southern California) Using MODIS/ASTER (MASTER) Airborne Simulator Data,
RS(3), No. 11, November 2011, pp. 2403-2419.
DOI Link 1203
BibRef

Sifakis, N., Iossifidis, C., Kontoes, C.C., Keramitsoglou, I.,
Wildfire Detection and Tracking over Greece Using MSG-SEVIRI Satellite Data,
RS(3), No. 3, March 2011, pp. 524-538.
DOI Link 1203
BibRef

Gunay, O., Toreyin, B.U., Kose, K., Cetin, A.E.,
Entropy-Functional-Based Online Adaptive Decision Fusion Framework With Application to Wildfire Detection in Video,
IP(21), No. 5, May 2012, pp. 2853-2865.
IEEE DOI 1204
BibRef

Orozco, C.V.[Carmen Vega], Tonini, M.[Marj], Conedera, M.[Marco], Kanveski, M.[Mikhail],
Cluster recognition in spatial-temporal sequences: The case of forest fires,
GeoInfo(16), No. 4, October 2012, pp. 653-673.
WWW Link. 1210
BibRef

Bernhard, E.M.[Eva-Maria], Twele, A.[André], Gähler, M.[Monika],
Rapid Mapping of Forest Fires in the European Mediterranean Region: A Change Detection Approach Using X-Band SAR-Data,
PFG(2011), No. 4, 2011, pp. 261-270.
WWW Link. 1211
BibRef

Maier, S.W.[Stefan W.], Russell-Smith, J.[Jeremy], Edwards, A.C.[Andrew C.], Yates, C.[Cameron],
Sensitivity of the MODIS fire detection algorithm (MOD14) in the savanna region of the Northern Territory, Australia,
PandRS(76), No. 1, February 2013, pp. 11-16.
Elsevier DOI 1301
Forest fire; Thermal; Performance; Hazards; Monitoring; Detection BibRef

Jakovevic, T.[Toni], Stipanicev, D.[Darko], Krstinic, D.[Damir],
Visual spatial-context based wildfire smoke sensor,
MVA(24), No. 4, May 2013, pp. 707-719.
WWW Link. 1304
BibRef

Paugam, R., Wooster, M.J., Roberts, G.,
Use of Handheld Thermal Imager Data for Airborne Mapping of Fire Radiative Power and Energy and Flame Front Rate of Spread,
GeoRS(51), No. 6, 2013, pp. 3385-3399.
IEEE DOI 1307
flames; infrared imaging; georeferencing algorithm BibRef

Labati, R.D.[R. Donida], Genovese, A., Piuri, V., Scotti, F.,
Wildfire Smoke Detection Using Computational Intelligence Techniques Enhanced With Synthetic Smoke Plume Generation,
SMCS(43), No. 4, 2013, pp. 1003-1012.
IEEE DOI 1307
lattice Boltzmann; neural networks; wildfire BibRef

Ko, B.C.[Byoung-Chul], Park, J.O.[Jun-Oh], Nam, J.Y.[Jae-Yeal],
Spatiotemporal bag-of-features for early wildfire smoke detection,
IVC(31), No. 10, 2013, pp. 786-795.
Elsevier DOI 1310
Wildfire smoke detection BibRef

Park, J.[Jun_Oh], Ko, B.[Byoung_Chul], Nam, J.Y.[Jae-Yeal], Kwak, S.[Soo_Yeong],
Wildfire smoke detection using spatiotemporal bag-of-features of smoke,
WACV13(200-205).
IEEE DOI 1303
BibRef

Pennypacker, C.R.[Carlton R.], Jakubowski, M.K.[Marek K.], Kelly, M.[Maggi], Lampton, M.[Michael], Schmidt, C.[Christopher], Stephens, S.[Scott], Tripp, R.[Robert],
FUEGO: Fire Urgency Estimator in Geosynchronous Orbit: A Proposed Early-Warning Fire Detection System,
RS(5), No. 10, 2013, pp. 5173-5192.
DOI Link 1311
BibRef

Fisher, D., Muller, J.P., Yershov, V.N.,
Automated Stereo Retrieval of Smoke Plume Injection Heights and Retrieval of Smoke Plume Masks From AATSR and Their Assessment With CALIPSO and MISR,
GeoRS(52), No. 2, February 2014, pp. 1249-1258.
IEEE DOI 1402
geophysical techniques BibRef

Pennypacker, C.[Carlton],
FUEGO: a satellite system for rapid location of wildfires,
SPIE(Newsroom), February 14, 2014
DOI Link 1402
Combining imaging, computation, software modeling, and satellite hosting systems with firefighting methods may enable cost-effective detection and monitoring of wildland fires in their first few minutes. BibRef

Huo, H.Y.[Hong-Yuan], Jiang, X.G.[Xiao-Guang], Song, X.F.[Xian-Feng], Li, Z.L.[Zhao-Liang], Ni, Z.[Zhuoya], Gao, C.[Caixia],
Detection of Coal Fire Dynamics and Propagation Direction from Multi-Temporal Nighttime Landsat SWIR and TIR Data: A Case Study on the Rujigou Coalfield, Northwest (NW) China,
RS(6), No. 2, 2014, pp. 1234-1259.
DOI Link 1403
BibRef

Freeborn, P.H.[Patrick H.], Wooster, M.J.[Martin J.], Roberts, G.[Gareth], Xu, W.D.[Wei-Dong],
Evaluating the SEVIRI Fire Thermal Anomaly Detection Algorithm across the Central African Republic Using the MODIS Active Fire Product,
RS(6), No. 3, 2014, pp. 1890-1917.
DOI Link 1404
BibRef

Le, G.E.[George E.], Breysse, P.N.[Patrick N.], McDermott, A.[Aidan], Eftim, S.E.[Sorina E.], Geyh, A.[Alison], Berman, J.D.[Jesse D.], Curriero, F.C.[Frank C.],
Canadian Forest Fires and the Effects of Long-Range Transboundary Air Pollution on Hospitalizations among the Elderly,
IJGI(3), No. 2, 2014, pp. 713-731.
DOI Link 1407
BibRef

Montealegre, A.L.[Antonio Luis], Lamelas, M.T.[María Teresa], Tanase, M.A.[Mihai A.], de la Riva, J.[Juan],
Forest Fire Severity Assessment Using ALS Data in a Mediterranean Environment,
RS(6), No. 5, 2014, pp. 4240-4265.
DOI Link 1407
BibRef

Vlassova, L.[Lidia], Pérez-Cabello, F.[Fernando], Mimbrero, M.R.[Marcos Rodrigues], Llovería, R.M.[Raquel Montorio], García-Martín, A.[Alberto],
Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images,
RS(6), No. 7, 2014, pp. 6136-6162.
DOI Link 1408
BibRef

Safronov, A.N.[Alexander N.], Fokeeva, E.V.[Ekaterina V.], Rakitin, V.S.[Vadim S.], Grechko, E.I.[Eugene I.], Shumsky, R.A.[Roman A.],
Severe Wildfires Near Moscow, Russia in 2010: Modeling of Carbon Monoxide Pollution and Comparisons with Observations,
RS(7), No. 1, 2014, pp. 395-429.
DOI Link 1502
BibRef

Gross, B.[Barry], Wu, Y.H.[Yong-Hua], Moshary, F.[Fred], Delgado, R.[Ruben], Hoff, R.[Ray], Su, J.[Jia], Lee, R.[Robert], McCormick, P.[Pat],
Using lidar networks to explore aloft plume properties,
SPIE(Newsroom), December 30, 2014
DOI Link 1504
A coordinated lidar network in the northeastern United States explored the optical properties of transported plumes from fires and dust and diagnosed chemical transport model concentration biases. BibRef

Li, X.L.[Xiao-Lian], Song, W.G.[Wei-Guo], Lian, L.P.[Li-Ping], Wei, X.G.[Xiao-Ge],
Forest Fire Smoke Detection Using Back-Propagation Neural Network Based on MODIS Data,
RS(7), No. 4, 2015, pp. 4473-4498.
DOI Link 1505
BibRef

Toulouse, T., Rossi, L., Akhloufi, M., Celik, T., Maldague, X.,
Benchmarking of wildland fire colour segmentation algorithms,
IET-IPR(9), No. 12, 2015, pp. 1064-1072.
DOI Link 1512
fires BibRef

Li, P.[Peng], Feng, Z.M.[Zhi-Ming],
Extent and Area of Swidden in Montane Mainland Southeast Asia: Estimation by Multi-Step Thresholds with Landsat-8 OLI Data,
RS(8), No. 1, 2016, pp. 44.
DOI Link 1602
slash and burn analysis. BibRef

Benali, A.[Akli], Russo, A.[Ana], Sá, A.C.L.[Ana C. L.], Pinto, R.M.S.[Renata M. S.], Price, O.[Owen], Koutsias, N.[Nikos], Pereira, J.M.C.[José M. C.],
Determining Fire Dates and Locating Ignition Points With Satellite Data,
RS(8), No. 4, 2016, pp. 326.
DOI Link 1604
BibRef

Lin, L.[Lei], Meng, Y.[Yu], Yue, A.Z.[An-Zhi], Yuan, Y.[Yuan], Liu, X.Y.[Xiao-Yi], Chen, J.B.[Jing-Bo], Zhang, M.M.[Meng-Meng], Chen, J.S.[Jian-Sheng],
A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data,
RS(8), No. 5, 2016, pp. 403.
DOI Link 1606
BibRef

Polivka, T.N., Wang, J., Ellison, L.T., Hyer, E.J., Ichoku, C.M.,
Improving Nocturnal Fire Detection With the VIIRS Day: Night Band,
GeoRS(54), No. 9, September 2016, pp. 5503-5519.
IEEE DOI 1609
remote sensing BibRef

Oom, D.[Duarte], Silva, P.C.[Pedro C.], Bistinas, I.[Ioannis], Pereira, J.M.C.[José M. C.],
Highlighting Biome-Specific Sensitivity of Fire Size Distributions to Time-Gap Parameter Using a New Algorithm for Fire Event Individuation,
RS(8), No. 8, 2016, pp. 663.
DOI Link 1609
BibRef

de Grandi, E.C.[Elsa Carla], Mitchard, E.[Edward], Hoekman, D.[Dirk],
Wavelet Based Analysis of TanDEM-X and LiDAR DEMs across a Tropical Vegetation Heterogeneity Gradient Driven by Fire Disturbance in Indonesia,
RS(8), No. 8, 2016, pp. 641.
DOI Link 1609
BibRef

Xie, H.[Huan], Du, L.[Li], Liu, S.[Sicong], Chen, L.[Lei], Gao, S.[Sa], Liu, S.[Shuang], Pan, H.Y.[Hai-Yan], Tong, X.H.[Xiao-Hua],
Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data,
IJGI(5), No. 10, 2016, pp. 172.
DOI Link 1610
BibRef

Tian, G., Ren, Y., Zhou, M.,
Dual-Objective Scheduling of Rescue Vehicles to Distinguish Forest Fires via Differential Evolution and Particle Swarm Optimization Combined Algorithm,
ITS(17), No. 11, November 2016, pp. 3009-3021.
IEEE DOI 1609
Engines BibRef

Wickramasinghe, C.H.[Chathura H.], Jones, S.[Simon], Reinke, K.[Karin], Wallace, L.[Luke],
Development of a Multi-Spatial Resolution Approach to the Surveillance of Active Fire Lines Using Himawari-8,
RS(8), No. 11, 2016, pp. 932.
DOI Link 1612
BibRef

Plank, S.[Simon], Fuchs, E.M.[Eva-Maria], Frey, C.[Corinne],
A Fully Automatic Instantaneous Fire Hotspot Detection Processor Based on AVHRR Imagery: A TIMELINE Thematic Processor,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link 1702
See also Fully Automatic Burnt Area Mapping Processor Based on AVHRR Imagery: A TIMELINE Thematic Processor, A. BibRef

Fukuhara, T., Kouyama, T., Kato, S., Nakamura, R., Takahashi, Y., Akiyama, H.,
Detection of Small Wildfire by Thermal Infrared Camera With the Uncooled Microbolometer Array for 50-kg Class Satellite,
GeoRS(55), No. 8, August 2017, pp. 4314-4324.
IEEE DOI 1708
Brightness temperature, Cameras, Instruments, Low earth orbit satellites, Satellite broadcasting, Spatial resolution, Infrared imaging, remote sensing, satellite, applications BibRef

Lin, Z., Chen, F., Li, B., Yu, B., Shirazi, Z., Wu, Q., Wu, W.,
FengYun-3C VIRR Active Fire Monitoring: Algorithm Description and Initial Assessment Using MODIS and Landsat Data,
GeoRS(55), No. 11, November 2017, pp. 6420-6430.
IEEE DOI 1711
Algorithm design and analysis, Earth, Heuristic algorithms, MODIS, Active fire monitoring. BibRef

Fornacca, D.[Davide], Ren, G.[Guopeng], Xiao, W.[Wen],
Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a Mountainous Area of Northwest Yunnan, China, Characterized by Frequent Small Fires,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link 1712
BibRef

Zhang, X.X.[Xiao-Xiang], Yao, J.[Jing], Sila-Nowicka, K.[Katarzyna],
Exploring Spatiotemporal Dynamics of Urban Fires: A Case of Nanjing, China,
IJGI(7), No. 1, 2018, pp. xx-yy.
DOI Link 1801
BibRef
Earlier: A2, A1, Only:
Spatial-temporal Dynamics Of Urban Fire Incidents: A Case Study Of Nanjing, China,
ISPRS16(B2: 63-69).
DOI Link 1610
BibRef

Cho, K.[Kangjoon], Kim, Y.H.[Yong-Hyun], Kim, Y.[Yongil],
Disaggregation of Landsat-8 Thermal Data Using Guided SWIR Imagery on the Scene of a Wildfire,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Garg, S.[Saurabh], Forbes-Smith, N.[Nicholas], Hilton, J.[James], Prakash, M.[Mahesh],
SparkCloud: A Cloud-Based Elastic Bushfire Simulation Service,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Wu, P., Chu, F., Che, A., Zhou, M.,
Bi-Objective Scheduling of Fire Engines for Fighting Forest Fires: New Optimization Approaches,
ITS(19), No. 4, April 2018, pp. 1140-1151.
IEEE DOI 1804
Earthquakes, Emergency services, Engines, Heuristic algorithms, Processor scheduling, Routing, Scheduling, Forest fires, optimization BibRef

Zhuang, Y.[Yan], Li, R.[Ruiyuan], Yang, H.[Hao], Chen, D.[Danlu], Chen, Z.[Ziyue], Gao, B.[Bingbo], He, B.[Bin],
Understanding Temporal and Spatial Distribution of Crop Residue Burning in China from 2003 to 2017 Using MODIS Data,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Di Biase, V.[Valeria], Laneve, G.[Giovanni],
Geostationary Sensor Based Forest Fire Detection and Monitoring: An Improved Version of the SFIDE Algorithm,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Parks, S.A.[Sean A.], Holsinger, L.M.[Lisa M.], Voss, M.A.[Morgan A.], Loehman, R.A.[Rachel A.], Robinson, N.P.[Nathaniel P.],
Mean Composite Fire Severity Metrics Computed with Google Earth Engine Offer Improved Accuracy and Expanded Mapping Potential,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Zhang, T.R.[Tian-Ran], Wooster, M.J.[Martin J.], de Jong, M.C.[Mark C.], Xu, W.D.[Wei-Dong],
How Well Does the 'Small Fire Boost' Methodology Used within the GFED4.1s Fire Emissions Database Represent the Timing, Location and Magnitude of Agricultural Burning?,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Hally, B.[Bryan], Wallace, L.[Luke], Reinke, K.[Karin], Jones, S.[Simon], Engel, C.[Chermelle], Skidmore, A.[Andrew],
Estimating Fire Background Temperature at a Geostationary Scale: An Evaluation of Contextual Methods for AHI-8,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
BibRef

Liu, X.Z.[Xiang-Zhuo], He, B.B.[Bin-Bin], Quan, X.W.[Xing-Wen], Yebra, M.[Marta], Qiu, S.[Shi], Yin, C.M.[Chang-Ming], Liao, Z.M.[Zhan-Mang], Zhang, H.G.[Hong-Guo],
Near Real-Time Extracting Wildfire Spread Rate from Himawari-8 Satellite Data,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Martin, M.V.[Maria Val], Kahn, R.A.[Ralph A.], Tosca, M.G.[Mika G.],
A Global Analysis of Wildfire Smoke Injection Heights Derived from Space-Based Multi-Angle Imaging,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Roberts, G.[Gareth], Wooster, M.J.[Martin J.], Xu, W.D.[Wei-Dong], He, J.P.[Jiang-Ping],
Fire Activity and Fuel Consumption Dynamics in Sub-Saharan Africa,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Tran, B.N.[Bang Nguyen], Tanase, M.A.[Mihai A.], Bennett, L.T.[Lauren T.], Aponte, C.[Cristina],
Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Xie, Z.[Zixi], Song, W.G.[Wei-Guo], Ba, R.[Rui], Li, X.L.[Xiao-Lian], Xia, L.[Long],
A Spatiotemporal Contextual Model for Forest Fire Detection Using Himawari-8 Satellite Data,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Jang, E.[Eunna], Kang, Y.J.[Yoo-Jin], Im, J.H.[Jung-Ho], Lee, D.W.[Dong-Won], Yoon, J.M.[Jong-Min], Kim, S.K.[Sang-Kyun],
Detection and Monitoring of Forest Fires Using Himawari-8 Geostationary Satellite Data in South Korea,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Sofan, P.[Parwati], Bruce, D.[David], Jones, E.[Eriita], Marsden, J.[Jackie],
Detection and Validation of Tropical Peatland Flaming and Smouldering Using Landsat-8 SWIR and TIRS Bands,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link 1903
BibRef
Earlier: Correction: RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Weber, H.[Helga], Wunderle, S.[Stefan],
Drifting Effects of NOAA Satellites on Long-Term Active Fire Records of Europe,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Elvidge, C.D.[Christopher D.], Zhi-Zhin, M.[Mikhail], Baugh, K.[Kimberly], Hsu, F.C.[Feng Chi], Ghosh, T.[Tilottama],
Extending Nighttime Combustion Source Detection Limits with Short Wavelength VIIRS Data,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Ozaki, M.[Mitsuhiro], Aryal, J.[Jagannath], Fox-Hughes, P.[Paul],
Dynamic Wildfire Navigation System,
IJGI(8), No. 4, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Cruz-López, M.I.[María Isabel], Manzo-Delgado, L.D.[Lilia De_Lourdes], Aguirre-Gómez, R.[Raúl], Chuvieco, E.[Emilio], Equihua-Benítez, J.A.[Julián Alberto],
Spatial Distribution of Forest Fire Emissions: A Case Study in Three Mexican Ecoregions,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Kaur, I.[Inderpreet], Hüser, I.[Imke], Zhang, T.[Tianran], Gehrke, B.[Berit], Kaiser, J.W.[Johannes W.],
Correcting Swath-Dependent Bias of MODIS FRP Observations with Quantile Mapping,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link 1906
FRP: Fire Radiative Power. Active fire monitoring. BibRef

Klein, D., Richter, R., Strobl, C., Schläpfer, D.,
Solar Influence on Fire Radiative Power Retrieved With the Bispectral Method,
GeoRS(57), No. 7, July 2019, pp. 4521-4528.
IEEE DOI 1907
Table lookup, Cameras, Sensors, MODIS, Solar radiation, Fires, Bispectral method, fire radiative power (FRP), TET-1 BibRef

Várnai, T.[Tamás], Gatebe, C.[Charles], Gautam, R.[Ritesh], Poudyal, R.[Rajesh], Su, W.[Wenying],
Developing an Aircraft-Based Angular Distribution Model of Solar Reflection from Wildfire Smoke to Aid Satellite-Based Radiative Flux Estimation,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Lin, Z., Chen, F., Li, B., Yu, B., Jia, H., Zhang, M., Liang, D.,
A Contextual and Multitemporal Active-Fire Detection Algorithm Based on FengYun-2G S-VISSR Data,
GeoRS(57), No. 11, November 2019, pp. 8840-8852.
IEEE DOI 1911
Satellite broadcasting, Spatial resolution, MODIS, Geostationary satellites, Detection algorithms, geostationary satellite data BibRef

Shah, S.B., Grübler, T., Krempel, L., Ernst, S., Mauracher, F., Contractor, S.,
Real-time Wildfire Detection From Space - a Trade-off Between Sensor Quality, Physical Limitations and Payload Size,
PIA19(209-213).
DOI Link 1912
BibRef

Hesam, S., Valizadeh Kamran, K.,
Intelligent Management Occurrence and Spread of Front Fire in GIS by Using Cellular Automata. Case Study: Golestan Forest,
SMPR19(475-481).
DOI Link 1912
BibRef

Jahdi, R., Salis, M., Arabi, M., Arca, B.,
Fire Modelling to Assess Spatial Patterns of Wildfire Exposure In Ardabil, Nw Iran,
SMPR19(577-581).
DOI Link 1912
BibRef

Ying, L.X.[Ling-Xiao], Shen, Z.[Zehao], Yang, M.Z.[Ming-Zheng], Piao, S.L.[Shi-Long],
Wildfire Detection Probability of MODIS Fire Products under the Constraint of Environmental Factors: A Study Based on Confirmed Ground Wildfire Records,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Govil, K.[Kinshuk], Welch, M.L.[Morgan L.], Ball, J.T.[J. Timothy], Pennypacker, C.R.[Carlton R.],
Preliminary Results from a Wildfire Detection System Using Deep Learning on Remote Camera Images,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Kumar, S.S.[Sanath Sathyachandran], Hult, J.[John], Picotte, J.[Joshua], Peterson, B.[Birgit],
Potential Underestimation of Satellite Fire Radiative Power Retrievals over Gas Flares and Wildland Fires,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Valero, M.M.[Mario M.], Verstockt, S.[Steven], Mata, C.[Christian], Jimenez, D.[Dan], Queen, L.[Lloyd], Rios, O.[Oriol], Pastor, E.[Elsa], Planas, E.[Eulàlia],
Image Similarity Metrics Suitable for Infrared Video Stabilization during Active Wildfire Monitoring: A Comparative Analysis,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

Li, X., Chen, Z., Wu, Q.M.J., Liu, C.,
3D Parallel Fully Convolutional Networks for Real-Time Video Wildfire Smoke Detection,
CirSysVideo(30), No. 1, January 2020, pp. 89-103.
IEEE DOI 2002
convolutional neural nets, feature extraction, geophysical image processing, image classification, natural scene BibRef

Varotsos, C.A.[Costas A.], Krapivin, V.F.[Vladimir F.], Mkrtchyan, F.A.[Ferdenant A.],
A New Passive Microwave Tool for Operational Forest Fires Detection: A Case Study of Siberia in 2019,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Pham, H.X., La, H.M., Feil-Seifer, D., Deans, M.C.,
A Distributed Control Framework of Multiple Unmanned Aerial Vehicles for Dynamic Wildfire Tracking,
SMCS(50), No. 4, April 2020, pp. 1537-1548.
IEEE DOI 2004
Mathematical model, Unmanned aerial vehicles, Robot sensing systems, Decentralized control, Task analysis, Color, networked robots BibRef

Zhang, X.X.[Xiao-Xiang], Yao, J.[Jing], Sila-Nowicka, K.[Katarzyna], Jin, Y.[Yuhao],
Urban Fire Dynamics and Its Association with Urban Growth: Evidence from Nanjing, China,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Pan, H.Y.[Hong-Yi], Badawi, D.[Diaa], Zhang, X.[Xi], Cetin, A.E.[Ahmet Enis],
Additive neural network for forest fire detection,
SIViP(14), No. 4, June 2020, pp. 675-682.
WWW Link. 2005
BibRef

Udahemuka, G.[Gustave], van Wyk, B.J.[Barend J.], Hamam, Y.[Yskandar],
Characterization of Background Temperature Dynamics of a Multitemporal Satellite Scene through Data Assimilation for Wildfire Detection,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Li, F.J.[Fang-Jun], Zhang, X.Y.[Xiao-Yang], Kondragunta, S.[Shobha],
Biomass Burning in Africa: An Investigation of Fire Radiative Power Missed by MODIS Using the 375 m VIIRS Active Fire Product,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Wei, X.[Xikun], Wang, G.[Guojie], Chen, T.[Tiexi], Hagan, D.F.T.[Daniel Fiifi Tawia], Ullah, W.[Waheed],
A Spatio-Temporal Analysis of Active Fires over China during 2003-2016,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Zhu, G.D.[Guo-Dong], Chen, Z.X.[Zhen-Xue], Liu, C.Y.[Cheng-Yun], Rong, X.W.[Xue-Wen], He, W.K.[Wei-Kai],
3D video semantic segmentation for wildfire smoke,
MVA(31), No. 6, August 2020, pp. Article50.
Springer DOI 2008
BibRef

Salguero, J.[John], Li, J.J.[Jing-Jing], Farahmand, A.[Alireza], Reager, J.T.[John T.],
Wildfire Trend Analysis over the Contiguous United States Using Remote Sensing Observations,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Li, S., Yan, Q., Liu, P.,
An Efficient Fire Detection Method Based on Multiscale Feature Extraction, Implicit Deep Supervision and Channel Attention Mechanism,
IP(29), 2020, pp. 8467-8475.
IEEE DOI 2008
Fire detection, convolutional neural network, industrial applications, multiscale feature extraction, channel attention mechanism BibRef

Fu, Y.Y.[Yu-Yun], Li, R.[Rui], Wang, X.[Xuewen], Bergeron, Y.[Yves], Valeria, O.[Osvaldo], Chavardès, R.D.[Raphaël D.], Wang, Y.[Yipu], Hu, J.H.[Ji-Heng],
Fire Detection and Fire Radiative Power in Forests and Low-Biomass Lands in Northeast Asia: MODIS versus VIIRS Fire Products,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Weber, K.T.[Keith T.], Yadav, R.[Rituraj],
Spatiotemporal Trends in Wildfires across the Western United States (1950-2019),
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef


de Paula, L.G.[Lucas Goncalves], Hyttel, K.[Kristian], Geipel, K.R.[Kenneth Richard], de Domingo Gil, J.E.[Jacobo Eduardo], Novac, I.[Iuliu], Chrysostomou, D.[Dimitrios],
Estimation of Wildfire Size and Location Using a Monocular Camera on a Semi-autonomous Quadcopter,
CVS19(133-142).
Springer DOI 1912
BibRef

Biswal, S.S., Gorai, A.K.,
Detection and Delineation of Subsurface Coal Mine Fire From Spaceborne Thermal Infrared Data in Jharia Coalfield, Dhanbad, India,
Gi4DM19(65-69).
DOI Link 1912
BibRef

Špulák, P.,
Aerial Firefighting of Forest Fires: Spatial Data Support,
Gi4DM19(409-413).
DOI Link 1912
BibRef

Adão, T., Pinho, T.M., Pádua, L., Santos, N., Sousa, A., Sousa, J.J., Peres, E.,
Using Virtual Scenarios to Produce Machine Learnable Environments For Wildfire Detection and Segmentation,
Gi4DM19(9-15).
DOI Link 1912
BibRef

Akay, A.E., Karas, I.R., Kahraman, I.,
Determining the Locations of Potential Firefighting Teams By Using GIS Techniques,
GeoDisast18(83-88).
DOI Link 1901
BibRef

Hally, B., Wallace, L., Reinke, K., Jones, S.,
Assessment Of The Utility Of The Advanced Himawari Imager To Detect Active Fire Over Australia,
ISPRS16(B8: 65-71).
DOI Link 1610
BibRef

Tonbul, H., Kavzoglu, T., Kaya, S.,
Assessment Of Fire Severity And Post-fire Regeneration Based On Topographical Features Using Multitemporal Landsat Imagery: A Case Study in Mersin, Turkey,
ISPRS16(B8: 763-769).
DOI Link 1610
BibRef

Alamgir, N., Boles, W., Chandran, V.,
A Model Integrating Fire Prediction and Detection for Rural-Urban Interface,
DICTA15(1-8)
IEEE DOI 1603
geophysical image processing BibRef

Homainejad, N., Rizos, C.,
Application of Multiple Categories of Unmanned Aircraft Systems (UAS) in Different Airspaces for Bushfire Monitoring and Response,
UAV-g15(55-60).
DOI Link 1512
BibRef

Chen, C.H., Chien, S.W., Ho, M.C.,
A study on fire spreading model for the safety distance between the neighborhood occupancies and historical buildings in Taiwan,
CIPA15(73-78).
DOI Link 1508
BibRef

Pastor, E., Planas, E.,
Infrared imagery on wildfire research. Some examples of sound capabilities and applications,
IPTA12(31-36)
IEEE DOI 1503
environmental science computing BibRef

Stipanicev, D., Seric, L., Braovic, M., Krstinic, D., Jakovcevic, T., Stula, M., Bugaric, M., Maras, J.,
Vision based wildfire and natural risk observers,
IPTA12(37-42)
IEEE DOI 1503
environmental science computing BibRef

Amarger, V., Ramik, D.M., Sabourin, C., Madani, K., Moreno, R., Rossi, L., Grana, M.,
Spherical coordinates framed RGB color space dichromatic reflection model based image segmentation: Application to wildland fires' outlines extraction,
IPTA12(19-24)
IEEE DOI 1503
computer vision BibRef

Howard, S.M., Picotte, J.J., Coan, M.J.,
Utilizing Multi-Sensor Fire Detections to Map Fires in the United States,
LandImaging14(161-166).
DOI Link 1411
BibRef

Samadzadegan, F., Saber, M., Zahmatkesh, H., Khanlou, H.J.G.[H. Joze Ghazi],
An Architecture for Automated Fire Detection Early Warning System Based on Geoprocessing Service Composition,
SMPR13(351-355).
HTML Version. 1311
BibRef

Zhong, Z.N.[Zhi-Nong], Jing, N.[Ning], Wu, Q.Y.[Qiu-Yun], Gao, Y.[Yang],
Integration of GIS/RS/GPS for urban fire response,
CVRS12(311-316).
IEEE DOI 1302
BibRef

Solberg, S., Naesset, E.,
Mapping Defoliation with Lidar,
Laser07(379).
PDF File. 0709
BibRef

Rudz, S.[Steve], Chetehouna, K.[Khaled], Hafiane, A.[Adel], Sero-Guillaume, O.[Olivier], Laurent, H.[Hélène],
On the Evaluation of Segmentation Methods for Wildland Fire,
ACIVS09(12-23).
Springer DOI 0909
BibRef

Fan, X.F.[Xiao-Feng], Rhody, H.E.,
A spatial feature enhanced MMI algorithm for multi-modal wild-fire image registration,
AIPR08(1-5).
IEEE DOI 0810
BibRef

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Forest Fire Prediction, Fire Hazard, Mitigation, Risk .


Last update:Sep 28, 2020 at 12:04:43