Kraus, K.,
Pfeifer, N.,
Determination of terrain models in wooded areas with airborne laser
scanner data,
PandRS(53), No. 4, 01 August 1998, pp. 193-203.
BibRef
9808
Larsen, M.[Morten], and
Rudemo, M.[Mats],
Optimizing templates for finding trees in aerial photographs,
PRL(19), No. 12, 30 October 1998, pp. 1153-1162.
BibRef
9810
Earlier:
Using Ray-Traced Templates to Find Individual Trees in
Aerial Photographs,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Larsen, M.[Morten],
Rudemo, M.[Mats],
Approximate Bayesian estimation of a 3D point pattern from multiple
views,
PRL(25), No. 12, September 2004, pp. 1359-1368.
Elsevier DOI
0409
Combine data from multiple views. Use for tree models.
BibRef
Larsen, M.,
Jittered Match Windows Voting for Tree Top Positions in Aerial
Photographs,
SCIA99(Remote Sensing).
BibRef
9900
Larsen, M.,
Rudemo, M.,
Estimation of Tree Positions from Aerial Photos,
SSAB97(Photogrammetry)
9703
BibRef
Haering, N.C.[Niels C.],
da Vitoria Lobo, N.[Niels],
Features and Classification Methods to Locate Deciduous Trees in Images,
CVIU(75), No. 1/2, July-August 1999, pp. 133-149.
DOI Link Indexing application
BibRef
9907
Haering, N.C.[Niels C.],
Myles, Z.[Zarina],
da Vitoria Lobo, N.[Niels],
Locating Deciduous Trees,
CBAIVL97(18).
IEEE DOI
9706
BibRef
Evans, D.L.[David L.],
Roberts, S.D.[Scott D.],
McCombs, J.W.[John W.],
Harrington, R.L.[Richard L.],
Detection of Regularly Spaced Targets in Small-Footprint LIDAR Data:
Research Issues for Consideration,
PhEngRS(67), No. 10, October 2001, pp. 1133-1136.
Small-footprint LIDAR systems do not adequately sample tree tops under typical LIDAR mission conditions.
WWW Link.
0201
BibRef
Persson, A.,
Holmgren, J., and
Söderman, U.,
Detecting and Measuring Individual Trees Using an
Airborne Laser Scanner,
PhEngRS(68), No. 9, September 2002, pp. 925-932.
Watershed segmentation of trees.
BibRef
0209
Raber, G.T.[George T.],
Jensen, J.R.[John R.],
Schill, S.R.[Steven R.],
Schuckman, K.[Karen],
Creation of Digital Terrain Models Using an Adaptive Lidar Vegetation
Point Removal Process,
PhEngRS(68), No. 12, December 2002, pp. 1307-1316.
A method for the automatic extraction of land-cover thematic
information directly from lidar data and the use of this information
in an adaptive point removal process to extract more accurate
bald-earth digital elevation models from lidar data is presented.
WWW Link.
0304
BibRef
Brandtberg, T.[Tomas],
Classifying individual tree species under leaf-off and leaf-on
conditions using airborne lidar,
PandRS(61), No. 5, January 2007, pp. 325-340.
Elsevier DOI
0703
Calibration; Forestry; Lidar; Segmentation; Species classification
BibRef
Carleer, A.,
Wolff, E.,
Exploitation of Very High Resolution Satellite Data for Tree Species
Identification,
PhEngRS(70), No. 1, January 2004, pp. 135-140.
The potential of very high resolution multispectral satellite images
for vegetation mapping, primarily deciduous tree species in
"monoculture stands," with conventional hard classification processes
is presented.
WWW Link.
0403
BibRef
Moffiet, T.,
Mengersen, K.,
Witte, C.,
King, R.,
Denham, R.,
Airborne laser scanning: Exploratory data analysis indicates potential
variables for classification of individual trees or forest stands
according to species,
PandRS(59), No. 5, August 2005, pp. 289-309.
Elsevier DOI
0509
BibRef
Hallberg, B.,
Smith-Jonforsen, G.,
Ulander, L.M.H.,
Measurements on individual trees using multiple VHF SAR images,
GeoRS(43), No. 10, October 2005, pp. 2261-2269.
IEEE DOI
0510
BibRef
Hosoi, F.[Fumiki],
Omasa, K.[Kenji],
Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area
Density Using High-Resolution Portable Scanning Lidar,
GeoRS(44), No. 12, December 2006, pp. 3610-3618.
IEEE DOI
0701
BibRef
Wolf, B.M.[Bernd-Michael],
Heipke, C.[Christian],
Automatic extraction and delineation of single trees from remote
sensing data,
MVA(18), No. 5, October 2007, pp. 317-330.
Springer DOI
0711
BibRef
Straub, B.M.,
Heipke, C.,
Automatic Extraction of Trees for 3D City Models from Images and Height
Data,
Ascona01(267-277).
Color infrared and DSM. Hypothesize tree and building regions, local
analysis of tree regions.
0201
BibRef
Straub, B.M.[Bernd-M.],
Automatic Extraction of Trees from Aerial Images and Surface Models,
PIA05(xx-yy).
PDF File.
0509
BibRef
Earlier:
Investigation of the MPEG-7 Homogeneuos Texture Descriptor for the
Automatic Extraction of Trees,
PCV02(A: 351).
0305
BibRef
Heipke, C.[Christian],
Straub, B.M.[Bernd M.],
Automatic Extraction and Updating of Vegetation Areas in GIS from
Satellite Imagery,
ISPRSGIS99(167-174).
BibRef
9900
Palenichka, R.M.[Roman M.],
Zaremba, M.B.[Marek B.],
Multiscale Isotropic Matched Filtering for Individual Tree Detection in
LiDAR Images,
GeoRS(45), No. 12, December 2007, pp. 3944-3956.
IEEE DOI
0711
BibRef
Earlier:
Scale-Adaptive Segmentation and Recognition of Individual Trees Based
on LiDAR Data,
ICIAR07(1082-1092).
Springer DOI
0708
See also Automatic Extraction of Control Points for the Registration of Optical Satellite and LiDAR Images.
BibRef
Kononov, A.A.,
Ka, M.H.,
Model-Associated Forest Parameter Retrieval Using VHF SAR Data at the
Individual Tree Level,
GeoRS(46), No. 1, January 2008, pp. 69-84.
IEEE DOI
0712
BibRef
Teng, C.H.[Chin-Hung],
Chen, Y.S.[Yung-Sheng],
Hsu, W.H.[Wen-Hsing],
An Approach to Extracting Trunk from an Image,
IEICE(E89-D), No. 4, April 2006, pp. 1596-1600.
DOI Link
0604
Tree trunks. Not for aerial images though.
BibRef
Teng, C.H.[Chin-Hung],
Chen, Y.S.[Yung-Sheng],
Image-based tree modeling from a few images with very narrow viewing
range,
VC(25), No. 4, April 2009, pp. xx-yy.
Springer DOI
0903
BibRef
Hill, R.A.,
Broughton, R.K.,
Mapping the understorey of deciduous woodland from leaf-on and leaf-off
airborne LiDAR data: A case study in lowland Britain,
PandRS(64), No. 2, March 2009, pp. 223-233.
Elsevier DOI
0903
LIDAR; Laser scanning; Forestry; Model; Mapping
BibRef
Lu, W.L.[Wei-Lwun],
Murphy, K.P.,
Little, J.J.[James J.],
Sheffer, A.[Alla],
Fu, H.B.[Hong-Bo],
A Hybrid Conditional Random Field for Estimating the Underlying Ground
Surface From Airborne LiDAR Data,
GeoRS(47), No. 8, August 2009, pp. 2913-2922.
IEEE DOI
0907
BibRef
Lu, W.L.[Wei-Lwun],
Little, J.J.[James J.],
Sheffer, A.[Alla],
Fu, H.B.[Hong-Bo],
Deforestation:
Extracting 3D Bare-Earth Surface from Airborne LiDAR Data,
CRV08(203-210).
IEEE DOI
0805
BibRef
Reitberger, J.,
Schnorr, C.,
Krzystek, P.,
Stilla, U.,
3D segmentation of single trees exploiting full waveform LIDAR data,
PandRS(64), No. 6, November 2009, pp. 561-574.
Elsevier DOI
1001
BibRef
Earlier:
3D Segmentation of Full Waveform LIDAR Data for Single Tree Detection
Using Normalized Cut,
ISPRS08(B3a: 77 ff).
PDF File.
0807
LIDAR; Segmentation; Aerial survey; Clustering; Forestry
BibRef
Rentsch, M.[Matthias],
Krismann, A.[Alfons],
Krzystek, P.[Peter],
Extraction of Non-forest Trees for Biomass Assessment Based on Airborne
and Terrestrial LiDAR Data,
PIA11(121-132).
Springer DOI
1110
BibRef
Yao, W.,
Krzystek, P.,
Heurich, M.,
Identifying Standing Dead Trees In Forest Areas Based On 3d Single Tree
Detection From Full Waveform Lidar Data,
AnnalsPRS(I-7), No. 2012, pp. 359-364.
DOI Link
1209
BibRef
Reitberger, J.[Josef],
Heurich, M.,
Krzystek, P.[Peter],
Stilla, U.[Uwe],
Single Tree Detection in Forest Areas with High-Density LIDAR Data,
PIA07(139).
PDF File.
0711
BibRef
Reitberger, J.[Josef],
Krzystek, P.[Peter],
Stilla, U.[Uwe],
Combined Tree Segmentation and Stem Detection Using Full Waveform Lidar
Data,
Laser07(332).
PDF File.
0709
BibRef
Earlier:
Analysis of Full Waveform Lidar Data for Tree Species Classification,
PCV06(xx-yy).
PDF File.
0609
BibRef
Suratno, A.[Agus],
Seielstad, C.[Carl],
Queen, L.[Lloyd],
Tree species identification in mixed coniferous forest using airborne
laser scanning,
PandRS(64), No. 6, November 2009, pp. 683-693.
Elsevier DOI
1001
North America; Conifer; Laser scanning; Intensity; Tree species
BibRef
Aksoy, S.,
Akcay, H.G.,
Wassenaar, T.,
Automatic Mapping of Linear Woody Vegetation Features in Agricultural
Landscapes Using Very High Resolution Imagery,
GeoRS(48), No. 1, January 2010, pp. 511-522.
IEEE DOI
1001
BibRef
Heikkinen, V.,
Tokola, T.,
Parkkinen, J.,
Korpela, I.,
Jaaskelainen, T.,
Simulated Multispectral Imagery for Tree Species Classification Using
Support Vector Machines,
GeoRS(48), No. 3, March 2010, pp. 1355-1364.
IEEE DOI
1003
BibRef
Heikkinen, V.,
Korpela, I.,
Tokola, T.,
Honkavaara, E.,
Parkkinen, J.,
An SVM Classification of Tree Species Radiometric Signatures Based on
the Leica ADS40 Sensor,
GeoRS(49), No. 11, November 2011, pp. 4539-4551.
IEEE DOI
1112
BibRef
Dufva, T.,
Praks, J.,
Jarvenpaa, S.,
Sarvas, J.,
Scattering Model for a Pine Tree Employing VIE With a Broadband MLFMA
and Comparison to ICA,
GeoRS(48), No. 3, March 2010, pp. 1119-1127.
IEEE DOI
1003
BibRef
Jaakkola, A.[Anttoni],
Hyyppa, J.[Juha],
Kukko, A.[Antero],
Yu, X.W.[Xiao-Wei],
Kaartinen, H.[Harri],
Lehtomaki, M.[Matti],
Lin, Y.[Yi],
A low-cost multi-sensoral mobile mapping system and its feasibility for
tree measurements,
PandRS(65), No. 6, November 2010, pp. 514-522.
Elsevier DOI
1101
Laser scanning; Mobile; Unmanned aerial vehicle; Multi-sensor; Multitemporal
BibRef
Yu, X.W.[Xiao-Wei],
Hyyppa, J.[Juha],
Vastaranta, M.[Mikko],
Holopainen, M.[Markus],
Viitala, R.[Risto],
Predicting individual tree attributes from airborne laser point clouds
based on the random forests technique,
PandRS(66), No. 1, January 2011, pp. 28-37.
Elsevier DOI
1101
Laser scanning; Forestry; Prediction; Feature; Detection
BibRef
Kononov, A.A.,
Wyholt, A.,
Sandberg, G.,
Ulander, L.M.H.,
Statistical Analysis of VHF-Band Tree Backscattering Using Forest
Ground Truth Data and PO Scattering Model,
GeoRS(49), No. 8, August 2011, pp. 3035-3046.
IEEE DOI
1108
BibRef
Soja, M.J.,
Sandberg, G.,
Ulander, L.M.H.,
Regression-Based Retrieval of Boreal Forest Biomass in Sloping Terrain
Using P-Band SAR Backscatter Intensity Data,
GeoRS(51), No. 5, May 2013, pp. 2646-2665.
IEEE DOI
1305
BibRef
Puttonen, E.[Eetu],
Litkey, P.[Paula],
Hyyppä, J.[Juha],
Individual Tree Species Classification by Illuminated:
Shaded Area Separation,
RS(2), No. 1, January 2010, pp. 19-35.
DOI Link
1203
BibRef
Earlier:
Usability of Sunlit-Shaded Area Separation in Individual Tree Species
Classification,
Laser09(311).
0909
BibRef
Vaughn, N.,
Moskal, L.M.,
Turnblom, E.,
Tree Species Detection Accuracies Using Discrete Point Lidar and
Airborne Waveform Lidar,
RS(4), No. 2, February 2012, pp. 377-403.
DOI Link
1203
BibRef
Blanchard, S.,
Jakubowski, M.,
Kelly, M.,
Object-Based Image Analysis of Downed Logs in Disturbed Forested
Landscapes Using Lidar,
RS(3), No. 11, November 2011, pp. 2420-2439.
DOI Link
1203
BibRef
Seielstad, C.,
Stonesifer, C.,
Rowell, E.,
Queen, L.,
Deriving Fuel Mass by Size Class in Douglas-fir (Pseudotsuga menziesii)
Using Terrestrial Laser Scanning,
RS(3), No. 8, August 2011, pp. 1691-1709.
DOI Link
1203
BibRef
Wang, Y.,
Hyyppä, J.,
Liang, X.,
Kaartinen, H.,
Yu, X.,
Lindberg, E.,
Holmgren, J.,
Qin, Y.,
Mallet, C.,
Ferraz, A.,
Torabzadeh, H.,
Morsdorf, F.,
Zhu, L.,
Liu, J.,
Alho, P.,
International Benchmarking of the Individual Tree Detection Methods
for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology
Using Airborne Laser Scanning,
GeoRS(54), No. 9, September 2016, pp. 5011-5027.
IEEE DOI
1609
ecology
BibRef
Kaartinen, H.[Harri],
Hyyppä, J.[Juha],
Yu, X.W.[Xiao-Wei],
Vastaranta, M.[Mikko],
Hyyppä, H.[Hannu],
Kukko, A.[Antero],
Holopainen, M.[Markus],
Heipke, C.[Christian],
Hirschmugl, M.[Manuela],
Morsdorf, F.[Felix],
Næsset, E.[Erik],
Pitkänen, J.H.[Ju-Ho],
Popescu, S.[Sorin],
Solberg, S.[Svein],
Wolf, B.M.[Bernd Michael],
Wu, J.C.[Jee-Cheng],
An International Comparison of Individual Tree Detection and Extraction
Using Airborne Laser Scanning,
RS(4), No. 4, April 2012, pp. 950-974.
DOI Link
1202
Award, Remote Sensing, Second.
BibRef
Immitzer, M.[Markus],
Atzberger, C.[Clement],
Koukal, T.[Tatjana],
Tree Species Classification with Random Forest Using Very High Spatial
Resolution 8-Band WorldView-2 Satellite Data,
RS(4), No. 9, September 2012, pp. 2661-2693.
DOI Link
1210
BibRef
Immitzer, M.[Markus],
Vuolo, F.[Francesco],
Atzberger, C.[Clement],
First Experience with Sentinel-2 Data for Crop and Tree Species
Classifications in Central Europe,
RS(8), No. 3, 2016, pp. 166.
DOI Link
1604
BibRef
Immitzer, M.[Markus],
Atzberger, C.[Clement],
Koukal, T.[Tatjana],
Suitability of WorldView-2 data for tree species classification with
special emphasis on the four new spectral bands,
PFG(2012), No. 5, 2012, pp. 573-588.
WWW Link.
1211
BibRef
Buddenbaum, H.,
Stern, O.,
Stellmes, M.,
Stoffels, J.,
Pueschel, P.,
Hill, J.,
Werner, W.,
Field Imaging Spectroscopy of Beech Seedlings under Dryness Stress,
RS(4), No. 12, December 2012, pp. 3721-3740.
DOI Link
1211
BibRef
Stern, O.[Oksana],
Paschmionka, B.[Barbara],
Stoffels, J.[Johannes],
Buddenbaum, H.[Henning],
Hill, J.[Joachim],
The use of imaging and non-imaging Spectroscopy for the determination
of stress phenomena of beech trees,
PFG(2014), No. 1, February 2014, pp. 17-26.
DOI Link
1405
BibRef
Buddenbaum, H.[Henning],
Hill, J.[Joachim],
PROSPECT Inversions of Leaf Laboratory Imaging Spectroscopy:
A Comparison of Spectral Range and Inversion Technique Influences,
PFG(2015), No. 3, 2013, pp. 231-240.
DOI Link
1506
BibRef
Wang, L.[Lei],
Birt, A.G.[Andrew G.],
Lafon, C.W.[Charles W.],
Cairns, D.M.[David M.],
Coulson, R.N.[Robert N.],
Tchakerian, M.D.[Maria D.],
Xi, W.M.[Wei-Min],
Popescu, S.C.[Sorin C.],
Guldin, J.M.[James M.],
Computer-Based Synthetic Data to Assess the Tree Delineation Algorithm
from Airborne LiDAR Survey,
GeoInfo(17), No. 1, January 2013, pp. 35-61.
WWW Link.
1302
BibRef
Lindberg, E.,
Holmgren, J.,
Olofsson, K.,
Wallerman, J.,
Olsson, H.,
Estimation of Tree Lists from Airborne Laser Scanning Using Tree Model
Clustering and k-MSN Imputation,
RS(5), No. 4, April 2013, pp. 1932-1955.
DOI Link
1305
BibRef
Olofsson, K.[Kenneth],
Holmgren, J.[Johan],
Olsson, H.[Håkan],
Tree Stem and Height Measurements using Terrestrial Laser Scanning
and the RANSAC Algorithm,
RS(6), No. 5, 2014, pp. 4323-4344.
DOI Link
1407
BibRef
Wang, D.,
Liu, J.H.,
Wang, J.L.,
Li, T.,
A Simple Tree Detector Using Laser and Camera Fusion,
Sensors(153), No. 5, May 2013, pp. 137-145.
HTML Version.
1307
BibRef
Jakubowski, M.K.[Marek K.],
Li, W.K.[Wen-Kai],
Guo, Q.H.[Qing-Hua],
Kelly, M.[Maggi],
Delineating Individual Trees from Lidar Data: A Comparison of Vector-
and Raster-based Segmentation Approaches,
RS(5), No. 9, 2013, pp. 4163-4186.
DOI Link
1310
BibRef
Eysn, L.[Lothar],
Pfeifer, N.[Norbert],
Ressl, C.[Camillo],
Hollaus, M.[Markus],
Grafl, A.[Andreas],
Morsdorf, F.[Felix],
A Practical Approach for Extracting Tree Models in Forest
Environments Based on Equirectangular Projections of Terrestrial
Laser Scans,
RS(5), No. 11, 2013, pp. 5424-5448.
DOI Link
1312
BibRef
Deng, S.Q.[Song-Qiu],
Katoh, M.[Masato],
Guan, Q.W.[Qing-Wei],
Yin, N.[Na],
Li, M.Y.[Ming-Yang],
Interpretation of Forest Resources at the Individual Tree Level at
Purple Mountain, Nanjing City, China, Using WorldView-2 Imagery by
Combining GPS, RS and GIS Technologies,
RS(6), No. 1, 2013, pp. 87-110.
DOI Link
1402
BibRef
Deng, S.Q.[Song-Qiu],
Katoh, M.[Masato],
Guan, Q.W.[Qing-Wei],
Yin, N.[Na],
Li, M.Y.[Ming-Yang],
Estimating Forest Aboveground Biomass by Combining ALOS PALSAR and
WorldView-2 Data: A Case Study at Purple Mountain National Park,
Nanjing, China,
RS(6), No. 9, 2014, pp. 7878-7910.
DOI Link
1410
BibRef
Iovan, C.,
Cournede, P.H.,
Guyard, T.,
Bayol, B.,
Boldo, D.,
Cord, M.,
Model-Based Analysis-Synthesis for Realistic Tree Reconstruction and
Growth Simulation,
GeoRS(52), No. 2, February 2014, pp. 1438-1450.
IEEE DOI
1402
geophysical image processing
BibRef
Lahivaara, T.,
Seppanen, A.,
Kaipio, J.P.,
Vauhkonen, J.,
Korhonen, L.,
Tokola, T.,
Maltamo, M.,
Bayesian Approach to Tree Detection Based on Airborne Laser Scanning
Data,
GeoRS(52), No. 5, May 2014, pp. 2690-2699.
IEEE DOI
1403
Estimation;forestry;modeling
BibRef
Paula-Filho, P.L.[Pedro L.],
Oliveira, L.S.[Luiz S.],
Nisgoski, S.[Silvana],
de Souza Britto Jr., A.[Alceu],
Forest species recognition using macroscopic images,
MVA(25), No. 4, May 2014, pp. 1019-1031.
Springer DOI
1404
BibRef
Vastaranta, M.[Mikko],
Saarinen, N.[Ninni],
Kankare, V.[Ville],
Holopainen, M.[Markus],
Kaartinen, H.[Harri],
Hyyppä, J.[Juha],
Hyyppä, H.[Hannu],
Multisource Single-Tree Inventory in the Prediction of Tree Quality
Variables and Logging Recoveries,
RS(6), No. 4, 2014, pp. 3475-3491.
DOI Link
1405
BibRef
Lu, X.C.[Xing-Cheng],
Guo, Q.H.[Qing-Hua],
Li, W.K.[Wen-Kai],
Flanagan, J.[Jacob],
A bottom-up approach to segment individual deciduous trees using
leaf-off lidar point cloud data,
PandRS(94), No. 1, 2014, pp. 1-12.
Elsevier DOI
1407
Lidar
BibRef
Waser, L.T.[Lars T.],
Küchler, M.[Meinrad],
Jütte, K.[Kai],
Stampfer, T.[Theresia],
Evaluating the Potential of WorldView-2 Data to Classify Tree Species
and Different Levels of Ash Mortality,
RS(6), No. 5, 2014, pp. 4515-4545.
DOI Link
1407
BibRef
Aiteanu, F.[Fabian],
Klein, R.[Reinhard],
Hybrid tree reconstruction from inhomogeneous point clouds,
VC(30), No. 6-8, June 2014, pp. 763-771.
WWW Link.
1407
BibRef
Xu, Q.[Qing],
Hou, Z.Y.[Zheng-Yang],
Maltamo, M.[Matti],
Tokola, T.[Timo],
Calibration of area based diameter distribution with individual tree
based diameter estimates using airborne laser scanning,
PandRS(93), No. 1, 2014, pp. 65-75.
Elsevier DOI
1407
Forestry
BibRef
Betbeder, J.[Julie],
Nabucet, J.[Jean],
Pottier, E.[Eric],
Baudry, J.[Jacques],
Corgne, S.[Samuel],
Hubert-Moy, L.[Laurence],
Detection and Characterization of Hedgerows Using TerraSAR-X Imagery,
RS(6), No. 5, 2014, pp. 3752-3769.
DOI Link
1407
BibRef
Wang, Z.[Zhen],
Zhang, L.Q.[Li-Qiang],
Fang, T.[Tian],
Mathiopoulos, P.T.,
Qu, H.M.[Hua-Min],
Chen, D.[Dong],
Wang, Y.B.[Yue-Bin],
A Structure-Aware Global Optimization Method for Reconstructing 3-D
Tree Models From Terrestrial Laser Scanning Data,
GeoRS(52), No. 9, September 2014, pp. 5653-5669.
IEEE DOI
1407
geophysical image processing
BibRef
Liang, X.L.[Xin-Lian],
Jaakkola, A.[Anttoni],
Wang, Y.S.[Yun-Sheng],
Hyyppä, J.[Juha],
Honkavaara, E.[Eija],
Liu, J.B.[Jing-Bin],
Kaartinen, H.[Harri],
The Use of a Hand-Held Camera for Individual Tree 3D Mapping in
Forest Sample Plots,
RS(6), No. 7, 2014, pp. 6587-6603.
DOI Link
1408
BibRef
Luo, J.[Juhua],
Ma, R.H.[Rong-Hua],
Duan, H.T.[Hong-Tao],
Hu, W.P.[Wei-Ping],
Zhu, J.[Jinge],
Huang, W.J.[Wen-Jiang],
Lin, C.[Chen],
A New Method for Modifying Thresholds in the Classification of Tree
Models for Mapping Aquatic Vegetation in Taihu Lake with Satellite
Images,
RS(6), No. 8, 2014, pp. 7442-7462.
DOI Link
1410
BibRef
Einzmann, K.[Kathrin],
Ng, W.T.[Wai-Tim],
Immitzer, M.[Markus],
Bachmann, M.[Martin],
Pinnel, N.[Nicole],
Atzberger, C.[Clement],
Method Analysis for Collecting and Processing in-situ Hyperspectral
Needle Reflectance Data for Monitoring Norway Spruce,
PFG(2014), No. 5, 2014, pp. 423-434.
DOI Link
1411
BibRef
Zhang, J.J.[Jun-Jie],
Sohn, G.[Gunho],
Brédif, M.[Mathieu],
A hybrid framework for single tree detection from airborne laser
scanning data: A case study in temperate mature coniferous forests in
Ontario, Canada,
PandRS(98), No. 1, 2014, pp. 44-57.
Elsevier DOI
1411
LiDAR
BibRef
Ko, C.[Connie],
Sohn, G.[Gunho],
Remmel, T.K.[Tarmo K.],
Miller, J.R.[John R.],
Hybrid Ensemble Classification of Tree Genera Using Airborne LiDAR
Data,
RS(6), No. 11, 2014, pp. 11225-11243.
DOI Link
1412
BibRef
Earlier: A1, A2, A3, Only:
A Comparitive Study Using Geometric And Vertical Profile Features
Derived From Airborne Lidar For Classifying Tree Genera,
AnnalsPRS(I-3), No. 2012, pp. 129-134.
DOI Link
1209
See also Automatic Powerline Scene Classification And Reconstruction Using Airborne Lidar Data.
BibRef
Ko, C.[Connie],
Sohn, G.[Gunho],
Remmel, T.K.[Tarmo K.],
Miller, J.R.[John R.],
Maximizing the Diversity of Ensemble Random Forests for Tree Genera
Classification Using High Density LiDAR Data,
RS(8), No. 8, 2016, pp. 646.
DOI Link
1609
BibRef
Hernández-Clemente, R.[Rocío],
Navarro-Cerrillo, R.M.[Rafael M.],
Ramírez, F.J.R.[Francisco J. Romero],
Hornero, A.[Alberto],
Zarco-Tejada, P.J.[Pablo J.],
A Novel Methodology to Estimate Single-Tree Biophysical Parameters
from 3D Digital Imagery Compared to Aerial Laser Scanner Data,
RS(6), No. 11, 2014, pp. 11627-11648.
DOI Link
1412
BibRef
Girma, A.[Atkilt],
Skidmore, A.K.[Andrew K.],
de Bie, C.A.J.M.,
Bongers, F.[Frans],
Understanding Boswellia papyrifera tree secondary metabolites through
bark spectral analysis,
PandRS(105), No. 1, 2015, pp. 30-37.
Elsevier DOI
1506
Boswellic acid
BibRef
Lamprecht, S.[Sebastian],
Stoffels, J.[Johannes],
Udelhoven, T.[Thomas],
VecTree:
Concepts for 3D modelling of deciduous trees from terrestrial Lidar,
PFG(2015), No. 3, 2013, pp. 241-255.
DOI Link
1506
BibRef
Lamprecht, S.[Sebastian],
Stoffels, J.[Johannes],
Dotzler, S.[Sandra],
Haß, E.[Erik],
Udelhoven, T.[Thomas],
aTrunk: An ALS-Based Trunk Detection Algorithm,
RS(7), No. 8, 2015, pp. 9975.
DOI Link
1509
BibRef
Graves, S.J.[Sarah J.],
Asner, G.P.[Gregory P.],
Martin, R.E.[Roberta E.],
Anderson, C.B.[Christopher B.],
Colgan, M.S.[Matthew S.],
Kalantari, L.[Leila],
Bohlman, S.A.[Stephanie A.],
Tree Species Abundance Predictions in a Tropical Agricultural
Landscape with a Supervised Classification Model and Imbalanced Data,
RS(8), No. 2, 2016, pp. 161.
DOI Link
1603
BibRef
Deng, S.Q.[Song-Qiu],
Katoh, M.[Masato],
Interpretation of Forest Resources at the Individual Tree Level in
Japanese Conifer Plantations Using Airborne LiDAR Data,
RS(8), No. 3, 2016, pp. 188.
DOI Link
1604
BibRef
Paris, C.,
Valduga, D.,
Bruzzone, L.,
A Hierarchical Approach to Three-Dimensional Segmentation of LiDAR
Data at Single-Tree Level in a Multilayered Forest,
GeoRS(54), No. 7, July 2016, pp. 4190-4203.
IEEE DOI
1606
Clustering algorithms
BibRef
Yang, B.S.[Bi-Sheng],
Dai, W.X.[Wen-Xia],
Dong, Z.[Zhen],
Liu, Y.[Yang],
Automatic Forest Mapping at Individual Tree Levels from Terrestrial
Laser Scanning Point Clouds with a Hierarchical Minimum Cut Method,
RS(8), No. 5, 2016, pp. 372.
DOI Link
1606
BibRef
Yang, B.S.[Bi-Sheng],
Liu, Y.[Yuan],
Liang, F.[Fuxun],
Dong, Z.[Zhen],
Using Mobile Laser Scanning Data For Features Extraction Of High
Accuracy Driving Maps,
ISPRS16(B3: 433-439).
DOI Link
1610
BibRef
Hauglin, M.[Marius],
Ørka, H.O.[Hans Ole],
Discriminating between Native Norway Spruce and Invasive Sitka
Spruce: A Comparison of Multitemporal Landsat 8 Imagery, Aerial
Images and Airborne Laser Scanner Data,
RS(8), No. 5, 2016, pp. 363.
DOI Link
1606
BibRef
Ballanti, L.[Laurel],
Blesius, L.[Leonhard],
Hines, E.[Ellen],
Kruse, B.[Bill],
Tree Species Classification Using Hyperspectral Imagery:
A Comparison of Two Classifiers,
RS(8), No. 6, 2016, pp. 445.
DOI Link
1608
BibRef
Wang, Z.,
Zhang, L.,
Fang, T.,
Tong, X.,
Mathiopoulos, P.T.,
Zhang, L.,
Mei, J.,
A Local Structure and Direction-Aware Optimization Approach for
Three-Dimensional Tree Modeling,
GeoRS(54), No. 8, August 2016, pp. 4749-4757.
IEEE DOI
1608
geophysical image processing
BibRef
Yang, B.[Bin],
Knyazikhin, Y.[Yuri],
Lin, Y.[Yi],
Yan, K.[Kai],
Chen, C.[Chi],
Park, T.[Taejin],
Choi, S.[Sungho],
Mõttus, M.[Matti],
Rautiainen, M.[Miina],
Myneni, R.B.[Ranga B.],
Yan, L.[Lei],
Analyses of Impact of Needle Surface Properties on Estimation of
Needle Absorption Spectrum: Case Study with Coniferous Needle and
Shoot Samples,
RS(8), No. 7, 2016, pp. 563.
DOI Link
1608
BibRef
Sheeren, D.[David],
Fauvel, M.[Mathieu],
Josipovic, V.[Veliborka],
Lopes, M.[Maïlys],
Planque, C.[Carole],
Willm, J.[Jérôme],
Dejoux, J.F.[Jean-François],
Tree Species Classification in Temperate Forests Using Formosat-2
Satellite Image Time Series,
RS(8), No. 9, 2016, pp. 734.
DOI Link
1610
BibRef
Karasiak, N.,
Sheeren, D.[David],
Fauvel, M.[Mathieu],
Willm, J.[Jérôme],
Dejoux, J.F.[Jean-François],
Monteil, C.,
Mapping tree species of forests in southwest France using Sentinel-2
image time series,
MultiTemp17(1-4)
IEEE DOI
1712
vegetation, SVM-RBF, SWIR bands, Southwest France, VNIR images,
forests mapping tree species, gradient boosted trees,
Vegetation
BibRef
Deng, S.Q.[Song-Qiu],
Katoh, M.[Masato],
Yu, X.W.[Xiao-Wei],
Hyyppä, J.[Juha],
Gao, T.[Tian],
Comparison of Tree Species Classifications at the Individual Tree
Level by Combining ALS Data and RGB Images Using Different Algorithms,
RS(8), No. 12, 2016, pp. 1034.
DOI Link
1612
BibRef
Hu, X.B.[Xing-Bo],
Chen, W.[Wei],
Xu, W.Y.[Wei-Yang],
Adaptive Mean Shift-Based Identification of Individual Trees Using
Airborne LiDAR Data,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Dash, J.P.[Jonathan P.],
Pearse, G.D.[Grant D.],
Watt, M.S.[Michael S.],
Paul, T.[Thomas],
Combining Airborne Laser Scanning and Aerial Imagery Enhances Echo
Classification for Invasive Conifer Detection,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Weinmann, M.[Martin],
Weinmann, M.[Michael],
Mallet, C.[Clément],
Brédif, M.[Mathieu],
A Classification-Segmentation Framework for the Detection of
Individual Trees in Dense MMS Point Cloud Data Acquired in Urban
Areas,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Nevalainen, O.[Olli],
Honkavaara, E.[Eija],
Tuominen, S.[Sakari],
Viljanen, N.[Niko],
Hakala, T.[Teemu],
Yu, X.W.[Xiao-Wei],
Hyyppä, J.[Juha],
Saari, H.[Heikki],
Pölönen, I.[Ilkka],
Imai, N.N.[Nilton N.],
Tommaselli, A.M.G.[Antonio M. G.],
Individual Tree Detection and Classification with UAV-Based
Photogrammetric Point Clouds and Hyperspectral Imaging,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Saarinen, N.[Ninni],
Vastaranta, M.[Mikko],
Näsi, R.[Roope],
Rosnell, T.[Tomi],
Hakala, T.[Teemu],
Honkavaara, E.[Eija],
Wulder, M.A.[Michael A.],
Luoma, V.[Ville],
Tommaselli, A.M.G.[Antonio M. G.],
Imai, N.N.[Nilton N.],
Ribeiro, E.A.W.[Eduardo A. W.],
Guimarães, R.B.[Raul B.],
Holopainen, M.[Markus],
Hyyppä, J.[Juha],
Assessing Biodiversity in Boreal Forests with UAV-Based
Photogrammetric Point Clouds and Hyperspectral Imaging,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Lamprecht, S.[Sebastian],
Hill, A.[Andreas],
Stoffels, J.[Johannes],
Udelhoven, T.[Thomas],
A Machine Learning Method for Co-Registration and Individual Tree
Matching of Forest Inventory and Airborne Laser Scanning Data,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Earlier:
Erratum:
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Wang, Y.J.[Ya-Jie],
Lu, D.S.[Deng-Sheng],
Mapping Torreya grandis Spatial Distribution Using High Spatial
Resolution Satellite Imagery with the Expert Rules-Based Approach,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
Chinese nutmeg tree.
BibRef
Rosskopf, E.[Elena],
Morhart, C.[Christopher],
Nahm, M.[Michael],
Modelling Shadow Using 3D Tree Models in High Spatial and Temporal
Resolution,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Jiang, H.[Hao],
Chen, S.[Shuisen],
Li, D.[Dan],
Wang, C.Y.[Chong-Yang],
Yang, J.[Ji],
Papaya Tree Detection with UAV Images Using a GPU-Accelerated
Scale-Space Filtering Method,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Waser, L.T.[Lars T.],
Ginzler, C.[Christian],
Rehush, N.[Nataliia],
Wall-to-Wall Tree Type Mapping from Countrywide Airborne Remote
Sensing Surveys,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Zhou, T.[Tan],
Popescu, S.C.[Sorin C.],
Lawing, A.M.[A. Michelle],
Eriksson, M.[Marian],
Strimbu, B.M.[Bogdan M.],
Bürkner, P.C.[Paul C.],
Bayesian and Classical Machine Learning Methods: A Comparison for
Tree Species Classification with LiDAR Waveform Signatures,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Chen, S.Y.[Shih-Yu],
Lin, C.S.[Chin-Su],
Tai, C.H.[Chia-Hui],
Chuang, S.J.[Shang-Ju],
Adaptive Window-Based Constrained Energy Minimization for Detection
of Newly Grown Tree Leaves,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Guirado, E.[Emilio],
Tabik, S.[Siham],
Alcaraz-Segura, D.[Domingo],
Cabello, J.[Javier],
Herrera, F.[Francisco],
Deep-learning Versus OBIA for Scattered Shrub Detection with Google
Earth Imagery: Ziziphus lotus as Case Study,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Parkan, M.[Matthew],
Tuia, D.[Devis],
Estimating Uncertainty of Point-Cloud Based Single-Tree Segmentation
with Ensemble Based Filtering,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Axelsson, A.[Arvid],
Lindberg, E.[Eva],
Olsson, H.[Håkan],
Exploring Multispectral ALS Data for Tree Species Classification,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
And:
Erratum:
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Persson, M.[Magnus],
Lindberg, E.[Eva],
Reese, H.[Heather],
Tree Species Classification with Multi-Temporal Sentinel-2 Data,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Cabo, C.[Carlos],
del Pozo, S.[Susana],
Rodríguez-Gonzálvez, P.[Pablo],
Ordóñez, C.[Celestino],
González-Aguilera, D.[Diego],
Comparing Terrestrial Laser Scanning (TLS) and Wearable Laser
Scanning (WLS) for Individual Tree Modeling at Plot Level,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Amiri, N.[Nina],
Polewski, P.[Przemyslaw],
Heurich, M.[Marco],
Krzystek, P.[Peter],
Skidmore, A.K.[Andrew K.],
Adaptive stopping criterion for top-down segmentation of ALS point
clouds in temperate coniferous forests,
PandRS(141), 2018, pp. 265-274.
Elsevier DOI
1806
ALS 3D point clouds, Single tree segmentation,
Quadratic surfaces, Elliptic paraboloid fitting
BibRef
Xie, D.H.[Dong-Hui],
Wang, X.Y.[Xiang-Yu],
Qi, J.B.[Jian-Bo],
Chen, Y.M.[Yi-Ming],
Mu, X.[Xihan],
Zhang, W.[Wuming],
Yan, G.J.[Guang-Jian],
Reconstruction of Single Tree with Leaves Based on Terrestrial LiDAR
Point Cloud Data,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Heinzel, J.[Johannes],
Huber, M.O.[Markus O.],
Constrained Spectral Clustering of Individual Trees in Dense Forest
Using Terrestrial Laser Scanning Data,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Chen, W.[Wei],
Hu, X.B.[Xing-Bo],
Chen, W.[Wen],
Hong, Y.F.[Yi-Feng],
Yang, M.H.[Min-Hua],
Airborne LiDAR Remote Sensing for Individual Tree Forest Inventory
Using Trunk Detection-Aided Mean Shift Clustering Techniques,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Gini, R.[Rossana],
Sona, G.[Giovanna],
Ronchetti, G.[Giulia],
Passoni, D.[Daniele],
Pinto, L.[Livio],
Improving Tree Species Classification Using UAS Multispectral Images
and Texture Measures,
IJGI(7), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Earlier: A1, A4, A5, A2, Only:
Aerial Images from an UAV System: 3D Modeling and Tree Species
Classification in a Park Area,
ISPRS12(XXXIX-B1:361-366).
DOI Link
1209
BibRef
Dai, W.X.[Wen-Xia],
Yang, B.S.[Bi-Sheng],
Dong, Z.[Zhen],
Shaker, A.[Ahmed],
A new method for 3D individual tree extraction using multispectral
airborne LiDAR point clouds,
PandRS(144), 2018, pp. 400-411.
Elsevier DOI
1809
Multispectral LiDAR, Forest mapping, Point clouds,
Feature extraction, Segmentation
BibRef
Dong, T.Y.[Tian-Yang],
Zhang, J.[Jian],
Gao, S.[Sibin],
Shen, Y.[Ying],
Fan, J.[Jing],
Single-Tree Detection in High-Resolution Remote-Sensing Images Based
on a Cascade Neural Network,
IJGI(7), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Yan, W.Q.[Wan-Qian],
Guan, H.Y.[Hai-Yan],
Cao, L.[Lin],
Yu, Y.T.[Yong-Tao],
Gao, S.[Sha],
Lu, J.Y.[Jian-Yong],
An Automated Hierarchical Approach for Three-Dimensional Segmentation
of Single Trees Using UAV LiDAR Data,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Zielewska-Büttner, K.[Katarzyna],
Heurich, M.[Marco],
Müller, J.[Jörg],
Braunisch, V.[Veronika],
Remotely Sensed Single Tree Data Enable the Determination of Habitat
Thresholds for the Three-Toed Woodpecker (Picoides tridactylus),
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Heinzel, J.[Johannes],
Ginzler, C.[Christian],
A Single-Tree Processing Framework Using Terrestrial Laser Scanning
Data for Detecting Forest Regeneration,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Nuijten, R.J.G.[Rik J.G.],
Coops, N.C.[Nicholas C.],
Goodbody, T.R.H.[Tristan R.H.],
Pelletier, G.[Gaetan],
Examining the Multi-Seasonal Consistency of Individual Tree
Segmentation on Deciduous Stands Using Digital Aerial Photogrammetry
(DAP) and Unmanned Aerial Systems (UAS),
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Malek, S.[Salim],
Miglietta, F.[Franco],
Gobakken, T.[Terje],
Næsset, E.[Erik],
Gianelle, D.[Damiano],
Dalponte, M.[Michele],
Optimizing Field Data Collection for Individual Tree Attribute
Predictions Using Active Learning Methods,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Wu, X.Q.[Xiang-Qian],
Shen, X.[Xin],
Cao, L.[Lin],
Wang, G.[Guibin],
Cao, F.[Fuliang],
Assessment of Individual Tree Detection and Canopy Cover Estimation
using Unmanned Aerial Vehicle based Light Detection and Ranging
(UAV-LiDAR) Data in Planted Forests,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Kansanen, K.[Kasper],
Vauhkonen, J.[Jari],
Lähivaara, T.[Timo],
Seppänen, A.[Aku],
Maltamo, M.[Matti],
Mehtätalo, L.[Lauri],
Estimating forest stand density and structure using Bayesian
individual tree detection, stochastic geometry, and distribution
matching,
PandRS(152), 2019, pp. 66-78.
Elsevier DOI
1905
Histogram matching, Forestry, Forest inventory,
Airborne laser scanning, Light Detection And Ranging (LiDAR)
BibRef
Bolyn, C.[Corentin],
Lejeune, P.[Philippe],
Michez, A.[Adrien],
Latte, N.[Nicolas],
Automated Classification of Trees outside Forest for Supporting
Operational Management in Rural Landscapes,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Xiao, W.[Wen],
Zaforemska, A.[Aleksandra],
Smigaj, M.[Magdalena],
Wang, Y.S.[Yun-Sheng],
Gaulton, R.[Rachel],
Mean Shift Segmentation Assessment for Individual Forest Tree
Delineation from Airborne Lidar Data,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Gollob, C.[Christoph],
Ritter, T.[Tim],
Wassermann, C.[Clemens],
Nothdurft, A.[Arne],
Influence of Scanner Position and Plot Size on the Accuracy of Tree
Detection and Diameter Estimation Using Terrestrial Laser Scanning on
Forest Inventory Plots,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Kükenbrink, D.,
Hueni, A.,
Schneider, F.D.,
Damm, A.,
Gastellu-Etchegorry, J.,
Schaepman, M.E.,
Morsdorf, F.,
Mapping the Irradiance Field of a Single Tree:
Quantifying Vegetation-Induced Adjacency Effects,
GeoRS(57), No. 7, July 2019, pp. 4994-5011.
IEEE DOI
1907
Vegetation mapping, Vegetation, Atmospheric modeling,
Solid modeling, Data models, Optical variables measurement,
radiative transfer
BibRef
Dong, T.Y.[Tian-Yang],
Shen, Y.Q.[Yu-Qi],
Zhang, J.[Jian],
Ye, Y.[Yang],
Fan, J.[Jing],
Progressive Cascaded Convolutional Neural Networks for Single Tree
Detection with Google Earth Imagery,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Strimbu, B.M.[Bogdan M.],
Qi, C.[Chu],
Sessions, J.[John],
Accurate Geo-Referencing of Trees with No or Inaccurate Terrestrial
Location Devices,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Du, S.L.[Sheng-Lan],
Lindenbergh, R.[Roderik],
Ledoux, H.[Hugo],
Stoter, J.[Jantien],
Nan, L.L.[Liang-Liang],
AdTree: Accurate, Detailed, and Automatic Modelling of Laser-Scanned
Trees,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Yang, Q.[Qiuli],
Su, Y.J.[Yan-Jun],
Jin, S.C.[Shi-Chao],
Kelly, M.[Maggi],
Hu, T.Y.[Tian-Yu],
Ma, Q.[Qin],
Li, Y.[Yumei],
Song, S.L.[Shi-Lin],
Zhang, J.[Jing],
Xu, G.C.[Guang-Cai],
Wei, J.X.[Jian-Xin],
Guo, Q.H.[Qing-Hua],
The Influence of Vegetation Characteristics on Individual Tree
Segmentation Methods with Airborne LiDAR Data,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Hamraz, H.[Hamid],
Jacobs, N.B.[Nathan B.],
Contreras, M.A.[Marco A.],
Clark, C.H.[Chase H.],
Deep learning for conifer/deciduous classification of airborne LiDAR
3D point clouds representing individual trees,
PandRS(158), 2019, pp. 219-230.
Elsevier DOI
1912
Remote sensing, Convolutional neural network,
Representation engineering, Unbalanced training data, Mislabel correction
BibRef
Williams, J.,
Schönlieb, C.B.[Carola-Bibiane],
Swinfield, T.,
Lee, J.,
Cai, X.,
Qie, L.,
Coomes, D.A.,
3D Segmentation of Trees Through a Flexible Multiclass Graph Cut
Algorithm,
GeoRS(58), No. 2, February 2020, pp. 754-776.
IEEE DOI
2001
Vegetation, Forestry, Biomass,
Clustering algorithms, Laser radar, Geometry, Biomass,
vegetation mapping
BibRef
Yan, W.Q.[Wan-Qian],
Guan, H.Y.[Hai-Yan],
Cao, L.[Lin],
Yu, Y.T.[Yong-Tao],
Li, C.[Cheng],
Lu, J.Y.[Jian-Yong],
A self-adaptive mean shift tree-segmentation method Using UAV LiDAR
data,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Chen, W.[Wei],
Xiang, H.B.[Hai-Bing],
Moriya, K.[Kazuyuki],
Individual Tree Position Extraction and Structural Parameter
Retrieval Based on Airborne LiDAR Data: Performance Evaluation and
Comparison of Four Algorithms,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Jurado, J.M.,
Ramos, M.I.,
Enríquez, C.,
Feito, F.R.,
The Impact of Canopy Reflectance on the 3D Structure of Individual
Trees in a Mediterranean Forest,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Chaves, P.P.[Pablo Pérez],
Zuquim, G.[Gabriela],
Ruokolainen, K.[Kalle],
van Doninck, J.[Jasper],
Kalliola, R.[Risto],
Gómez, E.R.[Elvira Rivero],
Tuomisto, H.[Hanna],
Mapping Floristic Patterns of Trees in Peruvian Amazonia Using Remote
Sensing and Machine Learning,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Stupariu, M.S.[Mihai-Sorin],
Plesoianu, A.I.[Alin-Ionut],
Patru-Stupariu, I.[Ileana],
Fürst, C.[Christine],
A Method for Tree Detection Based on Similarity with Geometric Shapes
of 3D Geospatial Data,
IJGI(9), No. 5, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Bennett, G.[Guy],
Hardy, A.[Andy],
Bunting, P.[Pete],
Morgan, P.[Philippe],
Fricker, A.[Andrew],
A Transferable and Effective Method for Monitoring Continuous Cover
Forestry at the Individual Tree Level Using UAVs,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Belcore, E.[Elena],
Wawrzaszek, A.[Anna],
Wozniak, E.[Edyta],
Grasso, N.[Nives],
Piras, M.[Marco],
Individual Tree Detection from UAV Imagery Using Hölder Exponent,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Pulido, D.[Dagoberto],
Salas, J.[Joaquín],
Rös, M.[Matthias],
Puettmann, K.[Klaus],
Karaman, S.[Sertac],
Assessment of Tree Detection Methods in Multispectral Aerial Images,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Hovi, A.[Aarne],
Forsström, P.[Petri],
Ghielmetti, G.[Giulia],
Schaepman, M.E.[Michael E.],
Rautiainen, M.[Miina],
Empirical validation of photon recollision probability in single
crowns of tree seedlings,
PandRS(169), 2020, pp. 57-72.
Elsevier DOI
2011
BibRef
And:
Corrigendum:
PandRS(178), 2021, pp. 135.
Elsevier DOI
2108
Multiangular, Reflectance model, Radiative transfer modeling,
Spectral invariants, -theory, Escape probability
BibRef
Liang, X.M.[Xing-Ming],
Liu, Q.H.M.[Quan-Hua Mark],
Applying Deep Learning to Clear-Sky Radiance Simulation for VIIRS
with Community Radiative Transfer Model: Part 1: Develop AI-Based
Clear-Sky Mask,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
And:
Applying Deep Learning to Clear-Sky Radiance Simulation for VIIRS
with Community Radiative Transfer Model: Part 2: Model Architecture
and Assessment,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
And:
Erratum
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Ai, M.Y.[Ming-Yao],
Yao, Y.[Yuan],
Hu, Q.W.[Qing-Wu],
Wang, Y.[Yue],
Wang, W.[Wei],
An Automatic Tree Skeleton Extraction Approach Based on Multi-View
Slicing Using Terrestrial LiDAR Scans Data,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Gallardo-Salazar, J.L.[José Luis],
Pompa-García, M.[Marín],
Detecting Individual Tree Attributes and Multispectral Indices Using
Unmanned Aerial Vehicles: Applications in a Pine Clonal Orchard,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Hui, Z.Y.[Zhen-Yang],
Jin, S.G.[Shuang-Gen],
Li, D.J.[Da-Jun],
Ziggah, Y.Y.[Yao Yevenyo],
Liu, B.[Bo],
Individual Tree Extraction from Terrestrial LiDAR Point Clouds Based
on Transfer Learning and Gaussian Mixture Model Separation,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Hui, Z.Y.[Zhen-Yang],
Jin, S.G.[Shuang-Gen],
Xia, Y.P.[Yuan-Ping],
Wang, L.Y.[Le-Yang],
Yevenyo Ziggah, Y.[Yao],
Cheng, P.G.[Peng-Gen],
Wood and leaf separation from terrestrial LiDAR point clouds based on
mode points evolution,
PandRS(178), 2021, pp. 219-239.
Elsevier DOI
2108
Terrestrial LiDAR point clouds, Wood and leaf separation,
Mean shift, Mode points, Evolution
BibRef
Dersch, S.[Sebastian],
Heurich, M.[Marco],
Krueger, N.[Nina],
Krzystek, P.[Peter],
Combining graph-cut clustering with object-based stem detection for
tree segmentation in highly dense airborne lidar point clouds,
PandRS(172), 2021, pp. 207-222.
Elsevier DOI
2101
Single tree segmentation, Stem detection, Graph-cut,
Stopping criterion, Dense point cloud, Lidar
BibRef
Latella, M.[Melissa],
Sola, F.[Fabio],
Camporeale, C.[Carlo],
A Density-Based Algorithm for the Detection of Individual Trees from
LiDAR Data,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Nguyen, H.T.[Ha Trang],
Caceres, M.L.L.[Maximo Larry Lopez],
Moritake, K.[Koma],
Kentsch, S.[Sarah],
Shu, H.[Hase],
Diez, Y.[Yago],
Individual Sick Fir Tree (Abies mariesii) Identification in Insect
Infested Forests by Means of UAV Images and Deep Learning,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
And:
Correction:
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Xia, S.B.[Shao-Bo],
Chen, D.[Dong],
Peethambaran, J.[Jiju],
Wang, P.[Pu],
Xu, S.[Sheng],
Point Cloud Inversion: A Novel Approach for the Localization of Trees
in Forests from TLS Data,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Xu, W.B.[Wen-Bing],
Deng, S.[Susu],
Liang, D.[Dan],
Cheng, X.J.[Xiao-Jun],
A Crown Morphology-Based Approach to Individual Tree Detection in
Subtropical Mixed Broadleaf Urban Forests Using UAV LiDAR Data,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Zhu, R.N.[Ruo-Ning],
Guo, Z.Q.[Zheng-Qi],
Zhang, X.L.[Xiao-Li],
Forest 3D Reconstruction and Individual Tree Parameter Extraction
Combining Close-Range Photo Enhancement and Feature Matching,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Belcore, E.[Elena],
Pittarello, M.[Marco],
Lingua, A.M.[Andrea Maria],
Lonati, M.[Michele],
Mapping Riparian Habitats of Natura 2000 Network (91E0*, 3240) at
Individual Tree Level Using UAV Multi-Temporal and Multi-Spectral
Data,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Pontoglio, E.[Emanuele],
Dabove, P.[Paolo],
Grasso, N.[Nives],
Lingua, A.M.[Andrea Maria],
Automatic Features Detection in a Fluvial Environment through Machine
Learning Techniques Based on UAVs Multispectral Data,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Parmehr, E.G.[Ebadat Ghanbari],
Amati, M.[Marco],
Individual Tree Canopy Parameters Estimation Using UAV-Based
Photogrammetric and LiDAR Point Clouds in an Urban Park,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Zamboni, P.[Pedro],
Junior, J.M.[José Marcato],
de Andrade Silva, J.[Jonathan],
Miyoshi, G.T.[Gabriela Takahashi],
Matsubara, E.T.[Edson Takashi],
Nogueira, K.[Keiller],
Gonçalves, W.N.[Wesley Nunes],
Benchmarking Anchor-Based and Anchor-Free State-of-the-Art Deep
Learning Methods for Individual Tree Detection in RGB High-Resolution
Images,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Kolendo, L.[Lukasz],
Kozniewski, M.[Marcin],
Ksepko, M.[Marek],
Chmur, S.[Szymon],
Neroj, B.[Bozydar],
Parameterization of the Individual Tree Detection Method Using Large
Dataset from Ground Sample Plots and Airborne Laser Scanning for
Stands Inventory in Coniferous Forest,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Tan, K.[Kai],
Zhang, W.G.[Wei-Guo],
Dong, Z.[Zhen],
Cheng, X.L.[Xiao-Long],
Cheng, X.J.[Xiao-Jun],
Leaf and Wood Separation for Individual Trees Using the Intensity and
Density Data of Terrestrial Laser Scanners,
GeoRS(59), No. 8, August 2021, pp. 7038-7050.
IEEE DOI
2108
Vegetation, Estimation, Forestry,
Surface emitting lasers, Instruments, Reliability,
terrestrial laser scanning (TLS)
BibRef
Iqbal, I.A.[Irfan A.],
Osborn, J.[Jon],
Stone, C.[Christine],
Lucieer, A.[Arko],
A Comparison of ALS and Dense Photogrammetric Point Clouds for
Individual Tree Detection in Radiata Pine Plantations,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Kaminska, A.[Agnieszka],
Lisiewicz, M.[Maciej],
Sterenczak, K.[Krzysztof],
Single Tree Classification Using Multi-Temporal ALS Data and CIR
Imagery in Mixed Old-Growth Forest in Poland,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Rodríguez-Puerta, F.[Francisco],
Gómez-García, E.[Esteban],
Martín-García, S.[Saray],
Pérez-Rodríguez, F.[Fernando],
Prada, E.[Eva],
UAV-Based LiDAR Scanning for Individual Tree Detection and Height
Measurement in Young Forest Permanent Trials,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Yu, K.Y.[Kun-Yong],
Hao, Z.B.[Zhen-Bang],
Post, C.J.[Christopher J.],
Mikhailova, E.A.[Elena A.],
Lin, L.[Lili],
Zhao, G.[Gejin],
Tian, S.F.[Shang-Feng],
Liu, J.[Jian],
Comparison of Classical Methods and Mask R-CNN for Automatic Tree
Detection and Mapping Using UAV Imagery,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Ma, K.[Kaisen],
Chen, Z.X.[Zhen-Xiong],
Fu, L.[Liyong],
Tian, W.L.[Wan-Li],
Jiang, F.[Fugen],
Yi, J.[Jing],
Du, Z.[Zhi],
Sun, H.[Hua],
Performance and Sensitivity of Individual Tree Segmentation Methods
for UAV-LiDAR in Multiple Forest Types,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Zhang, C.[Chong],
Zhou, J.W.[Jia-Wei],
Wang, H.[Huiwen],
Tan, T.Y.[Tian-Yi],
Cui, M.C.[Meng-Chen],
Huang, Z.[Zilu],
Wang, P.[Pei],
Zhang, L.[Li],
Multi-Species Individual Tree Segmentation and Identification Based
on Improved Mask R-CNN and UAV Imagery in Mixed Forests,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Suwardhi, D.[Deni],
Fauzan, K.N.[Kamal Nur],
Harto, A.B.[Agung Budi],
Soeksmantono, B.[Budhy],
Virtriana, R.[Riantini],
Murtiyoso, A.[Arnadi],
3D Modeling of Individual Trees from LiDAR and Photogrammetric Point
Clouds by Explicit Parametric Representations for Green Open Space
(GOS) Management,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Cao, W.[Wei],
Wu, J.Y.[Jia-Yi],
Shi, Y.F.[Yu-Feng],
Chen, D.[Dong],
Restoration of Individual Tree Missing Point Cloud Based on Local
Features of Point Cloud,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Ramtvedt, E.N.[Eirik Næsset],
Gobakken, T.[Terje],
Næsset, E.[Erik],
Fine-Spatial Boreal-Alpine Single-Tree Albedo Measured by UAV:
Experiences and Challenges,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Morgan, C.J.[Carli J.],
Powers, M.[Matthew],
Strimbu, B.M.[Bogdan M.],
Estimating Tree Defects with Point Clouds Developed from Active and
Passive Sensors,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
de Paula Pires, R.[Raul],
Olofsson, K.[Kenneth],
Persson, H.J.[Henrik Jan],
Lindberg, E.[Eva],
Holmgren, J.[Johan],
Individual tree detection and estimation of stem attributes with
mobile laser scanning along boreal forest roads,
PandRS(187), 2022, pp. 211-224.
Elsevier DOI
2205
Stem diameter, Stem volume, Car-mounted,
Automatic stem detection, MLS
BibRef
Lisiewicz, M.[Maciej],
Kaminska, A.[Agnieszka],
Kraszewski, B.[Bartlomiej],
Sterenczak, K.[Krzysztof],
Correcting the Results of CHM-Based Individual Tree Detection
Algorithms to Improve Their Accuracy and Reliability,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Hui, Z.Y.[Zhen-Yang],
Cai, Z.C.[Zhao-Chen],
Liu, B.[Bo],
Li, D.J.[Da-Jun],
Liu, H.[Hua],
Li, Z.X.[Zhuo-Xuan],
A Self-Adaptive Optimization Individual Tree Modeling Method for
Terrestrial LiDAR Point Clouds,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Sun, J.Q.[Jing-Qian],
Wang, P.[Pei],
Li, R.H.[Rong-Hao],
Zhou, M.[Mei],
Wu, Y.H.[Yu-Han],
Fast Tree Skeleton Extraction Using Voxel Thinning Based on Tree
Point Cloud,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Chen, Q.D.[Qing-Da],
Gao, T.[Tian],
Zhu, J.J.[Jiao-Jun],
Wu, F.[Fayun],
Li, X.F.[Xiu-Fen],
Lu, D.L.[De-Liang],
Yu, F.Y.[Feng-Yuan],
Individual Tree Segmentation and Tree Height Estimation Using
Leaf-Off and Leaf-On UAV-LiDAR Data in Dense Deciduous Forests,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Maldonado, C.[Carlos],
Mora-Poblete, F.[Freddy],
Echeverria, C.[Cristian],
Baettig, R.[Ricardo],
Torres-Díaz, C.[Cristian],
Contreras-Soto, R.I.[Rodrigo Iván],
Heidari, P.[Parviz],
Lobos, G.A.[Gustavo Adolfo],
Teixeira do Amaral Júnior, A.[Antônio],
A Neural Network-Based Spectral Approach for the Assignment of
Individual Trees to Genetically Differentiated Subpopulations,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Sparks, A.M.[Aaron M.],
Corrao, M.V.[Mark V.],
Smith, A.M.S.[Alistair M. S.],
Cross-Comparison of Individual Tree Detection Methods Using Low and
High Pulse Density Airborne Laser Scanning Data,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Carpenter, J.[Joshua],
Jung, J.[Jinha],
Oh, S.C.[Sung-Chan],
Hardiman, B.[Brady],
Fei, S.L.[Song-Lin],
An Unsupervised Canopy-to-Root Pathing (UCRP) Tree Segmentation
Algorithm for Automatic Forest Mapping,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Spadavecchia, C.[Claudio],
Belcore, E.[Elena],
Piras, M.[Marco],
Kobal, M.[Milan],
An Automatic Individual Tree 3D Change Detection Method for
Allometric Parameters Estimation in Mixed Uneven-Aged Forest Stands
from ALS Data,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Ning, X.J.[Xiao-Juan],
Ma, Y.[Yishu],
Hou, Y.Y.[Yuan-Yuan],
Lv, Z.Y.[Zhi-Yong],
Jin, H.Y.[Hai-Yan],
Wang, Y.H.[Ying-Hui],
Semantic Segmentation Guided Coarse-to-Fine Detection of Individual
Trees from MLS Point Clouds Based on Treetop Points Extraction and
Radius Expansion,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Luo, M.[Meng],
Tian, Y.[Yanan],
Zhang, S.W.[Sheng-Wei],
Huang, L.[Lei],
Wang, H.Q.[Hui-Qiang],
Liu, Z.Q.[Zhi-Qiang],
Yang, L.[Lin],
Individual Tree Detection in Coal Mine Afforestation Area Based on
Improved Faster RCNN in UAV RGB Images,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Brodic, N.[Nenad],
Cvijetinovic, Ž.[Željko],
Milenkovic, M.[Milutin],
Kovacevic, J.[Jovan],
Stancic, N.[Nikola],
Mitrovic, M.[Momir],
Mihajlovic, D.[Dragan],
Refinement of Individual Tree Detection Results Obtained from
Airborne Laser Scanning Data for a Mixed Natural Forest,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhang, Z.Y.[Zhen-Yu],
Wang, J.[Jian],
Li, Z.Y.[Zhi-Yuan],
Zhao, Y.L.[You-Long],
Wang, R.S.[Rui-Sheng],
Habib, A.[Ayman],
Optimization Method of Airborne LiDAR Individual Tree Segmentation
Based on Gaussian Mixture Model,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Xi, Z.X.[Zhou-Xin],
Hopkinson, C.[Chris],
3D Graph-Based Individual-Tree Isolation (Treeiso) from Terrestrial
Laser Scanning Point Clouds,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, Z.C.[Zhi-Chao],
Lu, X.[Xin],
An, F.[Feng],
Zhou, L.J.[Li-Jun],
Wang, X.J.[Xiang-Jun],
Wang, Z.H.[Zhi-Hao],
Zhang, H.Q.[Huai-Qing],
Yun, T.[Ting],
Integrating Real Tree Skeleton Reconstruction Based on Partial
Computational Virtual Measurement (CVM) with Actual Forest Scenario
Rendering: A Solid Step Forward for the Realization of the Digital
Twins of Trees and Forests,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
3D models of tree
BibRef
Lowe, T.[Thomas],
Pinskier, J.[Joshua],
Tree Reconstruction Using Topology Optimisation,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
And:
Correction:
RS(15), No. 11, 2023, pp. 2739.
DOI Link
2306
3D model of trees.
BibRef
Qian, C.[Chen],
Yao, C.J.[Chun-Jing],
Ma, H.C.[Hong-Chao],
Xu, J.H.[Jun-Hao],
Wang, J.[Jie],
Tree Species Classification Using Airborne LiDAR Data Based on
Individual Tree Segmentation and Shape Fitting,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Niwa, H.[Hideyuki],
Dai, G.[Guihang],
Ogawa, M.[Midori],
Kamada, M.[Mahito],
Development of a Monitoring Method Using UAVs That Can Detect the
Occurrence of Bark Stripping by Deer,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Wang, F.Y.[Fei-Yu],
Bryson, M.[Mitch],
Tree Segmentation and Parameter Measurement from Point Clouds Using
Deep and Handcrafted Features,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Wang, Z.[Zhen],
Li, P.[Pu],
Cui, Y.C.[Yuan-Cheng],
Lei, S.[Shuowen],
Kang, Z.Z.[Zhi-Zhong],
Automatic Detection of Individual Trees in Forests Based on Airborne
LiDAR Data with a Tree Region-Based Convolutional Neural Network
(RCNN),
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
xo
Ning, X.J.[Xiao-Juan],
Ma, Y.[Yishu],
Hou, Y.Y.[Yuan-Yuan],
Lv, Z.Y.[Zhi-Yong],
Jin, H.Y.[Hai-Yan],
Wang, Z.[Zengbo],
Wang, Y.H.[Ying-Hui],
Trunk-Constrained and Tree Structure Analysis Method for Individual
Tree Extraction from Scanned Outdoor Scenes,
RS(15), No. 6, 2023, pp. 1567.
DOI Link
2304
BibRef
Pu, Y.[Yihan],
Xu, D.D.[Dan-Dan],
Wang, H.B.[Hao-Bin],
Li, X.[Xin],
Xu, X.[Xia],
A New Strategy for Individual Tree Detection and Segmentation from
Leaf-on and Leaf-off UAV-LiDAR Point Clouds Based on Automatic
Detection of Seed Points,
RS(15), No. 6, 2023, pp. 1619.
DOI Link
2304
BibRef
Balestra, M.[Mattia],
Tonelli, E.[Enrico],
Vitali, A.[Alessandro],
Urbinati, C.[Carlo],
Frontoni, E.[Emanuele],
Pierdicca, R.[Roberto],
Geomatic Data Fusion for 3D Tree Modeling:
The Case Study of Monumental Chestnut Trees,
RS(15), No. 8, 2023, pp. 2197.
DOI Link
2305
BibRef
Xia, K.[Kai],
Li, C.[Cheng],
Yang, Y.[Yinhui],
Deng, S.[Susu],
Feng, H.L.[Hai-Lin],
Study on Single-Tree Extraction Method for Complex RGB Point Cloud
Scenes,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Kleinsmann, J.[Jasper],
Verbesselt, J.[Jan],
Kooistra, L.[Lammert],
Monitoring Individual Tree Phenology in a Multi-Species Forest Using
High Resolution UAV Images,
RS(15), No. 14, 2023, pp. 3599.
DOI Link
2307
BibRef
Mao, Z.H.[Zhi-Hui],
Lu, Z.[Zhuo],
Wu, Y.J.[Yan-Jie],
Deng, L.[Lei],
DBH Estimation for Individual Tree: Two-Dimensional Images or
Three-Dimensional Point Clouds?,
RS(15), No. 16, 2023, pp. 4116.
DOI Link
2309
BibRef
Sun, J.J.[Jing-Jing],
Lin, Y.[Yi],
Assessing the Allometric Scaling of Vectorized Branch Lengths of
Trees with Terrestrial Laser Scanning and Quantitative Structure
Modeling: A Case Study in Guyana,
RS(15), No. 20, 2023, pp. 5005.
DOI Link
2310
BibRef
Jayathunga, S.[Sadeepa],
Pearse, G.D.[Grant D.],
Watt, M.S.[Michael S.],
Unsupervised Methodology for Large-Scale Tree Seedling Mapping in
Diverse Forestry Settings Using UAV-Based RGB Imagery,
RS(15), No. 22, 2023, pp. 5276.
DOI Link
2311
BibRef
Kwon, R.[Ryoungseob],
Ryu, Y.[Youngryel],
Yang, T.[Tackang],
Zhong, Z.L.[Zi-Long],
Im, J.[Jungho],
Merging multiple sensing platforms and deep learning empowers
individual tree mapping and species detection at the city scale,
PandRS(206), 2023, pp. 201-221.
Elsevier DOI Code:
WWW Link.
2312
Urban trees mapping, Tree species detection,
Multi-modal deep learning, Computer vision
BibRef
Wang, J.S.[Jian-Sen],
Zhang, H.Q.[Huai-Qing],
Liu, Y.[Yang],
Zhang, H.C.[Hua-Cong],
Zheng, D.P.[Dong-Ping],
Tree-Level Chinese Fir Detection Using UAV RGB Imagery and YOLO-DCAM,
RS(16), No. 2, 2024, pp. 335.
DOI Link
2402
BibRef
Liu, Y.[Yuchan],
Chen, D.[Dong],
Fu, S.[Shihan],
Mathiopoulos, P.T.[Panagiotis Takis],
Sui, M.M.[Ming-Ming],
Na, J.M.[Jia-Ming],
Peethambaran, J.[Jiju],
Segmentation of Individual Tree Points by Combining Marker-Controlled
Watershed Segmentation and Spectral Clustering Optimization,
RS(16), No. 4, 2024, pp. 610.
DOI Link
2402
BibRef
Fu, Y.[Yuwen],
Niu, Y.F.[Yi-Fang],
Wang, L.[Li],
Li, W.[Wang],
Individual-Tree Segmentation from UAV-LiDAR Data Using a
Region-Growing Segmentation and Supervoxel-Weighted Fuzzy Clustering
Approach,
RS(16), No. 4, 2024, pp. 608.
DOI Link
2402
BibRef
Yu, J.[Jiao],
Lei, L.[Lei],
Li, Z.H.[Zhen-Hong],
Individual Tree Segmentation Based on Seed Points Detected by an
Adaptive Crown Shaped Algorithm Using UAV-LiDAR Data,
RS(16), No. 5, 2024, pp. 825.
DOI Link
2403
BibRef
Huang, H.Y.[Hong-Yu],
Tian, G.J.[Guo-Ji],
Chen, C.C.[Chong-Cheng],
Evaluating the Point Cloud of Individual Trees Generated from Images
Based on Neural Radiance Fields (NeRF) Method,
RS(16), No. 6, 2024, pp. 967.
DOI Link
2403
BibRef
Proctor, C.[Cameron],
Leu, N.[Nam],
Wang, B.[Bin],
The Physiology of Betula glandusa on Two Sunny Summer Days in the
Arctic and Linkages with Optical Imagery,
RS(16), No. 12, 2024, pp. 2160.
DOI Link
2406
dwarf birch.
BibRef
Li, Y.[Yuan],
Liu, Z.H.[Zhi-Hao],
Benes, B.[Bedrich],
Zhang, X.P.[Xiao-Peng],
Guo, J.W.[Jian-Wei],
SVDTree: Semantic Voxel Diffusion for Single Image Tree
Reconstruction,
CVPR24(4692-4702)
IEEE DOI
2410
Graphics, Geometry, Computational modeling,
Biological system modeling, Semantics
BibRef
Nemmaoui, A.[Abderrahim],
Aguilar, F.J.[Fernando J.],
Aguilar, M.A.[Manuel A.],
Benchmarking of Individual Tree Segmentation Methods in Mediterranean
Forest Based on Point Clouds from Unmanned Aerial Vehicle Imagery and
Low-Density Airborne Laser Scanning,
RS(16), No. 21, 2024, pp. 3974.
DOI Link
2411
BibRef
Tinkham, W.T.[Wade T.],
Woolsey, G.A.[George A.],
Influence of Structure from Motion Algorithm Parameters on Metrics
for Individual Tree Detection Accuracy and Precision,
RS(16), No. 20, 2024, pp. 3844.
DOI Link
2411
BibRef
Verhelst, T.E.[Tom E.],
Calders, K.[Kim],
Burt, A.[Andrew],
Demol, M.[Miro],
D'hont, B.[Barbara],
Nightingale, J.[Joanne],
Terryn, L.[Louise],
Verbeeck, H.[Hans],
Implications of Pulse Frequency in Terrestrial Laser Scanning on
Forest Point Cloud Quality and Individual Tree Structural Metrics,
RS(16), No. 23, 2024, pp. 4560.
DOI Link
2501
BibRef
Hyyppä, M.[Matti],
Turppa, T.[Tuomas],
Hyyti, H.[Heikki],
Yu, X.W.[Xiao-Wei],
Handolin, H.[Hannu],
Kukko, A.[Antero],
Hyyppä, J.[Juha],
Virtanen, J.P.[Juho-Pekka],
Concepts Towards Nation-Wide Individual Tree Data and Virtual Forests,
IJGI(13), No. 12, 2024, pp. 424.
DOI Link
2501
BibRef
Li, T.[Ting],
Shen, X.[Xin],
Zhou, K.[Kai],
Cao, L.[Lin],
Estimation of Individual Tree Structure and Wood Density Parameters
for Ginkgo biloba Using Terrestrial LiDAR and Resistance Drill Data,
RS(17), No. 1, 2025, pp. 99.
DOI Link
2501
BibRef
Uçar, Z.,
Akay, A.E.[Abdullah E.],
Using UAV-based 3d Images of Individual Tree Species in Distance
Education in Forestry,
SmartCityApp21(533-537).
DOI Link
2201
BibRef
Lange, J.H.[Jan-Hendrik],
Andres, B.[Björn],
On the Lifted Multicut Polytope for Trees,
GCPR20(360-372).
Springer DOI
2110
BibRef
Tong, P.[Pinmo],
Zhang, X.S.[Xi-Shan],
Han, P.C.[Peng-Cheng],
Bu, S.H.[Shu-Hui],
Point in: Counting Trees with Weakly Supervised Segmentation Network,
ICPR21(9546-9552)
IEEE DOI
2105
Location awareness, Deep learning, Image segmentation, Annotations,
Feature extraction
BibRef
Polewski, P.,
Shelton, J.,
Yao, W.,
Heurich, M.,
Segmentation of Single Standing Dead Trees In High-resolution Aerial
Imagery with Generative Adversarial Network-based Shape Priors,
ISPRS20(B2:717-723).
DOI Link
2012
BibRef
Tilly, N.,
Reddig, F.,
Lussem, U.,
Bareth, G.,
First Investigation of Mediterranean Oak Tree Vitality With
High-resolution Worldview-3 Satellite Data: Comparing Ten Vegetation
Indices and Three Machine Learning Classifiers,
ISPRS20(B3:1069-1076).
DOI Link
2012
BibRef
Kumazaki, R.,
Kunii, Y.,
Application of 3d Tree Modeling Using Point Cloud Data By Terrestrial
Laser Scanner,
ISPRS20(B3:995-1000).
DOI Link
2012
BibRef
Zaforemska, A.,
Xiao, W.,
Gaulton, R.,
Individual Tree Detection From UAV Lidar Data in a Mixed Species
Woodland,
UAV-g19(657-663).
DOI Link
1912
BibRef
Han, L.T.,
Merry, M.,
Gee, T.,
Strozzi, A.G.,
Delmas, P.,
Gimel'farb, G.,
Automated Kauri trees detection in high resolution aerial images,
IVCNZ17(1-6)
IEEE DOI
1902
convolution, diseases, feedforward neural nets,
geophysical image processing, image classification,
Oils
BibRef
Liew, S.C.,
Huang, X.,
Lin, E.S.,
Shi, C.,
Yee, A.T.K.,
Tandon, A.,
Integration of Tree Database Derived From Satellite Imagery And Lidar
Point Cloud Data,
GeoInfo18(105-111).
DOI Link
1901
BibRef
Bournez, E.,
Landes, T.,
Saudreau, M.,
Kastendeuch, P.,
Najjar, G.,
From TLS Point Clouds to 3D Models of Trees:
A Comparison of Existing Algorithms for 3D Tree Reconstruction,
3DARCH17(113-120).
DOI Link
1805
BibRef
Yurtseven, H.,
Akgül, M.,
Gülci, S.,
Modelling Single Tree Structure with Terrestrial Laser Scanner,
GeoAdvances17(111-113).
DOI Link
1805
BibRef
Ben Ameur, R.,
Valet, L.,
Coquin, D.,
Fusion system based on belief functions theory and approximated
belief functions for tree species recognition,
IPTA16(1-6)
IEEE DOI
1703
forestry
BibRef
Guldogan, O.,
Rotola-Pukkila, J.,
Balasundaram, U.,
Le, T.H.,
Mannar, K.,
Chrisna, T.M.,
Gabbouj, M.[Moncef],
Automated tree detection and density calculation using unmanned
aerial vehicles,
VCIP16(1-4)
IEEE DOI
1701
Cameras
BibRef
Li, F.,
Chattopadhyay, S.,
Akbar, S.A.,
Elfiky, N.M.,
Kak, A.,
A Novel Visualization Tool for Evaluating the Accuracy of 3D Sensing
and Reconstruction Algorithms for Automatic Dormant Pruning
Applications,
PBVS16(338-346)
IEEE DOI
1612
BibRef
Homainejad, A.S.,
New Approach For Segmentation And Extraction Of Single Tree From Point
Clouds Data And Aerial Images,
ISPRS16(B8: 1287-1292).
DOI Link
1610
BibRef
Olokeogun, O.S.,
Akintola, O.O.,
Abodunrin, E.K.,
The Potential of GIS as a Management Tool for Avenue Trees Population
In Small Communities; A Case Study Of Idi-shin Community, Ibadan,
Nigeria,
ISPRS16(B6: 283-288).
DOI Link
1610
BibRef
Ferreira, M.P.[Matheus Pinheiro],
Zortea, M.[Maciel],
Zanotta, D.C.[Daniel Capella],
Féret, J.B.,
Shimabukuro, Y.E.,
de Souza Filho, C.R.[Carlos Roberto],
On the Use of Shortwave Infrared for Tree Species Discrimination in
Tropical Semideciduous Forest,
GeoHyper15(473-476).
DOI Link
1602
BibRef
Sheeren, D.,
Fauvel, M.,
Planque, C.,
Willm, J.,
Dejoux, J.F.,
Tree species discrimination in temperate woodland using high spatial
resolution Formosat-2 time series,
MultiTemp15(1-4)
IEEE DOI
1511
geophysical image processing
BibRef
Chmielewski, L.J.[Leszek J.],
Bator, M.[Marcin],
Olejniczak, M.[Marcin],
Advantages of Using Object-Specific Knowledge at an Early Processing
Stage in the Detection of Trees in LIDAR Data,
ICCVG14(145-154).
Springer DOI
1410
See also Heuristic Assessment of Parameters of the Local Ground Approximation from Terrestrial LIDAR Data.
BibRef
Lu, Y.[Yan],
Rasmussen, C.[Christopher],
Tree trunk detection using contrast templates,
ICIP11(1253-1256).
IEEE DOI
1201
BibRef
Xu, J.[Jie],
Qi, D.W.[Da-Wei],
The research of tree growth based on image vision theory,
IASP11(244-247).
IEEE DOI
1112
BibRef
Han, D.Y.[Dian-Yuan],
Dong, H.[Hui],
The study on standing tree measurement based on image processing
embedded in a smartphone,
IASP11(252-256).
IEEE DOI
1112
BibRef
Li, J.[Jili],
Hu, B.X.[Bao-Xin],
Noland, T.L.[Thomas L.],
Forest Species Classification Based On Statistical Point Pattern
Analysis Using Airborne Lidar Data,
Laser11(xx-yy).
DOI Link
1109
BibRef
Schilling, A.[Anita],
Schmidt, A.[Anja],
Maas, H.G.[Hans-Gerd],
Wagner, S.[Sven],
Topology Extraction Using Depth First Search On Voxel Representations
Of Tree Point Clouds,
Laser11(xx-yy).
DOI Link
1109
BibRef
Korpela, I.S.,
Hovi, A.,
Morsdorf, F.,
Mapping understory trees using airborne discrete-return LiDAR data,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Chmielewski, L.J.[Leszek J.],
Bator, M.[Marcin],
Zasada, M.[Michal],
Sterenczak, K.[Krzysztof],
Strzelinski, P.[Pawel],
Fuzzy Hough Transform-Based Methods for Extraction and Measurements of
Single Trees in Large-Volume 3D Terrestrial LIDAR Data,
ICCVG10(I: 265-274).
Springer DOI
0109
BibRef
Delaplace, K.L.W.,
van Coillie, F.M.B.,
de Wulf, R.R.,
Gabriels, D.,
de Smet, K.,
Ouessar, M.,
Belgacem, A.O.[A. Ouled],
Houcine, T.,
Object-Based Assessment of Tree Attributes of Acacia Tortilis in
Bou-Hedma, Tunisia,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Rafieyan, O.,
Darvishsefat, A.A.,
Babaii, S.,
Mataji, A.,
Object-Based Classification Using Ultracam-D Images for Tree Species
Discrimination Case Study: Hyrcanian Forest-Iran,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Zhang, J.J.[Jun-Jie],
Sohn, G.H.[Gun-Ho],
A Markov Random Field Model for Individual Tree Detection from Airborne
Laser Scanning Data,
PCVIA10(A:120).
PDF File.
1009
BibRef
Hussnain, Z.[Zille],
Oude Elberink, S.[Sander],
Vosselman, G.[George],
Automatic Feature Detection, Description And Matching From Mobile Laser
Scanning Data And Aerial Imagery,
ISPRS16(B1: 609-616).
DOI Link
1610
BibRef
Rutzinger, M.,
Pratihast, A.K.,
Oude Elberink, S.[Sander],
Vosselman, G.[George],
Detection and Modelling of 3D Trees from Mobile Laser Scanning Data,
CloseRange10(xx-yy).
PDF File.
1006
See also Feasibility of Facade Footprint Extraction from Mobile Laser Scanning Data.
BibRef
Petri, S.,
Immerkaer, J.,
Towards Automatic Trunk Classification on Young Conifers,
IMVIP09(134-138).
IEEE DOI
0909
BibRef
Guo, J.[Jun],
Niu, Z.[Zheng],
Single Tree Modeling and Forest Scene Rendering with SRTM and TM Data,
CISP09(1-4).
IEEE DOI
0910
BibRef
Korpela, I.,
Tokola, T.,
Ørka, H.O.,
Koskinen, M.,
Small-Footprint Discrete-Return LIDAR in Tree Species Recognition,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Korpela, I.[Ilkka],
3D Treetop Positioning by Multiple Image Matching of Aerial Images in a
3D Search Volume Bounded by Lidar Surface Models,
PCV06(xx-yy).
PDF File.
0609
BibRef
Ko, C.[Connie],
Sohn, G.[Gunho],
Remmel, T.[Tarmo],
A Deciduous-Coniferous Classification and Internal Structure Derivation
Using Airborne Lidar Data,
Laser09(158).
0909
BibRef
Örmeci, C.,
Cesur, S.,
Comparison of Tree Extraction from Intensity Drop and From Multiple
Returns in ALS Data,
ISPRS08(B1: 427 ff).
PDF File.
0807
BibRef
Wu, L.L.,
Feng, Z.K.,
luo, X.,
Deng, X.R.,
Study on Application of Three-Dimensional Laser Scanning Imaging System
in Tree Measuring,
ISPRS08(B1: 271 ff).
PDF File.
0807
BibRef
Yao, C.J.[Chun-Jing],
Ma, H.C.[Hong-Chao],
An Automatic Method Based on Gridding Segmentation for Trees'
Classification in Forested Area,
ISPRS08(B3b: 273 ff).
PDF File.
0807
BibRef
Barilotti, A.[Andrea],
Sepic, F.[Francesco],
Barilotti, A.[Andrea],
Crosilla, F.[Fabio],
Sepic, F.[Francesco],
Curvature Analysis of Lidar Data for Single Tree Species Classification
in alpine Latitude Forests,
Laser09(129).
0909
BibRef
Barnea, S.,
Filin, S.,
Alchanatis, V.,
A Supervised Approach for Object Extraction from Terrestrial Laser
Point Clouds Demonstrated on Trees,
PIA07(135).
PDF File.
0711
BibRef
Bienert, A.,
Scheller, S.,
Keane, E.,
Mohan, F.,
Nugent, C.,
Tree Detection and Diameter Estimations by Analysis of Forest
Terrestrial Laserscanner Point Clouds,
Laser07(50).
PDF File.
0709
See also Methods for the automatic geometric registration of terrestrial laser scanner point clouds in forest stands.
BibRef
Bienert, A.,
Scheller, S.,
Keane, E.,
Mullooly, G.,
Mohan, F.,
Application of terrestrial laserscanners for the determination of
forest inventory parameters,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Rossmann, J.,
Schluse, M.,
Bücken, A.,
Krahwinkler, P.,
Using Airborne Laser-Scanner-Data in Forestry Management:
A Novel Approach to Single Tree Delineation,
Laser07(350).
PDF File.
0709
BibRef
Litkey, P.,
Rönnholm, P.,
Lumme, J.,
Liang, X.,
Waveform Features for Tree Identification,
Laser07(258).
PDF File.
0709
BibRef
Chen, L.C.[Liang-Chien],
Teo, T.A.[Tee-Ann],
Chiang, T.W.[Tsai-Wei],
The Generation of 3D Tree Models by the Integration of Multi-sensor
Data,
PSIVT06(34-43).
Springer DOI
0612
BibRef
Shi, X.Z.[Xiao-Zhe],
Zakhor, A.[Avideh],
Fast approximation for geometric classification of LiDAR returns,
ICIP11(2925-2928).
IEEE DOI
1201
BibRef
Radoux, J.,
Defourny, P.,
GIS-Driven Classification of Satellite Imagery,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Radoux, J.,
Defourny, P.,
Influence of image segmentation parameters on positional and spectral
quality of the derived objects,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Stach, N.,
Barnerias, C.,
Dommanget, A.,
Hedges and tree rows detection with E-Cognition for the use of the
French national forest inventory,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Asmar, D.C.[Daniel C.],
Zelek, J.S.[John S.],
Abdallah, S.M.[Samer M.],
Tree Trunks as Landmarks for Outdoor Vision SLAM,
PercOrg06(196).
IEEE DOI
0609
BibRef
Earlier:
Seeing the Trees before the Forest,
CRV05(587-593).
IEEE DOI
0505
BibRef
Mayer, S.,
Extraction of Tree Groups from High-resolution Digital Surface Models,
ICIP00(Vol II: 712-715).
IEEE DOI
0008
BibRef
Pinz, A.J.,
Bischof, H.,
Constructing a neural network for the interpretation of the species of
trees in aerial photographs,
ICPR90(I: 755-757).
IEEE DOI
9006
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Tree Crowns, Crown Shape, Crown Delineation .