Davis, L.S.,
Understanding Shape, II: Symmetry,
SMC(7), 1977, pp. 204-212.
See also Understanding Shape: Angles and Sides.
BibRef
7700
Wechsler, H.[Harry],
A Structural Approach to Shape Analysis Using Mirroring Axes,
CGIP(9), No. 3, March 1979, pp. 246-266.
Elsevier DOI Symmetrical subparts.
BibRef
7903
Friedberg, S.A.[Stuart A.],
Finding Axis of Skewed Symmetry,
CVGIP(34), No. 2, May 1986, pp. 138-155.
Elsevier DOI
BibRef
8605
Earlier:
With:
Brown, C.M.,
ICPR84(322-325).
Bilaterally symmetric.
BibRef
Marola, G.[Giovanni],
Using Symmetry for Detecting and Locating Objects in a Picture,
CVGIP(46), No. 2, May 1989, pp. 179-195.
Elsevier DOI
BibRef
8905
Marola, G.[Giovanni],
On the Detection of the Axes of Symmetry of Symmetric
and Almost Symmetric Planar Images,
PAMI(11), No. 1, January 1989, pp. 104-108.
IEEE DOI Find the axis of symmetry.
BibRef
8901
Marola, G.[Giovanni],
A Technique for Finding the Symmetry Axes of Implicit Polynomial Curves
under Perspective Projection,
PAMI(27), No. 3, March 2005, pp. 465-470.
IEEE Abstract.
0501
BibRef
Earlier:
Finding the Symmetry Axis of a Perspectively Projected Plane Curve,
CAIP03(9-16).
Springer DOI
0311
Deal with the distortions from perspective projections.
BibRef
Brady, M.[Michael],
Asada, H.[Haruo],
Smoothed Local Symmetries and Their Implementation,
IJRR(3), No. 3, Fall 1984, pp. 36-61.
BibRef
8400
Earlier:
MIT AI Memo757, February, 1984.
WWW Link.
Generation of something similar to the MAT from the boundaries. The
computation uses the Gaussian smoothed boundaries.
BibRef
Brady, M.[Michael],
Smoothed Local Symmetries and Local Frame Propagation,
PRIP82(629-633).
BibRef
8200
Mukherjee, D.P.,
Brady, M.,
Symmetry Analysis Through Wave Propagation,
PRAI(10), 1996, pp. 291-306.
BibRef
9600
Krishnaswamy, R.,
Kim, C.E.,
Digital Parallelism, Perpendicularity, and Rectangles,
PAMI(9), No. 2, March 1987, pp. 316-321.
BibRef
8703
Leyton, M.[Michael],
Symmetry-Curvature Duality,
CVGIP(38), No. 3, June 1987, pp. 327-341.
Elsevier DOI For later 3D version:
See also 3D Symmetry-Curvature Duality Theorems.
BibRef
8706
Hel-Or, Y.[Yaacov],
Peleg, S.[Shmuel],
Avnir, D.[David],
Characterization of Right Handed and Left Handed Shapes,
CVGIP(53), No. 3, May 1991, pp. 297-302.
Elsevier DOI
BibRef
9105
Bigün, J.,
Frequency and Orientation Sensitive Texture Measures Using
Linear Symmetry,
SP(29), October 1992, pp. 1-16.
BibRef
9210
Hansen, O.,
Bigün, J.,
Local Symmetry Modeling in Multi-Dimensional Images,
PRL(13), 1992, pp. 253-262.
BibRef
9200
Bigün, J.[Josef],
Local Symmetry Features in Image Processing,
Ph.D.Thesis, Linkoping University, 1988.
HTML Version.
BibRef
8800
Bigün, J.,
Recognition of Local Symmetries in Gray Value Images by
Harmonic Functions,
ICPR88(I: 345-347).
IEEE DOI
BibRef
8800
Jiang, X.Y.,
Bunke, H.,
A Simple and Efficient Algorithm for Determining the
Symmetries of Polyhedra,
GMIP(54), No. 1, January 1992, pp. 91-96.
BibRef
9201
Jiang, X.Y.,
Yu, K.,
Bunke, H.,
Detection of Rotational and Involutional Symmetries
and Congruity of Polyhedra,
VC(12), 1996, pp. 193-201.
BibRef
9600
Zabrodsky, H.[Hagit],
Peleg, S.[Shmuel],
Avnir, D.[David],
Symmetry as a Continuous Feature,
PAMI(17), No. 12, December 1995, pp. 1154-1166.
IEEE DOI
BibRef
9512
Earlier:
Symmetry of Fuzzy Data,
ICPR94(A:499-504).
IEEE DOI Measure how far something is from being symmetric.
Has been applied to graphs for chemical diagram analysis.
See also Symmetry as a Continuous Feature: Comment.
BibRef
Zabrodsky, H.,
Peleg, S.,
Avnir, D.,
Completion of Occluded Shapes Using Symmetry,
CVPR93(678-679).
IEEE DOI
BibRef
9300
Zabrodsky, H.[Hagit],
Peleg, S.[Shmuel],
Avnir, D.[David],
A measure of symmetry based on shape similarity,
CVPR92(703-706).
IEEE DOI
0403
BibRef
And:
Hierarchical Symmetry,
ICPR92(III:9-12).
IEEE DOI
BibRef
Kanatani, K.,
Symmetry as a Continuous Feature: Comment,
PAMI(19), No. 3, March 1997, pp. 246-247.
IEEE DOI
9704
Point out a theoretical difficulty and fix it.
See also Symmetry as a Continuous Feature.
BibRef
Yip, R.K.K.[Raymond K.K.],
Tam, P.K.S.[Peter K.S.], and
Leung, D.N.K.[Dennis N.K.],
Application of Elliptic Fourier Descriptors to Symmetry
Detection under Parallel Projection,
PAMI(16), No. 3, March 1994, pp. 277-286.
IEEE DOI
Fourier Descriptors.
BibRef
9403
Fawcett, R.[Roger],
Zisserman, A.[Andrew],
Brady, J.M.[J. Michael],
Extracting Structure from an Affine View of a 3D Point Set
with One or 2 Bilateral Symmetries,
IVC(12), No. 9, November 1994, pp. 615-622.
Elsevier DOI
BibRef
9411
Earlier:
BMVC93(xx-yy).
PDF File.
9309
BibRef
Van Gool, L.J.,
Moons, T.,
Ungureanu, D.,
Pauwels, E.J.,
Symmetry from Shape and Shape from Symmetry,
IJRR(14), No. 5, October 1995, pp. 407-424.
BibRef
9510
Van Gool, L.J.,
Proesmans, M.[Marc],
Moons, T.[Theo],
Mirror and Point Symmetry under Perspective Skewing,
CVPR96(285-292).
IEEE DOI
BibRef
9600
Van Gool, L.J.,
Moons, T.,
Proesmans, M.,
Oosterlinck, A.,
Groups, fixed sets, symmetries, and invariants,
ICIP95(III: 356-359).
IEEE DOI
9510
BibRef
Sun, C.M.[Chang-Ming],
Symmetry Detection Using Gradient Information,
PRL(16), No. 9, September 1995, pp. 987-996.
PDF File. Histogram of orientation.
BibRef
9509
Sun, C.M.[Chang-Ming],
Fast Recovery of Rotational Symmetry Parameters
Using Gradient Orientation,
OptEng(36), No. 4, April 1997, pp. 1073-1077.
PDF File.
9705
BibRef
Shaked, D.,
Bruckstein, A.M.,
The Curve Axis,
CVIU(63), No. 2, March 1996, pp. 367-379.
DOI Link
BibRef
9603
Bruckstein, A.M.[Alfred M.],
Shaked, D.[Doron],
Skew Symmetry Detection via Invariant Signatures,
PR(31), No. 2, February 1998, pp. 181-192.
Elsevier DOI
9802
BibRef
Earlier:
CAIP95(17-24).
Springer DOI
9509
BibRef
Robinson, J.J.,
Line Symmetry of Convex Digital Regions,
CVIU(64), No. 2, September 1996, pp. 263-285.
DOI Link
BibRef
9609
Robinson, J.J.,
Kim, C.E.,
Point Symmetry of Convex Digital Regions,
CVPR88(604-609).
IEEE DOI
BibRef
8800
Masuda, T.[Takeshi],
Yamamoto, K.[Kazuhiko],
Yamada, H.[Hiromitsu],
Detection of Partial Symmetry Using Correlation with
Rotated-Reflected Images,
PR(26), No. 8, August 1993, pp. 1245-1253.
Elsevier DOI
BibRef
9308
Parui, S.K.,
Majumder, D.D.,
Symmetry Analysis By Computer,
PR(16), No. 1, 1983, pp. 63-67.
Elsevier DOI
9611
BibRef
Ogawa, H.,
Symmetry Analysis of Line Drawings Using the Hough Transform,
PRL(12), 1991, pp. 9-12.
BibRef
9100
Cho, K.,
Dunn, S.M.,
Hierarchical Local Symmetries,
PRL(12), 1991, pp. 343-347.
BibRef
9100
Atallah, M.J.,
On Symmetry Detection,
TC(34), 1985, pp. 663-666.
BibRef
8500
Kakarala, R.,
Cadzow, J.A.,
Estimation of Phase for Noisy Linear Phase Signals,
TSP(44), No. 10, October 1996, pp. 2483-2497.
BibRef
9610
Tuzikov, A.V.,
Margolin, G.L.,
Grenov, A.I.,
Convex Set Symmetry Measurement via Minkowski Addition,
JMIV(7), No. 1, January 1997, pp. 53-68.
DOI Link
9703
BibRef
Tuzikov, A.V.,
Margolin, G.L.,
Heijmans, H.J.A.M.,
Efficient computation of a reflection symmetry measure for convex
polygons based on Minkowski addition,
ICPR96(II: 236-240).
IEEE DOI
9608
(CWI, NL)
BibRef
Margolin, G.L.,
Tuzikov, A.V.,
Grenov, A.I.,
Reflection symmetry measure for convex sets,
ICIP94(I: 691-695).
IEEE DOI
9411
BibRef
Tuzikov, A.V.[Alexander V.],
Sheynin, S.A.[Stanislav A.],
Symmetry Measure Computation for Convex Polyhedra,
JMIV(16), No. 1, January 2002, pp. 41-56.
DOI Link
0202
BibRef
Sheynin, S.A.[Stanislav A.],
Tuzikov, A.V.[Alexander V.],
Volgin, D.[Denis],
Computation of Symmetry Measures for Polygonal Shapes,
CAIP99(183-190).
Springer DOI
9909
BibRef
Zabrodsky, H.,
Weinshall, D.,
Using Bilateral Symmetry to Improve 3D Reconstruction from
Image Sequences,
CVIU(67), No. 1, July 1997, pp. 48-57.
DOI Link
9707
BibRef
Earlier:
Utilizing Symmetry in the Reconstruction of Three-Dimensional
Shape from Noisy Images,
ECCV94(A:401-410).
Springer DOI
BibRef
Shih, F.Y.[Frank Y.],
Wong, W.T.[Wai-Tak],
A one-pass algorithm for local symmetry of contours from chain codes,
PR(32), No. 7, July 1999, pp. 1203-1210.
Elsevier DOI Local symmetry dificency.
BibRef
9907
Shih, F.Y.[Frank Y.],
Wong, W.T.[Wai-Tak],
An adaptive algorithm for conversion from quadtree to chain codes,
PR(34), No. 3, March 2001, pp. 631-639.
Elsevier DOI
0101
BibRef
Parsons, C.J.,
Nixon, M.S.,
Introducing Focus in the Generalized Symmetry Operator,
SPLetters(6), No. 3, March 1999, pp. 49.
IEEE Top Reference.
BibRef
9903
Cross, A.D.J.[Andrew D.J.],
Hancock, E.R.[Edwin R.],
Scale space vector fields for symmetry detection,
IVC(17), No. 5/6, April 1999, pp. 337-345.
Elsevier DOI
BibRef
9904
Lei, Y.[Yiwu],
Wong, K.C.[Kok Cheong],
Detection and localisation of reflectional and rotational symmetry
under weak perspective projection,
PR(32), No. 2, February 1999, pp. 167-180.
Elsevier DOI
BibRef
9902
Shen, D.G.[Ding-Gang],
Ip, H.H.S.[Horace H.S.],
Cheung, K.K.T.[Kent K.T.],
Teoh, E.K.[Eam Khwang],
Symmetry Detection by Generalized Complex (GC) Moments:
A Close-Form Solution,
PAMI(21), No. 5, May 1999, pp. 466-476.
IEEE DOI Reflection and rotation symmetry from moments.
BibRef
9905
Cheung, K.K.T.[Kent K.T.],
Ip, H.H.S.[Horace H.S.],
Symmetry Detection Using Complex Moments,
ICPR98(Vol II: 1473-1475).
IEEE DOI
9808
BibRef
Sun, C.M.[Chang-Ming],
Si, D.[Deyi],
Fast Reflectional Symmetry Detection Using Orientation Histograms,
RealTimeImg(5), No. 1, February 1999, pp. 63-74.
BibRef
9902
Yip, R.K.K.[Raymond K.K.],
A Hough transform technique for the detection of reflectional symmetry
and skew-symmetry,
PRL(21), No. 2, February 2000, pp. 117-130.
0003
BibRef
Tari, S.[Sibel],
Shah, J.[Jayant],
Nested Local Symmetry Set,
CVIU(79), No. 2, August 2000, pp. 267-280.
DOI Link
0008
BibRef
Earlier:
Local Symmetries of Shapes in Arbitrary Dimension,
ICCV98(1123-1128).
IEEE DOI
BibRef
Aslan, C.[Cagri],
Erdem, A.[Aykut],
Erdem, E.[Erkut],
Tari, S.[Sibel],
Disconnected Skeleton: Shape at Its Absolute Scale,
PAMI(30), No. 12, December 2008, pp. 2188-2203.
IEEE DOI
0811
BibRef
Earlier: A1, A4, Only:
An Axis-Based Representation for Recognition,
ICCV05(II: 1339-1346).
IEEE DOI
0510
Skeleton representation and matching technique.
Depend more on global features for matching.
BibRef
Kiryati, N.[Nahum],
Gofman, Y.[Yossi],
Detecting Symmetry in Grey Level Images:
The Global Optimization Approach,
IJCV(29), No. 1, August 1998, pp. 29-45.
DOI Link
0010
BibRef
Earlier: A2, A1:
ICPR96(I: 889-894).
IEEE DOI
9608
BibRef
Earlier: A2, A1:
Detecting grey level symmetry: The frequency domain approach,
CAIP95(588-593).
Springer DOI
9509
(Technion, IL)
BibRef
Shen, D.G.[Ding-Gang],
Ip, H.H.S.[Horace H.S.],
Teoh, E.K.[Eam Khwang],
Affine invariant detection of perceptually parallel 3D planar curves,
PR(33), No. 11, November 2000, pp. 1909-1918.
Elsevier DOI
0011
See also Generalized Affine Invariant Image Normalization.
BibRef
Spinei, A.,
Pellerin, D.,
Fernandes, D.,
Herault, J.,
Fast hardware implementation of Gabor filter based motion estimation,
IntCAE(7), No. 1, 2000, pp. 67-77.
0001
BibRef
Shen, D.G.[Ding-Gang],
Ip, H.H.S.[Horace H.S.],
Teoh, E.K.[Eam Khwang],
An energy of asymmetry for accurate detection of global reflection axes,
IVC(19), No. 5, 1 April 2001, pp. 283-297.
Elsevier DOI
0102
BibRef
Earlier:
Detecting Reflection Axes by Energy Minimisation,
ICPR00(Vol II: 1026-1029).
IEEE DOI
0009
BibRef
Shen, D.G.[Ding-Gang],
Ip, H.H.S.[Horace H.S.],
Teoh, E.K.[Eam Khwang],
Robust detection of skewed symmetries by combining local and semi-local
affine invariants,
PR(34), No. 7, July 2001, pp. 1417-1428.
Elsevier DOI
0105
BibRef
Earlier:
Robust Detection of Skewed Symmetries,
ICPR00(Vol III: 1010-1013).
IEEE DOI
0009
BibRef
Shen, D.G.[Ding-Gang],
Ip, H.H.S.[Horace H.S.],
Teoh, E.K.[Eam Khwang],
A Novel Theorem on Symmetries of 2D Images,
ICPR00(Vol III: 1002-1005).
IEEE DOI
0009
BibRef
Jenkinson, M.[Mark],
Brady, M.[Michael],
A saliency-based hierarchy for local symmetries,
IVC(20), No. 2, February 2002, pp. 85-101.
Elsevier DOI
0202
BibRef
Geiger, D.[Davi],
Liu, T.L.[Tyng-Luh],
Kohn, R.V.[Robert V.],
Representation and Self-Similarity of Shapes,
PAMI(25), No. 1, January 2003, pp. 86-99.
IEEE DOI
0301
BibRef
Earlier: A2, A1, A3:
ICCV98(1129-1135).
IEEE DOI
BibRef
Liu, T.L.[Tyng-Luh],
Yuille, A.L.[Alan L.],
Geiger, D.[Davi],
Segmenting by Seeking the Symmetry Axis,
ICPR98(Vol II: 994-998).
IEEE DOI
9808
BibRef
Liu, T.L.,
Geiger, D.,
Approximate Tree Matching and Shape Similarity,
ICCV99(456-462).
IEEE DOI
BibRef
9900
François, A.R.J.[Alexandre R. J.],
Medioni, G.G.[Gérard G.],
Waupotitsch, R.[Roman],
Mirror symmetry ==> 2-view stereo geometry,
IVC(21), No. 2, February 2003, pp. 137-143.
Elsevier DOI
0301
BibRef
Earlier:
Reconstructing mirror symmetric scenes from a single view using 2-view
stereo geometry,
ICPR02(IV: 12-16).
IEEE DOI
0211
BibRef
Zouaki, H.[Hamid],
Convex set symmetry measurement using Blaschke addition,
PR(36), No. 3, March 2003, pp. 753-763.
Elsevier DOI
0301
BibRef
Tek, H.[Hüseyin],
Kimia, B.B.[Benjamin B.],
Symmetry Maps of Free-Form Curve Segments via Wave Propagation,
IJCV(54), No. 1-3, August 2003, pp. 35-81.
DOI Link
0306
BibRef
Earlier:
ICCV99(362-369).
IEEE DOI
BibRef
Tek, H.,
Stoll, P.A.[Perry A.],
Kimia, B.B.,
Shocks from Images: Propagation of Orientation Elements,
CVPR97(839-845).
IEEE DOI
9704
BibRef
Wang, H.Z.[Han-Zi],
Suter, D.[David],
Using symmetry in robust model fitting,
PRL(24), No. 16, December 2003, pp. 2953-2966.
Elsevier DOI
0310
BibRef
Choi, I.,
Chien, S.I.,
A Generalized Symmetry Transform With Selective Attention Capability
for Specific Corner Angles,
SPLetters(11), No. 2, February 2004, pp. 255-257.
IEEE Abstract.
0402
BibRef
Lucchese, L.[Luca],
Frequency domain classification of cyclic and dihedral symmetries of
finite 2-D patterns,
PR(37), No. 12, December 2004, pp. 2263-2280.
Elsevier DOI
0409
BibRef
Earlier:
A frequency domain algorithm for detection and classification of cyclic
and dihedral symmetries in two-dimensional patterns,
ICIP02(II: 793-796).
IEEE DOI
0210
BibRef
di Gesu, V.[Vito],
Zavidovique, B.[Bertrand],
A note on the iterative object symmetry transform,
PRL(25), No. 14, 15 October 2004, pp. 1533-1545.
Elsevier DOI
0410
BibRef
di Gesu, V.[Vito],
lo Bosco, G.,
Zavidovique, B.[Bertrand],
Classification based on iterative object symmetry transform,
CIAP03(44-49).
IEEE DOI
0310
BibRef
Zavidovique, B.[Bertrand],
di Gesù, V.[Vito],
The S-kernel: A measure of symmetry of objects,
PR(40), No. 3, March 2007, pp. 839-852.
Elsevier DOI
0611
BibRef
Earlier:
Kernel Based Symmetry Measure,
CIAP05(261-268).
Springer DOI
0509
BibRef
And:
The S-Kernel and a Symmetry Measure Based on Correlation,
SCIA05(184-194).
Springer DOI
0506
BibRef
Earlier:
The iterative object symmetry transform,
ICIP04(IV: 2677-2680).
IEEE DOI
0505
Symmetry transforms; Symmetry measure; Erosion; Correlation; Feature extraction
BibRef
Zavidovique, B.[Bertrand],
di Gesú, V.[Vito],
Pyramid symmetry transforms: From local to global symmetry,
IVC(25), No. 2, February 2007, pp. 220-229.
Elsevier DOI
0701
Soft computing; Pyramid computation; Symmetry computation;
Visual attention; Visual perception
BibRef
Xiao, Z.T.[Zhi-Tao],
Hou, Z.X.[Zheng-Xin],
Miao, C.Y.[Chang-Yun],
Wang, J.M.[Jian-Ming],
Using phase information for symmetry detection,
PRL(26), No. 13, 1 October 2005, pp. 1985-1994.
Elsevier DOI
0509
BibRef
Poliannikov, O.V.,
Krim, H.,
Identification of a Discrete Planar Symmetric Shape From a Single Noisy
View,
IP(14), No. 12, December 2005, pp. 2051-2059.
IEEE DOI
0512
BibRef
Lee, S.S.[Seung-Sin],
Rao, R.M.[Raghuveer M.],
Self-Similar Random Field Models in Discrete Space,
IP(15), No. 1, January 2006, pp. 160-168.
IEEE DOI
0601
BibRef
Earlier:
Scale-based formulations of statistical self-similarity in images,
ICIP04(IV: 2323-2326).
IEEE DOI
0505
BibRef
Park, C.J.[Chang-Joon],
Seo, K.S.[Kyung-Seok],
Choi, H.M.[Heung-Moon],
Symmetric polarity in generalized symmetry transformation,
PRL(27), No. 7, May 2006, pp. 854-857.
Elsevier DOI
0604
Noise tolerance; Attentional operator; Object detection
BibRef
Keller, Y.,
Shkolnisky, Y.,
A Signal Processing Approach to Symmetry Detection,
IP(15), No. 8, August 2006, pp. 2198-2207.
IEEE DOI
0606
BibRef
Earlier:
An algebraic approach to symmetry detection,
ICPR04(III: 186-189).
IEEE DOI
0409
BibRef
Chertok, M.[Michael],
Keller, Y.[Yosi],
Spectral Symmetry Analysis,
PAMI(32), No. 7, July 2010, pp. 1227-1238.
IEEE DOI
1006
Rotational and reflective symmetries in N-D.
Derive a symmetry detection scheme for sets of points.
BibRef
Kuijper, A.[Arjan],
Olsen, O.F.[Ole Fogh],
Giblin, P.J.[Peter J.],
Nielsen, M.[Mads],
Alternative 2D Shape Representations using the Symmetry Set,
JMIV(26), No. 1-2, November 2006, pp. 127-147.
Springer DOI
0701
BibRef
Kuijper, A.[Arjan],
Olsen, O.F.[Ole Fogh],
Giblin, P.J.[Peter J.],
Bille, P.[Philip],
Nielsen, M.[Mads],
From a 2D Shape to a String Structure Using the Symmetry Set,
ECCV04(Vol II: 313-325).
Springer DOI
0405
As an alternative to skeletons. For easier indexing.
BibRef
Kuijper, A.[Arjan],
Olsen, O.F.[Ole Fogh],
Geometric Skeletonization Using the Symmetry Set,
ICIP05(I: 497-500).
IEEE DOI
0512
See also Structure of Shapes Scale Space Aspects of the (pre-) Symmetry Set, The.
BibRef
Kuijper, A.[Arjan],
Olsen, O.F.[Ole Fogh],
Bille, P.[Philip],
Giblin, P.J.[Peter J.],
Matching 2D Shapes using their Symmetry Sets,
ICPR06(II: 179-182).
IEEE DOI
0609
BibRef
Kuijper, A.[Arjan],
Deriving the Medial Axis with geometrical arguments for planar shapes,
PRL(28), No. 15, 1 November 2007, pp. 2011-2018.
Elsevier DOI
0711
Medial Axis; Symmetry Set; Shape geometry, Skeletons
BibRef
Baloch, S.H.,
Krim, H.,
Flexible Skew-Symmetric Shape Model for Shape Representation,
Classification, and Sampling,
IP(16), No. 2, February 2007, pp. 317-328.
IEEE DOI
0702
BibRef
Baloch, S.H.,
Krim, H.,
Object Recognition Through Topo-Geometric Shape Models Using
Error-Tolerant Subgraph Isomorphisms,
IP(19), No. 5, May 2010, pp. 1191-1200.
IEEE DOI
1004
BibRef
Milner, D.[David],
Raz, S.[Shmuel],
Hel-Or, H.[Hagit],
Keren, D.[Daniel],
Nevo, E.[Eviatar],
A new measure of symmetry and its application to classification of
bifurcating structures,
PR(40), No. 8, August 2007, pp. 2237-2250.
Elsevier DOI
0704
BibRef
Earlier: A1, A3, A4, A2, A5:
Analyzing Symmetry in Biological Systems,
ICIP05(I: 361-364).
IEEE DOI
0512
Symmetry; Bifurcating structures; Graphs; Leaf veins; CSM;
Shape characteristics; Continuous symmetry
BibRef
Schmitt, O.[Oliver],
Hasse, M.[Maria],
Radial symmetries based decomposition of cell clusters in binary and
gray level images,
PR(41), No. 6, June 2008, pp. 1905-1923.
Elsevier DOI
0802
Image analysis; Radial symmetry; Saliency; Points of interest;
Center of mass; Iterative voting; Decomposition; Separation;
Subdivision; Splitting; Partitioning; Cell cluster
BibRef
Schmitt, O.[Oliver],
Reetz, S.[Stephan],
On the Decomposition of Cell Clusters,
JMIV(33), No. 1, January 2009, pp. xx-yy.
Springer DOI
0804
BibRef
Schmitt, O.[Oliver],
Hasse, M.[Maria],
Morphological multiscale decomposition of connected regions with
emphasis on cell clusters,
CVIU(113), No. 2, February 2009, pp. 188-201.
Elsevier DOI
0901
Image analysis; Multiscale morphology; Decomposition; Separation;
Subdivision; Splitting; Partitioning; Decoupling;
Cell clustering; Cell grouping
BibRef
Lee, S.K.[Seung-Kyu],
Liu, Y.X.[Yan-Xi],
Skewed Rotation Symmetry Group Detection,
PAMI(32), No. 9, September 2010, pp. 1659-1672.
IEEE DOI
1008
5 properties: center of R, affind deformation, type of symmetry,
cardinality of the group,
supporting region of the group in the image.
BibRef
Park, M.W.[Min-Woo],
Lee, S.K.[Seung-Kyu],
Chen, P.C.[Po-Chun],
Kashyap, S.[Somesh],
Butt, A.A.[Asad A.],
Liu, Y.X.[Yan-Xi],
Performance evaluation of state-of-the-art discrete symmetry detection
algorithms,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Lee, S.K.[Seung-Kyu],
Symmetry-driven shape description for image retrieval,
IVC(31), No. 4, April 2013, pp. 357-363.
Elsevier DOI
1304
Shape description; Shape matching; Regular pattern
BibRef
Guo, Q.[Qi],
Guo, F.[Falei],
Shao, J.Q.[Jia-Qing],
Irregular Shape Symmetry Analysis:
Theory and Application to Quantitative Galaxy Classification,
PAMI(32), No. 10, October 2010, pp. 1730-1743.
IEEE DOI
1008
Imperfect transforms to measure how symmetric the shapes are.
BibRef
Eidenberger, N.[Norbert],
Schleicher, D.C.H.[Daniel C. H.], and
Zagar, B.G.[Bernhard G.],
Composition and Detection Rate of a Symmetry Axis Localization
Algorithm for Digital Images,
Sensors(Special: 9), December 2010, pp. 1-10.
HTML Version.
BibRef
1012
Law, A.J.[Alvin J.],
Aliaga, D.G.[Daniel G.],
Single viewpoint model completion of symmetric objects for digital
inspection,
CVIU(115), No. 5, May 2011, pp. 603-610.
Elsevier DOI
1103
Single viewpoint acquisition; Model completion; Symmetry detection;
Digital inspection
BibRef
Trinh, N.H.[Nhon H.],
Kimia, B.B.[Benjamin B.],
Skeleton Search: Category-Specific Object Recognition and Segmentation
Using a Skeletal Shape Model,
IJCV(94), No. 2, September 2011, pp. 215-240.
WWW Link.
1101
BibRef
Earlier:
Category-specific Object Recognition and Segmentation Using a Skeletal
Shape Model,
BMVC09(xx-yy).
PDF File.
0909
BibRef
And:
Learning prototypical shapes for object categories,
SMiCV10(1-8).
IEEE DOI
1006
BibRef
Earlier:
A Symmetry-Based Generative Model for Shape,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Sun, Y.[Yu],
Bhanu, B.[Bir],
Reflection Symmetry-Integrated Image Segmentation,
PAMI(34), No. 9, September 2012, pp. 1827-1841.
IEEE DOI
1208
BibRef
Guo, X.J.[Xiao-Jie],
Cao, X.C.[Xiao-Chun],
MIFT: A framework for feature descriptors to be mirror reflection
invariant,
IVC(30), No. 8, August 2012, pp. 546-556.
Elsevier DOI
1209
BibRef
Earlier:
FIND: A Neat Flip Invariant Descriptor,
ICPR10(515-518).
IEEE DOI
1008
Mirror reflection invariance; Local image feature; MIFT
BibRef
Zhang, H.[Hua],
Guo, X.J.[Xiao-Jie],
Cao, X.C.[Xiao-Chun],
Water Reflection Detection Using a Flip Invariant Shape Detector,
ICPR10(633-636).
IEEE DOI
1008
BibRef
Guo, X.J.[Xiao-Jie],
Cao, X.C.[Xiao-Chun],
Zhang, J.W.[Jia-Wan],
Li, X.W.[Xue-Wei],
MIFT: A Mirror Reflection Invariant Feature Descriptor,
ACCV09(II: 536-545).
Springer DOI
0909
BibRef
He, B.[Bei],
Wang, G.J.[Gui-Jin],
Shi, C.B.[Chen-Bo],
Yin, X.W.[Xuan-Wu],
Liu, B.[Bo],
Lin, X.G.[Xing-Gang],
Self-Clustering Symmetry Detection,
IEICE(E95-D), No. 9, September 2012, pp. 2359-2362.
WWW Link.
1209
BibRef
Kuijper, A.[Arjan],
On the Local Form and Transitions of Pre-symmetry Sets,
JMIV(45), No. 1, January 2013, pp. 13-30.
WWW Link.
1301
BibRef
Melkemi, M.[Mahmoud],
Cordier, F.[Frédéric],
Sapidis, N.S.[Nickolas S.],
A Provable Algorithm to Detect Weak Symmetry in a Polygon,
IJIG(13), No. 1, January 2013, pp. 1350002.
DOI Link
1305
BibRef
Earlier:
An Algorithm to Detect the Weak-Symmetry of a Simple Polygon,
ICIAR11(I: 365-374).
Springer DOI
1106
BibRef
Shiraishi, S.[Soma],
Feng, Y.[Yaokai],
Uchida, S.[Seiichi],
Skew Estimation by Parts,
IEICE(E96-D), No. 7, July 2013, pp. 1503-1512.
WWW Link.
1307
BibRef
Wang, Z.Z.[Zhao-Zhong],
Fu, L.R.[Lian-Rui],
Li, Y.F.,
Unified detection of skewed rotation, reflection and translation
symmetries from affine invariant contour features,
PR(47), No. 4, 2014, pp. 1764-1776.
Elsevier DOI
1402
Symmetry detection
BibRef
Liu, Y.X.[Yan-Xi],
Hel-Or, H.[Hagit],
Kaplan, C.S.[Craig S.],
Van Gool, L.J.[Luc J.],
Computational Symmetry in Computer Vision and Computer Graphics,
FTCGV(5), Issue 1-2, 2009, pp. 1-195.
DOI Link
1410
Published August 2010.
BibRef
Albert, F.,
Gómis, J.M.,
Blasco, J.,
Valiente, J.M.,
Aleixos, N.,
A new method to analyse mosaics based on Symmetry Group theory
applied to Islamic Geometric Patterns,
CVIU(130), No. 1, 2015, pp. 54-70.
Elsevier DOI
1411
Mosaics
BibRef
Widynski, N.,
Moevus, A.,
Mignotte, M.,
Local Symmetry Detection in Natural Images Using a Particle Filtering
Approach,
IP(23), No. 12, December 2014, pp. 5309-5322.
IEEE DOI
1412
edge detection
BibRef
Wang, Z.Z.[Zhao-Zhong],
Tang, Z.S.[Ze-Sheng],
Zhang, X.[Xiao],
Reflection Symmetry Detection Using Locally Affine Invariant Edge
Correspondence,
IP(24), No. 4, April 2015, pp. 1297-1301.
IEEE DOI
1503
edge detection
BibRef
Puspoki, Z.,
Unser, M.,
Template-Free Wavelet-Based Detection of Local Symmetries,
IP(24), No. 10, October 2015, pp. 3009-3018.
IEEE DOI
1507
Algorithm design and analysis
BibRef
El Ouaazizi, A.[Aziza],
Nasri, A.[Abdelbar],
Benslimane, R.[Rachid],
A rotation symmetry group detection technique for the
characterization of Islamic Rosette Patterns,
PRL(68, Part 1), No. 1, 2015, pp. 111-117.
Elsevier DOI
1512
Islamic Rosette Pattern
BibRef
Shen, W.[Wei],
Bai, X.[Xiang],
Hu, Z.H.[Zi-Hao],
Zhang, Z.J.[Zhi-Jiang],
Multiple instance subspace learning via partial random projection
tree for local reflection symmetry in natural images,
PR(52), No. 1, 2016, pp. 306-316.
Elsevier DOI
1601
Symmetry detection
BibRef
Revollo, N.V.[Natalia V.],
Delrieux, C.A.[Claudio A.],
González-José, R.[Rolando],
Set of bilateral and radial symmetry shape descriptor based on contour
information,
IET-CV(11), No. 3, April 2017, pp. 226-236.
DOI Link
1704
BibRef
Xie, L.X.[Ling-Xi],
Wang, J.D.[Jing-Dong],
Lin, W.Y.[Wei-Yao],
Zhang, B.[Bo],
Tian, Q.[Qi],
Towards Reversal-Invariant Image Representation,
IJCV(123), No. 2, June 2017, pp. 226-250.
Springer DOI
1705
Representation to allow other views.
reversal-invariant representation of local patterns.
BibRef
Cicconet, M.[Marcelo],
Birodkar, V.[Vighnesh],
Lund, M.[Mads],
Werman, M.[Michael],
Geiger, D.[Davi],
A convolutional approach to reflection symmetry,
PRL(95), No. 1, 2017, pp. 44-50.
Elsevier DOI
1708
Mirror symmetry
BibRef
Nagar, R.[Rajendra],
Raman, S.[Shanmuganathan],
Reflection Symmetry Axes Detection Using Multiple Model Fitting,
SPLetters(24), No. 10, October 2017, pp. 1438-1442.
IEEE DOI
1710
geometry, image matching, image representation, object detection,
BibRef
Nagar, R.[Rajendra],
Raman, S.[Shanmuganathan],
Fast and Accurate Intrinsic Symmetry Detection,
ECCV18(I: 433-450).
Springer DOI
1810
BibRef
Imani, M.,
Ghassemian, H.,
Weighted Joint Collaborative Representation Based On Median-Mean Line
and Angular Separation,
GeoRS(55), No. 10, October 2017, pp. 5612-5624.
IEEE DOI
1710
feature extraction, hyperspectral imaging, statistics, AS, NRS, WJCR,
angular separation, hyperspectral
median-mean line, nearest regularized subspace,
BibRef
Alvarado-Gonzalez, M.[Montserrat],
Aguilar, W.[Wendy],
Garduño, E.[Edgar],
Velarde, C.[Carlos],
Bribiesca, E.[Ernesto],
Medina-Bañuelos, V.[Verónica],
Mirror symmetry detection in curves represented by means of the Slope
Chain Code,
PR(87), 2019, pp. 67-79.
Elsevier DOI
1812
Symmetry detection, Slope Chain Code, Chain coding, 2D curves
BibRef
Nguyen, T.P.,
Projection Based Approach for Reflection Symmetry Detection,
ICIP19(4235-4239)
IEEE DOI
1910
Reflection symmetry, Radon, R-transform
BibRef
Aguilar, W.[Wendy],
Alvarado-Gonzalez, M.[Montserrat],
Garduño, E.[Edgar],
Velarde, C.[Carlos],
Bribiesca, E.[Ernesto],
Detection of rotational symmetry in curves represented by the slope
chain code,
PR(107), 2020, pp. 107421.
Elsevier DOI
2008
Rotational-symmetry detection, Slope chain code, Chain coding, 2D Curves
BibRef
Dalitz, C.[Christoph],
Wilberg, J.[Jens],
Jeltsch, M.[Manuel],
The Gradient Product Transform: An Image Filter for Symmetry
Detection,
IPOL(9), 2019, pp. 413-431.
DOI Link
1806
Code, Symmetry. Apply to blood vessels and rotational symmetries.
See also Detection of symmetry points in images.
BibRef
Nagar, R.[Rajendra],
Raman, S.[Shanmuganathan],
3DSymm: Robust and Accurate 3D Reflection Symmetry Detection,
PR(107), 2020, pp. 107483.
Elsevier DOI
2008
Reflection symmetry, Point cloud, Optimization
BibRef
Gnutti, A.[Alessandro],
Guerrini, F.[Fabrizio],
Leonardi, R.[Riccardo],
Combining Appearance and Gradient Information for Image Symmetry
Detection,
IP(30), 2021, pp. 5708-5723.
IEEE DOI
2106
Feature extraction, Image edge detection, Visualization, Task analysis,
object characterization
BibRef
Pramod, R.T.,
Arun, S.P.,
Improving Machine Vision Using Human Perceptual Representations:
The Case of Planar Reflection Symmetry for Object Classification,
PAMI(44), No. 1, January 2022, pp. 228-241.
IEEE DOI
2112
Systematics, Machine vision, Visualization, Computational modeling,
Task analysis, Search problems, Prediction algorithms,
perception and psychophysics
BibRef
Nguyen, T.P.[Thanh Phuong],
Truong, H.P.[Hung Phuoc],
Nguyen, T.T.[Thanh Tuan],
Kim, Y.G.[Yong-Guk],
Reflection symmetry detection of shapes based on shape signatures,
PR(128), 2022, pp. 108667.
Elsevier DOI
2205
Symmetry detection, Reflection symmetry, LIP-signature, -signature, Radon
BibRef
Nasiri, S.M.[Seyed-Mahdi],
Hosseini, R.[Reshad],
Moradi, H.[Hadi],
Multiple-solutions RANSAC for finding axes of symmetry in fragments
of objects,
PR(131), 2022, pp. 108805.
Elsevier DOI
2208
Symmetry axis, Multiple-solutions RANSAC, 3D Reconstruction
BibRef
Li, Y.L.[Yong-Lu],
Xu, Y.[Yue],
Xu, X.Y.[Xin-Yu],
Mao, X.H.[Xiao-Han],
Lu, C.[Cewu],
Learning Single/Multi-Attribute of Object With Symmetry and Group,
PAMI(44), No. 12, December 2022, pp. 9043-9055.
IEEE DOI
2212
Correlation, Couplings, Visualization, Task analysis,
Feature extraction, Deep learning, Computational modeling, group axioms
BibRef
Tan, X.[Xin],
Lin, J.Y.[Jia-Ying],
Xu, K.[Ke],
Chen, P.[Pan],
Ma, L.Z.[Li-Zhuang],
Lau, R.W.H.[Rynson W.H.],
Mirror Detection With the Visual Chirality Cue,
PAMI(45), No. 3, March 2023, pp. 3492-3504.
IEEE DOI
2302
Mirrors, Visualization, Feature extraction, Computer science,
Object detection, Task analysis, Image edge detection,
salient object detection
BibRef
Guan, H.[Huankang],
Lin, J.Y.[Jia-Ying],
Lau, R.W.H.[Rynson W.H.],
Learning Semantic Associations for Mirror Detection,
CVPR22(5931-5940)
IEEE DOI
2210
WWW Link. Location awareness, Convolutional codes, Visualization, Semantics,
Mirrors, Low-level vision
BibRef
Nguyen, T.P.[Thanh Phuong],
Nguyen, T.T.[Thanh Tuan],
Robust detectors of rotationally symmetric shapes based on novel
semi-shape signatures,
PR(138), 2023, pp. 109336.
Elsevier DOI
2303
Rotational symmetry detection, LIP/-signature, Radon
BibRef
Niu, W.Y.[Wen-Yuan],
Huang, X.F.[Xian-Feng],
Xiang, H.Y.[Han-Yu],
Wang, X.[Xuan],
Ji, S.[Sentao],
Zhang, F.[Fan],
A symmetry-aware alignment method for photogrammetric 3D models,
PandRS(204), 2023, pp. 184-208.
Elsevier DOI
2310
Crowd-sourced modeling, Model alignment, Symmetry detection,
Point global symmetry descriptors, Heritage digitization
BibRef
Xie, Z.F.[Zhi-Feng],
Wang, S.[Sen],
Yu, Q.C.[Qiu-Cheng],
Tan, X.[Xin],
Xie, Y.[Yuan],
CSFwinformer: Cross-Space-Frequency Window Transformer for Mirror
Detection,
IP(33), 2024, pp. 1853-1867.
IEEE DOI Code:
WWW Link.
2403
Mirrors, Feature extraction, Transformers,
Frequency-domain analysis, Visualization, Semantics, frequency learning
BibRef
Sarkar, T.[Tusita],
Chatterjee, P.C.[Preetam Chayan],
Bhowmick, P.[Partha],
Mandala Symmetrization through Curvature Map and Geometric Graph*,
IVCNZ23(1-6)
IEEE DOI
2403
Graphics, Digital images, Digital art, Psychology, Computational efficiency,
Art and culture, art and psychology, vectorization
BibRef
Li, R.W.[Ren-Wu],
Zhang, L.X.[Ling-Xiao],
Li, C.P.[Chun-Peng],
Lai, Y.K.[Yu-Kun],
Gao, L.[Lin],
E3Sym: Leveraging E(3) Invariance for Unsupervised 3D Planar
Reflective Symmetry Detection,
ICCV23(14497-14507)
IEEE DOI
2401
BibRef
Nguyen, T.P.[Thanh Phuong],
Nguyen, T.T.[Thanh Tuan],
Tran, T.H.[Thanh-Hai],
Projection of semi-shapes for rotational symmetry detection,
ICPR22(196-202)
IEEE DOI
2212
Correlation, Shape, Transforms, Proposals,
Compounds, Rotation measurement, rotational symmetry detection,
Radon transform
BibRef
Donati, N.[Nicolas],
Corman, E.[Etienne],
Ovsjanikov, M.[Maks],
Deep orientation-aware functional maps:
Tackling symmetry issues in Shape Matching,
CVPR22(732-741)
IEEE DOI
2210
Deep learning, Codes, Shape, Computer architecture, Pattern matching,
Deep learning architectures and techniques, Segmentation,
grouping and shape analysis
BibRef
Seo, A.[Ahyun],
Shim, W.[Woohyeon],
Cho, M.[Minsu],
Learning to Discover Reflection Symmetry via Polar Matching
Convolution,
ICCV21(1265-1274)
IEEE DOI
2203
Systematics, Convolution, Reflection, Encoding, Robustness, Kernel,
Recognition and classification,
BibRef
Lin, Z.Q.[Zhi-Qiu],
Sun, J.[Jin],
Davis, A.[Abe],
Snavely, N.[Noah],
Visual Chirality,
CVPR20(12292-12300)
IEEE DOI
2008
Mirrored image?
Visualization, Task analysis, Training, Mirrors,
Image processing, Cameras
BibRef
Li, Y.L.[Yong-Lu],
Xu, Y.[Yue],
Mao, X.H.[Xiao-Han],
Lu, C.[Cewu],
Symmetry and Group in Attribute-Object Compositions,
CVPR20(11313-11322)
IEEE DOI
2008
Code, Learning.
WWW Link. Couplings, Task analysis, Visualization,
Training, Linguistics
BibRef
Lin, J.,
Wang, G.,
Lau, R.W.H.,
Progressive Mirror Detection,
CVPR20(3694-3702)
IEEE DOI
2008
Mirrors, Feature extraction, Image edge detection,
Image segmentation, Task analysis, Semantics, Object detection
BibRef
Ammirato, P.[Phil],
Tremblay, J.[Jonathan],
Liu, M.Y.[Ming-Yu],
Berg, A.C.[Alexander C.],
Fox, D.[Dieter],
SymGAN: Orientation Estimation without Annotation for Symmetric
Objects,
WACV20(1657-1666)
IEEE DOI
2006
Training, Generators, Solid modeling, Shape, Robots
BibRef
Dalitz, C.,
Pohle-Frohlich, R.,
Bolten, T.,
Detection of symmetry points in images,
VISAPP13(577-585).
DOI Link
BibRef
1300
Mestetskiy, L.,
Zhuravskaya, A.,
Method for Assessing The Symmetry of Objects On Digital Binary Images
Based On Fourier Descriptor,
PTVSBB19(143-148).
DOI Link
1912
BibRef
Fedotova, S.,
Seredin, O.,
Kushnir, O.,
The Parallel Implementation of Algorithms for Finding the Reflection
Symmetry of the Binary Images,
PTVSBB17(179-184).
DOI Link
1805
BibRef
Gnutti, A.[Alessandro],
Guerrini, F.[Fabrizio],
Leonardi, R.[Riccardo],
2D Discrete Mirror Transform for Image Non-Linear Approximation,
ICPR21(9311-9317)
IEEE DOI
2105
Transforms, Binary trees, Data models, Discrete wavelet transforms,
Mirrors, Discrete cosine transforms
BibRef
Guerrini, F.,
Gnutti, A.,
Leonardi, R.,
InnerSpec: Technical Report,
Symmetry17(1774-1778)
IEEE DOI
1802
Conferences, Image edge detection, Noise measurement,
Object detection, Size measurement,
BibRef
Funk, C.,
Lee, S.,
Oswald, M.R.,
Tsogkas, S.,
Shen, W.,
Cohen, A.,
Dickinson, S.J.,
Liu, Y.,
2017 ICCV Challenge: Detecting Symmetry in the Wild,
Symmetry17(1692-1701)
IEEE DOI
1802
Evaluation, Symmetry. Image segmentation, Lattices, Measurement, Testing,
BibRef
Nagar, R.,
Raman, S.,
SymmMap: Estimation of the 2-D Reflection Symmetry Map and Its
Applications,
Symmetry17(1715-1724)
IEEE DOI
1802
Computational modeling, Image segmentation,
Mirrors, Shape, Solid modeling
BibRef
Nagar, R.,
Raman, S.,
SymmSLIC: Symmetry Aware Superpixel Segmentation,
Symmetry17(1764-1773)
IEEE DOI
1802
Image edge detection, Image segmentation, Mirrors,
Partitioning algorithms, Shape.
BibRef
Cicconet, M.,
Hildebrand, D.G.C.,
Elliott, H.,
Finding Mirror Symmetry via Registration and Optimal Symmetric
Pairwise Assignment of Curves,
Symmetry17(1749-1758)
IEEE DOI
1802
Databases, Eigenvalues and eigenfunctions, Feature extraction,
Mirrors, Shape,
BibRef
Funk, C.,
Liu, Y.,
Beyond Planar Symmetry: Modeling Human Perception of Reflection and
Rotation Symmetries in the Wild,
ICCV17(793-803)
IEEE DOI
1802
face recognition, image classification,
image motion analysis, image representation,
BibRef
Cicconet, M.,
Hildebrand, D.G.C.,
Elliott, H.,
Finding Mirror Symmetry via Registration and Optimal Symmetric
Pairwise Assignment of Curves: Algorithm and Results,
Symmetry17(1759-1763)
IEEE DOI
1802
Databases, Eigenvalues and eigenfunctions, Image edge detection,
Mirrors, Shape,
BibRef
Liu, C.[Chang],
Ke, W.[Wei],
Jiao, J.B.[Jian-Bin],
Ye, Q.X.[Qi-Xiang],
RSRN: Rich Side-Output Residual Network for Medial Axis Detection,
Symmetry17(1739-1743)
IEEE DOI
1802
Computer architecture, Conferences,
Image edge detection, Image segmentation, Runtime, Training
BibRef
Ke, W.,
Chen, J.,
Jiao, J.,
Zhao, G.,
Ye, Q.,
SRN: Side-Output Residual Network for Object Symmetry Detection in
the Wild,
CVPR17(302-310)
IEEE DOI
1711
Benchmark testing, Color, Image segmentation, Semantics, Skeleton,
Stacking, Training
BibRef
Chiang, A.,
Liao, S.,
Image analysis with symmetry properties of Legendre moments,
ICIVC17(386-390)
IEEE DOI
1708
Digital images, Image analysis, Manganese, Measurement,
image reconstruction, legendre moments, moment computing, symmetry properties
BibRef
Guerrini, F.,
Gnutti, A.,
Leonardi, R.,
Image symmetries: The right balance between evenness and perception,
WSSIP17(1-5)
IEEE DOI
1707
Convolution, Correlation, Object recognition,
Symmetry detection, even-odd decomposition,
gradient image analysis, object, detection
BibRef
Lomeli-Rodriguez, J.[Jaime],
Nixon, M.S.[Mark S.],
Learning Salient Structures for the Analysis of Symmetric Patterns,
ICIAR17(286-295).
Springer DOI
1706
BibRef
Migalska, A.[Agata],
Lewis, J.[John],
An information theoretic approach to reflectional symmetry detection,
ICVNZ15(1-6)
IEEE DOI
1701
Gaussian processes
BibRef
Stephenson, M.,
Clark, A.,
Green, R.,
Novel methods for reflective symmetry detection in scanned 3D models,
ICVNZ15(1-6)
IEEE DOI
1701
principal component analysis
BibRef
Funk, C.[Christopher],
Liu, Y.X.[Yan-Xi],
Symmetry reCAPTCHA,
CVPR16(5165-5174)
IEEE DOI
1612
BibRef
Elawady, M.[Mohamed],
Ducottet, C.[Christophe],
Alata, O.[Olivier],
Barat, C.[Cécile],
Colantoni, P.[Philippe],
Wavelet-Based Reflection Symmetry Detection via Textural and Color
Histograms,
Symmetry17(1725-1733)
IEEE DOI
1802
BibRef
And:
Wavelet-Based Reflection Symmetry Detection via Textural and Color
Histograms: Algorithm and Results,
Symmetry17(1734-1738)
IEEE DOI
1802
BibRef
Earlier: A1, A3, A2, A4, A5:
Multiple Reflection Symmetry Detection via Linear-Directional Kernel
Density Estimation,
CAIP17(I: 344-355).
Springer DOI
1708
BibRef
Earlier: A1, A4, A2, A5, Only:
Global Bilateral Symmetry Detection Using Multiscale Mirror Histograms,
ACIVS16(14-24).
Springer DOI
1611
Color, Feature extraction, Frequency-domain analysis, Histograms,
Image color analysis, Image edge detection
BibRef
Larsson, V.[Viktor],
Ċström, K.[Kalle],
Uncovering Symmetries in Polynomial Systems,
ECCV16(III: 252-267).
Springer DOI
1611
BibRef
Atadjanov, I.R.[Ibragim R.],
Lee, S.K.[Seung-Kyu],
Reflection Symmetry Detection via Appearance of Structure Descriptor,
ECCV16(III: 3-18).
Springer DOI
1611
BibRef
Teo, C.L.,
Fermuller, C.,
Aloimonos, Y.,
Detection and Segmentation of 2D Curved Reflection Symmetric
Structures,
ICCV15(1644-1652)
IEEE DOI
1602
Clutter
BibRef
Atadjanov, I.[Ibragim],
Lee, S.K.[Seung-Kyu],
Bilateral symmetry detection based on scale invariant structure
feature,
ICIP15(3447-3451)
IEEE DOI
1512
reflection; structure feature; symmetry detection
BibRef
Yang, H.[Heng],
Patras, I.[Ioannis],
Mirror, mirror on the wall, tell me, is the error small?,
CVPR15(4685-4693)
IEEE DOI
1510
BibRef
Cai, D.Q.[Dong-Qi],
Li, P.Y.[Peng-Yu],
Su, F.[Fei],
Zhao, Z.C.[Zhi-Cheng],
An adaptive symmetry detection algorithm based on local features,
VCIP14(478-481)
IEEE DOI
1504
feature extraction
BibRef
Charan, S.G.,
Symmetric Feature Extraction for Pose Neutralization,
FSLCV14(III: 290-305).
Springer DOI
1504
BibRef
Shehu, A.[Aurela],
Brunton, A.[Alan],
Wuhrer, S.[Stefanie],
Wand, M.[Michael],
Characterization of Partial Intrinsic Symmetries,
NORDIA14(267-282).
Springer DOI
1504
BibRef
Balzer, J.[Jonathan],
Acevedo-Feliz, D.[Daniel],
Soatto, S.[Stefano],
Hofer, S.[Sebastian],
Hadwiger, M.[Markus],
Beyerer, J.[Jurgen],
Cavlectometry:
Towards Holistic Reconstruction of Large Mirror Objects,
3DV14(448-455)
IEEE DOI
1503
Calibration
BibRef
Kuang, Y.B.[Yu-Bin],
Zheng, Y.Q.[Yin-Qiang],
Astrom, K.[Kalle],
Partial Symmetry in Polynomial Systems and Its Applications in
Computer Vision,
CVPR14(438-445)
IEEE DOI
1409
partial symmetry; polynomial equation
BibRef
Cicconet, M.[Marcelo],
Geiger, D.[Davi],
Gunsalus, K.C.[Kristin C.],
Werman, M.[Michael],
Mirror Symmetry Histograms for Capturing Geometric Properties in
Images,
CVPR14(2981-2986)
IEEE DOI
1409
biology
BibRef
Kurtek, S.[Sebastian],
Shen, M.[Mo],
Laga, H.[Hamid],
Elastic reflection symmetry based shape descriptors,
WACV14(293-300)
IEEE DOI
1406
Biology
BibRef
Tohl, D.,
Li, J.S.J.,
Shamiminoori, L.,
Bull, C.M.,
Image asymmetry measurement for the study of endangered Pygmy
Bluetongue Lizard,
IVCNZ13(76-81)
IEEE DOI
1402
digital photography
BibRef
Cao, X.C.[Xiao-Chun],
Zhang, H.[Hua],
Liu, S.[Si],
Guo, X.J.[Xiao-Jie],
Lin, L.[Liang],
SYM-FISH: A Symmetry-Aware Flip Invariant Sketch Histogram Shape
Descriptor,
ICCV13(313-320)
IEEE DOI
1403
BibRef
Lee, T.S.H.[Tom Sie Ho],
Fidler, S.[Sanja],
Dickinson, S.J.[Sven J.],
Detecting Curved Symmetric Parts Using a Deformable Disc Model,
ICCV13(1753-1760)
IEEE DOI
1403
BibRef
Ming, Y.S.[Yan-Sheng],
Li, H.D.[Hong-Dong],
He, X.M.[Xu-Ming],
Symmetry detection via contour grouping,
ICIP13(4259-4263)
IEEE DOI
1402
contour;symmetry detection
BibRef
Teng, K.[Kezhen],
Wang, J.Q.[Jin-Qiao],
Tian, Q.[Qi],
Lu, H.Q.[Han-Qing],
Improving scene classification with weakly spatial symmetry
information,
ICIP13(3259-3263)
IEEE DOI
1402
scene classification;spatial symmetry
BibRef
Negrinho, R.M.P.[Renato M.P.],
Aguiar, P.M.Q.[Pedro M.Q.],
Symmetric polynomials for 2D shape representation,
ICIP14(4732-4736)
IEEE DOI
1502
BibRef
Earlier:
Shape representation via elementary symmetric polynomials:
A complete invariant inspired by the bispectrum,
ICIP13(3518-3522)
IEEE DOI
1402
Arrays.
Bispectrum
BibRef
Salti, S.[Samuele],
Lanza, A.[Alessandro],
di Stefano, L.[Luigi],
Keypoints from Symmetries by Wave Propagation,
CVPR13(2898-2905)
IEEE DOI
1309
Detector; keypoints; symmetry; wave equation
BibRef
Liu, J.C.[Jing-Chen],
Slota, G.[George],
Zheng, G.[Gang],
Wu, Z.H.[Zhao-Hui],
Park, M.W.[Min-Woo],
Lee, S.K.[Seung-Kyu],
Rauschert, I.[Ingmar],
Liu, Y.X.[Yan-Xi],
Symmetry Detection from RealWorld Images Competition 2013:
Summary and Results,
SUW13(200-205)
IEEE DOI
1309
BibRef
Michaelsen, E.[Eckart],
Muench, D.[David],
Arens, M.[Michael],
Recognition of Symmetry Structure by Use of Gestalt Algebra,
SUW13(206-210)
IEEE DOI
1309
algebraic approach;bottom-up search;mirror-symmetry;repetitive patters
BibRef
Patraucean, V.[Viorica],
Ovsjanikov, M.[Maks],
Affine invariant visual phrases for object instance recognition,
MVA15(14-17)
IEEE DOI
1507
Complexity theory
BibRef
Patraucean, V.[Viorica],
von Gioi, R.G.[Rafael Grompone],
Ovsjanikov, M.[Maks],
Detection of Mirror-Symmetric Image Patches,
SUW13(211-216)
IEEE DOI
1309
a contrario;integral images;mirror symmetry
BibRef
Kondra, S.[Shripad],
Petrosino, A.[Alfredo],
Iodice, S.[Sara],
Multi-scale Kernel Operators for Reflection and Rotation Symmetry:
Further Achievements,
SUW13(217-222)
IEEE DOI
1309
BibRef
Xiang, Y.[Yin],
Li, S.T.[Shu-Tao],
Symmetric object detection based on symmetry and centripetal-SIFT edge
descriptor,
ICPR12(1403-1406).
WWW Link.
1302
BibRef
Tsogkas, S.[Stavros],
Kokkinos, I.[Iasonas],
Learning-Based Symmetry Detection in Natural Images,
ECCV12(VII: 41-54).
Springer DOI
1210
BibRef
Tylecek, R.[Radim],
Sara, R.[Radim],
Modeling symmetries for stochastic structural recognition,
SIG11(632-639).
IEEE DOI
1201
BibRef
Hooda, A.[Amit],
Bronstein, M.M.[Michael M.],
Bronstein, A.M.[Alexander M.],
Horaud, R.P.[Radu P.],
Shape Palindromes:
Analysis of Intrinsic Symmetries in 2D Articulated Shapes,
SSVM11(665-676).
Springer DOI
1201
BibRef
Zhao, P.[Peng],
Quan, L.[Long],
Translation symmetry detection in a fronto-parallel view,
CVPR11(1009-1016).
IEEE DOI
1106
BibRef
Liu, J.C.[Jing-Chen],
Liu, Y.X.[Yan-Xi],
Curved Reflection Symmetry Detection with Self-validation,
ACCV10(IV: 102-114).
Springer DOI
1011
BibRef
Mutch, J.[Jim],
Leibo, J.Z.[Joel Z],
Smale, S.[Steve],
Rosasco, L.[Lorenzo],
Poggio, T.[Tomaso],
Neurons That Confuse Mirror-Symmetric Object Views,
CSAIL(TR-2010-062). 2010-12-31
WWW Link.
1101
HVS analysis.
BibRef
Ding, J.J.[Jian-Jiun],
Chao, W.L.[Wei-Lun],
Huang, J.D.[Jiun-De],
Kuo, C.J.[Cheng-Jin],
Asymmetric fourier descriptor of non-closed segments,
ICIP10(1613-1616).
IEEE DOI
1009
BibRef
Zhang, H.[Hui],
Dai, X.B.[Xiu-Bing],
Sun, P.[Pei],
Zhu, H.Q.[Hong-Qing],
Shu, H.Z.[Hua-Zhong],
Symmetric image recognition by Tchebichef moment invariants,
ICIP10(2273-2276).
IEEE DOI
1009
BibRef
Kootstra, G.[Gert],
de Jong, S.[Sjoerd],
Schomaker, L.R.B.[Lambert R.B.],
Using Local Symmetry for Landmark Selection,
CVS09(94-103).
Springer DOI
0910
Use local symmetry to select interest points for SLAM.
BibRef
Kootstra, G.,
Nederveen, A.,
de Boer, B.,
Paying Attention to Symmetry,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Cho, M.S.[Min-Su],
Lee, K.M.[Kyoung Mu],
Bilateral Symmetry Detection via Symmetry-growing,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Gong, Y.H.[Yuan-Hao],
Wang, Q.C.[Qi-Cong],
Yang, C.H.[Chen-Hui],
Gao, Y.H.[Ya-Hui],
Li, C.H.[Cui-Hua],
Symmetry Detection for Multi-object Using Local Polar Coordinate,
CAIP09(277-284).
Springer DOI
0909
BibRef
Teferi, D.[Dereje],
Bigun, J.[Josef],
Multi-view and Multi-scale Recognition of Symmetric Patterns,
SCIA09(657-666).
Springer DOI
0906
Use of symmetries to compute camera pose.
BibRef
Robert-Inacio, F.,
Le Fur, P.,
Symmetry detection for astronomical object study,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Bitsakos, K.,
Yi, H.,
Yi, L.,
Fermuller, C.,
Bilateral symmetry of object silhouettes under perspective projection,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Yang, X.W.[Xing-Wei],
Adluru, N.[Nagesh],
Latecki, L.J.[Longin Jan],
Bai, X.[Xiang],
Pizlo, Z.[Zygmunt],
Symmetry of Shapes Via Self-Similarity,
ISVC08(II: 561-570).
Springer DOI
0812
BibRef
Albarelli, A.[Andrea],
Pelillo, M.[Marcello],
Viviani, S.[Sebastiano],
Consensus Graphs for Symmetry Plane Estimation,
SSPR08(197-206).
Springer DOI
0812
BibRef
Combes, B.[Benoit],
Hennessy, R.[Robin],
Waddington, J.[John],
Roberts, N.[Neil],
Prima, S.[Sylvain],
Automatic symmetry plane estimation of bilateral objects in point
clouds,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Chen, P.,
Hays, J.H.[James H.],
Lee, S.,
Park, M.,
Liu, Y.X.[Yan-Xi],
A Quantitative Evaluation of Symmetry Detection Algorithms,
CMU-RI-TR-07-36, September, 2007.
WWW Link.
BibRef
0709
Aggarwal, G.[Gaurav],
Biswas, S.[Soma],
Chellappa, R.[Rama],
Symmetric Objects are Hardly Ambiguous,
CVPR07(1-7).
IEEE DOI
0706
BibRef
Andres del Valle, A.C.,
Cano, J.,
Bekkali, A.,
Digital Reflection: Simulating the Mirroring Effect,
ICIP06(1021-1024).
IEEE DOI
0610
BibRef
Venkatesh, M.V.,
Cheung, S.E.S.,
Symmetric Shape Completion Under Severe Occlusions,
ICIP06(709-712).
IEEE DOI
0610
BibRef
Li, W.H.[Wai Ho],
Zhang, A.M.[Alan M.],
Kleeman, L.[Lindsay],
Real Time Detection and Segmentation of Reflectionally Symmetric
Objects in Digital Images,
IROS06(xx-yy).
PDF File. Real Time model-free segmentation of objects using symmetry and
Dynamic Programming. Intended for use in robotic applications,
such as grasp planning and object manipulation.
BibRef
0600
Li, W.H.[Wai Ho],
Zhang, A.M.[Alan M.],
Kleeman, L.[Lindsay],
Fast Global Reflectional Symmetry Detection for Robotic Grasping
and Visual Tracking,
ACRA05(xx-yy).
PDF File. Fast symmetry detection using Hough Transform, applied to synthetic
and real images. Tested against Reisfeld's 1995
Generalized Symmetry Transform.
See also Context-Free Attentional Operators: The Generalized Symmetry Transform.
BibRef
0500
Li, W.H.[Wai Ho],
Kleeman, L.[Lindsay],
Real Time Object Tracking using Reflectional Symmetry and Motion,
IROS06(xx-yy).
PDF File. Tracking of Moving Objects, Real-Time Computation
Real Time model-free tracking using reflectional symmetry and motion.
Intended for use in robotic applications.
Videos of tracking results (also available in paper):
WWW Link.
BibRef
0600
Lahdenoja, O.[Olli],
Alhoniemi, E.[Esa],
Laiho, M.[Mika],
Paasio, A.[Ari],
A Shape-Preserving Non-parametric Symmetry Transform,
ICPR06(II: 373-377).
IEEE DOI
0609
BibRef
Perdoch, M.[Michal],
Matas, J.G.[Jiri G.],
Obdrzalek, S.[Stepan],
Stable Affine Frames on Isophotes,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Cornelius, H.[Hugo],
Perdoch, M.[Michal],
Matas, J.G.[Jirí G.],
Loy, G.[Gareth],
Efficient Symmetry Detection Using Local Affine Frames,
SCIA07(152-161).
Springer DOI
0706
BibRef
Cornelius, H.[Hugo],
Loy, G.[Gareth],
Detecting Rotational Symmetry Under Affine Projection,
ICPR06(II: 292-295).
IEEE DOI
0609
BibRef
And:
Detecting Bilateral Symmetry in Perspective,
PercOrg06(191).
IEEE DOI
0609
BibRef
Zhong, H.,
Sze, W.F.,
Hung, Y.S.,
Reconstruction from Plane Mirror Reflection,
ICPR06(I: 715-718).
IEEE DOI
0609
BibRef
Loy, G.[Gareth],
Eklundh, J.O.[Jan-Olof],
Detecting Symmetry and Symmetric Constellations of Features,
ECCV06(II: 508-521).
Springer DOI
0608
BibRef
Kuijper, A.[Arjan],
Olsen, O.F.[Ole Fogh],
Describing and Matching 2D Shapes by Their Points of Mutual Symmetry,
ECCV06(III: 213-225).
Springer DOI
0608
BibRef
Earlier:
Transitions of the pre-symmetry set,
ICPR04(III: 190-193).
IEEE DOI
0409
BibRef
Yuan, T.Q.[Tian-Qiang],
Tang, X.[Xiaoou],
Efficient Local Reflectional Symmetries Detection,
ICIP05(III: 1180-1183).
IEEE DOI
0512
BibRef
Mellor, M.[Matthew],
Brady, M.[Michael],
A New Technique for Local Symmetry Estimation,
ScaleSpace05(38-49).
Springer DOI
0505
BibRef
Yang, A.Y.,
Rao, S.[Shankar],
Huang, K.[Kun],
Hong, W.[Wei],
Ma, Y.[Yi],
Geometric segmentation of perspective images based on symmetry groups,
ICCV03(1251-1258).
IEEE DOI
0311
BibRef
Zhang, Y.[Yan],
Feng, J.F.[Ju-Fu],
Eliminating Variation of Face Images Using Face Symmetry,
AVBPA03(523-530).
Springer DOI
0310
BibRef
Kazhdan, M.[Michael],
Chazelle, B.,
Dobkin, D.,
Finkelstein, A.,
Funkhouser, T.,
A Reflective Symmetry Descriptor,
ECCV02(II: 642 ff.).
Springer DOI
0205
BibRef
Chen, S.D.,
Extraction of Local Mirror-symmetric Feature by Odd-even Decomposition,
ICIP01(III: 756-759).
IEEE DOI
0108
BibRef
Liu, Y.,
Computational Symmetry,
CMU-RI-TR-00-31, December, 2000.
PDF File.
0102
BibRef
Ratnakar, V.[Viresh],
Vasudev, B.[Bhaskaran],
Ivashin, V.[Victor],
Fast dihedral symmetry operations on digital images in the compressed
domain,
ICME00(MP0).
0007
BibRef
Imiya, A.,
Ueno, T.,
Fermin, I.,
Symmetry detection by random sampling and voting process,
CIAP99(400-405).
IEEE DOI
9909
BibRef
Cross, A.D.J.,
Hancock, E.R.,
Scale-Space Vector Fields for Feature Analysis,
CVPR97(738-743).
IEEE DOI
9704
Symmetrics from gradient field.
BibRef
Thai, B.[Bea],
Healey, G.[Glenn],
Extracting Symmetry Features from Color Images,
CVPR97(356-361).
IEEE DOI
9704
Abstract:
HTML Version. Textures within and between color bands; moments from orientation and scale
filters.
BibRef
Thorhallsson, T.[Torfi],
Symmetric Objects in Multiple Affine Views,
Ph.D.Thesis, University of Oxford, 2000.
HTML Version.
BibRef
0001
Thorhallsson, T.,
Detecting Bilateral Symmetry of 3D Point Sets from Affine Views,
BMVC96(Shape).
HTML Version.
9608
University of Oxford
BibRef
Nordberg, K.[Klas],
Granlund, G.H.[Gosta H.],
Equivariance and Invariance: An Approach Based on Lie Groups,
ICIP96(III: 181-184).
IEEE DOI
9610
BibRef
Calway, A.D.,
Image Representation Based on the Affine Symmetry Group,
ICIP96(III: 189-192).
IEEE DOI
BibRef
9600
Wilson, R.G.[Roland G.],
Symmetry and Locality: Uncertainty Revisited,
ICIP96(III: 207-210).
IEEE DOI
BibRef
9600
Urieli, S.,
Porat, M.,
Cohen, N.,
Image characteristics and representation by phase:
From Symmetric to Geometric Structure,
ICIP96(I: 705-708).
IEEE DOI
9610
BibRef
Kelly, M.F.,
Levine, M.D.,
Annular Symmetry Operators:
A Method for Locating and Describing Objects,
ICCV95(1016-1021).
IEEE DOI Detect symmetrical enclosing edge configurations.
BibRef
9500
Posch, S.,
Detecting skewed symmetries,
ICPR92(III:602-606).
IEEE DOI
9208
BibRef
Sugimoto, K.,
Tomita, F.,
Detection of skewed-symmetrical shape,
ICIP94(I: 696-700).
IEEE DOI
9411
BibRef
Wright, M.W.,
Computation of Smoothed Local Symmetries on a MIMD Architecture,
BMVC91(xx-yy).
PDF File.
9109
BibRef
Bruckstein, A.M.,
The self-similarity of digital straight lines,
ICPR90(I: 485-490).
IEEE DOI
9006
BibRef
Gauch, J.M.,
Pizer, S.M.,
Image Description Via the Multiresolution Intensity Axis of Symmetry,
ICCV88(269-274).
IEEE DOI
BibRef
8800
Hel-Or, Y.,
Peleg, S.,
Zabrodsky, H.,
How To Tell Right From Left,
CVPR88(304-309).
IEEE DOI
BibRef
8800
Okazaki, K.,
Kajimi, N.,
Fukui, Y.,
Tamura, S.,
Mitsumoto, H.,
Occlusion-free 3D recovery using mirror images,
ICPR88(I: 17-19).
IEEE DOI
8811
BibRef
Vasilier, A.A.,
Recognition of Symmetrical Patterns in Images,
ICPR84(1027-1029).
BibRef
8400
Radig, B.,
Schlieder, C.,
RS-Automorphisms and Symmetrical Objects,
ICPR84(1138-1140).
BibRef
8400
Bolles, R.C.,
Symmetry Analysis of Two-Dimensional Patterns for Computer Vision,
IJCAI79(70-72).
BibRef
7900
Klinger, A.,
Symmetry in Visual Symbol Sets,
ICPR78(421-425).
BibRef
7800
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Ribbon Descriptions .