Smith, M.R.,
Chen, L.,
Hui, Y.,
Mathews, T.,
Yang, J.,
Zeng, X.,
Alternatives to the Use of the DFT in MRI and
Spectroscopic Reconstructions,
IJIST(8), No. 6, 1997, pp. 558-564.
9712
BibRef
Weller, D.S.,
Polimeni, J.R.,
Grady, L.,
Wald, L.L.,
Adalsteinsson, E.,
Goyal, V.K.,
Sparsity-Promoting Calibration for GRAPPA Accelerated Parallel MRI
Reconstruction,
MedImg(32), No. 7, 2013, pp. 1325-1335.
IEEE DOI
1307
biomedical MRI
BibRef
Weller, D.S.,
Ramani, S.,
Fessler, J.A.,
Augmented Lagrangian with Variable Splitting for Faster Non-Cartesian
L_1-SPIRiT MR Image Reconstruction,
MedImg(33), No. 2, February 2014, pp. 351-361.
IEEE DOI
1403
Fourier transforms
BibRef
Ferrand, G.,
Luong, M.,
Cloos, M.A.,
Amadon, A.,
Wackernagel, H.,
Accelerating Parallel Transmit Array B1 Mapping in High Field MRI
With Slice Undersampling and Interpolation by Kriging,
MedImg(33), No. 8, August 2014, pp. 1726-1734.
IEEE DOI
1408
Arrays
BibRef
Shah, J.A.[Jawad A.],
Qureshi, I.M.[Ijaz M.],
Omer, H.[Hammad],
Khaliq, A.A.[Amir A.],
A modified POCS-based reconstruction method for compressively sampled
MR imaging,
IJIST(24), No. 3, 2014, pp. 203-207.
DOI Link
1408
compressed sensing
BibRef
Choi, J.K.[Jae Kyu],
Park, H.S.[Hyoung Suk],
Wang, S.[Shuai],
Wang, Y.[Yi],
Seo, J.K.[Jin Keun],
Inverse Problem in Quantitative Susceptibility Mapping,
SIIMS(7), No. 3, 2014, pp. 1669-1689.
DOI Link
1410
Quantitative susceptibility mapping.
BibRef
Liu, J.Z.[Jin-Zhen],
Xiong, H.[Hui],
Li, G.[Gang],
Lin, L.[Ling],
The nonlinear variation regularization algorithm for the magnetic
resonance electrical impedance tomography,
IJIST(25), No. 1, 2015, pp. 68-76.
DOI Link
1502
variation regularization algorithm
BibRef
Muckley, M.J.,
Noll, D.C.,
Fessler, J.A.,
Fast Parallel MR Image Reconstruction via B1-Based, Adaptive Restart,
Iterative Soft Thresholding Algorithms (BARISTA),
MedImg(34), No. 2, February 2015, pp. 578-588.
IEEE DOI
1502
Algorithm design and analysis
BibRef
Peng, X.[Xi],
Liang, D.[Dong],
MR Image Reconstruction with Convolutional Characteristic Constraint
(CoCCo),
SPLetters(22), No. 8, August 2015, pp. 1184-1188.
IEEE DOI
1502
biomedical MRI
BibRef
Song, Y.[Yang],
Cai, W.D.[Wei-Dong],
Huang, H.[Heng],
Zhou, Y.[Yun],
Feng, D.D.,
Wang, Y.[Yue],
Fulham, M.J.,
Chen, M.[Mei],
Large Margin Local Estimate With Applications to Medical Image
Classification,
MedImg(34), No. 6, June 2015, pp. 1362-1377.
IEEE DOI
1506
biomedical MRI
BibRef
Bi, L.[Lei],
Kim, J.M.[Jin-Man],
Kumar, A.[Ashnil],
Fulham, M.J.[Michael J.],
Feng, D.D.[David Dagan],
Stacked fully convolutional networks with multi-channel learning:
application to medical image segmentation,
VC(33), No. 6-8, June 2017, pp. 1061-1071.
WWW Link.
1706
BibRef
Pejoski, S.,
Kafedziski, V.,
Gleich, D.,
Compressed Sensing MRI Using Discrete Nonseparable Shearlet Transform
and FISTA,
SPLetters(22), No. 10, October 2015, pp. 1566-1570.
IEEE DOI
1506
biomedical MRI
BibRef
Deng, J.[Jun],
Tan, Y.P.[Yap-Peng],
Motion-compensated orthonormal expansion -minimization for
reference-driven MRI reconstruction using Augmented Lagrangian
methods,
JVCIR(31), No. 1, 2015, pp. 112-124.
Elsevier DOI
1508
Compressed Sensing
BibRef
Balidemaj, E.,
van den Berg, C.A.T.,
Trinks, J.,
van Lier, A.,
Nederveen, A.J.,
Stalpers, L.J.A.,
Crezee, H.,
Remis, R.F.,
CSI-EPT: A Contrast Source Inversion Approach for Improved MRI-Based
Electric Properties Tomography,
MedImg(34), No. 9, September 2015, pp. 1788-1796.
IEEE DOI
1509
Equations
BibRef
van der Heide, O.,
Sbrizzi, A.,
van den Berg, C.A.T.,
Accelerated MR-STAT Reconstructions Using Sparse Hessian
Approximations,
MedImg(39), No. 11, November 2020, pp. 3737-3748.
IEEE DOI
2011
Image reconstruction, Time-domain analysis, Mathematical model,
Magnetization, Imaging, Sparse matrices, Dictionaries,
sparse Hessian approximations
BibRef
Femmam, S.[Smain],
Iles, A.[Amel],
Bessaid, A.[Abdelhafid],
Optimizing magnetic resonance imaging reconstructions,
SPIE(Newsroom), July 24, 2015
DOI Link
1511
The Tikhonov L-curve can be used to determine optimum regularization
parameter values for the generalized autocalibrating partially
parallel acquisitions approach.
BibRef
Gao, X.Z.[Xiang-Zhen],
Du, H.Q.[Hui-Qian],
Jia, R.[Ru],
Mei, W.B.[Wen-Bo],
A magnetic resonance image reconstruction method using support of
first-second order variation,
IJIST(25), No. 4, 2015, pp. 277-284.
DOI Link
1512
compressive sensing
BibRef
Han, Y.[Yu],
Du, H.Q.[Hui-Qian],
Gao, X.Z.[Xiang-Zhen],
Mei, W.B.[Wen-Bo],
MR image reconstruction using cosupport constraints and group sparsity
regularisation,
IET-IPR(11), No. 3, March 2017, pp. 155-163.
DOI Link
1703
BibRef
Shi, B.,
Lian, Q.,
Chen, S.,
Compressed sensing magnetic resonance imaging based on dictionary
updating and block-matching and three-dimensional filtering
regularisation,
IET-IPR(10), No. 1, 2016, pp. 68-79.
DOI Link
1601
biomedical MRI
BibRef
Chun, I.Y.,
Adcock, B.,
Talavage, T.M.,
Efficient Compressed Sensing SENSE pMRI Reconstruction With Joint
Sparsity Promotion,
MedImg(35), No. 1, January 2016, pp. 354-368.
IEEE DOI
1601
Accuracy
BibRef
Zhou, G.,
Zhao, Q.,
Zhang, Y.,
Adali, T.,
Xie, S.,
Cichocki, A.,
Linked Component Analysis From Matrices to High-Order Tensors:
Applications to Biomedical Data,
PIEEE(104), No. 2, February 2016, pp. 310-331.
IEEE DOI
1601
Bioinformatics
BibRef
Chen, H.[Hao],
Tao, J.[Jinxu],
Sun, Y.[Yuli],
Qiu, B.S.[Ben-Sheng],
Ye, Z.F.[Zhong-Fu],
MR imaging reconstruction using a modified descent-type alternating
direction method,
IJIST(26), No. 1, 2016, pp. 43-54.
DOI Link
1604
alternating direction method
BibRef
Zhao, B.,
Setsompop, K.,
Ye, H.,
Cauley, S.F.,
Wald, L.L.,
Maximum Likelihood Reconstruction for Magnetic Resonance
Fingerprinting,
MedImg(35), No. 8, August 2016, pp. 1812-1823.
IEEE DOI
1608
Biomedical imaging
BibRef
Zhu, K.,
Dougherty, R.F.,
Wu, H.,
Middione, M.J.,
Takahashi, A.M.,
Zhang, T.,
Pauly, J.M.,
Kerr, A.B.,
Hybrid-Space SENSE Reconstruction for Simultaneous Multi-Slice MRI,
MedImg(35), No. 8, August 2016, pp. 1824-1836.
IEEE DOI
1608
Coils
BibRef
Li, Y.R.[Yan-Ran],
Chan, R.H.[Raymond H.],
Shen, L.X.[Li-Xin],
Hsu, Y.C.[Yung-Chin],
Tseng, W.Y.I.[Wen-Yih Isaac],
An Adaptive Directional Haar Framelet-Based Reconstruction Algorithm
for Parallel Magnetic Resonance Imaging,
SIIMS(9), No. 2, 2016, pp. 794-821.
DOI Link
1608
BibRef
Eksioglu, E.M.[Ender M.],
Decoupled Algorithm for MRI Reconstruction Using Nonlocal Block
Matching Model: BM3D-MRI,
JMIV(56), No. 3, November 2016, pp. 430-440.
WWW Link.
1609
BibRef
Eksioglu, E.M.,
Tanc, A.,
Denoising AMP for MRI Reconstruction: BM3D-AMP-MRI,
SIIMS(11), No. 3, 2018, pp. 2090-2109.
DOI Link
1810
BibRef
Wu, Y.C.[Ye-Cun],
Du, H.Q.[Hui-Qian],
Mei, W.B.[Wen-Bo],
Filter-based compressed sensing MRI reconstruction,
IJIST(26), No. 3, 2016, pp. 173-178.
DOI Link
1609
compressed sensing (CS)
BibRef
Bahrami, K.,
Shi, F.,
Zong, X.,
Shin, H.W.,
An, H.,
Shen, D.,
Reconstruction of 7T-Like Images From 3T MRI,
MedImg(35), No. 9, September 2016, pp. 2085-2097.
IEEE DOI
1609
Correlation
BibRef
Liu, Y.,
Zhan, Z.,
Cai, J.F.,
Guo, D.,
Chen, Z.,
Qu, X.,
Projected Iterative Soft-Thresholding Algorithm for Tight Frames in
Compressed Sensing Magnetic Resonance Imaging,
MedImg(35), No. 9, September 2016, pp. 2130-2140.
IEEE DOI
1609
Algorithm design and analysis
BibRef
Ehrhardt, M.J.[Matthias J.],
Betcke, M.M.[Marta M.],
Multicontrast MRI Reconstruction with Structure-Guided Total
Variation,
SIIMS(9), No. 3, 2016, pp. 1084-1106.
DOI Link
1610
See also Synergistic Multi-Spectral CT Reconstruction with Directional Total Variation.
BibRef
Gutiérrez, E.B.[Eric B.],
Delplancke, C.[Claire],
Ehrhardt, M.J.[Matthias J.],
Convergence Properties of a Randomized Primal-dual Algorithm with
Applications to Parallel MRI,
SSVM21(254-266).
Springer DOI
2106
BibRef
Natterer, F.[Frank],
Image Reconstruction in Quantitative Susceptibility Mapping,
SIIMS(9), No. 3, 2016, pp. 1127-1131.
DOI Link
1610
MRI data.
BibRef
Roohi, S.F.[Shahrooz F.],
Zonoobi, D.[Dornoosh],
Kassim, A.A.[Ashraf A.],
Jaremko, J.L.[Jacob L.],
Multi-dimensional low rank plus sparse decomposition for
reconstruction of under-sampled dynamic MRI,
PR(63), No. 1, 2017, pp. 667-679.
Elsevier DOI
1612
BibRef
Earlier:
Dynamic MRI reconstruction using low rank plus sparse tensor
decomposition,
ICIP16(1769-1773)
IEEE DOI
1610
Low-rank and sparse tensor decomposition.
Image reconstruction
BibRef
Zonoobi, D.[Dornoosh],
Roohi, S.F.[Shahrooz F.],
Kassim, A.A.[Ashraf A.],
Jaremko, J.L.[Jacob L.],
Dependent nonparametric bayesian group dictionary learning for online
reconstruction of dynamic MR images,
PR(63), No. 1, 2017, pp. 518-530.
Elsevier DOI
1612
Dynamic 3D MRI
BibRef
Mehta, J.[Janki],
Majumdar, A.[Angshul],
RODEO: Robust DE-aliasing autoencOder for real-time medical image
reconstruction,
PR(63), No. 1, 2017, pp. 499-510.
Elsevier DOI
1612
Autoencoder
BibRef
Liu, F.,
Velikina, J.V.,
Block, W.F.,
Kijowski, R.,
Samsonov, A.A.,
Fast Realistic MRI Simulations Based on Generalized Multi-Pool
Exchange Tissue Model,
MedImg(36), No. 2, February 2017, pp. 527-537.
IEEE DOI
1702
Biological system modeling
BibRef
Ramos-Llordén, G.,
den Dekker, A.J.,
Sijbers, J.,
Partial Discreteness:
A Novel Prior for Magnetic Resonance Image Reconstruction,
MedImg(36), No. 5, May 2017, pp. 1041-1053.
IEEE DOI
1609
Bayes methods, Gaussian mixture model, Image reconstruction,
Magnetic resonance imaging, Probability density function,
Reconstruction algorithms, Gaussian Mixture Model,
MRI reconstruction, partial discreteness, segmentation, sparsity
BibRef
Jia, Y.,
Gholipour, A.,
He, Z.,
Warfield, S.K.,
A New Sparse Representation Framework for Reconstruction of an
Isotropic High Spatial Resolution MR Volume From Orthogonal
Anisotropic Resolution Scans,
MedImg(36), No. 5, May 2017, pp. 1182-1193.
IEEE DOI
1705
Magnetic resonance imaging (MRI), orthogonal scans,
overcomplete dictionary, partial volume effects (PVEs),
sparse representation, super-resolution (SR), wavelet, fusion
BibRef
Saucedo, A.,
Lefkimmiatis, S.,
Rangwala, N.,
Sung, K.,
Improved Computational Efficiency of Locally Low Rank MRI
Reconstruction Using Iterative Random Patch Adjustments,
MedImg(36), No. 6, June 2017, pp. 1209-1220.
IEEE DOI
1706
Acceleration, Image reconstruction, Magnetic resonance imaging,
Optimization, Partitioning algorithms, Transforms,
Compressive sensing, locally low-rank regularization,
parallel imaging, parameter, mapping
BibRef
Liu, S.J.[Shu-Jun],
Cao, J.X.[Jian-Xin],
Liu, H.Q.[Hong-Qing],
Shen, X.D.[Xiao-Dong],
Zhang, K.[Kui],
Wang, P.[Pin],
MRI reconstruction using a joint constraint in patch-based total
variational framework,
JVCIR(46), No. 1, 2017, pp. 150-164.
Elsevier DOI
1706
CS-MRI
BibRef
Sakhaee, E.,
Entezari, A.,
Joint Inverse Problems for Signal Reconstruction via Dictionary
Splitting,
SPLetters(24), No. 8, August 2017, pp. 1203-1207.
IEEE DOI
1708
discrete wavelet transforms, inverse problems,
signal reconstruction, signal representation, Bregman splitting,
DWT, SWT, dictionary splitting approach,
discrete wavelet transform, joint inverse problems,
orthogonal dictionaries, parallel sparse recovery problems,
signal reconstruction, sparse signal recovery,
Image reconstruction, Noise reduction, Redundancy,
shift-invariant wavelet transform, sparse, reconstruction
BibRef
Selvi, G.U.V.[G. Uma Vetri],
Nadarajan, R.,
CT and MRI image compression using wavelet-based contourlet transform
and binary array technique,
RealTimeIP(13), No. 2, June 2017, pp. 261-272.
WWW Link.
1708
BibRef
Chen, Z.,
Fu, Y.,
Xiang, Y.,
Rong, R.,
A Novel Iterative Shrinkage Algorithm for CS-MRI via Adaptive
Regularization,
SPLetters(24), No. 10, October 2017, pp. 1443-1447.
IEEE DOI
1710
Newton method, biomedical MRI, compressed sensing,
BibRef
Panic, M.,
Aelterman, J.,
Crnojevic, V.,
Piurica, A.,
Sparse Recovery in Magnetic Resonance Imaging With a Markov Random
Field Prior,
MedImg(36), No. 10, October 2017, pp. 2104-2115.
IEEE DOI
1710
Markov processes, biomedical MRI, compressed sensing,
image reconstruction, medical
BibRef
Wübbeler, G.[Gerd],
Elster, C.[Clemens],
A Large-Scale Optimization Method Using a Sparse Approximation of the
Hessian for Magnetic Resonance Fingerprinting,
SIIMS(10), No. 3, 2017, pp. 979-1004.
DOI Link
1710
BibRef
Ma, T.H.[Tian-Hui],
Lou, Y.F.[Yi-Fei],
Huang, T.Z.[Ting-Zhu],
Truncated L_1-2 Models for Sparse Recovery and Rank Minimization,
SIIMS(10), No. 3, 2017, pp. 1346-1380.
DOI Link
1710
BibRef
Wang, S.,
Tan, S.,
Gao, Y.,
Liu, Q.,
Ying, L.,
Xiao, T.,
Liu, Y.,
Liu, X.,
Zheng, H.,
Liang, D.,
Learning Joint-Sparse Codes for Calibration-Free Parallel MR Imaging,
MedImg(37), No. 1, January 2018, pp. 251-261.
IEEE DOI
1801
biomedical MRI, compressed sensing, image coding, image denoising,
image reconstruction, image representation,
joint sparsity
BibRef
Palacios, B.[Benjamin],
Uhlmann, G.[Gunther],
Wang, Y.[Yiran],
Reducing Streaking Artifacts in Quantitative Susceptibility Mapping,
SIIMS(10), No. 4, 2017, pp. 1921-1934.
DOI Link
1801
See also Inverse Problem in Quantitative Susceptibility Mapping.
BibRef
Schlemper, J.,
Caballero, J.,
Hajnal, J.V.,
Price, A.N.,
Rueckert, D.,
A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image
Reconstruction,
MedImg(37), No. 2, February 2018, pp. 491-503.
IEEE DOI
1802
Compressed sensing, Image reconstruction, Imaging,
Machine learning, Neural networks, Redundancy,
image reconstruction
BibRef
Speidel, T.[Tobias],
Paul, J.[Jan],
Wundrak, S.[Stefan],
Rasche, V.[Volker],
Quasi-Random Single-Point Imaging Using Low-Discrepancy k-Space
Sampling,
MedImg(37), No. 2, February 2018, pp. 473-479.
IEEE DOI
1802
Animals, Compressed sensing, Image reconstruction, Imaging, Metals,
Trajectory, Single-point imaging,
BibRef
Abascal, J.F.P.J.,
Desco, M.,
Parra-Robles, J.,
Incorporation of Prior Knowledge of Signal Behavior Into the
Reconstruction to Accelerate the Acquisition of Diffusion MRI Data,
MedImg(37), No. 2, February 2018, pp. 547-556.
IEEE DOI
1802
Acceleration, Gases, Image reconstruction, Lungs, TV, Ventilation,
Compressed sensing, hyperpolarized gas MRI, lung diffusion MRI,
split Bregman method
BibRef
Levine, E.,
Hargreaves, B.,
On-the-Fly Adaptive k-Space Sampling for Linear MRI Reconstruction
Using Moment-Based Spectral Analysis,
MedImg(37), No. 2, February 2018, pp. 557-567.
IEEE DOI
1802
Acceleration, Eigenvalues and eigenfunctions,
Image reconstruction, Sensitivity, k-space sampling,
parallel MRI
BibRef
Baxter, J.S.H.,
Hosseini, Z.,
Peters, T.M.,
Drangova, M.,
Cyclic Continuous Max-Flow:
A Third Paradigm in Generating Local Phase Shift Maps in MRI,
MedImg(37), No. 2, February 2018, pp. 568-579.
IEEE DOI
1802
Imaging, Linear programming, Manifolds, Mathematical model,
Optimization, Robustness, Topology, MRI phase processing,
variational optimization
BibRef
Rabanillo, I.,
Aja-Fernández, S.,
Alberola-López, C.,
Hernando, D.,
Exact Calculation of Noise Maps and g-Factor in GRAPPA Using a
k-Space Analysis,
MedImg(37), No. 2, February 2018, pp. 480-490.
IEEE DOI
1802
Convolution, Covariance matrices, Estimation, Image reconstruction,
Kernel, GRAPPA, Magnetic resonance imaging, g-factor,
parallel imaging
BibRef
Deka, B.,
Datta, S.,
Handique, S.,
Wavelet Tree Support Detection for Compressed Sensing MRI
Reconstruction,
SPLetters(25), No. 5, May 2018, pp. 730-734.
IEEE DOI
1805
Computational complexity, Data models, Hidden Markov models,
Image reconstruction, Magnetic resonance imaging, Training,
wavelet tree support
BibRef
Bao, S.,
Wang, P.,
Mok, T.C.W.,
Chung, A.C.S.,
3D Randomized Connection Network With Graph-Based Label Inference,
IP(27), No. 8, August 2018, pp. 3883-3892.
IEEE DOI
1806
biomedical MRI, feedforward neural nets, graph theory,
image segmentation, inference mechanisms,
magnetic resonance imaging
BibRef
Yang, G.[Guang],
Yu, S.[Simiao],
Dong, H.[Hao],
Slabaugh, G.[Greg],
Dragotti, P.L.[Pier Luigi],
Ye, X.J.[Xu-Jiong],
Liu, F.D.[Fang-De],
Arridge, S.[Simon],
Keegan, J.[Jennifer],
Guo, Y.K.[Yi-Ke],
Firmin, D.[David],
DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast
Compressed Sensing MRI Reconstruction,
MedImg(37), No. 6, June 2018, pp. 1310-1321.
IEEE DOI
1806
Acceleration, Encoding, Image reconstruction, Machine learning,
Transforms, Compressed sensing, de-aliasing, deep learning, fast MRI,
magnetic resonance imaging (MRI)
BibRef
Gözcü, B.,
Mahabadi, R.K.,
Li, Y.H.,
Ilicak, E.,
Çukur, T.,
Scarlett, J.,
Cevher, V.,
Learning-Based Compressive MRI,
MedImg(37), No. 6, June 2018, pp. 1394-1406.
IEEE DOI
1806
Compressed sensing, Decoding, Image reconstruction,
Machine learning, Magnetic resonance imaging,
learning-based subsampling
BibRef
Quan, T.M.,
Nguyen-Duc, T.,
Jeong, W.K.,
Compressed Sensing MRI Reconstruction Using a Generative Adversarial
Network With a Cyclic Loss,
MedImg(37), No. 6, June 2018, pp. 1488-1497.
IEEE DOI
1806
Databases, Image quality, Image reconstruction,
Machine learning, Magnetic resonance imaging, Training,
MRI
BibRef
Bustin, A.,
Voilliot, D.,
Menini, A.,
Felblinger, J.,
de Chillou, C.,
Burschka, D.,
Bonnemains, L.,
Odille, F.,
Isotropic Reconstruction of MR Images Using 3D Patch-Based
Self-Similarity Learning,
MedImg(37), No. 8, August 2018, pp. 1932-1942.
IEEE DOI
1808
Image reconstruction,
Magnetic resonance imaging, Image resolution, Dictionaries,
super-resolution
BibRef
Datta, S.[Sumit],
Deka, B.[Bhabesh],
Efficient interpolated compressed sensing reconstruction scheme for 3D
MRI,
IET-IPR(12), No. 11, November 2018, pp. 2119-2127.
DOI Link
1810
BibRef
Vogt, T.[Thomas],
Lellmann, J.[Jan],
Measure-Valued Variational Models with Applications to
Diffusion-Weighted Imaging,
JMIV(60), No. 9, November 2018, pp. 1482-1502.
Springer DOI
1810
BibRef
Yang, Y.Y.[Yun-Yun],
Qin, X.[Xuxu],
Wu, B.Y.[Bo-Ying],
Fast and accurate compressed sensing model in magnetic resonance
imaging with median filter and split Bregman method,
IET-IPR(13), No. 1, January 2019, pp. 1-8.
DOI Link
1812
BibRef
Lyu, J.,
Nakarmi, U.,
Liang, D.,
Sheng, J.,
Ying, L.,
KerNL: Kernel-Based Nonlinear Approach to Parallel MRI Reconstruction,
MedImg(38), No. 1, January 2019, pp. 312-321.
IEEE DOI
1901
Coils, Calibration, Image reconstruction, Sensitivity, Kernel,
Magnetic resonance imaging, Kernel, nonlinear model,
parallel imaging
BibRef
Qin, C.,
Schlemper, J.,
Caballero, J.,
Price, A.N.,
Hajnal, J.V.,
Rueckert, D.,
Convolutional Recurrent Neural Networks for Dynamic MR Image
Reconstruction,
MedImg(38), No. 1, January 2019, pp. 280-290.
IEEE DOI
1901
Image reconstruction, Magnetic resonance imaging, Optimization,
Machine learning, Iterative methods, Recurrent neural networks,
cardiac image reconstruction
BibRef
Mardani, M.,
Gong, E.,
Cheng, J.Y.,
Vasanawala, S.S.,
Zaharchuk, G.,
Xing, L.,
Pauly, J.M.,
Deep Generative Adversarial Neural Networks for Compressive Sensing
MRI,
MedImg(38), No. 1, January 2019, pp. 167-179.
IEEE DOI
1901
Image reconstruction, Manifolds,
Magnetic resonance imaging, Training, Generators, Neural networks,
compressed sensing (CS)
BibRef
Zhao, B.,
Haldar, J.P.,
Liao, C.,
Ma, D.,
Jiang, Y.,
Griswold, M.A.,
Setsompop, K.,
Wald, L.L.,
Optimal Experiment Design for Magnetic Resonance Fingerprinting:
Cramér-Rao Bound Meets Spin Dynamics,
MedImg(38), No. 3, March 2019, pp. 844-861.
IEEE DOI
1903
Magnetization, Mathematical model, Signal to noise ratio,
Biomedical imaging, Image reconstruction,
quantitative imaging
BibRef
Kretzler, M.,
Hamilton, J.,
Griswold, M.,
Seiberlich, N.,
a-f BLAST: Non-Iterative Radial k-t BLAST Reconstruction for
Real-Time Imaging,
MedImg(38), No. 3, March 2019, pp. 775-790.
IEEE DOI
1903
Image reconstruction, Discrete Fourier transforms,
Dynamics, Magnetic resonance imaging,
spatio-temporal domain
BibRef
Karsa, A.,
Shmueli, K.,
SEGUE: A Speedy rEgion-Growing Algorithm for Unwrapping Estimated
Phase,
MedImg(38), No. 6, June 2019, pp. 1347-1357.
IEEE DOI
1906
Magnetic resonance imaging, Merging,
Standards, Brain, Phase distortion,
susceptibility mapping
BibRef
Tezcan, K.C.,
Baumgartner, C.F.,
Luechinger, R.,
Pruessmann, K.P.,
Konukoglu, E.,
MR Image Reconstruction Using Deep Density Priors,
MedImg(38), No. 7, July 2019, pp. 1633-1642.
IEEE DOI
1907
Image reconstruction, Reconstruction algorithms, Training,
Data models, Signal processing algorithms, Mathematical model,
density estimation
BibRef
Dong, G.,
Hintermüller, M.,
Papafitsoros, K.,
Quantitative Magnetic Resonance Imaging: From Fingerprinting to
Integrated Physics-Based Models,
SIIMS(12), No. 2, 2019, pp. 927-971.
DOI Link
1907
BibRef
Shahdloo, M.,
Ilicak, E.,
Tofighi, M.,
Saritas, E.U.,
Çetin, A.E.,
Çukur, T.,
Projection onto Epigraph Sets for Rapid Self-Tuning Compressed
Sensing MRI,
MedImg(38), No. 7, July 2019, pp. 1677-1689.
IEEE DOI
1907
Image reconstruction, Coils, TV, Calibration,
Magnetic resonance imaging, Compressed sensing (CS),
multi-acquisition
BibRef
Huynh, K.M.,
Chen, G.,
Wu, Y.,
Shen, D.,
Yap, P.,
Multi-Site Harmonization of Diffusion MRI Data via Method of Moments,
MedImg(38), No. 7, July 2019, pp. 1599-1609.
IEEE DOI
1907
Magnetic resonance imaging, Method of moments, Sociology,
Statistics, Protocols, Anisotropic magnetoresistance,
method of moments
BibRef
Hu, Y.,
Liu, X.,
Jacob, M.,
A Generalized Structured Low-Rank Matrix Completion Algorithm for MR
Image Recovery,
MedImg(38), No. 8, August 2019, pp. 1841-1851.
IEEE DOI
1908
Convolution, Image reconstruction, Magnetic resonance imaging,
Jacobian matrices, Optimization, TV, Approximation algorithms,
image recovery
BibRef
Fang, Z.,
Chen, Y.,
Liu, M.,
Xiang, L.,
Zhang, Q.,
Wang, Q.,
Lin, W.,
Shen, D.,
Deep Learning for Fast and Spatially Constrained Tissue
Quantification From Highly Accelerated Data in Magnetic Resonance
Fingerprinting,
MedImg(38), No. 10, October 2019, pp. 2364-2374.
IEEE DOI
1910
BibRef
And:
Erratum:
MedImg(39), No. 2, February 2020, pp. 543-543.
IEEE DOI
2002
Imaging, Feature extraction, Dictionaries, Deep learning,
Mathematical model, Acceleration, Learning systems,
tissue quantification
BibRef
Dar, S.U.,
Yurt, M.,
Karacan, L.,
Erdem, A.,
Erdem, E.,
Çukur, T.,
Image Synthesis in Multi-Contrast MRI With Conditional Generative
Adversarial Networks,
MedImg(38), No. 10, October 2019, pp. 2375-2388.
IEEE DOI
1910
Magnetic resonance imaging, Image generation,
Generative adversarial networks,
cycleconsistency loss
BibRef
Stolk, C.C.,
Sbrizzi, A.,
Understanding the Combined Effect of k-Space Undersampling and
Transient States Excitation in MR Fingerprinting Reconstructions,
MedImg(38), No. 10, October 2019, pp. 2445-2455.
IEEE DOI
1910
Image reconstruction, Mathematical model, Transient analysis,
Radio frequency, Magnetization, Perturbation methods,
quantitative MRI
BibRef
Zhu, Q.Y.[Qing-Yong],
Ren, Y.[Yanan],
Qiu, Z.L.[Zhi-Lang],
Wang, W.[Wei],
Robust MR image super-resolution reconstruction with cross-modal
edge-preserving regularization,
IJIST(29), No. 4, 2019, pp. 491-500.
DOI Link
1911
alternating optimization, cross modal, edge preserving,
MRI super-resolution, multimodal registration
BibRef
Jiang, M.F.[Ming-Feng],
Lu, L.[Liang],
Shen, Y.[Yi],
Wu, L.[Long],
Gong, Y.L.[Ying-Lan],
Xia, L.[Ling],
Liu, F.[Feng],
Directional tensor product complex tight framelets for compressed
sensing MRI reconstruction,
IET-IPR(13), No. 12, October 2019, pp. 2183-2189.
DOI Link
1911
BibRef
Zeng, W.[Wei],
Peng, J.[Jie],
Wang, S.S.[Shan-Shan],
Liu, Q.[Qiegen],
A comparative study of CNN-based super-resolution methods in MRI
reconstruction and its beyond,
SP:IC(81), 2020, pp. 115701.
Elsevier DOI
1912
MRI reconstruction, Super-resolution, Cascade network, Dense connection
BibRef
Doneva, M.,
Mathematical Models for Magnetic Resonance Imaging Reconstruction: An
Overview of the Approaches, Problems, and Future Research Areas,
SPMag(37), No. 1, January 2020, pp. 24-32.
IEEE DOI
2001
Image reconstruction, Magnetic resonance imaging,
Magnetic fields, Magnetic field measurement, Compressed sensing,
Encoding
BibRef
Fessler, J.A.,
Optimization Methods for Magnetic Resonance Image Reconstruction: Key
Models and Optimization Algorithms,
SPMag(37), No. 1, January 2020, pp. 33-40.
IEEE DOI
2001
Magnetic resonance imaging, Image reconstruction, Cost function,
Signal processing algorithms, Compressed sensing, Computational modeling
BibRef
Wen, B.,
Ravishankar, S.,
Pfister, L.,
Bresler, Y.,
Transform Learning for Magnetic Resonance Image Reconstruction: From
Model-Based Learning to Building Neural Networks,
SPMag(37), No. 1, January 2020, pp. 41-53.
IEEE DOI
2001
Magnetic resonance imaging, Image reconstruction, Transforms,
Computational modeling, Adaptation models, Compressed sensing
BibRef
Jacob, M.,
Mani, M.P.,
Ye, J.C.,
Structured Low-Rank Algorithms: Theory, Magnetic Resonance
Applications, and Links to Machine Learning,
SPMag(37), No. 1, January 2020, pp. 54-68.
IEEE DOI
2001
Magnetic resonance imaging, Signal processing algorithms,
Compressed sensing, Extrapolation, Sensitivity, Interpolation
BibRef
Aggarwal, H.K.,
Mani, M.P.,
Jacob, M.,
MoDL-MUSSELS: Model-Based Deep Learning for Multishot
Sensitivity-Encoded Diffusion MRI,
MedImg(39), No. 4, April 2020, pp. 1268-1277.
IEEE DOI
2004
Magnetic resonance imaging, Convolution, Deep learning,
Image reconstruction, Distortion, Computational complexity,
convolutional neural network
BibRef
Haldar, J.P.,
Setsompop, K.,
Linear Predictability in Magnetic Resonance Imaging Reconstruction:
Leveraging Shift-Invariant Fourier Structure for Faster and Better
Imaging,
SPMag(37), No. 1, January 2020, pp. 69-82.
IEEE DOI
2001
Magnetic resonance imaging, Image reconstruction, Calibration,
Compressed sensing, Extrapolation, Data models
BibRef
Tamir, J.I.,
Ong, F.,
Anand, S.,
Karasan, E.,
Wang, K.,
Lustig, M.,
Computational MRI With Physics-Based Constraints:
Application to Multicontrast and Quantitative Imaging,
SPMag(37), No. 1, January 2020, pp. 94-104.
IEEE DOI
2001
Magnetic resonance imaging, Magnetization, Mathematical model,
Radio frequency, Image reconstruction, Computational modeling,
Compressed sensing
BibRef
Ahmad, R.,
Bouman, C.A.,
Buzzard, G.T.,
Chan, S.,
Liu, S.,
Reehorst, E.T.,
Schniter, P.,
Plug-and-Play Methods for Magnetic Resonance Imaging: Using Denoisers
for Image Recovery,
SPMag(37), No. 1, January 2020, pp. 105-116.
IEEE DOI
2001
Magnetic resonance imaging, Signal processing algorithms,
Compressed sensing, Noise reduction, Optimization, Acceleration
BibRef
Knoll, F.,
Hammernik, K.,
Zhang, C.,
Moeller, S.,
Pock, T.,
Sodickson, D.K.,
Akcakaya, M.,
Deep-Learning Methods for Parallel Magnetic Resonance Imaging
Reconstruction: A Survey of the Current Approaches, Trends, and
Issues,
SPMag(37), No. 1, January 2020, pp. 128-140.
IEEE DOI
2001
Image reconstruction, Magnetic resonance imaging,
Compressed sensing, Machine learning
BibRef
Liang, D.,
Cheng, J.,
Ke, Z.,
Ying, L.,
Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet
Neural Networks,
SPMag(37), No. 1, January 2020, pp. 141-151.
IEEE DOI
2001
Image reconstruction, Magnetic resonance imaging,
Compressed sensing, Deep learning, Optimization, Reconstruction algorithms
BibRef
Han, Y.,
Sunwoo, L.,
Ye, J.C.,
k-Space Deep Learning for Accelerated MRI,
MedImg(39), No. 2, February 2020, pp. 377-386.
IEEE DOI
2002
Deep learning, Convolution, Neural networks, Matrix converters,
Matrix decomposition, Interpolation, Signal representation,
convolution framelets
BibRef
Song, P.F.[Ping-Fan],
Weizman, L.[Lior],
Mota, J.F.C.[Joăo F. C.],
Eldar, Y.C.[Yonina C.],
Rodrigues, M.R.D.[Miguel R. D.],
Coupled Dictionary Learning for Multi-Contrast MRI Reconstruction,
MedImg(39), No. 3, March 2020, pp. 621-633.
IEEE DOI
2004
BibRef
Earlier:
ICIP18(2880-2884)
IEEE DOI
1809
Image reconstruction, Magnetic resonance imaging,
Machine learning, Dictionaries, Noise reduction, Correlation,
MR fingerprinting.
Matching pursuit algorithms, guidance information
BibRef
Park, S.,
Chen, L.,
Townsend, J.,
Lee, H.,
Feinberg, D.A.,
Simultaneous Multi-VENC and Simultaneous Multi-Slice Phase Contrast
Magnetic Resonance Imaging,
MedImg(39), No. 3, March 2020, pp. 742-752.
IEEE DOI
2004
Radio frequency, Magnetic resonance imaging, Encoding,
Steady-state, Image reconstruction, CAIPIRINHA
BibRef
Song, G.,
Sun, Y.,
Liu, J.,
Wang, Z.,
Kamilov, U.S.,
A New Recurrent Plug-and-Play Prior Based on the Multiple
Self-Similarity Network,
SPLetters(27), 2020, pp. 451-455.
IEEE DOI
2004
Image reconstruction, Magnetic resonance imaging, Head,
Recurrent neural networks, Task analysis,
deep learning
BibRef
Sharma, A.,
Hamarneh, G.,
Missing MRI Pulse Sequence Synthesis Using Multi-Modal Generative
Adversarial Network,
MedImg(39), No. 4, April 2020, pp. 1170-1183.
IEEE DOI
2004
Magnetic resonance imaging, Pipelines, Tumors,
Decoding, Generative adversarial networks, multi-modal, synthesis
BibRef
Jeyaraj, P.R.[Pandia Rajan],
Nadar, E.R.S.[Edward Rajan Samuel],
High-performance dynamic magnetic resonance image reconstruction and
synthesis employing deep feature learning convolutional networks,
IJIST(30), No. 2, 2020, pp. 380-390.
DOI Link
2005
dynamic MRI image reconstruction, fine-tuned deep learning,
MR image synthesis, visualization
BibRef
Ong, F.,
Uecker, M.,
Lustig, M.,
Accelerating Non-Cartesian MRI Reconstruction Convergence Using
k-Space Preconditioning,
MedImg(39), No. 5, May 2020, pp. 1646-1654.
IEEE DOI
2005
Image reconstruction, Convergence, Magnetic resonance imaging,
Gradient methods, Acceleration, Trajectory, MRI,
density compensation
BibRef
Zhang, J.C.[Jia-Cheng],
Brindise, M.C.[Melissa C.],
Rothenberger, S.[Sean],
Schnell, S.[Susanne],
Markl, M.[Michael],
Saloner, D.[David],
Rayz, V.L.[Vitaliy L.],
Vlachos, P.P.[Pavlos P.],
4D Flow MRI Pressure Estimation Using Velocity
Measurement-Error-Based Weighted Least-Squares,
MedImg(39), No. 5, May 2020, pp. 1668-1680.
IEEE DOI
2005
Magnetic resonance imaging, Velocity measurement,
Pressure measurement, Biomedical measurement, weighted least-squares
BibRef
El Hajj, C.[Christian],
Moussaoui, S.[Saďd],
Collewet, G.[Guylaine],
Musse, M.[Maja],
Multi-Exponential Transverse Relaxation Times Estimation From
Magnetic Resonance Images Under Rician Noise and Spatial
Regularization,
IP(29), 2020, pp. 6721-6733.
IEEE DOI
2007
BibRef
Earlier:
Spatially Regularized Multi-Exponential Transverse Relaxation Times
Estimation from Magnitude Magnetic Resonance Images Under Rician
Noise,
ICIP19(1143-1147)
IEEE DOI
1910
Magnetic resonance imaging, Rician channels, Minimization,
Parameter estimation, Signal to noise ratio,
T2~relaxation times.
Maximum-Likelihood, Spatial Regularization,
Majoration-Minimization, Rician noise, Multi-T2
BibRef
Yu, B.,
Zhou, L.,
Wang, L.,
Shi, Y.,
Fripp, J.,
Bourgeat, P.,
Sample-Adaptive GANs: Linking Global and Local Mappings for
Cross-Modality MR Image Synthesis,
MedImg(39), No. 7, July 2020, pp. 2339-2350.
IEEE DOI
2007
Image synthesis, Training, Adaptation models,
Biomedical imaging, Feature extraction,
brain
BibRef
Lazarus, C.[Carole],
März, M.[Maximilian],
Weiss, P.[Pierre],
Correcting the Side Effects of ADC Filtering in MR Image Reconstruction,
JMIV(62), No. 6-7, July 2020, pp. 1034-1047.
Springer DOI
2007
BibRef
Wang, G.,
Gong, E.,
Banerjee, S.,
Martin, D.,
Tong, E.,
Choi, J.,
Chen, H.,
Wintermark, M.,
Pauly, J.M.,
Zaharchuk, G.,
Synthesize High-Quality Multi-Contrast Magnetic Resonance Imaging
From Multi-Echo Acquisition Using Multi-Task Deep Generative Model,
MedImg(39), No. 10, October 2020, pp. 3089-3099.
IEEE DOI
2010
Magnetic resonance imaging, Generators, Machine learning,
Generative adversarial networks, Training, Image reconstruction,
image fusion
BibRef
Cai, J.F.[Jian-Feng],
Choi, J.K.[Jae Kyu],
Wei, K.[Ke],
Data Driven Tight Frame for Compressed Sensing MRI Reconstruction via
Off-the-Grid Regularization,
SIIMS(13), No. 3, 2020, pp. 1272-1301.
DOI Link
2010
BibRef
Liu, R.,
Zhang, Y.,
Cheng, S.,
Luo, Z.,
Fan, X.,
A Deep Framework Assembling Principled Modules for CS-MRI:
Unrolling Perspective, Convergence Behaviors, and Practical Modeling,
MedImg(39), No. 12, December 2020, pp. 4150-4163.
IEEE DOI
2012
Image reconstruction, Optimization, Reliability, Rician channels,
Magnetic resonance imaging, Machine learning, Compressed sensing, Rician noise
BibRef
Cao, C.H.[Chun-Hong],
Duan, W.[Wei],
Hu, K.[Kai],
Xiao, F.[Fen],
Compressive sensing MR imaging based on adaptive tight frame and
reference image,
IET-IPR(14), No. 14, December 2020, pp. 3508-3515.
DOI Link
2012
BibRef
Edupuganti, V.,
Mardani, M.,
Vasanawala, S.,
Pauly, J.,
Uncertainty Quantification in Deep MRI Reconstruction,
MedImg(40), No. 1, January 2021, pp. 239-250.
IEEE DOI
2012
Image reconstruction, Uncertainty, Magnetic resonance imaging,
Biomedical imaging, Data models, Training, Probabilistic logic,
SURE
BibRef
Lei, K.,
Mardani, M.,
Pauly, J.M.,
Vasanawala, S.S.,
Wasserstein GANs for MR Imaging: From Paired to Unpaired Training,
MedImg(40), No. 1, January 2021, pp. 105-115.
IEEE DOI
2012
Training, Image reconstruction, Magnetic resonance imaging,
Task analysis, Generators,
Wasserstein training
BibRef
Shen, M.[Marui],
Li, J.C.[Jin-Cheng],
Zhang, T.[Tao],
Zou, J.[Jian],
Magnetic resonance imaging reconstruction via non-convex total
variation regularization,
IJIST(31), No. 1, 2021, pp. 412-424.
DOI Link
2102
ADMM, minmax-concave penalty, Moreau envelope,
MRI reconstruction, TV regularization
BibRef
Zhao, C.,
Dewey, B.E.,
Pham, D.L.,
Calabresi, P.A.,
Reich, D.S.,
Prince, J.L.,
SMORE: A Self-Supervised Anti-Aliasing and Super-Resolution Algorithm
for MRI Using Deep Learning,
MedImg(40), No. 3, March 2021, pp. 805-817.
IEEE DOI
2103
Magnetic resonance imaging,
Training data, Protocols,
anti-aliasing
BibRef
Qi, H.[Haikun],
Cruz, G.[Gastao],
Botnar, R.[René],
Prieto, C.[Claudia],
Synergistic multi-contrast cardiac magnetic resonance image
reconstruction,
Royal(A: 379), No. 2200, June 2021, pp. 20200197.
DOI Link
2107
BibRef
Wang, X.Q.[Xiao-Qing],
Tan, Z.G.[Zheng-Guo],
Scholand, N.[Nick],
Roeloffs, V.[Volkert],
Uecker, M.[Martin],
Physics-based reconstruction methods for magnetic resonance imaging,
Royal(A: 379), No. 2200, June 2021, pp. 20200196.
DOI Link
2107
BibRef
Lv, J.[Jun],
Zhu, J.[Jin],
Yang, G.[Guang],
Which GAN? A comparative study of generative adversarial network-based
fast MRI reconstruction,
Royal(A: 379), No. 2200, June 2021, pp. 20200203.
DOI Link
2107
BibRef
You, D.[Di],
Zhang, J.[Jian],
Xie, J.F.[Jing-Fen],
Chen, B.[Bin],
Ma, S.W.[Si-Wei],
COAST:
COntrollable Arbitrary-Sampling NeTwork for Compressive Sensing,
IP(30), 2021, pp. 6066-6080.
IEEE DOI
2107
Image reconstruction, Training, Compressed sensing, Task analysis,
Magnetic resonance imaging, Inverse problems, optimization-inspired
BibRef
Gutierrez, A.[Alex],
Mullen, M.[Michael],
Xiao, D.[Di],
Jang, A.[Albert],
Froelich, T.[Taylor],
Garwood, M.[Michael],
Haupt, J.[Jarvis],
Reducing the Complexity of Model-Based MRI Reconstructions via
Sparsification,
MedImg(40), No. 9, September 2021, pp. 2477-2486.
IEEE DOI
2109
Image reconstruction, Magnetic resonance imaging,
Computational modeling, Mathematical model, Encoding, sparsification
BibRef
Xuan, K.[Kai],
Si, L.P.[Li-Ping],
Zhang, L.[Lichi],
Xue, Z.[Zhong],
Jiao, Y.N.[Yi-Ning],
Yao, W.W.[Wei-Wu],
Shen, D.G.[Ding-Gang],
Wu, D.J.[Di-Jia],
Wang, Q.[Qian],
Reducing magnetic resonance image spacing by learning without
ground-truth,
PR(120), 2021, pp. 108103.
Elsevier DOI
2109
Generative adversarial network, Magnetic resonance imaging,
Super-resolution, Variational auto-encoder
BibRef
Muckley, M.J.[Matthew J.],
Riemenschneider, B.[Bruno],
Radmanesh, A.[Alireza],
Kim, S.[Sunwoo],
Jeong, G.[Geunu],
Ko, J.Y.[Jing-Yu],
Jun, Y.[Yohan],
Shin, H.[Hyungseob],
Hwang, D.[Dosik],
Mostapha, M.[Mahmoud],
Arberet, S.[Simon],
Nickel, D.[Dominik],
Ramzi, Z.[Zaccharie],
Ciuciu, P.[Philippe],
Starck, J.L.[Jean-Luc],
Teuwen, J.[Jonas],
Karkalousos, D.[Dimitrios],
Zhang, C.[Chaoping],
Sriram, A.[Anuroop],
Huang, Z.[Zhengnan],
Yakubova, N.[Nafissa],
Lui, Y.W.[Yvonne W.],
Knoll, F.[Florian],
Results of the 2020 fastMRI Challenge for Machine Learning MR Image
Reconstruction,
MedImg(40), No. 9, September 2021, pp. 2306-2317.
IEEE DOI
2109
Magnetic resonance imaging, Image reconstruction, Acceleration,
Machine learning, Data models, Training, Pathology, Challenge,
optimization
BibRef
Guo, P.F.[Peng-Fei],
Wang, P.[Puyang],
Yasarla, R.[Rajeev],
Zhou, J.Y.[Jin-Yuan],
Patel, V.M.[Vishal M.],
Jiang, S.S.[Shan-Shan],
Anatomic and Molecular MR Image Synthesis Using Confidence Guided
CNNs,
MedImg(40), No. 10, October 2021, pp. 2832-2844.
IEEE DOI
2110
Lesions, Image synthesis, Training, Magnetic resonance imaging,
Image segmentation, Generative adversarial networks, Decoding,
segmentation
BibRef
Guruprasad, S.[Shrividya],
Bharathi, S.H.,
Anto Ramesh Delvi, D.,
Effective compressed sensing MRI reconstruction via hybrid GSGWO
algorithm,
JVCIR(80), 2021, pp. 103274.
Elsevier DOI
2110
Compressed sensing, Cross guided bilateral filter,
Quasi random sampling,
Hybridized Walsh Hadamard Transform and Discrete Wavelet Transform
BibRef
Zou, Q.[Qing],
Ahmed, A.H.[Abdul Haseeb],
Nagpal, P.[Prashant],
Kruger, S.[Stanley],
Jacob, M.[Mathews],
Dynamic Imaging Using a Deep Generative SToRM (Gen-SToRM) Model,
MedImg(40), No. 11, November 2021, pp. 3102-3112.
IEEE DOI
2111
Manifolds, Storms, Magnetic resonance imaging,
Time series analysis, Generators, Imaging, Electronics packaging,
deep image prior
BibRef
Lahiri, A.[Anish],
Wang, G.H.[Guan-Hua],
Ravishankar, S.[Saiprasad],
Fessler, J.A.[Jeffrey A.],
Blind Primed Supervised (BLIPS) Learning for MR Image Reconstruction,
MedImg(40), No. 11, November 2021, pp. 3113-3124.
IEEE DOI
2111
Image reconstruction, Dictionaries, Supervised learning,
Transforms, Training data, Training, Reconstruction algorithms,
sparse representations
BibRef
Oh, G.[Gyutaek],
Lee, J.E.[Jeong Eun],
Ye, J.C.[Jong Chul],
Unpaired MR Motion Artifact Deep Learning Using Outlier-Rejecting
Bootstrap Aggregation,
MedImg(40), No. 11, November 2021, pp. 3125-3139.
IEEE DOI
2111
Motion artifacts, Magnetic resonance imaging, Deep learning,
Image reconstruction, Imaging, Transient analysis, Training,
MRI
BibRef
Yarnykh, V.L.[Vasily L.],
Data-Driven Retrospective Correction of B1 Field Inhomogeneity in
Fast Macromolecular Proton Fraction and R1 Mapping,
MedImg(40), No. 12, December 2021, pp. 3473-3484.
IEEE DOI
2112
Protons, Radio frequency, Magnetization,
Magnetic resonance imaging, Nonhomogeneous media,
T1 relaxation
BibRef
Quan, C.[Cong],
Zhou, J.J.[Jin-Jie],
Zhu, Y.Z.[Yuan-Zheng],
Chen, Y.[Yang],
Wang, S.S.[Shan-Shan],
Liang, D.[Dong],
Liu, Q.[Qiegen],
Homotopic Gradients of Generative Density Priors for MR Image
Reconstruction,
MedImg(40), No. 12, December 2021, pp. 3265-3278.
IEEE DOI
2112
Image reconstruction, Magnetic resonance imaging, Training,
Standards, Encoding, Data models, Unsupervised learning,
homotopic gradients
BibRef
Dhengre, N.[Nikhil],
Sinha, S.[Saugata],
An edge guided cascaded U-net approach for accelerated magnetic
resonance imaging reconstruction,
IJIST(31), No. 4, 2021, pp. 2014-2022.
DOI Link
2112
compressive sensing magnetic resonance imaging reconstruction, U-net
BibRef
Yang, X.M.[Xiao-Mei],
Mei, Y.[Yubo],
Hu, X.Y.[Xun-Yong],
Luo, R.S.[Rui-Seng],
Liu, K.[Kai],
Compressed Sensing MRI by Integrating Deep Denoiser and Weighted
Schatten P-Norm Minimization,
SPLetters(29), 2022, pp. 21-25.
IEEE DOI
2202
Magnetic resonance imaging, Image reconstruction,
Noise reduction, Indexes, AWGN, TV, Noise level, Deep prior, FFDNet,
Plug-and-play
BibRef
Chen, Y.T.[Yu-Tong],
Schönlieb, C.B.[Carola-Bibiane],
Liň, P.[Pietro],
Leiner, T.[Tim],
Dragotti, P.L.[Pier Luigi],
Wang, G.[Ge],
Rueckert, D.[Daniel],
Firmin, D.[David],
Yang, G.[Guang],
AI-Based Reconstruction for Fast MRI:
A Systematic Review and Meta-Analysis,
PIEEE(110), No. 2, February 2022, pp. 224-245.
IEEE DOI
2202
Deep learning, Systematics, Magnetic resonance imaging,
Neural networks, Complexity theory, Artificial intelligence,
neural network
BibRef
Narnhofer, D.[Dominik],
Effland, A.[Alexander],
Kobler, E.[Erich],
Hammernik, K.[Kerstin],
Knoll, F.[Florian],
Pock, T.[Thomas],
Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction,
MedImg(41), No. 2, February 2022, pp. 279-291.
IEEE DOI
2202
Magnetic resonance imaging, Image reconstruction, Uncertainty,
Bayes methods, Optimal control, Inverse problems, Estimation, Bayes' theorem
BibRef
Guo, L.[Li],
Lyu, J.[Jian],
Zhang, Z.[Zhe],
Shi, J.P.[Jin-Ping],
Feng, Q.J.[Qian-Jin],
Feng, Y.Q.[Yan-Qiu],
Gao, M.Y.[Ming-Yong],
Zhang, X.Y.[Xin-Yuan],
A Joint Framework for Denoising and Estimating Diffusion Kurtosis
Tensors Using Multiple Prior Information,
MedImg(41), No. 2, February 2022, pp. 308-319.
IEEE DOI
2202
Tensors, Estimation, Fitting, Noise reduction,
Medical diagnostic imaging, Signal to noise ratio, prior information
BibRef
Mehta, R.[Raghav],
Christinck, T.[Thomas],
Nair, T.[Tanya],
Bussy, A.[Aurélie],
Premasiri, S.[Swapna],
Costantino, M.[Manuela],
Chakravarthy, M.M.[M. Mallar],
Arnold, D.L.[Douglas L.],
Gal, Y.[Yarin],
Arbel, T.[Tal],
Propagating Uncertainty Across Cascaded Medical Imaging Tasks for
Improved Deep Learning Inference,
MedImg(41), No. 2, February 2022, pp. 360-373.
IEEE DOI
2202
Task analysis, Uncertainty, Lesions, Biomedical imaging,
Image segmentation, Deep learning, Magnetic resonance imaging,
classification
BibRef
Park, J.[Juhyung],
Jung, W.[Woojin],
Choi, E.J.[Eun-Jung],
Oh, S.H.[Se-Hong],
Jang, J.H.[Jin-Hee],
Shin, D.[Dongmyung],
An, H.J.[Hong-Jun],
Lee, J.[Jongho],
DIFFnet: Diffusion Parameter Mapping Network Generalized for Input
Diffusion Gradient Schemes and b-Value,
MedImg(41), No. 2, February 2022, pp. 491-499.
IEEE DOI
2202
Diffusion tensor imaging, Image reconstruction, Deep learning,
Training, Protons, Training data, Deep learning, dMRI reconstruction,
magnetic resonance imaging
BibRef
Wang, H.Q.[Hao-Qian],
Hu, X.W.[Xiao-Wan],
Zhao, X.L.[Xiao-Le],
Zhang, Y.L.[Yu-Lun],
Wide Weighted Attention Multi-Scale Network for Accurate MR Image
Super-Resolution,
CirSysVideo(32), No. 3, March 2022, pp. 962-975.
IEEE DOI
2203
Feature extraction, Convolution, Superresolution, Task analysis,
Image reconstruction, Medical diagnostic imaging, Deep learning,
weighted fusion
BibRef
Hu, Y.[Yue],
Li, P.[Peng],
Chen, H.[Hao],
Zou, L.X.[Li-Xian],
Wang, H.F.[Hai-Feng],
High-Quality MR Fingerprinting Reconstruction Using Structured
Low-Rank Matrix Completion and Subspace Projection,
MedImg(41), No. 5, May 2022, pp. 1150-1164.
IEEE DOI
2205
Image reconstruction, Dictionaries, Magnetic resonance imaging,
Data models, Pattern matching, Heuristic algorithms, Sensitivity,
subspace projection
BibRef
Qiao, Y.C.[Yu-Chuan],
Shi, Y.G.[Yong-Gang],
Unsupervised Deep Learning for FOD-Based Susceptibility Distortion
Correction in Diffusion MRI,
MedImg(41), No. 5, May 2022, pp. 1165-1175.
IEEE DOI
2205
Distortion, Nonlinear distortion, Image coding,
Magnetic resonance imaging, Imaging,
fiber orientation distribution
BibRef
Inda, A.J.G.[Adan Jafet Garcia],
Huang, S.Y.[Shao Ying],
Imamoglu, N.[Nevrez],
Yu, W.W.[Wen-Wei],
Physics-Coupled Neural Network Magnetic Resonance Electrical Property
Tomography (MREPT) for Conductivity Reconstruction,
IP(31), 2022, pp. 3463-3478.
IEEE DOI
2205
Image reconstruction, Physics, Magnetic resonance imaging,
Artificial neural networks, Conductivity, Training,
physics coupled
BibRef
Sui, Y.[Yao],
Afacan, O.[Onur],
Jaimes, C.[Camilo],
Gholipour, A.[Ali],
Warfield, S.K.[Simon K.],
Scan-Specific Generative Neural Network for MRI Super-Resolution
Reconstruction,
MedImg(41), No. 6, June 2022, pp. 1383-1399.
IEEE DOI
2206
Spatial resolution, Magnetic resonance imaging,
Signal to noise ratio, Training, Imaging, Image reconstruction,
patient-specific learning
BibRef
Eda, N.[Naohiro],
Fushimi, M.[Motofumi],
Hasegawa, K.[Keisuke],
Nara, T.[Takaaki],
A Method for Electrical Property Tomography Based on a
Three-Dimensional Integral Representation of the Electric Field,
MedImg(41), No. 6, June 2022, pp. 1400-1409.
IEEE DOI
2206
Magnetic resonance imaging, Laplace equations,
Image reconstruction, Magnetic domains, Iterative methods,
Helmholtz decomposition
BibRef
Korkmaz, Y.[Yilmaz],
Dar, S.U.H.[Salman U. H.],
Yurt, M.[Mahmut],
Özbey, M.[Muzaffer],
Çukur, T.[Tolga],
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers,
MedImg(41), No. 7, July 2022, pp. 1747-1763.
IEEE DOI
2207
Magnetic resonance imaging, Image reconstruction, Transformers,
Data models, Adaptation models, Training, Task analysis, Adversarial,
generative
BibRef
Cengiz, S.[Sevim],
Yildirim, M.[Muhammed],
Bas, A.[Abdullah],
Ozturk-Isik, E.[Esin],
ORYX-MRSI: A fully-automated open-source software for proton magnetic
resonance spectroscopic imaging data analysis,
IJIST(32), No. 4, 2022, pp. 1068-1083.
DOI Link
2207
BibRef
And:
Correction:
IJIST(33), No. 2, 2023, pp. 770-770.
DOI Link
2303
magnetic resonance spectroscopic imaging,
MR spectral data analysis, open-source, software
BibRef
Ramzi, Z.[Zaccharie],
Chaithya, G.R.,
Starck, J.L.[Jean-Luc],
Ciuciu, P.[Philippe],
NC-PDNet: A Density-Compensated Unrolled Network for 2D and 3D
Non-Cartesian MRI Reconstruction,
MedImg(41), No. 7, July 2022, pp. 1625-1638.
IEEE DOI
2207
Image reconstruction, Magnetic resonance imaging,
Neural networks, Optimization, Sensitivity, Iterative methods, MRI,
unrolled networks
BibRef
Tezcan, K.C.[Kerem C.],
Karani, N.[Neerav],
Baumgartner, C.F.[Christian F.],
Konukoglu, E.[Ender],
Sampling Possible Reconstructions of Undersampled Acquisitions in MR
Imaging With a Deep Learned Prior,
MedImg(41), No. 7, July 2022, pp. 1885-1896.
IEEE DOI
2207
Uncertainty, Image reconstruction, Noise measurement,
Measurement uncertainty, Training, Task analysis,
unsupervised learning
BibRef
Chaithya, G.R.,
Weiss, P.[Pierre],
Daval-Frérot, G.[Guillaume],
Massire, A.[Aurélien],
Vignaud, A.[Alexandre],
Ciuciu, P.[Philippe],
Optimizing Full 3D SPARKLING Trajectories for High-Resolution
Magnetic Resonance Imaging,
MedImg(41), No. 8, August 2022, pp. 2105-2117.
IEEE DOI
2208
Trajectory, Hardware, Optimization, Magnetic resonance imaging,
Spirals, Signal to noise ratio, 3D MRI, optimization, non-Cartesian,
acceleration
BibRef
Chen, E.Z.[Eric Z.],
Wang, P.[Puyang],
Chen, X.[Xiao],
Chen, T.[Terrence],
Sun, S.[Shanhui],
Pyramid Convolutional RNN for MRI Image Reconstruction,
MedImg(41), No. 8, August 2022, pp. 2033-2047.
IEEE DOI
2208
Image reconstruction, Magnetic resonance imaging, Optimization,
Data models, High frequency, Brain modeling, Training,
multi-scale learning
BibRef
Fan, C.C.[Chen-Chen],
Peng, L.[Liang],
Wang, T.[Tian],
Yang, H.J.[Hong-Jun],
Zhou, X.H.[Xiao-Hu],
Ni, Z.L.[Zhen-Liang],
Wang, G.[Guan'an],
Chen, S.[Sheng],
Zhou, Y.J.[Yan-Jie],
Hou, Z.G.[Zeng-Guang],
TR-GAN: Multi-Session Future MRI Prediction With Temporal Recurrent
Generative Adversarial Network,
MedImg(41), No. 8, August 2022, pp. 1925-1937.
IEEE DOI
2208
Magnetic resonance imaging, Generative adversarial networks,
Task analysis, Training, Generators, Data models,
generative adversarial network
BibRef
Islam, R.[Rafiqul],
Islam, M.S.[Md Shafiqul],
Uddin, M.S.[Muhammad Shahin],
Compressed Sensing in Parallel MRI: A Review,
IJIG(22), No. 4, July 2022, pp. 2250038.
DOI Link
2208
BibRef
Zhang, X.L.[Xin-Lin],
Lu, H.F.[Heng-Fa],
Guo, D.[Di],
Lai, Z.Y.[Zong-Ying],
Ye, H.H.[Hui-Hui],
Peng, X.[Xi],
Zhao, B.[Bo],
Qu, X.B.[Xiao-Bo],
Accelerated MRI Reconstruction With Separable and Enhanced Low-Rank
Hankel Regularization,
MedImg(41), No. 9, September 2022, pp. 2486-2498.
IEEE DOI
2209
Image reconstruction, Imaging, Magnetic resonance imaging,
Computational modeling, Correlation, Memory management,
low-rank Hankel matrix
BibRef
Xuan, K.[Kai],
Xiang, L.[Lei],
Huang, X.Q.[Xiao-Qian],
Zhang, L.[Lichi],
Liao, S.[Shu],
Shen, D.G.[Ding-Gang],
Wang, Q.[Qian],
Multimodal MRI Reconstruction Assisted With Spatial Alignment Network,
MedImg(41), No. 9, September 2022, pp. 2499-2509.
IEEE DOI
2209
Magnetic resonance imaging, Image reconstruction, Redundancy,
Image registration, Deep learning, Task analysis, Image synthesis,
multi-modal registration
BibRef
Wang, G.H.[Guan-Hua],
Luo, T.R.[Tian-Rui],
Nielsen, J.F.[Jon-Fredrik],
Noll, D.C.[Douglas C.],
Fessler, J.A.[Jeffrey A.],
B-Spline Parameterized Joint Optimization of Reconstruction and
K-Space Trajectories (BJORK) for Accelerated 2D MRI,
MedImg(41), No. 9, September 2022, pp. 2318-2330.
IEEE DOI
2209
Trajectory, Image reconstruction, Magnetic resonance imaging,
Splines (mathematics), Training, Reconstruction algorithms, Kernel,
image reconstruction
BibRef
Bian, C.C.[Cong Chao],
Cao, N.[Ning],
Mao, M.H.[Ming He],
CSDL-Net: An iterative network based on compressed sensing and deep
learning,
IJIST(32), No. 5, 2022, pp. 1511-1520.
DOI Link
2209
compressed sensing, deep neural network, image reconstruction,
magnetic resonance imaging
BibRef
Liu, H.Y.[Hong-Yan],
van der Heide, O.[Oscar],
Mandija, S.[Stefano],
van den Berg, C.A.T.[Cornelis A. T.],
Sbrizzi, A.[Alessandro],
Acceleration Strategies for MR-STAT: Achieving High-Resolution
Reconstructions on a Desktop PC Within 3 Minutes,
MedImg(41), No. 10, October 2022, pp. 2681-2692.
IEEE DOI
2210
Image reconstruction, Mathematical models,
Computational modeling, Magnetization, Radio frequency, neural network
BibRef
Joseph, J.[Jiffy],
Hemanth, C.[Challa],
Narayanan, P.P.[Pournami Pulinthanathu],
Balakrishnan, J.P.[Jayaraj Pottekkattuvalappil],
Puzhakkal, N.[Niyas],
Computed tomography image generation from magnetic resonance imaging
using Wasserstein metric for MR-only radiation therapy,
IJIST(32), No. 6, 2022, pp. 2080-2093.
DOI Link
2212
computed tomography, generative adversarial network,
magnetic resonance imaging, Wasserstein GAN, Wasserstein metric
BibRef
Hasse, A.[Adam],
Bertini, J.[Julian],
Foxley, S.[Sean],
Jeong, Y.[Yong],
Javed, A.[Adil],
Carroll, T.J.[Timothy J.],
Application of a novel T1 retrospective quantification using internal
references (T1-REQUIRE) algorithm to derive quantitative T1
relaxation maps of the brain,
IJIST(32), No. 6, 2022, pp. 1903-1915.
DOI Link
2212
MRI, quantification, T1 relaxometry, T1-weighted, validation
BibRef
Yurt, M.[Mahmut],
Dalmaz, O.[Onat],
Dar, S.[Salman],
Ozbey, M.[Muzaffer],
Tinaz, B.[Berk],
Oguz, K.[Kader],
Çukur, T.[Tolga],
Semi-Supervised Learning of MRI Synthesis Without Fully-Sampled
Ground Truths,
MedImg(41), No. 12, December 2022, pp. 3895-3906.
IEEE DOI
2212
Magnetic resonance imaging, Training, Computational modeling,
Image reconstruction, Generative adversarial networks, undersampled
BibRef
Xie, Z.H.[Zhong-Hua],
Liu, L.J.[Ling-Jun],
Transferring Deep Gaussian Denoiser for Compressed Sensing MRI
Reconstruction,
MultMedMag(29), No. 4, October 2022, pp. 5-13.
IEEE DOI
2301
Image reconstruction, Noise reduction, Training,
Magnetic resonance imaging, Optimization, Gradient methods, transfer learning
BibRef
Kontogiannis, A.[Alexandros],
Juniper, M.P.[Matthew P.],
Physics-Informed Compressed Sensing for PC-MRI:
An Inverse Navier-Stokes Problem,
IP(32), 2023, pp. 281-294.
IEEE DOI
2301
Image reconstruction, Compressed sensing, Boundary conditions,
Noise measurement, Magnetic resonance imaging,
velocity reconstruction and segmentation
BibRef
Wang, Z.[Zi],
Qian, C.[Chen],
Guo, D.[Di],
Sun, H.W.[Hong-Wei],
Li, R.[Rushuai],
Zhao, B.[Bo],
Qu, X.B.[Xiao-Bo],
One-Dimensional Deep Low-Rank and Sparse Network for Accelerated MRI,
MedImg(42), No. 1, January 2023, pp. 79-90.
IEEE DOI
2301
Image reconstruction, Training, Magnetic resonance imaging, Iron,
Convolution, Imaging, Deep learning, Deep learning, fast imaging, sparse
BibRef
Hammernik, K.[Kerstin],
Küstner, T.[Thomas],
Yaman, B.[Burhaneddin],
Huang, Z.N.[Zheng-Nan],
Rueckert, D.[Daniel],
Knoll, F.[Florian],
Akçakaya, M.[Mehmet],
Physics-Driven Deep Learning for Computational Magnetic Resonance
Imaging: Combining physics and machine learning for improved medical
imaging,
SPMag(40), No. 1, January 2023, pp. 98-114.
IEEE DOI
2301
Deep learning, Inverse problems, Magnetic resonance imaging,
Computational modeling, Pipelines, Signal processing, Task analysis
BibRef
Kamilov, U.S.[Ulugbek S.],
Bouman, C.A.[Charles A.],
Buzzard, G.T.[Gregery T.],
Wohlberg, B.[Brendt],
Plug-and-Play Methods for Integrating Physical and Learned Models in
Computational Imaging: Theory, algorithms, and applications,
SPMag(40), No. 1, January 2023, pp. 85-97.
IEEE DOI
2301
Training data, Machine learning algorithms,
Computational modeling, Magnetic resonance imaging,
Signal processing algorithms
BibRef
Qu, W.Y.[Wen-Yi],
Cheng, J.[Jing],
Zhu, Y.J.[Yan-Jie],
Liang, D.[Dong],
Deep MR parametric imaging with the learned L+S model and attention
mechanism,
IET-IPR(17), No. 4, 2023, pp. 969-978.
DOI Link
2303
biomedical imaging, image reconstruction, medical image processing
BibRef
Yang, Q.Q.[Qin-Qin],
Wang, Z.[Zi],
Guo, K.Y.[Kun-Yuan],
Cai, C.B.[Cong-Bo],
Qu, X.B.[Xiao-Bo],
Physics-Driven Synthetic Data Learning for Biomedical Magnetic
Resonance: The imaging physics-based data synthesis paradigm for
artificial intelligence,
SPMag(40), No. 2, March 2023, pp. 129-140.
IEEE DOI
2303
Deep learning, Privacy, Biological system modeling,
Image processing, Magnetic resonance, Tablet computers, Synthetic data
BibRef
Abergel, R.[Rémy],
Boussâa, M.[Mehdi],
Durand, S.[Sylvain],
Frapart, Y.M.[Yves-Michel],
Electron Paramagnetic Resonance Image Reconstruction with Total
Variation Regularization,
IPOL(13), 2023, pp. 90-139.
DOI Link
2303
BibRef
Aggarwal, H.K.[Hemant Kumar],
Pramanik, A.[Aniket],
John, M.[Maneesh],
Jacob, M.[Mathews],
ENSURE: A General Approach for Unsupervised Training of Deep Image
Reconstruction Algorithms,
MedImg(42), No. 4, April 2023, pp. 1133-1144.
IEEE DOI
2304
Measurement, Loss measurement, Training, Image reconstruction,
Noise measurement, Magnetic resonance imaging, MRI
BibRef
Yang, J.W.[Jun-Wei],
Li, X.X.[Xiao-Xin],
Liu, F.[Feihong],
Nie, D.[Dong],
Lio, P.[Pietro],
Qi, H.[Haikun],
Shen, D.G.[Ding-Gang],
Fast Multi-Contrast MRI Acquisition by Optimal Sampling of
Information Complementary to Pre-Acquired MRI Contrast,
MedImg(42), No. 5, May 2023, pp. 1363-1373.
IEEE DOI
2305
Magnetic resonance imaging, Image reconstruction, Optimization,
Gold, Deep learning, Task analysis, Neural networks, Deep learning,
under-sampling pattern
BibRef
Gao, Z.F.[Zhi-Fan],
Guo, Y.F.[Yi-Feng],
Zhang, J.J.[Jia-Jing],
Zeng, T.Y.[Tie-Yong],
Yang, G.[Guang],
Hierarchical Perception Adversarial Learning Framework for Compressed
Sensing MRI,
MedImg(42), No. 6, June 2023, pp. 1859-1874.
IEEE DOI
2306
Magnetic resonance imaging, Image reconstruction,
Feature extraction, Visual perception, Image restoration,
generative adversarial networks
BibRef
Yi, Z.Y.[Zhe-Yuan],
Hu, J.H.[Jia-Hao],
Zhao, Y.[Yujiao],
Xiao, L.F.[Lin-Fang],
Liu, Y.L.[Yi-Long],
Leong, A.T.L.[Alex T. L.],
Chen, F.[Fei],
Wu, E.X.[Ed X.],
Fast and Calibrationless Low-Rank Parallel Imaging Reconstruction
Through Unrolled Deep Learning Estimation of Multi-Channel Spatial
Support Maps,
MedImg(42), No. 6, June 2023, pp. 1644-1655.
IEEE DOI
2306
Image reconstruction, Imaging, Deep learning, Sensitivity,
Calibration, Convolution, Estimation, complex-valued network
BibRef
Song, Y.Z.[Yi-Zhuang],
Sadleir, R.[Rosalind],
Liu, J.[Jijun],
Convergence Analysis of the Harmonic B_(z) Algorithm with Single
Injection Current in MREIT,
SIIMS(16), No. 2, 2023, pp. 706-739.
DOI Link
2306
Magnetic resonance electrical impedance tomography.
BibRef
Elmas, G.[Gokberk],
Dar, S.U.H.[Salman U. H.],
Korkmaz, Y.[Yilmaz],
Ceyani, E.[Emir],
Susam, B.[Burak],
Ozbey, M.[Muzaffer],
Avestimehr, S.[Salman],
Çukur, T.[Tolga],
Federated Learning of Generative Image Priors for MRI Reconstruction,
MedImg(42), No. 7, July 2023, pp. 1996-2009.
IEEE DOI
2307
Magnetic resonance imaging, Image reconstruction,
Adaptation models, Data models, Training,
collaborative
BibRef
Feng, C.M.[Chun-Mei],
Yan, Y.L.[Yun-Lu],
Wang, S.S.[Shan-Shan],
Xu, Y.[Yong],
Shao, L.[Ling],
Fu, H.Z.[Hua-Zhu],
Specificity-Preserving Federated Learning for MR Image Reconstruction,
MedImg(42), No. 7, July 2023, pp. 2010-2021.
IEEE DOI
2307
Image reconstruction, Training, Servers, Privacy, Data privacy, Head,
Collaborative work, MR image reconstruction, federated learning
BibRef
Liu, Y.Y.[Yuan-Yuan],
Liang, D.[Dong],
Cui, Z.X.[Zhuo-Xu],
Yang, Y.X.[Yu-Xin],
Cao, C.[Chentao],
Zhu, Q.Y.[Qing-Yong],
Cheng, J.[Jing],
Shi, C.[Caiyun],
Wang, H.F.[Hai-Feng],
Zhu, Y.J.[Yan-Jie],
Accelerating Magnetic Resonance T_1rho Mapping Using Simultaneously
Spatial Patch-Based and Parametric Group-Based Low-Rank Tensors
(SMART),
MedImg(42), No. 8, August 2023, pp. 2247-2261.
IEEE DOI
2308
Tensors, Image reconstruction, Biomedical imaging,
Magnetic resonance imaging, Magnetic resonance, Correlation, patch
BibRef
Feng, C.M.[Chun-Mei],
Yan, Y.L.[Yun-Lu],
Chen, G.[Geng],
Xu, Y.[Yong],
Hu, Y.[Ying],
Shao, L.[Ling],
Fu, H.Z.[Hua-Zhu],
Multimodal Transformer for Accelerated MR Imaging,
MedImg(42), No. 10, October 2023, pp. 2804-2816.
IEEE DOI
2310
BibRef
Li, Y.H.[Yong-Hao],
Zhou, T.[Tao],
He, K.[Kelei],
Zhou, Y.[Yi],
Shen, D.G.[Ding-Gang],
Multi-Scale Transformer Network With Edge-Aware Pre-Training for
Cross-Modality MR Image Synthesis,
MedImg(42), No. 11, November 2023, pp. 3395-3407.
IEEE DOI Code:
WWW Link.
2311
BibRef
Peng, H.[Hong],
Jiang, C.[Chen],
Cheng, J.[Jing],
Zhang, M.H.[Ming-Hui],
Wang, S.S.[Shan-Shan],
Liang, D.[Dong],
Liu, Q.[Qiegen],
One-Shot Generative Prior in Hankel-k-Space for Parallel Imaging
Reconstruction,
MedImg(42), No. 11, November 2023, pp. 3420-3435.
IEEE DOI
2311
BibRef
Cui, Z.X.[Zhuo-Xu],
Jia, S.[Sen],
Cheng, J.[Jing],
Zhu, Q.Y.[Qing-Yong],
Liu, Y.Y.[Yuan-Yuan],
Zhao, K.[Kankan],
Ke, Z.[Ziwen],
Huang, W.Q.[Wen-Qi],
Wang, H.F.[Hai-Feng],
Zhu, Y.J.[Yan-Jie],
Ying, L.[Leslie],
Liang, D.[Dong],
Equilibrated Zeroth-Order Unrolled Deep Network for Parallel MR
Imaging,
MedImg(42), No. 12, December 2023, pp. 3540-3554.
IEEE DOI
2312
BibRef
Alaifari, R.[Rima],
Alberti, G.S.[Giovanni S.],
Gauksson, T.[Tandri],
Short Communication: Localized Adversarial Artifacts for Compressed
Sensing MRI,
SIIMS(16), No. 4, 2023, pp. SC14-SC26.
DOI Link
2312
BibRef
Yang, Y.[Yan],
Wang, Y.Z.[Yi-Zhou],
Wang, J.Z.[Jia-Zhen],
Sun, J.[Jian],
Xu, Z.B.[Zong-Ben],
An Unrolled Implicit Regularization Network for Joint Image and
Sensitivity Estimation in Parallel MR Imaging with Convergence
Guarantee,
SIIMS(16), No. 3, 2023, pp. 1791-1824.
DOI Link
2312
BibRef
Zach, M.[Martin],
Knoll, F.[Florian],
Pock, T.[Thomas],
Stable Deep MRI Reconstruction Using Generative Priors,
MedImg(42), No. 12, December 2023, pp. 3817-3832.
IEEE DOI
2312
BibRef
Sun, K.C.[Kai-Cong],
Wang, Q.[Qian],
Shen, D.G.[Ding-Gang],
Joint Cross-Attention Network With Deep Modality Prior for Fast MRI
Reconstruction,
MedImg(43), No. 1, January 2024, pp. 558-569.
IEEE DOI Code:
WWW Link.
2401
BibRef
Wang, Q.[Qi],
Wen, Z.J.[Zhi-Jie],
Shi, J.[Jun],
Wang, Q.[Qian],
Shen, D.G.[Ding-Gang],
Ying, S.H.[Shi-Hui],
Spatial and Modal Optimal Transport for Fast Cross-Modal MRI
Reconstruction,
MedImg(43), No. 11, November 2024, pp. 3924-3935.
IEEE DOI
2411
Image reconstruction, Magnetic resonance imaging, Task analysis,
Manifolds, Deep learning, Transformers, Reliability,
optimal transport
BibRef
Guo, P.F.[Peng-Fei],
Mei, Y.Q.[Yi-Qun],
Zhou, J.Y.[Jin-Yuan],
Jiang, S.S.[Shan-Shan],
Patel, V.M.[Vishal M.],
ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer,
MedImg(43), No. 1, January 2024, pp. 582-593.
IEEE DOI Code:
WWW Link.
2401
BibRef
Li, X.[Xing],
Yang, Y.[Yan],
Zheng, H.R.[Hai-Rong],
Xu, Z.B.[Zong-Ben],
ISP-IRLNet: Joint optimization of interpretable sampler and implicit
regularization learning network for accerlerated MRI,
PR(151), 2024, pp. 110412.
Elsevier DOI
2404
Compressed sensing magnetic resonance imaging, Deep learning,
Interpretable sampler learning, Implicit regularization learning
BibRef
Morssy, A.[Amr],
Frean, M.R.[Marcus R.],
Teal, P.D.[Paul D.],
Informed Adaptive Sensing,
PAMI(46), No. 5, May 2024, pp. 3230-3241.
IEEE DOI
2404
Inverse problems, Entropy, Adaptation models, Mutual information,
Deep learning, Training, Numerical models, Experimental design,
probabilistic algorithms
BibRef
Liu, X.H.[Xiao-Han],
Pang, Y.W.[Yan-Wei],
Sun, X.B.[Xue-Bin],
Liu, Y.M.[Yi-Ming],
Hou, Y.H.[Yong-Hong],
Wang, Z.C.[Zhen-Chang],
Li, X.L.[Xue-Long],
Image Reconstruction for Accelerated MR Scan With Faster Fourier
Convolutional Neural Networks,
IP(33), 2024, pp. 2966-2978.
IEEE DOI
2405
Image reconstruction, Convolution, Magnetic resonance imaging,
Feature extraction, Task analysis, Interpolation,
faster Fourier convolution
BibRef
Polsinelli, M.[Matteo],
Li, H.W.B.[Hong-Wei Bran],
Mignosi, F.[Filippo],
Zhang, L.[Li],
Placidi, G.[Giuseppe],
Siamese network to assess scanner-related contrast variability in MRI,
IVC(145), 2024, pp. 104997.
Elsevier DOI
2405
MRI, MRI pre-processing, Deep learning, Siamese network, Explainable AI
BibRef
Li, Z.M.[Zi-Meng],
Xiao, S.[Sa],
Wang, C.[Cheng],
Li, H.D.[Hai-Dong],
Zhao, X.C.[Xiu-Chao],
Duan, C.H.[Cao-Hui],
Zhou, Q.[Qian],
Rao, Q.C.[Qiu-Chen],
Fang, Y.[Yuan],
Xie, J.S.[Jun-Shuai],
Shi, L.[Lei],
Guo, F.M.[Fu-Min],
Ye, C.H.[Chao-Hui],
Zhou, X.[Xin],
Encoding Enhanced Complex CNN for Accurate and Highly Accelerated MRI,
MedImg(43), No. 5, May 2024, pp. 1828-1840.
IEEE DOI
2405
Convolution, Magnetic resonance imaging, Image reconstruction,
Lung, Kernel, Feature extraction, Encoding, Convolution kernel, lung,
MRI reconstruction
BibRef
Cao, C.T.[Chen-Tao],
Cui, Z.X.[Zhuo-Xu],
Wang, Y.[Yue],
Liu, S.[Shaonan],
Chen, T.[Taijin],
Zheng, H.R.[Hai-Rong],
Liang, D.[Dong],
Zhu, Y.J.[Yan-Jie],
High-Frequency Space Diffusion Model for Accelerated MRI,
MedImg(43), No. 5, May 2024, pp. 1853-1865.
IEEE DOI Code:
WWW Link.
2405
Image reconstruction, Diffusion processes, Convergence,
Mathematical models, Magnetic resonance imaging,
inverse problem
BibRef
Guan, Y.[Yu],
Yu, C.M.[Chuan-Ming],
Cui, Z.X.[Zhuo-Xu],
Zhou, H.L.[Hui-Lin],
Liu, Q.[Qiegen],
Correlated and Multi-Frequency Diffusion Modeling for Highly
Under-Sampled MRI Reconstruction,
MedImg(43), No. 10, October 2024, pp. 3490-3502.
IEEE DOI
2411
Image reconstruction, Diffusion processes,
Magnetic resonance imaging, Data models, Data mining, STEM,
multi-frequency prior
BibRef
Gan, H.P.[Hong-Ping],
Wang, X.Y.[Xiao-Yang],
He, L.J.[Li-Jun],
Liu, J.[Jie],
Learned Two-Step Iterative Shrinkage Thresholding Algorithm for Deep
Compressive Sensing,
CirSysVideo(34), No. 5, May 2024, pp. 3943-3956.
IEEE DOI
2405
Image reconstruction, Iterative algorithms, Sensors,
Magnetic resonance imaging, Optimization, Transformers
BibRef
Zhang, X.Z.[Xiao-Zhi],
Zhou, L.[Liu],
Wan, Y.P.[Ya-Ping],
Ling, B.W.K.[Bingo Wing-Kuen],
Xiong, D.P.[Dong-Ping],
TTMRI: Multislice texture transformer network for undersampled MRI
reconstruction,
IET-IPR(18), No. 8, 2024, pp. 2126-2143.
DOI Link
2406
image reconstruction, magnetic resonance imaging,
texture transfer, Transformer
BibRef
Leynes, A.P.[Andrew P.],
Deveshwar, N.[Nikhil],
Nagarajan, S.S.[Srikantan S.],
Larson, P.E.Z.[Peder E. Z.],
Scan-Specific Self-Supervised Bayesian Deep Non-Linear Inversion for
Undersampled MRI Reconstruction,
MedImg(43), No. 6, June 2024, pp. 2358-2369.
IEEE DOI
2406
Coils, Magnetic resonance imaging, Deep learning,
Image reconstruction, Sensitivity, Imaging, Compressed sensing,
calibrationless MRI
BibRef
Ding, Y.[Yue],
Zhou, T.[Tao],
Xiang, L.[Lei],
Wu, Y.[Ye],
Cross-contrast mutual fusion network for joint MRI reconstruction and
super-resolution,
PR(154), 2024, pp. 110599.
Elsevier DOI
2406
Magnetic resonance imaging, MRI reconstruction,
Super-resolution, Multi-task learning
BibRef
Li, Y.[Yanran],
Chan, R.H.[Raymond H.],
Shen, L.X.[Li-Xin],
Zhuang, X.S.[Xiao-Sheng],
Wu, R.S.[Ri-Sheng],
Huang, Y.J.[Yi-Jun],
Liu, J.W.[Jun-Wei],
Exploring Structural Sparsity of Coil Images from 3-Dimensional
Directional Tight Framelets for SENSE Reconstruction,
SIIMS(17), No. 2, 2024, pp. 888-916.
DOI Link
2407
parallel magnetic resonance imaging (pMRI) system
BibRef
Fang, F.[Faming],
Hu, L.[Le],
Liu, J.H.[Jin-Hao],
Yi, Q.[Qiaosi],
Zeng, T.Y.[Tie-Yong],
Zhang, G.X.[Gui-Xu],
HFGN: High-Frequency residual Feature Guided Network for fast MRI
reconstruction,
PR(156), 2024, pp. 110801.
Elsevier DOI
2408
Complex convolutional neural network, Deep learning,
Fourier convolution, Image reconstruction, Magnetic resonance imaging
BibRef
Ruan, G.H.[Guo-Hui],
Wang, Z.[Zhaonian],
Liu, C.[Chunyi],
Xia, L.[Ling],
Wang, H.F.[Hua-Feng],
Qi, L.[Li],
Chen, W.F.[Wu-Fan],
Magnetic Resonance Electrical Properties Tomography Based on Modified
Physics- Informed Neural Network and Multiconstraints,
MedImg(43), No. 9, September 2024, pp. 3263-3278.
IEEE DOI
2409
Mathematical models, Magnetic resonance imaging, Radio frequency,
Image reconstruction, Graphical models, Distribution functions,
multiconstraints
BibRef
Lei, P.C.[Peng-Cheng],
Hu, L.[Le],
Fang, F.[Faming],
Zhang, G.X.[Gui-Xu],
Joint Under-Sampling Pattern and Dual-Domain Reconstruction for
Accelerating Multi-Contrast MRI,
IP(33), 2024, pp. 4686-4701.
IEEE DOI Code:
WWW Link.
2409
Image reconstruction, Magnetic resonance imaging, Optimization,
Task analysis, Image restoration, Feature extraction,
under-sampling pattern optimization
BibRef
Fahim, M.A.[Mohammad Al],
Ramanarayanan, S.[Sriprabha],
Rahul, G.S.,
Gayathri, M.N.[Matcha Naga],
Sarkar, A.[Arunima],
Ram, K.[Keerthi],
Sivaprakasam, M.[Mohanasankar],
OCUCFormer: An Over-Complete Under-Complete Transformer Network for
accelerated MRI reconstruction,
IVC(150), 2024, pp. 105228.
Elsevier DOI Code:
WWW Link.
2409
Convolutional RNN, Vision transformer, MRI reconstruction
BibRef
Cui, Z.X.[Zhuo-Xu],
Liu, C.C.[Cong-Cong],
Fan, X.H.[Xiao-Hong],
Cao, C.[Chentao],
Cheng, J.[Jing],
Zhu, Q.Y.[Qing-Yong],
Liu, Y.Y.[Yuan-Yuan],
Jia, S.[Sen],
Wang, H.F.[Hai-Feng],
Zhu, Y.J.[Yan-Jie],
Zhou, Y.H.[Yi-Hang],
Zhang, J.P.[Jian-Ping],
Liu, Q.[Qiegen],
Liang, D.[Dong],
Physics-Informed DeepMRI: k-Space Interpolation Meets Heat Diffusion,
MedImg(43), No. 10, October 2024, pp. 3503-3520.
IEEE DOI Code:
WWW Link.
2411
Interpolation, Mathematical models, Diffusion models,
Heating systems, Hafnium, Magnetic resonance imaging, Data models,
physics-informed deep learning
BibRef
Ito, S.[Satoshi],
Sato, Y.[Yuki],
Endo, N.[Naoya],
Ouchi, S.[Shohei],
Deep-Learning-Based Magnetic Resonance Simultaneous Multislice
Imaging Using Holographic Image Decoding,
ICIP24(2852-2857)
IEEE DOI
2411
Image quality, Deep learning, Phase modulation, Neural networks,
Magnetic resonance, Holography, Amplitude modulation,
convolutional neural network (CNN)
BibRef
Xiao, M.[Min],
Wang, Z.[Zi],
Guo, J.F.[Jie-Feng],
Guo, D.[Di],
Qu, X.B.[Xiao-Bo],
A 1D Plug-and-Play Synthetic Data Deep Learning for Undersampled
Magnetic Resonance Image Reconstruction,
ICIP24(2827-2832)
IEEE DOI
2411
Training, Deep learning, in vivo, Magnetic resonance imaging,
Magnetic resonance, Training data, Trajectory,
synthetic data
BibRef
Yamato, K.[Kazuki],
Ito, S.[Satoshi],
Improvement of Image Reconstruction for MRI Using Phase-Scrambling
Fourier Transform and Dual-Domain Strategy,
ICIP24(2858-2864)
IEEE DOI
2411
Deep learning, Fourier transforms, Smoothing methods, Convolution,
Magnetic resonance imaging, Noise reduction, Indium tin oxide,
dual-domain strategy
BibRef
Ibrahim, V.[Vazim],
Paul, J.S.[Joseph Suresh],
A Cross Domain Generative Network for Accelerated MRI,
ICIP24(2865-2870)
IEEE DOI
2411
Extrapolation, Accuracy, Magnetic resonance imaging,
Frequency-domain analysis, Neural networks, Estimation,
Convolutional Neural Network
BibRef
Reddy, K.P.K.[K. Pavan Kumar],
Chaudhury, K.N.[Kunal N.],
Deep Regularization for Scale-Agnostic Superresolution of MR Images,
ICIP24(2820-2826)
IEEE DOI
2411
Technological innovation, Accuracy, Inverse problems,
Magnetic resonance imaging, Superresolution, Magnetic resonance,
superresolution
BibRef
Ting, C.M.[Chee-Ming],
Noman, F.[Fuad],
Phan, R.C.W.[Raphaël C.W.],
Ombao, H.[Hernando],
Dynamic MRI Reconstruction Using Low-Rank Plus Sparse Decomposition
With Smoothness Regularization,
ICIP24(2800-2806)
IEEE DOI
2411
Accuracy, Tensors, Smoothing methods, Magnetic resonance imaging,
Noise, Data models, Robustness, Dynamic MRI, low-rank, sparsity,
proximal gradient
BibRef
Li, G.Y.[Guang-Yuan],
Rao, C.[Chen],
Mo, J.C.[Jun-Cheng],
Zhang, Z.J.[Zhan-Jie],
Xing, W.[Wei],
Zhao, L.[Lei],
Rethinking Diffusion Model for Multi-Contrast MRI Super-Resolution,
CVPR24(11365-11374)
IEEE DOI Code:
WWW Link.
2410
Magnetic resonance imaging, Face recognition, Superresolution,
Reconstruction algorithms, Diffusion models, Transformers,
super-resolution
BibRef
Weber, T.[Tobias],
Ingrisch, M.[Michael],
Bischl, B.[Bernd],
Rügamer, D.[David],
Constrained Probabilistic Mask Learning for Task-specific
Undersampled MRI Reconstruction,
WACV24(7650-7659)
IEEE DOI
2404
Image segmentation, Protocols, Magnetic resonance imaging, PROM,
Probabilistic logic, Trajectory, Task analysis, Applications
BibRef
Kim, K.[Kyuri],
Na, Y.[Yoonho],
Ye, S.J.[Sung-Joon],
Lee, J.[Jimin],
Ahn, S.S.[Sung Soo],
Park, J.E.[Ji Eun],
Kim, H.[Hwiyoung],
Controllable Text-to-Image Synthesis for Multi-Modality MR Images,
WACV24(7921-7930)
IEEE DOI
2404
Image synthesis, Noise reduction, Magnetic resonance,
Computer architecture, Solids, Data models, Applications,
Vision + language and/or other modalities
BibRef
Lei, P.C.[Peng-Cheng],
Fang, F.[Faming],
Zhang, G.X.[Gui-Xu],
Zeng, T.Y.[Tie-Yong],
Decomposition-Based Variational Network for Multi-Contrast MRI
Super-Resolution and Reconstruction,
ICCV23(21239-21249)
IEEE DOI Code:
WWW Link.
2401
BibRef
Wang, Q.[Qi],
Mahler, L.[Lucas],
Steiglechner, J.[Juliu],
Birk, F.[Florian],
Scheffler, K.[Klaus],
Lohmann, G.[Gabriele],
DISGAN: Wavelet-informed Discriminator Guides GAN to MRI
Super-resolution with Noise Cleaning,
CVAMD23(2444-2453)
IEEE DOI Code:
WWW Link.
2401
BibRef
Yu, S.C.[Shao-Cong],
Chu, X.[Xueye],
Zhou, Z.L.[Zheng-Lin],
Guo, J.F.[Jie-Feng],
Ding, X.H.[Xing-Hao],
Joint Under-Sampling Pattern Optimization and Content-Based
Reconstruction Network for Fast MRI Reconstruction,
ICIP23(730-734)
IEEE DOI
2312
BibRef
Liu, J.[Jingshuai],
Qin, C.[Chen],
Yaghoobi, M.[Mehrdad],
Coil-agnostic Attention-based Network for Parallel MRI Reconstruction,
ACCV22(VI:168-184).
Springer DOI
2307
BibRef
Pramanik, A.[Aniket],
Jacob, M.[Mathews],
Joint Calibrationless Reconstruction and Segmentation of Parallel MRI,
MCV22(437-453).
Springer DOI
2304
BibRef
Wang, W.[Wanliang],
Xing, F.[Fangsen],
Chen, J.C.[Jia-Cheng],
Tu, H.Y.[Hang-Yao],
Edge Assisted Asymmetric Convolution Network for MR Image
Super-resolution,
MMMod23(II: 66-78).
Springer DOI
2304
BibRef
Zhou, B.[Bo],
Dey, N.[Neel],
Schlemper, J.[Jo],
Salehi, S.S.M.[Seyed Sadegh Mohseni],
Liu, C.[Chi],
Duncan, J.S.[James S.],
Sofka, M.[Michal],
DSFormer: A Dual-domain Self-supervised Transformer for Accelerated
Multi-contrast MRI Reconstruction,
WACV23(4955-4964)
IEEE DOI
2302
Training, Costs, Magnetic resonance imaging, Redundancy,
Training data, Information sharing, image and video synthesis
BibRef
Yamato, K.[Kazuki],
Ito, S.[Satoshi],
Super-Resolution Magnetic Resonance Imaging using Segmented Signals
in Phase-Scrambling Fourier Transform Imaging and Deep Learning,
ICIP22(2551-2555)
IEEE DOI
2211
Deep learning, Image segmentation, Fourier transforms,
Magnetic resonance imaging, Superresolution, Signal sampling, deep learning
BibRef
Wyatt, J.[Julian],
Leach, A.[Adam],
Schmon, S.M.[Sebastian M.],
Willcocks, C.G.[Chris G.],
AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic
Models using Simplex Noise,
NTIRE22(649-655)
IEEE DOI
2210
Training, Image segmentation, Shape, Magnetic resonance imaging,
Gaussian noise, Noise reduction, Markov processes
BibRef
Cole, E.[Elizabeth],
Meng, Q.X.[Qing-Xi],
Pauly, J.[John],
Vasanawala, S.[Shreyas],
Learned Compression of High Dimensional Image Datasets,
CLIC22(1747-1751)
IEEE DOI
2210
Radio frequency, Photography, Image coding, Runtime,
Magnetic resonance imaging
BibRef
Peng, W.[Wei],
Feng, L.[Li],
Zhao, G.Y.[Guo-Ying],
Liu, F.[Fang],
Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks,
CVPR22(20762-20771)
IEEE DOI
2210
Deep learning, Training, Magnetic resonance imaging,
Magnetic resonance, Ordinary differential equations,
Image and video synthesis and generation
BibRef
Li, G.Y.[Guang-Yuan],
Zhao, L.[Lei],
Sun, J.[Jiakai],
Lan, Z.[Zehua],
Zhang, Z.J.[Zhan-Jie],
Chen, J.[Jiafu],
Lin, Z.J.[Zhi-Jie],
Lin, H.Z.[Huai-Zhong],
Xing, W.[Wei],
Rethinking Multi-Contrast MRI Super-Resolution: Rectangle-Window
Cross-Attention Transformer and Arbitrary-Scale Upsampling,
ICCV23(21173-21183)
IEEE DOI Code:
WWW Link.
2401
BibRef
Li, G.Y.[Guang-Yuan],
Lv, J.[Jun],
Tian, Y.[Yapeng],
Dou, Q.[Qi],
Wang, C.Y.[Cheng-Yan],
Xu, C.L.[Chen-Liang],
Qin, J.[Jing],
Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution,
CVPR22(20604-20613)
IEEE DOI
2210
Codes, Fuses, Magnetic resonance imaging, Aggregates,
Superresolution, Anatomical structure, Medical,
Image and video synthesis and generation
BibRef
Chung, H.[Hyungjin],
Sim, B.[Byeongsu],
Ye, J.C.[Jong Chul],
Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction,
CVPR22(12403-12412)
IEEE DOI
2210
Inverse problems, Gaussian noise, Magnetic resonance imaging,
Difference equations, Superresolution, Stochastic processes,
biological and cell microscopy
BibRef
Yiasemis, G.[George],
Sonke, J.J.[Jan-Jakob],
Sánchez, C.[Clarisa],
Teuwen, J.[Jonas],
Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction,
CVPR22(722-731)
IEEE DOI
2210
Deep learning, Recurrent neural networks, Inverse problems,
Magnetic resonance imaging, Computer architecture, Task analysis, Others
BibRef
Yan, Q.[Qiunv],
Liu, L.[Li],
Mei, L.[Lanyin],
Learning Unrolling-Based Neural Network for Magnetic Resonance Imaging
Reconstruction,
CIAP22(I:124-136).
Springer DOI
2205
BibRef
Zabihi, S.[Soheil],
Rahimian, E.[Elahe],
Asif, A.[Amir],
Mohammadi, A.[Arash],
SepUnet: Depthwise Separable Convolution Integrated U-Net for MRI
Reconstruction,
ICIP21(3792-3796)
IEEE DOI
2201
Deep learning, Convolution, Magnetic resonance imaging,
Computer architecture, Reconstruction algorithms,
Atrous Spatial Pyramidal Pooling (ASPP)
BibRef
Seo, H.S.[Hyun-Seok],
Shin, K.M.[Kelly M.],
Kyung, Y.[Yeunwoong],
A Dual Domain Network for MRI Reconstruction Using Gabor Loss,
ICIP21(146-149)
IEEE DOI
2201
Sensitivity, Magnetic resonance imaging, Receivers,
Reconstruction algorithms, Filtering algorithms,
Neural networks
BibRef
Hernandez, A.G.[Armando Garcia],
Fau, P.[Pierre],
Rapacchi, S.[Stanislas],
Wojak, J.[Julien],
Mailleux, H.[Hugues],
Benkreira, M.[Mohamed],
Adel, M.[Mouloud],
Improving Image Quality In Low-Field MRI With Deep Learning,
ICIP21(260-263)
IEEE DOI
2201
Image quality, Deep learning, Image segmentation,
Magnetic resonance imaging, Noise reduction, Transfer learning,
AutoEncoder
BibRef
Cole, E.K.[Elizabeth K.],
Ong, F.[Frank],
Vasanawala, S.S.[Shreyas S.],
Pauly, J.M.[John M.],
Fast Unsupervised MRI Reconstruction Without Fully-Sampled Ground
Truth Data Using Generative Adversarial Networks,
LCI21(3971-3980)
IEEE DOI
2112
Deep learning, Training, Measurement,
Magnetic resonance imaging, Data acquisition
BibRef
Ryu, K.[Kanghyun],
Alkan, C.[Cagan],
Choi, C.[Chanyeol],
Jang, I.[Ikbeom],
Vasanawala, S.[Shreyas],
K-space refinement in deep learning MR reconstruction via
regularizing scan specific SPIRiT-based self consistency,
LCI21(3991-4000)
IEEE DOI
2112
Deep learning, Magnetic resonance imaging,
Measurement uncertainty, Neural networks, Iterative methods
BibRef
Ekmekci, C.[Canberk],
Cetin, M.[Mujdat],
What Does Your Computational Imaging Algorithm Not Know?:
A Plug-and-Play Model Quantifying Model Uncertainty,
LCI21(4001-4010)
IEEE DOI
2112
Training, Deep learning, Uncertainty, Computational modeling,
Magnetic resonance imaging, Training data, Data models
BibRef
Gan, W.J.[Wei-Jie],
Hu, Y.Y.[Yu-Yang],
Eldeniz, C.[Cihat],
Liu, J.M.[Jia-Ming],
Chen, Y.S.[Ya-Sheng],
An, H.Y.[Hong-Yu],
Kamilov, U.S.[Ulugbek S.],
SS-JIRCS: Self-Supervised Joint Image Reconstruction and Coil
Sensitivity Calibration in Parallel MRI without Ground Truth,
LCI21(4031-4039)
IEEE DOI
2112
Coils, Image quality, Sensitivity, Magnetic resonance imaging,
Noise reduction, Estimation, Receivers
BibRef
Guo, P.F.[Peng-Fei],
Wang, P.[Puyang],
Zhou, J.Y.[Jin-Yuan],
Jiang, S.S.[Shan-Shan],
Patel, V.M.[Vishal M.],
Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning,
CVPR21(2423-2432)
IEEE DOI
2111
Data privacy, Protocols, Collaboration, Magnetic resonance,
Sensor phenomena and characterization, Collaborative work, Data models
BibRef
Zhang, Y.L.[Yu-Lun],
Wei, D.L.[Dong-Lai],
Qin, C.[Can],
Wang, H.[Huan],
Pfister, H.[Hanspeter],
Fu, Y.[Yun],
Context Reasoning Attention Network for Image Super-Resolution,
ICCV21(4258-4267)
IEEE DOI
2203
Degradation, Adaptation models, Neuroscience, Convolution,
Superresolution, Semantics, Feature extraction,
BibRef
Zhang, Y.L.[Yu-Lun],
Li, K.[Kai],
Li, K.P.[Kun-Peng],
Fu, Y.[Yun],
MR Image Super-Resolution with Squeeze and Excitation Reasoning
Attention Network,
CVPR21(13420-13429)
IEEE DOI
2111
Training, Visualization, Adaptation models,
Computational modeling, Superresolution, Cognition
BibRef
Jun, Y.[Yohan],
Shin, H.[Hyungseob],
Eo, T.[Taejoon],
Hwang, D.[Dosik],
Joint Deep Model-based MR Image and Coil Sensitivity Reconstruction
Network (Joint-ICNet) for Fast MRI,
CVPR21(5266-5275)
IEEE DOI
2111
Deep learning, Sensitivity, Image resolution,
Magnetic resonance imaging, Magnetic resonance, Network architecture
BibRef
Pokala, P.K.,
Chemudupati, S.,
Seelamantula, C.S.,
Generalized Fast Iteratively Reweighted Soft-Thresholding Algorithm
for Sparse Coding Under Tight Frames in the Complex-Domain,
ICIP20(2875-2879)
IEEE DOI
2011
Image reconstruction, Magnetic resonance imaging, Convergence,
Transforms, Optimization, Smoothing methods, Magnetic resonance,
tight frames
BibRef
Millard, C.,
Hess, A.T.,
Mailhe, B.,
Tanner, J.,
An Approximate Message Passing Algorithm For Rapid Parameter-Free
Compressed Sensing MRI,
ICIP20(91-95)
IEEE DOI
2011
Approximation algorithms, Magnetic resonance imaging,
Compressed sensing, Sensors, Image reconstruction, Standards,
Magnetic Resonance Imaging
BibRef
Sriram, A.,
Zbontar, J.,
Murrell, T.,
Zitnick, C.L.,
Defazio, A.,
Sodickson, D.K.,
GrappaNet: Combining Parallel Imaging With Deep Learning for
Multi-Coil MRI Reconstruction,
CVPR20(14303-14310)
IEEE DOI
2008
Image reconstruction, Coils, Magnetic resonance imaging,
Acceleration, Mathematical model, Machine learning
BibRef
Zhou, B.,
Zhou, S.K.,
DuDoRNet: Learning a Dual-Domain Recurrent Network for Fast MRI
Reconstruction With Deep T1 Prior,
CVPR20(4272-4281)
IEEE DOI
2008
Magnetic resonance imaging, Image restoration,
Image reconstruction, Feature extraction, Protocols, Acceleration
BibRef
Vasudeva, B.[Bhavya],
Deora, P.[Puneesh],
Bhattacharya, S.[Saumik],
Pradhan, P.M.[Pyari Mohan],
Compressed Sensing MRI Reconstruction with Co-VeGAN: Complex-Valued
Generative Adversarial Network,
WACV22(1779-1788)
IEEE DOI
2202
BibRef
Earlier: A2, A1, A3, A4:
Structure Preserving Compressive Sensing MRI Reconstruction using
Generative Adversarial Networks,
NTIRE20(2211-2219)
IEEE DOI
2008
Learning systems, Magnetic resonance imaging,
Generative adversarial networks, Data models, Data mining,
Medical Imaging/Imaging for Bioinformatics/Biological and Cell Microscopy.
Image reconstruction, Generators, Training, Magnetic resonance imaging
BibRef
Pour Yazdanpanah, A.,
Afacan, O.,
Warfield, S.,
Deep Plug-and-Play Prior for Parallel MRI Reconstruction,
CLI19(3952-3958)
IEEE DOI
2004
Image reconstruction, Magnetic resonance imaging, Sensitivity,
Acceleration, Mathematical model, Gold, Parallel imaging,
compressed sensing
BibRef
He, S.,
Jalali, B.,
Fast Super-Resolution in MRI Images Using Phase Stretch Transform,
Anchored Point Regression and Zero-Data Learning,
ICIP19(2876-2880)
IEEE DOI
1910
Medical image enhancement, Zero-data learning,
Phase stretch transform, Fast inference, Edge computing
BibRef
Zhuang, P.,
Ding, X.,
Compressed Sensing MRI with Joint Image-Level and Patch-Level Priors,
ICIP19(2080-2084)
IEEE DOI
1910
MRI reconstruction, total variation,
expected patch log likelihood, alternative optimization
BibRef
Gu, X.[Xuan],
Knutsson, H.[Hans],
Nilsson, M.[Markus],
Eklund, A.[Anders],
Generating Diffusion MRI Scalar Maps from T1 Weighted Images Using
Generative Adversarial Networks,
SCIA19(489-498).
Springer DOI
1906
BibRef
Kaur, P.,
Sharma, A.,
Nigam, A.,
Bhavsar, A.,
MR-Srnet: Transformation of Low Field MR Images to High Field MR
Images,
ICIP18(2057-2061)
IEEE DOI
1809
Image reconstruction, Decoding,
Training, Neural networks, Training data, Task analysis,
Merge connections
BibRef
Jiang, Q.,
Moussaoui, S.,
Idier, J.,
Collewet, G.,
Xu, M.,
Majorization-minimization algorithms for maximum likelihood
estimation of magnetic resonance images,
IPTA17(1-6)
IEEE DOI
1804
gradient methods, image restoration,
maximum likelihood estimation, minimisation, MM algorithms,
maximum likelihood estimation
BibRef
Gopal, P.,
Bailey, D.,
Svalbe, I.,
Nonlinear Interpolation in the Fourier Domain Guided by Morphologic
Filters,
DICTA17(1-8)
IEEE DOI
1804
Fourier analysis, biomedical MRI, compressed sensing,
data acquisition, frequency-domain analysis, image filtering,
Shape
BibRef
Sun, L.,
Huang, Y.,
Cai, C.,
Ding, X.,
Compressed sensing MRI using total variation regularization with
K-space decomposition,
ICIP17(3061-3065)
IEEE DOI
1803
Frequency measurement, Image reconstruction, Linear programming,
Magnetic resonance imaging, Optimization, TV,
Total Variation
BibRef
Chaabene, S.,
Chaari, L.,
Bayesian myopic parallel MRI reconstruction,
ISIVC16(103-108)
IEEE DOI
1704
Bayes methods
BibRef
Ulas, C.[Cagdas],
Gómez, P.A.[Pedro A.],
Krahmer, F.[Felix],
Sperl, J.I.[Jonathan I.],
Menzel, M.I.[Marion I.],
Menze, B.H.[Bjoern H.],
Robust Reconstruction of Accelerated Perfusion MRI Using Local and
Nonlocal Constraints,
RAMBO16(37-47).
Springer DOI
1703
BibRef
Bones, P.,
King, L.,
Millane, R.P.,
MR imaging near metal: The POP algorithm,
ICVNZ16(1-6)
IEEE DOI
1701
Fats
BibRef
Chandra, S.S.,
Archchige, R.,
Ruben, G.,
Jin, J.,
Li, M.,
Kingston, A.M.,
Svalbe, I.,
Crozier, S.,
Finite Radial Reconstruction for Magnetic Resonance Imaging:
A Theoretical Study,
DICTA16(1-6)
IEEE DOI
1701
Discrete Fourier transforms
BibRef
Jin, K.H.,
Lee, D.,
Lee, J.,
Ye, J.C.,
Recent progresses of accelerated MRI using annihilating filter-based
low-rank interpolation,
ICIP16(968-972)
IEEE DOI
1610
Acceleration
BibRef
Zhao, Q.,
Meng, D.,
Kong, X.,
Xie, Q.,
Cao, W.,
Wang, Y.,
Xu, Z.,
A Novel Sparsity Measure for Tensor Recovery,
ICCV15(271-279)
IEEE DOI
1602
Brain modeling
BibRef
Rich, A.[Adam],
Potter, L.C.[Lee C.],
Ashi, J.N.[Joshua N.],
Ahmad, R.[Rizwan],
Factor graphs for inverse problems:
Accelerated phase contrast magnetic resonance imaging,
ICIP15(1026-1030)
IEEE DOI
1512
BibRef
Portejoie, P.[Pierre],
Mure, S.[Simon],
Benoit-Cattin, H.[Hugues],
Grenier, T.[Thomas],
Locally controlled regularized spatiotemporal anisotropic diffusion,
ICIP15(4823-4827)
IEEE DOI
1512
Anisotropic Diffusion; Image Sequence Filtering; MRI; Regularization
BibRef
Omer, O.A.[Osama A.],
Bassiouny, M.A.[M. Atef],
Morooka, K.[Ken'ichi],
Efficient Resolution Enhancement Algorithm for Compressive Sensing
Magnetic Resonance Image Reconstruction,
CIAP15(I:519-527).
Springer DOI
1511
BibRef
Tarquino, J.[Jonathan],
Rueda, A.[Andrea],
Romero, E.[Eduardo],
Shearlet-based sparse representation for super-resolution in
diffusion weighted imaging (DWI),
ICIP14(3897-3900)
IEEE DOI
1502
Dictionaries
BibRef
Muckley, M.J.[Matthew J.],
Fessler, J.A.[Jeffrey A.],
Fast MR image reconstruction with orthogonal wavelet regularization
via shift-variant shrinkage,
ICIP14(3651-3655)
IEEE DOI
1502
Convergence
BibRef
Zhang, M.Q.[Mei-Qing],
Nie, H.[Huirao],
Pei, Y.[Yang],
Tao, L.M.[Lin-Mi],
Volume Reconstruction for MRI,
ICPR14(3351-3356)
IEEE DOI
1412
Dictionaries
BibRef
Izydorczyk, G.[Grzegorz],
Klepaczko, A.[Artur],
Computer Simulation of the SWI Protocol in Nuclear Magnetic Resonance
Imaging,
ICCVG14(294-301).
Springer DOI
1410
BibRef
Uma, K.,
Chandrasekharan, K.,
Paul, J.S.,
Partial Fourier reconstruction using subspace projection,
NCVPRIPG13(1-4)
IEEE DOI
1408
biomedical MRI
BibRef
Hyder, M.M.[Md Mashud],
Mahata, K.[Kaushik],
Sparse sequence recovery via a maximum a posteriori estimation,
ICIP13(489-493)
IEEE DOI
1402
Compressed sensing
BibRef
Rodrigues, M.L.[Miguel L.],
Figueiredo, P.[Patrícia],
Sanches, J.M.[Joăo Miguel],
A Bayesian Approach to Perfusion Imaging Using ASL MRI,
IbPRIA13(691-698).
Springer DOI
1307
BibRef
Garcia-Gomez, J.M.[Juan M.],
Robles, M.[Montserrat],
van Huffel, S.[Sabine],
Juan-Císcar, A.[Alfons],
Modelling of Magnetic Resonance Spectra Using Mixtures for Binned and
Truncated Data,
IbPRIA07(II: 266-273).
Springer DOI
0706
BibRef
Garnaoui, H.H.,
Tewfik, A.H.,
Visual masking and the design of magnetic resonance image acquisition,
ICIP95(I: 625-628).
IEEE DOI
9510
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Diffusion Tensor Imaging .