Xu, Y.S.[Yan-Sun],
Weaver, J.B.,
Healy, D.M.,
Lu, J.[Jian],
Wavelet transform domain filters: a spatially selective noise
filtration technique,
IP(3), No. 6, November 1994, pp. 747-758.
IEEE DOI
0402
BibRef
Banham, M.R.,
Galatsanos, N.P.,
Gonzalez, H.L.,
Katsaggelos, A.K.,
Multichannel restoration of single channel images using a wavelet-based
subband decomposition,
IP(3), No. 6, November 1994, pp. 821-833.
IEEE DOI
0402
BibRef
Malfait, M.,
Roose, D.,
Wavelet-Based Image Denoising Using a Markov Random-Field
a-Priori Model,
IP(6), No. 4, April 1997, pp. 549-565.
IEEE DOI
9704
BibRef
Mohcak, M.K.,
Kozintsev, I.,
Ramchandran, K.,
Moulin, P.,
Low-Complexity Image Denoising Based on Statistical Modeling of Wavelet
Coefficients,
SPLetters(6), No. 12, December 1999, pp. 300.
IEEE Top Reference.
9911
BibRef
Liu, J.[Juan],
Moulin, P.[Pierre],
Image Denoising Based on Scale-Space Mixture Modeling of Wavelet
Coefficients,
ICIP99(I:386-390).
IEEE DOI
BibRef
9900
Carré, P.[Philippe],
Fernandez-Maloigne, C.[Christine],
Use of the angle information in the wavelet transform maxima for image
de-noising,
IVC(18), No. 13, October 2000, pp. 1055-1065.
Elsevier DOI
0008
BibRef
Fan, G.L.[Guo-Liang],
Xia, X.G.[Xiang-Gen],
Image Denoising Using a Local Contextual Hidden Markov Model in the
Wavelet Domain,
SPLetters(8), No. 5, May 2001, pp. 125-128.
IEEE Top Reference.
0105
BibRef
Earlier:
Wavelet-based Image Denoising Using Hidden Markov Models,
ICIP00(Vol III: 258-261).
IEEE DOI
0008
See also Unsupervised Bayesian Image Segmentation Using Wavelet-Domain Hidden Markov Models.
BibRef
Weng, W.G.,
Fan, W.C.,
Liao, G.X.,
Qin, J.,
Wavelet-based image denoising in (digital) particle image velocimetry,
SP(81), No. 7, July 2001, pp. 1503-1512.
Elsevier DOI
0110
BibRef
Pizurica, A.[Aleksandra],
Philips, W.[Wilfried],
Lemahieu, I.,
Acheroy, M.,
A joint inter- and intrascale statistical model for bayesian wavelet
based image denoising,
IP(11), No. 5, May 2002, pp. 545-557.
IEEE DOI
0206
See also Image Denoising Using Mixtures of Projected Gaussian Scale Mixtures.
BibRef
Jovanov, L.[Ljubomir],
Pizurica, A.[Aleksandra],
Philips, W.[Wilfried],
Wavelet Based Joint Denoising of Depth and Luminance Images,
3DTV07(1-5).
IEEE DOI
0705
BibRef
Schulte, S.[Stefan],
Huysmans, B.[Bruno],
Piurica, A.[Aleksandra],
Kerre, E.E.[Etienne E.],
Philips, W.[Wilfried],
A New Fuzzy-Based Wavelet Shrinkage Image Denoising Technique,
ACIVS06(12-23).
Springer DOI
0609
BibRef
Pizurica, A.,
Philips, W.,
Lemahieu, I.,
A Wavelet-Based Image Denoising Technique Using Spatial Priors,
ICIP00(Vol III: 296-299).
IEEE DOI
0008
BibRef
Simoncelli, E.P.,
Bayesian Denoising of Visual Images in the Wavelet Domain,
BIWBM(18), Spring, 1999, pp. 291-308.
HTML Version.
BibRef
9900
Simoncelli, E.P.[Eero P.],
Adelson, E.H.,
Noise Removal via Bayesian Wavelet Coring,
ICIP96(I: 379-382).
IEEE DOI shrinkage, coring, threshold.
HTML Version. or for postscript version:
PS File. Or Look under
HTML Version.
BibRef
9600
Wainwright, M.J., and
Simoncelli, E.P.,
Scale Mixtures of Gaussians and the Statistics of Natural Images,
ANIPS(12), May, 2000, pp. 855-861.
HTML Version.
BibRef
0005
Wainwright, M.J.,
Simoncelli, E.P.,
Willsky, A.S.,
Random Cascades of Gaussian Scale Mixtures and Their Use in Modeling
Natural Images with Application to Denoising,
ICIP00(Vol I: 260-263).
IEEE DOI
HTML Version.
0008
BibRef
Wainwright, M.J.,
Simoncelli, E.P., and
Willsky, A.S.,
Random Cascades on Wavelet Trees and Their Use in
Modeling and Analyzing Natural Imagery,
SPIE(40??), 45th Annual Meeting, July, 2000.
The SPIE site doesn't list it anywhere.
HTML Version.
BibRef
0007
Simoncelli, E.P.,
Modeling the Joint Statistics of Images in the Wavelet Domain,
SPIE(3813), July, 1999, pp. 188-195.
HTML Version.
BibRef
9907
Simoncelli, E.P., and
Schwartz, O.,
Image Statistics and Cortical Normalization Models,
ANIPS(11), 1999, pp. 153-159.
HTML Version.
BibRef
9900
Portilla, J.,
Strela, V.,
Wainwright, M.,
Simoncelli, E.P.,
Image Denoising using Gaussian Scale Mixtures in the Wavelet Domain,
TRTR2002-831, Computer Science Dept, New York University. 2002.
Bayesian, non-Gaussian
HTML Version. And
PDF File.
BibRef
0200
Sendur, L.,
Selesnick, I.W.,
Bivariate Shrinkage Functions for Wavelet-Based Denoising
Exploiting Interscale Dependency,
TSP(50), No. 11, November 2002, pp. 2744-2756.
BibRef
0211
Earlier:
Subband adaptive image denoising via bivariate shrinkage,
ICIP02(III: 577-580).
IEEE DOI
0210
BibRef
Lo, W.Y.[Wan Yee],
Selesnick, I.W.,
Wavelet-Domain Soft-Thresholding for Non-Stationary Noise,
ICIP06(1441-1444).
IEEE DOI
0610
BibRef
Shi, F.[Fei],
Selesnick, I.W.,
Multivariate Quasi-Laplacian Mixture Models For Wavelet-Based Image
Denoising,
ICIP06(2625-2628).
IEEE DOI
0610
BibRef
Selesnick, I.W.,
van Slyke, R.,
Guleryuz, O.G.,
Pixel recovery via el minimization in the wavelet domain,
ICIP04(III: 1819-1822).
IEEE DOI
0505
BibRef
Selesnick, I.W.,
Laplace Random Vectors, Gaussian Noise, and the Generalized Incomplete
Gamma Function,
ICIP06(2097-2100).
IEEE DOI
0610
BibRef
Selesnick, I.W.,
A new complex-directional wavelet transform and its application to
image denoising,
ICIP02(III: 573-576).
IEEE DOI
0210
BibRef
Portilla, J.,
Strela, V.,
Wainwright, M.J.,
Simoncelli, E.P.,
Image denoising using scale mixtures of gaussians in the wavelet domain,
IP(12), No. 11, November 2003, pp. 1338-1351.
IEEE DOI
0311
Implementation:
See also Analysis and Improvement of the BLS-GSM Denoising Method, An.
BibRef
Portilla, J.,
Full blind denoising through noise covariance estimation using gaussian
scale mixtures in the wavelet domain,
ICIP04(II: 1217-1220).
IEEE DOI
0505
BibRef
Guerrero-Colon, J.A.,
Mancera, L.,
Portilla, J.,
Image Restoration Using Space-Variant Gaussian Scale Mixtures in
Overcomplete Pyramids,
IP(17), No. 1, January 2008, pp. 27-41.
IEEE DOI
0712
BibRef
Earlier: A1, A3, Only:
Deblurring-by-Denoising using Spatially Adaptive Gaussian Scale
Mixtures in Overcomplete Pyramids,
ICIP06(625-628).
IEEE DOI
0610
BibRef
Earlier: A1, A3, Only:
Two-Level Adaptive Denoising Using Gaussian Scale Mixtures in
Overcomplete Oriented Pyramids,
ICIP05(I: 105-108).
IEEE DOI
0512
BibRef
Guerrero-Colon, J.A.[Jose A.],
Simoncelli, E.P.[Eero P.],
Portilla, J.[Javier],
Image denoising using mixtures of Gaussian scale mixtures,
ICIP08(565-568).
IEEE DOI
0810
BibRef
Strela, V.,
Portilla, J.,
Simoncelli, E.P.,
Image Denoising Using a Local Gaussian Scale Mixture Model in the Wavelet Domain,
SPIE(4119), pp. 363-371, December 2000.
HTML Version.
BibRef
0012
Portilla, J.,
Simoncelli, E.P.,
Image restoration using gaussian scale mixtures in the wavelet domain,
ICIP03(II: 965-968).
IEEE DOI
0312
BibRef
Hammond, D.K.,
Simoncelli, E.P.,
Image Modeling and Denoising With Orientation-Adapted Gaussian Scale
Mixtures,
IP(17), No. 11, November 2008, pp. 1-1.
IEEE DOI
0810
BibRef
Earlier:
Image Denoising with an Orientation-Adaptive Gaussian Scale Mixture
Model,
ICIP06(1433-1436).
IEEE DOI
0610
BibRef
Portilla, J.,
Strela, V.,
Wainwright, M.,
Simoncelli, E.P.,
Adaptive Wiener Denoising Using a Gaussian Scale Mixture Model in the
Wavelet Domain,
ICIP01(II: 37-40).
IEEE DOI
HTML Version. And
PS File.
0108
BibRef
Portilla, J.,
Simoncelli, E.P.,
Image Denoising Via Adjustment of Wavelet Coefficient Magnitude
Correlation,
ICIP00(Vol III: 277-280).
IEEE DOI
0008
HTML Version. And
PS File.
BibRef
Pizurica, A.,
Philips, W.,
Lemahieu, I.,
Acheroy, M.,
A versatile wavelet domain noise filtration technique for medical
imaging,
MedImg(22), No. 3, March 2003, pp. 323-331.
IEEE Abstract.
0306
BibRef
Kazubek, M.,
Wavelet domain image denoising by thresholding and wiener filtering,
SPLetters(10), No. 11, November 2003, pp. 324-326.
IEEE Abstract.
0310
BibRef
Ghazel, M.,
Freeman, G.H.,
Vrscay, E.R.,
Fractal image denoising,
IP(12), No. 12, December 2003, pp. 1560-1578.
IEEE DOI
0402
BibRef
Earlier:
Fractal-wavelet image denoising,
ICIP02(I: 836-839).
IEEE DOI
0210
BibRef
Ghazel, M.,
Freeman, G.H.,
Vrscay, E.R.,
Fractal-Wavelet Image Denoising Revisited,
IP(15), No. 9, August 2006, pp. 2669-2675.
IEEE DOI
0608
BibRef
Ghazel, M.,
Freeman, G.H.,
Vrscay, E.R.,
Ward, R.K.,
Wavelet Image Denoising Using Localized Thresholding Operators,
ICIAR05(149-158).
Springer DOI
0509
BibRef
La Torre, D.,
Vrscay, E.R.,
Ebrahimi, M.,
Barnsley, M.F.,
Measure-Valued Images, Associated Fractal Transforms, and the
Affine Self-Similarity of Images,
SIIMS(2), No. 2, 2009, pp. 470-507.
DOI Link
0905
measure-valued images, multifunctions, nonlocal image processing;
self-similarity, nonlocal-means denoising, fractal transforms;
iterated function systems
BibRef
Otero, D.[Daniel],
Michailovich, O.V.[Oleg V.],
Vrscay, E.R.[Edward R.],
An Examination of Several Methods of Hyperspectral Image Denoising:
Over Channels, Spectral Functions and Both Domains,
ICIAR14(I: 131-140).
Springer DOI
1410
BibRef
Otero, D.[Daniel],
La Torre, D.[Davide],
Vrscay, E.R.[Edward R.],
Structural Similarity-Based Optimization Problems with L1-Regularization:
Smoothing Using Mollifiers,
ICIAR15(33-42).
Springer DOI
1507
BibRef
Earlier: A1, A3, Only:
Unconstrained Structural Similarity-Based Optimization,
ICIAR14(I: 167-176).
Springer DOI
1410
BibRef
Otero, D.[Daniel],
La Torre, D.[Davide],
Michailovich, O.V.[Oleg V.],
Vrscay, E.R.[Edward R.],
Alternate Direction Method of Multipliers for Unconstrained Structural
Similarity-Based Optimization,
ICIAR18(20-29).
Springer DOI
1807
BibRef
Otero, D.[Daniel],
La Torre, D.[Davide],
Vrscay, E.R.[Edward R.],
Image Denoising Using Euler-Lagrange Equations for Function-Valued
Mappings,
ICIAR16(110-119).
Springer DOI
1608
BibRef
And: A3, A1, A2:
Hyperspectral Images as Function-Valued Mappings, Their Self-similarity
and a Class of Fractal Transforms,
ICIAR13(225-234).
Springer DOI
1307
BibRef
Glew, D.,
Vrscay, E.R.[Edward R.],
Self-similarity of Images in the Wavelet Domain in Terms of L2 and
Structural Similarity (SSIM),
ICIAR12(I: 131-140).
Springer DOI
1206
BibRef
Glew, D.,
Vrscay, E.R.[Edward R.],
Max and Min Values of the Structural Similarity Function S(x,a) on the
L2 Sphere SR(a), a ? RN,
ICIAR12(I: 69-78).
Springer DOI
1206
BibRef
Xie, J.C.[Jie-Cheng],
Zhang, D.[Dali],
Xu, W.L.[Wen-Li],
Spatially adaptive wavelet denoising using the minimum description
length principle,
IP(13), No. 2, February 2004, pp. 179-187.
IEEE DOI
0404
BibRef
Scheunders, P.,
Wavelet Thresholding of Multivalued Images,
IP(13), No. 4, April 2004, pp. 475-483.
IEEE DOI
0404
BibRef
Scheunders, P.,
Wavelet-based enhancement and denoising using multiscale structure
tensor,
ICIP02(III: 569-572).
IEEE DOI
0210
BibRef
Choi, H.H.[Hyeok-Ho],
Baraniuk, R.G.[Richard G.],
Multiple Wavelet Basis Image Denoising Using Besov Ball Projections,
SPLetters(11), No. 9, September 2004, pp. 717-720.
IEEE Abstract.
0409
BibRef
Earlier:
Multiple Basis Wavelet Denoising using Besov Projections,
ICIP99(I:595-599).
IEEE DOI
BibRef
Zhang, J.H.,
Janschek, K.,
Bohme, J.F.,
Zeng, Y.J.,
Multi-resolution dyadic wavelet denoising approach for extraction of
visual evoked potentials in the brain,
VISP(151), No. 3, June 2004, pp. 180-186.
IEEE Abstract.
0409
BibRef
Chen, G.Y.[Guang-Yi],
Bui, T.D.,
Krzyzak, A.,
Image denoising with neighbour dependency and customized wavelet and
threshold,
PR(38), No. 1, January 2005, pp. 115-124.
Elsevier DOI
0410
BibRef
Chen, G.Y.[Guang-Yi],
Kégl, B.,
Image denoising with complex ridgelets,
PR(40), No. 2, February 2007, pp. 578-585.
Elsevier DOI
0611
Image denoising, Wavelets, Ridgelets, Complex ridgelets
BibRef
de Stefano, A.,
White, P.R.,
Collis, W.B.,
Selection of Thresholding Scheme for Image Noise Reduction on Wavelet
Components Using Bayesian Estimation,
JMIV(21), No. 3, November 2004, pp. 225-233.
DOI Link
0410
BibRef
Eom, I.K.[Il Kyu],
Kim, Y.S.[Yoo Shin],
Wavelet-based denoising with nearly arbitrarily shaped windows,
SPLetters(11), No. 12, December 2004, pp. 937-940.
IEEE Abstract.
0412
BibRef
Fadili, J.M.,
Boubchir, L.,
Analytical Form for a Bayesian Wavelet Estimator of Images Using the
Bessel K Form Densities,
IP(14), No. 2, February 2005, pp. 231-240.
IEEE DOI
0501
BibRef
Earlier: A2, A1:
Bayesian Denoising Based on the Map Estimation In Wavelet-Domain Using
Bessel K Form Prior,
ICIP05(I: 113-116).
IEEE DOI
0512
BibRef
Boubchir, L.[Larbi],
Nait-Ali, A.[Amine],
Petit, E.[Eric],
Multivariate statistical modeling of images in sparse multiscale
transforms domain,
ICIP10(1877-1880).
IEEE DOI
1009
BibRef
Boubchir, L.[Larbi],
Boumaza, R.[Rachid],
Pumo, B.[Besnik],
Multivariate statistical modeling of images in wavelet and curvelet
domain using the Bessel K Form densities,
ICIP09(3957-3960).
IEEE DOI
0911
BibRef
Boubchir, L.[Larbi],
Fadili, J.M.[Jalal M.],
A closed-form nonparametric Bayesian estimator in the wavelet domain of
images using an approximate alpha-stable prior,
PRL(27), No. 12, September 2006, pp. 1370-1382.
Elsevier DOI
0606
BibRef
And:
Reply to Comments:
PRL(28), No. 13, 1 October 2007, pp. 1848-1851.
Elsevier DOI
0709
Wavelets, Bayesian denoiser, [alpha]-stable, Gaussian mixture model, Posterior conditional mean
See also Comments on A closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximate [alpha]-stable prior.
BibRef
Boubchir, L.[Larbi],
Fadili, J.M.[Jalal M.],
Bloyet, D.,
Bayesian denoising in the wavelet-domain using an analytical
approximate alpha-stable prior,
ICPR04(IV: 889-892).
IEEE DOI
0409
BibRef
Achim, A.[Alin],
Kuruoglu, E.E.[Ercan E.],
Bezerianos, A.[Anastasios],
Tsakalides, P.[Panagiotis],
Comments on 'A closed-form nonparametric Bayesian estimator in the
wavelet domain of images using an approximate [alpha]-stable prior',
PRL(28), No. 13, 1 October 2007, pp. 1845-1847.
Elsevier DOI
0709
Alpha-stable distributions, Image denoising, Bayesian estimation,
Wavelet transform
See also closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximate alpha-stable prior, A.
BibRef
Achim, A.[Alin],
Kuruoglu, E.E.[Ercan E.],
Image denoising using bivariate alpha-stable distributions in the
complex wavelet domain,
SPLetters(12), No. 1, January 2005, pp. 17-20.
IEEE Abstract.
0501
BibRef
Achim, A.,
Herranz, D.,
Kuruoglu, E.E.,
Astrophysical image denoising using bivariate isotropic Cauchy
distributions in the undecimated wavelet domain,
ICIP04(II: 1225-1228).
IEEE DOI
0505
BibRef
Cho, D.W.[Dong-Wook],
Bui, T.D.[Tien D.],
Multivariate statistical modeling for image denoising using wavelet
transforms,
SP:IC(20), No. 1, January 2005, pp. 77-89.
Elsevier DOI
0501
BibRef
Huang, K.Q.[Kai-Qi],
Wu, Z.Y.[Zhen-Yang],
Fung, G.S.K.[George S.K.],
Chan, F.H.Y.[Francis H.Y.],
Color image denoising with wavelet thresholding based on human visual
system model,
SP:IC(20), No. 2, February 2005, pp. 115-127.
Elsevier DOI
0501
BibRef
Zhang, L.,
Bao, P.,
Wu, X.,
Multiscale LMMSE-Based Image Denoising With Optimal Wavelet Selection,
CirSysVideo(15), No. 4, April 2005, pp. 469-481.
IEEE Abstract.
0501
BibRef
Bharath, A.A.[Anil A.],
Ng, J.[Jeffrey],
A Steerable Complex Wavelet Construction and Its Application to Image
Denoising,
IP(14), No. 7, July 2005, pp. 948-959.
IEEE DOI
0506
See also Extrapolative Spatial Models for Detecting Perceptual Boundaries in Colour Images.
See also Obtaining medial responses from steerable filters.
BibRef
Ranta, R.,
Louis-Dorr, V.,
Heinrich, C.,
Wolf, D.,
Iterative Wavelet-Based Denoising Methods and Robust Outlier Detection,
SPLetters(12), No. 8, August 2005, pp. 557-560.
IEEE DOI
0508
BibRef
Mrázek, P.[Pavel],
Weickert, J.[Joachim],
Steidl, G.[Gabriele],
Diffusion-Inspired Shrinkage Functions and Stability Results for
Wavelet Denoising,
IJCV(64), No. 2-3, September 2005, pp. 171-186.
Springer DOI
0510
BibRef
And:
Correspondences between Wavelet Shrinkage and Nonlinear Diffusion,
ScaleSpace03(101-116).
Springer DOI
0310
BibRef
Mrázek, P.[Pavel],
Weickert, J.[Joachim],
Rotationally Invariant Wavelet Shrinkage,
DAGM03(156-163).
Springer DOI
0310
BibRef
Welk, M.[Martin],
Weickert, J.[Joachim],
Steidl, G.[Gabriele],
From Tensor-Driven Diffusion to Anisotropic Wavelet Shrinkage,
ECCV06(I: 391-403).
Springer DOI
0608
BibRef
Steidl, G.[Gabriele],
Weickert, J.[Joachim],
Relations between Soft Wavelet Shrinkage and Total Variation Denoising,
DAGM02(198 ff.).
Springer DOI
0303
BibRef
Benazza-Benyahia, A.,
Pesquet, J.C.,
Building Robust Wavelet Estimators for Multicomponent Images Using
Stein's Principle,
IP(14), No. 11, November 2005, pp. 1814-1830.
IEEE DOI
0510
BibRef
Chaux, C.[Caroline],
Pesquet, J.C.[Jean-Christophe],
Pustelnik, N.[Nelly],
Nested Iterative Algorithms For Convex Constrained
Image Recovery Problems,
SIIMS(2), No. 2, 2009, pp. 730-762.
DOI Link wavelets, dual-trees, restoration, deconvolution, optimization, convex
analysis, iterative algorithms, forward-backward, Douglas-Rachford;
variational methods, Bayesian approaches, maximum a posteriori;
Poisson noise
See also Image Analysis Using a Dual-Tree M-Band Wavelet Transform.
BibRef
0900
Pustelnik, N.[Nelly],
Chaux, C.[Caroline],
Pesquet, J.C.[Jean-Christophe],
Parallel Proximal Algorithm for Image Restoration Using Hybrid
Regularization,
IP(20), No. 9, September 2011, pp. 2450-2462.
IEEE DOI
1109
BibRef
Benazza-Benyahia, A.[Amel],
Pesquet, J.C.[Jean-Christophe],
Chaux, C.,
Image Denoising in the Wavelet Transform Domain Based on Stein's
Principle,
IPTA08(1-9).
IEEE DOI
0811
BibRef
Shui, P.L.[Peng-Lang],
Image denoising algorithm via doubly local Wiener filtering with
directional windows in wavelet domain,
SPLetters(12), No. 10, October 2005, pp. 681-684.
IEEE DOI
0510
BibRef
Shui, P.L.,
Image denoising using 2-D separable oversampled DFT modulated filter
banks,
IET-IPR(3), No. 3, June 2009, pp. 163-173.
DOI Link
0906
BibRef
Shui, P.L.[Peng-Lang],
Zhou, Z.F.,
Li, J.X.,
Image denoising algorithm via best wavelet packet base using Wiener
cost function,
IET-IPR(1), No. 3, September 2007, pp. 311-318.
DOI Link
0905
BibRef
Lian, N.X.[Nai-Xiang],
Zagorodnov, V.[Vitali],
Tan, Y.P.[Yap-Peng],
Color Image Denoising Using Wavelets and Minimum Cut Analysis,
SPLetters(12), No. 11, November 2005, pp. 741-744.
IEEE DOI
0510
BibRef
Lian, N.X.,
Zagorodnov, V.,
Tan, Y.P.,
Edge-Preserving Image Denoising via Optimal Color Space Projection,
IP(15), No. 9, August 2006, pp. 2575-2587.
IEEE DOI
0608
BibRef
Balster, E.J.,
Zheng, Y.F.,
Ewing, R.L.,
Feature-Based Wavelet Shrinkage Algorithm for Image Denoising,
IP(14), No. 12, December 2005, pp. 2024-2039.
IEEE DOI
0512
BibRef
And:
Corrections:
IP(15), No. 3, March 2006, pp. 789-789.
IEEE DOI
0604
BibRef
Balster, E.J.,
Zheng, Y.F.,
Ewing, R.L.,
Combined spatial and temporal domain wavelet shrinkage algorithm for
video denoising,
CirSysVideo(16), No. 2, February 2006, pp. 220-230.
IEEE DOI
0604
BibRef
Charnigo, R.,
Sun, J.,
Muzic, Jr., R.,
A Semi-Local Paradigm for Wavelet Denoising,
IP(15), No. 3, March 2006, pp. 666-677.
IEEE DOI
0604
BibRef
Bioucas-Dias, J.M.[José M.],
Bayesian Wavelet-Based Image Deconvolution:
A GEM Algorithm Exploiting a Class of Heavy-Tailed Priors,
IP(15), No. 4, April 2006, pp. 937-951.
IEEE DOI
0604
BibRef
Bala, E.[Erdem],
Ertüzün, A.[Aysin],
A Multivariate Thresholding Technique for Image Denoising Using
Multiwavelets,
JASP(2005), No. 8, 2005, pp. 1205-1211.
WWW Link.
0603
BibRef
Earlier:
Applications of multiwavelet techniques to image denoising,
ICIP02(III: 581-584).
IEEE DOI
0210
BibRef
Kim, D.,
Lee, Y.,
Oh, H.S.,
Hierarchical-Likelihood-Based Wavelet Method for Denoising Signals With
Missing Data,
SPLetters(13), No. 6, June 2006, pp. 361-364.
IEEE DOI
0606
BibRef
Zlokolica, V.,
Pizurica, A.,
Philips, W.,
Wavelet-Domain Video Denoising Based on Reliability Measures,
CirSysVideo(16), No. 8, August 2006, pp. 993-1007.
IEEE DOI
0609
BibRef
Earlier: A2, A1, A3:
Combined wavelet domain and temporal video denoising,
AVSBS03(334-341).
IEEE DOI
0310
BibRef
Jovanov, L.,
Pizurica, A.,
Schulte, S.,
Schelkens, P.,
Munteanu, A.,
Kerre, E.,
Philips, W.,
Combined Wavelet-Domain and Motion-Compensated Video Denoising Based on
Video Codec Motion Estimation Methods,
CirSysVideo(19), No. 3, March 2009, pp. 417-421.
IEEE DOI
0903
See also Complexity Scalability in Motion-Compensated Wavelet-Based Video Coding.
BibRef
Shan, T.[Tan],
Jiao, L.C.[Li-Cheng],
Image denoising using the ridgelet bi-frame,
JOSA-A(23), No. 10, October 2006, pp. 2449-2461.
WWW Link.
0610
BibRef
Earlier:
Monoscale Dual Ridgelet Frame,
ICIAR05(263-269).
Springer DOI
0509
BibRef
Shan, T.[Tan],
Jiao, L.C.[Li-Cheng],
Feng, X.C.[Xiang-Chu],
Ridgelets Frame,
ICIAR04(I: 479-486).
Springer DOI
0409
BibRef
Liu, K.[Kang],
Jiao, L.C.[Li-Cheng],
Adaptive Curved Feature Detection Based on Ridgelet,
ICIAR04(I: 487-494).
Springer DOI
0409
BibRef
Bruni, V.[Vittoria],
Vitulano, D.[Domenico],
Combined image compression and denoising using wavelets,
SP:IC(22), No. 1, January 2007, pp. 86-101.
Elsevier DOI
0703
BibRef
Earlier:
Wavelet Atoms Approximation for Simultaneous Image Compression and
De-Noising,
ICIP05(III: 333-336).
IEEE DOI
0512
BibRef
Earlier:
Image De-noising via Overlapping Wavelet Atoms,
ICIAR04(I: 179-186).
Springer DOI
0409
Image restoration, Image compression, Wavelets,
Thresholding, Overlapping effects principle, Minimum description
BibRef
Bruni, V.[Vittoria],
Vitulano, D.[Domenico],
Time-Scale Similarities for Robust Image De-noising,
JMIV(44), No. 1, September 2012, pp. 52-64.
WWW Link.
1206
BibRef
Earlier:
Image Denoising Using Similarities in the Time-Scale Plane,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
And:
Transients Detection in the Time-Scale Domain,
ICISP08(254-262).
Springer DOI
0807
BibRef
Bruni, V.[Vittoria],
Piccoli, B.[Benedetto],
Vitulano, D.[Domenico],
Wavelets and partial differential equations for image denoising,
ELCVIA(6), No. 2, September 2007, pp. 36-53.
DOI Link
0804
See also fast computation method for time scale signal denoising, A.
BibRef
Bruni, V.[Vittoria],
Rossi, E.[Elisa],
Vitulano, D.[Domenico],
Optimal Image Restoration Using HVS-Based Rate-Distortion Curves,
CAIP11(II: 269-276).
Springer DOI
1109
BibRef
Bruni, V.[Vittoria],
de Canditiis, D.[Daniela],
Vitulano, D.[Domenico],
Phase Information and Space Filling Curves in Noisy Motion Estimation,
IP(18), No. 7, July 2009, pp. 1660-1664.
IEEE DOI
0906
BibRef
Bruni, V.[Vittoria],
de Canditiis, D.[Daniela],
Vitulano, D.[Domenico],
Human Visual System for Complexity Reduction of Image and Video
Restoration,
CAIP11(II: 261-268).
Springer DOI
1109
BibRef
Bhuiyan, M.I.H.,
Ahmad, M.O.,
Swamy, M.N.S.,
Spatially Adaptive Wavelet-Based Method Using the Cauchy Prior for
Denoising the SAR Images,
CirSysVideo(17), No. 4, April 2007, pp. 500-507.
IEEE DOI
0705
BibRef
Bhuiyan, M.I.H.,
Ahmad, M.O.,
Swamy, M.N.S.,
Wavelet-based image denoising with the normal inverse Gaussian prior
and linear MMSE estimator,
IET-IPR(2), No. 4, August 2008, pp. 203-217.
DOI Link
0905
BibRef
Rahman, S.M.M.[S. M. Mahbubur],
Ahmad, M.O.[M. Omair],
Swamy, M.N.S.,
Bayesian Wavelet-Based Image Denoising Using the Gauss-Hermite
Expansion,
IP(17), No. 10, October 2008, pp. 1755-1771.
IEEE DOI
0809
BibRef
Earlier:
Locally Adaptive Wavelet-Based Image Denoising using the Gram-Charlier
Prior Function,
ICIP07(III: 549-552).
IEEE DOI
0709
BibRef
Rahman, S.M.M.,
Ahmad, M.O.,
Swamy, M.N.S.,
A New Statistical Detector for DWT-Based Additive Image Watermarking
Using the Gauss-Hermite Expansion,
IP(18), No. 8, August 2009, pp. 1782-1796.
IEEE DOI
0907
BibRef
Gupta, N.,
Swamy, M.N.S.,
Plotkin, E.I.,
Wavelet domain-based video noise reduction using temporal discrete
cosine transform and hierarchically adapted thresholding,
IET-IPR(1), No. 1, March 2007, pp. 2-12.
DOI Link
0905
BibRef
Earlier: A1, A3, A2:
Temporally-Adaptive MAP Estimation for Video Denoising in the Wavelet
Domain,
ICIP06(1449-1452).
IEEE DOI
0610
BibRef
de Backer, S.[Steve],
Pizurica, A.[Aleksandra],
Huysmans, B.[Bruno],
Philips, W.[Wilfried],
Scheunders, P.[Paul],
Denoising of multicomponent images using wavelet least-squares
estimators,
IVC(26), No. 7, 2 July 2008, pp. 1038-1051.
Elsevier DOI
0804
Multicomponent images, Denoising, Wavelets, Bayesian estimation,
Least squares estimators
BibRef
Scheunders, P.[Paul],
de Backer, S.[Steve],
Wavelet Denoising of Multicomponent Images Using Gaussian Scale Mixture
Models and a Noise-Free Image as Priors,
IP(16), No. 7, July 2007, pp. 1865-1872.
IEEE DOI
0707
BibRef
Earlier:
Wavelet Denoising of Multicomponent Images, using a Noise-Free Image,
ICIP06(2617-2620).
IEEE DOI
0610
BibRef
Earlier:
Wavelet denoising of multicomponent images, using a Gaussian Scale
Mixture model,
ICPR06(III: 754-757).
IEEE DOI
0609
BibRef
Mignotte, M.[Max],
A Post-Processing Deconvolution Step for Wavelet-Based Image Denoising
Methods,
SPLetters(14), No. 9, September 2007, pp. 621-624.
IEEE DOI
0709
BibRef
Tan, S.[Shan],
Jiao, L.C.[Li-Cheng],
Multivariate Statistical Models for Image Denoising in the Wavelet
Domain,
IJCV(75), No. 2, November 2007, pp. 209-230.
Springer DOI
0710
BibRef
Jia, J.[Jian],
Jiao, L.C.[Li-Cheng],
Using Shear Invariant for Image Denoising in the Contourlet Domain,
IWICPAS06(377-386).
Springer DOI
0608
BibRef
Wu, J.[Jiao],
Liu, F.[Fang],
Jiao, L.C.,
Wang, X.D.[Xiao-Dong],
Hou, B.[Biao],
Multivariate Compressive Sensing for Image Reconstruction in the
Wavelet Domain: Using Scale Mixture Models,
IP(20), No. 12, December 2011, pp. 3483-3494.
IEEE DOI
1112
BibRef
Zhang, S.[Sibo],
Jiao, L.C.[Li-Cheng],
Liu, F.[Fang],
Wang, S.[Shuang],
Global Low-Rank Image Restoration With Gaussian Mixture Model,
Cyber(48), No. 6, June 2018, pp. 1827-1838.
IEEE DOI
1805
Gaussian mixture model, Image restoration,
Indexes, Minimization, Numerical models,
low-rank recovery
BibRef
Lu, X.L.[Xiao-Liang],
Liu, R.G.[Rong-Gao],
Liu, J.Y.[Ji-Yuan],
Liang, S.L.[Shun-Lin],
Removal of Noise by Wavelet Method to Generate High Quality Temporal
Data of Terrestrial MODIS Products,
PhEngRS(73), No. 10, October 2007, pp. 1129-1140.
WWW Link.
0709
A new method to enhance the ability to remove noise in time-series
data products.
BibRef
Figueiredo, M.A.T.,
Nowak, R.D.,
Wavelet-Based Image Estimation: An Empirical Bayes Approach Using
Jeffreys' Noninformative Prior,
IP(10), No. 9, September 2001, pp. 1322-1331.
IEEE DOI
0108
BibRef
Earlier:
Image restoration under wavelet-domain priors:
An expectation-maximization approach,
ICIP02(I: 337-340).
IEEE DOI
0210
BibRef
Figueiredo, M.A.T.,
Nowak, R.D.,
An EM algorithm for wavelet-based image restoration,
IP(12), No. 8, August 2003, pp. 906-916.
IEEE DOI
0308
BibRef
Figueiredo, M.A.T.[Mário A.T.],
Bayesian Image Segmentation Using Gaussian Field Priors,
EMMCVPR05(74-89).
Springer DOI
0601
BibRef
And:
Bayesian Image Segmentation Using Wavelet-Based Priors,
CVPR05(I: 437-443).
IEEE DOI
0507
BibRef
Figueiredo, M.A.T.,
Bioucas-Dias, J.M.,
Nowak, R.D.,
Majorization-Minimization Algorithms for Wavelet-Based Image
Restoration,
IP(16), No. 12, December 2007, pp. 2980-2991.
IEEE DOI
0711
BibRef
Hel-Or, Y.[Yacov],
Shaked, D.[Doron],
A Discriminative Approach for Wavelet Denoising,
IP(17), No. 4, April 2008, pp. 443-457.
IEEE DOI
0803
BibRef
Tan, S.,
Jiao, L.,
Kakadiaris, I.A.,
Wavelet-Based Bayesian Image Estimation:
From Marginal and Bivariate Prior Models to Multivariate Prior Models,
IP(17), No. 4, April 2008, pp. 469-481.
IEEE DOI
0803
BibRef
Vonesch, C.,
Unser, M.,
A Fast Thresholded Landweber Algorithm for Wavelet-Regularized
Multidimensional Deconvolution,
IP(17), No. 4, April 2008, pp. 539-549.
IEEE DOI
0803
3-D deconvolution.
BibRef
Vonesch, C.,
Unser, M.,
A Fast Multilevel Algorithm for Wavelet-Regularized Image Restoration,
IP(18), No. 3, March 2009, pp. 509-523.
IEEE DOI
0903
BibRef
Kamilov, U.S.,
Bostan, E.,
Unser, M.,
Wavelet Shrinkage With Consistent Cycle Spinning Generalizes Total
Variation Denoising,
SPLetters(19), No. 4, April 2012, pp. 187-190.
IEEE DOI
1203
BibRef
Kamilov, U.S.,
A Parallel Proximal Algorithm for Anisotropic Total Variation
Minimization,
IP(26), No. 2, February 2017, pp. 539-548.
IEEE DOI
1702
gradient methods
BibRef
Kazerouni, A.,
Kamilov, U.S.,
Bostan, E.,
Unser, M.,
Bayesian Denoising: From MAP to MMSE Using Consistent Cycle Spinning,
SPLetters(20), No. 3, March 2013, pp. 249-252.
IEEE DOI
1303
BibRef
Bayram, I.,
Guerquin-Kern, M.,
Terres-Cristofani, R.,
Unser, M.,
Accelerated wavelet-regularized deconvolution for 3-D fluorescence
microcopy,
ICIP10(581-584).
IEEE DOI
1009
BibRef
Marusic, B.[Bostjan],
Skocir, P.[Primoz],
Tasic, J.[Jurij],
Kosir, A.[Andrej],
Video Post-Processing with Adaptive 3-D Filters for Wavelet Ringing
Artifact Removal,
IEICE(E88-D), No. 5, May 2005, pp. 1031-1040.
DOI Link
0505
BibRef
Khare, A.[Ashish],
Tiwary, U.S.[Uma Shanker],
Daubechies Complex Wavelet Transform Based Technique For Denoising Of
Medical Images,
IJIG(7), No. 4, October 2007, pp. 663-687.
0710
BibRef
Lu, J.M.[Jian-Ming],
Wang, L.[Ling],
Li, Y.Q.[Ye-Qiu],
Yahagi, T.[Takashi],
Noise Removal For Medical X-ray Images In Multiwavelet Domain,
IJIG(8), No. 1, January 2008, pp. 25-46.
0801
BibRef
Zhou, D.W.[Deng-Wen],
Cheng, W.G.[Wen-Gang],
Image denoising with an optimal threshold and neighbouring window,
PRL(29), No. 11, 1 August 2008, pp. 1694-1697.
Elsevier DOI
0804
Image denoising, Adaptive, Dual tree, Wavelet transforms, Neighbourhood
BibRef
Meena, S.[Srinivasan],
Annadurai, S.,
Improved spatially adaptive MDL denoising of images using normalized
maximum likelihood density,
IVC(26), No. 11, 1 November 2008, pp. 1524-1529.
Elsevier DOI
0804
Minimum description length, Wavelet denoising, Normalized maximum likelihood
BibRef
Borsdorf, A.[Anja],
Raupach, R.[Rainer],
Flohr, T.,
Hornegger, J.[Joachim],
Wavelet Based Noise Reduction in CT-Images Using Correlation Analysis,
MedImg(27), No. 12, December 2008, pp. 1685-1703.
IEEE DOI
0812
BibRef
Earlier: A1, A2, A4, Only:
Wavelet Based Noise Reduction by Identification of Correlations,
DAGM06(21-30).
Springer DOI
0610
BibRef
Smith, C.B.,
Agaian, S.,
Akopian, D.,
A Wavelet-Denoising Approach Using Polynomial Threshold Operators,
SPLetters(15), No. 1, 2008, pp. 906-909.
IEEE DOI
0901
BibRef
Goossens, B.[Bart],
Pizurica, A.[Aleksandra],
Philips, W.[Wilfried],
Removal of Correlated Noise by Modeling the Signal of Interest in the
Wavelet Domain,
IP(18), No. 6, June 2009, pp. 1153-1165.
IEEE DOI
0905
BibRef
Earlier:
Removal of Correlated Noise by Modeling Spatial Correlations and
Interscale Dependencies in the Complex Wavelet Domain,
ICIP07(I: 317-320).
IEEE DOI
0709
BibRef
Earlier:
Wavelet Domain Image Denoising for Non-Stationary Noise and
Signal-Dependent Noise,
ICIP06(1425-1428).
IEEE DOI
0610
See also Image Denoising Using Mixtures of Projected Gaussian Scale Mixtures.
BibRef
Goossens, B.[Bart],
Pizurica, A.[Aleksandra],
Philips, W.[Wilfried],
A filter design technique for improving the directional selectivity of
the first scale of the Dual-Tree complex wavelet transform,
ICIP09(3805-3808).
IEEE DOI
0911
BibRef
Yang, J.Y.[Jing-Yu],
Wang, Y.[Yao],
Xu, W.L.[Wen-Li],
Dai, Q.H.[Qiong-Hai],
Image and Video Denoising Using Adaptive Dual-Tree Discrete Wavelet
Packets,
CirSysVideo(19), No. 5, May 2009, pp. 642-655.
IEEE DOI
0906
BibRef
Earlier: A1, A3, A2, A4:
2-D Anisotropic Dual-Tree Complex Wavelet Packets and Its Application
to Image Denoising,
ICIP08(2328-2331).
IEEE DOI
0810
See also Face Recognition Using Anisotropic Dual-Tree Complex Wavelet Packets.
See also Image Coding Using Dual-Tree Discrete Wavelet Transform.
BibRef
Raja, S.S.[S. Selvakumar],
John, M.[Mala],
EM algorithm-based adaptive custom thresholding for image denoising in
wavelet domain,
IJIST(19), No. 3, September 2009, pp. 175-178.
DOI Link
0909
BibRef
Yu, H.,
Zhao, L.,
Wang, H.,
Image Denoising Using Trivariate Shrinkage Filter in the Wavelet Domain
and Joint Bilateral Filter in the Spatial Domain,
IP(18), No. 10, October 2009, pp. 2364-2369.
IEEE DOI
0909
BibRef
Gao, J.,
Sultan, H.,
Hu, J.,
Tung, W.W.,
Denoising Nonlinear Time Series by Adaptive Filtering and
Wavelet Shrinkage: A Comparison,
SPLetters(17), No. 1, January 2010, pp. 237-240.
IEEE DOI
1001
BibRef
Yu, S.G.[Shi-Gong],
Ahmad, M.O.,
Swamy, M.N.S.,
Video Denoising Using Motion Compensated 3-D Wavelet Transform With
Integrated Recursive Temporal Filtering,
CirSysVideo(20), No. 6, June 2010, pp. 780-791.
IEEE DOI
1007
BibRef
Nikpour, M.,
Hassanpour, H.,
Using diffusion equations for improving performance of wavelet-based
image denoising techniques,
IET-IPR(4), No. 6, December 2010, pp. 452-462.
DOI Link
1101
BibRef
Wang, X.T.,
Shi, G.M.,
Niu, Y.,
Zhang, L.,
Robust adaptive directional lifting wavelet transform for image
denoising,
IET-IPR(5), No. 3, June 2011, pp. 249-260.
DOI Link
1105
BibRef
Dong, W.S.[Wei-Sheng],
Zhang, L.[Lei],
Shi, G.M.[Guang-Ming],
Li, X.[Xin],
Nonlocally Centralized Sparse Representation for Image Restoration,
IP(22), No. 4, April 2013, pp. 1620-1630.
IEEE DOI
1303
BibRef
Earlier: A1, A2, A3, Only:
Centralized sparse representation for image restoration,
ICCV11(1259-1266).
IEEE DOI
1201
See also Nonlocal back-projection for adaptive image enlargement.
BibRef
Dong, W.S.[Wei-Sheng],
Shi, G.M.[Guang-Ming],
Ma, Y.[Yi],
Li, X.[Xin],
Image Restoration via Simultaneous Sparse Coding:
Where Structured Sparsity Meets Gaussian Scale Mixture,
IJCV(114), No. 2-3, September 2015, pp. 217-232.
Springer DOI
1509
BibRef
Earlier: A1, A4, A3, A2:
Image restoration via Bayesian structured sparse coding,
ICIP14(4018-4022)
IEEE DOI
1502
Bayes methods
See also Image reconstruction with locally adaptive sparsity and nonlocal robust regularization.
BibRef
Li, Y.,
Dong, W.S.[Wei-Sheng],
Shi, G.M.[Guang-Ming],
Xie, X.,
Learning Parametric Distributions for Image Super-Resolution: Where
Patch Matching Meets Sparse Coding,
ICCV15(450-458)
IEEE DOI
1602
Dictionaries
BibRef
Dong, W.S.[Wei-Sheng],
Zhang, L.[Lei],
Lukac, R.,
Shi, G.M.[Guang-Ming],
Sparse Representation Based Image Interpolation With Nonlocal
Autoregressive Modeling,
IP(22), No. 4, April 2013, pp. 1382-1394.
IEEE DOI
1303
See also Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization.
BibRef
Dong, W.S.[Wei-Sheng],
Shi, G.M.[Guang-Ming],
Wu, X.L.[Xiao-Lin],
Zhang, L.[Lei],
A learning-based method for compressive image recovery,
JVCIR(24), No. 7, 2013, pp. 1055-1063.
Elsevier DOI
1309
BibRef
Earlier: A1, A4, A2, A3:
Nonlocal back-projection for adaptive image enlargement,
ICIP09(349-352).
IEEE DOI
0911
See also Centralized sparse representation for image restoration. Compressive sensing
BibRef
Dong, W.S.[Wei-Sheng],
Shi, G.M.[Guang-Ming],
Li, X.[Xin],
Zhang, L.[Lei],
Wu, X.L.[Xiao-Lin],
Image reconstruction with locally adaptive sparsity and nonlocal robust
regularization,
SP:IC(27), No. 10, November 2012, pp. 1109-1122.
Elsevier DOI
1211
BibRef
Earlier: A1, A3, A4, A5, Only:
Sparsity-based image deblurring with locally adaptive and nonlocally
robust regularization,
ICIP11(1841-1844).
IEEE DOI
1201
BibRef
Earlier: A1, A3, A4, A5, Only:
Sparsity-based image denoising via dictionary learning and structural
clustering,
CVPR11(457-464).
IEEE DOI
1106
Sparse representation, Local dictionary learning, Nonlocal
regularization, Image reconstruction
See also Image Restoration via Simultaneous Sparse Coding: Where Structured Sparsity Meets Gaussian Scale Mixture.
See also Two-stage image denoising by principal component analysis with local pixel grouping.
BibRef
Dong, W.S.[Wei-Sheng],
Wu, X.L.[Xiao-Lin],
Shi, G.M.[Guang-Ming],
Zhang, L.[Lei],
Context-based bias removal of statistical models of wavelet
coefficients for image denoising,
ICIP09(3841-3844).
IEEE DOI
0911
BibRef
Fahmy, M.F.,
Fahmy, G.[Gamal],
Fahmy, O.F.,
B-spline wavelets for signal denoising and image compression,
SIViP(5), No. 2, June 2011, pp. 141-153.
WWW Link.
1101
BibRef
Fahmy, M.F.,
Fahmy, G.[Gamal],
Exponential spline perfect reconstruction, decomposition and
reconstruction with applications in compression and denoising,
SIViP(8), No. 6, September 2014, pp. 1111-1120.
WWW Link.
1408
BibRef
Li, Y.R.[Yan-Ran],
Shen, L.X.[Li-Xin],
Dai, D.Q.[Dao-Qing],
Suter, B.W.,
Framelet Algorithms for De-Blurring Images Corrupted by Impulse Plus
Gaussian Noise,
IP(20), No. 7, July 2011, pp. 1822-1837.
IEEE DOI
1107
BibRef
Bhutada, G.G.,
Anand, R.S.,
Saxena, S.C.,
Image enhancement by wavelet-based thresholding neural network with
adaptive learning rate,
IET-IPR(5), No. 7, 2011, pp. 573-582.
DOI Link
1108
BibRef
Bhutada, G.G.,
Anand, R.S.,
Saxena, S.C.,
PSO-based learning of sub-band adaptive thresholding function for image
denoising,
SIViP(6), No. 1, March 2012, pp. 1-7.
WWW Link.
1203
BibRef
Kim, D.,
Oh, H.S.,
Naveau, P.,
Hybrid wavelet denoising procedure of discontinuous surfaces,
IET-IPR(5), No. 8, 2011, pp. 684-692.
DOI Link
1108
BibRef
Kim, D.[Donghoh],
Park, M.[Minjeong],
Oh, H.S.[Hee-Seok],
Bidimensional Statistical Empirical Mode Decomposition,
SPLetters(19), No. 4, April 2012, pp. 191-194.
IEEE DOI
1203
BibRef
Yu, G.S.[Guo-Shen],
Sapiro, G.[Guillermo],
DCT image denoising: a simple and effective image denoising algorithm,
IPOL(2011), No. 1, 2011, pp. xx-yy.
DOI Link
1202
Code, Denoising.
See also Ideal spatial adaptation via wavelets shrinkage.
BibRef
Fathi, A.,
Naghsh-Nilchi, A.R.,
Efficient Image Denoising Method Based on a New Adaptive Wavelet Packet
Thresholding Function,
IP(21), No. 9, September 2012, pp. 3981-3990.
IEEE DOI
1208
BibRef
Fornasier, M.,
Kim, Y.,
Langer, A.,
Schönlieb, C.B.,
Wavelet Decomposition Method for L_2/TV-Image Deblurring,
SIIMS(5), No. 3 2012, pp. 857-885.
DOI Link
1208
BibRef
Chen, G.,
Zhu, W.P.,
Xie, W.,
Wavelet-based image denoising using three scales of dependency,
IET-IPR(6), No. 6, 2012, pp. 756-760.
DOI Link
1210
BibRef
Rabbani, H.,
Gazor, S.,
Video denoising in three-dimensional complex wavelet domain using a
doubly stochastic modelling,
IET-IPR(6), No. 9, 2012, pp. 1262-1274.
DOI Link
1302
BibRef
Rabbani, H.,
Vafadust, M.,
Gazor, S.,
Image Denoising Based on a Mixture of Laplace Distributions with Local
Parameters in Complex Wavelet Domain,
ICIP06(2597-2600).
IEEE DOI
0610
BibRef
Ho, J.[Jinn],
Hwang, W.L.[Wen-Liang],
Wavelet Bayesian Network Image Denoising,
IP(22), No. 4, April 2013, pp. 1277-1290.
IEEE DOI
1303
BibRef
Fierro, M.,
Ha, H.G.,
Ha, Y.H.,
Noise Reduction Based on Partial-Reference, Dual-Tree Complex Wavelet
Transform Shrinkage,
IP(22), No. 5, May 2013, pp. 1859-1872.
IEEE DOI
1303
BibRef
Yang, S.,
Min, W.,
Zhao, L.,
Wang, Z.,
Image Noise Reduction via Geometric Multiscale Ridgelet Support
Vector Transform and Dictionary Learning,
IP(22), No. 11, 2013, pp. 4161-4169.
IEEE DOI
1310
Ridgelet support vector machine
BibRef
Kumar, B.K.S.[B. K. Shreyamsha],
Image denoising based on gaussian/bilateral filter and its method noise
thresholding,
SIViP(7), No. 6, November 2013, pp. 1159-1172.
WWW Link.
1310
See also Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform.
BibRef
You, S.J.,
Cho, N.I.,
An adaptive bandwidth nonlocal means image denoising in wavelet domain,
JIVP(2013), No. 1, 2013, pp. 60.
DOI Link
1311
BibRef
Yan, R.M.[Ruo-Mei],
Shao, L.[Ling],
Liu, Y.[Yan],
Nonlocal Hierarchical Dictionary Learning Using Wavelets for Image
Denoising,
IP(22), No. 12, 2013, pp. 4689-4698.
IEEE DOI
1312
image denoising
BibRef
Shi, Y.[Yan],
Yang, X.Y.[Xiao-Yuan],
Guo, Y.H.[Yu-Hua],
Translation Invariant Directional Framelet Transform Combined With
Gabor Filters for Image Denoising,
IP(23), No. 1, January 2014, pp. 44-55.
IEEE DOI
1402
Gabor filters
BibRef
Zhang, X.B.[Xiao-Bo],
Feng, X.C.[Xiang-Chu],
Multiple-step local Wiener filter with proper stopping in wavelet
domain,
JVCIR(25), No. 2, 2014, pp. 254-262.
Elsevier DOI
1402
Image denoising
BibRef
Swami, P.D.[Preety D.],
Jain, A.[Alok],
Image denoising by supervised adaptive fusion of decomposed images
restored using wave atom, curvelet and wavelet transform,
SIViP(8), No. 3, March 2014, pp. 443-459.
WWW Link.
1403
BibRef
Rajaei, B.[Boshra],
An Analysis and Improvement of the BLS-GSM Denoising Method,
IPOL(2014), No. 2014, pp. 44-70.
DOI Link
1404
Code, Denoising. Bayesian least squares, Gaussian scale mixture
See also Image denoising using scale mixtures of gaussians in the wavelet domain.
BibRef
Liu, Y.X.[Yun-Xia],
Law, N.F.[Ngai-Fong],
Siu, W.C.[Wan Chi],
Patch based image denoising using the finite ridgelet transform for
less artifacts,
JVCIR(25), No. 5, 2014, pp. 1006-1017.
Elsevier DOI
1406
Image denoising
BibRef
Prakash, O.[Om],
Khare, A.[Ashish],
Medical Image Denoising Based on Soft Thresholding Using Biorthogonal
Multiscale Wavelet Transform,
IJIG(14), No. 1-2, 2014, pp. 1450002.
DOI Link
1406
BibRef
Sharmila, T.S.[T. Sree],
Ramar, K.,
Efficient analysis of hybrid directional lifting technique for
satellite image denoising,
SIViP(8), No. 7, October 2014, pp. 1399-1404.
WWW Link.
1410
BibRef
Kadiri, M.[Mohammed],
Djebbouri, M.[Mohamed],
Carre, P.[Philippe],
Magnitude-phase of the dual-tree quaternionic wavelet transform for
multispectral satellite image denoising,
JIVP(2014), No. 1, 2014, pp. 41.
DOI Link
1410
BibRef
Islam, M.[Md],
Chong, U.[Uipil],
Noise reduction of continuous wave radar and pulse radar using
matched filter and wavelets,
JIVP(2014), No. 1, 2014, pp. 43.
DOI Link
1410
BibRef
Remenyi, N.,
Nicolis, O.,
Nason, G.,
Vidakovic, B.,
Image Denoising With 2D Scale-Mixing Complex Wavelet Transforms,
IP(23), No. 12, December 2014, pp. 5165-5174.
IEEE DOI
1412
Bayes methods
BibRef
Om, H.[Hari],
Biswas, M.[Mantosh],
A generalized image denoising method using neighbouring wavelet
coefficients,
SIViP(9), No. 1, January 2015, pp. 191-200.
WWW Link.
1503
BibRef
Cheng, W.,
Hirakawa, K.,
Minimum Risk Wavelet Shrinkage Operator for Poisson Image Denoising,
IP(24), No. 5, May 2015, pp. 1660-1671.
IEEE DOI
1504
AWGN
BibRef
Cheng, W.,
Hirakawa, K.,
Towards Optimal Denoising of Image Contrast,
IP(27), No. 7, July 2018, pp. 3446-3458.
IEEE DOI
1805
Data models, Noise measurement, Noise reduction, Photonics,
Wavelet domain, Wavelet transforms, MMI, Poisson distribution,
wavelet transform
BibRef
Cetin, A.,
Tofighi, M.,
Projection-Based Wavelet Denoising,
SPMag(32), No. 5, September 2015, pp. 120-124.
IEEE DOI
1509
Lecture Notes.
Cost function
BibRef
Huang, L.D.[Li-Dong],
Zhao, W.[Wei],
Wang, J.[Jun],
Sun, Z.B.[Ze-Bin],
Combination of contrast limited adaptive histogram equalisation and
discrete wavelet transform for image enhancement,
IET-IPR(9), No. 10, 2015, pp. 908-915.
DOI Link
1511
decomposition
BibRef
Starosolski, R.[Roman],
Application of reversible denoising and lifting steps to DWT in
lossless JPEG 2000 for improved bitrates,
SP:IC(39, Part A), No. 1, 2015, pp. 249-263.
Elsevier DOI
1512
Reversible denoising and lifting step
BibRef
Rodriguez-Hernandez, M.A.[Miguel A.],
Emeterio, J.L.S.[José L. San],
Noise reduction using wavelet cycle spinning:
Analysis of useful periodicities in the z-transform domain,
SIViP(10), No. 3, March 2016, pp. 519-526.
WWW Link.
1602
BibRef
Fang, D.S.[Dong-Sheng],
Lv, X.L.[Xiao-Lei],
Wang, Y.[Yong],
Lin, X.[Xue],
Qian, J.[Jiang],
A Sparsity-Based InSAR Phase Denoising Algorithm Using Nonlocal
Wavelet Shrinkage,
RS(8), No. 10, 2016, pp. 830.
DOI Link
1609
BibRef
Pyka, K.[Krystian],
Wavelet-Based Local Contrast Enhancement for Satellite, Aerial and
Close Range Images,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Pyka, K.[Krystian],
Siedlik, J.,
The Use of Wavelets for Noise Detection in the Images Taken by the
Analog and Digital Photogrammetric Cameras,
ISPRS08(B1: 77 ff).
PDF File.
0807
BibRef
Habib, W.[Wajiha],
Sarwar, T.[Tabinda],
Siddiqui, A.M.[Adil Masood],
Touqir, I.[Imran],
Wavelet denoising of multiframe optical coherence tomography data using
similarity measures,
IET-IPR(11), No. 1, January 2017, pp. 64-79.
DOI Link
1703
BibRef
Khmag, A.[Asem],
Ramli, A.R.[Abd Rahman],
Al-haddad, S.A.R.,
Yusoff, S.[Suhaimi],
Kamarudin, N.H.,
Denoising of natural images through robust wavelet thresholding and
genetic programming,
VC(33), No. 9, September 2017, pp. 1141-1154.
Springer DOI
1708
BibRef
Wang, M.[Min],
Zhou, S.[Shudao],
Image Denoising Using Block-Rotation-Based SVD Filtering in Wavelet
Domain,
IEICE(E101-D), No. 6, June 2018, pp. 1621-1628.
WWW Link.
1806
BibRef
Fahmy, M.F.[Mamdouh F.],
Fahmy, O.M.[Omar M.],
Efficient bivariate image denoising technique using new orthogonal CWT
filter design,
IET-IPR(12), No. 8, August 2018, pp. 1354-1360.
DOI Link
1808
BibRef
Rabbouch, H.[Hana],
Saâdaoui, F.[Foued],
A wavelet-assisted subband denoising for tomographic image
reconstruction,
JVCIR(55), 2018, pp. 115-130.
Elsevier DOI
1809
Denoising, Wavelets, Non-local means, Radon transform,
Tomography, Medical imaging, Simulation
BibRef
He, L.T.[Liang-Tian],
Wang, Y.L.[Yi-Lun],
Xiang, Z.Y.[Zhao-Yin],
Wavelet frame-based image restoration using sparsity, nonlocal, and
support prior of frame coefficients,
VC(35), No. 2, February 2019, pp. 151-174.
WWW Link.
1906
BibRef
Lyu, Z.Y.[Zhi-Yu],
Zhang, C.K.[Cheng-Kun],
Han, M.[Min],
A nonsubsampled countourlet transform based CNN for real image
denoising,
SP:IC(82), 2020, pp. 115727.
Elsevier DOI
2001
Nonsubsampled countourlet transform,
Convolutional Neural Networks, Image denoising, Gaussian noise
BibRef
Liu, X.[Xinwu],
Chen, Y.[Yue],
NLTV-Gabor-based models for image decomposition and denoising,
SIViP(14), No. 2, March 2020, pp. 305-313.
WWW Link.
2003
BibRef
Wang, C.,
Yan, Z.,
Pedrycz, W.,
Zhou, M.,
Li, Z.,
A Weighted Fidelity and Regularization-Based Method for Mixed or
Unknown Noise Removal From Images on Graphs,
IP(29), 2020, pp. 5229-5243.
IEEE DOI
2004
Image denoising, Wavelet transforms, Noise reduction,
Computational modeling, Wavelet domain, Dictionaries,
image denoising
BibRef
Nisha, S.S.[S. Shajun],
Raja, S.P.,
Kasthuri, A.,
Static Thresholded Pulse Coupled Neural Networks in Contourlet Domain:
A New Framework for Medical Image Denoising,
IJIG(20), No. 3, July 2020, pp. 2050025.
DOI Link
2008
BibRef
Golilarz, N.A.[Noorbakhsh Amiri],
Gao, H.[Hui],
Pirasteh, S.[Saied],
Yazdi, M.[Mohammad],
Zhou, J.L.[Jun-Lin],
Fu, Y.[Yan],
Satellite Multispectral and Hyperspectral Image De-Noising with
Enhanced Adaptive Generalized Gaussian Distribution Threshold in the
Wavelet Domain,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Pimpalkhute, V.A.,
Page, R.,
Kothari, A.,
Bhurchandi, K.M.,
Kamble, V.M.,
Digital Image Noise Estimation Using DWT Coefficients,
IP(30), 2021, pp. 1962-1972.
IEEE DOI
2101
Estimation, Image edge detection, Discrete cosine transforms,
Standards, Noise level, Discrete wavelet transforms,
polynomial regression
BibRef
Venkanna, M.[Mood],
Rao, R.[Rameshwar],
Sekhar, P.C.[P. Chandra],
Design of filter for image de-noising using discrete wavelet transform
for ASIP,
IJCVR(11), No. 2, 2021, pp. 201-213.
DOI Link
2103
BibRef
Song, J.Y.[Joon-Young],
Jeong, J.H.[Jae-Heon],
Park, D.S.[Dae-Soon],
Kim, H.H.[Hyun-Ho],
Seo, D.C.[Doo-Chun],
Ye, J.C.[Jong Chul],
Unsupervised Denoising for Satellite Imagery Using Wavelet
Directional CycleGAN,
GeoRS(59), No. 8, August 2021, pp. 6823-6839.
IEEE DOI
2108
Noise reduction, Satellites, Satellite broadcasting,
Noise measurement, Sensors, Machine learning,
unsupervised learning
BibRef
He, L.T.[Liang-Tian],
Wang, Y.L.[Yi-Lun],
Mei, J.J.[Jin-Jin],
Liu, J.[Jun],
Wang, C.[Chao],
Wavelet Frame-Based Image Restoration via L_2-Relaxed Truncated L_0
Regularization and Nonlocal Estimation,
SPLetters(28), 2021, pp. 1605-1609.
IEEE DOI
2108
Estimation, Image restoration, Minimization, Analytical models,
Signal processing algorithms, Numerical models, Noise reduction,
nonlocal estimation
BibRef
Panigrahi, S.K.[Susant Kumar],
Gupta, S.[Supratim],
Joint Bilateral Filter for Signal Recovery from Phase Preserved
Curvelet Coefficients for Image Denoising,
IJIG(21), No. 4, October 2021 2021, pp. 2150049.
DOI Link
2110
BibRef
Zhang, M.H.[Ming-Hui],
Yang, C.[Cailian],
Yuan, Y.[Yuan],
Guan, Y.[Yu],
Wang, S.Y.[Si-Yuan],
Liu, Q.[Qiegen],
Multi-wavelet guided deep mean-shift prior for image restoration,
SP:IC(99), 2021, pp. 116449.
Elsevier DOI
2111
Image restoration, Deep mean-shift prior, Proximal gradient,
Wavelet transform, Recurrent structure-preserving,
Multi-view complementary aggregation
BibRef
Benhassine, N.E.[Nasser Edinne],
Boukaache, A.[Abdelnour],
Boudjehem, D.[Djalil],
Medical image denoising using optimal thresholding of wavelet
coefficients with selection of the best decomposition level and
mother wavelet,
IJIST(31), No. 4, 2021, pp. 1906-1920.
DOI Link
2112
CSA, denoising, medical image, MSE, optimization, PSNR, SSIM, SSO,
thresholding, wavelet decomposition
BibRef
Huang, J.J.[Jun-Jie],
Dragotti, P.L.[Pier Luigi],
WINNet: Wavelet-Inspired Invertible Network for Image Denoising,
IP(31), 2022, pp. 4377-4392.
IEEE DOI
2207
Noise reduction, Wavelet transforms, Image denoising, Noise level,
Noise measurement, Neural networks, Image restoration,
invertible neural networks
BibRef
Tian, C.[Chunwei],
Zheng, M.[Menghua],
Zuo, W.M.[Wang-Meng],
Zhang, B.[Bob],
Zhang, Y.N.[Yan-Ning],
Zhang, D.[David],
Multi-stage image denoising with the wavelet transform,
PR(134), 2023, pp. 109050.
Elsevier DOI
2212
Image denoising, CNN, Wavelet transform, Dynamic convolution, Signal processing
BibRef
Wu, W.W.[Wei-Wen],
Wang, Y.[Yanyang],
Liu, Q.[Qiegen],
Wang, G.[Ge],
Zhang, J.[Jianjia],
Wavelet-Improved Score-Based Generative Model for Medical Imaging,
MedImg(43), No. 3, March 2024, pp. 966-979.
IEEE DOI Code:
WWW Link.
2403
Image reconstruction, Training, Biomedical imaging,
Noise measurement, Computed tomography, regularization constraint
BibRef
Huang, Y.[Yi],
Huang, J.C.[Jian-Cheng],
Liu, J.Z.[Jian-Zhuang],
Yan, M.[Mingfu],
Dong, Y.[Yu],
Lv, J.X.[Jia-Xi],
Chen, C.Q.[Chao-Qi],
Chen, S.F.[Shi-Feng],
WaveDM: Wavelet-Based Diffusion Models for Image Restoration,
MultMed(26), 2024, pp. 7058-7073.
IEEE DOI
2405
Image restoration, Wavelet transforms, Computational modeling,
Task analysis, Transforms, Training, Degradation, Diffusion models,
wavelet transform
BibRef
Guo, L.Q.[Lan-Qing],
Huang, S.[Siyu],
Liu, H.[Haosen],
Wen, B.[Bihan],
Toward Robust Image Denoising via Flow-Based Joint Image and Noise
Model,
CirSysVideo(34), No. 7, July 2024, pp. 6105-6115.
IEEE DOI
2407
Noise reduction, Image denoising, Noise measurement, Task analysis,
Wavelet transforms, Neural networks, Image restoration, disentanglement
BibRef
Ding, S.F.[Shi-Fei],
Wang, Q.D.[Qi-Dong],
Guo, L.[Lili],
Li, X.[Xuan],
Ding, L.[Ling],
Wu, X.D.[Xin-Dong],
Wavelet and Adaptive Coordinate Attention Guided Fine-Grained
Residual Network for Image Denoising,
CirSysVideo(34), No. 7, July 2024, pp. 6156-6166.
IEEE DOI
2407
Noise reduction, Wavelet transforms, Feature extraction, Image denoising,
Estimation, Image restoration, Task analysis, residual connection
BibRef
Le, H.T.V.[Hoang Trieu Vy],
Repetti, A.[Audrey],
Pustelnik, N.[Nelly],
Unfolded Proximal Neural Networks for Robust Image Gaussian Denoising,
IP(33), 2024, pp. 4475-4487.
IEEE DOI
2408
Noise reduction, Image restoration, Task analysis, Robustness, Optimization,
Artificial neural networks, Wavelet transforms, inertial methods
BibRef
Li, Q.F.[Qiu-Fu],
Shen, L.L.[Lin-Lin],
Guo, S.[Sheng],
Lai, Z.H.[Zhi-Hui],
WaveCNet: Wavelet Integrated CNNs to Suppress Aliasing Effect for
Noise-Robust Image Classification,
IP(30), 2021, pp. 7074-7089.
IEEE DOI
2108
BibRef
Earlier:
Wavelet Integrated CNNs for Noise-Robust Image Classification,
CVPR20(7243-7252)
IEEE DOI
2008
Discrete wavelet transforms, Robustness, Feature extraction,
Task analysis, Noise robustness, Convolution, Wavelet analysis, CNN,
basic object structure.
Noise reduction, Robustness.
BibRef
Liu, W.,
Yan, Q.,
Zhao, Y.,
Densely Self-guided Wavelet Network for Image Denoising,
NTIRE20(1742-1750)
IEEE DOI
2008
Pattern recognition
BibRef
Zhao, R.,
Lam, K.,
Lun, D.P.K.,
Enhancement of a CNN-Based Denoiser Based on Spatial and Spectral
Analysis,
ICIP19(1124-1128)
IEEE DOI
1910
Image denoising, convolutional neural networks,
spatial-spectral analysis, discrete wavelet transform
BibRef
Liu, P.,
Zhang, H.,
Zhang, K.,
Lin, L.,
Zuo, W.,
Multi-level Wavelet-CNN for Image Restoration,
Restoration18(886-88609)
IEEE DOI
1812
Discrete wavelet transforms, Image restoration, Task analysis,
Image denoising, Transform coding
BibRef
Tay, P.C.,
Yan, Y.,
Wavelet Denoising Using a Conjointly Space and 2D Frequency Localized
Filterbank,
ICIP18(520-524)
IEEE DOI
1809
Noise reduction,
Time-frequency analysis, AWGN, Frequency modulation, Indexes,
time-frequency measure
BibRef
Preciozzi, J.,
González, M.,
Almansa, A.,
Musé, P.,
Joint denoising and decompression: A patch-based Bayesian approach,
ICIP17(1252-1256)
IEEE DOI
1803
Image coding, Image restoration, Imaging, Noise reduction,
Quantization (signal), Satellites, Wavelet domain,
Satellite Imaging
BibRef
Zhang, Y.,
He, N.,
Zhen, X.,
Sun, X.,
Image Denoising Based on the Wavelet Semi-soft Threshold and Total
Variation,
ICVISP17(55-62)
IEEE DOI
1712
Image edge detection, Image reconstruction, Noise reduction, TV,
Wavelet coefficients, image denoising, total variation (TV),
wavelet transform
BibRef
Zidi, A.,
Marot, J.,
Bourennane, S.,
Spinnler, K.,
Automatic rank estimation of Parafac decomposition and application to
multispectral image wavelet denoising,
ICIP16(3101-3105)
IEEE DOI
1610
Decision support systems
BibRef
Bitenc, M.,
Kieffer, D.S.,
Khoshelham, K.,
Evaluation Of Wavelet And Non-local Mean Denoising Of Terrestrial Laser
Scanning Data For Small-scale Joint Roughness Estimation,
ISPRS16(B3: 181-186).
DOI Link
1610
BibRef
Fassold, H.[Hannes],
Schallauer, P.[Peter],
A hybrid wavelet and temporal fusion algorithm for film and video
denoising,
MVA15(275-278)
IEEE DOI
1507
Noise
BibRef
Boubchir, L.,
Al-Maadeed, S.,
Bouridane, A.,
Undecimated wavelet-based Bayesian denoising in mixed
Poisson-Gaussian noise with application on medical and biological
images,
IPTA14(1-5)
IEEE DOI
1503
Bayes methods
BibRef
Iizuka, Y.[Yuki],
Tanaka, Y.[Yuichi],
Depth map denoising using collaborative graph wavelet shrinkage on
connected image patches,
ICIP14(828-832)
IEEE DOI
1502
Collaboration
BibRef
Yang, K.[Kun],
Deng, C.X.[Cai-Xia],
Chen, Y.[Yu],
Xu, L.X.[Li-Xiang],
The de-noising method of threshold function based on wavelet,
ICWAPR14(87-92)
IEEE DOI
1402
Noise
BibRef
Wang, J.F.[Jian-Fei],
A wavelet denoising method based on the improved threshold function,
ICWAPR14(70-74)
IEEE DOI
1402
Image denoising
BibRef
Ansari, R.A.,
Mohan, B.K.,
Noise Filtering of Remotely Sensed Images using Iterative Thresholding
of Wavelet and Curvelet Transforms,
LandImaging14(57-64).
DOI Link
1411
BibRef
Gajbhar, S.S.,
Joshi, M.V.,
Image denoising using redundant finer directional wavelet transform,
NCVPRIPG13(1-4)
IEEE DOI
1408
Bayes methods
BibRef
Ray, P.[Partha],
Maitra, A.K.,
Basuray, A.[Arijit],
A new threshold function for de-noising partial discharge signal based
on wavelet transform,
ICSIPR13(185-189).
IEEE DOI
1304
BibRef
Mudugamuwa, D.J.[Damith J.],
He, X.J.[Xiang-Jian],
Jia, W.J.[Wen-Jing],
Battle-Lemarie wavelet pyramid for improved GSM image denoising,
ICPR12(3156-3159).
WWW Link.
1302
cell phone signals.
BibRef
Bhandari, A.K.,
Gadde, M.,
Kumar, A.,
Singh, G.K.,
Comparative analysis of different wavelet filters for low contrast and
brightness enhancement of multispectral remote sensing images,
IMVIP12(81-86).
IEEE DOI
1302
BibRef
Shi, S.,
Gong, W.,
Lv, L.,
Zhu, B.,
Song, S.,
Signal Noise Reduction Based on Wavelet Transform in Two-Wavelength
Lidar System,
ISPRS12(XXXIX-B7:449-452).
DOI Link
1209
BibRef
Tran, M.P.[Minh-Phuong],
Péteri, R.[Renaud],
Bergounioux, M.[Maitine],
Denoising 3D Medical Images Using a Second Order Variational Model and
Wavelet Shrinkage,
ICIAR12(II: 138-145).
Springer DOI
1206
BibRef
Aravind, B.N.,
Suresh, K.V.,
Wavelet Based Image Denoising Using Multi-Spinning,
NCVPRIPG11(118-121).
IEEE DOI
1205
BibRef
Xiang, Z.J.[Zhen James],
Zhang, Z.[Zhuo],
Xu, P.M.[Ping-Mei],
Ramadge, P.J.[Peter J.],
Learning a wavelet tree for multichannel image denoising,
ICIP11(2565-2568).
IEEE DOI
1201
BibRef
Pan, X.[Xun],
Zhang, J.Y.[Jing-Yuan],
Denoising method for acoustic wake based on correlation of multiwavelet
coefficient,
IASP11(474-479).
IEEE DOI
1112
BibRef
Xi, Z.Q.[Zi-Qiang],
Fu, Z.J.[Zhong-Jia],
Qi, L.[Lei],
Wang, S.[Sha],
A study on 2D signal noise reduction method for wavelet analysis,
IASP11(248-251).
IEEE DOI
1112
BibRef
Abid, M.,
Cagnazzo, M.,
Pesquet-Popescu, B.,
Image denoising by adaptive lifting schemes,
EUVIP10(108-113).
IEEE DOI
1110
BibRef
Zhang, X.[Xi],
Tanaka, A.[Atsushi],
Flicker reduction for motion JPEG2000 using wavelet thresholding,
ICIP10(2529-2532).
IEEE DOI
1009
BibRef
Chen, G.Y.[Guang-Yi],
Bui, T.D.[Tien D.],
Krzyzak, A.[Adam],
Denoising of Three Dimensional Data Cube Using Bivariate Wavelet
Shrinking,
ICIAR10(I: 45-51).
Springer DOI
1006
BibRef
Li, L.L.[Ling-Ling],
Han, T.[Tao],
Lou, L.T.[Lian-Tang],
Remote Sensing Image Enhancement Based on Wavelet and Nonlinear
Iteration,
IASP10(660-662).
IEEE DOI
1004
BibRef
Ouarti, N.[Nizar],
Peyre, G.[Gabriel],
Best basis denoising with non-stationary wavelet packets,
ICIP09(3825-3828).
IEEE DOI
0911
BibRef
Conci, A.,
Kubrusly, C.S.,
Rauber, T.W.,
Influence of the Wavelet Family in the Compression-Denoising Technique
on Synthetic and Natural Images,
WSSIP09(1-4).
IEEE DOI
0906
BibRef
Song, J.P.[Jin-Ping],
Luo, S.S.[Shou-Sheng],
Yang, X.Y.[Xiao-Yi],
Wavelet-Based Multi-Scale Variation Image Noise Removal Model and the
Image Geometry-Adapted Method for Multi-Scale Parameters Determining,
CISP09(1-5).
IEEE DOI
0910
BibRef
Liu, X.X.[Xin-Xia],
Han, F.L.[Fu-Lian],
Wang, J.G.[Jin-Gui],
Wavelet Extended EMD Noise Reduction Model for Signal Trend Extraction,
CISP09(1-5).
IEEE DOI
0910
BibRef
Yang, Z.J.[Zhi-Jun],
Dai, G.[Guang],
Zhao, H.L.[Hai-Long],
Jiang, Y.B.[Yan-Biao],
Research of Magnetic Flux Leakage Signal Processing Based on Wavelet
De-Noising and EMD,
CISP09(1-4).
IEEE DOI
0910
BibRef
Yan, Y.[Yan],
Cui, Z.Z.[Zhan-Zhong],
Noise and Zero Excursion Elimination of Electrostatic Detection Signals
Based on EMD and Wavelet Transform,
CISP09(1-5).
IEEE DOI
0910
BibRef
Dai, J.X.[Jian-Xin],
Image Denoising Based on Combining Neighbouring Wavelet Coefficients,
CISP09(1-3).
IEEE DOI
0910
BibRef
Ren, S.K.[Shang-Kun],
Zhu, Z.B.[Zhi-Bin],
Lin, T.H.[Tian-Hua],
Song, K.[Kai],
Ren, J.L.[Ji-Lin],
Design for the ACFM Sensor and the Signal Processing Based on Wavelet
De-Noise,
CISP09(1-4).
IEEE DOI
0910
BibRef
Shang, L.[Li],
Zhang, J.F.[Jin-Feng],
Huai, W.J.[Wen-Jun],
Chen, J.[Jie],
Du, J.X.[Ji-Xiang],
Natural Image Denoising Using Sparse ICA Based on 2-D Gabor Wavelet,
CISP09(1-5).
IEEE DOI
0910
BibRef
Wang, Z.L.[Ze-Long],
Yan, F.X.[Feng-Xia],
Liu, J.Y.[Ji-Ying],
Zhu, J.[Jubo],
A New Approach for Wavelet Denoising Based on Training,
CISP09(1-4).
IEEE DOI
0910
BibRef
Wu, B.S.[Bing-Sheng],
Cai, C.Z.[Chao-Zhi],
Wavelet Denoising and Its Implementation in LabVIEW,
CISP09(1-4).
IEEE DOI
0910
BibRef
Wu, W.[Wei],
Chen, F.[Fuyi],
Improving Wavelet De-Noise By Means of Shifting-Scale-Method,
CISP09(1-4).
IEEE DOI
0910
BibRef
Xu, B.L.[Bing-Lian],
Zhang, Q.S.[Qiu-Sheng],
Image denoising based on a new symmetrical second-generation wavelet,
IASP09(1-4).
IEEE DOI
0904
BibRef
Minamoto, T.[Teruya],
Fujii, S.[Satoshi],
A Digital Image Denoising Method with Edge Preservation Using Dyadic
Lifting Schemes,
PSIVT09(283-294).
Springer DOI
0901
BibRef
Laparra, V.[Valero],
Gutierrez, J.[Juan],
Camps-Valls, G.[Gustavo],
Malo, J.[Jesus],
Recovering wavelet relations using SVM for image denoising,
ICIP08(541-544).
IEEE DOI
0810
See also PCA Gaussianization for image processing.
BibRef
Ashamol, V.G.,
Sreelekha, G.,
Sathidevi, P.S.,
Diffusion-based image denoising combining curvelet and wavelet,
WSSIP08(169-172).
IEEE DOI
0806
BibRef
Fu, G.Y.[Guo-Yi],
Hojjat, A.[Ali],
Colchester, A.[Alan],
Wavelet Noise Reduction Based on Energy Features,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Ghazal, M.[Mohammed],
Amer, A.[Aishy],
Total Occlusion Correction using Invariant Wavelet Features,
ICIP07(III: 345-348).
IEEE DOI
0709
BibRef
Saito, T.[Takahiro],
Ishii, Y.[Yuki],
Aizawa, H.[Haruya],
Yamada, D.[Daisuke],
Komatsu, T.[Takashi],
Image-processing approach via nonlinear image-decomposition for a
digital color camera,
ICIP08(905-908).
IEEE DOI
0810
BibRef
Ishii, Y.[Yuki],
Saito, T.[Takahiro],
Komatsu, T.[Takashi],
Denoising Via Nonlinear Image Decomposition for a Digital Color Camera,
ICIP07(I: 309-312).
IEEE DOI
0709
BibRef
Rapantzikos, K.[Konstantinos],
Avrithis, Y.S.[Yannis S.],
Kollias, S.D.[Stefanos D.],
salienShrink: Saliency-Based Wavelet Shrinkage,
ICIP07(I: 305-308).
IEEE DOI
0709
BibRef
Li, J.,
Mohamed, S.S.,
Salama, M.M.A.,
Freeman, G.H.,
Subband-Adaptive and Spatially-Adaptive Wavelet Thresholding for
Denoising and Feature Preservation of Texture Images,
ICIAR07(24-37).
Springer DOI
0708
BibRef
Tan, X.[Xi],
He, H.[Hong],
Image Denoising Based on the Ridgelet Frame Using the Generalized Cross
Validation Technique,
ICIAR07(38-45).
Springer DOI
0708
BibRef
Wu, J.Y.[Ji-Ying],
Ruan, Q.Q.[Qiu-Qi],
Combining Adaptive PDE and Wavelet Shrinkage in Image Denoising with
Edge Enhancing Property,
ICPR06(III: 718-721).
IEEE DOI
0609
BibRef
Raghavendra, B.S.,
Bhat, P.S.[P. Subbanna],
Shift-Invariant Image Denoising Using Mixture of Laplace Distributions
in Wavelet-Domain,
ACCV06(I:180-188).
Springer DOI
0601
BibRef
Jin, F.[Fu],
Fieguth, P.W.[Paul W.],
Winger, L.L.[Lowell L.],
Image Denoising Using Complex Wavelets and Markov Prior Models,
ICIAR05(73-80).
Springer DOI
0509
BibRef
Earlier:
Motion-Compensated Wavelet Video Denoising,
ICIAR04(I: 572-579).
Springer DOI
0409
BibRef
Tao, Q.C.[Qing-Chuan],
He, X.H.[Xiao-Hai],
Deng, H.B.[Hong-Bin],
Liu, Y.[Ying],
Zhao, J.[Jia],
Wavelet Transform Based Gaussian Point Spread Function Estimation,
ISVC05(396-405).
Springer DOI
0512
BibRef
Nezamoddini-Kachouie, N.[Nezamoddin],
Fieguth, P.W.[Paul W.],
Jernigan, E.[Edward],
BayesShrink Ridgelets for Image Denoising,
ICIAR04(I: 163-170).
Springer DOI
0409
BibRef
Chen, P.[Pei],
Suter, D.,
Shift-invariant wavelet denoising using interscale dependency,
ICIP04(II: 1005-1008).
IEEE DOI
0505
BibRef
Shetty, P.K.,
Ramu, T.S.,
An undecimated wavelet transform based denoising, PPCAa based pulse
modeling and detection-classification of PD signals,
ICPR04(IV: 873-876).
IEEE DOI
0409
BibRef
Yuan, X.H.[Xiao-Hui],
Buckles, B.P.,
Subband noise estimation for adaptive wavelet shrinkage,
ICPR04(IV: 885-888).
IEEE DOI
0409
BibRef
Ye, Z.[Zhen],
Lu, C.C.[Cheng-Chang],
A wavelet domain hierarchical hidden Markov model,
ICIP04(V: 3491-3494).
IEEE DOI
0505
BibRef
Earlier:
A complex wavelet domain markov model for image denoising,
ICIP03(III: 365-368).
IEEE DOI
0312
BibRef
Qin, J.H.[Jin-Hui],
El-Sakka, M.R.,
A new wavelet-based method for contrast-edge enhancement,
ICIP03(III: 397-400).
IEEE DOI
0312
BibRef
Zhu, H.L.[Hai-Long],
Kwok, J.T.,
Qu, L.[LiangSheng],
Improving de-noising by coefficient de-noising and dyadic wavelet
transform,
ICPR02(II: 273-276).
IEEE DOI
0211
BibRef
Fletcher, A.K.,
Ramchandran, K.,
Goyal, V.K.,
Wavelet denoising by recursive cycle spinning,
ICIP02(II: 873-876).
IEEE DOI
0210
BibRef
Achim, A.,
Bezerianos, A.,
Tsakalides, P.,
Wavelet-based Ultrasound Image Denoising Using an Alpha-stable Prior
Probability Model,
ICIP01(II: 221-224).
IEEE DOI
0108
BibRef
Berkner, K.,
Gormish, M.,
Schwartz, E.,
Boliek, M.,
A New Wavelet-based Approach to Sharpening and Smoothing of Images in
Besov Spaces with Applications to Deblurring,
ICIP00(Vol III: 797-800).
IEEE DOI
0008
BibRef
Zhong, S.,
Image Denoising Using Wavelet Thresholding and Model Selection,
ICIP00(Vol III: 262-265).
IEEE DOI
0008
BibRef
Zhang, H.P.[Hui-Pin],
Nosratinia, A.,
Wells, Jr., R.O.,
Modelling the Autocorrelation of Wavelet Coefficients for Image
Denoising,
ICIP00(Vol III: 304-307).
IEEE DOI
0008
BibRef
Huang, X.,
Woolsey, G.A.,
Image Denoising Using Wiener Filtering and Wavelet Thresholding,
ICME00(WP11).
0007
BibRef
Han, K.J.,
Tewfik, A.H.,
Hybrid wavelet transform filter for image recovery,
ICIP98(I: 540-543).
IEEE DOI
9810
BibRef
Nowak, R.D.,
Timmermann, K.E.,
Stationary wavelet-based intensity models for photon-limited imaging,
ICIP98(I: 620-624).
IEEE DOI
9810
BibRef
Li, W.Z.[Wen-Zhe],
Lin, J.N.[Ji-Nan],
Unbehauen, R.,
Wavelet based nonlinear image enhancement for Gaussian and uniform
noise,
ICIP98(I: 550-554).
IEEE DOI
9810
BibRef
DeVore, R.A.,
Lucier, B.J.,
Classifying the Smoothness of Images:
Theory and Applications to Wavelet Image Processing,
ICIP94(II: 6-10).
IEEE DOI
9411
BibRef
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Curvelet Transform .