Haralick, R.M., and
Kelly, G.,
Pattern Recognition with
Measurement Space and Spatial Clustering for Multiple Images,
PIEEE(57), No. 4, April 1969, pp. 654-665.
BibRef
6904
Eklundh, J.O.,
Yamamoto, H., and
Rosenfeld, A.,
A Relaxation Method for Multispectral Pixel Classification,
PAMI(2), No. 1, January 1980, pp. 72-75.
BibRef
8001
Earlier:
Relaxation Methods in Multispectral Pixel Classification,
UMD-TR-662, July 1978.
Relaxation.
Segmentation, Color.
BibRef
Eklundh, J.O.,
Lansner, A., and
Wessblad, R.,
Classification of Multispectral Images using Associative Nets,
ICPR86(1240-1243).
BibRef
8600
Eklundh, J.O.,
A Structured Approach to Segmentation of Aerial Photographs,
SPIE(397), Applications of Digital Image Processing, April 1983, pp. 21-27.
BibRef
8304
Fukada, Y.[Youji],
Spatial Clustering Procedures for Region Analysis,
PR(12), No. 6, 1980, pp. 395-403.
Elsevier DOI
BibRef
8000
Velasco, F.R.D.[Flavio R. Dias],
A Method for the Analysis of Gaussian-Like Clusters,
PR(12), No. 6, 1980, pp. 381-393.
Elsevier DOI
BibRef
8000
Sarabi, A.[Alireza],
Aggarwal, J.K.,
Segmentation of Chromatic Images,
PR(13), No. 6, 1981, pp. 417-427.
Elsevier DOI
BibRef
8100
Swain, P.H.[Philip H.],
Vardeman, S.B.[Stephen B.],
Tilton, J.C.[James C.],
Contextual Classification of Multipsectral Image Data,
PR(13), No. 6, 1981, pp. 429-441.
Elsevier DOI
BibRef
8100
Dondes, P.A., and
Rosenfeld, A.,
Pixel Classification Based on Gray Level and Local 'Busyness',
PAMI(4), No. 1, January 1982, pp. 79-84.
BibRef
8201
Dunn, S.,
Janos, L.,
Rosenfeld, A.,
Bimean Clustering,
PRL(1), 1983, pp. 169-173.
BibRef
8300
Blanz, W.E.,
Reinhardt, E.R.,
Image Segmentation by Pixel Classification,
PR(13), No. 4, 1981, pp. 293-298.
Elsevier DOI
BibRef
8100
Sclove, S.L.,
Application of the Conditional Population-Mixture Model to Image
Segmentation,
PAMI(5), No. 4, July 1983, pp. 428-433.
BibRef
8307
And:
Reply to Comments:
PAMI(6), No. 5, September 1984, pp. 657-658.
BibRef
Titterington, D.M.,
Comments on 'Application of the Conditional Population-Mixture
Model to Image Segmentation',
PAMI(6), No. 5, September 1984, pp. 656-657.
BibRef
8409
Huntsberger, T.L.,
Jacobs, C.L.,
Cannon, R.L.,
Iterative Fuzzy Image Segmentation,
PR(18), No. 2, 1985, pp. 131-138.
Elsevier DOI
BibRef
8500
Markham, K.C.,
Some Segmentation Processes for Application with a Spoke Filter,
PRL(5), 1987, pp. 329-335.
BibRef
8700
Amadasun, M.,
King, R.A.,
Low-Level Segmentation of Multispectral Images via Agglomerative
Clustering of Uniform Neighbourhoods,
PR(21), No. 3, 1988, pp. 261-268.
Elsevier DOI
0309
BibRef
Geong, D.S., and
Lapsa, P.M.,
Unified Approach for Early-Phase Image Understanding Using a
General Decision Criterion,
PAMI(11), No. 4, April 1989, pp. 357-371.
IEEE DOI
BibRef
8904
Zhang, J., and
Modestino, J.W.,
A Model-Fitting Approach to Cluster Validation with Application
to Stochastic Model-Based Image Segmentation,
PAMI(12), No. 10, October 1990, pp. 1009-1017.
IEEE DOI
BibRef
9010
Langan, D.A.,
Modestino, J.W.,
Zhang, J.,
Cluster Validation for Unsupervised Stochastic
Model-Based Image Segmentation,
IP(7), No. 2, February 1998, pp. 180-195.
IEEE DOI
9802
BibRef
Earlier:
ICIP94(II: 197-201).
IEEE DOI
9411
See also Maximum-Likelihood Parameter Estimation for Unsupervised Stochastic Model-Based Image Segmentation.
BibRef
Jolion, J.M.[Jean-Michel],
Meer, P.[Peter], and
Bataouche, S.[Samira],
Robust Clustering with Applications in Computer Vision,
PAMI(13), No. 8, August 1991, pp. 791-802.
IEEE DOI
Robust Technique.
BibRef
9108
Jolion, J.M.[Jean-Michel],
Meer, P.[Peter], and
Rosenfeld, A.[Azriel],
Generalized Minimum Volume Ellipsoid Clustering with
Applications in Computer Vision,
Robust90(339-351).
BibRef
9000
Bataouche, S.[Samira], and
Jolion, J.M.[Jean-Michel],
A Hierarchical and Robust Process for Information Retrieval,
IAP(510-517), 1989.
BibRef
8900
Pla, F.,
Juste, F.,
Ferri, F.J., and
Vicens, M.,
Colour Segmentation Based on a Light Reflection Model to
Locate Citrus Fruits for Robotic Harvesting,
CompAgri(9), 1993, pp. 53-70.
Generate classes from one image and use for the rest of sequnce.
BibRef
9300
Ng, I.,
Kittler, J.V.,
Illingworth, J.,
Supervised Segmentation Using a Multiresolution Data Representation,
SP(31), 1993, pp. 133-163.
BibRef
9300
Earlier:
BMVC91(xx-yy).
PDF File.
9109
BibRef
Uchiyama, T., and
Arbib, M.A.,
Color Image Segmentation Using Competitive Learning,
PAMI(16), No. 12, December 1994, pp. 1197-1206.
IEEE DOI
BibRef
9412
Earlier:
Object Extraction System from a Color Image,
IAS93(xx-yy).
Generate clusters in color space.
BibRef
Schroeter, P.,
Bigün, J.,
Hierarchical Image Segmentation by Multidimensional Clustering
and Orientation-Adaptive Boundary Refinement,
PR(28), No. 5, May 1995, pp. 695-709.
Elsevier DOI Problems due to different size regions.
BibRef
9505
Pappas, T.N., and
Jayant, N.S.,
An Adaptive Clustering Algorithm for Image Segmentation,
ICCV88(310-315).
IEEE DOI
BibRef
8800
Krishnapuram, R., and
Freg, C.P.,
Fuzzy Algorithms to Find Linear and Planar Clusters and
Their Application,
CVPR91(426-431).
IEEE DOI
BibRef
9100
Panda, D.P.,
Segmentation of FLIR Images by Pixel Classification,
UMD-CS TR-508, February 1977.
BibRef
7702
And:
DARPA77(65-70).
Segmentation as a point wise classification problem. Set of
features and define decision surface; gray level and edge values
together <== using a joint histogram (2-D); valleys selected
manually.
BibRef
Therrien, C.W.[Charles W.],
An Estimation-Theoretic Approach to Terrain Image Segmentation,
CVGIP(22), No. 3, June 1983, pp. 313-326.
Elsevier DOI
BibRef
8306
Earlier:
Linear Filtering Models for Texture Classification and Segmentation,
ICPR80(1132-1135).
Segmentation based on texture classification (pick sample areas to
get statistics) maximum likelihood is poor, maximum a posteriori
estimation is better.
BibRef
Therrien, C.W.,
Multi-channel Filtering Methods for Segmentation
of Color Images,
CVPR85(637-639). (Naval Postgraduate School)
Obvious.
BibRef
8500
Zhang, M.C.,
Haralick, R.M.,
Campbell, J.B.,
Multispectral Image Context Classification Using Stochastic Relaxation,
SMC(20), 1990, pp. 128-140.
BibRef
9000
Knapman, J.[John],
Dickson, W.[Will],
Hierarchical Probabilistic Image Segmentation,
IVC(12), No. 7, September 1994, pp. 447-457.
Elsevier DOI
BibRef
9409
Zheng, Y.J.,
Feature-Extraction and Image Segmentation Using
Self-Organizing Networks,
MVA(8), No. 5, 1995, pp. 262-274.
Springer DOI
BibRef
9500
Simpson, J.J.,
Keller, R.H.,
An Improved Fuzzy-Logic Segmentation of Sea-Ice, Clouds, and Ocean in
Remotely-Sensed Arctic Imagery,
RSE(54), No. 3, December 1995, pp. 290-312.
BibRef
9512
Olariu, S.,
Rao, N.S.V.,
Simple Algorithms for Some Classification Problems,
PRL(17), No. 2, February 8 1996, pp. 163-167.
BibRef
9602
Rao, N.S.V.,
Oblow, E.M.,
Glover, C.W.,
Learning Separations By Boolean Combinations Of Half-Spaces,
PAMI(16), No. 7, July 1994, pp. 765-768.
IEEE DOI
BibRef
9407
Earlier:
ICPR92(II:603-606).
IEEE DOI
9208
BibRef
Salzenstein, F.,
Pieczynski, W.,
Parameter-Estimation in Hidden Fuzzy Markov Random-Fields and
Image Segmentation,
GMIP(59), No. 4, July 1997, pp. 205-220.
9709
See also Estimation of Generalized Mixtures and Its Application in Image Segmentation.
BibRef
Salzenstein, F.,
Collet, C.,
Fuzzy Markov Random Fields versus Chains for Multispectral Image
Segmentation,
PAMI(28), No. 11, November 2006, pp. 1753-1767.
IEEE DOI
0609
Comparison of fuzzy Markov chain with fuzzy random field models.
BibRef
Salzenstein, F.,
Collet, C.,
Lecam, S.,
Hatt, M.,
Non-stationary fuzzy Markov chain,
PRL(28), No. 16, December 2007, pp. 2201-2208.
Elsevier DOI
0711
Fuzzy Markov chain; Triplet Markov chain; Non-stationary chain;
Multispectral image segmentation
BibRef
Flitti, F.,
Collet, C.,
Markovian regularization of latent-variable-models mixture for New
multi-component image reduction/segmentation scheme,
SIViP(1), No. 3, August 2007, pp. 191-201.
Springer DOI
0803
BibRef
Pieczynski, W.[Wojciech],
Statistical Image Segmentation,
MGV(1), No. 1-2, 1992, pp. 261-268.
BibRef
9200
Pieczynski, W.[Wojciech],
Hidden Evidential Markov Trees and Image Segmentation,
ICIP99(I:338-342).
IEEE DOI
BibRef
9900
Salzenstein, F.,
Collet, C.,
Petremand, M.,
Champs de Markov Flous pour Imagerie Multispectrale-Fuzzy Markov Random
Fields for Multispectral Images,
Traitement du Signal(21), No. 1, 2004, pp. 37-55.
BibRef
0400
Derrode, S.,
Mercier, G.,
Pieczynski, W.,
Unsupervised multicomponent image segmentation combining a vectorial
HMC Model and ICA,
ICIP03(II: 407-410).
IEEE DOI
0312
BibRef
Kudo, M.[Mineichi],
Yanagi, S.[Shinichi],
Shimbo, M.[Masaru],
Construction of Class Regions by a Randomized Algorithm:
A Randomized Subclass Method,
PR(29), No. 4, April 1996, pp. 581-588.
Elsevier DOI Find hyperrectangles
BibRef
9604
Jain, A.K.[Anil K.], and
Flynn, P.J.[Patrick J.],
Image Segmentation Using Clustering,
AIU96(65-83).
BibRef
9600
Tanaka, E.,
A Metric between Unrooted and Unordered Trees and
Its Bottom-Up Computing Method,
PAMI(16), No. 12, December 1994, pp. 1233-1238.
IEEE DOI
BibRef
9412
Mukherjee, D.P.,
Pal, P.,
Das, J.,
Sonar Image Segmentation by Fuzzy C-Means,
SP(54), No. 3, November 1996, pp. 295-301.
9701
BibRef
Abrantes, A.J.,
Marques, J.S.,
Class of Constrained Clustering Algorithms for
Object Boundary Extraction,
IP(5), No. 11, November 1996, pp. 1507-1521.
IEEE DOI
9611
BibRef
Priebe, C.E.[Carey E.],
Marchette, D.J.,
Rogers, G.W.,
Segmentation of Random-Fields via Borrowed Strength Density-Estimation,
PAMI(19), No. 5, May 1997, pp. 494-499.
IEEE DOI
9705
Segmentation using clustering of subregions.
BibRef
Ceballos, J.C.,
Bottino, M.J.,
The Discrimination of Scenes by Principal Components-Analysis of
Multispectral Imagery,
JRS(18), No. 11, July 20 1997, pp. 2437-2449.
9708
BibRef
Gupta, L.[Lalit],
Sortrakul, T.[Thotsapon],
A Gaussian-Mixture-Based Image Segmentation Algorithm,
PR(31), No. 3, March 1998, pp. 315-325.
Elsevier DOI
9802
BibRef
Kubota, T.[Toshiro],
Huntsberger, T.L.[Terry L.],
Adaptive Pattern-Recognition System for Scene Segmentation,
OptEng(37), No. 3, March 1998, pp. 829-835.
9804
BibRef
Kartikeyan, B.,
Sarkar, A.,
Majumder, K.L.,
A Segmentation Approach to Classification of Remote Sensing Imagery,
JRS(19), No. 9, June 1998, pp. 1695-1709.
9807
BibRef
Bianchi, N.,
Bottoni, P.,
Mussio, P.,
Spinu, C.,
Garbay, C.,
Situated Image Understanding in a Multiagent Framework,
PRAI(12), No. 5, August 1998, pp. 595-624.
9809
BibRef
Bianchi, N.,
Bottoni, P.,
Spinu, C.,
Garbay, C.,
Mussio, P.,
A Dynamical Organisation for Situated Image Interpretation,
ICPR96(I: 228-232).
IEEE DOI
9608
(Univ. degli Studi di Roma, I)
BibRef
Shen, X.Q.[Xin-Quan],
Spann, M.[Michael],
Nacken, P.[Peter],
Segmentation of 2D and 3D Images Through a
Hierarchical Clustering Based on Region Modeling,
PR(31), No. 9, September 1998, pp. 1295-1309.
Elsevier DOI
9808
BibRef
Earlier:
Segmentation of 2D and 3D Images Through a
Hierarchical Clustering Based on Region Modelling,
ICIP97(III: 50-53).
IEEE DOI
BibRef
Shen, X.Q.,
Spann, M.,
3D Shape Modelling through a Constrained Estimation of a
Bicubic B-spline Surface,
BMVC98(xx-yy).
BibRef
9800
Earlier:
3D Shape Modelling Using a Multi-Scale Surface Model,
ICIP97(II: 478-481).
IEEE DOI
BibRef
Mandal, D.P.,
Murthy, C.A.,
Pal, S.K.,
Analysis of IRS Imagery for Detecting Man-Made Objects with a
Multivalued Recognition System,
SMC-A(26), No. 2, March 1996, pp. 241-247.
IEEE Top Reference.
BibRef
9603
Suri, J.S.[Jasjit S.],
Haralick, R.M.[Robert M.],
Sheehan, F.H.[Florence H.],
Greedy Algorithm for Error Correction in Automatically Produced
Boundaries from Low Contrast Ventriculograms,
PAA(3), No. 1, 2000, pp. 39-60.
Springer DOI
0005
BibRef
Earlier:
Linear vs. Quadratic Optimization Algorithms for Bias Correction of
Left Ventricle Chamber Boundaries in Low Contrast Projection
Ventriculograms Produced from Xray Cardiac Catheterization Procedure,
CAIP99(108-117).
Springer DOI
9909
BibRef
Earlier:
Correction of Systematic Errors in Automatically Produced Boundaries
from Low Contrast Ventriculograms,
ICPR96(IV: 361-365).
IEEE DOI
9608
(Univ. of Washington, USA)
BibRef
Suri, J.S.[Jasjit S.],
Wu, D.[Dee],
Reden, L.[Laura],
Gao, J.B.[Jian-Bo],
Singh, S.[Sameer],
Laxminarayan, S.[Swamy],
Modeling Segmentation Via Geometric Deformable Regularizers, Pde And
Level Sets In Still And Motion Imagery: A Revisit,
IJIG(1), No. 4, October 2001, pp. 681-734.
0110
BibRef
Rhouma, M.B.H.[Mohamed Ben Hadj],
Frigui, H.[Hichem],
Self-Organization of Pulse-Coupled Oscillators with
Application to Clustering,
PAMI(23), No. 2, February 2001, pp. 180-195.
IEEE DOI
0102
Clustering. Applied to segmentation, espeically to get the
central in focus object from the background for database indexing.
BibRef
Shimbo, M.[Masaru],
Fast Labelling of Natural Scenes Using Enhanced Knowledge,
PAA(4), No. 1, 2001, pp. 20-27.
Springer DOI
0105
BibRef
Fan, G.L.[Guo-Liang],
Xia, X.G.[Xiang-Gen],
A joint multicontext and multiscale approach to Bayesian image
segmentation,
GeoRS(39), No. 12, December 2001, pp. 2680-2688.
IEEE Top Reference.
0201
BibRef
And:
Correction:
GeoRS(40), No. 1, January 2002, pp. 229-229.
IEEE Top Reference.
0203
BibRef
Earlier:
Multiscale Texture Segmentation Using Hybrid Contextual Labeling Tree,
ICIP00(Vol III: 576-579).
IEEE DOI
0008
BibRef
Papin, C.,
Bouthemy, P.,
Rochard, G.,
Unsupervised segmentation of low clouds from infrared METEOSAT images
based on a contextual spatio-temporal labeling approach,
GeoRS(40), No. 1, January 2002, pp. 104-114.
IEEE Top Reference.
0203
BibRef
Earlier:
Detection of low clouds in METEOSAT IR night-time images based on a
contextual spatio-temporal labeling approach,
ICIP98(III: 561-565).
IEEE DOI
9810
BibRef
Sgrenzaroli, M.,
Baraldi, A.,
Eva, H.,
de Grandi, G.,
Achard, F.,
Contextual clustering for image labeling: an application to degraded
forest assessment in Landsat TM images of the Brazilian Amazon,
GeoRS(40), No. 8, August 2002, pp. 1833-1848.
IEEE Top Reference.
0210
BibRef
Colombo, S.[Sergio],
Chica-Olmo, M.[Mario],
Abarca, F.[Francisco],
Eva, H.[Hugh],
Variographic analysis of tropical forest cover from multi-scale
remotely sensed imagery,
PandRS(58), No. 5-6, July 2004, pp. 330-341.
Elsevier DOI
0411
BibRef
Martínez, A.M.[Aleix M.],
Mittrapiyanuruk, P.[Pradit],
Kak, A.C.[Avinash C.],
On combining graph-partitioning with non-parametric clustering for
image segmentation,
CVIU(95), No. 1, July 2004, pp. 72-85.
Elsevier DOI
0407
Alternative implementation of the k-way Ncut approach for image segmentation.
Uses the clustering algorithm of Koontz and Fukunaga
(
See also Application of the Karhunen-Loeve Expansion to Feature Selection and Ordering. )
which automatically chooses the number of clusters.
BibRef
Farmer, M.E.,
Jain, A.K.,
A Wrapper-Based Approach to Image Segmentation and Classification,
IP(14), No. 12, December 2005, pp. 2060-2072.
IEEE DOI
0512
BibRef
Earlier:
ICPR04(II: 106-109).
IEEE DOI
0409
BibRef
Farmer, M.E.[Michael Edward],
Image segmentation system and method,
US_Patent7,116,800, Oct 3, 2006
WWW Link. Isolating foreground object.
BibRef
0610
Farmer, M.E.[Michael E.],
Application of the wrapper framework for image object detection,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Lázaro, J.[Jesús],
Arias, J.[Jagoba],
Martín, J.L.[José L.],
Zuloaga, A.[Aitzol],
Cuadrado, C.[Carlos],
SOM Segmentation of gray scale images for optical recognition,
PRL(27), No. 16, December 2006, pp. 1991-1997.
Elsevier DOI
0611
Thresholding; Clustering; Self organizing map
BibRef
Pavan, M.[Massimiliano],
Pelillo, M.[Marcello],
Dominant Sets and Pairwise Clustering,
PAMI(29), No. 1, January 2007, pp. 167-172.
IEEE DOI
0701
BibRef
Earlier:
Efficiently Segmenting Images with Dominant Sets,
ICIAR04(I: 17-24).
Springer DOI
0409
BibRef
Earlier:
Dominant sets and hierarchical clustering,
ICCV03(362-369).
IEEE DOI
0311
BibRef
And:
A new graph-theoretic approach to clustering and segmentation,
CVPR03(I: 145-152).
IEEE DOI
0307
BibRef
cluster based on dominant vertices in graph representation.
See also Spatio-temporal Segmentation Using Dominant Sets.
Torsello, A.[Andrea],
Pelillo, M.[Marcello],
Hierarchical Pairwise Segmentation Using Dominant Sets and Anisotropic
Diffusion Kernels,
EMMCVPR09(182-192).
Springer DOI
0908
BibRef
Sperotto, A.[Anna],
Pelillo, M.[Marcello],
Szemerédi's Regularity Lemma and Its Applications to Pairwise
Clustering and Segmentation,
EMMCVPR07(13-27).
Springer DOI
0708
BibRef
Zoller, T.[Thomas],
Buhmann, J.M.[Joachim M.],
Robust Image Segmentation Using Resampling and Shape Constraints,
PAMI(29), No. 7, July 2007, pp. 1147-1164.
IEEE DOI
0706
BibRef
Earlier:
Shape constrained image segmentation by parametric distributional
clustering,
CVPR04(I: 386-393).
IEEE DOI
0408
BibRef
Hermes, L.[Lothar],
Zöller, T.[Thomas],
Buhmann, J.M.[Joachim M.],
Parametric Distributional Clustering for Image Segmentation,
ECCV02(III: 577 ff.).
Springer DOI
0205
BibRef
Hermes, L.,
Buhmann, J.M.,
Contextual Classification by Entropy-Based Polygonization,
CVPR01(II:442-447).
IEEE DOI
0110
Use context in pixel classification.
Allow polygonal boundaries rather than just smoothing.
BibRef
Chang, H.[Hong],
Yeung, D.Y.[Dit-Yan],
Robust path-based spectral clustering,
PR(41), No. 1, January 2008, pp. 191-203.
Elsevier DOI
0710
BibRef
Robust Path-Based Spectral Clustering with Application to Image
Segmentation,
ICCV05(I: 278-285).
IEEE DOI
0510
Path-based clustering; Spectral clustering; Robust statistics;
Unsupervised learning; Semi-supervised learning; Image segmentation
BibRef
Dam, E.B.,
Loog, M.[Marco],
Efficient Segmentation by Sparse Pixel Classification,
MedImg(27), No. 10, October 2008, pp. 1525-1534.
IEEE DOI
0810
BibRef
Wang, Z.M.[Zhi Min],
Soh, Y.C.[Yeng Chai],
Song, Q.[Qing],
Sim, K.[Kang],
Adaptive spatial information-theoretic clustering for image
segmentation,
PR(42), No. 9, September 2009, pp. 2029-2044.
Elsevier DOI
0905
BibRef
Earlier: A1, A3, A2, A4:
Image clustering by incorporating adaptive spatial connectivity,
ICARCV08(657-661).
IEEE DOI
1109
BibRef
And: A1, A3, A2, A4:
Improved Adaptive Spatial Information Clustering for Image Segmentation,
ISVC08(I: 308-317).
Springer DOI
0812
Spatial clustering; Image segmentation; Information-theoretic approach
BibRef
Wang, Z.M.[Zhi-Min],
Song, Q.[Qing],
Soh, Y.C.[Yeng Chai],
Sim, K.[Kang],
An adaptive spatial information-theoretic fuzzy clustering algorithm
for image segmentation,
CVIU(117), No. 10, 2013, pp. 1412-1420.
Elsevier DOI
1309
Image segmentation
BibRef
Sfikas, G.[Giorgos],
Nikou, C.[Christophoros],
Galatsanos, N.[Nikolaos],
Heinrich, C.[Christian],
Spatially Varying Mixtures Incorporating Line Processes for Image
Segmentation,
JMIV(36), No. 2, February 2010, pp. xx-yy.
Springer DOI
1002
BibRef
Earlier: A1, A2, A3, Only:
Edge preserving spatially varying mixtures for image segmentation,
CVPR08(1-7).
IEEE DOI
0806
BibRef
Earlier:
Robust Image Segmentation with Mixtures of Student's t-Distributions,
ICIP07(I: 273-276).
IEEE DOI
0709
BibRef
Sfikas, G.[Giorgos],
Heinrich, C.[Christian],
Nikou, C.[Christophoros],
Multiple Atlas Inference and Population Analysis Using Spectral
Clustering,
ICPR10(2500-2503).
IEEE DOI
1008
BibRef
Sfikas, G.[Giorgos],
Nikou, C.[Christophoros],
Galatsanos, N.[Nikolaos],
Heinrich, C.[Christian],
Majorization-minimization mixture model determination in image
segmentation,
CVPR11(2169-2176).
IEEE DOI
1106
BibRef
Sfikas, G.[Giorgos],
Heinrich, C.[Christian],
Zallat, J.[Jihad],
Nikou, C.[Christophoros],
Galatsanos, N.[Nikos],
Recovery of polarimetric Stokes images by spatial mixture models,
JOSA-A(28), No. 3, March 2011, pp. 465-474.
WWW Link.
1103
BibRef
Earlier:
Joint recovery and segmentation of polarimetric images using a compound
MRF and mixture modeling,
ICIP09(3901-3904).
IEEE DOI
0911
BibRef
Nikou, C.[Christophoros],
Likas, A.,
Galatsanos, N.[Nikolaos],
A Bayesian Framework for Image Segmentation With Spatially Varying
Mixtures,
IP(19), No. 9, September 2010, pp. 2278-2289.
IEEE DOI
1008
See also Tomographic Image Reconstruction with a Spatially Varying Gaussian Mixture Prior.
See also Tomographic Image Reconstruction with a Spatially Varying Gamma Mixture Prior.
BibRef
Tung, F.[Frederick],
Wong, A.[Alexander],
Clausi, D.A.[David A.],
Enabling scalable spectral clustering for image segmentation,
PR(43), No. 12, December 2010, pp. 4069-4076.
Elsevier DOI
1003
Spectral clustering; Image segmentation; Stochastic ensemble consensus
BibRef
Wong, A.[Alexander],
Wang, X.Y.[Xiao Yu],
Monte Carlo cluster refinement for noise robust image segmentation,
JVCIR(23), No. 7, October 2012, pp. 984-994.
Elsevier DOI
1209
Monte Carlo; Clustering; Image; Noise robust; Segmentation; Stochastic;
Local spatial-feature context; Maximum a posterior
BibRef
Wang, X.Y.[Xiang-Yang],
Wang, T.[Ting],
Bu, J.[Juan],
Color image segmentation using pixel wise support vector machine
classification,
PR(44), No. 4, April 2011, pp. 777-787.
Elsevier DOI
1101
Image segmentation; Support vector machine; Fuzzy c-means; Local
homogeneity model; Gabor filter
BibRef
Saha, S.[Sriparna],
Maulik, U.[Ujjwal],
A New Line Symmetry Distance Based Automatic Clustering Technique:
Application To Image Segmentation,
IJIST(21), No. 1, 2011, pp. 86-100.
DOI Link unsupervised classification, cluster validity index, symmetry, line
symmetry based distance, Principal component analysis, Kd tree,
magnetic resonance image
BibRef
1100
Chen, L.[Long],
Chen, C.L.P.,
Lu, M.Z.[Ming-Zhu],
A Multiple-Kernel Fuzzy C-Means Algorithm for Image Segmentation,
SMC-B(41), No. 5, October 2011, pp. 1263-1274.
IEEE DOI
1110
BibRef
Nguyen, T.M.[Thanh Minh],
Wu, Q.M.J.[Q.M. Jonathan],
Dirichlet Gaussian mixture model: Application to image segmentation,
IVC(29), No. 12, November 2011, pp. 818-828.
Elsevier DOI
1112
BibRef
Earlier:
A Fuzzy C-Means Based Spatial Pixel and Membership Relationships for
Image Segmentation,
CRV11(278-284).
IEEE DOI
1105
BibRef
Earlier:
Maximum likelihood neural network based on the correlation among
neighboring pixels for noisy image segmentation,
ICIP08(3020-3023).
IEEE DOI
0810
extended from Gaussian mixture model.
Dirichlet Gaussian mixture model; Dirichlet distribution; Spatial
constraints; Gradient method; Image segmentation
BibRef
Zhang, H.[Hui],
Wu, Q.M.J.[Q. M. Jonathan],
Nguyen, T.M.[Thanh Minh],
Image segmentation by a new weighted student's t-mixture model,
IET-IPR(7), No. 3, 2013, pp. 240-251.
DOI Link
1307
BibRef
And:
Image segmentation by a robust generalized fuzzy c-means algorithm,
ICIP13(4024-4028)
IEEE DOI
1402
BibRef
Earlier:
Bayesian feature selection and model detection for student's t-mixture
distributions,
ICPR12(1631-1634).
WWW Link.
1302
Fuzzy C-Means; Generalized Mean; bImage segmentation; Spatial constraints
BibRef
Kong, L.C.[Ling-Cheng],
Zhang, H.[Hui],
Zheng, Y.H.[Yu-Hui],
Chen, Y.J.[Yun-Jie],
Zhu, J.Z.[Jie-Zhong],
Wu, Q.M.M.J.[Qing-Ming M. Jonathan],
Image segmentation using a hierarchical student's-t mixture model,
IET-IPR(11), No. 11, November 2017, pp. 1094-1102.
DOI Link
1711
BibRef
Nguyen, T.M.[Thanh Minh],
Wu, Q.M.J.[Q.M. Jonathan],
Zhang, H.[Hui],
Bounded generalized Gaussian mixture model,
PR(47), No. 9, 2014, pp. 3132-3142.
Elsevier DOI
1406
Mixture model
BibRef
Nguyen, T.M.[Thanh Minh],
Wu, Q.M.J.[Q. M. Jonathan],
A Nonsymmetric Mixture Model for Unsupervised Image Segmentation,
Cyber(43), No. 2, April 2013, pp. 751-765.
IEEE DOI
1303
BibRef
Earlier:
A robust non-symmetric mixture models for image segmentation,
ICIP12(273-276).
IEEE DOI
1302
BibRef
Nguyen, T.M.[Thanh Minh],
Wu, Q.M.J.[Q.M. Jonathan],
Fast and Robust Spatially Constrained Gaussian Mixture Model for Image
Segmentation,
CirSysVideo(23), No. 4, April 2013, pp. 621-635.
IEEE DOI
1304
BibRef
And:
A Dynamic Bayesian Framework for Motion Segmentation,
CRV13(332-339)
IEEE DOI
1308
Bayes methods
BibRef
Nguyen, T.M.[Thanh Minh],
Wu, Q.M.J.[Q.M. Jonathan],
Robust Student's-t Mixture Model With Spatial Constraints and Its
Application in Medical Image Segmentation,
MedImg(31), No. 1, January 2012, pp. 103-116.
IEEE DOI
1201
See also Online Adaptive Fuzzy Clustering and Its Application for Background Suppression, An.
BibRef
Nguyen, T.M.[Thanh Minh],
Wu, Q.M.J.[Q.M. Jonathan],
An Unsupervised Feature Selection Dynamic Mixture Model for Motion
Segmentation,
IP(23), No. 3, March 2014, pp. 1210-1225.
IEEE DOI
1403
feature extraction
BibRef
Nguyen, T.M.[Thanh Minh],
Wu, Q.M.J.[Q. M. Jonathan],
A Consensus Model for Motion Segmentation in Dynamic Scenes,
CirSysVideo(26), No. 12, December 2016, pp. 2240-2249.
IEEE DOI
1612
Clustering algorithms
BibRef
Nguyen, T.M.[Thanh Minh],
Wu, Q.M.J.[Q.M. Jonathan],
Mukherjee, D.[Dibyendu],
Feature Ranking in Dynamic Texture Clustering,
CRV15(109-116)
IEEE DOI
1507
Clustering algorithms
BibRef
Nguyen, T.M.[Thanh Minh],
Wu, Q.M.J.[Q.M. Jonathan],
A non-parametric Bayesian model for bounded data,
PR(48), No. 6, 2015, pp. 2084-2095.
Elsevier DOI
1503
Bounded data
BibRef
Zhang, H.[Hui],
Wu, Q.M.J.[Q.M. Jonathan],
Nguyen, T.M.[Thanh Minh],
Image segmentation by dirichlet process mixture model with
generalised mean,
IET-IPR(8), No. 2, February 2014, pp. 103-111.
DOI Link
1403
hidden Markov models
BibRef
Zhang, H.[Hui],
Wu, Q.M.J.[Q.M. Jonathan],
Zheng, Y.H.[Yu-Hui],
Nguyen, T.M.[Thanh Minh],
Wang, D.C.[Ding-Cheng],
Effective fuzzy clustering algorithm with Bayesian model and mean
template for image segmentation,
IET-IPR(8), No. 10, October 2014, pp. 571-581.
DOI Link
1411
Bayes methods
BibRef
Zhang, H.[Hui],
Wu, Q.M.J.,
Nguyen, T.M.[Thanh Minh],
A Robust Fuzzy Algorithm Based on Student's t-Distribution and Mean
Template for Image Segmentation Application,
SPLetters(20), No. 2, February 2013, pp. 117-120.
IEEE DOI
1302
BibRef
Zhang, H.[Hui],
Wu, Q.M.J.,
Nguyen, T.M.[Thanh Minh],
Sun, X.,
Synthetic Aperture Radar Image Segmentation by Modified Student's
t-Mixture Model,
GeoRS(52), No. 7, July 2014, pp. 4391-4403.
IEEE DOI
1403
Approximation methods
BibRef
Mukherjee, D.[Dibyendu],
Wu, Q.M.J.[Q.M. Jonathan],
Nguyen, T.M.[Thanh Minh],
Multiresolution Based Gaussian Mixture Model for Background
Suppression,
IP(22), No. 12, 2013, pp. 5022-5035.
IEEE DOI
1312
BibRef
Earlier:
Bilateral filter based mixture model for image segmentation,
ICIP12(281-284).
IEEE DOI
1302
Gaussian processes
BibRef
Bong, C.W.,
Rajeswari, M.,
Multiobjective clustering with metaheuristic:
Current trends and methods in image segmentation,
IET-IPR(6), No. 1, 2012, pp. 1-10.
DOI Link
1202
BibRef
Kim, S.,
Kang, M.,
Multiple-Region Segmentation Without Supervision by Adaptive Global
Maximum Clustering,
IP(21), No. 4, April 2012, pp. 1600-1612.
IEEE DOI
1204
BibRef
Wang, L.J.[Li-Jun],
Dong, M.[Ming],
Multi-level Low-rank Approximation-based Spectral Clustering for image
segmentation,
PRL(33), No. 16, 1 December 2012, pp. 2206-2215.
Elsevier DOI
1210
Image segmentation; Matrix approximation; Spectral clustering
BibRef
Szilágyi, L.[László],
Lessons to learn from a mistaken optimization,
PRL(36), No. 1, 2014, pp. 29-35.
Elsevier DOI
1312
Image segmentation
BibRef
Ducournau, A.[Aurélien],
Bretto, A.[Alain],
Random walks in directed hypergraphs and application to
semi-supervised image segmentation,
CVIU(120), No. 1, 2014, pp. 91-102.
Elsevier DOI
1403
Directed hypergraph
BibRef
Bretto, A.[Alain],
Ducournau, A.[Aurélien],
Rital, S.[Soufiane],
A Hypergraph Reduction Algorithm for Joint Segmentation and
Classification of Satellite Image Content,
CIARP10(38-45).
Springer DOI
1011
See also Hypergraph Imaging: An Overview.
BibRef
Bellala Belahbib, F.Z.[Fatima Zohra],
Souami, F.[Feryel],
A genetic algorithm-based clustering and two-scan labelling for colour
image segmentation,
IJCVR(4), No. 1-2, 2014, pp. 86-98.
DOI Link
1403
BibRef
Earlier:
Genetic algorithm clustering for color image quantization,
EUVIP11(83-87).
IEEE DOI
1110
BibRef
Liu, X.B.[Xiao-Bai],
Xu, Q.[Qian],
Ma, J.Y.[Jia-Yi],
Jin, H.[Hai],
Zhang, Y.D.[Yan-Duo],
MsLRR:
A Unified Multiscale Low-Rank Representation for Image Segmentation,
IP(23), No. 5, May 2014, pp. 2159-2167.
IEEE DOI
1405
Feature extraction
See also Hyperspectral Image Denoising Using the Robust Low-Rank Tensor Recovery.
BibRef
Sourati, J.[Jamshid],
Erdogmus, D.[Deniz],
Dy, J.G.[Jennifer G.],
Brooks, D.H.,
Accelerated Learning-Based Interactive Image Segmentation Using
Pairwise Constraints,
IP(23), No. 7, July 2014, pp. 3057-3070.
IEEE DOI
1407
Clustering algorithms
BibRef
Sourati, J.[Jamshid],
Akcakaya, M.[Murat],
Erdogmus, D.[Deniz],
Leen, T.K.[Todd K.],
Dy, J.G.[Jennifer G.],
A Probabilistic Active Learning Algorithm Based on Fisher Information
Ratio,
PAMI(40), No. 8, August 2018, pp. 2023-2029.
IEEE DOI
1807
Approximation algorithms, Computational complexity,
Finite impulse response filters, Optimization,
probabilistic querying
BibRef
Mostajabi, M.[Mohammadreza],
Gholampour, I.[Iman],
A robust multilevel segment description for multi-class object
recognition,
MVA(26), No. 1, January 2015, pp. 15-30.
Springer DOI
1503
BibRef
Li, S.,
Wu, D.O.,
Modularity-Based Image Segmentation,
CirSysVideo(25), No. 4, April 2015, pp. 570-581.
IEEE DOI
1504
Clustering algorithms
BibRef
Hou, J.[Jian],
Xu, E.,
Liu, W.X.[Wei-Xue],
Xia, Q.[Qi],
Qi, N.M.[Nai-Ming],
A density-based enhancement to dominant sets clustering,
IET-CV(7), No. 5, October 2013, pp. 354-361.
DOI Link
1402
graph theory. Oversegmentation. Sensitivity to distance measure.
BibRef
Hou, J.[Jian],
Sha, C.S.[Chun-Shi],
E, X.[Xu],
Xia, Q.[Qi],
Qi, N.M.[Nai-Ming],
Density Based Cluster Extension and Dominant Sets Clustering,
GbRPR15(262-271).
Springer DOI
1511
BibRef
Hou, J.[Jian],
Xia, Q.[Qi],
Qi, N.M.[Nai-Ming],
Experimental study on dominant sets clustering,
IET-CV(9), No. 2, 2015, pp. 208-215.
DOI Link
1506
game theory
BibRef
Hou, J.[Jian],
Sha, C.[Chunshi],
Chi, L.[Lei],
Xia, Q.[Qi],
Qi, N.M.[Nai-Ming],
Merging dominant sets and DBSCAN for robust clustering and image
segmentation,
ICIP14(4422-4426)
IEEE DOI
1502
Clustering algorithms
BibRef
Liu, G.Y.[Guo-Ying],
Zhang, Y.[Yun],
Wang, A.[Aimin],
Incorporating Adaptive Local Information Into Fuzzy Clustering for
Image Segmentation,
IP(24), No. 11, November 2015, pp. 3990-4000.
IEEE DOI
1509
fuzzy set theory
BibRef
Xiong, T.S.[Tai-Song],
Zhang, L.[Lei],
Yi, Z.[Zhang],
Double Gaussian mixture model for image segmentation with spatial
relationships,
JVCIR(34), No. 1, 2016, pp. 135-145.
Elsevier DOI
1601
Markov random model
BibRef
Parsi, A.[Ashkan],
Sorkhi, A.G.[Ali Ghanbari],
Zahedi, M.[Morteza],
Improving the unsupervised LBG clustering algorithm performance in
image segmentation using principal component analysis,
SIViP(10), No. 2, February 2016, pp. 301-309.
Springer DOI
1601
BibRef
Hou, J.,
Gao, H.,
Li, X.,
DSets-DBSCAN: A Parameter-Free Clustering Algorithm,
IP(25), No. 7, July 2016, pp. 3182-3193.
IEEE DOI
1606
image segmentation
BibRef
Zhou, D.,
Zhou, H.,
Minimisation of local within-class variance for image segmentation,
IET-IPR(10), No. 8, 2016, pp. 608-615.
DOI Link
1608
image segmentation
BibRef
Xiong, T.S.[Tai-Song],
Huang, Y.Y.[Yuan-Yuan],
Gou, J.P.[Jian-Ping],
Hu, J.R.[Jin-Rong],
A unified Bayesian mixture model framework via spatial information
for grayscale image segmentation,
JVCIR(40, Part A), No. 1, 2016, pp. 345-356.
Elsevier DOI
1609
Spatially variant finite mixture model
BibRef
Hou, J.[Jian],
Liu, W.X.[Wei-Xue],
E, X.[Xu],
Cui, H.X.[Hong-Xia],
Towards parameter-independent data clustering and image segmentation,
PR(60), No. 1, 2016, pp. 25-36.
Elsevier DOI
1609
Dominant sets
BibRef
Chang, D.X.[Dong-Xia],
Zhao, Y.[Yao],
Liu, L.[Lian],
Zheng, C.W.[Chang-Wen],
A dynamic niching clustering algorithm based on
individual-connectedness and its application to color image
segmentation,
PR(60), No. 1, 2016, pp. 334-347.
Elsevier DOI
1609
Clustering
BibRef
Gharieb, R.R.,
Gendy, G.,
Abdelfattah, A.,
C-means clustering fuzzified by two membership relative entropy
functions approach incorporating local data information for noisy image
segmentation,
SIViP(11), No. 3, March 2017, pp. 541-548.
WWW Link.
1702
BibRef
Choy, S.K.[Siu Kai],
Lam, S.Y.[Shu Yan],
Yu, K.W.[Kwok Wai],
Lee, W.Y.[Wing Yan],
Leung, K.T.[King Tai],
Fuzzy model-based clustering and its application in image
segmentation,
PR(68), No. 1, 2017, pp. 141-157.
Elsevier DOI
1704
Image segmentation
BibRef
Zheng, J.[Jia],
Zhang, D.H.[Ding-Hua],
Huang, K.D.[Kui-Dong],
Sun, Y.X.[Yuan-Xi],
Adaptive image segmentation method based on the fuzzy c-means with
spatial information,
IET-IPR(12), No. 5, May 2018, pp. 785-792.
DOI Link
1804
BibRef
Zheng, J.[Jia],
Zhang, D.H.[Ding-Hua],
Huang, K.D.[Kui-Dong],
Sun, Y.X.[Yuan-Xi],
Image segmentation framework based on optimal multi-method fusion,
IET-IPR(13), No. 1, January 2019, pp. 186-195.
DOI Link
1812
BibRef
Luo, M.,
Yan, C.,
Zheng, Q.,
Chang, X.,
Chen, L.,
Nie, F.,
Discrete Multi-Graph Clustering,
IP(28), No. 9, Sep. 2019, pp. 4701-4712.
IEEE DOI
1908
computational complexity, graph theory, image segmentation,
optimisation, pattern clustering, image segmentation
BibRef
Xu, Y.[Yan],
Chen, R.Z.[Rui-Zhi],
Li, Y.[Yu],
Zhang, P.[Peng],
Yang, J.[Jie],
Zhao, X.M.[Xue-Mei],
Liu, M.Y.[Meng-Yun],
Wu, D.W.[De-Wen],
Multispectral Image Segmentation Based on a Fuzzy Clustering
Algorithm Combined with Tsallis Entropy and a Gaussian Mixture Model,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Wen, J.Y.[Jin-Yu],
Xuan, S.B.[Shi-Bin],
Li, Y.Q.[Yu-Qi],
Peng, Q.H.[Qi-Hui],
Gao, Q.[Qing],
Image segmentation algorithm based on neutrosophic fuzzy clustering
with non-local information,
IET-IPR(14), No. 3, 28 February 2020, pp. 576-584.
DOI Link
2002
BibRef
Selwyn, E.J.[Ebenezer Juliet],
Velayutham, S.S.[Selvi Shunmuga],
George, J.F.D.[Jemi Florinabel Deva],
Improved compound image segmentation using automatic pixel block
classification with SVM,
IET-IPR(14), No. 8, 19 June 2020, pp. 1605-1613.
DOI Link
2005
BibRef
Li, S.C.[Song-Cheng],
Lu, J.Y.[Jun-Yong],
Cheng, L.[Long],
Li, X.P.[Xiang-Ping],
Novel local information kernelized fuzzy C-means algorithm for image
segmentation,
IJIST(31), No. 2, 2021, pp. 786-801.
DOI Link
2105
contextual information, fuzzy C-means algorithm,
image segmentation, novel dissimilarity metric
BibRef
Zhang, H.[Hang],
Li, H.[Haili],
Chen, N.[Ning],
Chen, S.F.[Sheng-Feng],
Liu, J.[Jian],
Novel fuzzy clustering algorithm with variable multi-pixel fitting
spatial information for image segmentation,
PR(121), 2022, pp. 108201.
Elsevier DOI
2109
Fuzzy clustering, Image segmentation, Spatial information,
Variable filter window, Variable generalized neighbourhood window
BibRef
Liu, R.C.[Ruo-Chen],
Xue, M.L.[Min-Lei],
Lv, H.Y.[Hao-Yuan],
Adaptive Feature Weights Based Double-Layer Multi-Objective Method
for SAR Image Segmentation,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Wu, C.M.[Cheng-Mao],
Zhang, X.[Xue],
Total Bregman divergence-driven possibilistic fuzzy clustering with
kernel metric and local information for grayscale image segmentation,
PR(128), 2022, pp. 108686.
Elsevier DOI
2205
Image segmentation, Fuzzy clustering, Total Bregman divergence,
Polynomial kernel function, Possibilistic typicality
BibRef
Yang, Z.[Zenan],
Niu, H.P.[Hai-Peng],
Wang, X.X.[Xiao-Xuan],
Fan, L.X.[Liang-Xin],
A segmentation method based on the deep fuzzy segmentation model in
combined with SCANDLE clustering,
PR(146), 2024, pp. 110027.
Elsevier DOI
2311
Fuzzy clustering segmentation algorithm,
Deep fuzzy segmentation model, SCANDLE, Matrix construction algorithm
BibRef
Zhang, D.M.[Da-Ming],
Zhang, X.Y.[Xue-Yong],
Liu, H.Y.[Hua-Yong],
Image segmentation by selecting eigenvectors based on extended
information entropy,
IET-IPR(17), No. 13, 2023, pp. 3777-3788.
DOI Link
2311
clustering information, eigenvectors selection,
image segmentation, spectral clustering
BibRef
Roy, S.K.[Suman Kumar],
Rudra, B.[Bhawana],
Quantum-inspired hybrid algorithm for image classification and
segmentation: Q-Means++ max-cut method,
IJIST(34), No. 1, 2024, pp. e23015.
DOI Link
2401
image segmentaion, max-cut algorithm, Q-Means clustering,
quantum annealing, quantum computing, tumor analysis
BibRef
Shi, H.C.[Heng-Can],
Li, H.L.[Hong-Liang],
Wu, Q.B.[Qing-Bo],
Song, Z.C.[Zi-Chen],
Scene Parsing via Integrated Classification Model and Variance-Based
Regularization,
CVPR19(5302-5311).
IEEE DOI
2002
BibRef
Fehri, A.,
Velasco-Forero, S.,
Meyer, F.,
Characterizing Images by the Gromov-Hausdorff Distances Between
Derived Hierarchies,
ICIP18(1213-1217)
IEEE DOI
1809
Image segmentation, Measurement, Shape, Support vector machines,
Merging, Stochastic processes, Training, Gromov-Hausdorff Distance,
Classification
BibRef
Condat, L.[Laurent],
A Convex Approach to K-Means Clustering and Image Segmentation,
EMMCVPR17(220-234).
Springer DOI
1805
BibRef
Nadeem, S.A.[Syed Ahmed],
Hoffman, E.A.[Eric A.],
Saha, P.K.[Punam K.],
Path-Gradient: A Theory of Computing Full Intensity-Transition Between
Two Points,
CIARP17(399-407).
Springer DOI
1802
BibRef
Fakhi, H.,
Bouattane, O.,
Youssfi, M.,
Hassan, O.,
New optimized GPU version of the k-means algorithm for large-sized
image segmentation,
ISCV17(1-6)
IEEE DOI
1710
Clustering algorithms,
Graphics processing units, Instruction sets,
Kernel, GPGPU, K-means clustering, imageprocessing
BibRef
Abdullah, S.M.,
Tischer, P.,
Wijewickrema, S.,
Paplinski, A.,
Parameter-free hierarchical image segmentation,
VCIP17(1-4)
IEEE DOI
1804
BibRef
Earlier:
Hierarchical Mutual Nearest Neighbour Image Segmentation,
DICTA16(1-8)
IEEE DOI
1701
data visualisation, image segmentation, trees (mathematics),
hierarchical image segmentation algorithm.
Clustering algorithms
BibRef
Lobacheva, E.,
Veksler, O.[Olga],
Boykov, Y.Y.[Yuri Y.],
Joint Optimization of Segmentation and Color Clustering,
ICCV15(1626-1634)
IEEE DOI
1602
Clustering algorithms
BibRef
Hou, J.[Jian],
Sha, C.S.[Chun-Shi],
Cui, H.X.[Hong-Xia],
Chi, L.[Lei],
Dominant Set Based Data Clustering and Image Segmentation,
MMMod16(I: 432-443).
Springer DOI
1601
BibRef
Sublime, J.[Jeremie],
Troya-Galvis, A.[Andres],
Bennani, Y.[Younes],
Cornuejols, A.[Antoine],
Gancarski, P.[Pierre],
Semantic rich ICM algorithm for VHR satellite images segmentation,
MVA15(45-48)
IEEE DOI
1507
Clustering algorithms
BibRef
Shao, G.P.[Guang-Pu],
Gao, J.B.[Jun-Bin],
Wang, T.J.[Tian-Jiang],
Liu, F.[Fang],
Shu, Y.C.[Yu-Cheng],
Yang, Y.[Yong],
Image Segmentation Based on Spatially Coherent Gaussian Mixture Model,
DICTA14(1-6)
IEEE DOI
1502
Gaussian processes
BibRef
Escolano, F.[Francisco],
Bonev, B.[Boyan],
Hancock, E.R.[Edwin R.],
Quantum vs. Classical Ranking in Segment Grouping,
SSSPR14(203-212).
Springer DOI
1408
BibRef
Prakash, A.,
Balasubramanian, S.,
Raghunatha Sarma, R.,
Improvised eigenvector selection for spectral Clustering in image
segmentation,
NCVPRIPG13(1-4)
IEEE DOI
1408
image segmentation
BibRef
Huang, J.[Jing],
You, S.[Suya],
Segmentation and matching: Towards a robust object detection system,
WACV14(325-332)
IEEE DOI
1406
Clustering algorithms
BibRef
Zheng, F.H.[Fu-Hua],
Zhang, C.M.[Cai-Ming],
Zhang, X.F.[Xiao-Feng],
Liu, Y.[Yi],
A fast anti-noise fuzzy C-means algorithm for image segmentation,
ICIP13(2728-2732)
IEEE DOI
1402
Image segmentation;fuzzy C-means;fuzzy clustering;spatial information
BibRef
Bernard, G.[Guillaume],
Verleysen, M.[Michel],
Segmentation with Incremental Classifiers,
CIAP13(II:81-90).
Springer DOI
1309
BibRef
Gallo, I.[Ignazio],
Vanetti, M.[Marco],
Albertini, S.[Simone],
Nodari, A.[Angelo],
Multi-net System Configuration for Visual Object Segmentation by Error
Backpropagation,
IbPRIA13(468-475).
Springer DOI
1307
BibRef
Gui, Y.[Yang],
Bai, X.[Xiang],
Li, Z.[Zheng],
Yuan, Y.[Yun],
Color image segmentation using mean shift and improved spectral
clustering,
ICARCV12(1386-1391).
IEEE DOI
1304
BibRef
Jang, D.[Daesik],
Miller, G.[Gregor],
Fels, S.[Sidney],
Transforming Cluster-Based Segmentation for Use in OpenVL by Mainstream
Developers,
DevCen12(I:254-265).
Springer DOI
1304
BibRef
Scheuermann, B.[Björn],
Schlosser, M.[Markus],
Rosenhahn, B.[Bodo],
Efficient Pixel-Grouping Based on Dempster's Theory of Evidence for
Image Segmentation,
ACCV12(I:745-759).
Springer DOI
1304
BibRef
Ayech, M.W.[Mohamed Walid],
Ziou, D.[Djemel],
Ranked k-means clustering for terahertz image segmentation,
ICIP15(4391-4395)
IEEE DOI
1512
BibRef
Earlier:
Automated feature weighting and random pixel sampling in k-means
clustering for terahertz image segmentation,
PBVS15(35-40)
IEEE DOI
1510
BibRef
Earlier:
Terahertz image segmentation based on K-harmonic-means clustering and
statistical feature extraction modeling,
ICPR12(222-225).
WWW Link.
1302
Segmentation.
Chemicals.
BibRef
Cinbis, R.G.[Ramazan Gokberk],
Sclaroff, S.[Stan],
Contextual Object Detection Using Set-Based Classification,
ECCV12(VI: 43-57).
Springer DOI
1210
BibRef
Yarkony, J.[Julian],
Zhang, C.[Chong],
Fowlkes, C.C.[Charless C.],
Hierarchical Planar Correlation Clustering for Cell Segmentation,
EMMCVPR15(492-504).
Springer DOI
1504
BibRef
Yarkony, J.[Julian],
Ihler, A.[Alexander],
Fowlkes, C.C.[Charless C.],
Fast Planar Correlation Clustering for Image Segmentation,
ECCV12(VI: 568-581).
Springer DOI
1210
BibRef
Glocker, B.[Ben],
Pauly, O.[Olivier],
Konukoglu, E.[Ender],
Criminisi, A.[Antonio],
Joint Classification-Regression Forests for Spatially Structured
Multi-Object Segmentation,
ECCV12(IV: 870-881).
Springer DOI
1210
BibRef
Kumar, M.P.[M. Pawan],
Turki, H.[Haithem],
Preston, D.[Dan],
Koller, D.[Daphne],
Learning specific-class segmentation from diverse data,
ICCV11(1800-1807).
IEEE DOI
1201
Learn segmentation parameters.
BibRef
Glasner, D.[Daniel],
Vitaladevuni, S.N.[Shiv N.],
Basri, R.[Ronen],
Contour-based joint clustering of multiple segmentations,
CVPR11(2385-2392).
IEEE DOI
1106
BibRef
Bandukwala, F.[Farhana],
Extracting spatially and spectrally coherent regions from multispectral
images,
OTCBVS11(82-87).
IEEE DOI
1106
BibRef
Jiang, M.Y.[Ming-Yang],
Li, C.X.[Chun-Xiao],
Feng, J.F.[Ju-Fu],
Wang, L.W.[Li-Wei],
Segmentation via NCuts and Lossy Minimum Description Length:
A Unified Approach,
ACCV10(III: 213-224).
Springer DOI
1011
BibRef
Jiang, M.Y.[Ming-Yang],
Li, C.X.[Chun-Xiao],
Feng, J.F.[Ju-Fu],
Wang, L.W.[Li-Wei],
Towards Hypothesis Testing and Lossy Minimum Description Length:
A Unified Segmentation Framework,
ACCV10(III: 343-354).
Springer DOI
1011
BibRef
Sanchez, J.[Javier],
Martinez, E.[Estibaliz],
Arquero, A.[Agueda],
Renza, D.[Diego],
Automatic Image Segmentation Optimized by Bilateral Filtering,
CIARP10(303-310).
Springer DOI
1011
See also Pansharpening of High and Medium Resolution Satellite Images Using Bilateral Filtering.
BibRef
Greggio, N.[Nicola],
Bernardino, A.[Alexandre],
Santos-Victor, J.[José],
Image Segmentation for Robots:
Fast Self-adapting Gaussian Mixture Model,
ICIAR10(I: 105-116).
Springer DOI
1006
BibRef
Galbiati, J.[Jorge],
Allende, H.[Héctor],
Becerra, C.[Carlos],
Dynamic Image Segmentation Method Using Hierarchical Clustering,
CIARP09(177-184).
Springer DOI
0911
See also non-parametric filter for digital image restoration, using cluster analysis, A.
BibRef
Ganz, M.[Melanie],
Loog, M.[Marco],
Brandt, S.S.[Sami S.],
Nielsen, M.[Mads],
Dense iterative contextual pixel classification using Kriging,
MMBIA09(87-93).
IEEE DOI
0906
Segmentation using context.
BibRef
Alaoui, M.T.[Mohammed Talibi],
Sbihi, A.[Abderrahmane],
A New Clustering Algorithm for Color Image Segmentation,
IbPRIA09(217-224).
Springer DOI
0906
BibRef
Chen, Y.W.[Yen-Wei],
Han, X.H.[Xian-Hua],
Supervised Local Subspace Learning for Region Segmentation and
Categorization in High-Resolution Satellite Images,
CCIW09(226-233).
Springer DOI
0903
BibRef
Shah, H.[Hina],
Mitra, S.K.[Suman K.],
Banerjee, A.[Asim],
Information Slicing: An Application to Object Classification in
Satellite Images,
ICCVGIP08(458-465).
IEEE DOI
0812
BibRef
Abdelrahman, M.[Mostafa],
El-Melegy, M.[Moumen],
Farag, A.A.[Aly A.],
3D Object Classification Using Scale Invariant Heat Kernels with
Collaborative Classification,
NORDIA12(I: 22-31).
Springer DOI
1210
BibRef
And:
Heat Kernels for Non-Rigid Shape Retrieval:
Sparse Representation and Efficient Classification,
CRV12(153-160).
IEEE DOI
1207
BibRef
El-Melegy, M.[Moumen],
Zanaty, E.A.,
Abd-Elhafiez, W.M.[Walaa M.],
Farag, A.A.[Aly A.],
On Cluster Validity Indexes in Fuzzy and Hard Clustering Algorithms for
Image Segmentation,
ICIP07(VI: 5-8).
IEEE DOI
0709
BibRef
Zhao, Y.J.[Yan-Jun],
Wang, T.[Tao],
Wang, P.[Peng],
Hu, W.[Wei],
Du, Y.Z.[Yang-Zhou],
Zhang, Y.M.[Yi-Min],
Xu, G.Y.[Guang-You],
Scene Segmentation and Categorization Using NCuts,
SLAM07(1-7).
IEEE DOI
0706
BibRef
Cleju, I.[Ioan],
Fränti, P.[Pasi],
Wu, X.L.[Xiao-Lin],
Clustering Based on Principal Curve,
SCIA05(872-881).
Springer DOI
0506
BibRef
Shental, N.,
Zomet, A.,
Hertz, T.,
Weiss, Y.,
Learning and Inferring Image Segmentations Using the GBP Typical Cut
Algorithm,
ICCV03(1243-1250).
IEEE DOI
0311
Issues in clustering.
BibRef
Wesolkowski, S.[Slawo],
Fieguth, P.W.[Paul W.],
Hierarchical Region Mean-Based Image Segmentation,
CRV06(30-30).
IEEE DOI
0607
BibRef
Earlier:
Hierarchical Regions for Image Segmentation,
ICIAR04(I: 9-16).
Springer DOI
0409
BibRef
Earlier:
A probabilistic framework for image segmentation,
ICIP03(II: 451-454).
IEEE DOI
0312
See also Highlight and Shading Invariant Color Image Segmentation Using Simulated Annealing.
BibRef
Legal-Ayala, H.A.,
Facon, J.,
Segmentation approach by learning: different image applications,
CIAP03(600-604).
IEEE DOI
0310
BibRef
Ren, X.F.[Xiao-Feng],
Malik, J.,
Learning a classification model for segmentation,
ICCV03(10-17).
IEEE DOI
0311
BibRef
Singh, M.K.,
Ahuja, N.,
Mean-shift segmentation with wavelet-based bandwidth selection,
WACV02(43-47).
IEEE DOI
0303
BibRef
Mukherjee, D.P.,
Mohanta, P.P.,
Acton, S.T.,
Agglomerative clustering of feature data for image segmentation,
ICIP02(III: 269-272).
IEEE DOI
0210
BibRef
Earlier: A2, A1, A3:
Agglomerative clustering for image segmentation,
ICPR02(I: 664-667).
IEEE DOI
0211
BibRef
Romano, R.,
Vitulano, D.,
A Variational Representation for Efficient Noisy Segmentation,
WSCG02(POS-41).
HTML Version.
0209
BibRef
Aronsson, M.[Mattias],
Borgefors, G.[Gunilla],
2D Segmentation and Labelling of Clustered Ring Shaped Objects,
SCIA01(P-W4A).
0206
BibRef
Keslassy, I.,
Kalman, M.,
Wang, D.,
Girod, B.,
Classification of Compound Images Based on Transform Coefficient
Likelihood,
ICIP01(I: 750-753).
IEEE DOI
0108
BibRef
Pham, T.D.,
Image Segmentation Using Probabilistic Fuzzy C-means Clustering,
ICIP01(I: 722-725).
IEEE DOI
0108
See also Fuzzy posterior-probabilistic fusion.
BibRef
Noordam, J.C.,
van den Broek, W.H.A.M.,
Buydens, L.M.C.,
Geometrically Guided Fuzzy C-means Clustering for Multivariate Image
Segmentation,
ICPR00(Vol I: 462-465).
IEEE DOI
0009
BibRef
Venkatachalam, V.,
Image Classification Using Pseudo Power Signatures,
ICIP00(Vol I: 796-799).
IEEE DOI
0008
BibRef
Voles, P.,
Smith, A.,
Teal, M.,
Nautical Scene Segmentation using Variable Size Image Windows and
Feature Space Reclustering,
ECCV00(II: 324-335).
Springer DOI
0003
BibRef
Schweitzer, H.[Haim],
Utilizing Scatter for Pixel Subspace Selection,
ICCV99(1111-1116).
IEEE DOI Use scatter matrix for clustering and indexing.
BibRef
9900
Chardin, A.[Annabelle],
Perez, P.[Patrick],
Mode of Posterior Marginals with Hierarchical Models,
ICIP99(I:324-328).
IEEE DOI
BibRef
9900
Weiss, Y.[Yair],
Segmentation using Eigenvectors: A Unifying View,
ICCV99(975-982).
IEEE DOI
BibRef
9900
Glasbey, C.A.,
Ultrasound Image Segmentation Using a Point Distribution Model in a
Bayesian Framework,
BMVC96(Features, Segmentation).
9608
University of Edinburgh
BibRef
Cortijo, F.J.,
de la Blanca, N.P.[N. Perez],
Automatic Estimation of the LVQ-1 Parameters:
Applications to Multispectral Image Classification,
ICPR96(IV: 346-350).
IEEE DOI
9608
(Univ. de Granada, E)
BibRef
Olk, J.,
Jonker, P.P.,
Bucket Processing: a Paradigm for Image Processing,
ICPR96(IV: 386-390).
IEEE DOI
9608
(Delft Univ. of Technology, NL)
BibRef
Mari, M.,
Dellepiane, S.G.,
A Segmentation Method Based on Fuzzy Topology and Clustering,
ICPR96(II: 565-569).
IEEE DOI
9608
(Univ. di Genoa, I)
BibRef
Umesh Adiga, U.,
Chaudhuri, B.B.,
Semi-Automatic Segmentation of Tissue Cells from
Confocal Microscope Images,
ICPR96(III: 494-497).
IEEE DOI
9608
(Indian Statistical Institute, IND)
BibRef
Gong, Y.,
Chuan, C.,
Guo, X.,
An Effective Color Image Segmentation Method for Handling Images
under Uneven Illumination,
ICPR96(C82.1).
9608
(Nanyang Technological Univ., SGP)
BibRef
Ido, S.,
Arai, S.,
Takamatsu, R.,
Sato, M.,
Stimulus-Driven Segmentation By Gaussian Functions,
ICPR96(II: 487-491).
IEEE DOI
9608
(Tokyo Inst. of Technology, J)
BibRef
Dugelay, S.,
Augustin, J.,
Graffigne, C.,
Segmentation of Multibeam Acoustic Imagery in the Exploration of the
Deep Sea-Bottom,
ICPR96(II: 437-446).
IEEE DOI
9608
(Ifremer Centre de Brest, F)
BibRef
Atmaca, H.[Hamdi],
Bulut, M.,
Demir, D.,
Histogram Based Fuzzy Kohonen Clustering Network for Image Segmentation,
ICIP96(II: 951-954).
IEEE DOI
BibRef
9600
Ferryman, T.A.,
Bhanu, B.,
A Bayesian Approach for the Segmentation of SAR Images Using
Dynamically Selected Neighborhoods,
ARPA96(891-896).
BibRef
9600
Pudil, P.[Pavel],
Novovicová, J.[Jana],
Ferri, F.J.[Francesc J.],
Kittler, J.V.[Josef V.],
Advances in the statistical methodology for the selection of image
descriptors for visual pattern representation and classification,
CAIP95(832-837).
Springer DOI
9509
BibRef
Ichimura, N.,
Inexhaustive region segmentation by robust clustering,
ICIP95(III: 77-80).
IEEE DOI
9510
BibRef
Zhou, J.[Jing],
Fang, X.[Xiang],
Ghosh, B.J.,
Image segmentation based on multiresolution filtering,
ICIP94(III: 483-487).
IEEE DOI
9411
BibRef
Herlin, I.L.,
Nguyen, C.,
Graffigne, C.,
Stochastic Segmentation of Ultrasound Images,
ICPR92(I:289-292).
IEEE DOI
BibRef
9200
Fassnacht, C.,
Devijver, P.A.,
Image Segmentation With A Propagator Markov Mesh Model,
ICPR94(A:510-513).
IEEE DOI
BibRef
9400
Bruynooghe, M.,
A very efficient strategy for very large data sets clustering:
application to image segmentation,
ICPR88(I: 623-627).
IEEE DOI
8811
BibRef
Zucker, S.W.,
Leclerc, Y.G.,
Intensity Clustering by Relaxation,
PRAI-78(192-197).
BibRef
7800
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Minimum Spanning Tree for Segmentation .