Moore, J.K.[J. Kenneth],
Kaiser, A.[Arthur],
Mahler, H.W.[Henry W.],
Television system for displaying and recording paths of motion,
US_Patent4,179,704, Dec 18, 1979
WWW Link. Background subtraction.
BibRef
7912
Woolfson, M.G.[Martin G.],
Romanski, J.G.[John G.],
Apparatus and method for preprocessing video frame signals,
US_Patent4,405,940, Sep 20, 1983
WWW Link. target from background
BibRef
8309
Morton, R.R.A.[Roger R. A.],
Redden, J.E.[John E.],
Apparatus and methods for locating edges and document boundaries
in video scan lines,
US_Patent4,833,722, May 23, 1989
WWW Link. Given background
BibRef
8905
Morton, R.R.A.[Roger R. A.],
Redden, J.E.[John E.],
Lewis, S.[Scott],
Apparatus for enhancing and thresholding scanned microfilm images
and methods for use therein,
US_Patent4,982,294, Jan 1, 1991
WWW Link.
BibRef
9101
Toyama, M.[Masakazu],
Hamba, N.[Nobuhiro],
Apparatus for measuring the dynamic state of traffic,
US_Patent5,301,239, 02/03/1992.
HTML Version. Compare to reference image.
BibRef
9202
Otsuki, A.[Akira],
Image processing device and method for sensing moving objects and
rangefinder employing the same,
US_Patent5,212,547, 05/18/1993.
HTML Version. Compute background based on average of sequence, detect object from difference.
BibRef
9305
Brady, M.J.[Mark J.],
Cerny, D.G.[Darin G.],
Method and apparatus for background determination and
subtraction for a monocular vision system,
US_Patent5,684,898, Nov 4, 1997
WWW Link.
BibRef
9711
Astle, B.[Brian],
Video coding scheme with foreground/background separation,
US_Patent5,812,787, Sep 22, 1998
WWW Link.
BibRef
9809
Smoot, L.S.[Lanny Starkes],
Background extraction in a video picture,
US_Patent5,940,139, Aug 17, 1999
WWW Link.
BibRef
9908
Ivanov, Y.A.[Yuri A.],
Bobick, A.F.[Aaron F.],
Liu, J.[John],
Fast Lighting Independent Background Subtraction,
IJCV(37), No. 2, June 2000, pp. 199-207.
DOI Link
0008
BibRef
Earlier:
VS98(Image Processing for Visual Surveillance).
BibRef
Vismod--437, 1997.
PS File.
BibRef
Tzidon, D.[Dekel],
Tzidon, A.[Aviv],
Method of providing background patterns for camera tracking,
US_Patent6,191,812, Feb 20, 2001
WWW Link. Chroma key background
BibRef
0102
Kondo, T.[Tetsujiro],
Method and apparatus for separating/generating background and
motion object planes,
US_Patent6,275,617, Aug 14, 2001
WWW Link.
BibRef
0108
And:
US_Patent6,335,988, Jan 1, 2002
WWW Link.
BibRef
Kondo, T.[Tetsujiro],
Image signal processing apparatus and recording/reproducing apparatus,
US_Patent5,835,138, Nov 10, 1998
WWW Link.
BibRef
9811
And:
US_Patent5,926,212, Jul 20, 1999
WWW Link. For stabilization
BibRef
Elgammal, A.M.[Ahmed M.],
Duraiswami, R.,
Harwood, D.[David],
Davis, L.S.[Larry S.],
Background and foreground modeling using nonparametric kernel density
estimation for visual surveillance,
PIEEE(90), 2002, pp. 1151-1163.
IEEE DOI
BibRef
0200
Earlier: A1, A3, A4, Only:
Non-Parametric Model for Background Subtraction,
ECCV00(II: 751-767).
Springer DOI
BibRef
Frame-Rate99().
HTML Version.
BibRef
Haritaoglu, I.,
Harwood, D.,
Davis, L.S.,
A Fast Background Scene Modeling and Maintenance for Outdoor
Surveillance,
ICPR00(Vol IV: 179-183).
IEEE DOI
0009
BibRef
Horprasert, T.[Thanarat],
Harwood, D.[David],
Davis, L.S.[Larry S.],
A Statistical Approach for Real-time Robust Background Subtraction and
Shadow Detection,
Frame-Rate99().
HTML Version.
BibRef
9900
Kim, K.[Kyungnam],
Chalidabhongse, T.H.[Thanarat H.],
Harwood, D.[David],
Davis, L.S.[Larry S.],
Real-time foreground-background segmentation using codebook model,
RealTimeImg(11), No. 3, June 2005, pp. 172-185.
Elsevier DOI
0508
BibRef
Earlier:
Background modeling and subtraction by codebook construction,
ICIP04(V: 3061-3064).
IEEE DOI
0505
BibRef
Kim, K.[Kyungnam],
Harwood, D.[David],
Davis, L.S.[Larry S.],
Background Updating for Visual Surveillance,
ISVC05(337-346).
Springer DOI
0512
BibRef
Wu, Q.Z.[Quen-Zong],
Jeng, B.S.[Bor-Shenn],
Background subtraction based on logarithmic intensities,
PRL(23), No. 13, November 2002, pp. 1529-1536.
Elsevier DOI
0206
BibRef
Itokawa, O.[Osamu],
Image information processing apparatus and its method,
US_Patent6,404,901, Jun 11, 2002
WWW Link.
BibRef
0206
And:
Image processing apparatus and image processing method,
and storage medium,
US_Patent6,784,927, Aug 31, 2004
WWW Link.
BibRef
Cheung, S.C.S.[Sen-Ching S.],
Kamath, C.[Chandrika],
Robust Background Subtraction with Foreground Validation for Urban
Traffic Video,
JASP(2005), No. 14, 2005, pp. 2330-2340.
WWW Link.
0603
BibRef
Li, B.X.[Bao-Xin],
Image background replacement method,
US_Patent6,909,806, Jun 21, 2005
WWW Link.
BibRef
0506
Schoepflin, T.[Todd],
Haynor, D.R.[David R.],
Sahr, J.D.[John D.],
Kim, Y.M.[Yong-Min],
Video object tracking by estimating and subtracting background,
US_Patent6,870,945, Mar 22, 2005
WWW Link.
BibRef
0503
Olson, T.J.[Thomas J.],
Automatic video monitoring system which selectively saves information,
US_Patent7,023,469, Apr 4, 2006
WWW Link.
BibRef
0604
Spagnolo, P.,
d'Orazio, T.[Tiziana],
Leo, M.[Marco],
Distante, A.,
Moving object segmentation by background subtraction and temporal
analysis,
IVC(24), No. 5, 1 May 2006, pp. 411-423.
Elsevier DOI
0606
Moving object segmentation, Temporal analysis, Background updating
BibRef
Zivkovic, Z.[Zoran],
van der Heijden, F.[Ferdinand],
Efficient adaptive density estimation per image pixel for the task of
background subtraction,
PRL(27), No. 7, May 2006, pp. 773-780.
Elsevier DOI
0604
On-line density estimation, Gaussian mixture model;
Non-parametric density estimation
BibRef
Zivkovic, Z.,
Layered image model using binary PCA transparency masks,
BMVC07(xx-yy).
PDF File.
0709
BibRef
Cheng, J.[Jian],
Yang, J.[Jie],
Zhou, Y.[Yue],
Cui, Y.Y.[Ying-Ying],
Flexible background mixture models for foreground segmentation,
IVC(24), No. 5, 1 May 2006, pp. 473-482.
Elsevier DOI Foreground segmentation, Background subtraction, Mixture models, EM
algorithm, Maximum a posteriori (MAP)
0606
BibRef
Davis, J.W.[James W.],
Sharma, V.[Vinay],
Background-Subtraction in Thermal Imagery Using Contour Saliency,
IJCV(71), No. 2, February 2007, pp. 161-181.
Springer DOI
0609
BibRef
Earlier:
Fusion-Based Background-Subtraction using Contour Saliency,
OTCBVS05(III: 11-11).
IEEE DOI
0507
BibRef
And: A2, A1:
Feature-level Fusion for Object Segmentation using Mutual Information,
OTCBVS06(139).
IEEE DOI
0609
BibRef
Davis, J.W.[James W.],
Sharma, V.[Vinay],
Background-subtraction using contour-based fusion of thermal and
visible imagery,
CVIU(106), No. 2-3, May-June 2007, pp. 162-182.
Elsevier DOI
0705
BibRef
Earlier:
Robust detection of people in thermal imagery,
ICPR04(IV: 713-716).
IEEE DOI
0409
BibRef
Earlier:
Robust Background-Subtraction for Person Detection in Thermal Imagery,
OTCBVS04(128).
WWW Link.
0502
Background-subtraction, Fusion, Thermal imagery, Infrared, FLIR,
Contour Saliency Map, CSM, Video surveillance and monitoring, Person detection
BibRef
Sharma, V.[Vinay],
Davis, J.W.[James W.],
Integrating Appearance and Motion Cues for Simultaneous Detection and
Segmentation of Pedestrians,
ICCV07(1-8).
IEEE DOI
0710
BibRef
And:
Simultaneous Detection and Segmentation of Pedestrians using Top-down
and Bottom-up Processing,
VS07(1-8).
IEEE DOI
0706
BibRef
Earlier:
Extraction of Person Silhouettes from Surveillance Imagery using MRFs,
WACV07(33-33).
IEEE DOI
0702
BibRef
Wang, H.Z.[Han-Zi],
Suter, D.[David],
A consensus-based method for tracking: Modelling background scenario
and foreground appearance,
PR(40), No. 3, March 2007, pp. 1091-1105.
Elsevier DOI
0611
BibRef
Background Subtraction Based on a Robust Consensus Method,
ICPR06(I: 223-226).
IEEE DOI
0609
BibRef
Earlier:
A Novel Robust Statistical Method for Background Initialization and
Visual Surveillance,
ACCV06(I:328-337).
Springer DOI
0601
BibRef
Earlier:
Background initialization with a new robust statistical approach,
PETS05(153-159).
IEEE DOI
0602
Background modelling, Background subtraction, Sample consensus,
Visual tracking, Segmentation, Foreground appearance modelling, Occlusion
BibRef
Schindler, K.[Konrad],
Wang, H.Z.[Han-Zi],
Smooth Foreground-Background Segmentation for Video Processing,
ACCV06(II:581-590).
Springer DOI
0601
BibRef
Manzanera, A.[Antoine],
Richefeu, J.C.[Julien C.],
A new motion detection algorithm based on Sigma-Delta background
estimation,
PRL(28), No. 3, 1 February 2007, pp. 320-328.
Elsevier DOI
0701
Motion detection, Background estimation, Recursive filtering
BibRef
Lacassagne, L.,
Manzanera, A.,
Dupret, A.,
Motion detection: Fast and robust algorithms for embedded systems,
ICIP09(3265-3268).
IEEE DOI
0911
BibRef
Manzanera, A.[Antoine],
Sigma-Delta Background Subtraction and the Zipf Law,
CIARP07(42-51).
Springer DOI
0711
BibRef
Oral, M.[Mustafa],
Deniz, U.[Umut],
Centre of mass model: A novel approach to background modelling for
segmentation of moving objects,
IVC(25), No. 8, 1 August 2007, pp. 1365-1376.
Elsevier DOI
0706
Centre of mass, Image modelling, Motion segmentation, Background subtracting
BibRef
Chen, Y.T.[Yu-Ting],
Chen, C.S.[Chu-Song],
Huang, C.R.[Chun-Rong],
Hung, Y.P.[Yi-Ping],
Efficient hierarchical method for background subtraction,
PR(40), No. 10, October 2007, pp. 2706-2715.
Elsevier DOI
0707
Hierarchical background modeling, Background subtraction,
Contrast histogram, Non-stationary background, Object detection, Video surveillance
BibRef
Taycher, L.[Leonid],
Fisher, III, J.W.[John W.],
Darrell, T.J.[Trevor J.],
Combining Object and Feature Dynamics in Probabilistic Tracking,
CVIU(108), No. 3, December 2007, pp. 243-260.
Elsevier DOI
0711
BibRef
Earlier:
CVPR05(II: 106-113).
IEEE DOI
0507
BibRef
And:
CSAIL-2005-016, March 2005.
WWW Link.
BibRef
And:
Incorporating Object Tracking Feedback into Background Maintenance
Framework,
Motion05(II: 120-125).
IEEE DOI
0502
Probabilistic graphical models, Approximate models;
Articulated body tracking, Background subtraction, Shape from motion
BibRef
Liu, Y.Z.[Ya-Zhou],
Yao, H.X.[Hong-Xun],
Gao, W.[Wen],
Chen, X.L.[Xi-Lin],
Zhao, D.B.[De-Bin],
Nonparametric background generation,
JVCIR(18), No. 3, June 2007, pp. 253-263.
Elsevier DOI
0711
BibRef
Earlier:
ICPR06(IV: 916-919).
IEEE DOI
0609
Background subtraction, Background generation, Mean shift;
Effect components description, Most reliable background mode;
Video surveillance
BibRef
Maddalena, L.[Lucia],
Petrosino, A.[Alfredo],
A Self-Organizing Approach to Background Subtraction for Visual
Surveillance Applications,
IP(17), No. 7, July 2008, pp. 1168-1177.
IEEE DOI
0806
BibRef
Earlier:
Moving Object Detection for Real-Time Applications,
CIAP07(542-547).
IEEE DOI
0709
BibRef
Earlier:
A Self-organizing Approach to Detection of Moving Patterns for
Real-Time Applications,
BVAI07(181-190).
Springer DOI
0710
BibRef
Tsai, D.M.,
Lai, S.C.,
Independent Component Analysis-Based Background Subtraction for Indoor
Surveillance,
IP(18), No. 1, January 2009, pp. 158-167.
IEEE DOI
0812
BibRef
Abbott, R.G.[Robert G.],
Williams, L.R.[Lance R.],
Multiple target tracking with lazy background subtraction and connected
components analysis,
MVA(20), No. 2, February 2009, pp. xx-yy.
Springer DOI
0902
BibRef
McHugh, J.M.[J. Mike],
Konrad, J.[Janusz],
Saligrama, V.[Venkatesh],
Jodoin, P.M.[Pierre-Marc],
Foreground-Adaptive Background Subtraction,
SPLetters(16), No. 5, May 2009, pp. 390-393.
IEEE DOI
0903
BibRef
Jodoin, P.M.[Pierre-Marc],
Mignotte, M.[Max],
Konrad, J.[Janusz],
Statistical Background Subtraction Using Spatial Cues,
CirSysVideo(17), No. 12, December 2007, pp. 1758-1763.
IEEE DOI
0712
BibRef
Earlier:
Background Subtraction Framework Based on Local Spatial Distributions,
ICIAR06(I: 370-380).
Springer DOI
0610
BibRef
And:
Light and Fast Statistical Motion Detection Method Based on Ergodic
Model,
ICIP06(1053-1056).
IEEE DOI
0610
BibRef
Jodoin, P.M.[Pierre-Marc],
Saligrama, V.[Venkatesh],
Konrad, J.[Janusz],
Behavior Subtraction,
IP(21), No. 9, September 2012, pp. 4244-4255.
IEEE DOI
1208
BibRef
Earlier:
Implicit Active-Contouring with MRF,
ICIAR09(178-190).
Springer DOI
0907
BibRef
Earlier: A1, A3, A2:
Modeling background activity for behavior subtraction,
ICDSC08(1-10).
IEEE DOI
0809
BibRef
Jodoin, P.M.[Pierre-Marc],
Konrad, J.[Janusz],
Saligrama, V.[Venkatesh],
Veilleux-Gaboury, V.[Vincent],
Motion detection with an unstable camera,
ICIP08(229-232).
IEEE DOI
0810
BibRef
Jodoin, P.M.[Pierre-Marc],
Mignotte, M.[Max],
Motion Segmentation Using a K-Nearest-Neighbor-Based Fusion Procedure
of Spatial and Temporal Label Cues,
ICIAR05(778-788).
Springer DOI
0509
BibRef
Earlier:
Unsupervised Motion Detection Using a Markovian Temporal Model with
Global Spatial Constraints,
ICIP04(IV: 2591-2594).
IEEE DOI
0505
BibRef
Kaplan, L.M.[Lance M.],
Nasrabadi, N.M.[Nasser M.],
Block Wiener-based image registration for moving target indication,
IVC(27), No. 6, 4 May 2009, pp. 694-703.
Elsevier DOI
0904
Image registration, Wiener filtering, Least mean-squared estimation;
Moving target indication
BibRef
Poppe, C.[Chris],
de Bruyne, S.[Sarah],
Paridaens, T.[Tom],
Lambert, P.[Peter],
van de Walle, R.[Rik],
Moving object detection in the H.264/AVC compressed domain for video
surveillance applications,
JVCIR(20), No. 6, August 2009, pp. 428-437.
Elsevier DOI
0907
Moving object detection, Compressed domain analysis, Video
surveillance, Object Segmentation, MPEG video, Block-based video
coding, H. 264/AVC, Signal processing
BibRef
Verstockt, S.[Steven],
de Bruyne, S.[Sarah],
Poppe, C.[Chris],
Lambert, P.[Peter],
van de Walle, R.[Rik],
Multi-view Object Localization in H.264/AVC Compressed Domain,
AVSBS09(370-374).
IEEE DOI
0909
BibRef
Poppe, C.[Chris],
Martens, G.[Gaëtan],
Lambert, P.[Peter],
van de Walle, R.[Rik],
Improved Background Mixture Models for Video Surveillance Applications,
ACCV07(I: 251-260).
Springer DOI
0711
BibRef
And:
Mixture Models Based Background Subtraction for Video Surveillance
Applications,
CAIP07(28-35).
Springer DOI
0708
BibRef
Elhabian, S.,
El-Sayed, K.,
Ahmed, S.,
Moving Object Detection in Spatial Domain using
Background Removal Techniques: State-of-Art,
RPCS(1), No. 1, January 2008, pp. 32-54.
PDF File.
WWW Link.
Survey, Background Subtraction.
1001
BibRef
Bouwmans, T.,
El Baf, F.,
Vachon, B.,
Background Modeling using Mixture of Gaussians for Foreground Detection:
A Survey,
RPCS(1), No. 3, November 2008, pp. 219-237.
PDF File.
Survey, Background Subtraction.
1001
BibRef
And:
Statistical Background Modeling for Foreground Detection: A Survey,
HPRCV09(IV: 181-199).
Survey, Background Subtraction.
1001
BibRef
Marghes, C.[Cristina],
Bouwman, T.[Thierry],
Background Modeling via Incremental Maximum Margin Criterion,
Subspace10(394-403).
Springer DOI
1109
BibRef
Casares, M.[Mauricio],
Velipasalar, S.[Senem],
Pinto, A.[Alvaro],
Light-weight salient foreground detection for embedded smart cameras,
CVIU(114), No. 11, November 2010, pp. 1223-1237.
Elsevier DOI
1011
BibRef
Earlier: A1, A2, Only:
ICDSC08(1-7).
IEEE DOI
0809
Foreground detection, Background subtraction, Salient motion, Light-weight, Memory, Embedded, Smart camera
See also Adaptive Methodologies for Energy-Efficient Object Detection and Tracking With Battery-Powered Embedded Smart Cameras.
BibRef
Casares, M.[Mauricio],
Santinelli, P.[Paolo],
Velipasalar, S.[Senem],
Prati, A.[Andrea],
Cucchiara, R.[Rita],
Energy-Efficient Foreground Object Detection on Embedded Smart Cameras
by Hardware-Level Operations,
ECVW11(150-156).
IEEE DOI
1106
BibRef
Appiah, K.[Kofi],
Hunter, A.[Andrew],
Dickinson, P.[Patrick],
Meng, H.Y.[Hong-Ying],
Accelerated hardware video object segmentation:
From foreground detection to connected components labelling,
CVIU(114), No. 11, November 2010, pp. 1282-1291.
Elsevier DOI
1011
Background differencing, Image segmentation, Connected component
labelling, Object extraction, FPGA
BibRef
Fakhfakh, N.,
Khoudour, L.,
El-Koursi, E.,
Bruyelle, J.L.,
Dufaux, A.,
Jacot, J.,
3D Objects Localization Using Fuzzy Approach and Hierarchical Belief
Propagation: Application at Level Crossings,
JIVP(2011), No. 2011, pp. xx-yy.
DOI Link
1101
BibRef
Earlier:
Background subtraction and 3D localization of moving and stationary
obstacles at level crossings,
IPTA10(72-78).
IEEE DOI
1007
BibRef
Salmane, H.[Houssam],
Ruichek, Y.[Yassine],
Khoudour, L.[Louahdi],
Gaussian Propagation Model Based Dense Optical Flow for Objects
Tracking,
ICIAR12(I: 234-244).
Springer DOI
1206
BibRef
Suhr, J.K.,
Jung, H.G.,
Li, G.,
Kim, J.,
Mixture of Gaussians-Based Background Subtraction for Bayer-Pattern
Image Sequences,
CirSysVideo(21), No. 3, March 2011, pp. 365-370.
IEEE DOI
1104
BibRef
Barnich, O.,
van Droogenbroeck, M.,
ViBe: A Universal Background Subtraction Algorithm for Video Sequences,
IP(20), No. 6, June 2011, pp. 1709-1724.
IEEE DOI
1106
BibRef
Cheng, F.C.,
Huang, S.C.,
Ruan, S.J.,
Scene Analysis for Object Detection in Advanced Surveillance Systems
Using Laplacian Distribution Model,
SMC-C(41), No. 5, September 2011, pp. 589-598.
IEEE DOI
1109
background subtraction approach to detect objects.
BibRef
Xue, G.J.[Geng-Jian],
Sun, J.[Jun],
Song, L.[Li],
Background subtraction based on phase feature and distance transform,
PRL(33), No. 12, 1 September 2012, pp. 1601-1613.
Elsevier DOI
1208
BibRef
Earlier:
Background subtraction based on phase and distance transform under
sudden illumination change,
ICIP10(3465-3468).
IEEE DOI
1009
Background subtraction, Phase feature, Phase based background model;
Distance transform
BibRef
Farcas, D.[Diana],
Marghes, C.[Cristina],
Bouwmans, T.[Thierry],
Background subtraction via incremental maximum margin criterion: a
discriminative subspace approach,
MVA(23), No. 6, November 2012, pp. 1083-1101.
WWW Link.
1210
BibRef
Vosters, L.[Luc],
Shan, C.F.[Cai-Feng],
Gritti, T.[Tommaso],
Real-time robust background subtraction under rapidly changing
illumination conditions,
IVC(30), No. 12, December 2012, pp. 1004-1015.
Elsevier DOI
1212
Background subtraction, EM, Eigenbackground, Illumination changes
BibRef
Hati, K.K.,
Sa, P.K.[Pankaj Kumar],
Majhi, B.[Banshidhar],
Intensity Range Based Background Subtraction for Effective Object
Detection,
SPLetters(20), No. 8, 2013, pp. 759-762.
IEEE DOI
1307
object detection
BibRef
Akula, A.[Aparna],
Ghosh, R.[Ripul],
Kumar, S.[Satish],
Sardana, H.K.[Harish K.],
Moving target detection in thermal infrared imagery using
spatiotemporal information,
JOSA-A(30), No. 8, August 2013, pp. 1492-1501.
WWW Link.
1309
BibRef
Vasamsetti, S.[Srikanth],
Setia, S.[Supriya],
Mittal, N.[Neerja],
Sardana, H.K.[Harish K.],
Babbar, G.[Geetanjali],
Automatic underwater moving object detection using multi-feature
integration framework in complex backgrounds,
IET-CV(12), No. 6, September 2018, pp. 770-778.
DOI Link
1808
BibRef
Huang, Z.K.[Zhen-Kun],
Hu, R.M.[Rui-Min],
Wang, Z.Y.[Zhong-Yuan],
Background Subtraction With Video Coding,
SPLetters(20), No. 11, 2013, pp. 1058-1061.
IEEE DOI
1310
Gaussian processes
BibRef
Yoo, S.[Seungwoo],
Kim, C.[Changick],
Background subtraction using hybrid feature coding in the
bag-of-features framework,
PRL(34), No. 16, 2013, pp. 2086-2093.
Elsevier DOI
1310
Background subtraction
BibRef
Guo, J.M.[Jing-Ming],
Hsia, C.H.[Chih-Hsien],
Liu, Y.F.[Yun-Fu],
Shih, M.H.[Min-Hsiung],
Chang, C.H.[Cheng-Hsin],
Wu, J.Y.[Jing-Yu],
Fast Background Subtraction Based on a Multilayer Codebook Model for
Moving Object Detection,
CirSysVideo(23), No. 10, 2013, pp. 1809-1821.
IEEE DOI
1311
feature extraction
BibRef
Hsia, C.H.[Chih-Hsien],
Wu, T.C.[Tsung-Cheng],
Chiang, J.S.[Jen-Shiun],
A new method of moving object detection using adaptive filter,
RealTimeIP(13), No. 2, June 2017, pp. 311-325.
WWW Link.
1708
BibRef
Dey, B.,
Kundu, M.K.,
Robust Background Subtraction for Network Surveillance in H.264
Streaming Video,
CirSysVideo(23), No. 10, 2013, pp. 1695-1703.
IEEE DOI
1311
feature extraction
BibRef
Dey, B.,
Kundu, M.K.,
Efficient Foreground Extraction From HEVC Compressed Video for
Application to Real-Time Analysis of Surveillance 'Big' Data,
IP(24), No. 11, November 2015, pp. 3574-3585.
IEEE DOI
1509
Big Data
BibRef
Tian, Y.H.[Yong-Hong],
Wang, Y.W.[Yao-Wei],
Hu, Z.P.[Zhi-Peng],
Huang, T.J.[Tie-Jun],
Selective Eigenbackground for Background Modeling and Subtraction in
Crowded Scenes,
CirSysVideo(23), No. 11, 2013, pp. 1849-1864.
IEEE DOI
1312
eigenvalues and eigenfunctions
BibRef
Zhang, X.G.[Xian-Guo],
Huang, T.J.[Tie-Jun],
Tian, Y.H.[Yong-Hong],
Gao, W.[Wen],
Background-Modeling-Based Adaptive Prediction for Surveillance Video
Coding,
IP(23), No. 2, February 2014, pp. 769-784.
IEEE DOI
1402
data compression
See also Optimizing the Hierarchical Prediction and Coding in HEVC for Surveillance and Conference Videos With Background Modeling.
BibRef
Han, S.[Shumin],
Zhang, X.G.[Xian-Guo],
Tian, Y.H.[Yong-Hong],
Huang, T.J.[Tie-Jun],
An Efficient Background Reconstruction Based Coding Method for
Surveillance Videos Captured by Moving Camera,
AVSS12(160-165).
IEEE DOI
1211
BibRef
Wu, H.[Hefeng],
Liu, N.[Ning],
Luo, X.N.[Xiao-Nan],
Su, J.W.[Jia-Wei],
Chen, L.S.[Liang-Shi],
Real-time background subtraction-based video surveillance of people by
integrating local texture patterns,
SIViP(8), No. 4, May 2014, pp. 665-676.
Springer DOI
1404
BibRef
Sobral, A.[Andrews],
Vacavant, A.[Antoine],
A comprehensive review of background subtraction algorithms evaluated
with synthetic and real videos,
CVIU(122), No. 1, 2014, pp. 4-21.
Elsevier DOI
1404
Survey, Background Subtraction.
BibRef
Lee, S.W.[Sang-Wook],
Lee, C.H.[Chul-Hee],
Low-complexity background subtraction based on spatial similarity,
JIVP(2014), No. 1, 2014, pp. 30.
DOI Link
1407
BibRef
Dehghani, A.[Alireza],
Sutherland, A.[Alistair],
Srinivasa, G.[Gowri],
A Novel Interest-Point-Based Background Subtraction Algorithm,
ELCVIA(13), No. 1, 2014, pp.
DOI Link
1407
BibRef
Seidel, F.[Florian],
Hage, C.[Clemens],
Kleinsteuber, M.[Martin],
pROST: a smoothed lp -norm robust online subspace tracking method for
background subtraction in video,
MVA(25), No. 5, July 2014, pp. 1227-1240.
WWW Link.
1407
BibRef
Romanoni, A.[Andrea],
Matteucci, M.[Matteo],
Sorrenti, D.G.[Domenico G.],
Background subtraction by combining Temporal and Spatio-Temporal
histograms in the presence of camera movement,
MVA(25), No. 6, 2014, pp. 1573-1584.
WWW Link.
1408
BibRef
Lim, T.[Taegyu],
Han, B.H.[Bo-Hyung],
Han, J.H.[Joon H.],
Modeling and segmentation of floating foreground and background in
videos,
PR(45), No. 4, 2012, pp. 1696-1706.
Elsevier DOI
1410
Foreground/background segmentation
BibRef
Kwak, S.[Suha],
Lim, T.[Taegyu],
Nam, W.H.[Woon-Hyun],
Han, B.H.[Bo-Hyung],
Han, J.H.[Joon Hee],
Generalized background subtraction based on hybrid inference by belief
propagation and Bayesian filtering,
ICCV11(2174-2181).
IEEE DOI
1201
BibRef
Nam, W.H.[Woon-Hyun],
Han, J.H.[Joon-Hee],
Motion-based background modeling for foreground segmentation,
VSSN06(35-44).
WWW Link.
0701
BibRef
Pei, Z.[Zhao],
Zhang, Y.N.[Yan-Ning],
Yang, T.[Tao],
Zhang, X.W.[Xiu-Wei],
Yang, Y.H.[Yee-Hong],
A novel multi-object detection method in complex scene using
synthetic aperture imaging,
PR(45), No. 4, 2012, pp. 1637-1658.
Elsevier DOI
1410
Background subtraction
See also Synthetic aperture photography using a moving camera-IMU system.
BibRef
Azab, M.M.[Maha M.],
Shedeed, H.A.[Howida A.],
Hussein, A.S.[Ashraf S.],
New technique for online object tracking-by-detection in video,
IET-IPR(8), No. 12, 2014, pp. 794-803.
DOI Link
1412
BibRef
Earlier:
A new technique for background modeling and subtraction for motion
detection in real-time videos,
ICIP10(3453-3456).
IEEE DOI
1009
BibRef
Wen, J.J.[Jia-Jun],
Xu, Y.[Yong],
Tang, J.H.[Jin-Hui],
Zhan, Y.W.[Yin-Wei],
Lai, Z.H.[Zhi-Hui],
Guo, X.T.[Xiao-Tang],
Joint Video Frame Set Division and Low-Rank Decomposition for
Background Subtraction,
CirSysVideo(24), No. 12, December 2014, pp. 2034-2048.
IEEE DOI
1412
image motion analysis
BibRef
Cruz, A.C.[Albert C.],
Bhanu, B.[Bir],
Thakoor, N.S.[Ninad S.],
Background suppressing Gabor energy filtering,
PRL(52), No. 1, 2015, pp. 40-47.
Elsevier DOI
1412
Gabor filter
BibRef
Seo, J.W.[Ja-Won],
Kim, S.D.[Seong Dae],
Recursive On-Line 2D PCA and Its Application to Long-Term Background
Subtraction,
MultMed(16), No. 8, December 2014, pp. 2333-2344.
IEEE DOI
1502
image recognition
BibRef
Mitsugami, I.[Ikuhisa],
Fukui, H.[Hiromasa],
Minoh, M.[Michihiko],
Extraction of Potential Sunny Region for Background Subtraction under
Sudden Illumination Changes,
IJCVSP(4), No. 1, 2014, pp. xx-yy.
WWW Link.
1502
BibRef
Rodriguez-Gomez, R.[Rafael],
Fernandez-Sanchez, E.J.[Enrique J.],
Diaz, J.[Javier],
Ros, E.[Eduardo],
Codebook hardware implementation on FPGA for background subtraction,
RealTimeIP(10), No. 1, March 2015, pp. 43-57.
Springer DOI
1503
BibRef
Qin, L.X.[Li-Xia],
Sheng, B.[Bin],
Lin, W.Y.[Wei-Yao],
Wu, W.[Wen],
Shen, R.M.[Rui-Min],
GPU-Accelerated Video Background Subtraction Using Gabor Detector,
JVCIR(32), No. 1, 2015, pp. 1-9.
Elsevier DOI
1511
Background subtraction
BibRef
Szwoch, G.[Grzegorz],
Ellwart, D.[Damian],
Czyzewski, A.[Andrzej],
Parallel implementation of background subtraction algorithms for
real-time video processing on a supercomputer platform,
RealTimeIP(11), No. 1, January 2016, pp. 111-125.
WWW Link.
1601
BibRef
Kim, W.,
Kim, Y.,
Background Subtraction Using Illumination-Invariant Structural
Complexity,
SPLetters(23), No. 5, May 2016, pp. 634-638.
IEEE DOI
1604
Adaptation models
BibRef
Kim, W.J.[Won-Jun],
Illumination-Invariant Face Representation via Normalized Structural
Information,
IEICE(E99-D), No. 10, October 2016, pp. 2661-2663.
WWW Link.
1610
BibRef
Cao, W.,
Wang, Y.,
Sun, J.,
Meng, D.,
Yang, C.,
Cichocki, A.,
Xu, Z.,
Total Variation Regularized Tensor RPCA for Background Subtraction
From Compressive Measurements,
IP(25), No. 9, September 2016, pp. 4075-4090.
IEEE DOI
1609
compressed sensing
BibRef
Dadkhahi, H.[Hamid],
Duarte, M.F.[Marco F.],
Dadkhahi, H.,
Duarte, M.F.,
Masking Strategies for Image Manifolds,
IP(25), No. 9, September 2016, pp. 4314-4328.
IEEE DOI
1609
compressed sensing
BibRef
Cevher, V.[Volkan],
Sankaranarayanan, A.C.[Aswin C.],
Duarte, M.F.[Marco F.],
Reddy, D.[Dikpal],
Baraniuk, R.G.[Richard G.],
Chellappa, R.[Rama],
Compressive Sensing for Background Subtraction,
ECCV08(II: 155-168).
Springer DOI
0810
BibRef
Zhou, Z.W.[Zong-Wei],
Jin, Z.[Zhong],
Two-dimension principal component analysis-based motion detection
framework with subspace update of background,
IET-CV(10), No. 6, 2016, pp. 603-612.
DOI Link
1609
computational complexity
BibRef
Gemignani, G.[Giorgio],
Rozza, A.[Alessandro],
A Robust Approach for the Background Subtraction Based on
Multi-Layered Self-Organizing Maps,
IP(25), No. 11, November 2016, pp. 5239-5251.
IEEE DOI
1610
BibRef
Earlier:
A novel background subtraction approach based on multi layered
self-organizing maps,
ICIP15(462-466)
IEEE DOI
1512
Adaptation models.
Background Subtraction, Self Organizing Maps
BibRef
St-Charles, P.L.[Pierre-Luc],
Bilodeau, G.A.[Guillaume-Alexandre],
Bergevin, R.[Robert],
Universal Background Subtraction Using Word Consensus Models,
IP(25), No. 10, October 2016, pp. 4768-4781.
IEEE DOI
1610
BibRef
Earlier:
Flexible Background Subtraction with Self-Balanced Local Sensitivity,
CDW14(414-419)
IEEE DOI
1409
image segmentation.
background subtraction
See also SuBSENSE: A Universal Change Detection Method With Local Adaptive Sensitivity.
BibRef
St-Charles, P.L.[Pierre-Luc],
Bilodeau, G.A.[Guillaume-Alexandre],
Bergevin, R.[Robert],
Online Mutual Foreground Segmentation for Multispectral Stereo Videos,
IJCV(127), No. 8, August 2019, pp. 1044-1062.
Springer DOI
1907
BibRef
Earlier: A3, A1, A2:
Mutual Foreground Segmentation with Multispectral Stereo Pairs,
MSF17(375-384)
IEEE DOI
1802
Image segmentation, Imaging, Labeling, Motion segmentation,
Object segmentation, Shape
BibRef
Sajid, H.[Hasan],
Cheung, S.C.S.[Sen-Ching S.],
Jacobs, N.[Nathan],
Appearance based background subtraction for PTZ cameras,
SP:IC(47), No. 1, 2016, pp. 417-425.
Elsevier DOI
1610
Background subtraction
BibRef
Sajid, H.[Hasan],
Cheung, S.C.S.[Sen-Ching S.],
Jacobs, N.[Nathan],
Motion and appearance based background subtraction for freely moving
cameras,
SP:IC(75), 2019, pp. 11-21.
Elsevier DOI
1906
Background subtraction, Foreground segmentation, Moving camera,
Image segmentation
BibRef
Calvo-Gallego, E.[Elisa],
Brox, P.[Piedad],
Sánchez-Solano, S.[Santiago],
Low-cost dedicated hardware IP modules for background subtraction in
embedded vision systems,
RealTimeIP(12), No. 4, December 2016, pp. 681-695.
Springer DOI
1612
BibRef
Dou, J.F.[Jian-Fang],
Qin, Q.[Qin],
Tu, Z.M.[Zi-Mei],
Background subtraction based on circulant matrix,
SIViP(11), No. 3, March 2017, pp. 407-414.
WWW Link.
1702
BibRef
Thien, H.T.[Huynh-The],
Banos, O.[Oresti],
Lee, S.Y.[Sung-Young],
Kang, B.H.[Byeong Ho],
Kim, E.S.[Eun-Soo],
Thuong, L.T.[Le-Tien],
NIC: A Robust Background Extraction Algorithm for Foreground
Detection in Dynamic Scenes,
CirSysVideo(27), No. 7, July 2017, pp. 1478-1490.
IEEE DOI
1707
Cameras, Estimation, Heuristic algorithms, Object detection,
Real-time systems, Standards, Surveillance,
Adaptive Otsu thresholding, background subtraction,
foreground detection, neighbor-based, intensity, correction, (NIC)
BibRef
Laugraud, B.[Benjamin],
Piérard, S.[Sébastien],
van Droogenbroeck, M.[Marc],
LaBGen: A method based on motion detection for generating the
background of a scene,
PRL(96), No. 1, 2017, pp. 12-21.
Elsevier DOI
1709
BibRef
Earlier:
LaBGen-P: A pixel-level stationary background generation method based
on LaBGen,
ICPR16(107-113)
IEEE DOI
1705
BibRef
Earlier: A2, A3, Only:
A Perfect Estimation of a Background Image Does Not Lead to a Perfect
Background Subtraction: Analysis of the Upper Bound on the Performance,
SBMI15(527-534).
Springer DOI
1511
Background, generation.
Estimation, Gray-scale, Measurement, Motion detection,
Motion segmentation, Video, sequences
BibRef
Braham, M.[Marc],
van Droogenbroeck, M.[Marc],
Deep background subtraction with scene-specific convolutional neural
networks,
WSSIP16(1-4)
IEEE DOI
1608
image sequences
BibRef
Laugraud, B.[Benjamin],
van Droogenbroeck, M.[Marc],
Is a Memoryless Motion Detection Truly Relevant for Background
Generation with LaBGen?,
ACIVS17(443-454).
Springer DOI
1712
BibRef
Laugraud, B.[Benjamin],
Piérard, S.[Sébastien],
Braham, M.[Marc],
van Droogenbroeck, M.[Marc],
Simple Median-Based Method for Stationary Background Generation Using
Background Subtraction Algorithms,
SBMI15(477-484).
Springer DOI
1511
BibRef
Braham, M.[Marc],
Lejeune, A.[Antoine],
van Droogenbroeck, M.[Marc],
A physically motivated pixel-based model for background subtraction
in 3D images,
IC3D14(1-8)
IEEE DOI
1503
Adaptation models
BibRef
Ortego, D.[Diego],
San Miguel, J.C.[Juan Carlos],
Martinez, J.M.[José M.],
Stand-alone quality estimation of background subtraction algorithms,
CVIU(162), No. 1, 2017, pp. 87-102.
Elsevier DOI
1710
BibRef
Earlier: A2, A3, Only:
On the Evaluation of Background Subtraction Algorithms without
Ground-Truth,
AVSS10(180-187).
IEEE DOI
1009
BibRef
Earlier: A1, A2, Only:
Stationary foreground detection for video-surveillance based on
foreground and motion history images,
AVSS13(75-80)
IEEE DOI
1311
Stand-alone quality estimation.
Accuracy, Delays, History, Lighting, Robustness, Standards, Surveillance
BibRef
Bayona, Á.[Álvaro],
San Miguel, J.C.[Juan Carlos],
Martinez, J.M.[José M.],
Stationary foreground detection using background subtraction and
temporal difference in video surveillance,
ICIP10(4657-4660).
IEEE DOI
1009
BibRef
Earlier:
Comparative Evaluation of Stationary Foreground Object Detection
Algorithms Based on Background Subtraction Techniques,
AVSBS09(25-30).
IEEE DOI
0909
See also Rejection based multipath reconstruction for background estimation in video sequences with stationary objects.
BibRef
Zhang, X.,
Zhu, C.,
Wu, H.,
Liu, Z.,
Xu, Y.,
An Imbalance Compensation Framework for Background Subtraction,
MultMed(19), No. 11, November 2017, pp. 2425-2438.
IEEE DOI
1710
Bayes methods, Cost function, Databases,
Feature extraction, Training,
Background subtraction, class imbalance, imbalance compensation,
BibRef
Silva, C.[Caroline],
Bouwmans, T.[Thierry],
Frélicot, C.[Carl],
Superpixel-based online wagging one-class ensemble for feature
selection in foreground/background separation,
PRL(100), No. 1, 2017, pp. 144-151.
Elsevier DOI
1712
BibRef
Earlier:
Online Weighted One-Class Ensemble for feature selection in
background/foreground separation,
ICPR16(2216-2221)
IEEE DOI
1705
Background subtraction.
Adaptation models, Boosting, Computational modeling,
Feature extraction, Image color analysis,
Support vector machines, Training
BibRef
Xia, S.L.[Sen-Lin],
Sun, H.J.[Huai-Jiang],
Chen, B.J.[Bei-Jia],
A regularized tensor decomposition method with adaptive rank
adjustment for Compressed-Sensed-Domain background subtraction,
SP:IC(62), 2018, pp. 149-163.
Elsevier DOI
1802
Background subtraction, Compressive sensing,
Adaptive rank adjustment, Non-convex surrogate, Alternative direction multiplier method
BibRef
Halperin, T.,
Poleg, Y.[Yair],
Arora, C.[Chetan],
Peleg, S.[Shmuel],
EgoSampling: Wide View Hyperlapse From Egocentric Videos,
CirSysVideo(28), No. 5, May 2018, pp. 1248-1259.
IEEE DOI
1805
BibRef
Earlier: A2, A3, A4, Only:
Head Motion Signatures from Egocentric Videos,
ACCV14(III: 315-329).
Springer DOI
1504
BibRef
Earlier: A2, A3, A4, Only:
Temporal Segmentation of Egocentric Videos,
CVPR14(2537-2544)
IEEE DOI
1409
Cameras, Head, Legged locomotion, Optical imaging,
Videos, Egocentric video, fast-forward,
video stabilization
BibRef
Hoshen, Y.[Yedid],
Arora, C.[Chetan],
Poleg, Y.[Yair],
Peleg, S.[Shmuel],
Efficient representation of distributions for background subtraction,
AVSS13(276-281)
IEEE DOI
1311
Arrays
BibRef
Shen, W.J.[Wen-Jie],
Lin, Y.[Yun],
Yu, L.[Lingjuan],
Xue, F.T.[Fei-Teng],
Hong, W.[Wen],
Single Channel Circular SAR Moving Target Detection Based on
Logarithm Background Subtraction Algorithm,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Chan, K.L.,
Saliency detection in video sequences using perceivable change encoded
local pattern,
SIViP(12), No. 5, July 2018, pp. 975-982.
Springer DOI
1806
BibRef
Roy, S.M.,
Ghosh, A.,
Real-Time Adaptive Histogram Min-Max Bucket (HMMB) Model for
Background Subtraction,
CirSysVideo(28), No. 7, July 2018, pp. 1513-1525.
IEEE DOI
1807
Adaptation models, Computational modeling,
Hidden Markov models, Histograms, Lighting, Real-time systems,
sliding window
BibRef
Roy, S.M.,
Ghosh, A.,
Foreground Segmentation Using Adaptive 3 Phase Background Model,
ITS(21), No. 6, June 2020, pp. 2287-2296.
IEEE DOI
2006
Adaptation models, Cameras, Atmospheric modeling,
Computational modeling, History, Heuristic algorithms, Dynamics,
real-time analysis
BibRef
Zeng, D.D.[Dong-Dong],
Zhu, M.[Ming],
Xu, F.[Fang],
Zhou, T.X.[Tong-Xue],
Extended scale invariant local binary pattern for background
subtraction,
IET-IPR(12), No. 8, August 2018, pp. 1292-1302.
DOI Link
1808
BibRef
Liu, X.,
Yao, J.,
Hong, X.,
Huang, X.,
Zhou, Z.,
Qi, C.,
Zhao, G.,
Background Subtraction Using Spatio-Temporal Group Sparsity Recovery,
CirSysVideo(28), No. 8, August 2018, pp. 1737-1751.
IEEE DOI
1808
Matrix decomposition, Sparse matrices, Dictionaries,
Compressed sensing, Robustness, Training,
spatio-temporal
BibRef
Makantasis, K.,
Nikitakis, A.,
Doulamis, A.D.,
Doulamis, N.D.,
Papaefstathiou, I.,
Data-Driven Background Subtraction Algorithm for In-Camera
Acceleration in Thermal Imagery,
CirSysVideo(28), No. 9, September 2018, pp. 2090-2104.
IEEE DOI
1809
Hardware, Thermal sensors, Computational modeling, Estimation,
Videos, Real-time systems, Thermal imaging, variational inference,
foreground estimation
See also Tensor-Based Classification Models for Hyperspectral Data Analysis.
BibRef
Jiang, S.,
Lu, X.,
WeSamBE: A Weight-Sample-Based Method for Background Subtraction,
CirSysVideo(28), No. 9, September 2018, pp. 2105-2115.
IEEE DOI
1809
Computational modeling, Adaptation models,
Classification algorithms, Algorithm design and analysis,
background subtraction
BibRef
Zhang, G.[Guian],
Yuan, Z.Y.[Zhi-Yong],
Tong, Q.Q.[Qian-Qian],
Zheng, M.L.[Mian-Lun],
Zhao, J.H.[Jian-Hui],
A novel framework for background subtraction and foreground detection,
PR(84), 2018, pp. 28-38.
Elsevier DOI
1809
Background modeling, Mino vector, Dynamic nature, KDE, Denoising,
Tetris update scheme
BibRef
Sheri, A.M.[Ahmad Muqeem],
Rafique, M.A.[Muhammad Aasim],
Jeon, M.[Moongu],
Pedrycz, W.[Witold],
Background subtraction using Gaussian-Bernoulli restricted Boltzmann
machine,
IET-IPR(12), No. 9, September 2018, pp. 1646-1654.
DOI Link
1809
BibRef
Panda, D.K.[Deepak Kumar],
Meher, S.[Sukadev],
Adaptive spatio-temporal background subtraction using improved
Wronskian change detection scheme in Gaussian mixture model framework,
IET-IPR(12), No. 10, October 2018, pp. 1832-1843.
DOI Link
1809
BibRef
Panda, D.K.[Deepak Kumar],
Meher, S.[Sukadev],
A new Wronskian change detection model based codebook background
subtraction for visual surveillance applications,
JVCIR(56), 2018, pp. 52-72.
Elsevier DOI
1811
Visual surveillance, Moving object detection,
Background subtraction, Dynamic backgrounds,
Codebook model
BibRef
Ha, S.V.U.[Synh Viet-Uyen],
Tran, D.N.N.[Duong Nguyen-Ngoc],
Nguyen, T.P.[Tien Phuoc],
Dao, S.V.T.[Son Vu-Truong],
High variation removal for background subtraction in traffic
surveillance systems,
IET-CV(12), No. 8, December 2018, pp. 1163-1170.
DOI Link
1812
BibRef
Ortego, D.,
Sanmiguel, J.C.,
Martínez, J.M.,
Hierarchical Improvement of Foreground Segmentation Masks in
Background Subtraction,
CirSysVideo(29), No. 6, June 2019, pp. 1645-1658.
IEEE DOI
1906
Image segmentation, Motion segmentation, Merging,
Adaptation models, Lighting, Optical imaging, Videos,
post-processing
BibRef
Shen, W.J.[Wen-Jie],
Hong, W.[Wen],
Han, B.[Bing],
Wang, Y.P.[Yan-Ping],
Lin, Y.[Yun],
Moving Target Detection with Modified Logarithm Background
Subtraction and Its Application to the GF-3 Spotlight Mode,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Srivastava, G.[Gargi],
Srivastava, R.[Rajeev],
Salient object detection using background subtraction, Gabor filters,
objectness and minimum directional backgroundness,
JVCIR(62), 2019, pp. 330-339.
Elsevier DOI
1908
Background subtraction, Gabor filters, Minimum directional backgroundness
BibRef
Cocorullo, G.[Giuseppe],
Corsonello, P.[Pasquale],
Frustaci, F.[Fabio],
Guachi-Guachi, L.D.L.A.[Lorena-De-Los-Angeles],
Perri, S.[Stefania],
Multimodal background subtraction for high-performance embedded systems,
RealTimeIP(16), No. 5, October 2019, pp. 1407-1423.
Springer DOI
1911
BibRef
Djerida, A.[Achraf],
Zhao, Z.H.[Zhong-Hua],
Zhao, J.K.[Jian-Kang],
Background subtraction in dynamic scenes using the dynamic principal
component analysis,
IET-IPR(14), No. 2, February 2020, pp. 245-255.
DOI Link
2001
BibRef
Rasoulidanesh, M.S.[Maryam S.],
Payandeh, S.[Shahram],
A novel change-detection scheduler for a network of depth sensors,
JVCIR(66), 2020, pp. 102733.
Elsevier DOI
2003
Change detection, Depth sensor, Network sensor,
Sensor network scheduler, Background subtraction, RGBD tracking
BibRef
Lin, C.Y.[Chih-Yang],
Muchtar, K.[Kahlil],
Lin, W.Y.[Wei-Yang],
Jian, Z.Y.[Zhi-Yao],
Moving Object Detection Through Image Bit-Planes Representation
Without Thresholding,
ITS(21), No. 4, April 2020, pp. 1404-1414.
IEEE DOI
2004
Computational modeling, Object detection, Image color analysis,
Lighting, Adaptation models, Intelligent transportation systems,
temporal improvement
BibRef
Trigano, T.,
Bechor, Y.,
Fast background removal of JPEG images based on HSV polygonal cuts for
a foot scanner device,
RealTimeIP(17), No. 4, August 2020, pp. 981-992.
WWW Link.
2007
BibRef
Reitberger, G.[Günther],
Sauer, T.[Tomas],
Background Subtraction using Adaptive Singular Value Decomposition,
JMIV(62), No. 8, October 2020, pp. xx-yy.
WWW Link.
2009
BibRef
Chan, Y.T.[Yi-Tung],
Comprehensive comparative evaluation of background subtraction
algorithms in open sea environments,
CVIU(202), 2021, pp. 103101.
Elsevier DOI
2012
Maritime security surveillance, Background subtraction,
Maritime visual system, Maritime video processing,
Maritime intelligent transportation
BibRef
Kushwaha, A.[Arati],
Khare, A.[Ashish],
Prakash, O.[Om],
Khare, M.[Manish],
Dense optical flow based background subtraction technique for object
segmentation in moving camera environment,
IET-IPR(14), No. 14, December 2020, pp. 3393-3404.
DOI Link
2012
BibRef
Hossain, M.A.[Md Alamgir],
Nguyen, V.D.[Van-Dung],
Huh, E.N.[Eui-Nam],
The trade-off between accuracy and the complexity of real-time
background subtraction,
IET-IPR(15), No. 2, 2021, pp. 350-368.
DOI Link
2106
BibRef
Nawaz, M.[Mehmood],
Yan, H.[Hong],
Saliency Detection Using Deep Features and Affinity-Based Robust
Background Subtraction,
MultMed(23), 2021, pp. 2902-2916.
IEEE DOI
2109
Feature extraction, Saliency detection, Object detection,
Image reconstruction, Image segmentation, Image color analysis,
convolution neural network
BibRef
Liu, R.R.[Rong-Rong],
Ruichek, Y.[Yassine],
El Bagdouri, M.[Mohammed],
Multispectral background subtraction with deep learning,
JVCIR(80), 2021, pp. 103267.
Elsevier DOI
2110
Background subtraction, Multispectral images, Deep learning,
Convolutional neural networks
BibRef
He, W.[Wei],
Li, W.[Wujing],
Zhang, G.Y.[Guo-Yun],
Tu, B.[Bing],
Kwan Kim, Y.[Yong],
Wu, J.H.[Jian-Hui],
Qi, Q.[Qi],
Detection of moving objects using adaptive multi-feature histograms,
JVCIR(80), 2021, pp. 103278.
Elsevier DOI
2110
Moving object detection, Background subtraction,
Local compact binary descriptor, Multi-feature histogram
BibRef
Zhang, J.[Jin],
Zhang, X.[Xi],
Zhang, Y.Y.[Yan-Yan],
Duan, Y.X.[Ye-Xin],
Li, Y.[Yang],
Pan, Z.S.[Zhi-Song],
Meta-Knowledge Learning and Domain Adaptation for Unseen Background
Subtraction,
IP(30), 2021, pp. 9058-9068.
IEEE DOI
2112
Semantics, Heuristic algorithms, Inference algorithms, Training,
Task analysis, Adaptation models, Image color analysis,
frame differencing algorithm
BibRef
Zeng, Z.[Zhi],
Wang, T.[Ting],
Ma, F.[Fulei],
Zhang, L.[Liang],
Shen, P.[Peiyi],
Shah, S.A.A.[Syed Afaq Ali],
Bennamoun, M.[Mohammed],
Probability-Based Framework to Fuse Temporal Consistency and Semantic
Information for Background Segmentation,
MultMed(24), 2022, pp. 740-754.
IEEE DOI
2202
Semantics, Image segmentation, Deep learning, Training,
Visualization, Recurrent neural networks, Merging,
the law of total probability
BibRef
Sahoo, S.[Subhaluxmi],
Nanda, P.K.[Pradipta Kumar],
Adaptive Feature Fusion and Spatio-Temporal Background Modeling in
KDE Framework for Object Detection and Shadow Removal,
CirSysVideo(32), No. 3, March 2022, pp. 1103-1118.
IEEE DOI
2203
Adaptation models, Feature extraction, Color, Image color analysis,
Object detection, Entropy, Computational modeling, Shadow, entropy map
BibRef
Yang, Y.Z.[Yi-Zhong],
Ruan, J.H.[Jia-Hao],
Zhang, Y.Q.[Yong-Qiang],
Cheng, X.[Xin],
Zhang, Z.[Zhang],
Xie, G.J.[Guang-Jun],
STPNet: A Spatial-Temporal Propagation Network for Background
Subtraction,
CirSysVideo(32), No. 4, April 2022, pp. 2145-2157.
IEEE DOI
2204
Videos, Feature extraction, Training, Task analysis, Correlation,
Adaptation models, Background subtraction, affinity matrices
BibRef
Zhao, C.Q.[Chen-Qiu],
Hu, K.K.[Kang-Kang],
Basu, A.[Anup],
Universal Background Subtraction Based on Arithmetic Distribution
Neural Network,
IP(31), No. 2022, pp. 2934-2949.
IEEE DOI
2204
Arithmetic, Histograms, Training, Deep learning, Neural networks,
Streaming media, Kernel, Background subtraction, deep learning,
arithmetic distribution operations
BibRef
Sultana, M.[Maryam],
Mahmood, A.[Arif],
Jung, S.K.[Soon Ki],
Unsupervised moving object segmentation using background subtraction
and optimal adversarial noise sample search,
PR(129), 2022, pp. 108719.
Elsevier DOI
2206
Moving objects segmentation, Generative adversarial network,
Background subtraction
BibRef
Liu, Q.[Qi],
Li, X.P.[Xiao-Peng],
Efficient Low-Rank Matrix Factorization Based on l1,e-Norm for Online
Background Subtraction,
CirSysVideo(32), No. 7, July 2022, pp. 4900-4904.
IEEE DOI
2207
Sparse matrices, Minimization, Tuning, Streaming media,
Principal component analysis, Computational modeling, Trajectory,
low-rank matrix factorization
BibRef
Panda, M.K.[Manoj Kumar],
Sharma, A.[Akhilesh],
Bajpai, V.[Vatsalya],
Subudhi, B.N.[Badri Narayan],
Thangaraj, V.[Veerakumar],
Jakhetiya, V.[Vinit],
Encoder and decoder network with ResNet-50 and global average feature
pooling for local change detection,
CVIU(222), 2022, pp. 103501.
Elsevier DOI
2209
Background subtraction, Convolutional neural networks,
Feature Pooling Module (FPM)
BibRef
Bou, X.[Xavier],
Ehret, T.[Thibaud],
Facciolo, G.[Gabriele],
Morel, J.M.[Jean-Michel],
Grompone von Gioi, R.[Rafael],
Reviewing ViBe, a Popular Background Subtraction Algorithm for
Real-Time Applications,
IPOL(12), 2022, pp. 527-549.
DOI Link
2212
Code is available for research purposes only:
WWW Link.
BibRef
Chan, Y.T.[Yi-Tung],
Ensemble learning-based method for maritime background subtraction in
open sea environments,
CVIU(238), 2024, pp. 103859.
Elsevier DOI
2312
Maritime autonomous surface ships, Background subtraction,
Change detection, Ensemble learning, Open sea
BibRef
An, Y.Q.[Yong-Qi],
Zhao, X.[Xu],
Yu, T.[Tao],
Gu, H.Y.[Hai-Yun],
Zhao, C.Y.[Chao-Yang],
Tang, M.[Ming],
Wang, J.Q.[Jin-Qiao],
ZBS: Zero-Shot Background Subtraction via Instance-Level Background
Modeling and Foreground Selection,
CVPR23(6355-6364)
IEEE DOI
2309
BibRef
Zhen, Y.[Yang],
Guo, Y.F.[Yuan-Fang],
Wei, J.J.[Jin-Jie],
Bao, X.[Xiuguo],
Huang, D.[Di],
Multi-Scale Background Suppression Anomaly Detection In Surveillance
Videos,
ICIP21(1114-1118)
IEEE DOI
2201
Correlation, Convolution, Surveillance, Image processing,
Supervised learning, Interference, Fasteners,
weakly supervised learning
BibRef
Diamantas, S.[Sotirios],
Alexis, K.[Kostas],
Optical Flow Based Background Subtraction with a Moving Camera:
Application to Autonomous Driving,
ISVC20(II:398-409).
Springer DOI
2103
BibRef
Shah, M.,
Cave, V.,
dos Reis, M.,
Automatically localising ROIs in hyperspectral images using
background subtraction techniques,
IVCNZ20(1-6)
IEEE DOI
2012
Subtraction techniques, Cameras, Data models, Sensors, Reliability,
Hyperspectral imaging, Testing, hyperspectral images, agriculture
BibRef
Cioppa, A.,
Droogenbroeck, M.V.,
Braham, M.,
Real-Time Semantic Background Subtraction,
ICIP20(3214-3218)
IEEE DOI
2011
Semantics, Real-time systems, Change detection algorithms,
Heuristic algorithms, Image segmentation, Prediction algorithms,
real-time processing
BibRef
Piérard, S.,
Droogenbroeck, M.V.,
Summarizing The Performances Of A Background Subtraction Algorithm
Measured On Several Videos,
ICIP20(3234-3238)
IEEE DOI
2011
Videos, Probabilistic logic, Prediction algorithms,
Extraterrestrial measurements, Error analysis, Harmonic analysis,
classification performance
BibRef
Arefin, M.R.[Md Rifat],
Makhmudkhujaev, F.[Farkhod],
Chae, O.[Oksam],
Kim, J.[Jaemyun],
Background Subtraction Based on Fusion of Color and Local Patterns,
ACCV18(VI:214-230).
Springer DOI
1906
BibRef
O'Gorman, L.,
Temporal Filter Parameters for Motion Pattern Maps,
ICPR18(2612-2617)
IEEE DOI
1812
Dynamics, Filtering, Heating systems, Density functional theory,
Hidden Markov models, Autoregressive processes,
background subtraction
BibRef
He, W.,
Kim, Y.,
Wu, J.,
Zhang, G.,
Qi, Q.,
Guo, L.,
Tu, B.,
Huang, F.,
Local Compact Binary Patterns for Background Subtraction in Complex
Scenes,
ICPR18(1518-1523)
IEEE DOI
1812
Image color analysis, Binary codes, Colored noise,
Spatiotemporal phenomena, Feature extraction,
multiple color spaces
BibRef
Porr, W.[William],
Easton, J.[James],
Tavakkoli, A.[Alireza],
Loffredo, D.[Donald],
Simmons, S.[Sean],
GPU Accelerated Non-Parametric Background Subtraction,
ISVC18(629-639).
Springer DOI
1811
BibRef
Huynh-The, T.,
Lee, S.,
Hua, C.H.,
ADM-HIPaR: An efficient background subtraction approach,
AVSS17(1-6)
IEEE DOI
1806
image segmentation, object detection, ADM-HIPaR,
adaptive background, automated-directional masking algorithm,
Video sequences
BibRef
Zang, X.,
Li, G.,
Yang, J.,
Wang, W.,
Adaptive difference modelling for background subtraction,
VCIP17(1-4)
IEEE DOI
1804
Gaussian processes, image sequences, mixture models,
object detection, object tracking, video signal processing,
surveillance video
BibRef
Rezaei, B.,
Ostadabbas, S.S.,
Background Subtraction via Fast Robust Matrix Completion,
RSL-CV17(1871-1879)
IEEE DOI
1802
Algorithm design and analysis, Computational modeling,
Matrix decomposition, Optimization, Robustness, Sparse matrices
BibRef
Liu, R.R.[Rong-Rong],
Ruichek, Y.[Yassine],
El Bagdouri, M.[Mohammed],
Multispectral Dynamic Codebook and Fusion Strategy for Moving Objects
Detection,
ICISP20(35-43).
Springer DOI
2009
BibRef
Earlier:
Enhanced Codebook Model and Fusion for Object Detection with
Multispectral Images,
ACIVS18(225-232).
Springer DOI
1810
BibRef
Earlier:
Background Subtraction with Multispectral Images Using Codebook
Algorithm,
ACIVS17(581-590).
Springer DOI
1712
BibRef
Derrouz, H.,
Hassouny, A.E.,
Thami, R.O.H.,
Tairi, H.,
Hybrid method for background modeling and subtracting,
ISCV17(1-5)
IEEE DOI
1710
Adaptation models,
Analytical models, Feature extraction, Lighting, Proposals, Training,
W4 algorithm, XCS-LBP algorithm, background modeling,
background subtraction, extracting moving objects, video, surveillance
BibRef
García, R.O.[Reinier Oves],
Valentin, L.[Luis],
Risquet, C.P.[Carlos Pérez],
Sucar, L.E.[L. Enrique],
A Pathline-Based Background Subtraction Algorithm,
MCPR17(179-188).
Springer DOI
1706
BibRef
Guo, L.,
Xu, D.,
Qiang, Z.,
Background Subtraction Using Local SVD Binary Pattern,
Robust16(1159-1167)
IEEE DOI
1612
BibRef
Dokic, K.,
Idlbek, R.,
Marinac, A.,
New Approach of Visual Activity Measuring with Background Subtraction
Algorithms,
CGiV16(216-220)
IEEE DOI
1608
computer vision
BibRef
Javed, S.,
Oh, S.H.,
Sobral, A.,
Bouwmans, T.,
Jung, S.K.,
Background Subtraction via Superpixel-Based Online Matrix
Decomposition with Structured Foreground Constraints,
RSL-CV15(930-938)
IEEE DOI
1602
Computational modeling
BibRef
Sobral, A.,
Javed, S.,
Jung, S.K.,
Bouwmans, T.[Thierry],
Zahzah, E.H.[El-Hadi],
Online Stochastic Tensor Decomposition for Background Subtraction in
Multispectral Video Sequences,
RSL-CV15(946-953)
IEEE DOI
1602
Matrix decomposition
BibRef
Javed, S.,
Jung, S.K.[Soon Ki],
Mahmood, A.,
Bouwmans, T.,
Motion-Aware Graph Regularized RPCA for background modeling of
complex scenes,
ICPR16(120-125)
IEEE DOI
1705
BibRef
Earlier: A1, A4, A2, Only:
Depth extended online RPCA with spatiotemporal constraints for robust
background subtraction,
FCV15(1-6)
IEEE DOI
1506
Computational modeling, Dynamics, Manifolds, Matrix decomposition,
Optical imaging, Sparse matrices, Video sequences.
feature extraction
BibRef
Makantasis, K.[Konstantinos],
Doulamis, A.[Anastasios],
Loupos, K.[Konstantinos],
Variational Inference for Background Subtraction in Infrared Imagery,
ISVC15(I: 693-705).
Springer DOI
1601
BibRef
Chen, Y.Y.[Ying-Ying],
Wang, J.Q.[Jin-Qiao],
Li, J.Q.[Jian-Qiang],
Lu, H.Q.[Han-Qing],
Multiple features based shared models for background subtraction,
ICIP15(3946-3950)
IEEE DOI
1512
Background modeling, shared model
BibRef
Ebadi, S.E.[Salehe Erfanian],
Ones, V.G.[Valia Guerra],
Izquierdo, E.[Ebroul],
Efficient background subtraction with low-rank and sparse matrix
decomposition,
ICIP15(4863-4867)
IEEE DOI
1512
Background subtraction
BibRef
Siva, P.[Parthipan],
Shafiee, M.J.[Mohammad Javad],
Li, F.[Francis],
Wong, A.[Alexander],
PIRM: Fast background subtraction under sudden, local illumination
changes via probabilistic illumination range modelling,
ICIP15(789-792)
IEEE DOI
1512
background subtraction
BibRef
Tzanidou, G.[Giounona],
Climent-Perez, P.[Pau],
Hummel, G.[Georg],
Schmitt, M.[Marc],
Stutz, P.[Peter],
Monekosso, D.N.[Dorothy N.],
Remagnino, P.[Paolo],
Telemetry assisted frame registration and background subtraction in
low-altitude UAV videos,
AVSS15(1-6)
IEEE DOI
1511
Accuracy
BibRef
Nguyen, T.M.[Thanh Minh],
Wu, Q.M.J.[Q.M. Jonathan],
Mukherjee, D.[Dibyendu],
An Online Adaptive Fuzzy Clustering and Its Application for Background
Suppression,
CVS15(179-187).
Springer DOI
1507
BibRef
And:
An Online Unsupervised Feature Selection and its Application for
Background Suppression,
CRV15(161-168)
IEEE DOI
1507
Adaptation models
See also Robust Student's-t Mixture Model With Spatial Constraints and Its Application in Medical Image Segmentation.
BibRef
Shahbaz, A.,
Hariyono, J.,
Jo, K.H.[Kang-Hyun],
Evaluation of background subtraction algorithms for video
surveillance,
FCV15(1-4)
IEEE DOI
1506
Gaussian processes
BibRef
Chen, Y.F.[Yu-Feng],
Zhao, K.[Kun],
Wu, W.Z.[Wen-Zhe],
Liu, S.[Shikai],
Background Subtraction:
Model-Sharing Strategy Based on Temporal Variation Analysis,
VSegCV14(333-343).
Springer DOI
1504
BibRef
Hamid, R.[Raffay],
Sarma, A.D.[Atish Das],
DeCoste, D.[Dennis],
Sundaresan, N.[Neel],
Fast Approximate Matching of Videos from Hand-Held Cameras for Robust
Background Subtraction,
WACV15(294-301)
IEEE DOI
1503
Accuracy
BibRef
Mozdren, K.,
Sojka, E.,
Fusek, R.,
Surkala, M.,
Layered RC circuit with dynamic resistances for background
subtraction,
IPTA14(1-6)
IEEE DOI
1503
RC circuits
BibRef
Ahn, J.H.[Jong-Hoon],
Fast Adaptive Robust Subspace Tracking for Online Background
Subtraction,
ICPR14(2555-2559)
IEEE DOI
1412
Cameras
BibRef
Setitra, I.[Insaf],
Larabi, S.[Slimane],
Background Subtraction Algorithms with Post-processing: A Review,
ICPR14(2436-2441)
IEEE DOI
1412
Survey, Background Subtraction. Computational modeling
BibRef
Wang, B.[Bin],
Dudek, P.[Piotr],
A Fast Self-Tuning Background Subtraction Algorithm,
CDW14(401-404)
IEEE DOI
1409
BibRef
Lim, J.W.[Jong-Woo],
Han, B.H.[Bo-Hyung],
Generalized Background Subtraction Using Superpixels with Label
Integrated Motion Estimation,
ECCV14(V: 173-187).
Springer DOI
1408
BibRef
Vishal, K.,
Bhargava, N.,
Chaudhuri, S.,
Seetharaman, G.,
Fast compensation of illumination changes for background subtraction,
AIPR13(1-7)
IEEE DOI
1408
Gaussian processes
BibRef
Kim, I.[Intaek],
Awan, T.W.[Tayyab Wahab],
Soh, Y.S.[Young-Sung],
Background subtraction-based multiple object tracking using particle
filter,
WSSIP14(71-74)
1406
Business
BibRef
Diaz, R.[Raul],
Hallman, S.[Sam],
Fowlkes, C.C.[Charless C.],
Detecting Dynamic Objects with Multi-view Background Subtraction,
ICCV13(273-280)
IEEE DOI
1403
BibRef
Rodríguez, A.S.[Alejandro Sánchez],
Castolo, J.C.G.[Juan Carlos González],
Suárez, Ó.D.[Óscar Déniz],
TimeViewer, a Tool for Visualizing the Problems of the Background
Subtraction,
PSIVT13(372-384).
Springer DOI
1402
BibRef
Jiang, Z.Q.[Zheng-Qiang],
Huynh, D.Q.[Du Q.],
Moran, W.[William],
Challa, S.[Subhash],
Combining background subtraction and temporal persistency in
pedestrian detection from static videos,
ICIP13(4141-4145)
IEEE DOI
1402
Pedestrian detection
BibRef
Kumar, A.[Avinash],
Hart, J.M.[John M.],
Ahuja, N.[Narendra],
Motion-based background subtraction and panoramic mosaicing for
freight train analysis,
ICIP13(4564-4568)
IEEE DOI
1402
background removal
BibRef
Wang, B.[Bin],
Dudek, P.[Piotr],
AMBER: Adapting multi-resolution background extractor,
ICIP13(3417-3421)
IEEE DOI
1402
background subtraction, motion detection, surveillance, video analytics
BibRef
Zhang, X.[Xiang],
Cheng, J.[Jian],
Liu, Z.[Zhi],
Yang, J.[Jie],
Cost-sensitive background subtraction,
ICIP13(3336-3339)
IEEE DOI
1402
background subtraction
BibRef
Mozdren, K.[Karel],
Sojka, E.[Eduard],
Fusek, R.[Radovan],
urkala, M.[Milan],
Layered RC Circuit Model for Background Subtraction,
ISVC13(II:199-209).
Springer DOI
1311
BibRef
Liu, X.C.[Xiao-Chun],
Zhong, T.[Tao],
Fu, D.[Dan],
Robust compositional method for background subtraction,
ICARCV12(1419-1424).
IEEE DOI
1304
BibRef
Wang, J.Q.[Jun-Qiu],
Yagi, Y.S.[Yasu-Shi],
Efficient Background Subtraction under Abrupt Illumination Variations,
ACCV12(I:675-688).
Springer DOI
1304
BibRef
Noh, S.[Seung_Jong],
Jeon, M.[Moongu],
A New Framework for Background Subtraction Using Multiple Cues,
ACCV12(III:493-506).
Springer DOI
1304
BibRef
Ma, F.[Fan],
Sang, N.[Nong],
Background Subtraction Based on Multi-channel SILTP,
CVLBP12(I:73-84).
Springer DOI
1304
BibRef
Zhao, F.[Fei],
Zhang, Z.Y.[Zhi-Yong],
Lu, H.Z.[Huan-Zhang],
Dim point target detection based on novel complex background
suppression,
CVRS12(45-51).
IEEE DOI
1302
BibRef
Cui, X.Y.[Xin-Yi],
Huang, J.Z.[Jun-Zhou],
Zhang, S.T.[Shao-Ting],
Metaxas, D.N.[Dimitris N.],
Background Subtraction Using Low Rank and Group Sparsity Constraints,
ECCV12(I: 612-625).
Springer DOI
1210
See also Automatic Image Annotation and Retrieval Using Group Sparsity.
BibRef
Chang, H.J.[Hyung Jin],
Jeong, H.[Hawook],
Choi, J.Y.[Jin Young],
Active attentional sampling for speed-up of background subtraction,
CVPR12(2088-2095).
IEEE DOI
1208
BibRef
van Droogenbroeck, M.,
Paquot, O.,
Background subtraction: Experiments and improvements for ViBe,
CDW12(32-37).
IEEE DOI
1207
BibRef
Sekkati, H.[Hicham],
Laganičre, R.[Robert],
Mitiche, A.[Amar],
Youmaran, R.[Richard],
Robust Background Subtraction Using Geodesic Active Contours in ICA
Subspace for Video Surveillance Applications,
CRV12(190-197).
IEEE DOI
1207
BibRef
Paruchuri, J.K.[Jithendra K.],
Sathiyamoorthy, E.P.[Edwin P.],
Cheung, S.C.S.[Sen-Ching S.],
Chen, C.H.[Chung-Hao],
Spatially adaptive illumination modeling for background subtraction,
VS11(1745-1752).
IEEE DOI
1201
BibRef
Zaharescu, A.[Andrei],
Jamieson, M.[Michael],
Multi-scale multi-feature codebook-based background subtraction,
VS11(1753-1760).
IEEE DOI
1201
BibRef
Hu, Z.P.[Zhi-Peng],
Wang, Y.[Yaowei],
Tian, Y.H.[Yong-Hong],
Huang, T.J.[Tie-Jun],
Selective eigenbackgrounds method for background subtraction in crowed
scenes,
ICIP11(3277-3280).
IEEE DOI
1201
BibRef
Xing, J.L.[Jun-Liang],
Liu, L.W.[Li-Wei],
Ai, H.Z.[Hai-Zhou],
Background subtraction through multiple life span modeling,
ICIP11(2953-2956).
IEEE DOI
1201
BibRef
Bhutta, A.A.[Adeel A.],
Junejo, I.N.[Imran N.],
Foroosh, H.[Hassan],
Selective subtraction when the scene cannot be learned,
ICIP11(3273-3276).
IEEE DOI
1201
BibRef
Wang, H.,
Miller, P.,
Regularized online Mixture of Gaussians for background subtraction,
AVSBS11(249-254).
IEEE DOI
1111
BibRef
Gorur, P.,
Amrutur, B.,
Speeded up Gaussian Mixture Model algorithm for background subtraction,
AVSBS11(386-391).
IEEE DOI
1111
BibRef
Song, T.[Taeyup],
Han, D.K.,
Ko, H.S.[Han-Seok],
Robust background subtraction using data fusion for real elevator scene,
AVSBS11(392-397).
IEEE DOI
1111
BibRef
Pollok, T.,
Monari, E.,
A visual SLAM-based approach for calibration of distributed camera
networks,
AVSS16(429-437)
IEEE DOI
1611
Cameras
BibRef
Monari, E.,
Pollok, T.,
A real-time image-to-panorama registration approach for background
subtraction using pan-tilt-cameras,
AVSBS11(237-242).
IEEE DOI
1111
BibRef
Lanza, A.[Alessandro],
Salti, S.,
di Stefano, L.[Luigi],
Background subtraction by non-parametric probabilistic clustering,
AVSBS11(243-248).
IEEE DOI
1111
BibRef
Lanza, A.[Alessandro],
Tombari, F.[Federico],
di Stefano, L.[Luigi],
Second-Order Polynomial Models for Background Subtraction,
VS10(1-11).
Springer DOI
1109
BibRef
And:
Robust and efficient background subtraction by quadratic polynomial
fitting,
ICIP10(1537-1540).
IEEE DOI
1009
BibRef
And:
Accurate and Efficient Background Subtraction by Monotonic
Second-Degree Polynomial Fitting,
AVSS10(376-383).
IEEE DOI
1009
BibRef
Dauphin, G.[Gabriel],
Khanfir, S.[Sami],
Background suppression with low-resolution camera in the context of
medication intake monitoring,
EUVIP11(128-133).
IEEE DOI
1110
BibRef
Varadarajan, S.,
Karam, L.J.,
Florencio, D.A.F.,
Background subtraction using spatio-temporal continuities,
EUVIP10(144-148).
IEEE DOI
1110
BibRef
Liu, L.Y.[Le-Yuan],
Sang, N.[Nong],
Metrics for Objective Evaluation of Background Subtraction Algorithms,
ICIG11(562-565).
IEEE DOI
1109
BibRef
Brutzer, S.[Sebastian],
Hoferlin, B.[Benjamin],
Heidemann, G.[Gunther],
Evaluation of background subtraction techniques for video surveillance,
CVPR11(1937-1944).
IEEE DOI
1106
BibRef
Lee, Y.C.[Yong-Cheol],
Jung, J.Y.[Ji-Young],
Kweon, I.S.[In-So],
Hierarchical on-line boosting based background subtraction,
FCV11(1-5).
IEEE DOI
1102
BibRef
Wang, L.F.[Ling-Feng],
Wu, H.Y.[Huai-Yu],
Pan, C.H.[Chun-Hong],
Adaptive e-LBP for Background Subtraction,
ACCV10(III: 560-571).
Springer DOI
1011
BibRef
Fabian, T.[Tomas],
Mixture of Gaussians Exploiting Histograms of Oriented Gradients for
Background Subtraction,
ISVC10(II: 716-725).
Springer DOI
1011
BibRef
Movshovitz-Attias, Y.[Yair],
Peleg, S.[Shmuel],
Bacteria-Filters:
Persistent particle filters for background subtraction,
ICIP10(677-680).
IEEE DOI
1009
BibRef
Vosters, L.P.J.,
Shan, C.F.[Cai-Feng],
Gritti, T.,
Background Subtraction under Sudden Illumination Changes,
AVSS10(384-391).
IEEE DOI
1009
BibRef
Langmann, B.[Benjamin],
Ghobadi, S.E.[Seyed E.],
Hartmann, K.[Klaus],
Loffeld, O.[Otmar],
Multi-modal background subtraction using Gaussian Mixture Models,
PCVIA10(A:61).
PDF File.
1009
BibRef
Dickinson, P.[Patrick],
Hunter, A.[Andrew],
Appiah, K.[Kofi],
Segmenting Video Foreground Using a Multi-Class MRF,
ICPR10(1848-1851).
IEEE DOI
1008
BibRef
Wolf, C.[Christian],
Jolion, J.M.[Jean-Michel],
Integrating a Discrete Motion Model into GMM Based Background
Subtraction,
ICPR10(9-12).
IEEE DOI
1008
BibRef
Guo, J.M.[Jing-Ming],
Hsu, C.S.[Chih-Sheng],
Cascaded Background Subtraction Using Block-Based and Pixel-Based
Codebooks,
ICPR10(1373-1376).
IEEE DOI
1008
BibRef
Guillot, C.[Constant],
Taron, M.[Maxime],
Sayd, P.[Patrick],
Pham, Q.C.[Quoc Cuong],
Tilmant, C.[Christophe],
Lavest, J.M.[Jean-Marc],
Background Subtraction for PTZ Cameras Performing a Guard Tour and
Application to Cameras with Very Low Frame Rate,
VS10(33-42).
Springer DOI
1109
BibRef
And:
Background subtraction adapted to PTZ cameras by keypoint density
estimation,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Gabard, C.[Christophe],
Lucat, L.[Laurent],
Achard, C.[Catherine],
Guillot, C.,
Sayd, P.[Patrick],
Error Decreasing of Background Subtraction Process by Modeling the
Foreground,
VS10(123-132).
Springer DOI
1109
BibRef
Liao, S.C.[Sheng-Cai],
Zhao, G.Y.[Guo-Ying],
Kellokumpu, V.[Vili],
Pietikainen, M.[Matti],
Li, S.Z.[Stan Z.],
Modeling pixel process with scale invariant local patterns for
background subtraction in complex scenes,
CVPR10(1301-1306).
IEEE DOI
1006
BibRef
Ko, T.[Teresa],
Soatto, S.[Stefano],
Estrin, D.[Deborah],
Warping background subtraction,
CVPR10(1331-1338).
IEEE DOI
1006
BibRef
Zhong, B.N.[Bi-Neng],
Liu, S.H.[Shao-Hui],
Yao, H.X.[Hong-Xun],
Local Spatial Co-occurrence for Background Subtraction via Adaptive
Binned Kernel Estimation,
ACCV09(III: 152-161).
Springer DOI
0909
BibRef
Rahtu, E.[Esa],
Heikkila, J.[Janne],
A Simple and efficient saliency detector for background subtraction,
VS09(1137-1144).
IEEE DOI
0910
BibRef
Tombari, F.[Federico],
di Stefano, L.[Luigi],
Lanza, A.[Alessandro],
Mattoccia, S.[Stefano],
Non-linear parametric Bayesian regression for robust background
subtraction,
WMVC09(1-7).
IEEE DOI
0912
See also Bayesian Loop for Synergistic Change Detection and Tracking.
BibRef
Varcheie, P.D.Z.[Parisa Darvish Zadeh],
Sills-Lavoie, M.[Michael],
Bilodeau, G.A.[Guillaume-Alexandre],
An Efficient Region-Based Background Subtraction Technique,
CRV08(71-78).
IEEE DOI
0805
BibRef
Ko, T.[Teresa],
Soatto, S.[Stefano],
Estrin, D.[Deborah],
Background Subtraction on Distributions,
ECCV08(III: 276-289).
Springer DOI
0810
BibRef
Panahi, S.,
Sheikhi, S.,
Hadadan, S.,
Gheissari, N.,
Evaluation of Background Subtraction Methods,
DICTA08(357-364).
IEEE DOI
0812
BibRef
Min, S.[Seungki],
Kim, J.W.[Jung-Whan],
Park, A.[Anjin],
Hong, G.J.[Gwang-Jin],
Jung, K.C.[Kee-Chul],
Graph-Cut Based Background Subtraction Using Visual Hull in Multiveiw
Images,
DICTA08(372-377).
IEEE DOI
0812
BibRef
Izquierdo-Guerra, W.[Walter],
García-Reyes, E.[Edel],
Background Division, A Suitable Technique for Moving Object Detection,
CIARP10(121-127).
Springer DOI
1011
BibRef
Earlier:
A Novel Approach to Robust Background Subtraction,
CIARP09(69-76).
Springer DOI
0911
BibRef
Zhang, S.P.[Suo-Ping],
Qi, Z.H.[Zhan-Hui],
Zhang, D.L.[Dong-Liang],
Ship Tracking Using Background Subtraction and Inter-Frame Correlation,
CISP09(1-4).
IEEE DOI
0910
BibRef
Tian, G.D.[Guo-Dong],
Men, A.D.[Ai-Dong],
An Improved Texture-Based Method for Background Subtraction Using Local
Binary Patterns,
CISP09(1-4).
IEEE DOI
0910
BibRef
Herrero, S.[Sonsoles],
Bescós, J.[Jesús],
Background Subtraction Techniques:
Systematic Evaluation and Comparative Analysis,
ACIVS09(33-42).
Springer DOI
0909
BibRef
Vijverberg, J.A.[Julien A.],
Loomans, M.J.H.[Marijn J.H.],
Koeleman, C.J.[Cornelis J.],
de With, P.H.N.[Peter H.N.],
Global Illumination Compensation for Background Subtraction Using
Gaussian-Based Background Difference Modeling,
AVSBS09(448-453).
IEEE DOI
0909
BibRef
Klare, B.[Brendan],
Sarkar, S.[Sudeep],
Background subtraction in varying illuminations using an ensemble based
on an enlarged feature set,
OTCBVS09(66-73).
IEEE DOI
0906
BibRef
Amato, A.[Ariel],
Mozerov, M.G.[Mikhail G.],
Huerta, I.[Ivan],
Gonzalez, J.[Jordi],
Villanueva, J.J.[Juan J.],
Background subtraction technique based on chromaticity and intensity
patterns,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Reddy, D.[Dikpal],
Sankaranarayanan, A.C.[Aswin C.],
Cevher, V.[Volkan],
Chellappa, R.[Rama],
Compressed sensing for multi-view tracking and 3-D voxel reconstruction,
ICIP08(221-224).
IEEE DOI
0810
BibRef
Pilet, J.[Julien],
Strecha, C.[Christoph],
Fua, P.[Pascal],
Making Background Subtraction Robust to Sudden Illumination Changes,
ECCV08(IV: 567-580).
Springer DOI
0810
BibRef
Shafait, F.[Faisal],
van Beusekom, J.[Joost],
Keysers, D.[Daniel],
Breuel, T.M.[Thomas M.],
Background variability modeling for statistical layout analysis,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Ulges, A.[Adrian],
Breuel, T.M.[Thomas M.],
Can Motion Segmentation Improve Patch-Based Object Recognition?,
ICPR10(3041-3044).
IEEE DOI
1008
BibRef
Ulges, A.[Adrian],
Breuel, T.M.[Thomas M.],
A Local Discriminative Model for Background Subtraction,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Jia, L.[Lihao],
Liu, Y.K.[Yi-Kun],
A Novel Thresholding Approach to Background Subtraction,
WACV08(1-6).
IEEE DOI
0801
BibRef
Rodhetbhai, W.[Wasara],
Lewis, P.H.[Paul H.],
Salient Region Filtering for Background Subtraction,
Visual07(126-135).
Springer DOI
0706
BibRef
Fukui, S.[Shinji],
Iwahori, Y.J.[Yu-Ji],
Itoh, H.[Hidenori],
Kawanaka, H.[Haruki],
Woodham, R.J.[Robert J.],
Robust Background Subtraction for Quick Illumination Changes,
PSIVT06(1244-1253).
Springer DOI
0612
BibRef
Park, J.,
Tabb, A.,
Kak, A.C.,
Hierarchical Data Structure for Real-Time Background Subtraction,
ICIP06(1849-1852).
IEEE DOI
0610
BibRef
Cezar Silveira Jacques, J.,
Rosito Jung, C.,
Musse, S.R.,
A Background Subtraction Model Adapted to Illumination Changes,
ICIP06(1817-1820).
IEEE DOI
0610
BibRef
Noriega, P.,
Bernier, O.,
Real Time Illumination Invariant Background Subtraction Using Local
Kernel Histograms,
BMVC06(III:979).
PDF File.
0609
BibRef
Cheng, L.[Li],
Gong, M.,
Schuurmans, D.,
Caelli, T.M.,
Real-Time Discriminative Background Subtraction,
IP(20), No. 5, May 2011, pp. 1401-1414.
IEEE DOI
1104
BibRef
Cheng, L.[Li],
Wang, S.J.[Shao-Jun],
Schuurmans, D.,
Caelli, T.M.,
Vishwanathan, S.V.N.,
An Online Discriminative Approach to Background Subtraction,
AVSBS06(2-2).
IEEE DOI
0611
BibRef
Parag, T.[Toufiq],
Elgammal, A.M.[Ahmed M.],
Mittal, A.[Anurag],
A Framework for Feature Selection for Background Subtraction,
CVPR06(II: 1916-1923).
IEEE DOI
0606
BibRef
Amnuaykanchanasin, P.,
Thongkamwitoon, T.,
Srisawaiwilai, N.,
Aramvith, S.,
Chalidabhongse, T.H.,
Adaptive parametric statistical background subtraction for video
segmentation,
VSSN05(63-66).
WWW Link.
0511
BibRef
Aggarwal, A.[Ashwani],
Biswas, S.[Susmit],
Singh, S.[Sandeep],
Sural, S.[Shamik],
Majumdar, A.K.,
Object Tracking Using Background Subtraction and Motion Estimation in
MPEG Videos,
ACCV06(II:121-130).
Springer DOI
0601
BibRef
Krüger, V.[Volker],
Anderson, J.[Jakob],
Prehn, T.[Thomas],
Probabilistic Model-Based Background Subtraction,
SCIA05(567-576).
Springer DOI
0506
BibRef
And:
CIAP05(180-187).
Springer DOI
0509
BibRef
Fiala, M.[Mark],
Shu, C.[Chang],
Background Subtraction using Self-Identifying Patterns,
CRV05(558-565).
IEEE DOI
0505
See also Automatic Projector Calibration Using Self-Identifying Patterns.
BibRef
Grossmann, E.,
Kale, A.,
Jaynes, C.,
Towards Interactive Generation of 'Ground-truth' in Background
Subtraction from Partially Labeled Examples,
PETS05(325-332).
IEEE DOI
0602
BibRef
Grossmann, E.,
Kale, A.,
Jaynes, C.,
Cheung, S.C.S.,
Offline Generation of High Quality Background Subtraction Data,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Lim, S.N.[Ser-Nam],
Mittal, A.[Anurag],
Davis, L.S.[Larry S.],
Paragios, N.[Nikos],
Fast Illumination-Invariant Background Subtraction Using Two Views:
Error Analysis, Sensor Placement and Applications,
CVPR05(I: 1071-1078).
IEEE DOI
0507
BibRef
Migdal, J.[Joshua],
Grimson, W.E.L.[W. Eric L.],
Background Subtraction Using Markov Thresholds,
Motion05(II: 58-65).
IEEE DOI
0502
BibRef
Yamazawa, K.[Kazumasa],
Yokoya, N.[Naokazu],
Detecting Moving Objects with an Omnidirectional Camera Based on
Adaptive Background Subtraction,
SCIA03(969-974).
Springer DOI
0310
BibRef
And:
Detecting moving objects from omnidirectional dynamic images based on
adaptive background subtraction,
ICIP03(III: 953-956).
IEEE DOI
0312
BibRef
Hayman, E.,
Eklundh, J.O.,
Statistical background subtraction for a mobile observer,
ICCV03(67-74).
IEEE DOI
0311
BibRef
Seki, M.,
Wada, T.,
Fujiwara, H.,
Sumi, K.,
Background subtraction based on cooccurrence of image variations,
CVPR03(II: 65-72).
IEEE DOI
0307
BibRef
Seki, M.[Makito],
Fujiwara, H.[Hideto],
Sumi, K.[Kazuhiko],
A Robust Background Subtraction Method for Changing Background,
WACV00(207-213).
IEEE DOI
0010
BibRef
Wang, D.S.[Dong-Sheng],
Feng, T.[Tao],
Shum, H.Y.[Heung-Yeung],
Ma, S.D.[Song-De],
A Novel Probability Model for Background Maintenance and Subtraction,
VI02(109).
PDF File.
0208
BibRef
Ohta, N.[Naoya],
A Statistical Approach to Background Subtraction
for Surveillance Systems,
ICCV01(II: 481-486).
IEEE DOI
0106
BibRef
Stauffer, C.[Chris],
Grimson, W.E.L.,
Adaptive Background Mixture Models for Real-time Tracking,
CVPR99(II: 246-252).
IEEE DOI
Award, Longuet-Higgins. (Awarded after 10 years)
Compute the background through major changes in the scene (lighting,
etc.) for subtraction for motion detection.
BibRef
9900
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Neural Network Guided Background Subtraction, Learning Methods .