18.9.6.2 Matrix Factorization, General Issues

Chapter Contents (Back)
Matrix Factorization. Factorization.

Welling, M.[Max], Weber, M.[Markus],
Positive tensor factorization,
PRL(22), No. 12, October 2001, pp. 1255-1261.
Elsevier DOI 0108
BibRef

Sun, Z.H.[Zhao-Hui], Ramesh, V.[Visvanathan], Tekalp, A.M.[A. Murat],
Error Characterization of the Factorization Method,
CVIU(82), No. 2, May 2001, pp. 110-137.
DOI Link 0108
BibRef

Anandan, P., Irani, M.[Michal],
Factorization with Uncertainty,
IJCV(49), No. 2-3, September-October 2002, pp. 101-116.
DOI Link 0209
BibRef
Earlier: A2, A1: ECCV00(I: 539-553).
Springer DOI 0003
BibRef

Zelnik-Manor, L.[Lihi], Irani, M.[Michal],
On Single-Sequence and Multi-Sequence Factorizations,
IJCV(67), No. 3, May 2006, pp. 313-326.
Springer DOI 0606
BibRef
Earlier:
Temporal Factorization vs. Spatial Factorization,
ECCV04(Vol II: 434-445).
Springer DOI 0405
Rather than grouping the same motions, group the same shapes. Thus get the same expressions even if the head moves. See also Multi-body Factorization with Uncertainty: Revisiting Motion Consistency. BibRef

Fanti, C.[Claudio], Zelnik-Manor, L.[Lihi], Perona, P.[Pietro],
Hybrid Models for Human Motion Recognition,
CVPR05(I: 1166-1173).
IEEE DOI 0507
BibRef

Zelnik-Manor, L.[Lihi], Machline, M.[Moshe], Irani, M.[Michal],
Multi-body Factorization with Uncertainty: Revisiting Motion Consistency,
IJCV(68), No. 1, June 2006, pp. 27-41.
Springer DOI 0605
Into regions of consistent motion. Temporal consistency of actions across multiple frames. BibRef

Aanæs, H.[Henrik], Fisker, R.[Rune], Åström, K.[Kalle], Carstensen, J.M.[Jens Michael],
Robust Factorization,
PAMI(24), No. 9, September 2002, pp. 1215-1225.
IEEE Abstract. 0209
How to deal with it when there is not a set of tracked features. Modification of the Christy-Horaud ( See also Euclidean Shape and Motion from Multiple Perspective Views by Affine Iterations. ) scheme. BibRef

Fiore, P.D.,
A constant modulus matrix factorization for direction finding and array calibration,
SPLetters(9), No. 9, September 2002, pp. 272-274.
IEEE Top Reference. 0211
BibRef

Wild, S.[Stefan], Curry, J.[James], Dougherty, A.[Anne],
Improving non-negative matrix factorizations through structured initialization,
PR(37), No. 11, November 2004, pp. 2217-2232.
Elsevier DOI 0409
BibRef

Klingenberg, B.[Bradley], Curry, J.[James], Dougherty, A.[Anne],
Non-negative matrix factorization: Ill-posedness and a geometric algorithm,
PR(42), No. 5, May 2009, pp. 918-928.
Elsevier DOI 0902
Non-negative matrix factorization; Geometry; Ill-posedness; Generative model; Component analysis BibRef

Corinthios, M.J.,
Generalised transform factorisation for massive parallelism,
VISP(151), No. 3, June 2004, pp. 153-163.
IEEE Abstract. 0409
BibRef

Pascual-Montano, A.[Alberto], Carazo, J.M., Kochi, K.[Kieko], Lehmann, D.[Dietrich], Pascual-Marqui, R.D.[Roberto D.],
Nonsmooth Nonnegative Matrix Factorization (nsNMF),
PAMI(28), No. 3, March 2006, pp. 403-415.
IEEE DOI 0602
optimization of an unambiguous cost function designed to explicitly represent sparseness. BibRef

Okatani, T.[Takayuki], Deguchi, K.[Koichiro],
On the Wiberg Algorithm for Matrix Factorization in the Presence of Missing Components,
IJCV(72), No. 3, May 2007, pp. 329-337.
Springer DOI 0702
BibRef

Okatani, T.[Takayuki], Yoshida, T.[Takahiro], Deguchi, K.[Koichiro],
Efficient algorithm for low-rank matrix factorization with missing components and performance comparison of latest algorithms,
ICCV11(842-849).
IEEE DOI 1201
BibRef

Kanatani, K.[Kenichi], Sugaya, Y.[Yasuyuki], Ackermann, H.[Hanno],
Uncalibrated Factorization Using a Variable Symmetric Affine Camera,
IEICE(E90-D), No. 5, May 2007, pp. 851-858.
DOI Link 0705
BibRef
Earlier: ECCV06(IV: 147-158).
Springer DOI 0608
BibRef

Ackermann, H.[Hanno], Kanatani, K.[Kenichi],
Iterative Low Complexity Factorization for Projective Reconstruction,
RobVis08(153-164).
Springer DOI 0802
BibRef

Boutsidis, C., Gallopoulos, E.,
SVD based initialization: A head start for nonnegative matrix factorization,
PR(41), No. 4, April 2008, pp. 1350-1362.
Elsevier DOI 0801
NMF; Sparse NMF; SVD; Nonnegative matrix factorization; Singular value decomposition; Perron-Frobenius; Low rank; Structured initialization; Sparse factorization BibRef

Cichocki, A.[Andrzej], Lee, H.Y.[Hyek-Young], Kim, Y.D.[Yong-Deok], Choi, S.J.[Seung-Jin],
Non-negative matrix factorization with alpha-divergence,
PRL(29), No. 9, 1 July 2008, pp. 1433-1440.
Elsevier DOI 0711
alpha-Divergence; Multiplicative updates; Non-negative matrix factorization; Projected gradient BibRef

Zhao, Q., Zhang, L., Cichocki, A.,
Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination,
PAMI(37), No. 9, September 2015, pp. 1751-1763.
IEEE DOI 1508
Approximation methods BibRef

Yuan, Y., Li, X.L., Pang, Y., Lu, X., Tao, D.,
Binary Sparse Nonnegative Matrix Factorization,
CirSysVideo(19), No. 5, May 2009, pp. 772-777.
IEEE DOI 0906
BibRef

Lee, H.K.[Hye-Kyoung], Yoo, J.H.[Ji-Ho], Choi, S.J.[Seung-Jin],
Semi-Supervised Nonnegative Matrix Factorization,
SPLetters(17), No. 1, January 2010, pp. 4-7.
IEEE DOI 0911
BibRef

Khelifi, F., Jiang, J.,
Analysis of the Security of Perceptual Image Hashing Based on Non-Negative Matrix Factorization,
SPLetters(17), No. 1, January 2010, pp. 43-46.
IEEE DOI 0911
BibRef

Khelifi, F., Jiang, J.,
Perceptual Image Hashing Based on Virtual Watermark Detection,
IP(19), No. 4, April 2010, pp. 981-994.
IEEE DOI 1003
BibRef

Ding, C.H.Q.[Chris H.Q.], Li, T.[Tao], Jordan, M.I.[Michael I.],
Convex and Semi-Nonnegative Matrix Factorizations,
PAMI(32), No. 1, January 2010, pp. 45-55.
IEEE DOI 0912
Explore the different solutions. BibRef

Wahlberg, B., Stoica, P.,
New Square-Root Factorization of Inverse Toeplitz Matrices,
SPLetters(17), No. 2, February 2010, pp. 137-140.
IEEE DOI 0912
From the theory of rational orthonormal functions to derive square-root factorizations of inverse of nXn positive definite Toeplitz matrix. BibRef

Gillis, N.[Nicolas], Glineur, F.[Francois],
Using underapproximations for sparse nonnegative matrix factorization,
PR(43), No. 4, April 2010, pp. 1676-1687.
Elsevier DOI 1002
Nonnegative matrix factorization; Underapproximation; Maximum edge biclique problem; Sparsity; Image processing BibRef

Gillis, N., Vavasis, S.A.,
Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization,
PAMI(36), No. 4, April 2014, pp. 698-714.
IEEE DOI 1404
Algorithm design and analysis BibRef

Gillis, N.,
Successive Nonnegative Projection Algorithm for Robust Nonnegative Blind Source Separation,
SIIMS(7), No. 2, 2014, pp. 1420-1450.
DOI Link 1407
BibRef

Li, Z.[Zhao], Wu, X.D.[Xin-Dong], Peng, H.[Hong],
Nonnegative Matrix Factorization on Orthogonal Subspace,
PRL(31), No. 9, 1 July 2010, pp. 905-911.
Elsevier DOI 1004
Nonnegative Matrix Factorization; Orthogonality; Clustering BibRef

Zhao, K.[Keke], Zhang, Z.Y.[Zhen-Yue],
Successively alternate least square for low-rank matrix factorization with bounded missing data,
CVIU(114), No. 10, October 2010, pp. 1084-1096.
Elsevier DOI 1003
Matrix complement; Matrix factorization; Missing data; Low-rank matrix; Computer vision; 3D reconstruction BibRef

Zhang, Z.Y.[Zhen-Yue], Zhao, K.[Keke],
Low-Rank Matrix Approximation with Manifold Regularization,
PAMI(35), No. 7, 2013, pp. 1717-1729.
IEEE DOI 1307
graph theory; matrix decomposition; Symmetric matrices; manifold learning BibRef

Yang, L.[Lei], Hao, P.W.[Peng-Wei], Wu, D.P.[Da-Peng],
Stabilization and optimization of PLUS factorization and its application in image coding,
JVCIR(22), No. 1, January 2011, pp. 9-22.
Elsevier DOI 1101
PLUS factorization; Stable algorithm; Optimization; Transform coding; Image compression; Integer reversible transform; Lapped Transform; Discrete cosine transform; Lifting factorization BibRef

Decherchi, S.[Sergio], Gastaldo, P.[Paolo], Zunino, R.[Rodolfo],
Efficient approximate Regularized Least Squares by Toeplitz matrix,
PRL(32), No. 3, 1 February 2011, pp. 468-475.
Elsevier DOI 1101
Regularized Least Squares; Toeplitz matrix; Levinson-Trench-Zohar algorithm; Digital signal processor; Large-scale learning; Resources limited device BibRef

Sandler, R.[Roman], Lindenbaum, M.[Michael],
Nonnegative Matrix Factorization with Earth Mover's Distance Metric for Image Analysis,
PAMI(33), No. 8, August 2011, pp. 1590-1602.
IEEE DOI 1107
BibRef
Earlier:
Nonnegative Matrix Factorization with Earth Mover's Distance metric,
CVPR09(1873-1880).
IEEE DOI 0906
BibRef

Guan, N.Y.[Nai-Yang], Tao, D.C.[Da-Cheng], Luo, Z.G.[Zhi-Gang], Yuan, B.[Bo],
Manifold Regularized Discriminative Nonnegative Matrix Factorization With Fast Gradient Descent,
IP(20), No. 7, July 2011, pp. 2030-2048.
IEEE DOI 1107
BibRef

Ambai, M.[Mitsuru], Utama, N.P.[Nugraha P.], Yoshida, Y.[Yuichi],
Dimensionality Reduction for Histogram Features Based on Supervised Non-negative Matrix Factorization,
IEICE(E94-D), No. 10, October 2011, pp. 1870-1879.
WWW Link. 1110
BibRef

Pan, J.Y.[Ji-Yuan], Zhang, J.S.[Jiang-She],
Large margin based nonnegative matrix factorization and partial least squares regression for face recognition,
PRL(32), No. 14, 15 October 2011, pp. 1822-1835.
Elsevier DOI 1110
Face recognition; Nonnegative matrix factorization; Out-of-sample; Feature extraction; Large margin learning BibRef

Yokoya, N., Yairi, T., Iwasaki, A.,
Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion,
GeoRS(50), No. 2, February 2012, pp. 528-537.
IEEE DOI 1201
BibRef

Yokoya, N., Chanussot, J., Iwasaki, A.,
Nonlinear Unmixing of Hyperspectral Data Using Semi-Nonnegative Matrix Factorization,
GeoRS(52), No. 2, February 2014, pp. 1430-1437.
IEEE DOI 1402
geophysical image processing BibRef

Simoes, M.[Miguel], Bioucas-Dias, J.[Jose], Almeida, L.B.[Luis B.], Chanussot, J.[Jocelyn],
Hyperspectral image superresolution: An edge-preserving convex formulation,
ICIP14(4166-4170)
IEEE DOI 1502
Data integration BibRef

Shang, F.[Fanhua], Jiao, L.C., Wang, F.[Fei],
Graph dual regularization non-negative matrix factorization for co-clustering,
PR(45), No. 6, June 2012, pp. 2237-2250.
Elsevier DOI 1202
Low-rank matrix factorization; Non-negative matrix factorization (NMF); Graph Laplacian; Graph dual regularization; Co-clustering BibRef

Zheng, W.S.[Wei-Shi], Lai, J.[JianHuang], Liao, S.C.[Sheng-Cai], He, R.[Ran],
Extracting non-negative basis images using pixel dispersion penalty,
PR(45), No. 8, August 2012, pp. 2912-2926.
Elsevier DOI 1204
Non-negative matrix factorization (NMF); Non-negativity constraint; Spatially localized basis images; Feature extraction; Face image analysis BibRef

Liu, H.F.[Hai-Feng], Wu, Z.H.[Zhao-Hui], Cai, D.[Deng], Huang, T.S.[Thomas S.],
Constrained Nonnegative Matrix Factorization for Image Representation,
PAMI(34), No. 7, July 2012, pp. 1299-1311.
IEEE DOI 1205
Nonnegative matrix factorization, semi-supervised learning, dimension reduction, clustering. BibRef

Liu, H.F.[Hai-Feng], Yang, G., Wu, Z.H.[Zhao-Hui], Cai, D.[Deng],
Constrained Concept Factorization for Image Representation,
Cyber(44), No. 7, July 2014, pp. 1214-1224.
IEEE DOI 1407
Algorithm design and analysis BibRef

Kumar, B.G.V.[B.G. Vijay], Kotsia, I.[Irene], Patras, I.[Ioannis],
Max-margin Non-negative Matrix Factorization,
IVC(30), No. 4-5, May 2012, pp. 279-291.
Elsevier DOI 1206
Non-negative Matrix Factorization; Supervised feature extraction; Semi-NMF; Max-margin classifier BibRef

Gong, P.[Pinghua], Zhang, C.S.[Chang-Shui],
Efficient Nonnegative Matrix Factorization via projected Newton method,
PR(45), No. 9, September 2012, pp. 3557-3565.
Elsevier DOI 1206
Nonnegative Matrix Factorization; Projected Newton method; Quadratic convergence rate; Nonnegative least squares; Low rank BibRef

Esser, E., Moller, M., Osher, S., Sapiro, G., Xin, J.,
A Convex Model for Nonnegative Matrix Factorization and Dimensionality Reduction on Physical Space,
IP(21), No. 7, July 2012, pp. 3239-3252.
IEEE DOI 1206
BibRef

Shi, M.[Min], Yi, Q.M.[Qing-Ming], Lv, J.[Jun],
Symmetric Nonnegative Matrix Factorization With Beta-Divergences,
SPLetters(19), No. 8, August 2012, pp. 539-542.
IEEE DOI 1208
BibRef

Liu, Y.Y.[Yuan-Yuan], Jiao, L.C., Shang, F.[Fanhua],
An efficient matrix factorization based low-rank representation for subspace clustering,
PR(46), No. 1, January 2013, pp. 284-292.
Elsevier DOI 1209
Nuclear norm minimization (NNM); Low rank representation; Alternating direction method (ADM); Matrix tri-factorization; Positive semidefinite (PSD) BibRef

Liu, Y.Y.[Yuan-Yuan], Jiao, L.C., Shang, F.[Fanhua],
A fast tri-factorization method for low-rank matrix recovery and completion,
PR(46), No. 1, January 2013, pp. 163-173.
Elsevier DOI 1209
Rank minimization; Nuclear norm minimization; Matrix completion; Low-rank and sparse decomposition; Low rank representation BibRef

Liu, Y.G.[Yi-Guang], Liu, B.B.[Bing-Bing], Pu, Y.[Yifei], Chen, X.H.[Xiao-Hui], Cheng, H.[Hong],
Low-rank matrix decomposition in L1-norm by dynamic systems,
IVC(30), No. 11, November 2012, pp. 915-921.
Elsevier DOI 1211
Low-rank matrix approximation; Dynamic system; L_1 norm; Computational efficiency BibRef

Liu, Y.G.[Yi-Guang], Cao, L.P.[Li-Ping], Liu, C.L.[Chun-Ling], Pu, Y.[Yifei], Cheng, H.[Hong],
Recovering shape and motion by a dynamic system for low-rank matrix approximation in L_1 norm,
VC(29), No. 5, May 2013, pp. 421-431.
WWW Link. 1305
BibRef

Duan, J.[Junbo], Soussen, C., Brie, D., Idier, J., Wang, Y.P.[Yu-Ping],
On LARS/Homotopy Equivalence Conditions for Over-Determined LASSO,
SPLetters(19), No. 12, December 2012, pp. 894-897.
IEEE DOI 1212
LASSO: Least absolute shrinkage and selection operator. BibRef

Essid, S., Fevotte, C.,
Smooth Nonnegative Matrix Factorization for Unsupervised Audiovisual Document Structuring,
MultMed(15), No. 2, 2013, pp. 415-425.
IEEE DOI 1302
BibRef

Tan, V.Y.F., Fevotte, C.,
Automatic Relevance Determination in Nonnegative Matrix Factorization with the beta-Divergence,
PAMI(35), No. 7, 2013, pp. 1592-1605.
IEEE DOI 1307
matrix decomposition; latent dimensionality; maximum a posteriori estimation; nonnegative matrix factorization BibRef

Wang, S.,
Quasi-Block-Cholesky Factorization With Dynamic Matrix Compression for Fast Integral-Equation Simulations of Large-Scale Human Body Models,
PIEEE(100), No. 2, February 2013, pp. 389-400.
IEEE DOI 1302
BibRef

Kim, Y.D.[Yong-Deok], Choi, S.J.[Seung-Jin],
Variational Bayesian View of Weighted Trace Norm Regularization for Matrix Factorization,
SPLetters(20), No. 3, March 2013, pp. 261-264.
IEEE DOI 1303
BibRef

Liu, Y.Y.[Yuan-Yuan], Shang, F.H.[Fan-Hua],
An Efficient Matrix Factorization Method for Tensor Completion,
SPLetters(20), No. 4, April 2013, pp. 307-310.
IEEE DOI 1303
BibRef

Kim, J.H.[Jae-Hean], Koo, B.K.[Bon-Ki],
Factorization of canonic homographies for camera calibration and scene modeling,
FCV13(5-10).
IEEE DOI 1304
BibRef

Wang, J.J.Y.[Jim Jing-Yan], Bensmail, H.[Halima], Gao, X.[Xin],
Multiple graph regularized nonnegative matrix factorization,
PR(46), No. 10, October 2013, pp. 2840-2847.
Elsevier DOI 1306
Data representation; Nonnegative matrix factorization; Graph Laplacian; Ensemble manifold regularization BibRef

Wang, J.Y.[Jing-Yan], Almasri, I.[Islam], Gao, X.[Xin],
Adaptive graph regularized Nonnegative Matrix Factorization via feature selection,
ICPR12(963-966).
WWW Link. 1302
BibRef

Li, Z.C.[Ze-Chao], Liu, J.[Jing], Lu, H.Q.[Han-Qing],
Structure preserving non-negative matrix factorization for dimensionality reduction,
CVIU(117), No. 9, 2013, pp. 1175-1189.
Elsevier DOI 1307
Dimensionality reduction BibRef

Wang, L.[Lu], Albera, L., Kachenoura, A., Shu, H.Z.[Hua-Zhong], Senhadji, L.,
Nonnegative Joint Diagonalization by Congruence Based on LU Matrix Factorization,
SPLetters(20), No. 8, 2013, pp. 807-810.
IEEE DOI 1307
NMR spectroscopy BibRef

Li, J.[Jun], Tao, D.C.[Da-Cheng],
A Bayesian Hierarchical Factorization Model for Vector Fields,
IP(22), No. 11, 2013, pp. 4510-4521.
IEEE DOI 1310
Bayes methods BibRef

Xu, Y., Yin, W.,
A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion,
SIIMS(6), No. 3, 2013, pp. 1758-1789.
DOI Link 1310
BibRef

Hu, L.[Lirui], Dai, L.[Liang], Wu, J.G.[Jian-Guo],
Convergent Projective Non-negative Matrix Factorization with Kullback-Leibler Divergence,
PRL(36), No. 1, 2014, pp. 15-21.
Elsevier DOI 1312
Projective Non-negative Matrix Factorization BibRef

Ye, J.[Jun], Jin, Z.[Zhong],
Non-negative matrix factorisation based on fuzzy K nearest neighbour graph and its applications,
IET-CV(7), No. 5, October 2013, pp. 346-353.
DOI Link 1402
face recognition BibRef

Zou, W.B.[Wen-Bin], Bai, C.[Cong], Kpalma, K., Ronsin, J.,
Online Glocal Transfer for Automatic Figure-Ground Segmentation,
IP(23), No. 5, May 2014, pp. 2109-2121.
IEEE DOI 1405
Markov processes BibRef

Zou, W.B.[Wen-Bin], Kpalma, K.[Kidiyo], Liu, Z.[Zhi], Ronsin, J.[Joseph],
Segmentation Driven Low-rank Matrix Recovery for Saliency Detection,
BMVC13(xx-yy).
DOI Link 1402
BibRef

Zhou, G.[Guoxu], Cichocki, A., Zhao, Q.[Qibin], Xie, S.L.[Sheng-Li],
Nonnegative Matrix and Tensor Factorizations: An algorithmic perspective,
SPMag(31), No. 3, May 2014, pp. 54-65.
IEEE DOI 1405
Approximation methods BibRef

Zhou, G.[Guoxu], Cichocki, A., Zhao, Q.[Qibin], Xie, S.L.[Sheng-Li],
Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness,
IP(24), No. 12, December 2015, pp. 4990-5003.
IEEE DOI 1512
approximation theory BibRef

Huang, K., Sidiropoulos, N.,
Putting Nonnegative Matrix Factorization to the Test: A tutorial derivation of pertinent Cramer-Rao bounds and performance benchmarking,
SPMag(31), No. 3, May 2014, pp. 76-86.
IEEE DOI 1405
Cramer-Rao bounds BibRef

Feng, J.Z.[Jian-Zhou], Huo, X.M.[Xiao-Ming], Song, L.[Li], Yang, X.K.[Xiao-Kang], Zhang, W.J.[Wen-Jun],
Evaluation of Different Algorithms of Nonnegative Matrix Factorization in Temporal Psychovisual Modulation,
CirSysVideo(24), No. 4, April 2014, pp. 553-565.
IEEE DOI 1405
least squares approximations BibRef

Li, Z.C.[Ze-Chao], Liu, J.[Jing], Tang, J.H.[Jin-Hui], Lu, H.Q.[Han-Qing],
Projective Matrix Factorization with unified embedding for social image tagging,
CVIU(124), No. 1, 2014, pp. 71-78.
Elsevier DOI 1406
Projective Matrix Factorization BibRef

Li, Z.C.[Ze-Chao], Tang, J.H.[Jin-Hui],
Weakly Supervised Deep Matrix Factorization for Social Image Understanding,
IP(26), No. 1, January 2017, pp. 276-288.
IEEE DOI 1612
gradient methods BibRef

Gonen, M., Kaski, S.,
Kernelized Bayesian Matrix Factorization,
PAMI(36), No. 10, October 2014, pp. 2047-2060.
IEEE DOI 1410
approximation theory BibRef

Yang, Z.R.[Zhi-Rong], Oja, E.[Erkki],
Quadratic nonnegative matrix factorization,
PR(45), No. 4, 2012, pp. 1500-1510.
Elsevier DOI 1410
Nonnegative matrix factorization BibRef

Szabó, Z.[Zoltán], Póczos, B.[Barnabás], Lorincz, A.[András],
Separation theorem for independent subspace analysis and its consequences,
PR(45), No. 4, 2012, pp. 1782-1791.
Elsevier DOI 1410
BibRef
And:
Online group-structured dictionary learning,
CVPR11(2865-2872).
IEEE DOI 1106
Separation principles. Implement for the online, structured, sparse non-negative matrix factorization. BibRef

Liu, X.B.[Xiao-Bai], Xu, Q.[Qian], Yan, S.C.[Shui-Cheng], Wang, G.[Gang], Jin, H.[Hai], Lee, S.W.[Seong-Whan],
Nonnegative Tensor Cofactorization and Its Unified Solution,
IP(23), No. 9, September 2014, pp. 3950-3961.
IEEE DOI 1410
convergence BibRef

Li, B.[Bo], Zhou, G.[Guoxu], Cichocki, A.,
Two Efficient Algorithms for Approximately Orthogonal Nonnegative Matrix Factorization,
SPLetters(22), No. 7, July 2015, pp. 843-846.
IEEE DOI 1412
gradient methods BibRef

Jin, T.[Taisong], Yu, J.[Jun], You, J.[Jane], Zeng, K.[Kun], Li, C.[Cuihua], Yu, Z.[Zhengtao],
Low-rank matrix factorization with multiple Hypergraph regularizer,
PR(48), No. 3, 2015, pp. 1011-1022.
Elsevier DOI 1412
Hypergraph BibRef

Rapin, J.[Jérémy], Bobin, J.[Jérôme], Larue, A.[Anthony], Starck, J.L.[Jean-Luc],
NMF with Sparse Regularizations in Transformed Domains,
SIIMS(7), No. 4, 2014, pp. 2020-2047.
DOI Link 1412
BibRef
And: A2, A4, A1, A3:
Sparse blind source separation for partially correlated sources,
ICIP14(6021-6025)
IEEE DOI 1502
Nonnegative matrix factorization. Algorithm design and analysis BibRef

Sun, M.[Meng], Zhang, X.[Xiongwei], Van Hamme, H.[Hugo],
A stable approach for model order selection in nonnegative matrix factorization,
PRL(54), No. 1, 2015, pp. 97-102.
Elsevier DOI 1502
Model order selection BibRef

Han, H.[Hong], Liu, S.[Sanjun], Gan, L.[Lu],
Non-negativity and dependence constrained sparse coding for image classification,
JVCIR(26), No. 1, 2015, pp. 247-254.
Elsevier DOI 1502
Non-negative Matrix Factorization BibRef

Ye, M.[Minchao], Qian, Y.T.[Yun-Tao], Zhou, J.[Jun],
Multitask Sparse Nonnegative Matrix Factorization for Joint Spectral-Spatial Hyperspectral Imagery Denoising,
GeoRS(53), No. 5, May 2015, pp. 2621-2639.
IEEE DOI 1502
geophysical image processing BibRef

Ma, Z., Teschendorff, A.E., Leijon, A., Qiao, Y., Zhang, H., Guo, J.,
Variational Bayesian Matrix Factorization for Bounded Support Data,
PAMI(37), No. 4, April 2015, pp. 876-889.
IEEE DOI 1503
Approximation methods BibRef

Jiang, F.Y.[Fang-Yuan], Enqvist, O.[Olof], Kahl, F.[Fredrik],
A Combinatorial Approach to L1 -Matrix Factorization,
JMIV(51), No. 3, March 2015, pp. 430-441.
WWW Link. 1504
BibRef

Qiao, H.L.[Han-Li],
New SVD based initialization strategy for non-negative matrix factorization,
PRL(63), No. 1, 2015, pp. 71-77.
Elsevier DOI 1508
NMF BibRef

Liu, Y., Lei, Y., Li, C., Xu, W., Pu, Y.,
A Random Algorithm for Low-Rank Decomposition of Large-Scale Matrices With Missing Entries,
IP(24), No. 11, November 2015, pp. 4502-4511.
IEEE DOI 1509
Approximation algorithms BibRef

Wu, Y.[Yuwei], Jia, Y.D.[Yun-De], Li, P.H.[Pei-Hua], Zhang, J.[Jian], Yuan, J.S.[Jun-Song],
Manifold Kernel Sparse Representation of Symmetric Positive-Definite Matrices and Its Applications,
IP(24), No. 11, November 2015, pp. 3729-3741.
IEEE DOI 1509
graph theory BibRef

El Aziz, M.A.[Mohamed Abd], Khidr, W.[Wael],
Nonnegative matrix factorization based on projected hybrid conjugate gradient algorithm,
SIViP(9), No. 8, November 2015, pp. 1825-1831.
WWW Link. 1511
BibRef

Rad, R.[Roya], Jamzad, M.[Mansour],
Automatic image annotation by a loosely joint non-negative matrix factorisation,
IET-CV(9), No. 6, 2015, pp. 806-813.
DOI Link 1512
image classification BibRef

Rad, R.[Roya], Jamzad, M.[Mansour],
Image annotation using multi-view non-negative matrix factorization with different number of basis vectors,
JVCIR(46), No. 1, 2017, pp. 1-12.
Elsevier DOI 1706
Automatic, image, annotation BibRef

Simsekli, U., Liutkus, A., Cemgil, A.T.,
Alpha-Stable Matrix Factorization,
SPLetters(22), No. 12, December 2015, pp. 2289-2293.
IEEE DOI 1512
Markov processes BibRef

Yang, L.[Liu], Jing, L.P.[Li-Ping], Ng, M.K.,
Robust and Non-Negative Collective Matrix Factorization for Text-to-Image Transfer Learning,
IP(24), No. 12, December 2015, pp. 4701-4714.
IEEE DOI 1512
convergence of numerical methods BibRef

Wang, D., Gao, X., Wang, X.,
Semi-Supervised Nonnegative Matrix Factorization via Constraint Propagation,
Cyber(46), No. 1, January 2016, pp. 233-244.
IEEE DOI 1601
Approximation methods BibRef

Fu, X.[Xiao], Ma, W.K.[Wing-Kin],
Robustness Analysis of Structured Matrix Factorization via Self-Dictionary Mixed-Norm Optimization,
SPLetters(23), No. 1, January 2016, pp. 60-64.
IEEE DOI 1601
matrix decomposition BibRef

Mao, J.Y.[Jia-Yun], Zhang, Z.Y.[Zhen-Yue],
A local convex method for rank-sparsity factorization,
PRL(71), No. 1, 2016, pp. 31-37.
Elsevier DOI 1602
Low-rank matrices BibRef

Li, X.[Xue], Shen, B.[Bin], Liu, B.D.[Bao-Di], Zhang, Y.J.[Yu-Jin],
A Locality Sensitive Low-Rank Model for Image Tag Completion,
MultMed(18), No. 3, March 2016, pp. 474-483.
IEEE DOI 1603
BibRef
Earlier: A1, A4, A2, A3:
Image tag completion by low-rank factorization with dual reconstruction structure preserved,
ICIP14(3062-3066)
IEEE DOI 1502
Computational modeling. Encoding BibRef

Shen, B.[Bin], Liu, B.D.[Bao-Di], Wang, Q.[Qifan], Ji, R.R.[Rong-Rong],
Robust nonnegative matrix factorization via L1 norm regularization by multiplicative updating rules,
ICIP14(5282-5286)
IEEE DOI 1502
Additive noise BibRef

Lu, G.F., Wang, Y., Zou, J.,
Low-Rank Matrix Factorization With Adaptive Graph Regularizer,
IP(25), No. 5, May 2016, pp. 2196-2205.
IEEE DOI 1604
data structures BibRef

Arjona Ramírez, M.,
Non-Negative Temporal Decomposition Regularization With an Augmented Lagrangian,
SPLetters(23), No. 5, May 2016, pp. 663-667.
IEEE DOI 1604
Cost function BibRef

Zhu, F., Honeine, P.,
Biobjective Nonnegative Matrix Factorization: Linear Versus Kernel-Based Models,
GeoRS(54), No. 7, July 2016, pp. 4012-4022.
IEEE DOI 1606
Biological system modeling BibRef

Tang, J., Wang, K., Shao, L.,
Supervised Matrix Factorization Hashing for Cross-Modal Retrieval,
IP(25), No. 7, July 2016, pp. 3157-3166.
IEEE DOI 1606
computational complexity BibRef

Shokrollahi, M.[Mehrnaz], Krishnan, S.[Sridhar],
Non-stationary signal feature characterization using adaptive dictionaries and non-negative matrix factorization,
SIViP(10), No. 6, June 2016, pp. 1025-1032.
WWW Link. 1608
BibRef

Babaee, M.[Mohammadreza], Wolf, T.[Thomas], Rigoll, G.[Gerhard],
Toward semantic attributes in dictionary learning and non-negative matrix factorization,
PRL(80), No. 1, 2016, pp. 172-178.
Elsevier DOI 1609
BibRef
And:
Relative attribute guided dictionary learning,
ICIP16(704-708)
IEEE DOI 1610
Clustering algorithms Dictionary BibRef

Babaee, M.[Mohammadreza], Bahmanyar, R.[Reza], Rigoll, G.[Gerhard], Datcu, M.[Mihai],
Farness preserving Non-negative matrix factorization,
ICIP14(3023-3027)
IEEE DOI 1502
Accuracy BibRef

Cao, X., Zhao, Q., Meng, D., Chen, Y., Xu, Z.,
Robust Low-Rank Matrix Factorization Under General Mixture Noise Distributions,
IP(25), No. 10, October 2016, pp. 4677-4690.
IEEE DOI 1610
Gaussian distribution BibRef

Cao, X., Chen, Y., Zhao, Q., Meng, D., Wang, Y., Wang, D., Xu, Z.,
Low-Rank Matrix Factorization under General Mixture Noise Distributions,
ICCV15(1493-1501)
IEEE DOI 1602
Adaptation models BibRef

Ding, G.G.[Gui-Guang], Guo, Y.C.[Yu-Chen], Zhou, J.[Jile], Gao, Y.,
Large-Scale Cross-Modality Search via Collective Matrix Factorization Hashing,
IP(25), No. 11, November 2016, pp. 5427-5440.
IEEE DOI 1610
BibRef
Earlier: A1, A2, A3, Only:
Collective Matrix Factorization Hashing for Multimodal Data,
CVPR14(2083-2090)
IEEE DOI 1409
Algorithm design and analysis BibRef

Zhang, G., Gong, X.,
Nonnegative Matrix Cofactorization for Weakly Supervised Image Parsing,
SPLetters(23), No. 11, November 2016, pp. 1682-1686.
IEEE DOI 1609
image segmentation BibRef

Trigeorgis, G.[George], Bousmalis, K.[Konstantinos], Zafeiriou, S.P.[Stefanos P.], Schuller, B.W.[Björn W.],
A Deep Matrix Factorization Method for Learning Attribute Representations,
PAMI(39), No. 3, March 2017, pp. 417-429.
IEEE DOI 1702
Algorithm design and analysis BibRef

Kumar, V.[Vikas], Pujari, A.K.[Arun K.], Sahu, S.K.[Sandeep Kumar], Kagita, V.R.[Venkateswara Rao], Padmanabhan, V.[Vineet],
Proximal maximum margin matrix factorization for collaborative filtering,
PRL(86), No. 1, 2017, pp. 62-67.
Elsevier DOI 1702
Collaborative filtering BibRef

Karoui, M.S., Deville, Y., Benhalouche, F.Z., Boukerch, I.,
Hypersharpening by Joint-Criterion Nonnegative Matrix Factorization,
GeoRS(55), No. 3, March 2017, pp. 1660-1670.
IEEE DOI 1703
Algorithm design and analysis BibRef

Hou, J., Chau, L.P., Magnenat-Thalmann, N., He, Y.,
Sparse Low-Rank Matrix Approximation for Data Compression,
CirSysVideo(27), No. 5, May 2017, pp. 1043-1054.
IEEE DOI 1705
Approximation error, Coherence, Data compression, Matrix decomposition, Sparse matrices, Transforms, Data compression, low-rank matrix, optimization, orthogonal transform, sparsity BibRef

Debals, O., van Barel, M., de Lathauwer, L.,
Nonnegative Matrix Factorization Using Nonnegative Polynomial Approximations,
SPLetters(24), No. 7, July 2017, pp. 948-952.
IEEE DOI 1706
Approximation algorithms, Convergence, Optimization, Signal processing algorithms, Standards, TV, Two dimensional displays, Nonnegative matrix factorization (NMF), nonnegative polynomials, polynomial, approximation BibRef

Ma, X.K.[Xiao-Ke], Sun, P.G.[Peng-Gang], Qin, G.M.[Gui-Min],
Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability,
PR(71), No. 1, 2017, pp. 361-374.
Elsevier DOI 1707
Dynamic, networks BibRef

Lu, Y., Lai, Z., Xu, Y., Li, X., Zhang, D., Yuan, C.,
Nonnegative Discriminant Matrix Factorization,
CirSysVideo(27), No. 7, July 2017, pp. 1392-1405.
IEEE DOI 1707
Convergence, Euclidean distance, Image classification, Image reconstruction, Linear programming, Matrix decomposition, Principal component analysis, Discriminative ability, face recognition, maximum margin criterion (MMC), nonnegative, matrix, factorization, (NMF) BibRef

Zhu, X.X.[Xiang-Xiang], Zhang, Z.S.[Zhuo-Sheng],
Improved self-paced learning framework for nonnegative matrix factorization,
PRL(97), No. 1, 2017, pp. 1-7.
Elsevier DOI 1709
Nonnegative matrix factorization BibRef

Leng, C.[Chengcai], Cai, G.R.[Guo-Rong], Yu, D.[Dongdong], Wang, Z.[Zongyue],
Adaptive total-variation for non-negative matrix factorization on manifold,
PRL(98), No. 1, 2017, pp. 68-74.
Elsevier DOI 1710
Adaptive total variation BibRef


Bao, Y.Y.[Yan-Yan], Liu, H.W.[Hong-Wei],
Nonmonotone projected Barzilai-Borwein method for compressed sensing,
ICIVC17(756-760)
IEEE DOI 1708
Ions, Optical sensors, Barzilai-Borwein stepsize, compressed sensing, gradient projection, nonmonotone, line, search BibRef

Kohjima, M., Matsubayashi, T., Sawada, H.,
Non-negative multiple matrix factorization with Euclidean and Kullback-Leibler mixed divergences,
ICPR16(2515-2520)
IEEE DOI 1705
Euclidean distance, Linear programming, Measurement uncertainty, Optimization, Pattern recognition, Proposals, Smart, phones BibRef

Lan, C., Li, X., Deng, Y., Amand, J.S., Huan, J.,
A PAC bound for joint matrix completion based on Partially Collective Matrix Factorization,
ICPR16(2628-2633)
IEEE DOI 1705
Electronic mail, Indexes, Loading, Mathematical model, Picture archiving and communication systems, Sparse matrices, Standards BibRef

Tripodi, R., Vascon, S., Pelillo, M.,
Context aware nonnegative matrix factorization clustering,
ICPR16(1719-1724)
IEEE DOI 1705
Clustering algorithms, Electronic mail, Feature extraction, Game theory, Games, Mathematical model, Matrix, decomposition BibRef

Lemaitre, F., Lacassagne, L.,
Batched Cholesky factorization for tiny matrices,
DASIP16(130-137)
IEEE DOI 1704
mathematics computing BibRef

Chen, X.[Xi'ai], Han, Z.[Zhi], Wang, Y.[Yao], Zhao, Q.[Qian], Meng, D.[Deyu], Tang, Y.D.[Yan-Dong],
Robust Tensor Factorization with Unknown Noise,
CVPR16(5213-5221)
IEEE DOI 1612
BibRef

Bampis, C.G., Maragos, P., Bovik, A.C.,
Projective non-negative matrix factorization for unsupervised graph clustering,
ICIP16(1255-1258)
IEEE DOI 1610
Convergence BibRef

Hong, J.H., Fitzgibbon, A.,
Secrets of Matrix Factorization: Approximations, Numerics, Manifold Optimization and Random Restarts,
ICCV15(4130-4138)
IEEE DOI 1602
Algorithm design and analysis BibRef

Wang, T.C.[Tian-Chun], Ye, T.Q.[Teng-Qi], Gurrin, C.[Cathal],
Transfer Nonnegative Matrix Factorization for Image Representation,
MMMod16(II: 3-14).
Springer DOI 1601
BibRef

Pang, M.[Meng], Lin, C.[Chuang], Liu, R.[Risheng], Fan, X.[Xin], Jiang, J.F.[Ji-Feng], Luo, Z.X.[Zhong-Xuan],
Sparse concept discriminant matrix factorization for image representation,
ICIP15(1255-1259)
IEEE DOI 1512
Sparse coding BibRef

Wang, Z.F.[Zhen-Fan], Kong, X.W.[Xiang-Wei], Fu, H.Y.[Hai-Yan], Li, M.[Ming], Zhang, Y.[Yujia],
Feature extraction via multi-view non-negative matrix factorization with local graph regularization,
ICIP15(3500-3504)
IEEE DOI 1512
Feature extraction BibRef

Turkan, M.[Mehmet], Alain, M.[Martin], Thoreau, D.[Dominique], Guillotel, P.[Philippe], Guillemot, C.[Christine],
Epitomic image factorization via neighbor-embedding,
ICIP15(4141-4145)
IEEE DOI 1512
Epitome learning BibRef

Páez-Torres, A.E.[Andrés Esteban], González, F.A.[Fabio A.],
Online Kernel Matrix Factorization,
CIARP15(651-658).
Springer DOI 1511
BibRef

Beltrán, V.[Viviana], Vanegas, J.A.[Jorge A.], González, F.A.[Fabio A.],
Semi-supervised Dimensionality Reduction via Multimodal Matrix Factorization,
CIARP15(676-682).
Springer DOI 1511
BibRef

Chen, P.X.[Pei-Xian], Wang, N.Y.[Nai-Yan], Zhang, N.L.[Nevin L.], Yeung, D.Y.[Dit-Yan],
Bayesian adaptive matrix factorization with automatic model selection,
CVPR15(1284-1292)
IEEE DOI 1510
BibRef

Oskarsson, M.[Magnus], Batstone, K., Astrom, K.[Kalle],
Trust No One: Low Rank Matrix Factorization Using Hierarchical RANSAC,
CVPR16(5820-5829)
IEEE DOI 1612
BibRef

Jiang, F.Y.[Fang-Yuan], Oskarsson, M.[Magnus], Astrom, K.[Kalle],
On the minimal problems of low-rank matrix factorization,
CVPR15(2549-2557)
IEEE DOI 1510
BibRef

Huang, S.[Sheng], Elhoseiny, M.[Mohamed], Elgammal, A.M.[Ahmed M.], Yang, D.[Dan],
Improving non-negative matrix factorization via ranking its bases,
ICIP14(5951-5955)
IEEE DOI 1502
Algorithm design and analysis BibRef

Zafeiriou, L.[Lazaros], Nikitidis, S.[Symeon], Zafeiriou, S.P.[Stefanos P.], Pantic, M.[Maja],
Slow features nonnegative matrix factorization for temporal data decomposition,
ICIP14(1430-1434)
IEEE DOI 1502
Algorithm design and analysis BibRef

Wu, S.Y.[Shu-Yi], Zhang, X.[Xiang], Guan, N.Y.[Nai-Yang], Tao, D.C.[Da-Cheng], Huang, X.H.[Xu-Hui], Luo, Z.G.[Zhi-Gang],
Non-negative Low-Rank and Group-Sparse Matrix Factorization,
MMMod15(II: 536-547).
Springer DOI 1501
BibRef

Nourbakhsh, F.[Farshad], Bulo, S.R.[Samuel Rota], Pelillo, M.[Marcello],
A Matrix Factorization Approach to Graph Compression,
ICPR14(76-81)
IEEE DOI 1412
Accuracy BibRef

Chaudhari, S.[Sneha], Murty, M.N.[M.Narasimha],
Average Overlap for Clustering Incomplete Data Using Symmetric Non-negative Matrix Factorization,
ICPR14(1431-1436)
IEEE DOI 1412
Accuracy BibRef

Zen, G.[Gloria], Ricci, E.[Elisa], Sebe, N.[Nicu],
Simultaneous Ground Metric Learning and Matrix Factorization with Earth Mover's Distance,
ICPR14(3690-3695)
IEEE DOI 1412
Earth BibRef

Shu, X.B.[Xian-Biao], Porikli, F.M.[Fatih M.], Ahuja, N.[Narendra],
Robust Orthonormal Subspace Learning: Efficient Recovery of Corrupted Low-Rank Matrices,
CVPR14(3874-3881)
IEEE DOI 1409
BibRef

Li, Y.M.[Ying-Ming], Yang, M.[Ming], Zhang, Z.F.[Zhong-Fei],
Coordinate Ranking Regularized Non-negative Matrix Factorization,
ACPR13(215-219)
IEEE DOI 1408
data mining BibRef

Qin, Z.[Zhen], van Beek, P.[Peter], Chen, X.[Xu],
Direct Matrix Factorization and Alignment Refinement: Application to Defect Detection,
CRV14(135-142)
IEEE DOI 1406
Accuracy BibRef

Meng, D.Y.[De-Yu], de la Torre, F.[Fernando],
Robust Matrix Factorization with Unknown Noise,
ICCV13(1337-1344)
IEEE DOI 1403
BibRef

Guo, W.W.[Wei-Wei], Hu, W.D.[Wei-Dong], Boulgouris, N.V.[Nikolaos V.], Patras, I.[Ioannis],
Semi-supervised visual recognition with constrained graph regularized non negative matrix factorization,
ICIP13(2743-2747)
IEEE DOI 1402
Non Negative Matrix Factorization BibRef

Otálora-Montenegro, S.[Sebastian], Pérez-Rubiano, S.A.[Santiago A.], González, F.A.[Fabio A.],
Online Matrix Factorization for Space Embedding Multilabel Annotation,
CIARP13(I:343-350).
Springer DOI 1311
BibRef

Liu, L.[Lei], Comar, P.M.[Prakash Mandayam], Saha, S.[Sabyasachi], Tan, P.N.[Pang-Ning], Nucci, A.[Antonio],
Recursive NMF: Efficient label tree learning for large multi-class problems,
ICPR12(2148-2151).
WWW Link. 1302
non-negative matrix factorization BibRef

Xie, S.N.[Sai-Ning], Lu, H.T.[Hong-Tao], He, Y.C.[Yang-Cheng],
Multi-task co-clustering via nonnegative matrix factorization,
ICPR12(2954-2958).
WWW Link. 1302
BibRef

Wang, N.Y.[Nai-Yan], Yeung, D.Y.[Dit-Yan],
Bayesian Robust Matrix Factorization for Image and Video Processing,
ICCV13(1785-1792)
IEEE DOI 1403
BibRef

Wang, N.Y.[Nai-Yan], Yao, T.S.[Tian-Sheng], Wang, J.D.[Jing-Dong], Yeung, D.Y.[Dit-Yan],
A Probabilistic Approach to Robust Matrix Factorization,
ECCV12(VII: 126-139).
Springer DOI 1210
BibRef

Zdunek, R.[Rafal],
Trust-Region Algorithm for Nonnegative Matrix Factorization with Alpha- and Beta-Divergences,
DAGM12(226-235).
Springer DOI 1209
BibRef

Wang, D.[Dong], Lu, H.C.[Hu-Chuan],
Incremental orthogonal projective non-negative matrix factorization and its applications,
ICIP11(2077-2080).
IEEE DOI 1201
BibRef

Kumar, V.B.G.[Vijay B.G.], Patras, I.[Ioannis], Kotsia, I.[Irene],
Max-Margin Semi-NMF,
BMVC11(xx-yy).
HTML Version. 1110
Non-Negative Matrix Factorization BibRef

Gupta, M.D.[Mithun Das], Xiao, J.[Jing],
Non-negative matrix factorization as a feature selection tool for maximum margin classifiers,
CVPR11(2841-2848).
IEEE DOI 1106
BibRef

Kirbiz, S.[Serap], Cemgil, A.T.[A. Taylan], Gunsel, B.[Bilge],
Bayesian Inference for Nonnegative Matrix Factor Deconvolution Models,
ICPR10(2812-2815).
IEEE DOI 1008
BibRef

Jammalamadaka, A.[Aruna], Joshi, S.[Swapna], Karthikeyan, S., Manjunath, B.S.,
Discriminative Basis Selection Using Non-negative Matrix Factorization,
ICPR10(1533-1536).
IEEE DOI 1008
BibRef

Karthikeyan, S., Joshi, S.[Swapna], Manjunath, B.S., Grafton, S.[Scott],
Intra-class multi-output regression based subspace analysis,
ICIP12(1173-1176).
IEEE DOI 1302
See also Probabilistic subspace-based learning of shape dynamics modes for multi-view action recognition. BibRef

Vadivel, K.S.[Karthikeyan Shanmuga], Sargin, M.E.[Mehmet Emre], Joshi, S.[Swapna], Manjunath, B.S., Grafton, S.[Scott],
Generalized subspace based high dimensional density estimation,
ICIP11(1849-1852).
IEEE DOI 1201
BibRef

Joshi, S.[Swapna], Karthikeyan, S., Manjunath, B.S., Grafton, S.[Scott], Kiehl, K.A.[Kent A.],
Anatomical parts-based regression using non-negative matrix factorization,
CVPR10(2863-2870).
IEEE DOI 1006
BibRef

Chen, Q.A.[Qi-Ang], Yan, S.C.[Shui-Cheng], Ng, T.T.[Tian-Tsong],
Factorization towards a classifier,
CVPR10(3562-3569).
IEEE DOI 1006
BibRef

Liao, S.C.[Sheng-Cai], Lei, Z.[Zhen], Li, S.Z.[Stan Z.],
Nonnegative Matrix Factorization with Gibbs Random Field modeling,
Subspace09(79-86).
IEEE DOI 0910
BibRef

Gu, Q.Q.[Quan-Quan], Zhou, J.[Jie],
Two Dimensional Nonnegative Matrix Factorization,
ICIP09(2069-2072).
IEEE DOI 0911
BibRef
And:
Neighborhood Preserving Nonnegative Matrix Factorization,
BMVC09(xx-yy).
PDF File. 0909
BibRef

Gu, Q.Q.[Quan-Quan], Zhou, J.[Jie],
Multiple Kernel Maximum Margin Criterion,
ICIP09(2049-2052).
IEEE DOI 0911
BibRef

Tang, J.[Jiayu], Lewis, P.H.[Paul H.],
Non-negative matrix factorisation for object class discovery and image auto-annotation,
CIVR08(105-112). 0807
BibRef
Earlier:
Using multiple segmentations for image auto-annotation,
CIVR07(581-586).
DOI Link 0707
BibRef

Li, L.[Le], Zhang, Y.J.[Yu-Jin],
FastNMF: A fast monotonic fixed-point non-negative Matrix Factorization algorithm with high ease of use,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Rodrigues, J.J.[Jose J.], Aguiar, P.M.Q.[Pedro M.Q.], Xavier, J.M.F.[Joao M.F.],
ANSIG: An analytic signature for permutation-invariant two-dimensional shape representation,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Aguiar, P.M.Q.[Pedro M.Q.], Xavier, J.M.F.[Joao M.F.], Stosic, M.[Marko],
Spectrally optimal factorization of incomplete matrices,
CVPR08(1-8).
IEEE DOI 0806
BibRef
And:
Globally optimal solution to exploit rigidity when recovering structure from motion under occlusion,
ICIP08(197-200).
IEEE DOI 0810
BibRef

Aguiar, P.M.Q.[Pedro M.Q.], Miranda, A.R.[António R.], de Castro, N.[Nuno],
Occlusion-Based Accurate Silhouettes from Video Streams,
ICIAR06(I: 816-826).
Springer DOI 0610
BibRef

Aguiar, P.M.Q.[Pedro M.Q.], Moura, J.M.F.[José M.F.],
Joint Segmentation of Moving Object and Estimation of Background in Low-Light Video using Relaxation,
ICIP07(V: 53-56).
IEEE DOI 0709
BibRef
Earlier:
Maximum Likelihood Estimation of the Template of a Rigid Moving Object,
EMMCVPR01(34-49).
Springer DOI 0205
BibRef
Earlier:
Detecting and Solving Template Ambiguities in Motion Segmentation,
ICIP97(II: 494-497).
IEEE DOI BibRef
Earlier:
Incremental Motion Segmentation in Low Texture,
ICIP96(I: 233-236).
IEEE DOI BibRef

Potluru, V.K.[Vamsi K.], Plis, S.M.[Sergey M.], Calhoun, V.D.[Vince D.],
Sparse shift-invariant NMF,
Southwest08(69-72).
IEEE DOI 0803
Non-negative Matrix Factorization. BibRef

Zheng, W.S.[Wei-Shi], Li, S.Z.[Stan Z.], Lai, J.H., Liao, S.C.[Sheng-Cai],
On Constrained Sparse Matrix Factorization,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Loke, Y.R., Ranganath, S.,
Batch Algorithm with Additional Shape Constraints for Non-Rigid Factorization,
BMVC07(xx-yy).
PDF File. 0709
BibRef

Kim, Y.D.[Yong-Deok], Choi, S.J.[Seung-Jin],
Nonnegative Tucker Decomposition,
ComponentAnalysis07(1-8).
IEEE DOI 0706
Tensor factorization. Multilinear extension of matrix factorization. BibRef

Samko, O.[Oksana], Rosin, P.L.[Paul L.], Marshall, A.D.[A. Dave],
Robust Automatic Data Decomposition Using a Modified Sparse NMF,
MIRAGE07(225-234).
Springer DOI 0703
Representation from real world data with unknown structure. Non-negative matrix factorization (sparse NMF). BibRef

Yuan, Z.J.[Zhi-Jian], Oja, E.[Erkki],
Projective Nonnegative Matrix Factorization for Image Compression and Feature Extraction,
SCIA05(333-342).
Springer DOI 0506
BibRef

Buchanan, A.M., Fitzgibbon, A.W.,
Damped Newton Algorithms for Matrix Factorization with Missing Data,
CVPR05(II: 316-322).
IEEE DOI 0507
BibRef

Gruber, A., Weiss, Y.,
Multibody factorization with uncertainty and missing data using the EM algorithm,
CVPR04(I: 707-714).
IEEE DOI 0408
BibRef

Aanæs, H.[Henrik], Fisker, R.[Rune], Åström, K.[Kalle], Carstensen, J.M.[Jens Michael],
Factorization with Erroneous Data,
PCV02(A: 15). 0305
BibRef

Rother, C., Carlsson, S., Tell, D.,
Projective factorization of planes and cameras in multiple views,
ICPR02(II: 737-740).
IEEE DOI 0211
BibRef

Triggs, B.[Bill],
Plane + Parallax, Tensors, and Factorization,
ECCV00(I: 522-538).
Springer DOI 0003
BibRef

Aguiar, P.,
Weighted Factorization,
ICIP00(Vol I: 549-552).
IEEE DOI 0008
BibRef

Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Matrix Completion Algorithms .


Last update:Nov 11, 2017 at 13:31:57