Baum, L.E.,
Petrie, T.,
Soules, G.,
Weiss, N.,
A Maximizzation Technique Occurring in teh Statistical Analysis of
Probabilistic Function of Markov Chains,
AMS(41), No. 1, 1970, pp. 164-171.
BibRef
7000
Kanal, L.[Laveen],
Chandrasekaran, B.,
On dimensionality and sample size in statistical pattern classification,
PR(3), No. 3, October 1971, pp. 225-234.
Elsevier DOI
0309
BibRef
Wilson, D.L.,
Asymptotic properties of nearest neighbor rules using edited data,
SMC(2), 1972, pp. 408-421.
Remove from training set those items mis-classified by the chosen rules.
BibRef
7200
Jain, A.K.[Anil K.],
Dubes, R.C.[Richard C.],
Feature definition in pattern recognition with small sample size,
PR(10), No. 2, 1978, pp. 85-97.
Elsevier DOI
0309
BibRef
Kalayeh, H.M.,
Muasher, M.J., and
Landgrebe, D.A.,
Feature Selection When Limited Numbers of Training Samples
are Available,
GeoRS(21), No. 4, October 1983, pp. 434-438.
IEEE Top Reference.
BibRef
8310
Muasher, M.J., and
Landgrebe, D.A.,
The K-L Expansion as an Effective Feature Ordering Technique for Limited
Training Sample Size,
GeoRS(21), No. 4, October 1983, pp. 438-441.
IEEE Top Reference.
BibRef
8310
Kalayeh, H.M.,
Landgrebe, D.A.,
Predicting the Required Number of Training Samples,
PAMI(5), No. 6, November 1983, pp. 664-666.
BibRef
8311
Muasher, M.J., and
Landgrebe, D.A.,
A Binary Tree Feature Selection Technique for Limited Training Set Size,
RSE(16), No. 3, December 1984, pp. 183-194.
BibRef
8412
Landgrebe, D.A., and
Malaret, E.R.,
Noise in Remote Sensing Systems: Effect on Classification Accuracy,
GeoRS(24), No. 2, March 1986, pp. 294-299.
IEEE Top Reference.
BibRef
8603
Shahshahani, B.M.[Behzad M.], and
Landgrebe, D.A.[David A.],
The Effect of Unlabeled Samples in Reducing the Small Sample
Size Problem and Mitigating the Hughes Phenomenon,
GeoRS(32), No. 5, September 1994, pp. 1087-1095.
IEEE DOI
PDF File.
BibRef
9409
Hoffbeck, J.P.[Joseph P.],
Landgrebe, D.A.,
Covariance-Matrix Estimation and Classification with
Limited Training Data,
PAMI(18), No. 7, July 1996, pp. 763-767.
IEEE DOI
PDF File.
9608
BibRef
Herbst, K.[Klaus],
Pattern recognition by polynomial canonical regression,
PR(17), No. 3, 1984, pp. 345-350.
Elsevier DOI
0309
BibRef
Wharton, S.W.[Stephen W.],
An analysis of the effects of sample size on classification performance
of a histogram based cluster analysis procedure,
PR(17), No. 2, 1984, pp. 239-244.
Elsevier DOI
0309
BibRef
Djouadi, A.,
Snorrason, O., and
Garber, F.D.,
The Quality of Training-Sample Estimates of the
Bhattacharyya Coefficient,
PAMI(12), No. 1, January 1990, pp. 92-97.
IEEE DOI
BibRef
9001
Hong, Z.Q.[Zi-Quan],
Yang, J.Y.[Jing-Yu],
Optimal discriminant plane for a small number of samples and design
method of classifier on the plane,
PR(24), No. 4, 1991, pp. 317-324.
Elsevier DOI
0401
BibRef
Rachkovskij, D.A.,
Kussul, E.M.,
Datagen:
A Generator of Datasets for Evaluation of Classification Algorithms,
PRL(19), No. 7, May 1998, pp. 537-544.
9808
BibRef
Sánchez, J.S.,
Barandela, R.,
Marqués, A.I.,
Alejo, R.,
Badenas, J.,
Analysis of new techniques to obtain quality training sets,
PRL(24), No. 7, April 2003, pp. 1015-1022.
Elsevier DOI
0301
BibRef
Chen, D.M.[Dong-Mei],
Stow, D.[Douglas],
The Effect of Training Strategies on Supervised Classification at
Different Spatial Resolutions,
PhEngRS(68), No. 11, November 2002, pp. 1155-1162.
Three different training strategies often used for supervised
classification are compared for six image subsets containing a single
land-use/land-cover component and at five different spatial
resolutions.
WWW Link.
0304
BibRef
Beiden, S.V.[Sergey V.],
Maloof, M.A.[Marcus A.],
Wagner, R.F.[Robert F.],
A general model for finite-sample effects in training and testing of
competing classifiers,
PAMI(25), No. 12, December 2003, pp. 1561-1569.
IEEE Abstract.
0401
More than size of sample set.
BibRef
Sánchez, J.S.,
High training set size reduction by space partitioning and prototype
abstraction,
PR(37), No. 7, July 2004, pp. 1561-1564.
Elsevier DOI
0405
BibRef
Wang, H.C.[Hai-Chuan],
Zhang, L.M.[Li-Ming],
Linear generalization probe samples for face recognition,
PRL(25), No. 8, June 2004, pp. 829-840.
Elsevier DOI
0405
Generate probe sets
using constrained linear subspace of the original probes.
BibRef
Prudêncio, R.B.C.[Ricardo B. C.],
Ludermir, T.B.[Teresa B.],
de Carvalho, F.A.T.[Francisco A. T.],
A Modal Symbolic Classifier for selecting time series models,
PRL(25), No. 8, June 2004, pp. 911-921.
Elsevier DOI
0405
BibRef
Kuo, B.C.,
Chang, K.Y.,
Feature Extractions for Small Sample Size Classification Problem,
GeoRS(45), No. 3, March 2007, pp. 756-764.
IEEE DOI
0703
BibRef
Angiulli, F.[Fabrizio],
Condensed Nearest Neighbor Data Domain Description,
PAMI(29), No. 10, October 2007, pp. 1746-1758.
IEEE DOI
0710
Distinguish between normal and abnormal data to find the minimal subset
of consistent data.
BibRef
Farhangfar, A.[Alireza],
Kurgan, L.A.[Lukasz A.],
Dy, J.G.[Jennifer G.],
Impact of imputation of missing values on classification error for
discrete data,
PR(41), No. 12, December 2008, pp. 3692-3705.
Elsevier DOI
0810
Missing values; Classification; Imputation of missing values; Single
imputation; Multiple imputations
For databases.
studies the effect of missing data imputation using five single
imputation methods (a mean method, a Hot deck method, a
Naive-Bayes method, and the latter two methods with a recently
proposed imputation framework) and one multiple imputation method (a
polytomous regression based method) on classification accuracy for six
popular classifiers (RIPPER, C4.5, K-nearest-neighbor, support vector
machine with polynomial and RBF kernels, and Naive-Bayes) on 15
datasets.
BibRef
Koikkalainen, J.,
Tolli, T.,
Lauerma, K.,
Antila, K.,
Mattila, E.,
Lilja, M.,
Lotjonen, J.,
Methods of Artificial Enlargement of the Training Set for Statistical
Shape Models,
MedImg(27), No. 11, November 2008, pp. 1643-1654.
IEEE DOI
0811
Heart images.
BibRef
Peres, R.T.,
Pedreira, C.E.,
Generalized Risk Zone: Selecting Observations for Classification,
PAMI(31), No. 7, July 2009, pp. 1331-1337.
IEEE DOI
0905
Select key observations in sample set.
BibRef
Levi, D.[Dan],
Ullman, S.[Shimon],
Learning to classify by ongoing feature selection,
IVC(28), No. 4, April 2010, pp. 715-723.
Elsevier DOI
1002
BibRef
Earlier:
CRV06(1-1).
IEEE DOI
0607
Continuous updating of the clustering based on new inputs.
Online learning; Object recognition
BibRef
Levi, D.[Dan],
Ullman, S.[Shimon],
Learning Model Complexity in an Online Environment,
CRV09(260-267).
IEEE DOI
0905
BibRef
Ambai, M.[Mitsuru],
Yoshida, Y.[Yuichi],
Augmenting Training Samples with a Large Number of Rough Segmentation
Datasets,
IEICE(E94-D), No. 10, October 2011, pp. 1880-1888.
WWW Link.
1110
BibRef
Rico-Juan, J.R.[Juan Ramón],
Iñesta, J.M.[José Manuel],
New rank methods for reducing the size of the training
set using the nearest neighbor rule,
PRL(33), No. 5, 1 April 2012, pp. 654-660.
Elsevier DOI
BibRef
1204
And:
Corrigendum:
PRL(33), No. 10, 15 July 2012, pp. 1434.
Elsevier DOI
1205
Editing; Condensing; Rank methods; Sorted prototypes selection
BibRef
Körting, T.S.[Thales Sehn],
Garcia Fonseca, L.M.[Leila Maria],
Castejon, E.F.[Emiliano Ferreira],
Namikawa, L.M.[Laercio Massaru],
Improvements in Sample Selection Methods for Image Classification,
RS(6), No. 8, 2014, pp. 7580-7591.
DOI Link
1410
BibRef
Cheng, D.S.[Dong Seon],
Setti, F.[Francesco],
Zeni, N.[Nicola],
Ferrario, R.[Roberta],
Cristani, M.[Marco],
Semantically-driven automatic creation of training sets for object
recognition,
CVIU(131), No. 1, 2015, pp. 56-71.
Elsevier DOI
1412
Object recognition
BibRef
Hamidzadeh, J.[Javad],
Monsefi, R.[Reza],
Yazdi, H.S.[Hadi Sadoghi],
IRAHC: Instance Reduction Algorithm using Hyperrectangle Clustering,
PR(48), No. 5, 2015, pp. 1878-1889.
Elsevier DOI
1502
Instance reduction
BibRef
Ma, L.[Lei],
Cheng, L.[Liang],
Li, M.C.[Man-Chun],
Liu, Y.X.[Yong-Xue],
Ma, X.X.[Xiao-Xue],
Training set size, scale, and features in Geographic Object-Based
Image Analysis of very high resolution unmanned aerial vehicle
imagery,
PandRS(102), No. 1, 2015, pp. 14-27.
Elsevier DOI
1503
GEOBIA
BibRef
Yang, W.[Wen],
Yin, X.S.[Xiao-Shuang],
Xia, G.S.[Gui-Song],
Learning High-level Features for Satellite Image Classification With
Limited Labeled Samples,
GeoRS(53), No. 8, August 2015, pp. 4472-4482.
IEEE DOI
1506
Gaussian distribution
BibRef
Wu, H.[Hao],
Miao, Z.J.[Zhen-Jiang],
Chen, J.Y.[Jing-Yue],
Yang, J.[Jie],
Gao, X.[Xing],
Recognition improvement through the optimisation of learning
instances,
IET-CV(9), No. 3, 2015, pp. 419-427.
DOI Link
1507
computer vision
BibRef
Colditz, R.R.[René Roland],
An Evaluation of Different Training Sample Allocation Schemes for
Discrete and Continuous Land Cover Classification Using Decision
Tree-Based Algorithms,
RS(7), No. 8, 2015, pp. 9655.
DOI Link
1509
BibRef
Huang, X.[Xin],
Weng, C.L.[Chun-Lei],
Lu, Q.K.[Qi-Kai],
Feng, T.T.[Tian-Tian],
Zhang, L.P.[Liang-Pei],
Automatic Labelling and Selection of Training Samples for
High-Resolution Remote Sensing Image Classification over Urban Areas,
RS(7), No. 12, 2015, pp. 15819.
DOI Link
1601
BibRef
Ekambaram, R.[Rajmadhan],
Fefilatyev, S.[Sergiy],
Shreve, M.[Matthew],
Kramer, K.[Kurt],
Hall, L.O.[Lawrence O.],
Goldgof, D.B.[Dmitry B.],
Kasturi, R.[Rangachar],
Active cleaning of label noise,
PR(51), No. 1, 2016, pp. 463-480.
Elsevier DOI
1601
Support vectors
BibRef
Jamjoom, M.[Mona],
El Hindi, K.[Khalil],
Partial instance reduction for noise elimination,
PRL(74), No. 1, 2016, pp. 30-37.
Elsevier DOI
1604
Noise filtering. Learning with noisy data.
BibRef
Akata, Z.[Zeynep],
Perronnin, F.[Florent],
Harchaoui, Z.[Zaid],
Schmid, C.[Cordelia],
Label-Embedding for Image Classification,
PAMI(38), No. 7, July 2016, pp. 1425-1438.
IEEE DOI
1606
BibRef
Earlier:
Label-Embedding for Attribute-Based Classification,
CVPR13(819-826)
IEEE DOI
1309
Animals
See also Good Practice in Large-Scale Learning for Image Classification.
BibRef
Paulin, M.[Mattis],
Revaud, J.[Jerome],
Harchaoui, Z.[Zaid],
Perronnin, F.[Florent],
Schmid, C.[Cordelia],
Transformation Pursuit for Image Classification,
CVPR14(3646-3653)
IEEE DOI
1409
Augment training with transformed images.
BibRef
Chatzilari, E.[Elisavet],
Nikolopoulos, S.[Spiros],
Kompatsiaris, I.[Ioannis],
Kittler, J.V.[Josef V.],
SALIC: Social Active Learning for Image Classification,
MultMed(18), No. 8, August 2016, pp. 1488-1503.
IEEE DOI
1608
computational complexity. Select appropriate user tagged image for training
set.
BibRef
Yao, Y.,
Zhang, J.,
Shen, F.,
Hua, X.,
Xu, J.,
Tang, Z.,
Exploiting Web Images for Dataset Construction:
A Domain Robust Approach,
MultMed(19), No. 8, August 2017, pp. 1771-1784.
IEEE DOI
1708
Google, Labeling, Manuals, Noise measurement, Robustness,
Search engines, Visualization, Domain robust,
image dataset construction, multi-instance learning (MIL),
multiple, query, expansions
BibRef
Rahmani, M.[Mostafa],
Atia, G.K.[George K.],
Spatial Random Sampling: A Structure-Preserving Data Sketching Tool,
SPLetters(24), No. 9, September 2017, pp. 1398-1402.
IEEE DOI
1708
Approximation algorithms, Clustering algorithms,
Complexity theory, Signal processing algorithms, Sociology,
Statistics, Tools, Big data, clustering, column sampling,
data sketching, random embedding, unit, sphere
BibRef
Liu, H.F.[Hong-Fu],
Tao, Z.Q.[Zhi-Qiang],
Fu, Y.[Yun],
Partition Level Constrained Clustering,
PAMI(40), No. 10, October 2018, pp. 2469-2483.
IEEE DOI
1809
A small proportion of the data is given labels to guide the clustering.
Clustering algorithms, Partitioning algorithms,
Noise measurement, Robustness, Algorithm design and analysis,
cosegmentation
BibRef
Zhang, J.J.[Jia-Jia],
Shao, K.[Kun],
Luo, X.[Xing],
Small Sample Image Recognition Using Improved Convolutional Neural
Network,
JVCIR(55), 2018, pp. 640-647.
Elsevier DOI
1809
Image recognition, Convolutional Neural Network (CNN),
General Regression Neural Network (GRNN), Small sample, Real-time
BibRef
Vakhitov, A.[Alexander],
Kuzmin, A.[Andrey],
Lempitsky, V.[Victor],
Set2Model Networks:
Learning Discriminatively to Learn Generative Models,
CVIU(173), 2018, pp. 13-23.
Elsevier DOI
1901
BibRef
Earlier:
WSM17(357-366)
IEEE DOI
1802
Learning-to-learn, Deep learning,
Internet-based Image retrieval, ImageNet.
Noisy training data, no negative examples.
Computational modeling, Internet, Probabilistic logic,
Search engines, Training, Visualization
BibRef
Zachariah, D.,
Stoica, P.,
Effect Inference From Two-Group Data With Sampling Bias,
SPLetters(26), No. 8, August 2019, pp. 1103-1106.
IEEE DOI
1908
data analysis, inference mechanisms,
least squares approximations, sampling methods,
two-sample test
BibRef
Yin, Q.B.[Qing-Bo],
Adeli, E.[Ehsan],
Shen, L.[Liran],
Shen, D.G.[Ding-Gang],
Population-guided large margin classifier for high-dimension
low-sample-size problems,
PR(97), 2020, pp. 107030.
Elsevier DOI
1910
Binary linear classifier, Data piling,
High-dimension lowsample-size, Hyperplane, Local structure information
BibRef
Shen, L.[Liran],
Er, M.J.[Meng Joo],
Yin, Q.B.[Qing-Bo],
Classification for high-dimension low-sample size data,
PR(130), 2022, pp. 108828.
Elsevier DOI
2206
Binary linear classifier, Quadratic programming, Data piling, Covariance matrix
BibRef
Mishra, S.,
Yamasaki, T.,
Imaizumi, H.,
Improving image classifiers for small datasets by learning rate
adaptations,
MVA19(1-6)
DOI Link
1911
image classification, learning (artificial intelligence),
training time, nearing state, learning rate, datasets,
5G mobile communication
BibRef
Mithun, N.C.[Niluthpol Chowdhury],
Panda, R.[Rameswar],
Roy-Chowdhury, A.K.[Amit K.],
Construction of Diverse Image Datasets From Web Collections With
Limited Labeling,
CirSysVideo(30), No. 4, April 2020, pp. 1147-1161.
IEEE DOI
2004
Visualization, Labeling, Manuals, Image coding, Training, Google,
Search engines, Image dataset, active learning,
joint image-text analysis
BibRef
Gong, C.[Chen],
Shi, H.[Hong],
Yang, J.[Jie],
Yang, J.[Jian],
Multi-Manifold Positive and Unlabeled Learning for Visual Analysis,
CirSysVideo(30), No. 5, May 2020, pp. 1396-1409.
IEEE DOI
2005
Training with only positive samples.
Manifolds, Training, Image recognition, Face,
Hyperspectral imaging, Semisupervised learning,
positive confidence training
BibRef
Sellars, P.[Philip],
Aviles-Rivero, A.I.[Angelica I.],
Schönlieb, C.B.[Carola B.],
Superpixel Contracted Graph-Based Learning for Hyperspectral Image
Classification,
GeoRS(58), No. 6, June 2020, pp. 4180-4193.
IEEE DOI
2005
From limited labelled data.
Graph-based methods, hyperspectral image (HSI) classification,
semi-supervised learning (SSL), superpixels
BibRef
Hao, Q.,
Li, S.,
Kang, X.,
Multilabel Sample Augmentation-Based Hyperspectral Image
Classification,
GeoRS(58), No. 6, June 2020, pp. 4263-4278.
IEEE DOI
2005
Classifier, hyperspectral image classification,
multilabel samples, sample augmentation
BibRef
Li, H.Z.[Hong-Zhu],
Wang, W.Q.[Wei-Qiang],
Reinterpreting CTC training as iterative fitting,
PR(105), 2020, pp. 107392.
Elsevier DOI
2006
Connectionist temporal classification (CTC)
BibRef
Besson, O.,
Adaptive Detection Using Whitened Data When Some of the Training
Samples Undergo Covariance Mismatch,
SPLetters(27), 2020, pp. 795-799.
IEEE DOI
2006
Adaptive detection, covariance mismatch,
generalized likelihood ratio test, Student distribution
BibRef
Yalcinkaya, O.[Ozge],
Golge, E.[Eren],
Duygulu, P.[Pinar],
I-ME: iterative model evolution for learning from weakly labeled images
and videos,
MVA(31), No. 5, July 2020, pp. Article40.
WWW Link.
2006
BibRef
Earlier: A2, A3, Only:
ConceptMap: Mining Noisy Web Data for Concept Learning,
ECCV14(VII: 439-455).
Springer DOI
1408
Use web search for training to learn concepts
BibRef
Li, X.,
Chang, D.,
Ma, Z.,
Tan, Z.,
Xue, J.,
Cao, J.,
Yu, J.,
Guo, J.,
OSLNet: Deep Small-Sample Classification With an Orthogonal Softmax
Layer,
IP(29), 2020, pp. 6482-6495.
IEEE DOI
2007
Training, Optimization, Training data, Deep learning, Decorrelation,
Biological neural networks, Deep neural network,
small-sample classification
BibRef
Syrris, V.[Vasileios],
Pesek, O.[Ondrej],
Soille, P.[Pierre],
SatImNet: Structured and Harmonised Training Data for Enhanced
Satellite Imagery Classification,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Khan, A.[Aparajita],
Maji, P.[Pradipta],
Approximate Graph Laplacians for Multimodal Data Clustering,
PAMI(43), No. 3, March 2021, pp. 798-813.
IEEE DOI
2102
Laplace equations, Clustering algorithms, Cancer,
Approximation algorithms, Eigenvalues and eigenfunctions,
matrix perturbation theory
BibRef
Mandal, A.[Ankita],
Maji, P.[Pradipta],
A New Method to Address Singularity Problem in Multimodal Data Analysis,
PReMI17(43-51).
Springer DOI
1711
Small sample set, large feature set.
BibRef
Gong, C.[Chen],
Shi, H.[Hong],
Liu, T.L.[Tong-Liang],
Zhang, C.[Chuang],
Yang, J.[Jian],
Tao, D.C.[Da-Cheng],
Loss Decomposition and Centroid Estimation for Positive and Unlabeled
Learning,
PAMI(43), No. 3, March 2021, pp. 918-932.
IEEE DOI
2102
Estimation, Training, Supervised learning, Noise measurement,
Analytical models, Risk management, Kernel, PU learning,
generalization bound
BibRef
Ramezan, C.A.[Christopher A.],
Warner, T.A.[Timothy A.],
Maxwell, A.E.[Aaron E.],
Price, B.S.[Bradley S.],
Effects of Training Set Size on Supervised Machine-Learning
Land-Cover Classification of Large-Area High-Resolution Remotely
Sensed Data,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Li, Y.[Yang],
Zhao, Z.Q.[Zhi-Qun],
Sun, H.[Hao],
Cen, Y.G.[Yi-Gang],
He, Z.H.[Zhi-Hai],
Snowball: Iterative Model Evolution and Confident Sample Discovery
for Semi-Supervised Learning on Very Small Labeled Datasets,
MultMed(23), 2021, pp. 1354-1366.
IEEE DOI
2105
Training, Semisupervised learning, Predictive models,
Error analysis, Task analysis, Entropy, Knowledge engineering,
classification
BibRef
Li, J.J.[Jun-Jie],
Meng, L.K.[Ling-Kui],
Yang, B.B.[Bei-Bei],
Tao, C.X.[Chong-Xin],
Li, L.Y.[Lin-Yi],
Zhang, W.[Wen],
LabelRS: An Automated Toolbox to Make Deep Learning Samples from
Remote Sensing Images,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Lartigue, T.[Thomas],
Bottani, S.[Simona],
Baron, S.[Stéphanie],
Colliot, O.[Olivier],
Durrleman, S.[Stanley],
Allassonnière, S.[Stéphanie],
Gaussian Graphical Model Exploration and Selection in High Dimension
Low Sample Size Setting,
PAMI(43), No. 9, September 2021, pp. 3196-3213.
IEEE DOI
2108
Correlation, Covariance matrices, Measurement, Graphical models,
Gaussian distribution, Sparse representation,
maximum likelihood estimation
BibRef
Scmitsu, T.[Takayuki],
Nakamura, M.[Mitsuki],
Ishigami, S.[Shotaro],
Aoki, T.[Toru],
Lee, T.Y.[Teng-Yok],
Isu, Y.[Yoshimi],
Estimating Contribution of Training Datasets using Shapley Values in
Data-scale for Visual Recognition,
MVA21(1-5)
DOI Link
2109
Training, Measurement, Visualization, Additives, Task analysis
BibRef
Ye, H.J.[Han-Jia],
Zhan, D.C.[De-Chuan],
Jiang, Y.[Yuan],
Zhou, Z.H.[Zhi-Hua],
Heterogeneous Few-Shot Model Rectification With Semantic Mapping,
PAMI(43), No. 11, November 2021, pp. 3878-3891.
IEEE DOI
2110
Task analysis, Adaptation models, Predictive models, Data models,
Training, Semantics, Robustness, Model reuse, learnware
BibRef
Liu, J.X.[Jin-Xiang],
Zhang, K.F.[Ke-Fei],
Wu, S.Q.[Su-Qin],
Shi, H.T.[Hong-Tao],
Zhao, Y.D.[Yin-Di],
Sun, Y.Q.[Ya-Qin],
Zhuang, H.F.[Hui-Fu],
Fu, E.[Erjiang],
An Investigation of a Multidimensional CNN Combined with an Attention
Mechanism Model to Resolve Small-Sample Problems in Hyperspectral
Image Classification,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Qi, G.J.[Guo-Jun],
Luo, J.B.[Jie-Bo],
Small Data Challenges in Big Data Era: A Survey of Recent Progress on
Unsupervised and Semi-Supervised Methods,
PAMI(44), No. 4, April 2022, pp. 2168-2187.
IEEE DOI
2203
Data models, Task analysis, Training, Adaptation models, Big Data,
Supervised learning, Unsupervised methods,
instance discrimination and equivariance
BibRef
Gao, K.L.[Kui-Liang],
Liu, B.[Bing],
Yu, X.[Xuchu],
Yu, A.[Anzhu],
Unsupervised Meta Learning With Multiview Constraints for
Hyperspectral Image Small Sample set Classification,
IP(31), 2022, pp. 3449-3462.
IEEE DOI
2205
Learning systems, Task analysis, Training, Feature extraction,
Deep learning, Data models
BibRef
Gao, K.L.[Kui-Liang],
Yu, A.[Anzhu],
You, X.[Xiong],
Qiu, C.P.[Chun-Ping],
Liu, B.[Bing],
Guo, W.[Wenyue],
Learning General-Purpose Representations for Cross-Domain
Hyperspectral Images Classification with Small Samples,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Kleinewillinghöfer, L.[Luca],
Olofsson, P.[Pontus],
Pebesma, E.[Edzer],
Meyer, H.[Hanna],
Buck, O.[Oliver],
Haub, C.[Carsten],
Eiselt, B.[Beatrice],
Unbiased Area Estimation Using Copernicus High Resolution Layers and
Reference Data,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
Getting accurate spectral info.
BibRef
Sun, C.H.[Cai-Hao],
Zhang, X.H.[Xiao-Hua],
Meng, H.Y.[Hong-Yun],
Cao, X.H.[Xiang-Hai],
Zhang, J.H.[Jin-Hua],
AC-WGAN-GP: Generating Labeled Samples for Improving Hyperspectral
Image Classification with Small-Samples,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Ye, H.[Hang],
Wang, Y.L.[Yong-Liang],
Liu, W.J.[Wei-Jian],
Liu, J.[Jun],
Chen, H.[Hui],
Adaptive Detection in Partially Homogeneous Environment with Limited
Samples Based on Geometric Barycenters,
SPLetters(29), 2022, pp. 2083-2087.
IEEE DOI
2211
Detectors, Training, Training data, Clutter,
Statistical distributions, Radar, Maximum likelihood estimation,
limited samples
BibRef
Shifat-E-Rabbi, M.[Mohammad],
Zhuang, Y.[Yan],
Li, S.Y.[Shi-Ying],
Rubaiyat, A.H.M.[Abu Hasnat Mohammad],
Yin, X.[Xuwang],
Rohde, G.K.[Gustavo K.],
Invariance encoding in sliced-Wasserstein space for image
classification with limited training data,
PR(137), 2023, pp. 109268.
Elsevier DOI
2302
R-CDT, Mathematical model, Generative model, Invariance learning
BibRef
Ren, Y.T.[Yi-Tao],
Jin, P.Y.[Pei-Yang],
Li, Y.Y.[Yi-Yang],
Mao, K.M.[Ke-Ming],
An efficient hyperspectral image classification method for limited
training data,
IET-IPR(17), No. 6, 2023, pp. 1709-1717.
DOI Link
2305
convolutional neural nets, hyperspectral imaging, neural nets
BibRef
Zhong, W.Y.[Wen-Yuan],
Li, H.X.[Hua-Xiong],
Hu, Q.H.[Qing-Hua],
Gao, Y.[Yang],
Chen, C.L.[Chun-Lin],
Multi-Level Cascade Sparse Representation Learning for Small Data
Classification,
CirSysVideo(33), No. 5, May 2023, pp. 2451-2464.
IEEE DOI
2305
Training, Feature extraction, Visual databases, Sparse matrices,
Faces, Data visualization, Symbols, Deep cascade, small data
BibRef
Chu, J.L.[Jie-Lei],
Liu, J.[Jing],
Wang, H.J.[Hong-Jun],
Meng, H.[Hua],
Gong, Z.G.[Zhi-Guo],
Li, T.R.[Tian-Rui],
Micro-Supervised Disturbance Learning:
A Perspective of Representation Probability Distribution,
PAMI(45), No. 6, June 2023, pp. 7542-7558.
IEEE DOI
2305
Representation learning, Probability distribution, Data models,
Feature extraction, Semisupervised learning, Stability analysis,
small-perturbation
BibRef
Nápoles, G.[Gonzalo],
Grau, I.[Isel],
Jastrzebska, A.[Agnieszka],
Salgueiro, Y.[Yamisleydi],
Presumably correct decision sets,
PR(141), 2023, pp. 109640.
Elsevier DOI
2306
Data analysis, Granular computing, Decision sets, Rough sets
BibRef
Liu, W.J.[Wei-Jian],
Liu, J.[Jun],
Liu, T.[Tao],
Chen, H.[Hui],
Wang, Y.L.[Yong-Liang],
Detector Design and Performance Analysis for Target Detection in
Subspace Interference,
SPLetters(30), 2023, pp. 618-622.
IEEE DOI
2306
Detectors, Interference, Training data, Covariance matrices,
Training, Statistical distributions, Signal detection, subspace interference
BibRef
Tsutsui, S.[Satoshi],
Fu, Y.W.[Yan-Wei],
Crandall, D.[David],
Reinforcing Generated Images via Meta-Learning for One-Shot
Fine-Grained Visual Recognition,
PAMI(46), No. 3, March 2024, pp. 1455-1463.
IEEE DOI
2402
Training, Generators, Image recognition, Visualization, Tuning,
Training data, Task analysis, Fine-grained visual recognition,
meta-learning
BibRef
Bai, C.[Can],
Han, X.J.[Xian-Jun],
MRFormer: Multiscale retractable transformer for medical image
progressive denoising via noise level estimation,
IVC(144), 2024, pp. 104974.
Elsevier DOI
2404
Medical image processing, Noise level estimation,
Progressive denoising, Denoising model
BibRef
Wei, J.[Jiwei],
Yang, Y.[Yang],
Guan, X.[Xiang],
Xu, X.[Xing],
Wang, G.Q.[Guo-Qing],
Shen, H.T.[Heng Tao],
Runge-Kutta Guided Feature Augmentation for Few-Sample Learning,
MultMed(26), 2024, pp. 7349-7358.
IEEE DOI
2405
Feature extraction, Training, Task analysis, Numerical models, Visualization,
Semantics, Training data, Runge-Kutta method, few-sample learning
BibRef
Liang, K.M.[Kong-Ming],
Yin, Z.J.[Zi-Jin],
Min, M.[Min],
Liu, Y.[Yan],
Ma, Z.Y.[Zhan-Yu],
Guo, J.[Jun],
Learning Dynamic Prototypes for Visual Pattern Debiasing,
IJCV(132), No. 5, May 2024, pp. 1777-1799.
Springer DOI
2405
Deal with biased datasets in learning.
BibRef
Liu, C.[Chang],
Mittal, G.[Gaurav],
Karianakis, N.[Nikolaos],
Fragoso, V.[Victor],
Yu, Y.[Ye],
Fu, Y.[Yun],
Chen, M.[Mei],
HyperSTAR: Task-Aware Hyperparameter Recommendation for Training and
Compression,
IJCV(132), No. 6, June 2024, pp. 1913-1927.
Springer DOI
2406
Task aware parameter recommendations.
BibRef
Yang, Z.[Zhen],
Ding, M.[Ming],
Huang, T.L.[Ting-Lin],
Cen, Y.[Yukuo],
Song, J.S.[Jun-Shuai],
Xu, B.[Bin],
Dong, Y.X.[Yu-Xiao],
Tang, J.[Jie],
Does Negative Sampling Matter? a Review With Insights Into its Theory
and Applications,
PAMI(46), No. 8, August 2024, pp. 5692-5711.
IEEE DOI
2407
Training, Sampling methods, Vocabulary, Surveys,
Computational modeling, Task analysis, Self-supervised learning,
negative sampling framework
BibRef
Chen, C.R.[Chang-Rui],
Han, J.G.[Jun-Gong],
Debattista, K.[Kurt],
Virtual Category Learning: A Semi-Supervised Learning Method for
Dense Prediction With Extremely Limited Labels,
PAMI(46), No. 8, August 2024, pp. 5595-5611.
IEEE DOI
2407
Task analysis, Training, Semantic segmentation, Labeling,
Semisupervised learning, Object detection, Filtering.
BibRef
Zhang, L.[Lin],
Song, R.[Ran],
Tan, W.H.[Wen-Hao],
Ma, L.[Lin],
Zhang, W.[Wei],
IGCN: A Provably Informative GCN Embedding for Semi-Supervised
Learning With Extremely Limited Labels,
PAMI(46), No. 12, December 2024, pp. 8396-8409.
IEEE DOI
2411
Mutual information, Semisupervised learning, Symmetric matrices,
Convolution, Training, Laplace equations, Task analysis, limited labels
BibRef
Wang, H.J.[Han-Jing],
Ji, Q.[Qiang],
Epistemic Uncertainty Quantification for Pretrained Neural Networks,
CVPR24(11052-11061)
IEEE DOI
2410
Where models lack knowledge.
Training, Analytical models, Uncertainty, Computational modeling,
Perturbation methods, Neural networks, Training data
BibRef
Myers, A.[Adele],
Miolane, N.[Nina],
On Accuracy and Speed of Geodesic Regression: Do Geometric Priors
Improve Learning on Small Datasets?,
L3D-IVU24(2714-2722)
IEEE DOI
2410
Manifolds, Training, Learning systems, Accuracy, Computational modeling,
geodesic regression, linear regression, manifolds
BibRef
Zhang, Z.L.[Ze-Liang],
Feng, M.Q.[Ming-Qian],
Li, Z.H.[Zhi-Heng],
Xu, C.L.[Chen-Liang],
Discover and Mitigate Multiple Biased Subgroups in Image Classifiers,
CVPR24(10906-10915)
IEEE DOI Code:
WWW Link.
2410
Training, Dimensionality reduction, Correlation,
Prevention and mitigation, Semantics, Natural languages, Training data
BibRef
Shi, L.[Luyao],
Vijayaraghavan, P.[Prashanth],
Degan, E.[Ehsan],
Data-free Model Fusion with Generator Assistants,
ZeroShot24(7731-7739)
IEEE DOI
2410
Training, Art, Fuses, Neural networks, Training data, Dogs, Generators,
Data Free, Model Fusion, Knowledge Amalgamation, Model Merging
BibRef
Sudhakar, S.[Sruthi],
Hanzelka, J.[Jon],
Bobillot, J.[Josh],
Randhavane, T.[Tanmay],
Joshi, N.[Neel],
Vineet, V.[Vibhav],
Exploring the Sim2Real Gap using Digital Twins,
ICCV23(20361-20370)
IEEE DOI
2401
Simulated data.
BibRef
Hong, C.[Chunsan],
Cha, B.[Byunghee],
Kim, B.H.[Bo-Hyung],
Oh, T.H.[Tae-Hyun],
Enhancing Classification Accuracy on Limited Data via Unconditional
GAN,
LIMIT23(1049-1057)
IEEE DOI
2401
BibRef
Matey-Sanz, M.[Miguel],
Torres-Sospedra, J.[Joaquín],
González-Pérez, A.[Alberto],
Casteleyn, S.[Sven],
Granell, C.[Carlos],
Analysis and Impact of Training Set Size in Cross-subject Human
Activity Recognition,
CIARP23(I:391-405).
Springer DOI
2312
BibRef
Feng, W.[Wei],
Gao, X.T.[Xin-Ting],
Dauphin, G.[Gabriel],
Quan, Y.H.[Ying-Hui],
Rotation XGBoost Based Method for Hyperspectral Image Classification
with Limited Training Samples,
ICIP23(900-904)
IEEE DOI
2312
BibRef
Jeong, J.[Jongheon],
Yu, S.[Sihyun],
Lee, H.[Hankook],
Shin, J.[Jinwoo],
Enhancing Multiple Reliability Measures via Nuisance-Extended
Information Bottleneck,
CVPR23(16206-16218)
IEEE DOI
2309
WWW Link.
BibRef
Patel, D.[Deep],
Sastry, P.S.,
Adaptive Sample Selection for Robust Learning under Label Noise,
WACV23(3921-3931)
IEEE DOI
2302
Training, Knowledge engineering, Deep learning,
Heuristic algorithms, Neural networks, Benchmark testing,
and algorithms (including transfer)
BibRef
Vanderschueren, A.[Antoine],
de Vleeschouwer, C.[Christophe],
Are Straight-Through gradients and Soft-Thresholding all you need for
Sparse Training?,
WACV23(3797-3806)
IEEE DOI
2302
Training, Neural networks, Estimation, Turning,
Computational complexity, Applications: Embedded sensing/real-time techniques
BibRef
Deng, S.Q.[Si-Qi],
Xiong, Y.J.[Yuan-Jun],
Wang, M.[Meng],
Xia, W.[Wei],
Soatto, S.[Stefano],
Harnessing Unrecognizable Faces for Improving Face Recognition,
WACV23(3413-3422)
IEEE DOI
2302
Image recognition, Quantization (signal), Error analysis,
Face recognition, Neural networks, Lighting, Detectors, body pose
BibRef
Cheng, M.[Miao],
You, X.G.[Xin-Ge],
Leachable Component Clustering,
ICPR22(1858-1864)
IEEE DOI
2212
Dealing with incomplete training data.
Data handling, Estimation, Clustering algorithms, Information processing,
Mathematical models, Data models, calculation efficiency
BibRef
Wad, T.[Tan],
Sun, Q.[Qianru],
Pranata, S.[Sugiri],
Jayashree, K.[Karlekar],
Zhang, H.W.[Han-Wang],
Equivariance and Invariance Inductive Bias for Learning from
Insufficient Data,
ECCV22(XI:241-258).
Springer DOI
2211
BibRef
Wang, K.[Kai],
Zhao, B.[Bo],
Peng, X.Y.[Xiang-Yu],
Zhu, Z.[Zheng],
Yang, S.[Shuo],
Wang, S.[Shuo],
Huang, G.[Guan],
Bilen, H.[Hakan],
Wang, X.C.[Xin-Chao],
You, Y.[Yang],
CAFE: Learning to Condense Dataset by Aligning Features,
CVPR22(12186-12195)
IEEE DOI
2210
Training, Heart, Costs, Performance gain,
Efficient learning and inferences,
Image and video synthesis and generation
BibRef
Lokhande, V.S.[Vishnu Suresh],
Chakraborty, R.[Rudrasis],
Ravi, S.N.[Sathya N.],
Singh, V.[Vikas],
Equivariance Allows Handling Multiple Nuisance Variables When
Analyzing Pooled Neuroimaging Datasets,
CVPR22(10422-10431)
IEEE DOI
2210
Pool multiple datasets, especially disease data.
Representation learning, Neuroimaging, Codes,
Atmospheric measurements, Neural networks, Particle measurements,
Statistical methods
BibRef
Mahmood, R.[Rafid],
Lucas, J.[James],
Acuna, D.[David],
Li, D.Q.[Dai-Qing],
Philion, J.[Jonah],
Alvarez, J.M.[Jose M.],
Yu, Z.D.[Zhi-Ding],
Fidler, S.[Sania],
Law, M.T.[Marc T.],
How Much More Data Do I Need?
Estimating Requirements for Downstream Tasks,
CVPR22(275-284)
IEEE DOI
2210
Costs, Data acquisition, Training data, Estimation, Machine learning,
Machine learning, Datasets and evaluation, retrieval
BibRef
Lemmer, S.J.[Stephan J.],
Corso, J.J.[Jason J.],
Ground-Truth or DAER: Selective Re-Query of Secondary Information,
ICCV21(683-694)
IEEE DOI
2203
Training, Degradation, Crowdsourcing, Visualization,
Computational modeling, Estimation, Vision + other modalities,
Machine learning architectures and formulations
BibRef
Kim, T.S.[Tae Soo],
Shim, B.[Bohoon],
Peven, M.[Michael],
Qiu, W.C.[Wei-Chao],
Yuille, A.L.[Alan L.],
Hager, G.D.[Gregory D.],
Learning from Synthetic Vehicles,
RWSurvil22(500-508)
IEEE DOI
2202
WWW Link. For training vehicle recognition systems.
Image recognition, Error analysis, Conferences, Multitasking, Task analysis
BibRef
Kataoka, H.[Hirokatsu],
Matsumoto, A.[Asato],
Yamada, R.[Ryosuke],
Satoh, Y.[Yutaka],
Yamagata, E.[Eisuke],
Inoue, N.[Nakamasa],
Formula-driven Supervised Learning with Recursive Tiling Patterns,
HTCV21(4081-4088)
IEEE DOI
2112
Trained without real data.
Training, Visualization,
Supervised learning, Image representation, Feature extraction
BibRef
Kim, Y.D.[Young-Dong],
Yun, J.[Juseung],
Shon, H.[Hyounguk],
Kim, J.[Junmo],
Joint Negative and Positive Learning for Noisy Labels,
CVPR21(9437-9446)
IEEE DOI
2111
Training, Costs, Filtering, Pipelines, Training data
BibRef
Jia, R.X.[Ruo-Xi],
Wu, F.[Fan],
Sun, X.[Xuehui],
Xu, J.C.[Jia-Cen],
Dao, D.[David],
Kailkhura, B.[Bhavya],
Zhang, C.[Ce],
Li, B.[Bo],
Song, D.[Dawn],
Scalability vs. Utility: Do We Have to Sacrifice One for the Other in
Data Importance Quantification?,
CVPR21(8235-8243)
IEEE DOI
2111
Training, Runtime, Scalability, Data acquisition,
Watermarking, Machine learning
BibRef
Liu, W.Y.[Wei-Yang],
Lin, R.M.[Rong-Mei],
Liu, Z.[Zhen],
Rehg, J.M.[James M.],
Paull, L.[Liam],
Xiong, L.[Li],
Song, L.[Le],
Weller, A.[Adrian],
Orthogonal Over-Parameterized Training,
CVPR21(7247-7256)
IEEE DOI
2111
Training, Scalability, Neurons,
Optimized production technology
BibRef
Cole, E.[Elijah],
Aodha, O.M.[Oisin Mac],
Lorieul, T.[Titouan],
Perona, P.[Pietro],
Morris, D.[Dan],
Jojic, N.[Nebojsa],
Multi-Label Learning from Single Positive Labels,
CVPR21(933-942)
IEEE DOI
2111
Training, Image resolution, Annotations,
Training data, Standards
BibRef
Hara, K.[Kensho],
Ishikawa, Y.[Yuchi],
Kataoka, H.[Hirokatsu],
Rethinking Training Data for Mitigating Representation Biases in
Action Recognition,
HVU21(3344-3348)
IEEE DOI
2109
Training, Solid modeling,
Computational modeling, Dynamics, Training data, Data models
BibRef
Bisla, D.[Devansh],
Saridena, A.N.[Apoorva Nandini],
Choromanska, A.[Anna],
A Theoretical-Empirical Approach to Estimating Sample Complexity of
DNNs,
TCV21(3264-3274)
IEEE DOI
2109
How error relates to sample size in deep learning.
Training, Computational modeling, Measurement uncertainty,
Statistical learning, Neural networks, Training data, Safety
BibRef
Azuri, I.[Idan],
Weinshall, D.[Daphna],
Generative Latent Implicit Conditional Optimization when Learning
from Small Sample,
ICPR21(8584-8591)
IEEE DOI
2105
Training, Interpolation, Generators,
Optimization, Image classification
BibRef
Lokhande, V.S.[Vishnu Suresh],
Akash, A.K.[Aditya Kumar],
Ravi, S.N.[Sathya N.],
Singh, V.[Vikas],
FairALM: Augmented Lagrangian Method for Training Fair Models with
Little Regret,
ECCV20(XII: 365-381).
Springer DOI
2010
Deal with bias
BibRef
Raisi, E.[Elaheh],
Bach, S.H.[Stephen H.],
Selecting Auxiliary Data Using Knowledge Graphs for Image
Classification with Limited Labels,
VL3W20(4026-4031)
IEEE DOI
2008
Train with not enough data.
Task analysis, Training, Visualization, Neural networks,
Error analysis, Computational modeling, Semantics
BibRef
Wang, Y.[Yang],
Cao, Y.[Yang],
Zha, Z.J.[Zheng-Jun],
Zhang, J.[Jing],
Xiong, Z.W.[Zhi-Wei],
Deep Degradation Prior for Low-Quality Image Classification,
CVPR20(11046-11055)
IEEE DOI
2008
The images are low-quality.
Degradation, Frequency division multiplexing, Visualization,
Feature extraction, Semantics, Training, Task analysis
BibRef
Zhang, Z.Z.[Zi-Zhao],
Zhang, H.[Han],
Arik, S.Ö.[Sercan Ö.],
Lee, H.L.[Hong-Lak],
Pfister, T.[Tomas],
Distilling Effective Supervision From Severe Label Noise,
CVPR20(9291-9300)
IEEE DOI
2008
Training, Noise measurement, Noise robustness, Labeling,
Neural networks, Training data, Data models
BibRef
Rao, R.,
Rao, S.,
Nouri, E.,
Dey, D.,
Celikyilmaz, A.,
Dolan, B.,
Quality and Relevance Metrics for Selection of Multimodal Pretraining
Data,
MULWS20(4109-4116)
IEEE DOI
2008
Task analysis, Measurement, Visualization, Data models, Training,
Tagging, Twitter
BibRef
Yang, D.,
Deng, J.,
Learning to Generate 3D Training Data Through Hybrid Gradient,
CVPR20(776-786)
IEEE DOI
2008
Training, Shape, Training data,
Optimization, Pipelines, Task analysis
BibRef
Mandal, D.[Devraj],
Bharadwaj, S.[Shrisha],
Biswas, S.[Soma],
A Novel Self-Supervised Re-labeling Approach for Training with Noisy
Labels,
WACV20(1370-1379)
IEEE DOI
2006
mCT-S2R (modified co-teaching with self-supervision and relabeling).
Training, Task analysis, Noise measurement, Data models,
Training data, Computational modeling, Robustness
BibRef
Li, Y.[Yi],
Vasconcelos, N.M.[Nuno M.],
REPAIR: Removing Representation Bias by Dataset Resampling,
CVPR19(9564-9573).
IEEE DOI
2002
BibRef
Cui, Y.[Yin],
Jia, M.L.[Meng-Lin],
Lin, T.Y.[Tsung-Yi],
Song, Y.[Yang],
Belongie, S.[Serge],
Class-Balanced Loss Based on Effective Number of Samples,
CVPR19(9260-9269).
IEEE DOI
2002
BibRef
Tanno, R.[Ryutaro],
Saeedi, A.[Ardavan],
Sankaranarayanan, S.[Swami],
Alexander, D.C.[Daniel C.],
Silberman, N.[Nathan],
Learning From Noisy Labels by Regularized Estimation of Annotator
Confusion,
CVPR19(11236-11245).
IEEE DOI
2002
BibRef
Teney, D.[Damien],
van den Hengel, A.J.[Anton J.],
Actively Seeking and Learning From Live Data,
CVPR19(1940-1949).
IEEE DOI
2002
BibRef
Dovrat, O.[Oren],
Lang, I.[Itai],
Avidan, S.[Shai],
Learning to Sample,
CVPR19(2755-2764).
IEEE DOI
2002
BibRef
Häufel, G.,
Bulatov, D.,
Helmholz, P.,
Statistical Analysis of Airborne Imagery Combined With GIS Information
For Training Data Generation,
PIA19(111-118).
DOI Link
1912
BibRef
Deshpande, P.J.,
Sure, A.,
Dikshit, O.,
Tripathi, S.,
A Framework for Estimating Representative Area of a Ground Sample Using
Remote Sensing,
IWIDF19(687-692).
DOI Link
1912
BibRef
Unceta, I.[Irene],
Nin, J.[Jordi],
Pujol, O.[Oriol],
Using Copies to Remove Sensitive Data:
A Case Study on Fair Superhero Alignment Prediction,
IbPRIA19(I:182-193).
Springer DOI
1910
BibRef
Unceta, I.[Irene],
Nin, J.[Jordi],
Pujol, O.[Oriol],
Copying machine learning classifiers,
Online2019.
WWW Link.
BibRef
1900
Ghosh, P.[Pallabi],
Davis, L.S.[Larry S.],
Understanding Center Loss Based Network for Image Retrieval with Few
Training Data,
WiCV-E18(IV:717-722).
Springer DOI
1905
BibRef
Alvi, M.[Mohsan],
Zisserman, A.[Andrew],
Nellåker, C.[Christoffer],
Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep
Neural Network Embeddings,
BEFace18(I:556-572).
Springer DOI
1905
Training data biases.
BibRef
Mundhenk, T.N.[T. Nathan],
Ho, D.[Daniel],
Chen, B.Y.[Barry Y.],
Improvements to Context Based Self-Supervised Learning,
CVPR18(9339-9348)
IEEE DOI
1812
Image color analysis, Task analysis, Jitter, Standards,
Neural networks, Semantics, Network architecture
BibRef
Wang, X.D.[Xu-Dong],
Liu, Z.W.[Zi-Wei],
Yu, S.X.[Stella X.],
Unsupervised Feature Learning by Cross-Level Instance-Group
Discrimination,
CVPR21(12581-12590)
IEEE DOI
2111
Training, Codes, Transfer learning,
Distributed databases, Benchmark testing
BibRef
Wu, Z.R.[Zhi-Rong],
Xiong, Y.J.[Yuan-Jun],
Yu, S.X.[Stella X.],
Lin, D.[Dahua],
Unsupervised Feature Learning via Non-parametric Instance
Discrimination,
CVPR18(3733-3742)
IEEE DOI
1812
Use neural nets for unsupervised learning.
Measurement, Task analysis, Training, Neural networks,
Supervised learning, Testing, Visualization
BibRef
Novotny, D.[David],
Albanie, S.[Samuel],
Larlus, D.[Diane],
Vedaldi, A.[Andrea],
Self-Supervised Learning of Geometrically Stable Features Through
Probabilistic Introspection,
CVPR18(3637-3645)
IEEE DOI
1812
Reduce training data
Task analysis, Semantics, Probabilistic logic, Feature extraction,
Neural networks, Visualization.
BibRef
Keshari, R.,
Vatsa, M.,
Singh, R.,
Noore, A.,
Learning Structure and Strength of CNN Filters for Small Sample Size
Training,
CVPR18(9349-9358)
IEEE DOI
1812
Dictionaries, Training, Databases, Training data,
Feature extraction, Machine learning
BibRef
Jiang, Z.,
Zhu, X.,
Tan, W.t.,
Liston, R.,
Training sample selection for deep learning of distributed data,
ICIP17(2189-2193)
IEEE DOI
1803
Bandwidth, Distributed databases, Machine learning, Measurement,
Neural networks, Training, Training data, Deep neural networks,
training sample selection
BibRef
Rahmani, M.[Mostafa],
Atia, G.K.[George K.],
Robust and Scalable Column/Row Sampling from Corrupted Big Data,
RSL-CV17(1818-1826)
IEEE DOI
1802
Algorithm design and analysis, Clustering algorithms,
Data models, Robustness, Sparse matrices
BibRef
Dixit, M.[Mandar],
Kwitt, R.[Roland],
Niethammer, M.[Marc],
Vasconcelos, N.M.[Nuno M.],
AGA: Attribute-Guided Augmentation,
CVPR17(3328-3336)
IEEE DOI
1711
Generation of artificial samples for training data.
Data models, Neural networks, Object recognition,
Training.
BibRef
Paul, S.[Sujoy],
Bappy, J.H.[Jawadul H.],
Roy-Chowdhury, A.K.[Amit K.],
Non-uniform Subset Selection for Active Learning in Structured Data,
CVPR17(830-839)
IEEE DOI
1711
Data models, Entropy, Feature extraction, Labeling, Manuals, Uncertainty
BibRef
Bappy, J.H.[Jawadul H.],
Paul, S.[Sujoy],
Tuncel, E.[Ertem],
Roy-Chowdhury, A.K.[Amit K.],
The Impact of Typicality for Informative Representative Selection,
CVPR17(771-780)
IEEE DOI
1711
Activity recognition, Computational modeling,
Context modeling, Data models, Entropy.
Selection of training samples.
BibRef
Tejada, J.[Javier],
Alexandrov, M.[Mikhail],
Skitalinskaya, G.[Gabriella],
Stefanovskiy, D.[Dmitry],
Selection of Statistically Representative Subset from a Large Data Set,
CIARP16(476-483).
Springer DOI
1703
BibRef
Canévet, O.[Olivier],
Fleuret, F.[François],
Large Scale Hard Sample Mining with Monte Carlo Tree Search,
CVPR16(5128-5137)
IEEE DOI
1612
find false positives.
BibRef
Gan, C.[Chuang],
Yao, T.[Ting],
Yang, K.Y.[Kui-Yuan],
Yang, Y.[Yi],
Mei, T.[Tao],
You Lead, We Exceed: Labor-Free Video Concept Learning by Jointly
Exploiting Web Videos and Images,
CVPR16(923-932)
IEEE DOI
1612
BibRef
Masi, I.[Iacopo],
Hassner, T.[Tal],
Tran, A.T.[Anh Tuan],
Medioni, G.[Gérard],
Rapid Synthesis of Massive Face Sets for Improved Face Recognition,
FG17(604-611)
IEEE DOI
1707
Cameras, Face, Face recognition, Rendering (computer graphics),
Shape, Standards,
BibRef
Masi, I.[Iacopo],
Tran, A.T.[Anh Tuan],
Hassner, T.[Tal],
Leksut, J.T.[Jatuporn Toy],
Medioni, G.[Gérard],
Do We Really Need to Collect Millions of Faces for Effective Face
Recognition?,
ECCV16(V: 579-596).
Springer DOI
1611
BibRef
Richter, S.R.[Stephan R.],
Vineet, V.[Vibhav],
Roth, S.[Stefan],
Koltun, V.[Vladlen],
Playing for Data: Ground Truth from Computer Games,
ECCV16(II: 102-118).
Springer DOI
1611
Using game images for data.
BibRef
Choi, M.K.,
Lee, H.G.,
Lee, S.C.,
Weighted SVM with classification uncertainty for small training
samples,
ICIP16(4438-4442)
IEEE DOI
1610
Machine vision
BibRef
Pourashraf, P.[Payam],
Tomuro, N.[Noriko],
Use of a Large Image Repository to Enhance Domain Dataset for Flyer
Classification,
ISVC15(II: 609-617).
Springer DOI
1601
issue of adding other images to training set.
BibRef
Tommasi, T.[Tatiana],
Patricia, N.[Novi],
Caputo, B.[Barbara],
Tuytelaars, T.[Tinne],
A Deeper Look at Dataset Bias,
GCPR15(504-516).
Springer DOI
1511
BibRef
Psutka, J.V.[Josef V.],
Psutka, J.[Josef],
Sample Size for Maximum Likelihood Estimates of Gaussian Model,
CAIP15(II:462-469).
Springer DOI
1511
BibRef
Abdulhak, S.A.[Sami Abduljalil],
Riviera, W.[Walter],
Cristani, M.[Marco],
Crowdsearching Training Sets for Image Classification,
CIAP15(I:192-202).
Springer DOI
1511
BibRef
Xiao, T.[Tong],
Xia, T.[Tian],
Yang, Y.[Yi],
Huang, C.[Chang],
Wang, X.G.[Xiao-Gang],
Learning from massive noisy labeled data for image classification,
CVPR15(2691-2699)
IEEE DOI
1510
Obtain large scale labelled data.
BibRef
Shapovalov, R.[Roman],
Vetrov, D.[Dmitry],
Osokin, A.[Anton],
Kohli, P.[Pushmeet],
Multi-utility Learning: Structured-Output Learning with Multiple
Annotation-Specific Loss Functions,
EMMCVPR15(406-420).
Springer DOI
1504
Difficult to get needed fully labelled datasets. Use weak annotation.
BibRef
Schoeler, M.[Markus],
Worgotter, F.[Florentin],
Kulvicius, T.[Tomas],
Papon, J.[Jeremie],
Unsupervised Generation of Context-Relevant Training-Sets for Visual
Object Recognition Employing Multilinguality,
WACV15(805-812)
IEEE DOI
1503
Clutter; Context; Fasteners; Google; Nails; Search engines; Training
BibRef
Desai, C.[Chaitanya],
Eledath, J.[Jayan],
Sawhney, H.[Harpreet],
Bansal, M.[Mayank],
De-correlating CNN Features for Generative Classification,
WACV15(428-435)
IEEE DOI
1503
Accuracy. Training with positive examples, no specific negatives.
BibRef
Chatzilari, E.[Elisavet],
Nikolopoulos, S.[Spiros],
Kompatsiaris, Y.F.[Yi-Fannis],
Kittler, J.V.[Josef V.],
How many more images do we need? Performance prediction of
bootstrapping for image classification,
ICIP14(4256-4260)
IEEE DOI
1502
Computational modeling
BibRef
Spehr, M.[Marcel],
Grottel, S.[Sebastian],
Gumhold, S.[Stefan],
Wifbs: A Web-Based Image Feature Benchmark System,
MMMod15(II: 159-170).
Springer DOI
1501
BibRef
Chellasamy, M.,
Ty Ferre, P.A.,
Humlekrog Greve, M.,
Automatic Training Sample Selection for a Multi-Evidence Based Crop
Classification Approach,
Thematic14(63-69).
DOI Link
1404
BibRef
Plasencia-Calaña, Y.[Yenisel],
Orozco-Alzate, M.[Mauricio],
Méndez-Vázquez, H.[Heydi],
García-Reyes, E.[Edel],
Duin, R.P.W.[Robert P. W.],
Towards Scalable Prototype Selection by Genetic Algorithms with Fast
Criteria,
SSSPR14(343-352).
Springer DOI
1408
BibRef
Henriques, J.F.[Joao F.],
Carreira, J.[Joao],
Caseiro, R.[Rui],
Batista, J.P.[Jorge P.],
Beyond Hard Negative Mining:
Efficient Detector Learning via Block-Circulant Decomposition,
ICCV13(2760-2767)
IEEE DOI
1403
block-diagonalization. For selecting training samples.
BibRef
Vahdat, A.[Arash],
Mori, G.[Greg],
Handling Uncertain Tags in Visual Recognition,
ICCV13(737-744)
IEEE DOI
1403
Gathering training data.
BibRef
Wu, W.N.[Wei-Ning],
Liu, Y.[Yang],
Zeng, W.[Wei],
Guo, M.[Maozu],
Wang, C.Y.[Chun-Yu],
Liu, X.Y.[Xiao-Yan],
Effective constructing training sets for object detection,
ICIP13(3377-3380)
IEEE DOI
1402
active learning; labeling cost; object detection; sampling strategy
BibRef
Li, W.B.[Wen-Bin],
Fritz, M.[Mario],
Recognizing Materials from Virtual Examples,
ECCV12(IV: 345-358).
Springer DOI
1210
BibRef
Castrillón-Santana, M.[Modesto],
Hernández-Sosa, D.[Daniel],
Lorenzo-Navarro, J.[Javier],
Viola-Jones Based Detectors: How Much Affects the Training Set?,
IbPRIA11(297-304).
Springer DOI
1106
BibRef
Hong, G.X.[Guo-Xiang],
Huang, C.L.[Chung-Lin],
Hsu, S.C.[Shih-Chung],
Tsai, C.H.[Chi-Hung],
Optimal Training Set Selection for Video Annotation,
PSIVT10(7-14).
IEEE DOI
1011
BibRef
Hong, X.P.[Xiao-Peng],
Zhao, G.Y.[Guo-Ying],
Ren, H.Y.[Hao-Yu],
Chen, X.L.[Xi-Lin],
Efficient Boosted Weak Classifiers for Object Detection,
SCIA13(205-214).
Springer DOI
1311
BibRef
Ren, H.Y.[Hao-Yu],
Hong, X.P.[Xiao-Peng],
Heng, C.K.[Cher-Keng],
Liang, L.H.[Lu-Hong],
Chen, X.L.[Xi-Lin],
A Sample Pre-mapping Method Enhancing Boosting for Object Detection,
ICPR10(3005-3008).
IEEE DOI
1008
Improve training efficiency
BibRef
Eaton, R.,
Lowell, J.,
Snorrason, M.,
Irvine, J.M.,
Mills, J.,
Rapid training of image classifiers through adaptive, multi-frame
sampling method,
AIPR08(1-7).
IEEE DOI
0810
BibRef
Jia, Y.Q.[Yang-Qing],
Salzmann, M.[Mathieu],
Darrell, T.J.[Trevor J.],
Learning cross-modality similarity for multinomial data,
ICCV11(2407-2414).
IEEE DOI
1201
BibRef
Christoudias, C.M.[C. Mario],
Urtasun, R.[Raquel],
Salzmann, M.[Mathieu],
Darrell, T.J.[Trevor J.],
Learning to Recognize Objects from Unseen Modalities,
ECCV10(I: 677-691).
Springer DOI
1009
Modalities not in the training set are available.
BibRef
Christoudias, C.M.[C. Mario],
Urtasun, R.[Raquel],
Kapoorz, A.[Ashish],
Darrell, T.J.[Trevor J.],
Co-training with noisy perceptual observations,
CVPR09(2844-2851).
IEEE DOI
0906
BibRef
Lapedriza, À.[Àgata],
Masip, D.[David],
Vitrià, J.[Jordi],
A Hierarchical Approach for Multi-task Logistic Regression,
IbPRIA07(II: 258-265).
Springer DOI
0706
small number of samples for training.
BibRef
Sugiyama, M.[Masashi],
Blankertz, B.[Benjamin],
Krauledat, M.[Matthias],
Dornhege, G.[Guido],
Müller, K.R.[Klaus-Robert],
Importance-Weighted Cross-Validation for Covariate Shift,
DAGM06(354-363).
Springer DOI
0610
Training points distribution differs from test data.
BibRef
Kim, S.W.[Sang-Woon],
On Using a Dissimilarity Representation Method to Solve the Small
Sample Size Problem for Face Recognition,
ACIVS06(1174-1185).
Springer DOI
0609
BibRef
Ren, J.L.[Jun-Ling],
A Pattern Selection Algorithm Based on the Generalized Confidence,
ICPR06(II: 824-827).
IEEE DOI
0609
Selecting the patterns that matter in training.
BibRef
Cazes, T.B.,
Feitosa, R.Q.,
Mota, G.L.A.,
Automatic Selection of Training Samples for Multitemporal Image
Classification,
ICIAR04(II: 389-396).
Springer DOI
0409
BibRef
Yang, C.B.[Chang-Bo],
Dong, M.[Ming],
Fotouhi, F.[Farshad],
Learning the Semantics in Image Retrieval:
A Natural Language Processing Approach,
MMDE04(137).
IEEE DOI
0406
BibRef
Yang, C.B.[Chang-Bo],
Dong, M.[Ming],
Fotouhi, F.[Farshad],
Image Content Annotation Using Bayesian Framework and Complement
Components Analysis,
ICIP05(I: 1193-1196).
IEEE DOI
0512
BibRef
Vázquez, F.D.[Fernando D.],
Salvador Sánchez, J.,
Pla, F.[Filiberto],
Learning and Forgetting with Local Information of New Objects,
CIARP08(261-268).
Springer DOI
0809
BibRef
Vázquez, F.D.[Fernando D.],
Salvador-Sánchez, J.,
Pla, F.[Filiberto],
A Stochastic Approach to Wilson's Editing Algorithm,
IbPRIA05(II:35).
Springer DOI
0509
See also Asymptotic properties of nearest neighbor rules using edited data.
BibRef
Angelova, A.[Anelia],
Abu-Mostafa, Y.[Yaser],
Perona, P.[Pietro],
Pruning Training Sets for Learning of Object Categories,
CVPR05(I: 494-501).
IEEE DOI
0507
BibRef
Franco, A.,
Maltoni, D.,
Nanni, L.,
Reward-punishment editing,
ICPR04(IV: 424-427).
IEEE DOI
0409
Editing: remove patterns that are not classified correctly.
(in the training set).
See also Asymptotic properties of nearest neighbor rules using edited data.
BibRef
Kuhl, A.,
Kruger, L.,
Wohler, C.,
Kressel, U.,
Training of classifiers using virtual samples only,
ICPR04(III: 418-421).
IEEE DOI
0409
BibRef
Juszczak, P.,
Duin, R.P.W.,
Selective sampling based on the variation in label assignments,
ICPR04(III: 375-378).
IEEE DOI
0409
BibRef
Sprevak, D.,
Azuaje, F.,
Wang, H.,
A non-random data sampling method for classification model assessment,
ICPR04(III: 406-409).
IEEE DOI
0409
BibRef
Levin, A.,
Viola, P.A.,
Freund, Y.,
Unsupervised improvement of visual detectors using co-training,
ICCV03(626-633).
IEEE DOI
0311
Train detectors with limited data, then use that to label more data.
Use training of 2 classifiers at once.
Apply to vehicle tracking.
BibRef
Kim, D.S.[Dong Sik],
Lee, K.Y.[Kir-Yung],
Training sequence size in clustering algorithms and averaging
single-particle images,
ICIP03(II: 435-438).
IEEE DOI
0312
BibRef
Johnson, A.Y.,
Sun, J.[Jie],
Bobick, A.F.,
Using similarity scores from a small gallery to estimate recognition
performance for larger galleries,
AMFG03(100-103).
IEEE DOI
0311
BibRef
Paredes, R.,
Vidal, E.,
Keysers, D.,
An evaluation of the WPE algorithm using tangent distance,
ICPR02(IV: 48-51).
IEEE DOI
0211
Weighted Prototype Editing.
BibRef
Veeramachaneni, S.[Sriharsha],
Nagy, G.[George],
Classifier Adaptation with Non-representative Training Data,
DAS02(123 ff.).
Springer DOI
0303
BibRef
Maletti, G.,
Ersbøll, B.K.,
Conradsen, K.,
Lira, J.,
An Initial Training Set Generation Scheme,
SCIA01(P-W3B).
0206
BibRef
Fursov, V.A.,
Training in Pattern Recognition from a Small Number of Observations
Using Projections Onto Null-space,
ICPR00(Vol II: 785-788).
IEEE DOI
0009
BibRef
Miyamoto, T.,
Mitani, Y.,
Hamamoto, Y.,
Use of Bootstrap Samples in Quadratic Classifier Design,
ICPR00(Vol II: 789-792).
IEEE DOI
0009
BibRef
Mayer, H.A.[Helmut A.],
Huber, R.[Reinhold],
ERC: Evolutionary Resample and Combine for
Adaptive Parallel Training Data Set Selection,
ICPR98(Vol I: 882-885).
IEEE DOI
9808
BibRef
Takacs, B.[Barnabas],
Sadovnik, L.[Lev],
Wechsler, H.[Harry],
Optimal Training Set Design for 3D Object Recognition,
ICPR98(Vol I: 558-560).
IEEE DOI
9808
BibRef
Nedeljkovic, V.,
Milosavljevic, M.,
On the influence of the training set data preprocessing on neural
networks training,
ICPR92(II:33-36).
IEEE DOI
9208
BibRef
Ferri, F.J.,
Vidal, E.,
Small sample size effects in the use of editing techniques,
ICPR92(II:607-610).
IEEE DOI
9208
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Small Sample Sizes Issues, Data analysis, Training Sets .