14.1.4 Training Set Size, Sample Size, Analysis, Selection

Chapter Contents (Back)
Training Set. Sample Size. See also Sample Sizes Issues, Data analysis, Training Sets. See also Imbalanced Sample Sizes, Imbalanced Data.

Baum, L.E., Petrie, T., Soules, G., Weiss, N.,
A Maximizzation Technique Occurring in teh Statistical Analysis of Probabilistic Function of Markov Chains,
AMS(41), No. 1, 1970, pp. 164-171. BibRef 7000

Kanal, L.[Laveen], Chandrasekaran, B.,
On dimensionality and sample size in statistical pattern classification,
PR(3), No. 3, October 1971, pp. 225-234.
WWW Link. 0309
BibRef

Wilson, D.L.,
Asymptotic properties of nearest neighbor rules using edited data,
SMC(2), 1972, pp. 408-421. Remove from training set those items mis-classified by the chosen rules. BibRef 7200

Jain, A.K.[Anil K.], Dubes, R.C.[Richard C.],
Feature definition in pattern recognition with small sample size,
PR(10), No. 2, 1978, pp. 85-97.
WWW Link. 0309
BibRef

Kalayeh, H.M., Muasher, M.J., and Landgrebe, D.A.,
Feature Selection When Limited Numbers of Training Samples are Available,
GeoRS(21), No. 4, October 1983, pp. 434-438.
IEEE Top Reference. BibRef 8310

Muasher, M.J., and Landgrebe, D.A.,
The K-L Expansion as an Effective Feature Ordering Technique for Limited Training Sample Size,
GeoRS(21), No. 4, October 1983, pp. 438-441.
IEEE Top Reference. BibRef 8310

Kalayeh, H.M., Landgrebe, D.A.,
Predicting the Required Number of Training Samples,
PAMI(5), No. 6, November 1983, pp. 664-666. BibRef 8311

Muasher, M.J., and Landgrebe, D.A.,
A Binary Tree Feature Selection Technique for Limited Training Set Size,
RSE(16), No. 3, December 1984, pp. 183-194. BibRef 8412

Landgrebe, D.A., and Malaret, E.R.,
Noise in Remote Sensing Systems: Effect on Classification Accuracy,
GeoRS(24), No. 2, March 1986, pp. 294-299.
IEEE Top Reference. BibRef 8603

Shahshahani, B.M.[Behzad M.], and Landgrebe, D.A.[David A.],
The Effect of Unlabeled Samples in Reducing the Small Sample Size Problem and Mitigating the Hughes Phenomenon,
GeoRS(32), No. 5, September 1994, pp. 1087-1095.
IEEE DOI
PDF File. BibRef 9409

Hoffbeck, J.P.[Joseph P.], Landgrebe, D.A.,
Covariance-Matrix Estimation and Classification with Limited Training Data,
PAMI(18), No. 7, July 1996, pp. 763-767.
IEEE DOI
PDF File. 9608
BibRef

Herbst, K.[Klaus],
Pattern recognition by polynomial canonical regression,
PR(17), No. 3, 1984, pp. 345-350.
WWW Link. 0309
BibRef

Wharton, S.W.[Stephen W.],
An analysis of the effects of sample size on classification performance of a histogram based cluster analysis procedure,
PR(17), No. 2, 1984, pp. 239-244.
WWW Link. 0309
BibRef

Djouadi, A., Snorrason, O., and Garber, F.D.,
The Quality of Training-Sample Estimates of the Bhattacharyya Coefficient,
PAMI(12), No. 1, January 1990, pp. 92-97.
IEEE DOI BibRef 9001

Hong, Z.Q.[Zi-Quan], Yang, J.Y.[Jing-Yu],
Optimal discriminant plane for a small number of samples and design method of classifier on the plane,
PR(24), No. 4, 1991, pp. 317-324.
WWW Link. 0401
BibRef

Rachkovskij, D.A., Kussul, E.M.,
Datagen: A Generator of Datasets for Evaluation of Classification Algorithms,
PRL(19), No. 7, May 1998, pp. 537-544. 9808
BibRef

Sánchez, J.S., Barandela, R., Marqués, A.I., Alejo, R., Badenas, J.,
Analysis of new techniques to obtain quality training sets,
PRL(24), No. 7, April 2003, pp. 1015-1022.
Elsevier DOI 0301
BibRef

Chen, D.M.[Dong-Mei], Stow, D.[Douglas],
The Effect of Training Strategies on Supervised Classification at Different Spatial Resolutions,
PhEngRS(68), No. 11, November 2002, pp. 1155-1162. Three different training strategies often used for supervised classification are compared for six image subsets containing a single land-use/land-cover component and at five different spatial resolutions.
WWW Link. 0304
BibRef

Beiden, S.V.[Sergey V.], Maloof, M.A.[Marcus A.], Wagner, R.F.[Robert F.],
A general model for finite-sample effects in training and testing of competing classifiers,
PAMI(25), No. 12, December 2003, pp. 1561-1569.
IEEE Abstract. 0401
More than size of sample set. BibRef

Inoue, M.[Masashi], Ueda, N.[Naonori],
Exploitation of unlabeled sequences in hidden Markov models,
PAMI(25), No. 12, December 2003, pp. 1570-1581.
IEEE Abstract. 0401
How to use unlabeled data in learning. BibRef

Sánchez, J.S.,
High training set size reduction by space partitioning and prototype abstraction,
PR(37), No. 7, July 2004, pp. 1561-1564.
WWW Link. 0405
BibRef

Wang, H.C.[Hai-Chuan], Zhang, L.M.[Li-Ming],
Linear generalization probe samples for face recognition,
PRL(25), No. 8, June 2004, pp. 829-840.
WWW Link. 0405
Generate probe sets using constrained linear subspace of the original probes. BibRef

Prudêncio, R.B.C.[Ricardo B. C.], Ludermir, T.B.[Teresa B.], de Carvalho, F.A.T.[Francisco A. T.],
A Modal Symbolic Classifier for selecting time series models,
PRL(25), No. 8, June 2004, pp. 911-921.
WWW Link. 0405
BibRef

Kuo, B.C., Chang, K.Y.,
Feature Extractions for Small Sample Size Classification Problem,
GeoRS(45), No. 3, March 2007, pp. 756-764.
IEEE DOI 0703
BibRef

Angiulli, F.[Fabrizio],
Condensed Nearest Neighbor Data Domain Description,
PAMI(29), No. 10, October 2007, pp. 1746-1758.
IEEE DOI 0710
Distinguish between normal and abnormal data to find the minimal subset of consistent data. BibRef

Farhangfar, A.[Alireza], Kurgan, L.A.[Lukasz A.], Dy, J.[Jennifer],
Impact of imputation of missing values on classification error for discrete data,
PR(41), No. 12, December 2008, pp. 3692-3705.
WWW Link. 0810
Missing values; Classification; Imputation of missing values; Single imputation; Multiple imputations For databases. studies the effect of missing data imputation using five single imputation methods (a mean method, a Hot deck method, a Naive-Bayes method, and the latter two methods with a recently proposed imputation framework) and one multiple imputation method (a polytomous regression based method) on classification accuracy for six popular classifiers (RIPPER, C4.5, K-nearest-neighbor, support vector machine with polynomial and RBF kernels, and Naive-Bayes) on 15 datasets. BibRef

Koikkalainen, J., Tolli, T., Lauerma, K., Antila, K., Mattila, E., Lilja, M., Lotjonen, J.,
Methods of Artificial Enlargement of the Training Set for Statistical Shape Models,
MedImg(27), No. 11, November 2008, pp. 1643-1654.
IEEE DOI 0811
Heart images. BibRef

Peres, R.T., Pedreira, C.E.,
Generalized Risk Zone: Selecting Observations for Classification,
PAMI(31), No. 7, July 2009, pp. 1331-1337.
IEEE DOI 0905
Select key observations in sample set. BibRef

Levi, D.[Dan], Ullman, S.[Shimon],
Learning to classify by ongoing feature selection,
IVC(28), No. 4, April 2010, pp. 715-723.
Elsevier DOI 1002
BibRef
Earlier: CRV06(1-1).
IEEE DOI 0607
Continuous updating of the clustering based on new inputs. Online learning; Object recognition BibRef

Levi, D.[Dan], Ullman, S.[Shimon],
Learning Model Complexity in an Online Environment,
CRV09(260-267).
IEEE DOI 0905
BibRef

Ambai, M.[Mitsuru], Yoshida, Y.[Yuichi],
Augmenting Training Samples with a Large Number of Rough Segmentation Datasets,
IEICE(E94-D), No. 10, October 2011, pp. 1880-1888.
WWW Link. 1110
BibRef

Rico-Juan, J.R.[Juan Ramón], Iñesta, J.M.[José Manuel],
New rank methods for reducing the size of the training set using the nearest neighbor rule,
PRL(33), No. 5, 1 April 2012, pp. 654-660.
Elsevier DOI BibRef 1204
And: Corrigendum: PRL(33), No. 10, 15 July 2012, pp. 1434.
Elsevier DOI 1205
Editing; Condensing; Rank methods; Sorted prototypes selection BibRef

Mountrakis, G.[Giorgos], Xi, B.[Bo],
Assessing reference dataset representativeness through confidence metrics based on information density,
PandRS(78), No. 1, April 2013, pp. 129-147.
Elsevier DOI 1304
Representativeness; Classification; Quality; Reference data; Reliability; Training BibRef

Körting, T.S.[Thales Sehn], Garcia Fonseca, L.M.[Leila Maria], Castejon, E.F.[Emiliano Ferreira], Namikawa, L.M.[Laercio Massaru],
Improvements in Sample Selection Methods for Image Classification,
RS(6), No. 8, 2014, pp. 7580-7591.
DOI Link 1410
BibRef

Cheng, D.S.[Dong Seon], Setti, F.[Francesco], Zeni, N.[Nicola], Ferrario, R.[Roberta], Cristani, M.[Marco],
Semantically-driven automatic creation of training sets for object recognition,
CVIU(131), No. 1, 2015, pp. 56-71.
Elsevier DOI 1412
Object recognition BibRef

Hamidzadeh, J.[Javad], Monsefi, R.[Reza], Yazdi, H.S.[Hadi Sadoghi],
IRAHC: Instance Reduction Algorithm using Hyperrectangle Clustering,
PR(48), No. 5, 2015, pp. 1878-1889.
Elsevier DOI 1502
Instance reduction BibRef

Ma, L.[Lei], Cheng, L.[Liang], Li, M.C.[Man-Chun], Liu, Y.X.[Yong-Xue], Ma, X.X.[Xiao-Xue],
Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery,
PandRS(102), No. 1, 2015, pp. 14-27.
Elsevier DOI 1503
GEOBIA BibRef

Yang, W.[Wen], Yin, X.[Xiaoshuang], Xia, G.S.[Gui-Song],
Learning High-level Features for Satellite Image Classification With Limited Labeled Samples,
GeoRS(53), No. 8, August 2015, pp. 4472-4482.
IEEE DOI 1506
Gaussian distribution BibRef

Wu, H.[Hao], Miao, Z.J.[Zhen-Jiang], Chen, J.Y.[Jing-Yue], Yang, J.[Jie], Gao, X.[Xing],
Recognition improvement through the optimisation of learning instances,
IET-CV(9), No. 3, 2015, pp. 419-427.
DOI Link 1507
computer vision BibRef

Colditz, R.R.[René Roland],
An Evaluation of Different Training Sample Allocation Schemes for Discrete and Continuous Land Cover Classification Using Decision Tree-Based Algorithms,
RS(7), No. 8, 2015, pp. 9655.
DOI Link 1509
BibRef

Huang, X.[Xin], Weng, C.[Chunlei], Lu, Q.[Qikai], Feng, T.T.[Tian-Tian], Zhang, L.P.[Liang-Pei],
Automatic Labelling and Selection of Training Samples for High-Resolution Remote Sensing Image Classification over Urban Areas,
RS(7), No. 12, 2015, pp. 15819.
DOI Link 1601
BibRef

Ekambaram, R.[Rajmadhan], Fefilatyev, S.[Sergiy], Shreve, M.[Matthew], Kramer, K.[Kurt], Hall, L.O.[Lawrence O.], Goldgof, D.B.[Dmitry B.], Kasturi, R.[Rangachar],
Active cleaning of label noise,
PR(51), No. 1, 2016, pp. 463-480.
Elsevier DOI 1601
Support vectors BibRef

Jamjoom, M.[Mona], El Hindi, K.[Khalil],
Partial instance reduction for noise elimination,
PRL(74), No. 1, 2016, pp. 30-37.
Elsevier DOI 1604
Noise filtering. Learning with noisy data. BibRef

Akata, Z.[Zeynep], Perronnin, F.[Florent], Harchaoui, Z.[Zaid], Schmid, C.[Cordelia],
Label-Embedding for Image Classification,
PAMI(38), No. 7, July 2016, pp. 1425-1438.
IEEE DOI 1606
BibRef
Earlier:
Label-Embedding for Attribute-Based Classification,
CVPR13(819-826)
IEEE DOI 1309
Animals See also Good Practice in Large-Scale Learning for Image Classification. BibRef

Paulin, M.[Mattis], Revaud, J.[Jerome], Harchaoui, Z.[Zaid], Perronnin, F.[Florent], Schmid, C.[Cordelia],
Transformation Pursuit for Image Classification,
CVPR14(3646-3653)
IEEE DOI 1409
Augment training with transformed images. BibRef

Chatzilari, E., Nikolopoulos, S., Kompatsiaris, Y., Kittler, J.,
SALIC: Social Active Learning for Image Classification,
MultMed(18), No. 8, August 2016, pp. 1488-1503.
IEEE DOI 1608
computational complexity. Select appropriate user tagged image for training set. BibRef

Yao, Y., Zhang, J., Shen, F., Hua, X., Xu, J., Tang, Z.,
Exploiting Web Images for Dataset Construction: A Domain Robust Approach,
MultMed(19), No. 8, August 2017, pp. 1771-1784.
IEEE DOI 1708
Google, Labeling, Manuals, Noise measurement, Robustness, Search engines, Visualization, Domain robust, image dataset construction, multi-instance learning (MIL), multiple, query, expansions BibRef

Rahmani, M.[Mostafa], Atia, G.K.[George K.],
Spatial Random Sampling: A Structure-Preserving Data Sketching Tool,
SPLetters(24), No. 9, September 2017, pp. 1398-1402.
IEEE DOI 1708
Approximation algorithms, Clustering algorithms, Complexity theory, Signal processing algorithms, Sociology, Statistics, Tools, Big data, clustering, column sampling, data sketching, random embedding, unit, sphere BibRef


Nogueira, S.[Sarah], Sechidis, K.[Konstantinos], Brown, G.[Gavin],
On the Use of Spearman's Rho to Measure the Stability of Feature Rankings,
IbPRIA17(381-391).
Springer DOI 1706
stability to training data perturbations. BibRef

Tejada, J.[Javier], Alexandrov, M.[Mikhail], Skitalinskaya, G.[Gabriella], Stefanovskiy, D.[Dmitry],
Selection of Statistically Representative Subset from a Large Data Set,
CIARP16(476-483).
Springer DOI 1703
BibRef

Wong, S.C., Gatt, A., Stamatescu, V., McDonnell, M.D.,
Understanding Data Augmentation for Classification: When to Warp?,
DICTA16(1-6)
IEEE DOI 1701
Australia BibRef

Canévet, O.[Olivier], Fleuret, F.[François],
Large Scale Hard Sample Mining with Monte Carlo Tree Search,
CVPR16(5128-5137)
IEEE DOI 1612
find false positives. BibRef

Gan, C.[Chuang], Yao, T.[Ting], Yang, K.Y.[Kui-Yuan], Yang, Y.[Yi], Mei, T.[Tao],
You Lead, We Exceed: Labor-Free Video Concept Learning by Jointly Exploiting Web Videos and Images,
CVPR16(923-932)
IEEE DOI 1612
BibRef

Masi, I.[Iacopo], Hassner, T.[Tal], Tran, A.T.[Anh Tuan], Medioni, G.[Gérard],
Rapid Synthesis of Massive Face Sets for Improved Face Recognition,
FG17(604-611)
IEEE DOI 1707
Cameras, Face, Face recognition, Rendering (computer graphics), Shape, Standards, Three-dimensional, displays BibRef

Masi, I.[Iacopo], Tran, A.T.[Anh Tuan], Hassner, T.[Tal], Leksut, J.T.[Jatuporn Toy], Medioni, G.[Gérard],
Do We Really Need to Collect Millions of Faces for Effective Face Recognition?,
ECCV16(V: 579-596).
Springer DOI 1611
BibRef

Richter, S.R.[Stephan R.], Vineet, V.[Vibhav], Roth, S.[Stefan], Koltun, V.[Vladlen],
Playing for Data: Ground Truth from Computer Games,
ECCV16(II: 102-118).
Springer DOI 1611
Using game images for data. BibRef

Fawzi, A.[Alhussein], Samulowitz, H.[Horst], Turaga, D.[Deepak], Frossard, P.[Pascal],
Adaptive data augmentation for image classification,
ICIP16(3688-3692)
IEEE DOI 1610
Approximation algorithms. Adding more samples. BibRef

Choi, M.K., Lee, H.G., Lee, S.C.,
Weighted SVM with classification uncertainty for small training samples,
ICIP16(4438-4442)
IEEE DOI 1610
Machine vision BibRef

Pourashraf, P.[Payam], Tomuro, N.[Noriko],
Use of a Large Image Repository to Enhance Domain Dataset for Flyer Classification,
ISVC15(II: 609-617).
Springer DOI 1601
issue of adding other images to training set. BibRef

Tommasi, T.[Tatiana], Patricia, N.[Novi], Caputo, B.[Barbara], Tuytelaars, T.[Tinne],
A Deeper Look at Dataset Bias,
GCPR15(504-516).
Springer DOI 1511
BibRef

Psutka, J.V.[Josef V.], Psutka, J.[Josef],
Sample Size for Maximum Likelihood Estimates of Gaussian Model,
CAIP15(II:462-469).
Springer DOI 1511
BibRef

Abdulhak, S.A.[Sami Abduljalil], Riviera, W.[Walter], Cristani, M.[Marco],
Crowdsearching Training Sets for Image Classification,
CIAP15(I:192-202).
Springer DOI 1511
BibRef

Xiao, T.[Tong], Xia, T.[Tian], Yang, Y.[Yi], Huang, C.[Chang], Wang, X.G.[Xiao-Gang],
Learning from massive noisy labeled data for image classification,
CVPR15(2691-2699)
IEEE DOI 1510
Obtain large scale labelled data. BibRef

Shapovalov, R.[Roman], Vetrov, D.[Dmitry], Osokin, A.[Anton], Kohli, P.[Pushmeet],
Multi-utility Learning: Structured-Output Learning with Multiple Annotation-Specific Loss Functions,
EMMCVPR15(406-420).
Springer DOI 1504
Difficult to get needed fully labelled datasets. Use weak annotation. BibRef

Schoeler, M.[Markus], Worgotter, F.[Florentin], Kulvicius, T.[Tomas], Papon, J.[Jeremie],
Unsupervised Generation of Context-Relevant Training-Sets for Visual Object Recognition Employing Multilinguality,
WACV15(805-812)
IEEE DOI 1503
Clutter; Context; Fasteners; Google; Nails; Search engines; Training BibRef

Desai, C.[Chaitanya], Eledath, J.[Jayan], Sawhney, H.[Harpreet], Bansal, M.[Mayank],
De-correlating CNN Features for Generative Classification,
WACV15(428-435)
IEEE DOI 1503
Accuracy. Training with positive examples, no specific negatives. BibRef

Chatzilari, E.[Elisavet], Nikolopoulos, S.[Spiros], Kompatsiaris, Y.[Yiannis], Kittler, J.[Josef],
How many more images do we need? Performance prediction of bootstrapping for image classification,
ICIP14(4256-4260)
IEEE DOI 1502
Computational modeling BibRef

Spehr, M.[Marcel], Grottel, S.[Sebastian], Gumhold, S.[Stefan],
Wifbs: A Web-Based Image Feature Benchmark System,
MMMod15(II: 159-170).
Springer DOI 1501
BibRef

Chellasamy, M., Ty Ferre, P.A., Humlekrog Greve, M.,
Automatic Training Sample Selection for a Multi-Evidence Based Crop Classification Approach,
Thematic14(63-69).
DOI Link 1404
BibRef

Plasencia-Calaña, Y.[Yenisel], Orozco-Alzate, M.[Mauricio], Méndez-Vázquez, H.[Heydi], García-Reyes, E.[Edel], Duin, R.P.W.[Robert P. W.],
Towards Scalable Prototype Selection by Genetic Algorithms with Fast Criteria,
SSSPR14(343-352).
Springer DOI 1408
BibRef

Golge, E.[Eren], Duygulu, P.[Pinar],
ConceptMap: Mining Noisy Web Data for Concept Learning,
ECCV14(VII: 439-455).
Springer DOI 1408
Use web search for training to learn concepts BibRef

Henriques, J.F.[Joao F.], Carreira, J.[Joao], Caseiro, R.[Rui], Batista, J.P.[Jorge P.],
Beyond Hard Negative Mining: Efficient Detector Learning via Block-Circulant Decomposition,
ICCV13(2760-2767)
IEEE DOI 1403
block-diagonalization. For selecting training samples. BibRef

Vahdat, A.[Arash], Mori, G.[Greg],
Handling Uncertain Tags in Visual Recognition,
ICCV13(737-744)
IEEE DOI 1403
Gathering training data. BibRef

Wu, W.N.[Wei-Ning], Liu, Y.[Yang], Zeng, W.[Wei], Guo, M.[Maozu], Wang, C.[Chunyu], Liu, X.Y.[Xiao-Yan],
Effective constructing training sets for object detection,
ICIP13(3377-3380)
IEEE DOI 1402
active learning; labeling cost; object detection; sampling strategy BibRef

Li, W.B.[Wen-Bin], Fritz, M.[Mario],
Recognizing Materials from Virtual Examples,
ECCV12(IV: 345-358).
Springer DOI 1210
BibRef

Castrillón-Santana, M.[Modesto], Hernández-Sosa, D.[Daniel], Lorenzo-Navarro, J.[Javier],
Viola-Jones Based Detectors: How Much Affects the Training Set?,
IbPRIA11(297-304).
Springer DOI 1106
BibRef

Hong, G.X.[Guo-Xiang], Huang, C.L.[Chung-Lin], Hsu, S.C.[Shih-Chung], Tsai, C.H.[Chi-Hung],
Optimal Training Set Selection for Video Annotation,
PSIVT10(7-14).
IEEE DOI 1011
BibRef

Hong, X.P.[Xiao-Peng], Zhao, G.Y.[Guo-Ying], Ren, H.[Haoyu], Chen, X.L.[Xi-Lin],
Efficient Boosted Weak Classifiers for Object Detection,
SCIA13(205-214).
Springer DOI 1311
BibRef

Ren, H.Y.[Hao-Yu], Hong, X.P.[Xiao-Peng], Heng, C.K.[Cher-Keng], Liang, L.H.[Lu-Hong], Chen, X.L.[Xi-Lin],
A Sample Pre-mapping Method Enhancing Boosting for Object Detection,
ICPR10(3005-3008).
IEEE DOI 1008
Improve training efficiency BibRef

Eaton, R., Lowell, J., Snorrason, M., Irvine, J.M., Mills, J.,
Rapid training of image classifiers through adaptive, multi-frame sampling method,
AIPR08(1-7).
IEEE DOI 0810
BibRef

Jia, Y.Q.[Yang-Qing], Salzmann, M.[Mathieu], Darrell, T.J.[Trevor J.],
Learning cross-modality similarity for multinomial data,
ICCV11(2407-2414).
IEEE DOI 1201
BibRef

Christoudias, C.M.[C. Mario], Urtasun, R.[Raquel], Salzmann, M.[Mathieu], Darrell, T.J.[Trevor J.],
Learning to Recognize Objects from Unseen Modalities,
ECCV10(I: 677-691).
Springer DOI 1009
Modalities not in the training set are available. BibRef

Christoudias, C.M.[C. Mario], Urtasun, R.[Raquel], Kapoorz, A.[Ashish], Darrell, T.J.[Trevor J.],
Co-training with noisy perceptual observations,
CVPR09(2844-2851).
IEEE DOI 0906
BibRef

Lapedriza, À.[Àgata], Masip, D.[David], Vitrià, J.[Jordi],
A Hierarchical Approach for Multi-task Logistic Regression,
IbPRIA07(II: 258-265).
Springer DOI 0706
small number of samples for training. BibRef

Sugiyama, M.[Masashi], Blankertz, B.[Benjamin], Krauledat, M.[Matthias], Dornhege, G.[Guido], Müller, K.R.[Klaus-Robert],
Importance-Weighted Cross-Validation for Covariate Shift,
DAGM06(354-363).
Springer DOI 0610
Training points distribution differs from test data. BibRef

Kim, S.W.[Sang-Woon],
On Using a Dissimilarity Representation Method to Solve the Small Sample Size Problem for Face Recognition,
ACIVS06(1174-1185).
Springer DOI 0609
BibRef

Ren, J.L.[Jun-Ling],
A Pattern Selection Algorithm Based on the Generalized Confidence,
ICPR06(II: 824-827).
IEEE DOI 0609
Selecting the patterns that matter in training. BibRef

Cazes, T.B., Feitosa, R.Q., Mota, G.L.A.,
Automatic Selection of Training Samples for Multitemporal Image Classification,
ICIAR04(II: 389-396).
Springer DOI 0409
BibRef

Yang, C.B.[Chang-Bo], Dong, M.[Ming], Fotouhi, F.[Farshad],
Learning the Semantics in Image Retrieval: A Natural Language Processing Approach,
MMDE04(137).
IEEE DOI 0406
BibRef

Yang, C.B.[Chang-Bo], Dong, M.[Ming], Fotouhi, F.[Farshad],
Image Content Annotation Using Bayesian Framework and Complement Components Analysis,
ICIP05(I: 1193-1196).
IEEE DOI 0512
BibRef

Vázquez, F.D.[Fernando D.], Salvador Sánchez, J., Pla, F.[Filiberto],
Learning and Forgetting with Local Information of New Objects,
CIARP08(261-268).
Springer DOI 0809
BibRef

Vázquez, F.D.[Fernando D.], Salvador-Sánchez, J., Pla, F.[Filiberto],
A Stochastic Approach to Wilson's Editing Algorithm,
IbPRIA05(II:35).
Springer DOI 0509
See also Asymptotic properties of nearest neighbor rules using edited data. BibRef

Angelova, A.[Anelia], Abu-Mostafa, Y.[Yaser], Perona, P.[Pietro],
Pruning Training Sets for Learning of Object Categories,
CVPR05(I: 494-501).
IEEE DOI 0507
BibRef

Franco, A., Maltoni, D., Nanni, L.,
Reward-punishment editing,
ICPR04(IV: 424-427).
IEEE DOI 0409
Editing: remove patterns that are not classified correctly. (in the training set). See also Asymptotic properties of nearest neighbor rules using edited data. BibRef

Kuhl, A., Kruger, L., Wohler, C., Kressel, U.,
Training of classifiers using virtual samples only,
ICPR04(III: 418-421).
IEEE DOI 0409
BibRef

Juszczak, P., Duin, R.P.W.,
Selective sampling based on the variation in label assignments,
ICPR04(III: 375-378).
IEEE DOI 0409
BibRef

Sprevak, D., Azuaje, F., Wang, H.,
A non-random data sampling method for classification model assessment,
ICPR04(III: 406-409).
IEEE DOI 0409
BibRef

Levin, A., Viola, P.A., Freund, Y.,
Unsupervised improvement of visual detectors using co-training,
ICCV03(626-633).
IEEE DOI 0311
Train detectors with limited data, then use that to label more data. Use training of 2 classifiers at once. Apply to vehicle tracking. BibRef

Kim, D.S.[Dong Sik], Lee, K.Y.[Kir-Yung],
Training sequence size in clustering algorithms and averaging single-particle images,
ICIP03(II: 435-438).
IEEE DOI 0312
BibRef

Johnson, A.Y., Sun, J.[Jie], Bobick, A.F.,
Using similarity scores from a small gallery to estimate recognition performance for larger galleries,
AMFG03(100-103).
IEEE Abstract. 0311
BibRef

Paredes, R., Vidal, E., Keysers, D.,
An evaluation of the WPE algorithm using tangent distance,
ICPR02(IV: 48-51).
IEEE DOI 0211
Weighted Prototype Editing. BibRef

Veeramachaneni, S.[Sriharsha], Nagy, G.[George],
Classifier Adaptation with Non-representative Training Data,
DAS02(123 ff.).
Springer DOI 0303
BibRef

Maletti, G., Ersbøll, B.K., Conradsen, K., Lira, J.,
An Initial Training Set Generation Scheme,
SCIA01(P-W3B). 0206
BibRef

Fursov, V.A.,
Training in Pattern Recognition from a Small Number of Observations Using Projections Onto Null-space,
ICPR00(Vol II: 785-788).
IEEE DOI 0009
BibRef

Miyamoto, T., Mitani, Y., Hamamoto, Y.,
Use of Bootstrap Samples in Quadratic Classifier Design,
ICPR00(Vol II: 789-792).
IEEE DOI 0009
BibRef

Mayer, H.A.[Helmut A.], Huber, R.[Reinhold],
ERC: Evolutionary Resample and Combine for Adaptive Parallel Training Data Set Selection,
ICPR98(Vol I: 882-885).
IEEE DOI 9808
BibRef

Takacs, B.[Barnabas], Sadovnik, L.[Lev], Wechsler, H.[Harry],
Optimal Training Set Design for 3D Object Recognition,
ICPR98(Vol I: 558-560).
IEEE DOI 9808
BibRef

Nedeljkovic, V., Milosavljevic, M.,
On the influence of the training set data preprocessing on neural networks training,
ICPR92(II:33-36).
IEEE DOI 9208
BibRef

Ferri, F.J., Vidal, E.,
Small sample size effects in the use of editing techniques,
ICPR92(II:607-610).
IEEE DOI 9208
BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Sample Sizes Issues, Data analysis, Training Sets .


Last update:Sep 22, 2017 at 21:00:01