7.3 Skeletons and Axial Descriptions - Medial Axis Transform (MAT) etc.

Chapter Contents (Back)
Symmetry. Medial Axis Transform. MAT. Thinning Techniques. Skeletonization. See also Symmetries in Two Dimensions.

Blum, H.,
A Transformation for Extracting New Descriptions of Shape,
Originally an internal report.
And: MPSVF(362-380). 1967. BibRef 6700
And: CMetImAly77(153-171). Medial Axis Transform. The basic original discussion of the medial axis transform. BibRef

Blum, H.,
Biological Shape and Visual Science,
Theoretical Biology(38), 1973, pp. 205-287. BibRef 7300

Blum, H., and Nagel, R.N.,
Shape Description using Weighted Symmetric Axis Features,
PR(10), No. 3, 1978, pp. 167-180.
Elsevier DOI BibRef 7800
Earlier: PRIP77(203-215). BibRef

Pfaltz, J.L., and Rosenfeld, A.,
Computer Representation of Planar Regions by Their Skeletons,
CACM(10), No. 2, February 1967, pp. 119-122.
WWW Link. BibRef 6702

Montanari, U.,
A Method for Obtaining Skeletons Using a Quasi-Euclidean Distance,
JACM(15), No. 4, October 1968, pp. 600-624.
WWW Link. Introduce Chamfer Distance ideas. A hierarchy of methods of defining the skeleton is proposed; in the more complicated ones, the skeleton is relatively invariant under rotation. Two algorithms for computing the skeleton are defined, and the corresponding computer programs are compared. A criterion is proposed for determining the most significant skeleton points. BibRef 6810

Montanari, U.[Ugo],
Continuous Skeletons from Digitized Images,
JACM(16), No. 4, October 1969, pp. 534-549.
WWW Link. BibRef 6910

Levi, G., and Montanari, U.,
A Gray-Weighted Skeleton,
InfoControl(17), August 1972, pp. 62-xx. BibRef 7208

Mott-Smith, J.C.,
Medial Axis Transformations,
PPP70(267-278). BibRef 7000

Moore, D.J.H., and Seidl, R.A.,
On the Medial Axis Function for Visual Patterns,
SMC(4), July 1974, pp. 396-399. BibRef 7407

Moore, D.J.H., Parker, D.J.,
Analysis of global pattern features,
PR(6), No. 3-4, December 1974, pp. 149-164.
WWW Link. 0309
BibRef

Beun, M.[Matthijs], Reijnierse, P.[Pieter],
Method of and device for skeletonizing characters,
US_Patent3,975,709, Aug 17, 1976
WWW Link. BibRef 7608

Arcelli, C., Sanniti di Baja, G.,
On the Sequential Approach to Medial Line Transformation,
SMC(8), 1978, pp. 139-144. BibRef 7800

Arcelli, C., Sanniti di Baja, G.,
Finding Local Maxima in a Pseudo-Euclidean Distance Transform,
CVGIP(43), No. 3, September 1988, pp. 361-367.
WWW Link. BibRef 8809

Arcelli, C., Sanniti di Baja, G.,
Ridge Points in Euclidean Distance Maps,
PRL(13), 1992, pp. 237-243. BibRef 9200

Arcelli, C., Sanniti di Baja, G.,
Quenching Points in Distance Labeled Pictures,
ICPR84(344-346). BibRef 8400
Earlier:
Medial Lines and Figure Analysis,
ICPR80(1016-1018). BibRef

Sanniti di Baja, G.[Gabriella],
Skeletonization of Digital Objects,
CIARP06(1-13).
Springer DOI 0611
BibRef

Sanniti di Baja, G.[Gabriella],
On Medial Representations,
CIARP08(1-13).
Springer DOI 0809
BibRef

Arcelli, C., Cordella, L.P., and Levialdi, S.,
From Local Maxima to Connected Skeletons,
PAMI(3), No. 2, March 1981, pp. 134-143. BibRef 8103

Arcelli, C.,
A Condition for Digital Points Removal,
SP(1), No. 4, 1979, pp. 283-285. BibRef 7900

Hilditch, C.J.,
Linear Skeletons from Square Cupboards,
MI(4), 1969, pp. 403-420. See also Transformation for Extracting New Descriptions of Shape, A. but using the boundary only as the source of the wavefront? BibRef 6900

Selkow, S.M.[Stanley M.],
One-Pass Complexity of Digital Picture Properties,
JACM(19), No. 2, April 1972, pp. 283-295. BibRef 7204

Murthy, I.S.N., and Udupa, K.J.,
A Search Algorithm for Skeletonization of Thick Patterns,
CGIP(3), No. 3, September 1974, pp. 246-259.
WWW Link. BibRef 7409

Shapiro, B., Pisa, J., Sklansky, J.,
Skeleton Generation from x,y Boundary Sequences,
CGIP(15), No. 2, February 1981, pp. 136-153.
WWW Link. BibRef 8102

Lee, D.T.,
Medial Axis Transformation of A Planar Shape,
PAMI(4), No. 4, July 1982, pp. 363-369. Algorithm based on Voronoi diagrams. BibRef 8207

Tsao, Y.F., Fu, K.S.,
A General Scheme for Constructing Skeleton Models,
IS(27), No. 1, 1982, pp. 53-87. BibRef 8200

Tsao, Y.F., Fu, K.S.,
Stochastic Skeleton Modeling of Objects,
CVGIP(25), No. 3, March 1984, pp. 348-370.
WWW Link. BibRef 8403

Peleg, S., and Rosenfeld, A.,
A Min-Max Medial Axis Transformation,
PAMI(3), No. 2, March 1981, pp. 208-210. BibRef 8103

Wang, S., Rosenfeld, A., Wu, A.Y.,
A Medial Axis Transformation for Grayscale Pictures,
PAMI(4), No. 4, July 1982, pp. 419-421. BibRef 8207

O'Rourke, J., Booth, H., Washington, R.,
Connect-the-Dots: A New Heuristic,
CVGIP(39), No. 2, August 1987, pp. 258-266.
WWW Link. BibRef 8708

Leymarie, F.F., and Levine, M.D.,
Simulating the Grassfire Transform Using an Active Contour Model,
PAMI(14), No. 1, January 1992, pp. 56-75.
IEEE DOI Snakes, Active Contours. A large number of references. Further analysis of the skeleton and the contour to get better results for more realistic data. For tracking: See also Tracking Deformable Objects in the Plane Using an Active Contour Model. BibRef 9201

Leymarie, F.F., Levine, M.D.[Martin D.],
Fast Raster Scan Distance Propagation on the Discrete Rectangular Lattice,
CVGIP(55), No. 1, January 1992, pp. 84-94.
WWW Link. BibRef 9201

Dill, A.R., Levine, M.D., and Nobel, P.B.,
Multiple Resolution Skeletons,
PAMI(9), No. 4, July 1987, pp. 495-504. Multiple Resolutions. The general computation of skeletons results in differences when there is noise. This uses a Gaussian filtering approach to eliminate this problem. BibRef 8707

Naccache, N.J., and Shinghal, R.,
An Investigation into the Skeletonization Approach of Hilditch,
PR(17), No. 3, 1984, pp. 279-284.
WWW Link. See also Linear Skeletons from Square Cupboards. BibRef 8400

Stefanelli, R.,
A Comment on an Investigation into the Skeletonization Approach of Hilditch,
PR(19), No. 1, 1986, pp. 13-14.
WWW Link. See also Linear Skeletons from Square Cupboards. BibRef 8600

Naccache, N.J., Shinghal, R.,
In Response to 'A Comment on an Investigation into the Skeletonization Approach of Hilditch',
PR(19), No. 2, 1986, pp. Page 111.
WWW Link. BibRef 8600

Xia, Y.,
Skeletonization Via the Realization of the Fire Front's Propagation and Extinction in Digital Binary Shapes,
PAMI(11), No. 10, October 1989, pp. 1076-1086.
IEEE DOI BibRef 8910

Cordella, L.P., and Sanniti di Baja, G.[Gabriella],
Geometric Properties of the Union of Maximal Neighborhoods,
PAMI(11), No. 2, February 1989, pp. 214-217.
IEEE DOI Analysis of merging MAT descriptions. BibRef 8902

Riazanoff, S., Cervelle, B., and Chorowicz, J.,
Parametrisable Skeletonization of Binary and Multilevel Images,
PRL(11), 1990, pp. 25-33. Direct extraction of skeletons. BibRef 9000

Nackman, L.R.,
Two-Dimensional Critical Point Configuration Graphs,
PAMI(6), No. 4, July 1984, pp. 442-449. BibRef 8407

Srinivasan, V., Nackman, L.R., Tang, J.M., Meshkat, S.N.,
Automatic Mesh Generation Using the Symmetric Axis Transformation of Polygonal Domains,
PIEEE(80), 1992, pp. 1485-1501. BibRef 9200

Samet, H.,
A Quadtree Medial Axis Transform,
CACM(26), No. 9, September 1983, pp. 680-693. BibRef 8309
And: Correction: CACM(27), No. 2, February 1984, pp. 151. The code is included. BibRef

Brandt, J.W., and Algazi, V.R.,
Continuous Skeleton Computation by Voronoi Diagram,
CVGIP(55), No. 3, May 1992, pp. 329-338.
WWW Link. BibRef 9205
And:
Computing a Stable, Connected Skeleton from Discrete Data,
CVPR91(666-667).
IEEE DOI The skeleton based on the Voronoi diagram from points along its border. BibRef

Pai, T.W., and Hansen, J.H.L.,
Boundary-Constrained Morphological Skeleton Minimization and Skeleton Reconstruction,
PAMI(16), No. 2, February 1994, pp. 201-208.
IEEE DOI Seems to say a better representation is the boundary and the skeleton, but does not say why the boundary is not enough. BibRef 9402

Arcelli, C., and Frucci, M.,
Reversible Skeletonization by (5,7,11)-Erosion,
VF91(21-28). BibRef 9100

Arcelli, C.[Carlo], Ramella, G.[Giuliana],
Finding Grey-Skeletons by Iterated Pixel Removal,
IVC(13), No. 3, April 1995, pp. 159-167.
WWW Link. BibRef 9504
And:
Delineation of elongated sub-patterns in a piecewise constant foreground,
CIAP95(335-340).
Springer DOI 9509
BibRef

Borgefors, G.[Gunilla], Ramella, G.[Guiliana], Sanniti di Baja, G.[Gabriella],
Permanence-based shape decomposition in binary pyramids,
CIAP99(38-43).
IEEE DOI 9909
BibRef
Earlier:
Coarse-to-Fine Skeletons from Grey-Level Pyramids,
ICPR98(Vol I: 400-402).
IEEE DOI 9808
BibRef
Earlier:
Using top-down and bottom-up analysis for a multi-scale skeleton hierarchy,
CIAP97(I: 369-376).
Springer DOI 9709
BibRef

Borgefors, G.[Gunilla], Sanniti di Baja, G.[Gabriella],
Parallel smoothing and decomposition of digital shapes using a multiresolution structure,
ICPR90(I: 745-748).
IEEE DOI 9006
BibRef

Salari, E., and Siy, P.,
The Ridge-Seeking Method for Obtaining the Skeleton of Digital Images,
SMC(14), No. 3, 1984, pp. 524-528. BibRef 8400

Thiel, E., Montanvert, A.[Annick],
Shape Splitting from Medial Lines Using the 3-4 Chamfer Distance,
VF91(537-546). BibRef 9100
And:
Chamfer masks: discrete distance functions, geometrical properties and optimization,
ICPR92(III:244-247).
IEEE DOI 9208
Use of the MAT to generate places to break objects into components. BibRef

Montanvert, A.[Annick],
Medial Line: Graph Representation and Shape Description,
ICPR86(430-432). BibRef 8600

Coeurjolly, D.[David], Montanvert, A.[Annick],
Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension,
PAMI(29), No. 3, March 2007, pp. 437-448.
IEEE DOI 0702
Optimal computation of skeletons. BibRef

Coeurjolly, D.[David],
Fast and Accurate Approximation of the Euclidean Opening Function in Arbitrary Dimension,
ICPR10(229-232).
IEEE DOI 1008
BibRef

Arcelli, C., Sanniti di Baja, G.,
Euclidean Skeleton via Centre-of-Maximal-Disc Extraction,
IVC(11), No. 3, April 1993, pp. 163-173.
WWW Link. BibRef 9304

Sanniti di Baja, G.[Gabriella], Thiel, E.[Edouard],
(3,4)-Weighted Skeleton Decomposition for Pattern Representation and Description,
PR(27), No. 8, August 1994, pp. 1039-1049.
WWW Link. See also Skeletonization Algorithm Running on Path-Based Distance Maps. BibRef 9408

Sanniti di Baja, G.,
Well-Shaped, Stable, and Reversible Skeletons from the (3,4)-Distance Transform,
JVCIR(5), 1994, pp. 107-115. BibRef 9400

Brandt, J.W.,
Convergence and Continuity Criteria for Discrete Approximations of the Continuous Planar Skeleton,
CVGIP(59), No. 1, January 1994, pp. 116-124.
WWW Link. BibRef 9401

Verwer, B.J.H., van Vliet, L.J., Verbeek, P.W.,
Binary And Grey-Value Skeletons: Metrics And Algorithms,
PRAI(7), No. 5, 1993, pp. 1287-1308. BibRef 9300

Pal, S.K.,
Fuzzy Skeletonization of an Image,
PRL(10), 1989, pp. 17-23. BibRef 8900

Pal, S.K., Rosenfeld, A.,
A Fuzzy Medial Axis Transformation Based on Fuzzy Disks,
PRL(12), 1991, pp. 585-590. BibRef 9100

Fukushima, S., Okumura, T.,
Extraction of the Symmetric Pairs of Contour Points as Well as the Medial Axis from a Planar Figure by a Method Based on Division of the Plane,
IEICE(J73-D-II), No. 6, 1990, pp. 848-854. BibRef 9000
And: English version: SCJ(22), No. 3, 1991, pp. 74-81. BibRef
Earlier:
Symmetry Analysis Based on the Voronoi-Delaunay Duality,
SCIA91(878-885). BibRef

Nilsson, F., Danielsson, P.E.,
Finding the Minimal Set of Maximum Disks for Binary Objects,
GMIP(59), No. 1, January 1997, pp. 55-60. 9703
Not quite skeletons, but a set of circles. BibRef

Tari, Z.S.G., Shah, J., Pien, H.,
Extraction of Shape Skeletons from Grayscale Images,
CVIU(66), No. 2, May 1997, pp. 133-146. 9705
Directly from image data. BibRef

Datta, A., Parui, S.K.,
Skeletons from Dot Patterns: A Neural-Network Approach,
PRL(18), No. 4, April 1997, pp. 335-342. 9708
BibRef

Datta, A.[Amitava], Parui, S.K., Chaudhuri, B.B.,
Skeletonization by a Topology-Adaptive Self-Organizing Neural Network,
PR(34), No. 3, March 2001, pp. 617-629.
WWW Link. 0101
BibRef
Earlier:
Skeletal Shape Extraction from Dot Patterns by Self-Organization,
ICPR96(IV: 80-84).
IEEE DOI 9608
(Indian Statistical Institute, IND) BibRef

Datta, A., Pal, T., and Parui, S.K.,
A modified self-organizing neural net for shape extraction,
Neurocomputing(14), 1997, pp. 3-14. Topology adaptive self-organizing feature maps. (TASOFM) BibRef 9700

Malandain, G., Fernandez Vidal, S.,
Euclidean Skeletons,
IVC(16), No. 5, April 27 1998, pp. 317-327.
WWW Link. 9805
BibRef

Pierrot-Deseilligny, M.[Marc], Stamon, G.[Georges], Suen, C.Y.[Ching Y.],
Veinerization: A New Shape Description for Flexible Skeletonization,
PAMI(20), No. 5, May 1998, pp. 505-521.
IEEE DOI 9806
Skeletons do not usually give the ideal center line of the shape. This work produces a graph that can be used to derive different skeletons. BibRef

Siddiqi, K.[Kaleem], Kimia, B.B., Shu, C.W.[Chi-Wang],
Geometric Shock Capturing ENO Schemes for Subpixel Interpolation, Computation and Curve Evolution,
GMIP(59), No. 5, September 1997, pp. 278-301. 9712
BibRef
Earlier: SCV95(437-442)
IEEE DOI Brown University. BibRef

Siddiqi, K.[Kaleem], Shokoufandeh, A.[Ali], Dickinson, S.J.[Sven J.], Zucker, S.W.[Steven W.],
Shock Graphs and Shape Matching,
IJCV(35), No. 1, November 1999, pp. 13-32.
DOI Link BibRef 9911
Earlier: ICCV98(222-229).
IEEE DOI BibRef

Fan, K.C., Chen, D.F., Wen, M.G.,
Skeletonization of Binary Images with Nonuniform Width via Block Decomposition and Contour Vector Matching,
PR(31), No. 7, July 1998, pp. 823-838.
WWW Link. 9807
BibRef

Beucher, S.,
Digital skeletons in Euclidean and geodesic spaces,
SP(38), No. 1, 1994, pp. 127-141. BibRef 9400

Pizer, S.M.[Stephen M.], Eberly, D.[David], Fritsch, D.S.[Daniel S.], Morse, B.S.[Bryan S.],
Zoom-Invariant Vision of Figural Shape: The Mathematics of Cores,
CVIU(69), No. 1, January 1998, pp. 55-71.
DOI Link Skeletons directly from the image data. See also Zoom-Invariant Vision of Figural Shape. BibRef 9801

Pizer, S.M.[Stephen M.], Gerig, G., Joshi, S.C., Aylward, S.R.,
Multiscale medial shape-based analysis of image objects,
PIEEE(91), No. 10, October 2003, pp. 1670-1679.
IEEE DOI 0310
BibRef

Aylward, S., Pizer, S.M., Bullitt, E., Eberly, D.,
Intensity Ridge and Widths for Tubular Object Segmentation and Description,
MMBIA96(MEDIAL AXES) BibRef 9600

Furst, J.D., Pizer, S.M., Eberly, D.,
Marching Cores: A Method for Extracting Cores from 3D Medical Images,
MMBIA96(MEDIAL AXES) BibRef 9600

Grigorishin, T.[Tanya], Abdel-Hamid, G.H.[Gamal H.], and Yang, Y.H.[Yee-Hong],
Skeletonization: An Electrostatic Field-Based Approach,
PAA(1), No. 3, 1998, pp. xx-yy. BibRef 9800
Earlier: Univ. of SaskatchewanTechnical report. 1996. Uses electrostatic field theory to maintain connectedness and topology of the object skeleton.
HTML Version. BibRef

Abdel-Hamid, G.H., Yang, Y.H.[Yee-Hong],
Multiresolution skeletonization an electrostatic field-based approach,
ICIP94(I: 949-953).
IEEE DOI 9411
BibRef

Zhong, D.X.[David X.], Yan, H.[Hong],
Pattern skeletonization using run-length-wise processing for intersection distortion problem,
PRL(20), No. 8, August 1999, pp. 833-846. BibRef 9908

Xu, M.[Ming], Pycock, D.[David],
A Scale-Space Medialness Transform Based on Boundary Concordance Voting,
JMIV(11), No. 3, December 1999, pp. 277-299.
DOI Link BibRef 9912

Zhu, S.C.[Song-Chun],
Stochastic Jump-Diffusion Process for Computing Medial Axes in Markov Random Fields,
PAMI(21), No. 11, November 1999, pp. 1158-1169.
IEEE DOI 9912
BibRef
Earlier:
Stochastic Computation of Medial Axis in Markov Random Fields,
CVPR98(72-79).
IEEE DOI Statistical inference, not mathematical transform. Related to Snakes, region growing and region competition. See also Embedding Gestalt Laws in Markov Random Fields. BibRef

Partridge, C.S.[Christopher Scott],
Method of skeletonizing a binary image using compressed run length data,
US_Patent6,058,219, May 2, 2000
WWW Link. Skeletons from run length data BibRef 0005

Remy, E., Thiel, E.,
Medial Axis for Chamfer Distances: Computing Look-Up Tables and Neighbourhoods in 2D or 3D,
PRL(23), No. 6, April 2002, pp. 649-661.
Elsevier DOI 0202
BibRef

Remy, E., Thiel, E.,
Exact medial axis with euclidean distance,
IVC(23), No. 2, 1 February 2004, pp. 167-175.
WWW Link. 0412
BibRef

Teixeira, R.C.[Ralph Costa],
Medial Axes and Mean Curvature Motion I: Regular Points,
JVCIR(13), No. 1/2, March/June 2002, pp. 135-155.
DOI Link 0204
BibRef

Teixeira, R.C.[Ralph Costa],
Medial Axes and Mean Curvature Motion II: Singularities,
JMIV(23), No. 1, July 2005, pp. 87-105.
Springer DOI 0505
BibRef

Siddiqi, K.[Kaleem], Bouix, S.[Sylvain], Tannenbaum, A.[Allen], Zucker, S.W.[Steven W.],
Hamilton-Jacobi Skeletons,
IJCV(48), No. 3, July-August 2002, pp. 215-231.
DOI Link 0207
BibRef
Earlier:
The Hamilton-Jacobi Skeleton,
ICCV99(828-834).
IEEE DOI BibRef

Dimitrov, P., Damon, J.N., Siddiqi, K.,
Flux invariants for shape,
CVPR03(I: 835-841).
IEEE DOI 0307
Analysis of skeleton description. To get invariant for matching. BibRef

August, J., Tannenbaum, A., Zucker, S.W.,
On the Evolution of the Skeleton,
ICCV99(315-322).
IEEE DOI BibRef 9900

Imiya, A.[Atsushi], Saito, M.[Masahiko], Tatara, K.[Ken], Nakamura, K.[Kiwamu],
Digital Curvature Flow and Its Application for Skeletonization,
JMIV(18), No. 1, January 2003, pp. 55-68.
DOI Link 0301
BibRef

Imiya, A.[Atusihi], Saito, M.[Masahiko],
Thinning by Curvature Flow,
JVCIR(17), No. 1, February 2006, pp. 27-41.
WWW Link. 0711
BibRef
Earlier: Add A3: Nakamura, K.[Kiwamu], IWCIA04(432-442).
Springer DOI 0505
Thinning; Skeleton; Digital geometry; Curvature flow; Topology; Binary images and objects BibRef

Choi, W.P.[Wai-Pak], Lam, K.M.[Kin-Man], Siu, W.C.[Wan-Chi],
Extraction of the Euclidean skeleton based on a connectivity criterion,
PR(36), No. 3, March 2003, pp. 721-729.
WWW Link. 0301
BibRef

Katz, R.A.[Robert A.], Pizer, S.M.[Stephen M.],
Untangling the Blum Medial Axis Transform,
IJCV(55), No. 2-3, November-December 2003, pp. 139-153.
DOI Link 0310
BibRef

Xu, M.[Ming],
The multiscale medial properties of interfering image structures,
PRL(25), No. 1, January 2004, pp. 21-34.
WWW Link. 0311
BibRef

Betelu, S.[Santiago], Sapiro, G.[Guillermo], Tannenbaum, A.[Allen], Giblin, P.J.[Peter J.],
On the computation of the affine skeletons of planar curves and the detection of skew symmetry,
PR(34), No. 5, May 2001, pp. 943-952.
Elsevier DOI 0102
BibRef
Earlier:
Noise-Resistant Affine Skeletons of Planar Curves,
ECCV00(I: 742-754).
Springer DOI 0003
BibRef

Niethammer, M.[Marc], Betelu, S.[Santiago], Sapiro, G.[Guillermo], Tannenbaum, A.[Allen], Giblin, P.J.[Peter J.],
Area-Based Medial Axis of Planar Curves,
IJCV(60), No. 3, December 2004, pp. 203-224.
DOI Link 0409
Point on axis if equidistant form at least 2 points of the curve, distance given by the area between the curve and its chords. Apply to skew symmetry. BibRef

Chung, D.H.[Do Hyun], Sapiro, G.,
Segmentation-free Skeletonization of Gray-scale Images via PDE's,
ICIP00(Vol II: 927-930).
IEEE DOI 0008
BibRef

Arcelli, C.[Carlo], Serino, L.[Luca],
Skeletonization of labeled gray-tone images,
IVC(23), No. 2, 1 February 2004, pp. 159-166.
WWW Link. 0412
BibRef

Chazal, F.[Frédéric], Lieutier, A.[André],
Lambda-medial axis,
Graphical Models(67), No. 4, July 2005, pp. 304-331.
Elsevier DOI BibRef 0507

Chazal, F.[Frédéric], Lieutier, A.[André],
Weak feature size and persistent homology: Computing homology of solids in Rn from noisy data samples,
TR378, Institut de Mathematiques de Bourgogne, 2004.
HTML Version. BibRef 0400

Chazal, F.[Frédéric], Soufflet, R.,
Stability and Finiteness Properties of Medial Axis and Skeleton,
JODS(10), No. 2, April 2004, pp. 149-170.
DOI Link BibRef 0404

Morrison, P.[Paul], Zou, J.J.[Ju Jia],
Skeletonization based on error reduction,
PR(39), No. 6, June 2006, pp. 1099-1109.
WWW Link. Skeletonization; Constrained Delaunay Triangulation; Thinning; Medial axis; Binary image processing; Cartoon image processing 0604
BibRef

Goh, W.B.[Wooi-Boon], Chan, K.Y.[Kai-Yun],
The multiresolution gradient vector field skeleton,
PR(40), No. 4, April 2007, pp. 1255-1269.
WWW Link. 0701
BibRef
Earlier:
Structural and Textural Skeletons for Noisy Shapes,
ISVC05(454-461).
Springer DOI 0512
BibRef
Earlier:
A Shape Descriptor for Shapes with Boundary Noise and Texture,
BMVC03(xx-yy).
HTML Version. 0409
BibRef
And:
Part-Based Shape Recognition Using Gradient Vector Field Histograms,
CAIP03(402-409).
Springer DOI 0311
BibRef
Earlier:
Shape Description Using Gradient Vector Field Histograms,
ScaleSpace03(713-728).
Springer DOI 0310
Boundary match. Skeleton; Shape description; Medial representation; Multiresolution BibRef

Goh, W.B.[Wooi-Boon],
Strategies for shape matching using skeletons,
CVIU(110), No. 3, June 2008, pp. 326-345.
WWW Link. 0711
BibRef
Earlier:
Strategies for Part-Based Shape Analysis Using Skeletons,
ISVC06(I: 475-484).
Springer DOI 0611
Shape matching; Skeletons; Medial representation; Multiresolution BibRef

Bai, X.[Xiang], Latecki, L.J.[Longin Jan], Liu, W.Y.[Wen-Yu],
Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution,
PAMI(29), No. 3, March 2007, pp. 449-462.
IEEE DOI 0702
Prune the skeleton to more simply capture the true shape. BibRef

Bai, X.[Xiang], Latecki, L.J.[Longin Jan],
Path Similarity Skeleton Graph Matching,
PAMI(30), No. 7, July 2008, pp. 1282-1292.
IEEE DOI 0806
BibRef
Earlier:
Discrete Skeleton Evolution,
EMMCVPR07(362-374).
Springer DOI 0708
BibRef

Xu, Y.[Yao], Wang, B.[Bo], Liu, W.Y.[Wen-Yu], Bai, X.[Xiang],
Skeleton Graph Matching Based on Critical Points Using Path Similarity,
ACCV09(III: 456-465).
Springer DOI 0909
See also Shape Matching and Recognition Using Group-Wised Points. BibRef

Yang, X.W.[Xing-Wei], Latecki, L.J.[Longin Jan],
Weakly Supervised Shape Based Object Detection with Particle Filter,
ECCV10(V: 757-770).
Springer DOI 1009
BibRef

Yang, X.W.[Xing-Wei], Bai, X.[Xiang], Yu, D.G.[De-Guang], Latecki, L.J.[Longin Jan],
Shape Classification Based on Skeleton Path Similarity,
EMMCVPR07(375-386).
Springer DOI 0708
BibRef

Liu, H.R.[Hai-Rong], Latecki, L.J.[Longin Jan], Liu, W.Y.[Wen-Yu],
A Unified Curvature Definition for Regular, Polygonal, and Digital Planar Curves,
IJCV(80), No. 1, October 2008, pp. xx-yy.
Springer DOI 0809
BibRef

Liu, H.R.[Hai-Rong], Liu, W.Y.[Wen-Yu], Latecki, L.J.[Longin Jan],
Convex shape decomposition,
CVPR10(97-104).
IEEE DOI 1006
BibRef

Liu, H.R.[Hai-Rong], Latecki, L.J.[Longin Jan], Liu, W.Y.[Wen-Yu], Bai, X.[Xiang],
Visual Curvature,
CVPR07(1-8).
IEEE DOI 0706
BibRef

Latecki, L.J.[Longin Jan], Li, Q.N.[Quan-Nan], Bai, X.[Xiang], Liu, W.Y.[Wen-Yu],
Skeletonization using SSM of the Distance Transform,
ICIP07(V: 349-352).
IEEE DOI 0709
BibRef

Shen, W.[Wei], Wang, Y.[Yan], Bai, X.[Xiang], Wang, H.Y.[Hong-Yuan], Latecki, L.J.[Longin Jan],
Shape clustering: Common structure discovery,
PR(46), No. 2, February 2013, pp. 539-550.
Elsevier DOI 1210
Shape; Shape clustering; Skeleton; Common structure; Hierarchical clustering BibRef

Couprie, M.[Michel], Coeurjolly, D.[David], Zrour, R.[Rita],
Discrete bisector function and Euclidean skeleton in 2D and 3D,
IVC(25), No. 10, 1 October 2007, pp. 1543-1556.
WWW Link. 0709
Bisector function; Skeleton; Euclidean distance transform; Voronoi diagram, Digital topology BibRef

Hesselink, W.H.[Wim H.], Roerdink, J.B.T.M.[Jos B.T.M.],
Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform,
PAMI(30), No. 12, December 2008, pp. 2204-2217.
IEEE DOI 0811
New definition -- integer medial axis. Faster computation. BibRef

Normand, N.[Nicolas], Évenou, P.[Pierre],
Medial axis lookup table and test neighborhood computation for 3D chamfer norms,
PR(42), No. 10, October 2009, pp. 2288-2296.
Elsevier DOI 0906
BibRef
Earlier:
Medial Axis LUT Computation for Chamfer Norms Using HH-Polytopes,
DGCI08(xx-yy).
Springer DOI 0804
Chamfer distances; Weighted distances; Medial axis; Test neighborhood; Polytopes BibRef

Hassouna, M.S.[Mohamed Sabry], Farag, A.A.[Aly A.],
Variational Curve Skeletons Using Gradient Vector Flow,
PAMI(31), No. 12, December 2009, pp. 2257-2274.
IEEE DOI 0911
BibRef
Earlier:
On the Extraction of Curve Skeletons using Gradient Vector Flow,
ICCV07(1-8).
IEEE DOI 0710
BibRef
Earlier:
Robust Skeletonization Using the Fast Marching Method,
ICIP05(I: 437-440).
IEEE DOI 0512
Represent 3D shape by set of 1D curves. BibRef

Silva, M.A.[Moacyr Alvim], Teixeira, R.[Ralph], Velho, L.[Luiz],
Affine Skeletons and Monge-Ampere Equations,
SIIMS(2), No. 3, 2009, pp. 987-1001.
DOI Link affine distance; medial axis; skeleton; affine geometry; Monge-Ampere equation; differential propagation BibRef 0900

Chaussard, J.[John], Couprie, M.[Michel], Talbot, H.[Hugues],
Robust skeletonization using the discrete lambda-medial axis,
PRL(32), No. 9, 1 July 2011, pp. 1384-1394.
Elsevier DOI 1101
BibRef
Earlier:
A Discrete lambda-Medial Axis,
DGCI09(421-433).
Springer DOI 0909
Skeleton; Image analysis; Shape analysis; Medial axis; [lambda]-medial axis; Stability See also Lambda-medial axis. BibRef

Chaussard, J.[John], Couprie, M.[Michel],
Surface Thinning in 3D Cubical Complexes,
IWCIA09(135-148).
Springer DOI 0911
BibRef

Couprie, M.[Michel],
Topological maps and robust hierarchical Euclidean skeletons in cubical complexes,
CVIU(117), No. 4, April 2013, pp. 355-369.
Elsevier DOI 1303
Skeleton; Medial axis; Pruning; Euclidean distance; Topology preservation; Topological map; Cubical complex; Collapse; Stability BibRef

Willcocks, C.G.[Chris G.], Li, F.W.B.[Frederick W. B.],
Feature-varying skeletonization: Intuitive control over the target feature size and output skeleton topology,
VC(27), No. 6-8, June 2011, pp. 775-785.
WWW Link. 1205
BibRef

Direkoglu, C.[Cem], Dahyot, R.[Rozenn], Manzke, M.[Michael],
On Using Anisotropic Diffusion for Skeleton Extraction,
IJCV(100), No. 2, November 2012, pp. 170-189.
WWW Link. 1209
BibRef
Earlier:
Skeleton Extraction via Anisotropic Heat Flow,
BMVC10(xx-yy).
HTML Version. 1009
BibRef

Pantuwong, N.[Natapon], Sugimoto, M.[Masanori],
Skeleton growing: an algorithm to extract a curve skeleton from a pseudonormal vector field,
VC(29), No. 3, March 2013, pp. 203-216.
WWW Link. 1303
BibRef

Livesu, M.[Marco], Scateni, R.[Riccardo],
Extracting curve-skeletons from digital shapes using occluding contours,
VC(29), No. 9, September 2013, pp. 907-916.
WWW Link. 1307
BibRef

Aubert, G.[Gilles], Aujol, J.F.[Jean-Franois],
Poisson Skeleton Revisited: a New Mathematical Perspective,
JMIV(48), No. 1, January 2014, pp. 149-159.
Springer DOI 1402
BibRef

Postolski, M.[Michal], Couprie, M.[Michel], Janaszewski, M.[Marcin],
Scale filtered Euclidean medial axis and its hierarchy,
CVIU(129), No. 1, 2014, pp. 89-102.
Elsevier DOI 1411
BibRef
Earlier:
Scale Filtered Euclidean Medial Axis,
DGCI13(360-371).
Springer DOI 1304
Filtered medial axis BibRef

Luo, L.[Lei], Shen, C.H.[Chun-Hua], Liu, X.W.[Xin-Wang], Zhang, C.Y.[Chun-Yuan],
A Computational Model of the Short-Cut Rule for 2D Shape Decomposition,
IP(24), No. 1, January 2015, pp. 273-283.
IEEE DOI 1502
image representation BibRef

Jalba, A.C.[Andrei C.], Sobiecki, A.[André], Telea, A.C.[Alexandru C.],
An Unified Multiscale Framework for Planar, Surface, and Curve Skeletonization,
PAMI(38), No. 1, January 2016, pp. 30-45.
IEEE DOI 1601
Computational modeling BibRef

Sobiecki, A.[André], Yasan, H.C.[Haluk C.], Jalba, A.C.[Andrei C.], Telea, A.C.[Alexandru C.],
Qualitative Comparison of Contraction-Based Curve Skeletonization Methods,
ISMM13(425-439).
Springer DOI 1305
BibRef

Marie, R.[Romain], Labbani-Igbida, O.[Ouiddad], Mouaddib, E.[El_Mustapha],
The Delta Medial Axis: A fast and robust algorithm for filtered skeleton extraction,
PR(56), No. 1, 2016, pp. 26-39.
Elsevier DOI 1604
BibRef
Earlier:
The delta-medial axis: A robust and linear time algorithm for Euclidian skeleton computation,
ICIP13(3523-3526)
IEEE DOI 1402
Medial axis. Image skeletonization; Medial Axis BibRef

Jin, D.[Dakai], Iyer, K.S.[Krishna S.], Chen, C.[Cheng], Hoffman, E.A.[Eric A.], Saha, P.K.[Punam K.],
A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths,
PRL(76), No. 1, 2016, pp. 32-40.
Elsevier DOI 1605
Curve skeletonization BibRef

Altinoklu, B.[Burak], Ulusoy, I.[Ilkay], Tari, S.[Sibel],
A probabilistic sparse skeleton based object detection,
PRL(83, Part 3), No. 1, 2016, pp. 243-250.
Elsevier DOI 1609
Markov random field BibRef

Damon, J.N.[James N.], Gasparovic, E.[Ellen],
Modeling Multi-object Configurations via Medial/Skeletal Linking Structures,
IJCV(124), No. 3, September 2017, pp. 255-272.
Springer DOI 1708
Interior of objects and exterior of neighbors. BibRef

Shen, W.[Wei], Zhao, K.[Kai], Jiang, Y.[Yuan], Wang, Y.[Yan], Bai, X.[Xiang], Yuille, A.,
DeepSkeleton: Learning Multi-Task Scale-Associated Deep Side Outputs for Object Skeleton Extraction in Natural Images,
IP(26), No. 11, November 2017, pp. 5298-5311.
IEEE DOI 1709
feature extraction, image representation, image segmentation, learning (artificial intelligence), object detection, convolutional network, deepskeleton, foreground object segmentation, multi-task learning, object contour, object proposal detection, object representation, object skeleton extraction, Image edge detection, Image segmentation, fully convolutional network, multi-task learning, BibRef

Shen, W.[Wei], Zhao, K.[Kai], Jiang, Y.[Yuan], Wang, Y.[Yan], Zhang, Z.J.[Zhi-Jiang], Bai, X.[Xiang],
Object Skeleton Extraction in Natural Images by Fusing Scale-Associated Deep Side Outputs,
CVPR16(222-230)
IEEE DOI 1612
BibRef


Youssef, R., Sevestre-Ghalila, S.,
Unified Lowering Decision of Parametric Thinning in the Hypothesis Test Framework,
DICTA15(1-6)
IEEE DOI 1603
image thinning BibRef

Youssef, R., Ricordeau, A., Sevestre-Ghalila, S., Benazza-Benyahya, A.,
Evaluation Protocol of Skeletonization Applied to Grayscale Curvilinear Structures,
DICTA15(1-6)
IEEE DOI 1603
differential geometry BibRef

Gonzalez-Lorenzo, A.[Aldo], Bac, A.[Alexandra], Mari, J.L.[Jean-Luc], Real, P.[Pedro],
Cellular Skeletons: A New Approach to Topological Skeletons with Geometric Features,
CAIP15(II:616-627).
Springer DOI 1511
BibRef

Ben Idder, H.I.[Hassan Id], Laachfoubi, N.[Nabil],
Skeletonization Algorithm Using Discrete Contour Map,
CIAP15(II:142-150).
Springer DOI 1511
BibRef

Jin, D.[Dakai], Chen, C.[Cheng], Saha, P.K.[Punam K.],
Filtering Non-Significant Quench Points Using Collision Impact in Grassfire Propagation,
CIAP15(I:432-443).
Springer DOI 1511
BibRef

Donatella, G.,
Skeletonization using the divergence of an anisotropic vector field flow,
AIPR13(1-9)
IEEE DOI 1408
computational geometry BibRef

Jin, D.[Dakai], Saha, P.K.[Punam K.],
A New Fuzzy Skeletonization Algorithm and Its Applications to Medical Imaging,
CIAP13(I:662-671).
Springer DOI 1311
BibRef

Sun, K.[Ke], Bruno, E.[Eric], Marchand-Maillet, S.[Stephane],
Unsupervised skeleton learning for manifold denoising,
ICPR12(2719-2722).
WWW Link. 1302
BibRef

Avrithis, Y.S.[Yannis S.], Rapantzikos, K.[Konstantinos],
The medial feature detector: Stable regions from image boundaries,
ICCV11(1724-1731).
IEEE DOI 1201
Weighted distance map on image gradient, medial axis BibRef

Demuth, M.[Markus], Aurenhammer, F.[Franz], Pinz, A.[Axel],
Straight skeletons for binary shapes,
NORDIA10(9-16).
IEEE DOI 1006
BibRef

Ward, A.D.[Aaron D.], Hamarneh, G.[Ghassan],
The Groupwise Medial Axis Transform for Fuzzy Skeletonization and Pruning,
PAMI(32), No. 6, June 2010, pp. 1084-1096.
IEEE DOI 1004
Determine significance of branches to remove those caused by minor variations in the shape. BibRef

Yoon, S.M.[Sang Min], Graf, H.[Holger],
Automatic skeleton extraction and splitting of target objects,
ICIP09(2421-2424).
IEEE DOI 0911
BibRef

Zhang, Y.[Yan], Matuszewski, B.J.[Bogdan J.],
Multiphase active contour segmentation constrained by evolving medial axes,
ICIP09(2993-2996).
IEEE DOI 0911
BibRef

Dardenne, J.[Julien], Valette, S.[Sebastien], Siauve, N.[Nicolas], Khaddour, B.[Bassem], Prost, R.[Remy],
Exploiting curvature to compute the medial axis with Constrained Centroidal Voronoi Diagram on discrete data,
ICIP09(441-444).
IEEE DOI 0911
BibRef

Yang, X.J.[Xiao-Jun], Bai, X.[Xiang], Yang, X.W.[Xing-Wei], Zeng, L.[Luan],
An Efficient Quick Algorithm for Computing Stable Skeletons,
CISP09(1-5).
IEEE DOI 0910
BibRef

Yan, H.W.[Hao-Wen], Wang, Z.H.[Zhong-Hui],
An Internal Direction-Based Algorithm for Medial Axis Transformation of an Arbitrary Polygon,
CISP09(1-5).
IEEE DOI 0910
BibRef

Li, Q.N.[Quan-Nan], Bai, X.[Xiang], Liu, W.Y.[Wen-Yu],
Skeletonization of gray-scale image from incomplete boundaries,
ICIP08(877-880).
IEEE DOI 0810
BibRef

Wang, T.[Tao], Cheng, I.[Irene],
Generation of Unit-Width Curve Skeletons Based on Valence Driven Spatial Median (VDSM),
ISVC08(I: 1051-1060).
Springer DOI 0812
BibRef

Palágyi, K.[Kálmán],
Simplifier Points in 2D Binary Images,
IWCIA17(3-15).
Springer DOI 1706
BibRef

Fazekas, A.[Attila], Palágyi, K.[Kálmán], Kovács, G.[György], Németh, G.[Gábor],
Skeletonization Based on Metrical Neighborhood Sequences,
CVS08(xx-yy).
Springer DOI 0805
See also Neighborhood Sequences and Their Applications in the Digital Image Processing. BibRef

Le Bourgeois, F., Emptoz, H.,
Skeletonization by Gradient Diffusion and Regularization,
ICIP07(III: 33-36).
IEEE DOI 0709
BibRef
And:
Skeletonization by Gradient Regularization and Diffusion,
ICDAR07(1118-1122).
IEEE DOI 0709
BibRef

Cazals, F.[Frédéric], Pouget, M.[Marc],
Ridges and the medial axis: Smooth surfaces, umbilics, lines of curvatures, foliations: a concise overview,
INRIARR-5138, 2004.
HTML Version. BibRef 0400

Qiu, H.J.[Huai-Jun], Hancock, E.R.,
Grey scale image skeletonisation from noise-damped vector potential,
ICPR04(II: 839-842).
IEEE DOI 0409
BibRef

Sanniti di Baja, G.[Gabriella], Nyström, I.[Ingela],
2D Grey-Level Skeleton Computation: A Discrete 3D Approach,
ICPR04(II: 455-458).
IEEE DOI 0409
BibRef

Nyström, I.[Ingela], Borgefors, G.[Gunilla], Sanniti di Baja, G.[Gabriella],
2D Grey-Level Convex Hull Computation: A Discrete 3D Approach,
SCIA03(763-770).
Springer DOI 0310
BibRef

Yu, Z.Y.[Ze-Yun], Bajaj, C.,
A segmentation-free approach for skeletonization of gray-scale images via anisotropic vector diffusion,
CVPR04(I: 415-420).
IEEE DOI 0408
See also Image segmentation using gradient vector diffusion and region merging. BibRef

Palenichka, R.M.[Roman M.], Zaremba, M.B.[Marek B.],
Object Shape Extraction Based on the Piecewise Linear Skeletal Representation,
ICIAR05(464-472).
Springer DOI 0509
BibRef
Earlier:
Multi-scale model-based skeletonization of object shapes using self-organizing maps,
ICPR02(I: 143-146).
IEEE DOI 0211
BibRef

Saeed, K.[Khalid], Rybnik, M.[Mariusz], Tabedzki, M.[Marek],
Implementation and Advanced Results on the Non-interrupted Skeletonization Algorithm,
CAIP01(601 ff.).
Springer DOI 0210
BibRef

Darwish, A.M., and Jain, A.K.,
Midline Model Based Segmentation,
CVPR86(614-618). (UC Davis) Processing circuit boards to find the lines and circles of the pattern. BibRef 8600

Dimitrov, P.[Pavel], Phillips, C.[Carlos], Siddiqi, K.[Kaleem],
Robust and Efficient Skeletal Graphs,
CVPR00(I: 417-423).
IEEE DOI 0005
BibRef

Golland, P.[Polina], Grimson, W.E.L.[W. Eric L.],
Fixed Topology Skeletons,
CVPR00(I: 10-17).
IEEE DOI 0005
BibRef

Singh, R., Wade, M.C., Papanikolopoulos, N.P.,
Letter Level Shape Description by Skeletonization in Faded Documents,
WACV98(121-126).
IEEE Abstract. 9809
BibRef

Nakamura, T.[Tsuyoshi], Mano, J.J.[Jun-Ji], Enowaki, H.[Hiroshi], Seki, H.[Hirohisa], Itoh, H.[Hidenori],
Skeleton Revision Algorithm Using Maximal Circles,
ICPR98(Vol II: 1607-1609).
IEEE DOI 9808
BibRef

Chung, J.M.[Jae-Moon], Ohnishi, N.[Noboru],
Chain of Circles for Matching and Recognition of Planar Shapes,
IJCAI97(1482-1487). BibRef 9700

Bzostek, A.[Andrew], Wolff, L.B.[Lawrence B.],
Medialness and Skeletonization for Object Recognition and Shape Similarity,
DARPA97(1219-1222). BibRef 9700

Ciuc, M., Coquin, D., Bolon, P.,
Quantitative assessment of two skeletonization algorithms adapted to rectangular grids,
CIAP97(I: 588-595).
Springer DOI 9709
BibRef

Li, X.Y.[Xing-Yuan], Oh, W.G.[Weon-Geun], Hong, J.R.[Jia-Rong],
Skeletonizing by compressed line adjacency graph in two directions,
ICIP96(III: 17-20).
IEEE DOI 9610
BibRef

Attali, D.[Dominique], Sanniti di Baja, G.[Gabriella], Thiel, E.[Edouard],
Pruning discrete and semicontinuous skeletons,
CIAP95(488-493).
Springer DOI 9509
BibRef

Pasquignon, D.,
Computation of skeleton by partial differential equation,
ICIP95(I: 239-241).
IEEE DOI 9510
BibRef

Petrou, M., Palmer, P.L., Christmas, W.J., Kittler, J.V.,
Robust Skeletonisation and Object Recognition from Grey Images,
AVFP94(455-464). BibRef 9400

Hall, R.W.,
Connectivity Preservation Tests for Parallel Reduction-Augmentation Algorithms,
ICPR94(C:245-250).
IEEE DOI BibRef 9400

Chaney, R.D.[Ronald D.],
Complexity as a Scale-Space for the Medial Axis Transform,
MIT AI Memo-1397, January 1993.
WWW Link. BibRef 9301

Vossepoel, A.M., Buys, J.P., Koelewijn, G.,
Skeletons from chain-coded contours,
ICPR90(II: 70-73).
IEEE DOI 9208
BibRef

Berthod, M., Serendero, M.A.,
Extraction of Thin Networks on Satellite Imagery,
ICPR88(I: 456-458).
IEEE DOI BibRef 8800

Dorst, L.,
Pseudo-Euclidean Skeletons,
ICPR86(286-288). BibRef 8600

Ahuja, N., Hoff, W.,
Augmented Medial Axis Transform,
ICPR84(336-338). BibRef 8400
And: CVWS84(251-256). BibRef

Badler, N.I., Dane, C.,
The Medial Axis of a Coarse Binary Image Using Boundary Smoothing,
PRIP79(286-291). BibRef 7900

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Distance Transforms, Functions and Skeletons .


Last update:Nov 11, 2017 at 13:31:57