22.2.6 General Urban Area Detection, Change and Growth

Chapter Contents (Back)
Aerial Image Analysis. Urban Area Detection. Change Detection. See also Impervious Surface Detection, Urban Area Extraction. Growth analysis: See also Urban Areas, Change and Growth. See also Classification for Urban Area Land Cover, Remote Sensing. See also Urban Heat Islands, Surface Temperature, Remote Sensing. See also Night Time Image Analysis for Urban Area Detection, Change and Growth.

Lu, H.Q., Aggarwal, J.K.,
Applying Perceptual Organization to the Detection of Man-Made Objects in Non-Urban Scenes,
PR(25), No. 8, August 1992, pp. 835-853.
Elsevier DOI BibRef 9208

Yu, S., Berthod, M., Giraudon, G.,
Toward Robust Analysis of Satellite Images Using Map Information: Application to Urban Area Detection,
GeoRS(37), No. 4, July 1999, pp. 1925.
IEEE Top Reference. BibRef 9907

Yu, S., Berthod, M.,
Urban Area Detection in Satellite Images Using Map Knowledge by a Feedback Control Technique,
ICPR94(A:98-102).
IEEE DOI BibRef 9400

Borghys, D., Perneel, C., Acheroy, M.,
Automatic detection of built-up areas in high-resolution polarimetric SAR images,
PRL(23), No. 9, July 2002, pp. 1085-1093.
Elsevier DOI 0205
BibRef

Borghys, D., Perneel, C., Acheroy, M.,
A multivariate contour detector for high-resolution polarimetric SAR images,
ICPR00(Vol III: 646-651).
IEEE DOI 0009
BibRef

Borghys, D., Lacroix, V., Perneel, C.,
Edge and line detection in polarimetric SAR images,
ICPR02(II: 921-924).
IEEE DOI 0211
BibRef

Epstein, J.[Jeanne], Payne, K.[Karen], Kramer, E.[Elizabeth],
Techniques for Mapping Suburban Sprawl,
PhEngRS(68), No. 9, September 2002, pp. 913-919.
WWW Link. While the amount of time required to edit road coverages is significantly higher than that for traditional remote sensing techniques, the improved thematic accuracy, spatial contiguity, and potential future uses of the resulting dataset justifies its use in a state-wide mapping program. 0304
BibRef

Hasse, J.[John], Lathrop, R.G.[Richard G.],
A Housing-Unit-Level Approach to Characterizing Residential Sprawl,
PhEngRS(69), No. 9, September 2003, pp. 1021-1030.
WWW Link. 0309
Spatial measurements of new housing units provide a means for assessing the degree to which new residential development can be characterized as sprawling. BibRef

Dell'Acqua, F., Gamba, P.,
Texture-Based Characterization of Urban Environments on Satellite SAR Images,
GeoRS(41), No. 1, January 2003, pp. 153-159.
IEEE Top Reference. 0304
BibRef

Dell'Acqua, F., Gamba, P., Lisini, G.,
Improvements to urban area characterization using multitemporal and multiangle SAR images,
GeoRS(41), No. 9, September 2003, pp. 1996-2004.
IEEE Abstract. 0310
BibRef

Gamba, P.[Paolo], Dell'Acqua, F.[Fabio], Lisini, G., Trianni, G.,
Improved VHR Urban Area Mapping Exploiting Object Boundaries,
GeoRS(45), No. 8, August 2007, pp. 2676-2682.
IEEE DOI 0709
BibRef

Bian, L.[Ling],
Retrieving Urban Objects Using a Wavelet Transform Approach,
PhEngRS(69), No. 2, February 2003, pp. 133-142. The Harr wavelet transform is used to represent edge information for the retrieval of traditional industrial complexes from digital aerial photographs in an urban area.
WWW Link. 0304
BibRef

Clapham, Jr., W.B.,
Continuum-based classification of remotely sensed imagery to describe urban sprawl on a watershed scale,
RSE(86), No. 3, 15 August 2003, pp. 322-340.
Elsevier DOI 0309
BibRef

Nobrega, R.A.A., O'Hara, C.G., Quintanilha, J.A.,
Detecting roads in informal settlements surrounding Sao Paulo City by using object-based classification,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Nobrega, R.A.A., O'Hara, C.G.,
Segmentation and object extraction from anisotropic diffusion filtered LiDAR intensity data,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Greenhill, D.R., Ripke, L.T., Hitchman, A.P., Jones, G.A., Wilkinson, G.G.,
Characterization of suburban areas for land use planning using landscape ecological indicators derived from Ikonos-2 multispectral imagery,
GeoRS(41), No. 9, September 2003, pp. 2015-2021.
IEEE Abstract. 0310
BibRef

Herold, M., Gardner, M.E., Roberts, D.A.,
Spectral resolution requirements for mapping urban areas,
GeoRS(41), No. 9, September 2003, pp. 1907-1919.
IEEE Abstract. 0310
BibRef

Benediktsson, J.A., Pesaresi, M., Arnason, K.,
Classification and feature extraction for remote sensing images from urban areas based on morphological transformations,
GeoRS(41), No. 9, September 2003, pp. 1940-1949.
IEEE Abstract. 0310
BibRef

Fauvel, M., Chanussot, J., Benediktsson, J.A.,
Decision Fusion for the Classification of Urban Remote Sensing Images,
GeoRS(44), No. 10, October 2006, pp. 2828-2838.
IEEE DOI 0609
BibRef

Orun, A.B.[Ahmet B.],
Automated Identification of Man-Made Textural Features on Satellite Imagery by Bayesian Networks,
PhEngRS(70), No. 2, February 2004, pp. 211-217.
WWW Link. A classification technique which distinguishes between man-made and natural textural features on satellite imagery by the use of textural analyses and Bayesian networks is introduced. 0403
BibRef

Unsalan, C., Boyer, K.L.,
Classifying Land Development in High-Resolution Panchromatic Satellite Images Using Straight-Line Statistics,
GeoRS(42), No. 4, April 2004, pp. 907-919.
IEEE Abstract. 0407
BibRef
Earlier:
Classifying land development in high resolution satellite images using straight line statistics,
ICPR02(I: 127-130).
IEEE DOI 0211
BibRef

Unsalan, C., Boyer, K.L.,
A Theoretical and Experimental Investigation of Graph Theoretical Measures for Land Development in Satellite Imagery,
PAMI(27), No. 4, April 2005, pp. 575-589.
IEEE Abstract. 0501
BibRef
Earlier: ICPR04(II: 64-67).
IEEE DOI 0409
BibRef

Ünsalan, C.[Cem], Boyer, K.L.[Kim L.],
A system to detect houses and residential street networks in multispectral satellite images,
CVIU(98), No. 3, June 2005, pp. 423-461.
Elsevier DOI 0505
BibRef
Earlier: ICPR04(III: 49-52).
IEEE DOI 0409
BibRef

Unsalan, C.,
Measuring Land Development in Urban Regions Using Graph Theoretical and Conditional Statistical Features,
GeoRS(45), No. 12, December 2007, pp. 3989-3999.
IEEE DOI 0711
BibRef

Sirmacek, B.[Beril], Unsalan, C.[Cem],
Using local features to measure land development in urban regions,
PRL(31), No. 10, 15 July 2010, pp. 1155-1159.
Elsevier DOI 1008
Ikonos images; Gabor filtering; Local features; Spatial voting; Measuring land development BibRef

Sirmacek, B.[Beril], Unsalan, C.[Cem],
Urban-Area and Building Detection Using SIFT Keypoints and Graph Theory,
GeoRS(47), No. 4, April 2009, pp. 1156-1167.
IEEE DOI 0903
BibRef

Unsalan, C.[Cem], Sirmacek, B.[Beril],
Road Network Detection Using Probabilistic and Graph Theoretical Methods,
GeoRS(50), No. 11, November 2012, pp. 4441-4453.
IEEE DOI 1210
BibRef
Earlier: A2, A1:
Road Network Extraction Using Edge Detection and Spatial Voting,
ICPR10(3113-3116).
IEEE DOI 1008
BibRef

Sirmacek, B.[Beril], Unsalan, C.[Cem],
A Probabilistic Framework to Detect Buildings in Aerial and Satellite Images,
GeoRS(49), No. 1, January 2011, pp. 211-221.
IEEE DOI 1101
BibRef

Zeljkovic, V., Dorado, A., Izquierdo, E.,
Combining a Fuzzy Rule-Based Classifier and Illumination Invariance for Improved Building Detection,
CirSysVideo(14), No. 11, November 2004, pp. 1277-1280.
IEEE Abstract. 0411
Edge based classification of buildings from video. BibRef

Zeljkovic, V.[Vesna], Tameze, C.[Claude], Vincelette, R.[Robert], Izquierdo, E.,
Different non-linear diffusion filters combined with triangle method used for noise removal from polygonal shapes,
IET-IPR(4), No. 4, August 2010, pp. 313-333.
DOI Link 1008
BibRef
Earlier: A1, A2, A3, Only:
Combined nonlinear inverse diffusion filter and triangle method used for noise removal from polygonal shapes,
ICIP08(21-24).
IEEE DOI 0810
BibRef

Dorado, A.[Andres], Izquierdo, E.[Ebroul],
Exploiting Problem Domain Knowledge for Accurate Building Image Classification,
CIVR04(199-206).
Springer DOI 0505
BibRef

Myint, S.W.[Soe W.], Lam, N.[Nina],
Examining Lacunarity Approaches in Comparison with Fractal and Spatial Autocorrelation Techniques for Urban Mapping,
PhEngRS(71), No. 8, August 2005, pp. 927-938.
WWW Link. 0602
An evaluation and comparison of two lacunarity methods, fractal triangular prism and spatial autocorrelation, and original spectral band approaches in classifying urban images. BibRef

Zandona-Schneider, R., Papathanassiou, K.P., Hajnsek, I., Moreira, A.,
Polarimetric and Interferometric Characterization of Coherent Scatterers in Urban Areas,
GeoRS(44), No. 4, April 2006, pp. 971-984.
IEEE DOI 0604
BibRef

Matikainen, L.[Leena], Hyyppä, J.[Juha], Engdahl, M.[Marcus],
Mapping Built-up Areas from Multitemporal Interferometric SAR Images: A Segment-based Approach,
PhEngRS(72), No. 6, June 2006, pp. 701-714.
WWW Link. 0610
BibRef
Earlier:
Extracting Built-Up Areas from Multitemporal Interferometric SAR Images,
PCV02(B: 170). 0305
Built-up areas were accurately detected from a multitemporal interferometric ERS dataset using a region-based classification approach, and a correlation between the building density and intensity/coherence in the image was found. BibRef

Zhong, P.[Ping], Wang, R.S.[Run-Sheng],
Using Combination of Statistical Models and Multilevel Structural Information for Detecting Urban Areas From a Single Gray-Level Image,
GeoRS(45), No. 5, May 2007, pp. 1469-1482.
IEEE DOI 0704
See also Learning Conditional Random Fields for Classification of Hyperspectral Images. BibRef

Zhong, P.[Ping], Wang, R.S.[Run-Sheng],
A Multiple Conditional Random Fields Ensemble Model for Urban Area Detection in Remote Sensing Optical Images,
GeoRS(45), No. 12, December 2007, pp. 3978-3988.
IEEE DOI 0711
BibRef

Inglada, J.[Jordi],
Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features,
PandRS(62), No. 3, August 2007, pp. 236-248.
Elsevier DOI 0709
Object recognition; Man-made objects; Support vector machines; Geometrical moments BibRef

Inglada, J., Michel, J.,
Qualitative Spatial Reasoning for High-Resolution Remote Sensing Image Analysis,
GeoRS(47), No. 2, February 2009, pp. 599-612.
IEEE DOI 0903
BibRef

Vanegas, M.C., Bloch, I., Inglada, J.,
Alignment and Parallelism for the Description of High-Resolution Remote Sensing Images,
GeoRS(51), No. 6, 2013, pp. 3542-3557.
IEEE DOI fuzzy set theory; object alignment representation 1307
BibRef

Xu, H.Q.[Han-Qiu],
Extraction of Urban Built-up Land Features from Landsat Imagery Using a Thematic-oriented Index Combination Technique,
PhEngRS(73), No. 12, December 2007, pp. 1381-1392.
WWW Link. 0712
A new method to extract urban built-up land information from Landsat imagery based on three thematic indexes. BibRef

Wei, W.[Wang], Xin, Y.[Yang],
Feature extraction for man-made objects segmentation in aerial images,
MVA(19), No. 1, January 2008, pp. 57-64.
Springer DOI 0801
BibRef

Wei, W.[Wang], Xin, Y.[Yang], Guo, C.[Cao],
A Multiphase Level Set Evolution Scheme for Aerial Image Segmentation Using Multi-scale Image Geometric Analysis,
SSPR06(56-64).
Springer DOI 0608
BibRef

Wei, W.[Wang], Xin, Y.[Yang],
Rapid, man-made object morphological segmentation for aerial images using a multi-scaled, geometric image analysis,
IVC(28), No. 4, April 2010, pp. 626-633.
Elsevier DOI 1002
Man-made object segmentation; Multi-scaled geometric image analysis; Watershed; The non-subsampled contourlet transform BibRef

Huang, M.J.[Ming-Jer], Shyue, S.W.[Shiahn-Wern], Lee, L.H.[Liang-Hwei], Kao, C.C.[Chih-Chung],
A Knowledge-based Approach to Urban Feature Classification Using Aerial Imagery with Lidar Data,
PhEngRS(74), No. 12, December 2008, pp. 1473-1486.
WWW Link. 0804
Applying knowledge- and segment-based vertical stratification, rule-based classification, and aggregation schemes with knowledge-based correction to improve the classification accuracy of urban features BibRef

Guindon, B.[Bert], Zhang, Y.[Ying],
Automated Urban Delineation from Landsat Imagery Based on Spatial Information Processing,
PhEngRS(75), No. 7, July 2009, pp. 845-858.
WWW Link. 0910
Proposed methods to automatically delineate urban areas on Landsat imagery based on extracted line information. BibRef

Karantzalos, K.[Konstantinos], Argialas, D.[Demertre],
A Region-based Level Set Segmentation for Automatic Detection of Man-made Objects from Aerial and Satellite Images,
PhEngRS(75), No. 6, June 2009, pp. 667-678.
WWW Link. 0910
A region-based segmentation developed, tested, and evaluated for automatically detecting roads, buildings, and other man-made objects from aerial and satellite images. See also Large-Scale Building Reconstruction Through Information Fusion and 3-D Priors. BibRef

Esch, T., Thiel, M., Schenk, A., Roth, A., Muller, A., Dech, S.,
Delineation of Urban Footprints From TerraSAR-X Data by Analyzing Speckle Characteristics and Intensity Information,
GeoRS(48), No. 2, February 2010, pp. 905-916.
IEEE DOI 1002
See also Characterization of Land Cover Types in TerraSAR-X Images by Combined Analysis of Speckle Statistics and Intensity Information. BibRef

Margarit, G., Mallorqui, J.J., Pipia, L.,
Polarimetric Characterization and Temporal Stability Analysis of Urban Target Scattering,
GeoRS(48), No. 4, April 2010, pp. 2038-2048.
IEEE DOI 1003
BibRef

Ouma, Y.O., Tateishi, R., Sri-Sumantyo, J.T.,
Urban features recognition and extraction from very-high resolution multi-spectral satellite imagery: A micro-macro texture determination and integration framework,
IET-IPR(4), No. 4, August 2010, pp. 235-254.
DOI Link 1008
BibRef

Lafarge, F.[Florent], Gimel'farb, G.L.[Georgy L.], Descombes, X.[Xavier],
Geometric Feature Extraction by a Multimarked Point Process,
PAMI(32), No. 9, September 2010, pp. 1597-1609.
IEEE DOI 1008
BibRef
Earlier:
A Geometric Primitive Extraction Process for Remote Sensing Problems,
ACIVS08(xx-yy).
Springer DOI 0810
Tree crowns, building footprints, roads. Describe the image in terms of a finite library of geometric objects. Segments, lines, line ends, circles, rectangles, bands (||), band ends (U). BibRef

Lafarge, F., Descombes, X., Zerubia, J.B.,
Textural Kernel for SVM Classification in Remote Sensing: Application to Forest Fire Detection and Urban Area Extraction,
ICIP05(III: 1096-1099).
IEEE DOI 0512
BibRef

Mallet, C.[Clement], Lafarge, F.[Florent], Roux, M., Soergel, U.[Uwe], Bretar, F.[Frederic], Heipke, C.[Christian],
A Marked Point Process for Modeling Lidar Waveforms,
IP(19), No. 12, December 2010, pp. 3204-3221.
IEEE DOI 1011
BibRef
Earlier: A1, A2, A5, A4, A6, Only:
Lidar waveform modeling using a marked point process,
ICIP09(1713-1716).
IEEE DOI 0911
BibRef

Schmidt, A., Kruse, C., Rottensteiner, F., Soergel, U., Heipke, C.,
Network Detection In Raster Data Using Marked Point Processes,
ISPRS16(B3: 701-708).
DOI Link 1610
BibRef
Earlier: A1, A3, A4, A5, Only:
Extraction of fluvial networks in lidar data using marked point processes,
PCV14(297-304).
DOI Link 1404
BibRef

Guo, L.[Li], Boukir, S.[Samia],
Fast Data Selection for SVM Training Using Ensemble Margin,
PRL(51), No. 1, 2015, pp. 112-119.
Elsevier DOI 1412
BibRef
And:
Ensemble margin framework for image classification,
ICIP14(4231-4235)
IEEE DOI 1502
Accuracy. Boundary points See also Exploring Issues of Training Data Imbalance and Mislabelling on Random Forest Performance for Large Area Land Cover Classification Using the Ensemble Margin. BibRef

Guo, L.[Li], Boukir, S.[Samia],
Margin-based ordered aggregation for ensemble pruning,
PRL(34), No. 6, 15 April 2013, pp. 603-609.
Elsevier DOI 1303
Ensemble learning; Ensemble pruning; Margin; Ordered aggregation; Bagging BibRef

Boukir, S.[Samia], Guo, L.[Li], Chehata, N.[Nesrine],
Classification of Remote Sensing Data Using Margin-Based Ensemble Methods,
ICIP13(2602-2606)
IEEE DOI 1402
BibRef
And: A2, A1, A3:
Support Vectors Selection for Supervised Learning Using an Ensemble Approach,
ICPR10(37-40).
IEEE DOI 1008
Bagging BibRef

Paladini, R., Martorella, M., Berizzi, F.,
Classification of Man-Made Targets via Invariant Coherency-Matrix Eigenvector Decomposition of Polarimetric SAR/ISAR Images,
GeoRS(49), No. 8, August 2011, pp. 3022-3034.
IEEE DOI 1108
BibRef

Stumpf, A., Lachiche, N., Malet, J.P., Kerle, N., Puissant, A.,
Active Learning in the Spatial Domain for Remote Sensing Image Classification,
GeoRS(52), No. 5, May 2014, pp. 2492-2507.
IEEE DOI 1403
Entropy BibRef

Geiß, C., Taubenböck, H., Wurm, M., Esch, T., Nast, M., Schillings, C., Blaschke, T.,
Remote Sensing-Based Characterization of Settlement Structures for Assessing Local Potential of District Heat,
RS(3), No. 7, July 2011, pp. 1447-1471.
DOI Link 1203
BibRef

Yang, F.[Fan], Matsushita, B.[Bunkei], Yang, W.[Wei], Fukushima, T.[Takehiko],
Mapping the human footprint from satellite measurements in Japan,
PandRS(88), No. 1, 2014, pp. 80-90.
Elsevier DOI 1402
Human footprint BibRef

As-syakur, A., Adnyana, I., Arthana, I., Nuarsa, I.,
Enhanced Built-Up and Bareness Index (EBBI) for Mapping Built-Up and Bare Land in an Urban Area,
RS(4), No. 10, October 2012, pp. 2957-2970.
DOI Link 1210
BibRef

Henze, F.[Frank], Lehmann, H.[Heike], Bruschke, B.[Bettina],
Analysis of Historic Maps and Images for Research on Urban Development of Baalbek/Lebanon,
PFG(2009), No. 3, 2009, pp. 221-234.
WWW Link. 1211
BibRef

Gamba, P.,
Human Settlements: A Global Challenge for EO Data Processing and Interpretation,
PIEEE(100), No. 3, March 2013, pp. 570-581.
IEEE DOI 1303
BibRef

Li, W.W.[Wen-Wen], Li, L.[Linna], Goodchild, M.F.[Michael F.], Anselin, L.[Luc],
A Geospatial Cyberinfrastructure for Urban Economic Analysis and Spatial Decision-Making,
IJGI(2), No. 2, 2013, pp. 413-431.
DOI Link 1307
BibRef

Petrovic, S.[Stefan], Karlsson, K.[Kenneth],
Model for Determining Geographical Distribution of Heat Saving Potentials in Danish Building Stock,
IJGI(3), No. 1, 2014, pp. 143-165.
DOI Link 1404
BibRef

Mei, A.[Alessandro], Salvatori, R.[Rosamaria], Fiore, N.[Nicola], Allegrini, A.[Alessia], D'Andrea, A.[Antonio],
Integration of Field and Laboratory Spectral Data with Multi-Resolution Remote Sensed Imagery for Asphalt Surface Differentiation,
RS(6), No. 4, 2014, pp. 2765-2781.
DOI Link 1405
BibRef

Li, N.[Na], Bruzzone, L.[Lorenzo], Chen, Z.[Zengping], Liu, F.[Fang],
A Novel Technique Based on the Combination of Labeled Co-Occurrence Matrix and Variogram for the Detection of Built-up Areas in High-Resolution SAR Images,
RS(6), No. 5, 2014, pp. 3857-3878.
DOI Link 1407
BibRef

Oltra-Carrio, R., Cubero-Castan, M., Briottet, X., Sobrino, J.A.,
Analysis of the Performance of the TES Algorithm Over Urban Areas,
GeoRS(52), No. 11, November 2014, pp. 6989-6998.
IEEE DOI 1407
Asphalt BibRef

Zhang, J.[Jun], Li, P.J.[Pei-Jun], Wang, J.[Jinfei],
Urban Built-Up Area Extraction from Landsat TM/ETM+ Images Using Spectral Information and Multivariate Texture,
RS(6), No. 8, 2014, pp. 7339-7359.
DOI Link 1410
BibRef

Spröhnle, K.[Kristin], Tiede, D.[Dirk], Schoepfer, E.[Elisabeth], Füreder, P.[Petra], Svanberg, A.[Anna], Rost, T.[Torbjörn],
Earth Observation-Based Dwelling Detection Approaches in a Highly Complex Refugee Camp Environment: A Comparative Study,
RS(6), No. 10, 2014, pp. 9277-9297.
DOI Link 1411
BibRef

Scott, D.[Douglas], Petropoulos, G.P.[George P.], Moxley, J.[Janet], Malcolm, H.[Heath],
Quantifying the Physical Composition of Urban Morphology throughout Wales Based on the Time Series (1989-2011) Analysis of Landsat TM/ETM+ Images and Supporting GIS Data,
RS(6), No. 12, 2014, pp. 11731-11752.
DOI Link 1412
BibRef

Lelo, K.[Keti],
A GIS Approach to Urban History: Rome in the 18th Century,
IJGI(3), No. 4, 2014, pp. 1293-1316.
DOI Link 1412
BibRef

Conesa, F.C.[Francesc C.], Devanthéry, N.[Núria], Balbo, A.L.[Andrea L.], Madella, M.[Marco], Monserrat, O.[Oriol],
Use of Satellite SAR for Understanding Long-Term Human Occupation Dynamics in the Monsoonal Semi-Arid Plains of North Gujarat, India,
RS(6), No. 11, 2014, pp. 11420-11443.
DOI Link 1412
BibRef

Gueguen, L.[Lionel],
Classifying Compound Structures in Satellite Images: A Compressed Representation for Fast Queries,
GeoRS(53), No. 4, April 2015, pp. 1803-1818.
IEEE DOI 1502
geophysical image processing. High res imagery, hierarchical segmentation, descriptions. BibRef

Gueguen, L.[Lionel], Pesaresi, M.[Martino], Ehrlich, D.[Daniele], Lu, L.L.[Lin-Lin],
Urbanization analysis by mutual information based change detection between SPOT 5 panchromatic images,
MultiTemp11(157-160).
IEEE DOI 1109
BibRef

Li, C.[Cheng], Thinh, N.X.[Nguyen Xuan], Zhao, J.[Jie],
Spatiotemporally Varying Relationships between Urban Growth Patterns and Driving Factors in Xuzhou City, China,
PFG(2014), No. 6, 2014, pp. 535-548.
DOI Link 1503
BibRef

Duan, Y.L.[Yu-Lin], Shao, X.W.[Xiao-Wei], Shi, Y.[Yun], Miyazaki, H.[Hiroyuki], Iwao, K.[Koki], Shibasaki, R.[Ryosuke],
Unsupervised Global Urban Area Mapping via Automatic Labeling from ASTER and PALSAR Satellite Images,
RS(7), No. 2, 2015, pp. 2171-2192.
DOI Link 1503
BibRef

Bitelli, G.[Gabriele], Conte, P.[Paolo], Csoknyai, T.[Tamas], Franci, F.[Francesca], Girelli, V.A.[Valentina A.], Mandanici, E.[Emanuele],
Aerial Thermography for Energetic Modelling of Cities,
RS(7), No. 2, 2015, pp. 2152-2170.
DOI Link 1503
BibRef

Ban, Y.F.[Yi-Fang], Jacob, A.[Alexander], Gamba, P.[Paolo],
Spaceborne SAR data for global urban mapping at 30M resolution using a robust urban extractor,
PandRS(103), No. 1, 2015, pp. 28-37.
Elsevier DOI 1504
KTH-Pavia Urban Extractor BibRef

Asahara, A.[Akinori], Hayashi, H.[Hideki], Kai, T.[Takashi],
Moving Point Density Estimation Algorithm Based on a Generated Bayesian Prior,
IJGI(4), No. 2, 2015, pp. 515-534.
DOI Link 1504
BibRef

Bennie, J.[Jonathan], Duffy, J.P.[James P.], Davies, T.W.[Thomas W.], Correa-Cano, M.E.[Maria Eugenia], Gaston, K.J.[Kevin J.],
Global Trends in Exposure to Light Pollution in Natural Terrestrial Ecosystems,
RS(7), No. 3, 2015, pp. 2715-2730.
DOI Link 1504
BibRef

Chen, X.[Xi], Nordhaus, W.[William],
A Test of the New VIIRS Lights Data Set: Population and Economic Output in Africa,
RS(7), No. 4, 2015, pp. 4937-4947.
DOI Link 1505
BibRef

Zhang, X.[Xiya], Li, P.J.[Pei-Jun], Cai, C.[Cai],
Regional Urban Extent Extraction Using Multi-Sensor Data and One-Class Classification,
RS(7), No. 6, 2015, pp. 7671.
DOI Link 1507
BibRef

Wan, B.[Bo], Guo, Q.H.[Qing-Hua], Fang, F.[Fang], Su, Y.[Yanjun], Wang, R.[Run],
Mapping US Urban Extents from MODIS Data Using One-Class Classification Method,
RS(7), No. 8, 2015, pp. 10143.
DOI Link 1509
BibRef

Johnson, B.A.[Brian A.], Bragais, M.[Milben], Endo, I.[Isao], Magcale-Macandog, D.B.[Damasa B.], Macandog, P.B.M.[Paula Beatrice M.],
Image Segmentation Parameter Optimization Considering Within- and Between-Segment Heterogeneity at Multiple Scale Levels: Test Case for Mapping Residential Areas Using Landsat Imagery,
IJGI(4), No. 4, 2015, pp. 2292.
DOI Link 1511
BibRef

Zhang, L.[Libao], Zhang, J.[Jue], Wang, S.[Shuang], Chen, J.[Jie],
Residential Area Extraction Based on Saliency Analysis for High Spatial Resolution Remote Sensing Images,
JVCIR(33), No. 1, 2015, pp. 273-285.
Elsevier DOI 1512
Remote sensing image processing BibRef

Zhang, L., Li, A., Zhang, Z., Yang, K.,
Global and Local Saliency Analysis for the Extraction of Residential Areas in High-Spatial-Resolution Remote Sensing Image,
GeoRS(54), No. 7, July 2016, pp. 3750-3763.
IEEE DOI 1606
Biological system modeling BibRef

Zhang, Z.H.[Zhong-Hao], Yang, X.Q.[Xiao-Qin], Xiao, R.[Rui],
Fractal Characterization of Settlement Patterns and Their Spatial Determinants in Coastal Zones,
IJGI(4), No. 4, 2015, pp. 2728.
DOI Link 1601
Human settlement. BibRef

Hu, Z.W.[Zhong-Wen], Li, Q.Q.[Qing-Quan], Zhang, Q.[Qian], Wu, G.F.[Guo-Feng],
Representation of Block-Based Image Features in a Multi-Scale Framework for Built-Up Area Detection,
RS(8), No. 2, 2016, pp. 155.
DOI Link 1603
BibRef

Krayenhoff, E.S.[E. Scott], Voogt, J.A.[James A.],
Daytime Thermal Anisotropy of Urban Neighbourhoods: Morphological Causation,
RS(8), No. 2, 2016, pp. 108.
DOI Link 1603
BibRef

Liu, K.[Kai], Fang, J.Y.[Jun-Yong], Zhao, D.[Dong], Liu, X.[Xue], Zhang, X.H.[Xiao-Hong], Wang, X.[Xiao], Li, X.K.[Xue-Ke],
An Assessment of Urban Surface Energy Fluxes Using a Sub-Pixel Remote Sensing Analysis: A Case Study in Suzhou, China,
IJGI(5), No. 2, 2016, pp. 11.
DOI Link 1603
BibRef

Pesaresi, M.[Martino], Corbane, C.[Christina], Julea, A.[Andreea], Florczyk, A.J.[Aneta J.], Syrris, V.[Vasileios], Soille, P.[Pierre],
Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas,
RS(8), No. 4, 2016, pp. 299.
DOI Link 1604
BibRef

Huang, J.[Junyi], Zhou, Q.M.[Qi-Ming], Wu, Z.F.[Zhi-Feng],
Delineating Urban Fringe Area by Land Cover Information Entropy: An Empirical Study of Guangzhou-Foshan Metropolitan Area, China,
IJGI(5), No. 5, 2016, pp. 59.
DOI Link 1606
BibRef

Kuffer, M.[Monika], Pfeffer, K.[Karin], Sliuzas, R.[Richard],
Slums from Space: 15 Years of Slum Mapping Using Remote Sensing,
RS(8), No. 6, 2016, pp. 455.
DOI Link 1608
BibRef

Krehl, A.[Angelika], Siedentop, S.[Stefan], Taubenböck, H.[Hannes], Wurm, M.[Michael],
A Comprehensive View on Urban Spatial Structure: Urban Density Patterns of German City Regions,
IJGI(5), No. 6, 2016, pp. 76.
DOI Link 1608
BibRef

Di Palma, F.[Flavia], Amato, F.[Federico], Nolè, G.[Gabriele], Martellozzo, F.[Federico], Murgante, B.[Beniamino],
A SMAP Supervised Classification of Landsat Images for Urban Sprawl Evaluation,
IJGI(5), No. 7, 2016, pp. 109.
DOI Link 1608
BibRef

Fluschnik, T.[Till], Kriewald, S.[Steffen], Ros, A.G.C.[Anselmo García Cantú], Zhou, B.[Bin], Reusser, D.E.[Dominik E.], Kropp, J.P.[Jürgen P.], Rybski, D.[Diego],
The Size Distribution, Scaling Properties and Spatial Organization of Urban Clusters: A Global and Regional Percolation Perspective,
IJGI(5), No. 7, 2016, pp. 110.
DOI Link 1608
BibRef

Cutini, V.[Valerio],
Motorways in Metropolitan Areas: The Northwestern Growth of Florence and the Urban Use of Motorway A1,
IJGI(5), No. 6, 2016, pp. 77.
DOI Link 1608
BibRef

Harig, O.[Oliver], Burghardt, D.[Dirk], Hecht, R.[Robert],
A Supervised Approach to Delineate Built-Up Areas for Monitoring and Analysis of Settlements,
IJGI(5), No. 8, 2016, pp. 137.
DOI Link 1609
BibRef

Xiang, D.L.[De-Liang], Tang, T.[Tao], Hu, C.B.[Can-Bin], Fan, Q.H.[Qing-Hui], Su, Y.[Yi],
Built-up Area Extraction from PolSAR Imagery with Model-Based Decomposition and Polarimetric Coherence,
RS(8), No. 8, 2016, pp. 685.
DOI Link 1609
See also Unsupervised Polarimetric SAR Urban Area Classification Based on Model-Based Decomposition with Cross Scattering. BibRef

Goldblatt, R.[Ran], You, W.[Wei], Hanson, G.[Gordon], Khandelwal, A.K.[Amit K.],
Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image Classification in Google Earth Engine,
RS(8), No. 8, 2016, pp. 634.
DOI Link 1609
BibRef

Ma, L.[Lei], Li, M.C.[Man-Chun], Blaschke, T.[Thomas], Ma, X.X.[Xiao-Xue], Tiede, D.[Dirk], Cheng, L.[Liang], Chen, Z.J.[Zhen-Jie], Chen, D.[Dong],
Object-Based Change Detection in Urban Areas: The Effects of Segmentation Strategy, Scale, and Feature Space on Unsupervised Methods,
RS(8), No. 9, 2016, pp. 761.
DOI Link 1610
BibRef

Wieland, M.[Marc], Pittore, M.[Massimiliano],
Large-area settlement pattern recognition from Landsat-8 data,
PandRS(119), No. 1, 2016, pp. 294-308.
Elsevier DOI 1610
Landsat-8 BibRef

Ouyang, Z.T.[Zu-Tao], Fan, P.[Peilei], Chen, J.Q.[Ji-Quan],
Urban Built-up Areas in Transitional Economies of Southeast Asia: Spatial Extent and Dynamics,
RS(8), No. 10, 2016, pp. 819.
DOI Link 1609
BibRef

Huang, W.[Wei], Li, S.N.[Song-Nian],
Understanding human activity patterns based on space-time-semantics,
PandRS(121), No. 1, 2016, pp. 1-10.
Elsevier DOI 1609
Human mobility BibRef

Tomaszewska, M.[Monika], Henebry, G.M.[Geoffrey M.],
Urban-Rural Contrasts in Central-Eastern European Cities Using a MODIS 4 Micron Time Series,
RS(8), No. 11, 2016, pp. 924.
DOI Link 1612
BibRef

Zhou, Y.[Yi], Lin, C.[Chenxi], Wang, S.[Shixin], Liu, W.[Wenliang], Tian, Y.[Ye],
Estimation of Building Density with the Integrated Use of GF-1 PMS and Radarsat-2 Data,
RS(8), No. 11, 2016, pp. 969.
DOI Link 1612
BibRef

Taubenböck, H.[Hannes], Standfuß, I.[Ines], Klotz, M.[Martin], Wurm, M.[Michael],
The Physical Density of the City: Deconstruction of the Delusive Density Measure with Evidence from Two European Megacities,
IJGI(5), No. 11, 2016, pp. 206.
DOI Link 1612
BibRef

Gevaert, C.M., Persello, C., Sliuzas, R., Vosselman, G.,
Informal settlement classification using point-cloud and image-based features from UAV data,
PandRS(125), No. 1, 2017, pp. 225-236.
Elsevier DOI 1703
Informal settlements BibRef

Taubenböck, H.[Hannes], Ferstl, J.[Joachim], Dech, S.[Stefan],
Regions Set in Stone: Delimiting and Categorizing Regions in Europe by Settlement Patterns Derived from EO-Data,
IJGI(6), No. 2, 2017, pp. xx-yy.
DOI Link 1703
BibRef

Ma, X.L.[Xiao-Long], Tong, X.H.[Xiao-Hua], Liu, S.[Sicong], Luo, X.[Xin], Xie, H.[Huan], Li, C.M.[Cheng-Ming],
Optimized Sample Selection in SVM Classification by Combining with DMSP-OLS, Landsat NDVI and GlobeLand30 Products for Extracting Urban Built-Up Areas,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Peng, F.F.[Fei-Fei], Gong, J.Y.[Jian-Ya], Wang, L.[Le], Wu, H.[Huayi], Liu, P.C.[Peng-Cheng],
A New Stereo Pair Disparity Index (SPDI) for Detecting Built-Up Areas from High-Resolution Stereo Imagery,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Zhang, Q.[Qian], Huang, X.[Xin], Zhang, G.X.[Gui-Xu],
Urban Area Extraction by Regional and Line Segment Feature Fusion and Urban Morphology Analysis,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Wang, R.[Run], Wan, B.[Bo], Guo, Q.H.[Qing-Hua], Hu, M.[Maosheng], Zhou, S.[Shunping],
Mapping Regional Urban Extent Using NPP-VIIRS DNB and MODIS NDVI Data,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708
BibRef


Grinias, I.[Ilias], Panagiotakis, C.[Costas], Tziritas, G.[Georgios],
MRF-based segmentation and unsupervised classification for building and road detection in peri-urban areas of high-resolution satellite images,
PandRS(122), No. 1, 2016, pp. 145-166.
Elsevier DOI 1612
Building/road extraction BibRef

Pour, T., Burian, J., Mirijovský, J.,
Advanced Extraction Of Spatial Information From High Resolution Satellite Data,
ISPRS16(B3: 905-907).
DOI Link 1610
BibRef

Wang, H.[Hao], Ning, X.G.[Xiao-Gang], Zhu, W.W.[Wei-Wei], Li, F.[Fei],
Comprehensive Evaluation Of Urban Sprawl On Ecological Environment Using Multi-source Data: A Case Study Of Beijing,
ISPRS16(B8: 1073-1077).
DOI Link 1610
BibRef

Imam, A.[Ayman], Alhaddad, B.[Bahaa], Roca, J.[Josep],
Remote Sensing Efficiency For Urban Analysis Of Mecca And Surrounds,
ISPRS16(B8: 905-910).
DOI Link 1610
BibRef

Sapena, M., Ruiz, L.A., Goerlich, F.J.,
Analysing Relationships Between Urban Land Use Fragmentation Metrics And Socio-economic Variables,
ISPRS16(B8: 1029-1036).
DOI Link 1610
BibRef

Hernández, H.J., Gutiérrez, M.A., Acuña, M.P.,
Urban Morphological Dynamics In Santiago (Chile): Proposing Sustainable Indicators From Remote Sensing,
ISPRS16(B8: 873-877).
DOI Link 1610
BibRef

Akay, S.S., Sertel, E.,
Urban Land Cover/use Change Detection Using High Resolution Spot 5 And Spot 6 Images And Urban Atlas Nomenclature,
ISPRS16(B8: 789-796).
DOI Link 1610
BibRef

Zhang, Y.H., Liu, H.P.,
Trajectory-based Analysis Of Urban Land-cover Change Detection,
ISPRS16(B7: 607-610).
DOI Link 1610
BibRef

Candas, E., Flacke, J., Yomralioglu, T.,
Understanding Urban Regeneration In Turkey,
ISPRS16(B4: 669-675).
DOI Link 1610
BibRef

Roynard, X., Deschaud, J.E., Goulette, F.,
Fast And Robust Segmentation And Classification For Change Detection In Urban Point Clouds,
ISPRS16(B3: 693-699).
DOI Link 1610
BibRef

Wang, Y.D., Jiang, B.T., Ye, X.Y.,
A method for studying the development pattern of urban commercial service facilities based on customer reviews from social media,
ISPRS16(B2: 577-578).
DOI Link 1610
BibRef

Rautenbach, V., Coetzee, S., Çöltekin, A.,
Investigating The Use Of 3d Geovisualizations For Urban Design In Informal Settlement Upgrading In South Africa,
ISPRS16(B2: 425-431).
DOI Link 1610
BibRef

Koziatek, O., Dragicevic, S., Li, S.,
Geospatial Modelling Approach For 3d Urban Densification Developments,
ISPRS16(B2: 349-352).
DOI Link 1610
BibRef

Lopez-Caloca, A.A.,
Data fusion approach for Urban area identification using multisensor information,
MultiTemp15(1-4)
IEEE DOI 1511
Markov processes BibRef

Li, M.[Minmin], Zhang, Z.X.[Zeng-Xiang], Zhao, X.L.[Xiao-Li], Wang, X.[Xiao], Seen, D.L.[D. Lo],
Characteristics of spatial-temporal sprawl in specific Chinese coastal cities from 1979 to 2013,
MultiTemp15(1-4)
IEEE DOI 1511
land use BibRef

Guyet, T.,
Landscape features that prevent or foster urban sprawl,
MultiTemp15(1-4)
IEEE DOI 1511
land use BibRef

Liu, X., Zhang, J.X., Zhao, Z., Ma, A.D.,
Built-up Areas Extraction in High Resolution SAR Imagery based on the method of Multiple Feature Weighted Fusion,
IWIDF15(121-125).
DOI Link 1508
BibRef

Adami, A.,
4D City Transformations by time Series of Aerial Images,
3D-Arch15(339-344).
DOI Link 1504
BibRef

Susaki, J., Kishimoto, M.,
Urban Area Extraction Using Airborne X-Band Fully Polarimetric Pi-SAR2 Imagery,
PIA15(219-226).
DOI Link 1504
BibRef

Zhao, H., Wang, H., Wu, W., Wang, C.,
Integrated 3S Technology Used in Urban Grid Management,
Geospatial14(1-5).
DOI Link 1411
monitor state and changes of the city. BibRef

Akin, A., Aliffi, S., Sunar, F.,
Spatio-temporal Urban Change Analysis and the Ecological Threats Concerning The Third Bridge in Istanbul City,
Thematic14(9-14).
DOI Link 1404
BibRef

Mashford, J.[John], Lipkin, F.[Felix], Olie, C.[Charlelie], Cuchennec, M.[Mailys], Song, Y.[Yong],
Automatic Interpretation of Remotely Sensed Images for Urban Form Assessment,
ICIAR14(I: 441-449).
Springer DOI 1410
BibRef

Lozano, J., Quartulli, M., Tamayo, I., Laka, M., Olaizola, I.,
Visual analytics for built-up area understanding from metric resolution Earth observation data,
SSG13(151-154).
DOI Link 1402
BibRef

Ruzgiene, B., Aksamitauskas, C.,
The Use of UAV Systems for Mapping of Built-Up Area,
UAV-g13(349-353).
HTML Version. 1311
BibRef

Cianci, M.G., Calisi, D.,
The Urban Structure of Rome Between History and Modern Times,
CIPA13(189-194).
HTML Version. 1311
BibRef

Aghababaee, H., Niazmardi, S., Amini, J.,
Urban Area Extraction in SAR Data,
SMPR13(1-5).
HTML Version. 1311
BibRef

Karanja, F.N., Matara, S.,
The Transformation from Green to Concrete Cities; A Remote Sensing Perspective,
Hannover13(163-166).
DOI Link 1308
BibRef

Vyas, A., Sashtri, B.,
SAR Polarimetric Signatures For Urban Targets: Polarimetric Signature Calculation And Visualization,
ISPRS12(XXXIX-B7:535-540).
DOI Link 1209
BibRef

Kumagai, K.,
Spatial Comparison Between Densely Built-up Districts From The Viewpoint Of Vulnerability To Road Blockades With Respect To Evacuation Behavior,
ISPRS12(XXXIX-B2:151-156).
DOI Link 1209
BibRef

Mesev, V.,
Multiscale And Multitemporal Urban Remote Sensing,
ISPRS12(XXXIX-B2:17-21).
DOI Link 1209
BibRef

Nocerino, E., Menna, F., Menna, F.,
Multi-temporal Analysis Of Landscapes And Urban Areas,
ISPRS12(XXXIX-B4:85-90).
DOI Link 1209
BibRef

Miyazaki, H., Iwao, K., Shibasaki, R.,
Automated Construction Of Coverage Catalogues Of Aster Satellite Image For Urban Areas Of The World,
ISPRS12(XXXIX-B8:497-500).
DOI Link 1209
BibRef

Linh, N.H.K., Erasmi, S., Kappas, M.,
Quantifying Land Use/cover Change And Landscape Fragmentation In Danang City, Vietnam: 1979-2009,
ISPRS12(XXXIX-B8:501-506).
DOI Link 1209
BibRef

Alhaddad, B., Arellano, B.E., Roca, J.,
Urban Detection, Delimitation And Morphology: Comparative Analysis Of Selective 'megacities',
ISPRS12(XXXIX-B7:381-386).
DOI Link 1209
BibRef

Altan, O., Kemper, G.,
Understanding The Past, Managing The Future: Remotely sensed analysis of the urban sprawl of Istanbul for supporting decision making for a sustainable future,
ISPRS12(XXXIX-B4:353-361).
DOI Link 1209
BibRef

Colaninno, N., Roca, J., Burns, M., Alhaddad, B.,
Defining Densities For Urban Residential Texture, Through Land Use Classification, From Landsat Tm Imagery: Case Study Of Spanish Mediterranean Coast,
ISPRS12(XXXIX-B7:179-184).
DOI Link 1209
BibRef

Bouraoui, S., Deruyver, A.,
A system to detect residential area in multispectral satellite images,
IVCNZ10(1-5).
IEEE DOI 1203
BibRef

Yu, L.J.[Li-Jun], Nie, Y.P.[Yue-Ping], Zhu, C.H.[Chun-Hua],
Relations analysis between canal and urban development of Yangzhou supported by space technology,
IASP11(460-462).
IEEE DOI 1112
BibRef

Shi, B.Q.[Bei-Qi], Liu, C.[Chun], Sun, W.W.[Wei-We], Wu, H.B.[Hang-Bin],
Residential Area Recognition Using Oscillatory Correlation Segmentation of Hyperspectral Imagery,
ISIDF11(1-4).
IEEE DOI 1111
BibRef

van de Voorde, T.[Tim], Jacquet, W., Canters, F.[Frank],
A Region-Based Approach for Describing Urban Morphology Based on Sub-Pixel Estimation of Sealed Surface Cover,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Thunig, H., Wolf, N., Naumann, S., Siegmund, A., Jurgens, C.,
Automated LULC Classification of VHR Optical Satellite Data in the Context of Urban Planning,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Yang, C.J.[Cun-Jian], Luo, Z.[Zhen],
Extracting Rural Settlement Information from Quickbird Images,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Simler, C., Beumier, C.,
Performance Evaluation of Road and Building Classifiers on VHR Images,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

de Maeyer, M., Sotiaux, A., Wolff, E.,
Comparison of Standardized Methods (Object-Oriented vs. Per Pixel) to Extract The Urban Built-Up Area: Example of Lubumbashi (DRC),
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Dinis, J., Navarro, A., Soares, F., Santos, T., Freire, S., Fonseca, A., Afonso, N., Tenedório, J.A.,
Hierarchical Object-Based Classification of Dense Urban Areas by Integrating High Spatial Resolution Satellite Images and LIDAR Elevation Data,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Soares, F., Navarro, A., Santos, T., Freire, S., Fonseca, A., Santos, N., Tenedório, J.A.,
Cartographic Data Extraction from Airborne Imagery by Hierarchical-Based Morphologic Image Processing,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Pham, T.T.H.[Thi Thanh Hien], Apparicio, P.[Philippe],
Mapping urban green space in Montreal for better environmental justice: objectoriented classification of very-high-resolution images,
CGC10(203).
PDF File. 1006
BibRef

Besbes, O.[Olfa], Boujemaa, N.[Nozha], Belhadj, Z.[Ziad],
Cue Integration for Urban Area Extraction in Remote Sensing Images,
ICIAR09(248-257).
Springer DOI 0907
BibRef
And:
Contextual classification of high-resolution satellite images,
CIIP09(41-47).
IEEE DOI 0903
BibRef

Yang, Y.[Yetao], Zhou, O.[Oiming], Gong, J.Y.[Jian-Ya],
Gradient Analysis Of Landscape Pattern Spatial-temporal Changes In Beijing Metropolitan Area, China,
VCGVA09(xx-yy). 0910
gradient analysis, landscape metrics, spatio-temporal, urban expansion BibRef

Adam, O.[Osama], Ban, Y.F.[Yi-Fang],
Multitemporal Spaceborn SAR Data For Change Detection In Urban Areas:a Case Study In Shanghai,
VCGVA09(xx-yy). 0910
Change detection, SAR, Minimum-error thresholding, Ratio image, Modified ratio, Urban area BibRef

Qiao, Y.[Yu], Liu, H.P.[Hui-Ping], Bai, M.[Mu], Wang, X.D.[Xiao-Dong], Zhou, X.L.[Xiao-Luo],
The Decision Tree Algorithm Of Urban Extraction From Multi-source Image Data,
VCGVA09(xx-yy). 0910
Multi-Source Image Data, Decision Tree, Unified Conceptual Model BibRef

Lee, J.A.[Jin A.], Chi, K.H.[Kwang Hoon],
Modeling of urban industrial economy through utilization of thermal band,
CityModels09(xx-yy).
PDF File. 0912
BibRef

Bedawi, S.M.[Safaa M.], Kamel, M.S.[Mohamed S.],
Road Detection in Urban Areas Using Random Forest Tree-Based Ensemble Classification,
ICIAR15(499-505).
Springer DOI 1507
BibRef

Bedawi, S.M.[Safaa M.], Kamel, M.S.[Mohamed S.],
Multiple Classifier System for Urban Area's Extraction from High Resolution Remote Sensing Imagery,
ICIAR11(II: 307-316).
Springer DOI 1106
BibRef
Earlier:
Segmentation of Very High Resolution Remote Sensing Imagery of Urban Areas Using Particle Swarm Optimization Algorithm,
ICIAR10(I: 81-88).
Springer DOI 1006
BibRef

Zheng, S.F.[Song-Feng],
Probabilistic Cascade Random Fields for Man-Made Structure Detection,
ACCV09(II: 596-607).
Springer DOI 0909
BibRef

Wang, M.[Min],
Influence of Number of Features on Texture Based Residential Area Extraction from Remotely Sensed Imagery,
CISP09(1-4).
IEEE DOI 0910
BibRef

Wang, J.M.[Jian-Min], Xie, C.X.[Chun-Xi],
Extracting Residential Area Information from Dual-SAR Image Based on Object-Oriented Technique,
CISP09(1-4).
IEEE DOI 0910
BibRef

Murtaza, K.[Kashif], Khan, S.[Sohaib], Rajpoot, N.[Nasir],
Villagefinder: Segmentation of Nucleated Villages in Satellite Imagery,
BMVC09(xx-yy).
PDF File. 0909
BibRef

Shandiz, H.T., Mirhassani, S.M., Yousefi, B.,
Hierarchical method for building extraction in urban area's images using unsharp masking [USM] and Bayesian classifier,
WSSIP08(193-196).
IEEE DOI 0806
BibRef

Bouakache, A.[Abdenour], Khedam, R.[Radja], Belhadj-Aissa, A.[Aichouche], Mercier, G.[Grégoire],
A Generalized Appriou's Model for Evidential Classification of Multispectral Images: A Case Study of Algiers City,
ACIVS08(xx-yy).
Springer DOI 0810
BibRef

Xi, L.[Li], Zequn, G.[Guan], Tiyan, S.[Shen],
Extract Profile of Urbanized Area in Beijing Assisted by Skewness,
ISPRS08(B3b: 463 ff).
PDF File. 0807
BibRef

Kampouraki, M., Wood, G.A., Brewer, T.,
The application of remote sensing to identify and measure sealed areas in urban environments,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Jacquin, A., Misakova, L., Gay, M.,
The potential use of very high spatial resolution data and object-based classification for mapping urban sprawl,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Hofmann, P., Strobl, J., Blaschke, T., Kux, H.,
Detecting informal settlements from QuickBird data in Rio de Janeiro using an object based approach,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Marchesi, A., Colombo, R., Valentini, P.,
Application of high spatial resolution satellite imagery for urban environment mapping,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Madden, M., Jordan, T., Kim, M.,
Object-based segmentation of cultural and natural landscapes using landscape models to derive contextual classification,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Fritz, G.[Gerald], Seifert, C.[Christin], Paletta, L.[Lucas],
A Mobile Vision System for Urban Detection with Informative Local Descriptors,
CVS06(30).
IEEE DOI 0602
Urban objects from mobile phone images for tourist services. BibRef

Fritz, G.[Gerald], Seifert, C.[Christin], Kumar, M.[Manish], Paletta, L.[Lucas],
Building Detection from Mobile Imagery Using Informative SIFT Descriptors,
SCIA05(629-638).
Springer DOI 0506
BibRef

Wang, W.[Wei], Yang, X.[Xin], Chen, S.S.[Shou-Shui],
A Kernel Matching Pursuit Approach to Man-Made Objects Detection in Aerial Images,
IbPRIA07(II: 507-514).
Springer DOI 0706
BibRef

Cao, G.[Guo], Yang, X.[Xin], Zhou, D.[Dake],
Mumford-Shah Model Based Man-Made Objects Detection from Aerial Images,
ScaleSpace05(386-395).
Springer DOI 0505
BibRef

Kumar, S., Hebert, M.,
Man-made structure detection in natural images using a causal multiscale random field,
CVPR03(I: 119-126).
IEEE DOI 0307
BibRef

Straub, B.M.[Bernd-Michael], Gerke, M.[Markus], Pahl, M.[Martin],
Automatic Mapping of Settlement Areas Using a Knowledge-Based Image Interpretation System,
CVS03(355 ff).
Springer DOI 0306
BibRef

Gerke, M.[Markus],
Scene Analysis in Urban Areas Using a Knowledge-Based Interpretation-System,
PCV02(B: 63). 0305
BibRef

Jiang, Q.,
Automatic Extraction of Urban Regions from Multispectral SPOT Satellite Imagery,
ICIP00(Vol II: 728-731).
IEEE DOI 0008
BibRef

Chapter on Cartography, Aerial Images, Remote Sensing, Buildings, Roads, Terrain, ATR continues in
Impervious Surface Detection, Urban Area Extraction .


Last update:Sep 18, 2017 at 11:34:11