16.7.4.8.3 Human Activities, Crowds, Lots of People

Chapter Contents (Back)
Group Activity. Crowds. Crowd Behavior. See also Crowds, Tracking Multiple People, Multiple Pedestrian Tracking. See also Human Activities, Violence, Violent Actions.

Lien, K.C.[Kuo-Chin], Huang, C.L.[Chung-Lin],
Multiview-Based Cooperative Tracking of Multiple Human Objects,
JIVP(2008), No. 2008, pp. xx-yy.
DOI Link 0804
BibRef
Earlier:
Multi-view-based Cooperative Tracking of Multiple Human Objects in Cluttered Scenes,
ICPR06(III: 1123-1126).
IEEE DOI 0609
BibRef

Tsai, Y.T.[Yao-Te], Shih, H.C.[Huang-Chia], Huang, C.L.[Chung-Lin],
Multiple Human Objects Tracking in Crowded Scenes,
ICPR06(III: 51-54).
IEEE DOI 0609
BibRef

Li, L., Huang, W., Gu, I.Y.H., Luo, R., Tian, Q.,
An Efficient Sequential Approach to Tracking Multiple Objects Through Crowds for Real-Time Intelligent CCTV Systems,
SMC-B(37), No. 5, September 2007, pp. 1254-1269.
IEEE DOI 0809
BibRef

Ma, Y.Q.[Yun-Qian], Cisar, P.[Petr], Kembhavi, A.[Aniruddha],
Motion segmentation and activity representation in crowds,
IJIST(19), No. 2, June 2009, pp. 80-90.
DOI Link 0905
BibRef

Ma, Y.Q.[Yun-Qian], Cisar, P.[Petr],
Activity Representation in Crowd,
SSPR08(107-116).
Springer DOI 0812
BibRef

Ma, Y.Q.[Yun-Qian], Cisar, P.[Petr],
Event detection using local binary pattern based dynamic textures,
VCL-ViSU09(38-44).
IEEE DOI 0906
BibRef

Yogameena, B., Veeralakshmi, S., Komagal, E., Raju, S., Abhaikumar, V.,
RVM-Based Human Action Classification in Crowd through Projection and Star Skeletonization,
JIVP(2009), No. 2009, pp. xx-yy.
DOI Link 1002
BibRef

Haciomeroglu, M., Laycock, R.G., Day, A.M.,
Automatic spatial analysis and pedestrian flow control for real-time crowd simulation in an urban environment,
VC(24), No. 10, October 2008, pp. xx-yy.
Springer DOI 0804
BibRef

Barut, O.[Oner], Haciomeroglu, M.[Murat],
Real-time collision-free linear trajectory generation on GPU for crowd simulations,
VC(31), No. 6-8, June 2015, pp. 843-852.
WWW Link. 1506
Graphics simulations, not recogniton and tracking. BibRef

Ozcan, C.Y.[Cumhur Yigit], Haciomeroglu, M.[Murat],
A path-based multi-agent navigation model,
VC(31), No. 6-8, June 2015, pp. 863-872.
Springer DOI 1506
BibRef

Wadoo, S.A., Kachroo, P.,
Feedback Control of Crowd Evacuation in One Dimension,
ITS(11), No. 1, March 2010, pp. 182-193.
IEEE DOI 1003
BibRef

Ke, Y.[Yan], Sukthankar, R.[Rahul], Hebert, M.[Martial],
Volumetric Features for Video Event Detection,
IJCV(88), No. 3, July 2010, pp. xx-yy.
Springer DOI 1003
BibRef
Earlier: A1, Only: CMU-CS-08-113, March 2008. BibRef Ph.D.Thesis, March 2008.
HTML Version. BibRef

Matikainen, P.[Pyry], Sukthankar, R.[Rahul], Hebert, M.[Martial],
Model recommendation for action recognition,
CVPR12(2256-2263).
IEEE DOI 1208
BibRef
Earlier:
Feature seeding for action recognition,
ICCV11(1716-1723).
IEEE DOI 1201
BibRef
Earlier: A1, A3, A2:
Representing Pairwise Spatial and Temporal Relations for Action Recognition,
ECCV10(I: 508-521).
Springer DOI 1009
BibRef
Earlier: A1, A3, A2:
Trajectons: Action recognition through the motion analysis of tracked features,
ObjectEvent09(514-521).
IEEE DOI 0910
BibRef

Ke, Y.[Yan], Sukthankar, R.[Rahul], Hebert, M.[Martial],
Event Detection in Crowded Videos,
ICCV07(1-8).
IEEE DOI 0710
BibRef
Earlier:
Spatio-temporal Shape and Flow Correlation for Action Recognition,
VS07(1-8).
IEEE DOI 0706
BibRef
Earlier:
Efficient Visual Event Detection Using Volumetric Features,
ICCV05(I: 166-173).
IEEE DOI 0510
Using 3-D volume features, not just 2-D boxes in event detection BibRef

Jacques Junior, J.C.S., Mussef, S.R., Jung, C.R.,
Crowd Analysis Using Computer Vision Techniques,
SPMag(27), No. 5, 2010, pp. 66-77.
IEEE DOI 1003
BibRef

Krausz, B.[Barbara], Bauckhage, C.[Christian],
Loveparade 2010: Automatic video analysis of a crowd disaster,
CVIU(116), No. 3, March 2012, pp. 307-319.
Elsevier DOI 1201
Crowd behavior; Crowd dynamics; Crowd turbulence; Congestion; Video analysis; Computer vision; Optical flow BibRef

Kratz, L.[Louis], Nishino, K.[Ko],
Tracking Pedestrians Using Local Spatio-Temporal Motion Patterns in Extremely Crowded Scenes,
PAMI(34), No. 5, May 2012, pp. 987-1002.
IEEE DOI 1204
BibRef
Earlier:
Tracking with local spatio-temporal motion patterns in extremely crowded scenes,
CVPR10(693-700).
IEEE DOI 1006
BibRef
And:
Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models,
CVPR09(1446-1453).
IEEE DOI 0906
BibRef
Earlier:
Spatio-temporal motion pattern modeling of extremely crowded scenes,
MLMotion08(xx-yy). 0810
Large numbers and frequent occlusions. Collective motion. Use model of crowd motion for tracking individuals. BibRef

Tian, Y.[Ye], Cao, L., Liu, Z.K.[Zhi-Kang], Wang, Z.[Zilei],
Hierarchical Filtered Motion for Action Recognition in Crowded Videos,
SMC-C(42), No. 3, May 2012, pp. 313-323.
IEEE DOI 1204
BibRef

Liu, Z.K.[Zhi-Kang], Tian, Y.[Ye], Wang, Z.[Zilei],
Stacked Overcomplete Independent Component Analysis for Action Recognition,
ACCV16(II: 368-383).
Springer DOI 1704
BibRef

Wang, B.[Bo], Ye, M.[Mao], Li, X.[Xue], Zhao, F.J.[Feng-Juan], Ding, J.[Jian],
Abnormal crowd behavior detection using high-frequency and spatio-temporal features,
MVA(23), No. 3, May 2012, pp. 501-511.
WWW Link. 1204
BibRef

Solmaz, B.[Berkan], Moore, B.E.[Brian E.], Shah, M.[Mubarak],
Identifying Behaviors in Crowd Scenes Using Stability Analysis for Dynamical Systems,
PAMI(34), No. 10, October 2012, pp. 2064-2070.
IEEE DOI See also NIL.
HTML Version. 1208
Five crowd behaviors (bottlenecks, fountainheads, lanes, arches, and blocking). Grid of particles defined by optical flow. BibRef

Goetz, M., Zipf, A.,
Using Crowdsourced Geodata for Agent-Based Indoor Evacuation Simulations,
IJGI(1), No. 2, 2012, pp. 186-208.
DOI Link 1210
build on crowd sourced geo data techniques. BibRef

Plaue, M.[Matthias], Chen, M.J.[Min-Jie], Bärwolff, G.[Günter], Schwandt, H.[Hartmut],
Multi-View Extraction of Dynamic Pedestrian Density Fields,
PFG(2012), No. 5, 2012, pp. 547-555.
WWW Link. 1211
BibRef
Earlier:
Trajectory Extraction and Density Analysis of Intersecting Pedestrian Flows from Video Recordings,
PIA11(285-296).
Springer DOI 1110
BibRef

Ben, X., Huang, X., Zhuang, Z., Yan, R., Xu, S.,
Agent-based approach for crowded pedestrian evacuation simulation,
IET-ITS(7), No. 1, 2013, pp. 56-67.
DOI Link 1307
BibRef

Poiesi, F.[Fabio], Mazzon, R.[Riccardo], Cavallaro, A.[Andrea],
Multi-target tracking on confidence maps: An application to people tracking,
CVIU(117), No. 10, 2013, pp. 1257-1272.
Elsevier DOI 1309
BibRef
Earlier: A2, A1, A3:
Detection and tracking of groups in crowd,
AVSS13(202-207)
IEEE DOI 1311
Track-before-detect. Detectors BibRef

Riche, N.[Nicolas], Mancas, M.[Matei], Duvinage, M.[Matthieu], Mibulumukini, M.[Makiese], Gosselin, B.[Bernard], Dutoit, T.[Thierry],
RARE2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis,
SP:IC(28), No. 6, July 2013, pp. 642-658.
Elsevier DOI 1306
Bottom-up saliency; Comparative statistical analysis; Multi-scale rarity mechanism; Regions of interest; Saliency models evaluation; Visual attention BibRef

Riche, N.[Nicolas], Mancas, M.[Matei], Gosselin, B.[Bernard], Dutoit, T.[Thierry],
Rare: A new bottom-up saliency model,
ICIP12(641-644).
IEEE DOI 1302
BibRef
Earlier:
3D Saliency for Abnormal Motion Selection: The Role of the Depth Map,
CVS11(143-152).
Springer DOI 1109
BibRef

Mancas, M.[Matei], Riche, N.[Nicolas], Leroy, J.[Julien], Gosselin, B.[Bernard],
Abnormal motion selection in crowds using bottom-up saliency,
ICIP11(229-232).
IEEE DOI 1201
BibRef

Mibulumukini, M.[Makiese], Riche, N.[Nicolas], Mancas, M.[Matei], Gosselin, B.[Bernard], Dutoit, T.[Thierry],
Biologically plausible context recognition algorithms,
ICIP13(2612-2616)
IEEE DOI 1402
Biologically plausible algorithms BibRef

Wu, S.[Si], Wong, H.S.[Hau-San], Yu, Z.W.[Zhi-Wen],
A Bayesian Model for Crowd Escape Behavior Detection,
CirSysVideo(24), No. 1, January 2014, pp. 85-98.
IEEE DOI 1402
BibRef
Earlier: A1, A3, A2:
A Shape Derivative Based Approach for Crowd Flow Segmentation,
ACCV09(I: 93-102).
Springer DOI 0909
belief networks BibRef

Vizzari, G., Bandini, S.,
Studying Pedestrian and Crowd Dynamics through Integrated Analysis and Synthesis,
IEEE_Int_Sys(28), No. 5, Sept 2013, pp. 56-60.
IEEE DOI 1403
computer vision BibRef

Cho, S.H.[Sang-Hyun], Kang, H.B.[Hang-Bong],
Abnormal behavior detection using hybrid agents in crowded scenes,
PRL(44), No. 1, 2014, pp. 64-70.
Elsevier DOI 1407
BibRef
Earlier:
Integrated multiple behavior models for abnormal crowd behavior detection,
Southwest12(113-116).
IEEE DOI 1205
Visual surveillance BibRef

Courty, N.[Nicolas], Allain, P.[Pierre], Creusot, C.[Clement], Corpetti, T.[Thomas],
Using the Agoraset dataset: Assessing for the quality of crowd video analysis methods,
PRL(44), No. 1, 2014, pp. 161-170.
Elsevier DOI 1407
Crowd video analysis BibRef

Chrysostomou, D.[Dimitrios], Sirakoulis, G.C.[Georgios Ch.], Gasteratos, A.[Antonios],
A bio-inspired multi-camera system for dynamic crowd analysis,
PRL(44), No. 1, 2014, pp. 141-151.
Elsevier DOI 1407
Crowd analysis BibRef

Fagette, A.[Antoine], Courty, N.[Nicolas], Racoceanu, D.[Daniel], Dufour, J.Y.[Jean-Yves],
Unsupervised dense crowd detection by multiscale texture analysis,
PRL(44), No. 1, 2014, pp. 126-133.
Elsevier DOI 1407
Dense crowd BibRef

Xu, J.X.[Jing-Xin], Denman, S.[Simon], Reddy, V.[Vikas], Fookes, C.[Clinton], Sridharan, S.[Sridha],
Real-time video event detection in crowded scenes using MPEG derived features: A multiple instance learning approach,
PRL(44), No. 1, 2014, pp. 113-125.
Elsevier DOI 1407
Event detection BibRef

Nallaivarothayan, H.[Hajananth], Fookes, C.[Clinton], Denman, S.[Simon], Sridharan, S.[Sridha],
An MRF based abnormal event detection approach using motion and appearance features,
AVSS14(343-348)
IEEE DOI 1411
Acceleration BibRef

Zawidzki, M.[Machi], Chraibi, M.[Mohcine], Nishinari, K.[Katsuhiro],
Crowd-Z: The user-friendly framework for crowd simulation on an architectural floor plan,
PRL(44), No. 1, 2014, pp. 88-97.
Elsevier DOI 1407
Pedestrian dynamics BibRef

O'Gorman, L.[Lawrence], Yin, Y.F.[Ya-Feng], Ho, T.K.[Tin Kam],
Motion feature filtering for event detection in crowded scenes,
PRL(44), No. 1, 2014, pp. 80-87.
Elsevier DOI 1407
Motion analysis BibRef

Leach, M.J.V.[Michael J.V.], Sparks, E.P., Robertson, N.M.[Neil M.],
Contextual anomaly detection in crowded surveillance scenes,
PRL(44), No. 1, 2014, pp. 71-79.
Elsevier DOI 1407
Behaviour analysis BibRef

Tran, K.N., Gala, A., Kakadiaris, I.A., Shah, S.K.,
Activity analysis in crowded environments using social cues for group discovery and human interaction modeling,
PRL(44), No. 1, 2014, pp. 49-57.
Elsevier DOI 1407
Group activity recognition BibRef

Manfredi, M.[Marco], Vezzani, R.[Roberto], Calderara, S.[Simone], Cucchiara, R.[Rita],
Detection of static groups and crowds gathered in open spaces by texture classification,
PRL(44), No. 1, 2014, pp. 39-48.
Elsevier DOI 1407
Crowd detection BibRef

Kountouriotis, V.[Vassilios], Thomopoulos, S.C.A.[Stelios C.A.], Papelis, Y.[Yiannis],
An agent-based crowd behaviour model for real time crowd behaviour simulation,
PRL(44), No. 1, 2014, pp. 30-38.
Elsevier DOI 1407
Simulation BibRef

Bandini, S.[Stefania], Gorrini, A.[Andrea], Vizzari, G.[Giuseppe],
Towards an integrated approach to crowd analysis and crowd synthesis: A case study and first results,
PRL(44), No. 1, 2014, pp. 16-29.
Elsevier DOI 1407
Crowd analysis BibRef

Ferryman, J.M.[James M.], Ellis, A.L.[Anna-Louise],
Performance evaluation of crowd image analysis using the PETS2009 dataset,
PRL(44), No. 1, 2014, pp. 3-15.
Elsevier DOI 1407
Surveillance BibRef

Toledo, L.[Leonel], De Gyves, O.[Oriam], Rudomín, I.[Isaac],
Hierarchical level of detail for varied animated crowds,
VC(30), No. 6-8, June 2014, pp. 949-961.
WWW Link. 1407
BibRef

Zhang, Y.H.[Yan-Hao], Huang, Q.M.[Qing-Ming], Qin, L.[Lei], Zhao, S.C.[Si-Cheng], Yao, H.X.[Hong-Xun], Xu, P.F.[Peng-Fei],
Representing dense crowd patterns using bag of trajectory graphs,
SIViP(8), No. S1, December 2014, pp. 173-181.
Springer DOI
WWW Link. 1411
BibRef
Earlier: A1, A3, A5, A6, A2, Only:
Beyond particle flow: Bag of Trajectory Graphs for dense crowd event recognition,
ICIP13(3572-3576)
IEEE DOI 1402
Attributes; Bag of Trajectory Graphs; Crowd Behavior; Event Recognition BibRef

Yuan, Y., Fang, J., Wang, Q.,
Online Anomaly Detection in Crowd Scenes via Structure Analysis,
Cyber(45), No. 3, March 2015, pp. 562-575.
IEEE DOI 1502
Computational modeling BibRef

Zhang, P.[Peng], Liu, H.[Hong], Ding, Y.H.[Yan-Hui],
Crowd simulation based on constrained and controlled group formation,
VC(31), No. 1, January 2015, pp. 5-18.
WWW Link. 1503
Graphical synthesis. BibRef

Li, T., Chang, H., Wang, M., Ni, B., Hong, R., Yan, S.,
Crowded Scene Analysis: A Survey,
CirSysVideo(25), No. 3, March 2015, pp. 367-386.
IEEE DOI 1503
Survey, Crowds. Analytical models BibRef

Kim, S.J.[Su-Jeong], Guy, S.J.[Stephen J.], Hillesland, K.[Karl], Zafar, B.[Basim], Gutub, A.A.A.[Adnan Abdul-Aziz], Manocha, D.[Dinesh],
Velocity-based modeling of physical interactions in dense crowds,
VC(31), No. 5, May 2015, pp. 541-555.
Springer DOI 1505
BibRef

Mukherjee, S., Goswami, D., Chatterjee, S.,
A Lagrangian Approach to Modeling and Analysis of a Crowd Dynamics,
SMCS(45), No. 6, June 2015, pp. 865-876.
IEEE DOI 1506
Acceleration BibRef

Zhang, Y.H.[Yan-Hao], Qin, L.[Lei], Ji, R., Yao, H.X.[Hong-Xun], Huang, Q.M.[Qing-Ming],
Social Attribute-Aware Force Model: Exploiting Richness of Interaction for Abnormal Crowd Detection,
CirSysVideo(25), No. 7, July 2015, pp. 1231-1245.
IEEE DOI 1507
BibRef
Earlier: A1, A2, A4, A5, Only:
Abnormal crowd behavior detection based on social attribute-aware force model,
ICIP12(2689-2692).
IEEE DOI 1302
Analytical models BibRef

Cao, L.J.[Li-Jun], Zhang, X.[Xu], Ren, W.Q.[Wei-Qiang], Huang, K.Q.[Kai-Qi],
Large scale crowd analysis based on convolutional neural network,
PR(48), No. 10, 2015, pp. 3016-3024.
Elsevier DOI 1507
Crowd analysis BibRef

Jiang, J.[Jun], Wu, D.[Di], Teng, Q.Z.[Qi-Zhi], He, X.H.[Xiao-Hai], Gao, M.L.[Ming-Liang],
Measuring Collectiveness in Crowded Scenes via Link Prediction,
IEICE(E98-D), No. 8, August 2015, pp. 1617-1620.
WWW Link. 1509
BibRef

Lee, D.G.[Dong-Gyu], Suk, H.I.[Heung-Il], Park, S.K.[Sung-Kee], Lee, S.W.[Seong-Whan],
Motion Influence Map for Unusual Human Activity Detection and Localization in Crowded Scenes,
CirSysVideo(25), No. 10, October 2015, pp. 1612-1623.
IEEE DOI 1511
BibRef
Earlier: A1, A2, A4, Only:
Crowd Behavior Representation Using Motion Influence Matrix for Anomaly Detection,
ACPR13(110-114)
IEEE DOI 1408
image representation. image segmentation BibRef

Lee, D.G.[Dong-Gyu], Lee, S.W.[Seong-Whan],
Human activity prediction based on Sub-volume Relationship Descriptor,
ICPR16(2060-2065)
IEEE DOI 1705
Activity recognition, Computational modeling, Computer vision, Convolutional codes, Feature extraction, Training, Videos BibRef

Nam, Y.Y.[Yun-Young], Hong, S.J.[Sang-Jin],
Real-time abnormal situation detection based on particle advection in crowded scenes,
RealTimeIP(10), No. 4, December 2015, pp. 771-784.
WWW Link. 1512
BibRef

Rao, A.S.[Aravinda S.], Gubbi, J.[Jayavardhana], Marusic, S.[Slaven], Palaniswami, M.[Marimuthu],
Estimation of crowd density by clustering motion cues,
VC(31), No. 11, November 2015, pp. 1533-1552.
Springer DOI 1512
BibRef

Rao, A.S.[Aravinda S.], Gubbi, J.[Jayavardhana], Marusic, S.[Slaven], Palaniswami, M.[Marimuthu],
Crowd Event Detection on Optical Flow Manifolds,
Cyber(46), No. 7, July 2016, pp. 1524-1537.
IEEE DOI 1606
BibRef
Earlier:
Probabilistic Detection of Crowd Events on Riemannian Manifolds,
DICTA14(1-8)
IEEE DOI 1502
Event detection image classification BibRef

Rao, A.S.[Aravinda S.], Gubbi, J.[Jayavardhana], Marusic, S.[Slaven], Maher, A.[Andrew],
Determination of Object Directions Using Optical Flow for Crowd Monitoring,
ISVC13(II:613-622).
Springer DOI 1311
BibRef

Rao, A.S., Gubbi, J., Rajasegarar, S., Marusic, S., Palaniswami, M.,
Detection of Anomalous Crowd Behaviour Using Hyperspherical Clustering,
DICTA14(1-8)
IEEE DOI 1502
object detection BibRef

Qian, S.S.[Sheng-Sheng], Zhang, T.Z.[Tian-Zhu], Xu, C.S.[Chang-Sheng], Shao, J.,
Multi-Modal Event Topic Model for Social Event Analysis,
MultMed(18), No. 2, February 2016, pp. 233-246.
IEEE DOI 1601
BibRef
Earlier: A1, A2, A3, Only:
Boosted Multi-modal Supervised Latent Dirichlet Allocation for Social Event Classification,
ICPR14(1999-2004)
IEEE DOI 1412
Google. Analytical models BibRef

Vascon, S.[Sebastiano], Mequanint, E.Z.[Eyasu Zemene], Cristani, M.[Marco], Hung, H.[Hayley], Pelillo, M.[Marcello], Murino, V.[Vittorio],
Detecting conversational groups in images and sequences: A robust game-theoretic approach,
CVIU(143), No. 1, 2016, pp. 11-24.
Elsevier DOI 1601
BibRef
Earlier:
A Game-Theoretic Probabilistic Approach for Detecting Conversational Groups,
ACCV14(V: 658-675).
Springer DOI 1504
Group detection BibRef

Mousavi, H.[Hossein], Nabi, M.[Moin], Kiani, H.[Hamed], Perina, A.[Alessandro], Murino, V.[Vittorio],
Crowd motion monitoring using tracklet-based commotion measure,
ICIP15(2354-2358)
IEEE DOI 1512
Video analysis; abnormal detection; motion commotion; tracklets BibRef

Mohammadi, S.[Sadegh], Kiani, H.[Hamed], Perina, A.[Alessandro], Murino, V.[Vittorio],
A comparison of crowd commotion measures from generative models,
Crowd15(49-55)
IEEE DOI 1510
Cameras BibRef

Lin, W.Y.[Wei-Yao], Mi, Y., Wang, W.Y.[Wei-Yue], Wu, J.X.[Jian-Xin], Wang, J.D.[Jing-Dong], Mei, T.,
A Diffusion and Clustering-Based Approach for Finding Coherent Motions and Understanding Crowd Scenes,
IP(25), No. 4, April 2016, pp. 1674-1687.
IEEE DOI 1604
Correlation BibRef

Wang, W.Y.[Wei-Yue], Lin, W.Y.[Wei-Yao], Chen, Y.Z.[Yuan-Zhe], Wu, J.X.[Jian-Xin], Wang, J.D.[Jing-Dong], Sheng, B.[Bin],
Finding Coherent Motions and Semantic Regions in Crowd Scenes: A Diffusion and Clustering Approach,
ECCV14(I: 756-771).
Springer DOI 1408
BibRef

Pennisi, A.[Andrea], Bloisi, D.D.[Domenico D.], Iocchi, L.[Luca],
Online real-time crowd behavior detection in video sequences,
CVIU(144), No. 1, 2016, pp. 166-176.
Elsevier DOI 1604
Event detection BibRef

Wang, J.[Jing], Xu, Z.J.[Zhi-Jie],
Spatio-temporal texture modelling for real-time crowd anomaly detection,
CVIU(144), No. 1, 2016, pp. 177-187.
Elsevier DOI 1604
Crowd anomaly BibRef

Solera, F.[Francesco], Calderara, S.[Simone], Cucchiara, R.[Rita],
Socially Constrained Structural Learning for Groups Detection in Crowd,
PAMI(38), No. 5, May 2016, pp. 995-1008.
IEEE DOI 1604
Analytical models BibRef
Earlier:
Learning to identify leaders in crowd,
Crowd15(43-48)
IEEE DOI 1510
BibRef
Earlier:
Structured learning for detection of social groups in crowd,
AVSS13(7-12)
IEEE DOI 1311
BibRef
And:
Social Groups Detection in Crowd through Shape-Augmented Structured Learning,
CIAP13(I:542-551).
Springer DOI 1311
Acceleration. Correlation BibRef

Yuan, Y.[Yuan], Wan, J.[Jia], Wang, Q.[Qi],
Congested scene classification via efficient unsupervised feature learning and density estimation,
PR(56), No. 1, 2016, pp. 159-169.
Elsevier DOI 1604
Computer vision BibRef

Guo, B., Yu, Z., Chen, L., Zhou, X., Ma, X.,
MobiGroup: Enabling Lifecycle Support to Social Activity Organization and Suggestion With Mobile Crowd Sensing,
HMS(46), No. 3, June 2016, pp. 390-402.
IEEE DOI 1605
Advertising BibRef

Zhang, C., Kang, K., Li, H., Wang, X., Xie, R., Yang, X.,
Data-Driven Crowd Understanding: A Baseline for a Large-Scale Crowd Dataset,
MultMed(18), No. 6, June 2016, pp. 1048-1061.
IEEE DOI 1605
Benchmark testing BibRef

Liu, W.[Wenxi], Lau, R.W.H.[Rynson W.H.], Manocha, D.[Dinesh],
Robust individual and holistic features for crowd scene classification,
PR(58), No. 1, 2016, pp. 110-120.
Elsevier DOI 1606
Crowd analysis BibRef

Meynberg, O.[Oliver], Cui, S.[Shiyong], Reinartz, P.[Peter],
Detection of High-Density Crowds in Aerial Images Using Texture Classification,
RS(8), No. 6, 2016, pp. 470.
DOI Link 1608
BibRef

Yi, S.[Shuai], Li, H.S.[Hong-Sheng], Wang, X.G.[Xiao-Gang],
Pedestrian Behavior Modeling From Stationary Crowds With Applications to Intelligent Surveillance,
IP(25), No. 9, September 2016, pp. 4354-4368.
IEEE DOI 1609
BibRef
And:
Pedestrian Behavior Understanding and Prediction with Deep Neural Networks,
ECCV16(I: 263-279).
Springer DOI 1611
behavioural sciences computing BibRef

Zhou, M., Dong, H., Wen, D., Yao, X., Sun, X.,
Modeling of Crowd Evacuation With Assailants via a Fuzzy Logic Approach,
ITS(17), No. 9, September 2016, pp. 2395-2407.
IEEE DOI 1609
Analytical models BibRef

Ma, Y., Lin, T., Cao, Z., Li, C., Wang, F., Chen, W.,
Mobility Viewer: An Eulerian Approach for Studying Urban Crowd Flow,
ITS(17), No. 9, September 2016, pp. 2627-2636.
IEEE DOI 1609
Cities and towns BibRef

Deng, C., Cao, Z., Xiao, Y., Lu, H., Xian, K., Chen, Y.,
Exploiting Attribute Dependency for Attribute Assignment in Crowded Scenes,
SPLetters(23), No. 10, October 2016, pp. 1325-1329.
IEEE DOI 1610
feature extraction BibRef

Zhou, S.F.[Shi-Fu], Shen, W.[Wei], Zeng, D.[Dan], Fang, M.[Mei], Wei, Y.W.[Yuan-Wang], Zhang, Z.J.[Zhi-Jiang],
Spatial-temporal convolutional neural networks for anomaly detection and localization in crowded scenes,
SP:IC(47), No. 1, 2016, pp. 358-368.
Elsevier DOI 1610
Spatial-temporal CNN BibRef

Liu, W., Lau, R.W.H., Wang, X.G.[Xiao-Gang], Manocha, D.[Dinesh],
Exemplar-AMMs: Recognizing Crowd Movements From Pedestrian Trajectories,
MultMed(18), No. 12, December 2016, pp. 2398-2406.
IEEE DOI 1612
Computational modeling BibRef

Cheung, E.[Ernest], Wong, T.K.[Tsan Kwong], Bera, A.[Aniket], Wang, X.G.[Xiao-Gang], Manocha, D.[Dinesh],
LCrowdV: Generating Labeled Videos for Simulation-Based Crowd Behavior Learning,
Crowd16(II: 709-727).
Springer DOI 1611
BibRef

Bera, A.[Aniket], Manocha, D.[Dinesh],
Realtime Anomaly Detection Using Trajectory-Level Crowd Behavior Learning,
PETS16(1289-1296)
IEEE DOI 1612
BibRef
Earlier:
Realtime Multilevel Crowd Tracking Using Reciprocal Velocity Obstacles,
ICPR14(4164-4169)
IEEE DOI 1412
Accuracy BibRef

Biswas, S.[Soma], Gupta, V.[Vikas],
Abnormality detection in crowd videos by tracking sparse components,
MVA(28), No. 1-2, February 2017, pp. 35-48.
WWW Link. 1702
BibRef

Shao, J.[Jing], Loy, C.C.[Chen Change], Kang, K.[Kai], Wang, X.G.[Xiao-Gang],
Crowded Scene Understanding by Deeply Learned Volumetric Slices,
CirSysVideo(27), No. 3, March 2017, pp. 613-623.
IEEE DOI 1703
BibRef
Earlier: A1, A3, A2, A4:
Deeply learned attributes for crowded scene understanding,
CVPR15(4657-4666)
IEEE DOI 1510
Feature extraction BibRef

Shao, J.[Jing], Loy, C.C.[Chen Change], Wang, X.G.[Xiao-Gang],
Learning Scene-Independent Group Descriptors for Crowd Understanding,
CirSysVideo(27), No. 6, June 2017, pp. 1290-1303.
IEEE DOI 1706
BibRef
Earlier:
Scene-Independent Group Profiling in Crowd,
CVPR14(2227-2234)
IEEE DOI 1409
Circuit stability, Feature extraction, Hidden Markov models, Psychology, Robustness, Stability analysis, Visualization, Crowded scene understanding, group-property analysis, video, analysis BibRef

Yi, S.[Shuai], Li, H.S.[Hong-Sheng], Wang, X.G.[Xiao-Gang],
Understanding pedestrian behaviors from stationary crowd groups,
CVPR15(3488-3496)
IEEE DOI 1510
BibRef

Luchetti, G.[Gioele], Mancini, A.[Adriano], Sturari, M.[Mirco], Frontoni, E.[Emanuele], Zingaretti, P.[Primo],
Whistland: An Augmented Reality Crowd-Mapping System for Civil Protection and Emergency Management,
IJGI(6), No. 2, 2017, pp. xx-yy.
DOI Link 1703
BibRef

Ruhhammer, C., Baumann, M., Protschky, V., Kloeden, H., Klanner, F., Stiller, C.,
Automated Intersection Mapping From Crowd Trajectory Data,
ITS(18), No. 3, March 2017, pp. 666-677.
IEEE DOI 1703
Automobiles BibRef

Fradi, H., Luvison, B., Pham, Q.C.[Quoc Cuong],
Crowd Behavior Analysis Using Local Mid-Level Visual Descriptors,
CirSysVideo(27), No. 3, March 2017, pp. 589-602.
IEEE DOI 1703
Character recognition BibRef

de Almeida, I.R., Cassol, V.J., Badler, N.I., Musse, S.R., Jung, C.R.,
Detection of Global and Local Motion Changes in Human Crowds,
CirSysVideo(27), No. 3, March 2017, pp. 603-612.
IEEE DOI 1703
Adaptive optics BibRef

Zhang, Y., Qin, L., Ji, R., Zhao, S., Huang, Q., Luo, J.,
Exploring Coherent Motion Patterns via Structured Trajectory Learning for Crowd Mood Modeling,
CirSysVideo(27), No. 3, March 2017, pp. 635-648.
IEEE DOI 1703
Context BibRef

Yi, S.[Shuai], Wang, X.G.[Xiao-Gang], Lu, C.[Cewu], Jia, J.Y.[Jia-Ya], Li, H.,
L_0 Regularized Stationary-Time Estimation for Crowd Analysis,
PAMI(39), No. 5, May 2017, pp. 981-994.
IEEE DOI 1704
BibRef
Earlier: A1, A2, A3, A4, Only:
L_0 Regularized Stationary Time Estimation for Crowd Group Analysis,
CVPR14(2219-2226)
IEEE DOI 1409
Algorithm design and analysis BibRef

Setti, F.[Francesco], Conigliaro, D.[Davide], Rota, P.[Paolo], Bassetti, C.[Chiara], Conci, N.[Nicola], Sebe, N.[Nicu], Cristani, M.[Marco],
The S-Hock dataset: A new benchmark for spectator crowd analysis,
CVIU(159), No. 1, 2017, pp. 47-58.
Elsevier DOI 1706
Dataset, Crowd Analysis. BibRef
Earlier: A2, A3, A1, A4, A5, A6, A7:
The S-HOCK dataset: Analyzing crowds at the stadium,
CVPR15(2039-2047)
IEEE DOI 1510
Spectator, monitoring BibRef

Setti, F.[Francesco], Cristani, M.[Marco],
The GRODE metrics: Exploring the performance of group detection approaches,
Crowd15(36-42)
IEEE DOI 1510
Accuracy; Cameras; Detectors; Head; Magnetic heads; Measurement; Standards BibRef

Dhall, A., Joshi, J., Sikka, K., Goecke, R., Sebe, N.,
The more the merrier: Analysing the affect of a group of people in images,
FG15(1-8)
IEEE DOI 1508
emotion recognition BibRef

Wu, S.[Shuang], Yang, H.[Hua], Zheng, S.[Shibao], Su, H.[Hang], Fan, Y.[Yawen], Yang, M.H.[Ming-Hsuan],
Crowd Behavior Analysis via Curl and Divergence of Motion Trajectories,
IJCV(123), No. 3, July 2017, pp. 499-519.
Springer DOI 1706
BibRef

Chen, L.B.[Long-Biao], Jakubowicz, J.[Jérémie], Yang, D.Q.[Ding-Qi], Zhang, D.Q.[Da-Qing], Pan, G.[Gang],
Fine-Grained Urban Event Detection and Characterization Based on Tensor Cofactorization,
HMS(47), No. 3, June 2017, pp. 380-391.
IEEE DOI 1706
Data integration, Event detection, Global Positioning System, Semantics, Tensile stress, Urban planning, Event detection, tensor factorization, urban data BibRef

Tan, S., Wang, Y., Chen, Y., Wang, Z.,
Evolutionary Dynamics of Collective Behavior Selection and Drift: Flocking, Collapse, and Oscillation,
Cyber(47), No. 7, July 2017, pp. 1694-1705.
IEEE DOI 1706
Game theory, Games, Mathematical model, Oscillators, Sociology, Statistics, Behavior networks, behavior patterns, evolutionary dynamics, game theory, stable, equilibrium, point BibRef

Tan, K.[Kai], Xu, L.F.[Lin-Feng], Liu, Y.N.[Yi-Nan], Luo, B.[Bing],
Small Group Detection in Crowds using Interaction Information,
IEICE(E100-D), No. 7, July 2017, pp. 1542-1545.
WWW Link. 1708
BibRef

Wu, S.[Shuang], Su, H.[Hang], Yang, H.[Hua], Zheng, S.[Shibao], Fan, Y.[Yawen], Zhou, Q.[Qin],
Bilinear dynamics for crowd video analysis,
JVCIR(48), No. 1, 2017, pp. 461-470.
Elsevier DOI 1708
BibRef
Earlier: A1, A2, A4, A3, A6, Only:
Motion sketch based crowd video retrieval via motion structure coding,
ICIP16(1205-1209)
IEEE DOI 1610
Bilinear dynamics. Encoding BibRef


Dupont, C., Tobías, L., Luvison, B.,
Crowd-11: A Dataset for Fine Grained Crowd Behaviour Analysis,
DeepLearn-T17(2184-2191)
IEEE DOI 1709
Cameras, Computer vision, Dynamics, Estimation, Monitoring, Motion, pictures BibRef

Gowda, S.N.,
Human Activity Recognition Using Combinatorial Deep Belief Networks,
Crowd17(1589-1594)
IEEE DOI 1709
Activity recognition, Computer vision, Encoding, Feature extraction, Histograms, Machine learning, Video, sequences BibRef

Nakamura, K., Ono, T., Babaguchi, N.,
Detection of groups in crowd considering their activity state,
ICPR16(277-282)
IEEE DOI 1705
Force, Legged locomotion, Machine learning algorithms, Support vector machines, Testing, Training, Trajectory, activity state of groups, group detection, structural, SVM, (SSVM) BibRef

Wang, S.[Siqi], Zhu, E.[En], Yin, J.P.[Jian-Ping], Porikli, F.,
Anomaly detection in crowded scenes by SL-HOF descriptor and foreground classification,
ICPR16(3398-3403)
IEEE DOI 1705
Feature extraction, Histograms, Legged locomotion, Principal component analysis, Robustness, Testing, Three-dimensional, displays BibRef

Gong, S.[Sixue], Han, H.[Hu], Shan, S.G.[Shi-Guang], Chen, X.L.[Xi-Lin],
Actions Recognition in Crowd Based on Coarse-to-Fine Multi-object Tracking,
BEST16(III: 478-490).
Springer DOI 1704
BibRef

Shao, J., Loy, C.C., Kang, K., Wang, X.,
Slicing Convolutional Neural Network for Crowd Video Understanding,
CVPR16(5620-5628)
IEEE DOI 1612
BibRef

Claridades, A.R.C., Villanueva, J.K.S., Macatulad, E.G.,
Evacuation Simulation in Kalayaan Residence Hall, UP Diliman Using GAMA Simulation Software,
GGT16(83-87).
DOI Link 1612
BibRef

Ergezer, H.[Hamza], Leblebicioglu, K.[Kemal],
Anomaly Detection and Activity Perception Using Covariance Descriptor for Trajectories,
Crowd16(II: 728-742).
Springer DOI 1611
BibRef

Trojanová, J.[Jana], Krehnác, K.[Karel], Brémond, F.[François],
Data-Driven Motion Pattern Segmentation in a Crowded Environments,
Crowd16(II: 760-774).
Springer DOI 1611
BibRef

Rojas, O.E.[Oscar Ernesto], Tozzi, C.L.[Clesio Luis],
Abnormal Behavior Detection in Crowded Scenes Based on Optical Flow Connected Components,
CIARP16(266-273).
Springer DOI 1703
BibRef
And:
Abnormal Crowd Behavior Detection Based on Gaussian Mixture Model,
Crowd16(II: 668-675).
Springer DOI 1611
BibRef

Wang, H.[He], O'Sullivan, C.[Carol],
Globally Continuous and Non-Markovian Crowd Activity Analysis from Videos,
ECCV16(V: 527-544).
Springer DOI 1611
BibRef

Li, J.J.[Ji-Jia], Yang, H., Wu, S.,
Crowd semantic segmentation based on spatial-temporal dynamics,
AVSS16(102-108)
IEEE DOI 1611
Coherence BibRef

Rabiee, H., Haddadnia, J., Mousavi, H., Kalantarzadeh, M., Nabi, M., Murino, V.,
Novel dataset for fine-grained abnormal behavior understanding in crowd,
AVSS16(95-101)
IEEE DOI 1611
Benchmark testing BibRef

Wang, L., Xu, L., Yang, M.H.,
Pedestrian detection in crowded scenes via scale and occlusion analysis,
ICIP16(1210-1214)
IEEE DOI 1610
Algorithm design and analysis BibRef

Sharma, R., Guha, T.,
A trajectory clustering approach to crowd flow segmentation in videos,
ICIP16(1200-1204)
IEEE DOI 1610
Clustering algorithms BibRef

Ullah, H.[Habib], Ullah, M.[Mohib], Conci, N., de Natale, F.G.B.,
Crowd behavior identification,
ICIP16(1195-1199)
IEEE DOI 1610
Diffusion processes BibRef

Marsden, M., McGuinness, K., Little, S., O'Connor, N.E.,
Holistic features for real-time crowd behaviour anomaly detection,
ICIP16(918-922)
IEEE DOI 1610
Feature extraction BibRef

Zhao, W., Zhang, Z., Huang, K.,
Joint crowd detection and semantic scene modeling using a Gestalt laws-based similarity,
ICIP16(1220-1224)
IEEE DOI 1610
Algorithm design and analysis BibRef

Brunner, S.[Seth], Ricks, B.[Brian], Egbert, P.K.[Parris K.],
Realistic Crowds via Motion Capture and Cell Marking,
AMDO16(66-80).
Springer DOI 1608
BibRef

Wang, Y., Zhang, Q., Li, B.,
Efficient unsupervised abnormal crowd activity detection based on a spatiotemporal saliency detector,
WACV16(1-9)
IEEE DOI 1511
Detectors BibRef

Shao, J., Dong, N., Zhao, Q.,
An adaptive clustering approach for group detection in the crowd,
WSSIP15(77-80)
IEEE DOI 1603
feature extraction BibRef

Sabeur, Z.[Zoheir], Doulamis, N.[Nikolaos], Middleton, L.[Lee], Arbab-Zavar, B.[Banafshe], Correndo, G.[Gianluca], Amditis, A.[Aggelos],
Multi-modal Computer Vision for the Detection of Multi-scale Crowd Physical Motions and Behavior in Confined Spaces,
ISVC15(I: 162-173).
Springer DOI 1601
BibRef

Wang, C.J.[Chong-Jing], Zhao, X.[Xu], Shou, Z.[Zheng], Zhou, Y.[Yi], Liu, Y.C.[Yun-Cai],
A discriminative tracklets representation for crowd analysis,
ICIP15(1805-1809)
IEEE DOI 1512
Deep networks; crowd analysis; tracklets BibRef

Lin, H.[Hanhe], Deng, J.D.[Jeremiah D.], Woodford, B.J.[Brendon J.],
Anomaly detection in crowd scenes via online adaptive one-class support vector machines,
ICIP15(2434-2438)
IEEE DOI 1512
anomaly detection; crowd scenes; online learning; support vector machines BibRef

Sethi, R.J.[Ricky J.],
Towards defining groups and crowds in video using the atomic group actions dataset,
ICIP15(2925-2929)
IEEE DOI 1512
Atomic Group Actions; Group Action Dataset; Group Action Detection BibRef

Zou, Y.[Yi], Zhao, X.[Xu], Liu, Y.C.[Yun-Cai],
Detect coherent motions in crowd scenes based on tracklets association,
ICIP15(4456-4460)
IEEE DOI 1512
Crowded scenes; coherent motions; point tracker; tracklets association BibRef

Chaker, R.[Rima], Junejo, I.N.[Imran N.], Al Aghbari, Z.[Zaher],
Crowd modeling using social networks,
ICIP15(1280-1284)
IEEE DOI 1512
Crowd Modeling; Social Network Model BibRef

Kruthiventi, S.S.S.[Srinivas S. S.], Babu, R.V.[R. Venkatesh],
Crowd flow segmentation in compressed domain using CRF,
ICIP15(3417-3421)
IEEE DOI 1512
Compressed Domain Processing BibRef

Yogameena, B., Priya, K.S.,
Synoptic video based human crowd behavior analysis for forensic video surveillance,
ICAPR15(1-6)
IEEE DOI 1511
computer vision BibRef

Chandran, A.K., Poh, L.A.[Loh Ai], Vadakkepat, P.,
Identifying social groups in pedestrian crowd videos,
ICAPR15(1-6)
IEEE DOI 1511
image classification BibRef

Neves, J.C., Proenca, H.,
Dynamic camera scheduling for visual surveillance in crowded scenes using Markov random fields,
AVSS15(1-6)
IEEE DOI 1511
Markov processes BibRef

Denman, S., Fookes, C., Ryan, D., Sridharan, S.,
Large scale monitoring of crowds and building utilisation: A new database and distributed approach,
AVSS15(1-6)
IEEE DOI 1511
building management systems BibRef

Mehner, W.[Wolfgang], Boltes, M.[Maik], Mathias, M.[Markus], Leibe, B.[Bastian],
Robust Marker-Based Tracking for Measuring Crowd Dynamics,
CVS15(445-455).
Springer DOI 1507
BibRef

Hassan, M.A.[Mohamed Abul], Malik, A.S.[Aamir Saeed], Nicolas, W.[Walter], Faye, I.[Ibrahima],
Adaptive Foreground Extraction for Crowd Analytics Surveillance on Unconstrained Environments,
VSegCV14(390-400).
Springer DOI 1504
BibRef

Ruz, C., Pieringer, C., Peralta, B., Lillo, I., Espinace, P., Gonzalez, R., Wendt, B., Mery, D., Soto, A.,
Visual Recognition to Access and Analyze People Density and Flow Patterns in Indoor Environments,
WACV15(1-8)
IEEE DOI 1503
Cameras. Crowd flow. BibRef

Mousavi, H.[Hossein], Mohammadi, S.[Sadegh], Perina, A.[Alessandro], Chellali, R.[Ryad], Mur, V.[Vittorio],
Analyzing Tracklets for the Detection of Abnormal Crowd Behavior,
WACV15(148-155)
IEEE DOI 1503
Computational modeling BibRef

Han, T.T.[Ting-Ting], Yao, H.X.[Hong-Xun], Sun, X.S.[Xiao-Shuai], Zhang, Y.H.[Yan-Hao],
Clustering by saliency: Unsupervised discovery of crowd activities,
ICIP14(2388-2392)
IEEE DOI 1502
Abstracts BibRef

Khokher, M.R., Bouzerdoum, A., Phung, S.L.[Son Lam],
Crowd Behavior Recognition Using Dense Trajectories,
DICTA14(1-7)
IEEE DOI 1502
feature extraction BibRef

Wang, B.[Bing], Chan, K.L.[Kap Luk], Wang, G.[Gang], Zhang, H.J.[Hai-Jian],
Pedestrian detection in highly crowded scenes using 'online' dictionary learning for occlusion handling,
ICIP14(2418-2422)
IEEE DOI 1502
Computer vision BibRef

Climent-Perez, P.[Pau], Monekosso, D.N.[Dorothy N.], Remagnino, P.[Paolo],
Multi-view Event Detection in Crowded Scenes Using Tracklet Plots,
ICPR14(4370-4375)
IEEE DOI 1412
Cameras BibRef

Zou, J.L.[Jia-Ling], Cui, Y.T.[Yan-Ting], Wan, F.[Fang], Ye, Q.X.[Qi-Xiang], Jiao, J.B.[Jian-Bin],
A cluster specific latent dirichlet allocation model for trajectory clustering in crowded videos,
ICIP14(2348-2352)
IEEE DOI 1502
Decision support systems BibRef

Zou, J.L.[Jia-Ling], Ye, Q.X.[Qi-Xiang], Cui, Y.T.[Yan-Ting], Doermann, D.S.[David S.], Jiao, J.B.[Jian-Bin],
A Belief Based Correlated Topic Model for Trajectory Clustering in Crowded Video Scenes,
ICPR14(2543-2548)
IEEE DOI 1412
Accuracy BibRef

Lim, M.K.[Mei Kuan], Kok, V.J.[Ven Jyn], Loy, C.C.[Chen Change], Chan, C.S.[Chee Seng],
Crowd Saliency Detection via Global Similarity Structure,
ICPR14(3957-3962)
IEEE DOI 1412
Dynamics BibRef

Chen, J., Hu, T., Zhang, P., Shi, W., Shan, J.,
Trajectory Clustering for People's Movement Pattern Based on Crowd Souring Data,
Geospatial14(55-62).
DOI Link 1411
BibRef

Ullah, H.[Habib], Ullah, M.[Mohib], Conci, N.[Nicola],
Dominant Motion Analysis in Regular and Irregular Crowd Scenes,
HBU14(62-72).
Springer DOI 1411
BibRef

Zhang, Y.H.[Yan-Hao], Zhang, S.P.[Sheng-Ping], Huang, Q.M.[Qing-Ming], Serre, T.[Thomas],
Learning Sparse Prototypes for Crowd Perception via Ensemble Coding Mechanisms,
HBU14(86-100).
Springer DOI 1411
BibRef

Cermeno, E., Mallor, S., Siguenza, J.A.,
Learning crowd behavior for event recognition,
PETS13(1-5)
IEEE DOI 1411
image colour analysis BibRef

Leach, M.[Michael], Baxter, R.H.[Rolf H.], Robertson, N.M.[Neil M.], Sparks, E.[Ed],
Detecting Social Groups in Crowded Surveillance Videos Using Visual Attention,
SocialInter14(467-473)
IEEE DOI 1409
Computer aided analysis;Machine vision;Video surveillance BibRef

Eyjolfsdottir, E.[Eyrun], Branson, S.[Steve], Burgos-Artizzu, X.P.[Xavier P.], Hoopfer, E.D.[Eric D.], Schor, J.[Jonathan], Anderson, D.J.[David J.], Perona, P.[Pietro],
Detecting Social Actions of Fruit Flies,
ECCV14(II: 772-787).
Springer DOI 1408
BibRef

Perko, R.[Roland], Schnabel, T.[Thomas], Fritz, G.[Gerald], Almer, A.[Alexander], Paletta, L.[Lucas],
Airborne Based High Performance Crowd Monitoring for Security Applications,
SCIA13(664-674).
Springer DOI 1311
BibRef

Karpagavalli, P., Ramprasad, A.V.,
Human detection and segmentation in the crowd environment by coimbining APD with HLBD approaches,
NCVPRIPG13(1-4)
IEEE DOI 1408
feature extraction BibRef

Alqaysi, H.H., Sasi, S.,
Detection of Abnormal behavior in Dynamic Crowded Gatherings,
AIPR13(1-6)
IEEE DOI 1408
behavioural sciences computing BibRef

Wang, C.J.[Chong-Jing], Zhao, X.[Xu], Wu, Z.[Zhe], Liu, Y.C.[Yun-Cai],
Motion pattern analysis in crowded scenes based on hybrid generative-discriminative feature maps,
ICIP13(2837-2841)
IEEE DOI 1402
automatic clustering BibRef

Tang, X.[Xun], Zhang, S.P.[Sheng-Ping], Yao, H.X.[Hong-Xun],
Sparse coding based motion attention for abnormal event detection,
ICIP13(3602-3606)
IEEE DOI 1402
abnormal detection; activity intensity; crowd behavior; sparse coding BibRef

de-la-Calle-Silos, E., Gonzalez-Diaz, I., Diaz-de-Maria, E.,
Mid-level feature set for specific event and anomaly detection in crowded scenes,
ICIP13(4001-4005)
IEEE DOI 1402
Clutter environment BibRef

Basset, A.[Antoine], Bouthemy, P.[Patrick], Kervrann, C.[Charles],
Recovery of motion patterns and dominant paths in videos of crowded scenes,
ICIP14(184-188)
IEEE DOI 1502
BibRef
And:
Frame-by-frame crowd motion classification from affine motion models,
AVSS13(282-287)
IEEE DOI 1311
Clocks. Analytical models BibRef

Conigliaro, D.[Davide], Setti, F.[Francesco], Bassetti, C.[Chiara], Ferrario, R.[Roberta], Cristani, M.[Marco],
Viewing the Viewers: A Novel Challenge for Automated Crowd Analysis,
SBA13(517-526).
Springer DOI 1309
BibRef

Yiicel, Z.[Zeynep], Miyashita, T.[Takahiro], Hagita, N.[Norihiro],
Modeling and identification of group motion via compound evaluation of positional and directional cues,
ICPR12(1172-1176).
WWW Link. 1302
BibRef

Zhu, X.B.[Xiao-Bin], Liu, J.[Jing], Wang, J.Q.[Jin-Qiao], Fang, Y.K.[Yi-Kai], Lu, H.Q.[Han-Qing],
Anomaly detection in crowded scene via appearance and dynamics joint modeling,
ICIP12(2705-2708).
IEEE DOI 1302
BibRef

Wang, L.J.[Li-Jun], Dong, M.[Ming],
Real-time detection of abnormal crowd behavior using a matrix approximation-based approach,
ICIP12(2701-2704).
IEEE DOI 1302
BibRef

Kaltsa, V.[Vagia], Briassouli, A.[Alexia], Kompatsiaris, I.[Ioannis], Strintzis, M.G.[Michael G.],
Timely, robust crowd event characterization,
ICIP12(2697-2700).
IEEE DOI 1302
BibRef

Su, H.[Hang], Yang, H.[Hua], Zheng, S.[Shibao], Fan, Y.[Yawen], Wei, S.[Sha],
Crowd Event Perception Based on Spatio-temporal Viscous Fluid Field,
AVSS12(458-463).
IEEE DOI 1211
BibRef

Lasdas, V.[Vasilis], Timofte, R.[Radu], Van Gool, L.J.[Luc J.],
Non-parametric motion-priors for flow understanding,
WACV12(417-424).
IEEE DOI 1203
Dominant dynamic properties of crowded scenes from single camera. Tracklets of fixed length from optic flow. BibRef

Clauss, S.[Stephane], Pelisson, F.[Fabien],
People flow analysis,
AVSBS11(515).
IEEE DOI 1111
AVSS 2011 demo session BibRef

Butenuth, M.[Matthias], Burkert, F.[Florian], Schmidt, F.[Florian], Hinz, S.[Stefan], Hartmann, D.[Dirk], Kneidl, A.[Angelika], Borrmann, A.[Andre], Sirmacek, B.[Beril],
Integrating pedestrian simulation, tracking and event detection for crowd analysis,
MSVALC11(150-157).
IEEE DOI 1201
BibRef

Sirmacek, B.[Beril], Reinartz, P.[Peter],
Automatic crowd density and motion analysis in airborne image sequences based on a probabilistic framework,
ARTEMIS11(898-905).
IEEE DOI 1201
BibRef

Briassouli, A.[Alexia], Kompatsiaris, I.[Ioannis],
Spatiotemporally localized new event detection in crowds,
ARTEMIS11(928-933).
IEEE DOI 1201
BibRef

Curtis, S.[Sean], Guy, S.J.[Stephen J.], Zafar, B.[Basim], Manocha, D.[Dinesh],
Virtual Tawaf: A case study in simulating the behavior of dense, heterogeneous crowds,
MSVALC11(128-135).
IEEE DOI 1201
BibRef

Bai, Y.[Yu], Xu, Y.[Yi], Yang, X.K.[Xiao-Kang], Yan, Q.[Qing],
Measuring orderliness based on social force model in collective motions,
VCIP13(1-6)
IEEE DOI 1402
computer vision BibRef

Zhao, J.[Jing], Xu, Y.[Yi], Yang, X.K.[Xiao-Kang], Yan, Q.[Qing],
Crowd instability analysis using velocity-field based social force model,
VCIP11(1-4).
IEEE DOI 1201
BibRef

Boszormenyi, L.,
Vision of the crowds,
MMSysS11(401).
IEEE DOI 1111
BibRef

Srivastava, S., Ng, K.K., Delp, E.J.,
Crowd flow estimation using multiple visual features for scenes with changing crowd densities,
AVSBS11(60-65).
IEEE DOI 1111
BibRef

Wang, C.J.[Chong-Jing], Zhao, X.[Xu], Zou, Y.[Yi], Liu, Y.C.[Yun-Cai],
Detecting Motion Patterns in Dynamic Crowd Scenes,
ICIG11(434-439).
IEEE DOI 1109
BibRef

Zhou, B.[Bolei], Wang, X.G.[Xiao-Gang], Tang, X.[Xiaoou],
Random field topic model for semantic region analysis in crowded scenes from tracklets,
CVPR11(3441-3448).
IEEE DOI 1106
BibRef

Pathan, S.S.[Saira Saleem], Al-Hamadi, A.[Ayoub], Michaelis, B.[Bernd],
Using Conditional Random Field for Crowd Behavior Analysis,
VECTaR10(370-379).
Springer DOI 1109
BibRef
And:
Incorporating Social Entropy for Crowd Behavior Detection Using SVM,
ISVC10(I: 153-162).
Springer DOI 1011
BibRef

Dee, H.M.[Hannah M.], Caplier, A.[Alice],
Crowd behaviour analysis using histograms of motion direction,
ICIP10(1545-1548).
IEEE DOI 1009
BibRef

Chang, M.C.[Ming-Ching], Krahnstoever, N.[Nils], Ge, W.[Weina],
Probabilistic group-level motion analysis and scenario recognition,
ICCV11(747-754).
IEEE DOI 1201
BibRef

Chang, M.C.[Ming-Ching], Krahnstoever, N., Lim, S., Yu, T.[Ting],
Group Level Activity Recognition in Crowded Environments across Multiple Cameras,
AVSS10(56-63).
IEEE DOI 1009
BibRef

Srikrishnan, V.[Viswanthan], Chaudhuri, S.[Subhasis],
Crowd Motion Analysis Using Linear Cyclic Pursuit,
ICPR10(3340-3343).
IEEE DOI 1008
BibRef

Ozturk, O.[Ovgu], Yamasaki, T.[Toshihiko], Aizawa, K.[Kiyoharu],
Detecting Dominant Motion Flows in Unstructured/Structured Crowd Scenes,
ICPR10(3533-3536).
IEEE DOI 1008
BibRef

Feng, J.[Jie], Zhang, C.[Chao], Hao, P.W.[Peng-Wei],
Online Learning with Self-Organizing Maps for Anomaly Detection in Crowd Scenes,
ICPR10(3599-3602).
IEEE DOI 1008
BibRef

Widhalm, P.[Peter], Brandle, N.[Norbert],
Learning Major Pedestrian Flows in Crowded Scenes,
ICPR10(4064-4067).
IEEE DOI 1008
BibRef

Guo, P.[Ping], Miao, Z.J.[Zhen-Jiang], Cheng, H.D.[Heng-Da],
Masks based human action detection in crowded videos,
ICIP10(693-696).
IEEE DOI 1009
BibRef

Guo, P.[Ping], Miao, Z.J.[Zhen-Jiang],
Action Detection in Crowded Videos Using Masks,
ICPR10(1767-1770).
IEEE DOI 1008
BibRef

Siva, P.[Parthipan], Xiang, T.[Tao],
Weakly Supervised Action Detection,
BMVC11(xx-yy).
HTML Version. 1110
BibRef
Earlier:
Action Detection in Crowd,
BMVC10(xx-yy).
HTML Version. 1009
BibRef

Lerner, A.[Alon], Chrysanthou, Y.[Yiorgos], Shamir, A.[Ariel], Cohen-Or, D.[Daniel],
Data Driven Evaluation of Crowds,
MIG09(75-83).
Springer DOI 0911
BibRef

Allain, P.[Pierre], Courty, N.[Nicolas], Corpetti, T.[Thomas],
Crowd Flow Characterization with Optimal Control Theory,
ACCV09(II: 279-290).
Springer DOI 0909
BibRef

Paris, S.[Sébastien], Gerdelan, A.[Anton], O'Sullivan, C.[Carol],
CA-LOD: Collision Avoidance Level of Detail for Scalable, Controllable Crowds,
MIG09(13-28).
Springer DOI 0911
BibRef

Jiang, F.[Fan], Wu, Y.[Ying], Katsaggelos, A.K.[Aggelos K.],
Detecting contextual anomalies of crowd motion in surveillance video,
ICIP09(1117-1120).
IEEE DOI 0911
BibRef

Koperski, M.[Michal], Bremond, F.[Francois],
Modeling spatial layout of features for real world scenario RGB-D action recognition,
AVSS16(44-50)
IEEE DOI 1611
Computational modeling BibRef

Koperski, M.[Michal], Bilinski, P.[Piotr], Bremond, F.[Francois],
3D trajectories for action recognition,
ICIP14(4176-4180)
IEEE DOI 1502
Accuracy BibRef

Ortiz, J., Bak, S.[Slawomir], Koperski, M.[Michal], Brémond, F.[Francois],
Minimizing hallucination in histogram of Oriented Gradients,
AVSS15(1-6)
IEEE DOI 1511
image processing BibRef

Bilinski, P.[Piotr], Koperski, M.[Michal], Bak, S.[Slawomir], Bremond, F.[Francois],
Representing visual appearance by video Brownian covariance descriptor for human action recognition,
AVSS14(87-92)
IEEE DOI 1411
Computational modeling BibRef

Bilinski, P.[Piotr], Corvee, E., Bak, S., Bremond, F.[Francois],
Relative dense tracklets for human action recognition,
FG13(1-7)
IEEE DOI 1309
health care BibRef

Bilinski, P.[Piotr], Bremond, F.[Francois],
Contextual Statistics of Space-Time Ordered Features for Human Action Recognition,
AVSS12(228-233).
IEEE DOI 1211
BibRef
And:
Statistics of Pairwise Co-occurring Local Spatio-temporal Features for Human Action Recognition,
VECTaR12(I: 311-320).
Springer DOI 1210
BibRef
Earlier:
Evaluation of Local Descriptors for Action Recognition in Videos,
CVS11(61-70).
Springer DOI 1109
BibRef

Garate, C.[Carolina], Bilinsky, P.[Piotr], Bremond, F.[Francois],
Crowd event recognition using HOG tracker,
PETS-Winter09(1-6).
IEEE DOI 0912
BibRef

Qiao, W.[Wei], Wang, H.Y.[Hui-Yuan], Wu, X.J.[Xiao-Juan], Liu, P.W.[Peng-Wei],
Crowd Target Extraction and Density Analysis Based on FTLE and GLCM,
CISP09(1-5).
IEEE DOI 0910
BibRef

Krahnstoever, N., Tu, P., Yu, T., Patwardhan, K., Hamilton, D., Yu, B., Greco, C., Doretto, G.,
Intelligent Video for Protecting Crowded Sports Venues,
AVSBS09(116-121).
IEEE DOI 0909
BibRef

Saxena, S.[Shobhit], Brémond, F.[François], Thonnat, M.[Monnique], Ma, R.[Ruihua],
Crowd Behavior Recognition for Video Surveillance,
ACIVS08(xx-yy).
Springer DOI 0810
BibRef

Sim, C.H.[Chern-Horng], Rajmadhan, E.[Ekambaram], Ranganath, S.[Surendra],
A Two-Step Approach for Detecting Individuals within Dense Crowds,
AMDO08(xx-yy).
Springer DOI 0807
BibRef

Ihaddadene, N.[Nacim], Djeraba, C.[Chabane],
Real-time crowd motion analysis,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Xu, L.Q.[Li-Qun], Anjulan, A.[Arasanathan],
Relating 'Pace' to Activity Changes in Mono- and Multi-camera Surveillance Videos,
AVSBS09(104-109).
IEEE DOI 0909
BibRef

Xu, L.Q.[Li-Qun], Anjulan, A.[Arasanathan],
Crowd behaviours analysis in dynamic visual scenes of complex environment,
ICIP08(9-12).
IEEE DOI 0810
BibRef

Sim, C.H.[Chern-Horng], Rajmadhan, E.[Ekambaram], Ranganath, S.[Surendra],
Using color bin images for crowd detections,
ICIP08(1468-1471).
IEEE DOI 0810
BibRef

Zhan, B.B.[Bei-Bei], Remagnino, P.[Paolo], Monekosso, D.N.[Dorothy N.], Velastin, S.A.[Sergio A.],
Self-Organizing Maps for the Automatic Interpretation of Crowd Dynamics,
ISVC08(I: 440-449).
Springer DOI 0812
BibRef

Zhan, B.B.[Bei-Bei], Remagnino, P.[Paolo], Velastin, S.A.[Sergio A.],
Mining Paths of Complex Crowd Scenes,
ISVC05(126-133).
Springer DOI 0512
BibRef

Sharif, M.H.[M. Haidar], Uyaver, S.[Sahin], Djeraba, C.[Chabane],
Crowd Behavior Surveillance Using Bhattacharyya Distance Metric,
CompIMAGE10(311-323).
Springer DOI 1006
BibRef

Hu, M.[Min], Ali, S.[Saad], Shah, M.[Mubarak],
Detecting global motion patterns in complex videos,
ICPR08(1-5).
IEEE DOI 0812
BibRef
And:
Learning motion patterns in crowded scenes using motion flow field,
ICPR08(1-5).
IEEE DOI 0812
BibRef

Rodriguez, M.D.[Mikel D.], Laptev, I.[Ivan], Sivic, J.[Josef], Audibert, J.Y.[Jean-Yves],
Density-aware person detection and tracking in crowds,
ICCV11(2423-2430).
IEEE DOI 1201
BibRef

Rodriguez, M.D.[Mikel D.], Sivic, J.[Josef], Laptev, I.[Ivan], Audibert, J.Y.[Jean-Yves],
Data-driven crowd analysis in videos,
ICCV11(1235-1242).
IEEE DOI 1201
Learn from large databse. Offline behavior priors. BibRef

Rodriguez, M.D.[Mikel D.], Ali, S.[Saad], Kanade, T.[Takeo],
Tracking in unstructured crowded scenes,
ICCV09(1389-1396).
IEEE DOI 0909
BibRef

Ali, S.[Saad], Shah, M.[Mubarak],
Floor Fields for Tracking in High Density Crowd Scenes,
ECCV08(II: 1-14).
Springer DOI
PDF File. 0810
Dataset, Tracking.
WWW Link. BibRef

Ali, S.[Saad], Shah, M.[Mubarak],
A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis,
CVPR07(1-6).
IEEE DOI
PDF File. Dataset, Surveillance. The dataset for this paper is available:
WWW Link. UCF Lists:
WWW Link. But no link to data. 0706
BibRef

Ali, S.[Saad],
Crowd Flow Segmentation and Stability Analysis,
Online2007
HTML Version. The more general discussion of the issues of the other papers. Includes a more complete dataset and pointers to other useful code. Dataset, Surveillance.
WWW Link. BibRef 0700

Scovanner, P.[Paul], Ali, S.[Saad], Shah, M.[Mubarak],
A 3-Dimensional SIFT Descriptor and its Application to Action Recognition,
MMC07(xx-yy).
PDF File. BibRef 0700

Ali, S.[Saad], Shah, M.[Mubarak],
A Supervised Learning Framework for Generic Object Detection in Images,
ICCV05(II: 1347-1354).
IEEE DOI 0510
BibRef
Earlier:
An Integrated Approach for Generic Object Detection Using Kernel PCA and Boosting,
ICME05(xx-yy).
PDF File. Combine Kernel PCA and AdaBoost. BibRef

Li, Y.[Yuan], Ai, H.Z.[Hai-Zhou],
Fast Detection of Independent Motion in Crowds Guided by Supervised Learning,
ICIP07(III: 341-344).
IEEE DOI 0709
BibRef

Andrade, E.L.[Ernesto L.], Blunsden, S.[Scott], Fisher, R.B.[Robert B.],
Modelling Crowd Scenes for Event Detection,
ICPR06(I: 175-178).
IEEE DOI 0609
BibRef
And:
Hidden Markov Models for Optical Flow Analysis in Crowds,
ICPR06(I: 460-463).
IEEE DOI 0609
BibRef

Marana, A.N., Cavenaghi, M.A., Ulson, R.S., Drumond, F.L.,
Real-Time Crowd Density Estimation Using Images,
ISVC05(355-362).
Springer DOI 0512
BibRef

Beleznai, C.[Csaba], Bischof, H.[Horst],
Fast human detection in crowded scenes by contour integration and local shape estimation,
CVPR09(2246-2253).
IEEE DOI 0906
BibRef

Brostow, G.J.[Gabriel J.], Cipolla, R.[Roberto],
Unsupervised Bayesian Detection of Independent Motion in Crowds,
CVPR06(I: 594-601).
IEEE DOI 0606
BibRef

Beleznai, C.[Csaba], Fruhstuck, B.[Bernhard], Bischof, H.[Horst],
Human detection in groups using a fast mean shift procedure,
ICIP04(I: 349-352).
IEEE DOI 0505
BibRef

Reisman, P., Mano, O., Avidan, S., Shashua, A.,
Crowd detection in video sequences,
IVS04(66-71).
WWW Link. 0411
BibRef

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Human Activities, Violence, Violent Actions .


Last update:Sep 18, 2017 at 11:34:11