Verbeek, J.J.[Jakob J.],
Vlassis, N.[Nikos],
Gaussian fields for semi-supervised regression and correspondence
learning,
PR(39), No. 10, October 2006, pp. 1864-1875.
Elsevier DOI Gaussian fields; Regression; Active learning; Model selection
0606
BibRef
Ng, M.K.[Michael K.],
Chan, E.Y.[Elaine Y.],
So, M.M.C.[Meko M.C.],
Ching, W.K.[Wai-Ki],
A semi-supervised regression model for mixed numerical and categorical
variables,
PR(40), No. 6, June 2007, pp. 1745-1752.
Elsevier DOI
0704
Clustering; Regression; Data mining; Numerical variables; Categorical variables
BibRef
Angelini, L.[Leonardo],
Marinazzo, D.[Daniele],
Pellicoro, M.[Mario],
Stramaglia, S.[Sebastiano],
Semi-supervised learning by search of optimal target vector,
PRL(29), No. 1, 1 January 2008, pp. 34-39.
Elsevier DOI
0711
Semi-supervised learning; Kernel principal components; Transductive inference
BibRef
Begleiter, R.[Ron],
El-Yaniv, R.[Ran],
Pechyony, D.[Dmitry],
Repairing self-confident active-transductive learners using systematic
exploration,
PRL(29), No. 9, 1 July 2008, pp. 1245-1251.
Elsevier DOI
0711
Active learning; Transductive learning; Semi-supervised clustering
BibRef
Come, E.,
Oukhellou, L.,
Denoeux, T.,
Aknin, P.,
Learning from partially supervised data using mixture models and belief
functions,
PR(42), No. 3, March 2009, pp. 334-348.
Elsevier DOI
0811
Dempster-Shafer theory; Transferable belief model; Mixture models; EM
algorithm; Classification; Clustering; Partially supervised learning;
Semi-supervised learning
BibRef
Wang, J.D.[Jing-Dong],
Wang, F.[Fei],
Zhang, C.S.[Chang-Shui],
Shen, H.C.[Helen C.],
Quan, L.[Long],
Linear Neighborhood Propagation and Its Applications,
PAMI(31), No. 9, September 2009, pp. 1600-1615.
IEEE DOI
0907
BibRef
Wang, F.[Fei],
Zhang, C.S.[Chang-Shui],
Shen, H.C.[Helen C.],
Wang, J.D.[Jing-Dong],
Semi-Supervised Classification Using Linear Neighborhood Propagation,
CVPR06(I: 160-167).
IEEE DOI
0606
BibRef
Mallapragada, P.K.[Pavan Kumar],
Jin, R.[Rong],
Jain, A.K.[Anil K.],
Liu, Y.[Yi],
SemiBoost: Boosting for Semi-Supervised Learning,
PAMI(31), No. 11, November 2009, pp. 2000-2014.
IEEE DOI
0910
BibRef
Earlier: A1, A2, A3, Only:
Active query selection for semi-supervised clustering,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Mallapragada, P.K.[Pavan K.],
Jin, R.[Rong],
Jain, A.K.[Anil K.],
Online visual vocabulary pruning using pairwise constraints,
CVPR10(3073-3080).
IEEE DOI
1006
BibRef
Liu, B.,
Wang, M.,
Hong, R.,
Zha, Z.,
Hua, X.S.,
Joint Learning of Labels and Distance Metric,
SMC-B(40), No. 3, June 2010, pp. 973-978.
IEEE DOI
1006
Deal with lack of training data and poor distance metrics.
Semi-supervised learning.
BibRef
Chen, K.[Ke],
Wang, S.H.[Shi-Hai],
Semi-Supervised Learning via Regularized Boosting Working on Multiple
Semi-Supervised Assumptions,
PAMI(33), No. 1, January 2011, pp. 129-143.
IEEE DOI
1011
BibRef
Chen, X.M.[Xiao-Ming],
Liu, W.Q.[Wan-Quan],
Qiu, H.N.[Hui-Ning],
Lai, J.H.[Jian-Huang],
APSCAN: A parameter free algorithm for clustering,
PRL(32), No. 7, 1 May 2011, pp. 973-986.
Elsevier DOI
1101
Clustering algorithm; DBSCAN; Affinity propagation algorithm
BibRef
Qiu, H.N.[Hui-Ning],
Lai, J.H.[Jian-Huang],
Huang, J.[Jian],
Chen, Y.[Yu],
Semi-supervised discriminant analysis based on UDP regularization,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Adankon, M.M.[Mathias M.],
Cheriet, M.[Mohamed],
Help-Training for semi-supervised support vector machines,
PR(44), No. 9, September 2011, pp. 2220-2230.
Elsevier DOI
1106
BibRef
Earlier:
Help-training for semi-supervised discriminative classifiers.
Application to SVM,
ICPR08(1-4).
IEEE DOI
0812
Classification; Semi-supervised learning; SVM; Kernel machine
See also Optimizing resources in model selection for support vector machine.
BibRef
Monaco, J.P.,
Madabhushi, A.,
Weighted Maximum Posterior Marginals for Random Fields Using an
Ensemble of Conditional Densities From Multiple Markov Chain Monte
Carlo Simulations,
MedImg(30), No. 7, July 2011, pp. 1353-1364.
IEEE DOI
1107
Adjust when some errors are more important than others.
BibRef
Yang, T.[Ting],
Priebe, C.E.[Carey E.],
The Effect of Model Misspecification on Semi-Supervised Classification,
PAMI(33), No. 10, October 2011, pp. 2093-2103.
IEEE DOI
1109
Training both on labeled and unlabeled observations. Using unlabeled points
degrades result if the model is wrong.
BibRef
Jiao, L.C.,
Shang, F.H.[Fan-Hua],
Wang, F.[Fei],
Liu, Y.Y.[Yuan-Yuan],
Fast semi-supervised clustering with enhanced spectral embedding,
PR(45), No. 12, December 2012, pp. 4358-4369.
Elsevier DOI
1208
Semi-supervised clustering (SSC); Side information; Spectral embedding;
Pairwise constraint; Semantic gap
BibRef
Yang, B.[Ben],
Zhang, X.T.[Xue-Tao],
Nie, F.P.[Fei-Ping],
Wang, F.[Fei],
Fast Multiview Clustering With Spectral Embedding,
IP(31), 2022, pp. 3884-3895.
IEEE DOI
2206
Spectral analysis, Optimization, Complexity theory,
Clustering methods, Clustering algorithms, Linear programming,
orthogonality
BibRef
Chang, C.C.[Chin-Chun],
Chen, H.Y.[Hsin-Yi],
Semi-supervised clustering with discriminative random fields,
PR(45), No. 12, December 2012, pp. 4402-4413.
Elsevier DOI
1208
Semi-supervised clustering; Discriminative random fields
BibRef
Liu, W.,
Wang, J.,
Chang, S.F.,
Robust and Scalable Graph-Based Semisupervised Learning,
PIEEE(100), No. 9, September 2012, pp. 2624-2638.
IEEE DOI
1209
BibRef
Wang, J.[Jun],
Kumar, S.[Sanjiv],
Chang, S.F.[Shih-Fu],
Semi-Supervised Hashing for Large-Scale Search,
PAMI(34), No. 12, December 2012, pp. 2393-2406.
IEEE DOI
1210
BibRef
Astudillo, C.A.[César A.],
Oommen, B.J.[B. John],
On achieving semi-supervised pattern recognition by utilizing
tree-based SOMs,
PR(46), No. 1, January 2013, pp. 293-304.
Elsevier DOI
1209
SOM; Tree-based SOMs; Semi-supervised learning; Pattern recognition
BibRef
Joshi, A.J.[Ajay J.],
Porikli, F.M.[Fatih M.],
Papanikolopoulos, N.P.[Nikolaos P.],
Scalable Active Learning for Multiclass Image Classification,
PAMI(34), No. 11, November 2012, pp. 2259-2273.
IEEE DOI
1209
BibRef
Earlier:
Breaking the interactive bottleneck in multi-class classification with
active selection and binary feedback,
CVPR10(2995-3002).
IEEE DOI
1006
BibRef
Earlier:
Multi-class active learning for image classification,
CVPR09(2372-2379).
IEEE DOI
0906
Multi-class learning to avoid large number of training samples.
Interaction is only yes-no feedback, not precise category.
Hundreds of categories.
Scale linearly with size.
BibRef
Fu, M.,
Luo, B.,
Kong, M.,
Semi-supervised manifold learning based on 2-fold weights,
IET-CV(6), No. 4, 2012, pp. 348-354.
DOI Link
1209
BibRef
Czaja, W.[Wojciech],
Ehler, M.[Martin],
Schroedinger Eigenmaps for the Analysis of Biomedical Data,
PAMI(35), No. 5, May 2013, pp. 1274-1280.
IEEE DOI
1304
semi-supervised manifold learning
BibRef
Wang, C.D.[Chang-Dong],
Lai, J.H.[Jian-Huang],
Suen, C.Y.[Ching Y.],
Zhu, J.Y.[Jun-Yong],
Multi-Exemplar Affinity Propagation,
PAMI(35), No. 9, 2013, pp. 2223-2237.
IEEE DOI
1307
Affinity Propogation Clustering. MEAP.
Belief propagation.
BibRef
Huang, G.[Gao],
Song, S.J.[Shi-Ji],
Gupta, J.N.D.[Jatinder N.D.],
Wu, C.[Cheng],
A second order cone programming approach for semi-supervised learning,
PR(46), No. 12, 2013, pp. 3548-3558.
Elsevier DOI
1308
Semi-supervised learning
BibRef
Xing, X.L.[Xiang-Lei],
Yu, Y.[Yao],
Jiang, H.[Hua],
Du, S.[Sidan],
A multi-manifold semi-supervised Gaussian mixture model for pattern
classification,
PRL(34), No. 16, 2013, pp. 2118-2125.
Elsevier DOI
1310
Multi-manifold learning
BibRef
He, P.[Ping],
Xu, X.H.[Xiao-Hua],
Hu, K.[Kongfa],
Chen, L.[Ling],
Semi-supervised clustering via multi-level random walk,
PR(47), No. 2, 2014, pp. 820-832.
Elsevier DOI
1311
Semi-supervised clustering
BibRef
Schwenker, F.[Friedhelm],
Trentin, E.[Edmondo],
Partially supervised learning for pattern recognition,
PRL(37), No. 1, 2014, pp. 1-3.
Elsevier DOI
1402
BibRef
Schwenker, F.[Friedhelm],
Trentin, E.[Edmondo],
Pattern classification and clustering: A review of partially
supervised learning approaches,
PRL(37), No. 1, 2014, pp. 4-14.
Elsevier DOI
1402
Survey, Learning. Partially supervised learning
BibRef
Lausser, L.[Ludwig],
Schmid, F.[Florian],
Schmid, M.[Matthias],
Kestler, H.A.[Hans A.],
Unlabeling data can improve classification accuracy,
PRL(37), No. 1, 2014, pp. 15-23.
Elsevier DOI
1402
Partially supervised learning
BibRef
Zeyl, T.J.[Timothy J.],
Chau, T.[Tom],
A case study of linear classifiers adapted using imperfect labels
derived from human event-related potentials,
PRL(37), No. 1, 2014, pp. 54-62.
Elsevier DOI
1402
Partially supervised learning
BibRef
Lai, H.P.[Hien Phuong],
Visani, M.[Muriel],
Boucher, A.[Alain],
Ogier, J.M.[Jean-Marc],
A new interactive semi-supervised clustering model for large image
database indexing,
PRL(37), No. 1, 2014, pp. 94-106.
Elsevier DOI
1402
Semi-supervised clustering
BibRef
Lai, H.P.[Hien Phuong],
Visani, M.[Muriel],
Boucher, A.[Alain],
Ogier, J.M.[Jean-Marc],
Towards an interactive index structuring system for content-based image
retrieval in large image databases,
ELCVIA(13), No. 2, 2014, pp. xx-yy.
DOI Link
1407
Ph.D.. Thesis.
BibRef
Castelli, I.[Ilaria],
Trentin, E.[Edmondo],
Combination of supervised and unsupervised learning for training the
activation functions of neural networks,
PRL(37), No. 1, 2014, pp. 178-191.
Elsevier DOI
1402
Adaptive activation function
BibRef
Yoshiyama, K.,
Sakurai, A.,
Laplacian minimax probability machine,
PRL(37), No. 1, 2014, pp. 192-200.
Elsevier DOI
1402
Semi-supervised learning
BibRef
Le, T.B.[Thanh-Binh],
Kim, S.W.[Sang-Woon],
Modified criterion to select useful unlabeled data for improving
semi-supervised support vector machines,
PRL(60-61), No. 1, 2015, pp. 48-56.
Elsevier DOI
1506
Semi-supervised learning
BibRef
Alkama, S.[Sadia],
Desquesnes, X.[Xavier],
El Moataz, A.[Abderrahim],
Infinity Laplacian on graphs with gradient terms for image and data
clustering,
PRL(41), No. 1, 2014, pp. 65-72.
Elsevier DOI
1403
Weighted graphs
BibRef
Biswas, A.[Arijit],
Jacobs, D.W.[David W.],
Active Image Clustering with Pairwise Constraints from Humans,
IJCV(108), No. 1-2, May 2014, pp. 133-147.
WWW Link.
1405
BibRef
Earlier:
Active image clustering:
Seeking constraints from humans to complement algorithms,
CVPR12(2152-2159).
IEEE DOI
1208
BibRef
Biswas, A.[Arijit],
Jacobs, D.W.[David W.],
Active subclustering,
CVIU(125), No. 1, 2014, pp. 72-84.
Elsevier DOI
1406
Subclustering
BibRef
Wang, H.,
Li, T.,
Li, T.,
Yang, Y.,
Constraint Neighborhood Projections for Semi-Supervised Clustering,
Cyber(44), No. 5, May 2014, pp. 636-643.
IEEE DOI
1405
Algorithm design and analysis
BibRef
Xu, J.,
Wu, Q.,
Zhang, J.,
Shen, F.,
Tang, Z.,
Boosting Separability in Semisupervised Learning for Object
Classification,
CirSysVideo(24), No. 7, July 2014, pp. 1197-1208.
IEEE DOI
1407
Algorithm design and analysis
BibRef
Zhu, X.B.[Xi-Bin],
Schleif, F.M.[Frank-Michael],
Hammer, B.[Barbara],
Adaptive conformal semi-supervised vector quantization for
dissimilarity data,
PRL(49), No. 1, 2014, pp. 138-145.
Elsevier DOI
1410
Semi-supervised learning
BibRef
Schleif, F.M.[Frank-Michael],
Zhu, X.B.[Xi-Bin],
Gisbrecht, A.[Andrej],
Hammer, B.[Barbara],
Fast approximated relational and kernel clustering,
ICPR12(1229-1232).
WWW Link.
1302
BibRef
Schleif, F.M.[Frank-Michael],
Tino, P.[Peter],
Indefinite Core Vector Machine,
PR(71), No. 1, 2017, pp. 187-195.
Elsevier DOI
1707
Indefinite, learning
BibRef
Schleif, F.M.[Frank-Michael],
Raab, C.[Christoph],
Tino, P.[Peter],
Sparsification of core set models in non-metric supervised learning,
PRL(129), 2020, pp. 1-7.
Elsevier DOI
2001
Large scale indefinite learning, Krein space, Sparse models,
Orthogonal matching pursuit, Core sets, Non-metric learning
BibRef
Li, Y.F.,
Zhou, Z.H.,
Towards Making Unlabeled Data Never Hurt,
PAMI(37), No. 1, January 2015, pp. 175-188.
IEEE DOI
1412
Data models. Unlabelled data hurts classification performance when included.
BibRef
Ye, Y.D.[Yang-Dong],
Liu, R.[Ruina],
Lou, Z.Z.[Zheng-Zheng],
Incorporating side information into multivariate Information
Bottleneck for generating alternative clusterings,
PRL(51), No. 1, 2015, pp. 70-78.
Elsevier DOI
1412
Alternative clustering. Find multiple alternative clusterings.
BibRef
Shen, F.M.[Fu-Min],
Shen, C.H.[Chun-Hua],
Shi, Q.F.[Qin-Feng],
van den Hengel, A.J.[Anton J.],
Tang, Z.M.[Zhen-Min],
Shen, H.T.,
Hashing on Nonlinear Manifolds,
IP(24), No. 6, June 2015, pp. 1839-1851.
IEEE DOI
1504
Binary codes
BibRef
Earlier: A1, A2, A3, A4, A5, Only:
Inductive Hashing on Manifolds,
CVPR13(1562-1569)
IEEE DOI
1309
hashing; manifold learning
Learning based hashing to model the structure in the data.
BibRef
Shen, F.M.[Fu-Min],
Shen, C.H.[Chun-Hua],
Liu, W.[Wei],
Shen, H.T.[Heng Tao],
Supervised Discrete Hashing,
CVPR15(37-45)
IEEE DOI
1510
BibRef
Liu, X.,
Guo, T.,
He, L.,
Yang, X.,
A Low-Rank Approximation-Based Transductive Support Tensor Machine
for Semisupervised Classification,
IP(24), No. 6, June 2015, pp. 1825-1838.
IEEE DOI
1504
Classification algorithms
BibRef
Zhao, M.B.[Ming-Bo],
Zhan, C.J.[Chou-Jun],
Wu, Z.[Zhou],
Tang, P.[Peng],
Semi-Supervised Image Classification Based on Local and Global
Regression,
SPLetters(22), No. 10, October 2015, pp. 1666-1670.
IEEE DOI
1506
extrapolation
BibRef
Wang, D.[Di],
Zhang, X.Q.[Xiao-Qin],
Fan, M.Y.[Ming-Yu],
Ye, X.Z.[Xiu-Zi],
An Efficient Semi-Supervised Classifier Based on Block-Polynomial
Mapping,
SPLetters(22), No. 10, October 2015, pp. 1776-1780.
IEEE DOI
1506
computational complexity
BibRef
Hong, Y.[Yi],
Zhu, W.P.[Wei-Ping],
Spatial co-training for semi-supervised image classification,
PRL(63), No. 1, 2015, pp. 59-65.
Elsevier DOI
1508
Co-training
BibRef
Lu, X.Q.[Xiao-Qiang],
Li, X.L.[Xue-Long],
Mou, L.C.[Li-Chao],
Semi-Supervised Multitask Learning for Scene Recognition,
Cyber(45), No. 9, September 2015, pp. 1967-1976.
IEEE DOI
1509
feature selection
BibRef
Zhuang, L.S.[Lian-Sheng],
Gao, S.H.[Sheng-Hua],
Tang, J.H.[Jin-Hui],
Wang, J.J.[Jing-Jing],
Lin, Z.C.[Zhou-Chen],
Ma, Y.[Yi],
Yu, N.H.[Neng-Hai],
Constructing a Nonnegative Low-Rank and Sparse Graph With
Data-Adaptive Features,
IP(24), No. 11, November 2015, pp. 3717-3728.
IEEE DOI
1509
feature extraction
BibRef
Zhuang, L.S.[Lian-Sheng],
Gao, H.Y.[Hao-Yuan],
Lin, Z.C.[Zhou-Chen],
Ma, Y.[Yi],
Zhang, X.[Xin],
Yu, N.H.[Neng-Hai],
Non-Negative Low Rank and Sparse Graph for Semi-Supervised Learning,
CVPR12(2328-2335).
IEEE DOI
1208
BibRef
Zhuang, L.S.[Lian-Sheng],
Gao, H.Y.[Hao-Yuan],
Huang, J.J.[Jing-Jing],
Yu, N.H.[Neng-Hai],
Semi-supervised Classification via Low Rank Graph,
ICIG11(511-516).
IEEE DOI
1109
BibRef
Yang, Y.[Yun],
Liu, X.C.[Xing-Chen],
A robust semi-supervised learning approach via mixture of label
information,
PRL(68, Part 1), No. 1, 2015, pp. 15-21.
Elsevier DOI
1512
Semi-supervised learning
BibRef
Hernández-González, J.[Jerónimo],
Inza, I.[Iñaki],
Lozano, J.A.[Jose A.],
Weak supervision and other non-standard classification problems:
A taxonomy,
PRL(69), No. 1, 2016, pp. 49-55.
Elsevier DOI
1601
Weakly supervised classification
BibRef
Loog, M.[Marco],
Contrastive Pessimistic Likelihood Estimation for Semi-Supervised
Classification,
PAMI(38), No. 3, March 2016, pp. 462-475.
IEEE DOI
1602
Covariance matrices
BibRef
Gan, H.T.[Hai-Tao],
Luo, Z.Z.[Zhi-Zeng],
Fan, Y.L.[Ying-Le],
Sang, N.[Nong],
Enhanced manifold regularization for semi-supervised classification,
JOSA-A(33), No. 6, June 2016, pp. 1207-1213.
DOI Link
1606
Pattern recognition
BibRef
Zhao, Z.Q.[Zhi-Qiang],
Jiao, L.C.[Li-Cheng],
Liu, F.[Fang],
Zhao, J.Q.[Jia-Qi],
Chen, P.H.[Pu-Hua],
Semisupervised Discriminant Feature Learning for SAR Image Category
via Sparse Ensemble,
GeoRS(54), No. 6, June 2016, pp. 3532-3547.
IEEE DOI
1606
feature extraction
BibRef
Amorim, W.P.[Willian P.],
Falcão, A.X.[Alexandre X.],
Papa, J.P.[João P.],
Carvalho, M.H.[Marcelo H.],
Improving semi-supervised learning through optimum connectivity,
PR(60), No. 1, 2016, pp. 72-85.
Elsevier DOI
1609
Semi-supervised learning
BibRef
Yu, H.B.[Hong-Bin],
Lu, H.T.[Hong-Tao],
Orthogonal optimal reverse prediction for semi-supervised learning,
PR(60), No. 1, 2016, pp. 908-920.
Elsevier DOI
1609
Semi-supervised learning
BibRef
Song, J.K.[Jing-Kuan],
Gao, L.L.[Lian-Li],
Nie, F.P.[Fei-Ping],
Shen, H.T.[Heng Tao],
Yan, Y.[Yan],
Sebe, N.[Nicu],
Optimized Graph Learning Using Partial Tags and Multiple Features for
Image and Video Annotation,
IP(25), No. 11, November 2016, pp. 4999-5011.
IEEE DOI
1610
BibRef
Earlier: A2, A1, A3, A6, A4, A5:
Optimal graph learning with partial tags and multiple features for
image and video annotation,
CVPR15(4371-4379)
IEEE DOI
1510
graph theory.
Use untagged data to improve supervised learning.
BibRef
Song, J.K.[Jing-Kuan],
Gao, L.L.[Lian-Li],
Zou, F.[Fuhao],
Yan, Y.[Yan],
Sebe, N.[Nicu],
Deep and fast: Deep learning hashing with semi-supervised graph
construction,
IVC(55, Part 2), No. 1, 2016, pp. 101-108.
Elsevier DOI
1612
Deep learning
BibRef
Zhao, Z.[Zhuang],
Qi, W.[Wei],
Han, J.[Jing],
Zhang, Y.[Yi],
Bai, L.F.[Lian-Fa],
Semi-supervised classification via discriminative sparse manifold
regularization,
SP:IC(47), No. 1, 2016, pp. 207-217.
Elsevier DOI
1610
Manifold regularization
BibRef
Zhao, Z.[Zhuang],
Bai, L.[Lianfa],
Zhang, Y.[Yi],
Han, J.[Jing],
Classification via semi-supervised multi-random subspace sparse
representation,
SIViP(13), No. 7, October 2019, pp. 1387-1394.
WWW Link.
1911
BibRef
Samat, A.[Alim],
Gamba, P.[Paolo],
Liu, S.C.[Si-Cong],
Du, P.J.[Pei-Jun],
Abuduwaili, J.[Jilili],
Jointly Informative and Manifold Structure Representative Sampling
Based Active Learning for Remote Sensing Image Classification,
GeoRS(54), No. 11, November 2016, pp. 6803-6817.
IEEE DOI
1610
Kernel
BibRef
Liu, W.H.[Wen-He],
Gao, C.Q.[Chen-Qiang],
Chang, X.J.[Xiao-Jun],
Wu, Q.[Qun],
Unified discriminating feature analysis for visual category
recognition,
JVCIR(40, Part B), No. 1, 2016, pp. 772-778.
Elsevier DOI
1610
Visual category recognition.
Feature selection
BibRef
Dornaika, F.[Fadi],
El Traboulsi, Y.[Youssof],
Matrix exponential based semi-supervised discriminant embedding for
image classification,
PR(61), No. 1, 2017, pp. 92-103.
Elsevier DOI
1705
Graph-based semi-supervised learning
BibRef
Dornaika, F.[Fadi],
Baradaaji, A.,
El Traboulsi, Y.[Youssof],
Soft Label and Discriminant Embedding Estimation for Semi-Supervised
Classification,
ICPR21(7250-7257)
IEEE DOI
2105
Estimation, Semisupervised learning, Prediction algorithms,
Feature extraction, Iterative algorithms,
image categorization
BibRef
Dornaika, F.[Fadi],
El Traboulsi, Y.[Youssof],
Margin Based Semi-Supervised Elastic Embedding for Face Image
Analysis,
Manifold17(1313-1320)
IEEE DOI
1802
Face, Laplace equations, Manifolds, Semisupervised learning,
Supervised learning, Symmetric matrices, Training,
semi-supervised learning
BibRef
Krijthe, J.H.[Jesse H.],
Loog, M.[Marco],
Robust semi-supervised least squares classification by implicit
constraints,
PR(63), No. 1, 2017, pp. 115-126.
Elsevier DOI
1612
BibRef
And:
Optimistic semi-supervised least squares classification,
ICPR16(1677-1682)
IEEE DOI
1705
Convergence, Encoding, Labeling, Linear programming, Optimization,
Semisupervised learning, Training
BibRef
Gu, N.,
Fan, M.,
Meng, D.,
Robust Semi-Supervised Classification for Noisy Labels Based on
Self-Paced Learning,
SPLetters(23), No. 12, December 2016, pp. 1806-1810.
IEEE DOI
1612
data handling
BibRef
Yue, Z.S.[Zong-Sheng],
Meng, D.Y.[De-Yu],
He, J.[Juan],
Zhang, G.[Gemeng],
Semi-supervised learning through adaptive Laplacian graph trimming,
IVC(60), No. 1, 2017, pp. 38-47.
Elsevier DOI
1704
Semi-supervised learning
BibRef
Liu, P.C.[Peng-Cheng],
Yang, P.P.[Pei-Pei],
Wang, C.,
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
A Semi-Supervised Method for Surveillance-Based Visual Location
Recognition,
Cyber(47), No. 11, November 2017, pp. 3719-3732.
IEEE DOI
1710
Cameras, Image recognition, Meteorology, Mobile communication,
Mobile handsets, Surveillance, Visualization,
Cross-device (C-D) recognition, semi-supervised learning, visual, localization
BibRef
Liu, P.C.[Peng-Cheng],
Yang, P.P.[Pei-Pei],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
Hao, H.W.[Hong-Wei],
Semi-supervised Learning for Cross-Device Visual Location Recognition,
ICPR14(2873-2878)
IEEE DOI
1412
Cameras
BibRef
Wang, Y.Y.[Yun-Yun],
Meng, Y.[Yan],
Li, Y.[Yun],
Chen, S.C.[Song-Can],
Fu, Z.Y.[Zhen-Yong],
Xue, H.[Hui],
Semi-supervised manifold regularization with adaptive graph
construction,
PRL(98), No. 1, 2017, pp. 90-95.
Elsevier DOI
1710
Semi-supervised classification
BibRef
Wigness, M.[Maggie],
Draper, B.A.[Bruce A.],
Beveridge, J.R.[J. Ross],
Efficient Label Collection for Image Datasets via Hierarchical
Clustering,
IJCV(126), No. 1, January 2018, pp. 59-85.
Springer DOI
1801
BibRef
Earlier:
Efficient label collection for unlabeled image datasets,
CVPR15(4594-4602)
IEEE DOI
1510
BibRef
Wu, S.[Si],
Ji, Q.J.[Qiu-Jia],
Wang, S.F.[Shu-Feng],
Wong, H.S.[Hau-San],
Yu, Z.W.[Zhi-Wen],
Xu, Y.[Yong],
Semi-Supervised Image Classification With Self-Paced Cross-Task
Networks,
MultMed(20), No. 4, April 2018, pp. 851-865.
IEEE DOI
1804
Data models, Labeling, Predictive models, Semisupervised learning,
Streaming media, Training, Image classification,
semi-supervised learning
BibRef
Huang, S.X.[Shi-Xin],
Zeng, X.P.[Xiang-Ping],
Wu, S.[Si],
Yu, Z.W.[Zhi-Wen],
Azzam, M.[Mohamed],
Wong, H.S.[Hau-San],
Behavior regularized prototypical networks for semi-supervised
few-shot image classification,
PR(112), 2021, pp. 107765.
Elsevier DOI
2102
Few-shot learning, Semi-supervised learning,
Image classification, Prototypical networks
BibRef
Li, J.C.[Ji-Chang],
Wu, S.[Si],
Liu, C.[Cheng],
Yu, Z.W.[Zhi-Wen],
Wong, H.S.[Hau-San],
Semi-Supervised Deep Coupled Ensemble Learning With Classification
Landmark Exploration,
IP(29), No. 1, 2020, pp. 538-550.
IEEE DOI
1910
entropy, image classification, image matching,
learning (artificial intelligence), neural nets,
landmark learning
BibRef
Huo, X.Y.[Xiao-Yang],
Zeng, X.P.[Xiang-Ping],
Wu, S.[Si],
Wong, H.S.[Hau-San],
Attention regularized semi-supervised learning with class-ambiguous
data for image classification,
PR(129), 2022, pp. 108727.
Elsevier DOI
2206
Semi-supervised learning, Image classification,
Attention regularization, Class-ambiguous data
BibRef
Huo, X.Y.[Xiao-Yang],
Zeng, X.P.[Xiang-Ping],
Wu, S.[Si],
Shen, W.J.[Wen-Jun],
Wong, H.S.[Hau-San],
Collaborative Learning with Unreliability Adaptation for
Semi-Supervised Image Classification,
PR(133), 2023, pp. 109032.
Elsevier DOI
2210
Semi-supervised learning, Image classification,
Unreliability adaptation, Collaborative learning
BibRef
Jiao, Q.[Qihan],
Liu, Z.[Zhi],
Ye, L.W.[Lin-Wei],
Wang, Y.[Yang],
Weakly labeled fine-grained classification with hierarchy
relationship of fine and coarse labels,
JVCIR(63), 2019, pp. 102584.
Elsevier DOI
1909
Fine-grained classification, Weakly labeled images,
Convolutional block attention, Feature fusion
BibRef
Lei, J.[Jie],
Guo, Z.Y.[Zhen-Yu],
Wang, Y.[Yang],
Weakly Supervised Image Classification with Coarse and Fine Labels,
CRV17(240-247)
IEEE DOI
1804
convolution, feedforward neural nets, image classification,
coarse labels, convolutional neural networks,
weakly supervised
BibRef
Cui, Y.[Yan],
Jiang, J.L.[Jie-Lin],
Lai, Z.H.[Zhi-Hui],
Hu, Z.J.[Zuo-Jin],
Jiang, Y.Q.[Yu-Quan],
Wong, W.K.[Wai-Keung],
New semi-supervised classification using a multi-modal feature joint
L21-norm based sparse representation,
SP:IC(65), 2018, pp. 94-106.
Elsevier DOI
1805
Semi-supervised classification, Multi-feature,
Label membership, Sparse representation
BibRef
Harvey, F.G.[Félix G.],
Roy, J.[Julien],
Kanaa, D.[David],
Pal, C.[Christopher],
Recurrent semi-supervised classification and constrained adversarial
generation with motion capture data,
IVC(78), 2018, pp. 42-52.
Elsevier DOI
1809
Action recognition, Motion capture, Semi-supervised learning,
Recurrent neural networks, Generative adversarial networks,
Transition generation
BibRef
Roth, W.[Wolfgang],
Peharz, R.[Robert],
Tschiatschek, S.[Sebastian],
Pernkopf, F.[Franz],
Hybrid generative-discriminative training of Gaussian mixture models,
PRL(112), 2018, pp. 131-137.
Elsevier DOI
1809
Gaussian mixture model, Semi-supervised learning,
Missing features, Hybrid generative-discriminative learning,
BibRef
Li, C.X.[Chong-Xuan],
Zhu, J.[Jun],
Zhang, B.[Bo],
Max-Margin Deep Generative Models for (Semi-)Supervised Learning,
PAMI(40), No. 11, November 2018, pp. 2762-2775.
IEEE DOI
1810
Data models, Semisupervised learning, Predictive models,
Supervised learning, Markov random fields,
supervised and semi-supervised learning
BibRef
Su, H.[Hang],
Zhu, J.[Jun],
Yin, Z.Z.[Zhao-Zheng],
Dong, Y.P.[Yin-Peng],
Zhang, B.[Bo],
Efficient and Robust Semi-supervised Learning Over a Sparse-Regularized
Graph,
ECCV16(VIII: 583-598).
Springer DOI
1611
BibRef
Chen, Z.,
Wang, K.,
Wang, X.,
Peng, P.,
Izquierdo, E.,
Lin, L.,
Deep Co-Space: Sample Mining Across Feature Transformation for
Semi-Supervised Learning,
CirSysVideo(28), No. 10, October 2018, pp. 2667-2678.
IEEE DOI
1811
Semisupervised learning, Training, Visualization, Data models,
Feature extraction, Machine learning,
visual feature learning
BibRef
Adeli, E.[Ehsan],
Thung, K.H.[Kim-Han],
An, L.[Le],
Wu, G.R.[Guo-Rong],
Shi, F.[Feng],
Wang, T.[Tao],
Shen, D.G.[Ding-Gang],
Semi-Supervised Discriminative Classification Robust to
Sample-Outliers and Feature-Noises,
PAMI(41), No. 2, February 2019, pp. 515-522.
IEEE DOI
1901
Robustness, Diseases, Data models, Training, Testing,
Biomedical imaging, Noise reduction, regularization
BibRef
Sabokrou, M.,
Khalooei, M.,
Adeli, E.[Ehsan],
Self-Supervised Representation Learning via Neighborhood-Relational
Encoding,
ICCV19(8009-8018)
IEEE DOI
2004
image classification, image representation,
learning (artificial intelligence), video signal processing,
Feature extraction
BibRef
Lai, D.Y.[Dan-Yu],
Tian, W.[Wei],
Chen, L.[Long],
Improving classification with semi-supervised and fine-grained
learning,
PR(88), 2019, pp. 547-556.
Elsevier DOI
1901
Semi-supervised learning, Fine-grained feature learning,
Mixture of DCNNs, Image classification
BibRef
Zhang, L.,
Luo, M.,
Li, Z.,
Nie, F.,
Zhang, H.,
Liu, J.,
Zheng, Q.,
Large-Scale Robust Semisupervised Classification,
Cyber(49), No. 3, March 2019, pp. 907-917.
IEEE DOI
1902
Robustness, Semisupervised learning, Optimization,
Laplace equations, Loss measurement, Computational modeling,
semisupervised learning
BibRef
Bi, H.X.[Hai-Xia],
Sun, J.[Jian],
Xu, Z.B.[Zong-Ben],
A Graph-Based Semisupervised Deep Learning Model for PolSAR Image
Classification,
GeoRS(57), No. 4, April 2019, pp. 2116-2132.
IEEE DOI
1904
convolutional neural nets, graph theory, image classification,
image segmentation, radar imaging, radar polarimetry,
semisupervised method
BibRef
Challa, A.,
Danda, S.,
Sagar, B.S.D.,
Najman, L.,
Watersheds for Semi-Supervised Classification,
SPLetters(26), No. 5, May 2019, pp. 720-724.
IEEE DOI
1905
graph theory, image classification, image segmentation,
learning (artificial intelligence), mathematical morphology,
watersheds
BibRef
Wada, Y.[Yuichiro],
Su, S.Q.A.[Si-Qi-Ang],
Kumagai, W.[Wataru],
Kanamori, T.[Takafumi],
Robust Label Prediction via Label Propagation and Geodesic k-Nearest
Neighbor in Online Semi-Supervised Learning,
IEICE(E102-D), No. 8, August 2019, pp. 1537-1545.
WWW Link.
1908
BibRef
Fazakis, N.[Nikos],
Karlos, S.[Stamatis],
Kotsiantis, S.[Sotiris],
Sgarbas, K.[Kyriakos],
A multi-scheme semi-supervised regression approach,
PRL(125), 2019, pp. 758-765.
Elsevier DOI
1909
Semi-supervised regression, Multi-scheme regression,
Semi-supervised learning, Ensemble method, Machine learning
BibRef
Li, Q.L.[Qi-Lin],
Liu, W.Q.[Wan-Quan],
Li, L.[Ling],
Self-reinforced diffusion for graph-based semi-supervised learning,
PRL(125), 2019, pp. 439-445.
Elsevier DOI
1909
Semi-supervised classification, Diffusion process, Affinity learning
BibRef
Mei, J.H.[Jian-Han],
Jiang, X.D.[Xu-Dong],
Cai, J.F.[Jian-Fei],
Learning local feature representation from matching, clustering and
spatial transform,
JVCIR(63), 2019, pp. 102601.
Elsevier DOI
1909
Local image representation, Local feature learning,
Convolutional Neural Network (CNN), Semi-supervised learning, Spatial transform
BibRef
Yao, Y.Y.[Yi-Yang],
Wang, L.[Luo],
Zhang, L.M.[Lu-Ming],
Yang, Y.[Yi],
Li, P.[Ping],
Zimmermann, R.[Roger],
Shao, L.[Ling],
Learning Latent Stable Patterns for Image Understanding With Weak and
Noisy Labels,
Cyber(49), No. 12, December 2019, pp. 4243-4252.
IEEE DOI
1909
Semantic labels are available only at image-level.
Image segmentation, Semantics, Noise measurement,
Prediction algorithms, Training, Stability analysis,
weakly supervised
BibRef
Zhang, L.M.[Lu-Ming],
Su, G.[Ge],
Yin, J.W.[Jian-Wei],
Li, Y.[Ying],
Lin, Q.[Qiuru],
Zhang, X.Q.[Xiao-Qin],
Shao, L.[Ling],
Bioinspired Scene Classification by Deep Active Learning With Remote
Sensing Applications,
Cyber(52), No. 7, July 2022, pp. 5682-5694.
IEEE DOI
2207
Semantics, Visualization, Kernel, Feature extraction,
Support vector machines, Image recognition,
remote sensing
BibRef
Qiu, S.,
Nie, F.,
Xu, X.,
Qing, C.,
Xu, D.,
Accelerating Flexible Manifold Embedding for Scalable Semi-Supervised
Learning,
CirSysVideo(29), No. 9, September 2019, pp. 2786-2795.
IEEE DOI
1909
Manifolds, Training, Data models, Predictive models, Acceleration,
Semisupervised learning, Estimation, Semi-supervised learning,
large-scale machine learning
BibRef
Yang, J.,
Shebalov, S.,
Klabjan, D.,
Semi-Supervised Learning for Discrete Choice Models,
ITS(20), No. 11, November 2019, pp. 4145-4159.
IEEE DOI
1911
Clustering algorithms, Biological system modeling,
Atmospheric modeling, Adaptation models, Prediction algorithms,
travel demand forecasting
BibRef
Yanev, N.[Nicola],
Valev, V.[Ventzeslav],
Krzyzak, A.[Adam],
Ben Suliman, K.[Karima],
Supervised classification using graph-based space partitioning,
PRL(128), 2019, pp. 122-130.
Elsevier DOI
1912
BibRef
Earlier: A2, A1, A3, A4:
Supervised Classification Using Feature Space Partitioning,
SSSPR18(194-203).
Springer DOI
1810
Supervised classification, Feature space partitioning,
Graph partitioning, Nearest neighbor rule, Box algorithm
BibRef
Yanev, N.[Nicola],
Valev, V.[Ventzeslav],
Ben Suliman, K.[Karima],
Krzyzak, A.[Adam],
Supervised Classification Using Graph-based Space Partitioning for
Multiclass Problems,
ICPR21(6486-6492)
IEEE DOI
2105
Training, Support vector machines, Training data,
Classification algorithms, Partitioning algorithms, Planning
BibRef
Amorim, W.P.[Willian Paraguassu],
Rosa, G.H.[Gustavo Henrique],
Thomazella, R.[Rogério],
Cogo Castanho, J.E.[José Eduardo],
Lofrano Dotto, F.R.[Fábio Romano],
Rodrigues Júnior, O.P.[Oswaldo Pons],
Marana, A.N.[Aparecido Nilceu],
Papa, J.P.[João Paulo],
Semi-supervised learning with connectivity-driven convolutional
neural networks,
PRL(128), 2019, pp. 16-22.
Elsevier DOI
1912
Optimum-path forest, Semi-supervised learning, Convolutional neural networks
BibRef
Liu, Z.[Zheng],
Jin, W.[Wei],
Mu, Y.[Ying],
Graph-based boosting algorithm to learn labeled and unlabeled data,
PR(106), 2020, pp. 107417.
Elsevier DOI
2006
Graph, Boosting, Semi-supervised learning, Imbalance learning
BibRef
Yan, W.Z.[Wen-Zhu],
Sun, Q.S.[Quan-Sen],
Sun, H.J.[Huai-Jiang],
Li, Y.M.[Yan-Meng],
Semi-supervised learning framework based on statistical analysis for
image set classification,
PR(107), 2020, pp. 107500.
Elsevier DOI
2008
Semi-supervised learning, Data dependent kernel,
Gaussian descriptor, Image set classification, Fuzzy discriminant analysis
BibRef
Chiaroni, F.[Florent],
Khodabandelou, G.[Ghazaleh],
Rahal, M.C.[Mohamed-Cherif],
Hueber, N.[Nicolas],
Dufaux, F.[Frederic],
Counter-examples generation from a positive unlabeled image dataset,
PR(107), 2020, pp. 107527.
Elsevier DOI
2008
Generative adversarial networks (GANs), Generative models,
Semi-supervised learning, Partially supervised learning, Deep learning
BibRef
Li, W.Y.[Wen-Yuan],
Wang, Z.C.[Zi-Chen],
Yue, Y.G.[Yu-Guang],
Li, J.Y.[Jia-Yun],
Speier, W.[William],
Zhou, M.Y.[Ming-Yuan],
Arnold, C.[Corey],
Semi-supervised learning using adversarial training with good and bad
samples,
MVA(31), No. 6, August 2020, pp. Article49.
Springer DOI
2008
BibRef
Donyavi, Z.[Zahra],
Asadi, S.[Shahrokh],
Diverse training dataset generation based on a multi-objective
optimization for semi-Supervised classification,
PR(108), 2020, pp. 107543.
Elsevier DOI
2008
Self-labeled, Semi-supervised learning,
Evolutionary multi-objective optimization,
NSGA-II
BibRef
Lu, X.O.[Xiao-Ou],
Qiao, Y.Q.[Yang-Qi],
Zhu, R.[Rui],
Wang, G.J.[Gui-Jin],
Ma, Z.Y.[Zhan-Yu],
Xue, J.H.[Jing-Hao],
Generalisations of stochastic supervision models,
PR(109), 2021, pp. 107575.
Elsevier DOI
2009
EM algorithms, Imperfect supervision, Finite mixture model,
Stochastic supervision
BibRef
Kang, Z.[Zhao],
Peng, C.[Chong],
Cheng, Q.A.[Qi-Ang],
Liu, X.W.[Xin-Wang],
Peng, X.[Xi],
Xu, Z.L.[Zeng-Lin],
Tian, L.[Ling],
Structured graph learning for clustering and semi-supervised
classification,
PR(110), 2021, pp. 107627.
Elsevier DOI
2011
Similarity graph, Rank constraint, Clustering,
Semi-supervised classification, Local ang global structure, Kernel method
BibRef
Li, Y.F.[Yu-Feng],
Guo, L.Z.[Lan-Zhe],
Zhou, Z.H.[Zhi-Hua],
Towards Safe Weakly Supervised Learning,
PAMI(43), No. 1, January 2021, pp. 334-346.
IEEE DOI
2012
Supervised learning, Task analysis, Performance gain,
Semisupervised learning, Machine learning, Proposals,
label noise learning
BibRef
Mayer, C.[Christoph],
Paul, M.[Matthieu],
Timofte, R.[Radu],
Adversarial feature distribution alignment for semi-supervised
learning,
CVIU(202), 2021, pp. 103109.
Elsevier DOI
2012
BibRef
Mayer, C.,
Timofte, R.,
Adversarial Sampling for Active Learning,
WACV20(3060-3068)
IEEE DOI
2006
Feature extraction, Training, Uncertainty, Entropy,
Complexity theory, Generators
BibRef
Wang, X.[Xiao],
Kihara, D.[Daisuke],
Luo, J.B.[Jie-Bo],
Qi, G.J.[Guo-Jun],
EnAET: A Self-Trained Framework for Semi-Supervised and Supervised
Learning with Ensemble Transformations,
IP(30), 2021, pp. 1639-1647.
IEEE DOI
2101
Semisupervised learning, Predictive models, Data models, Training,
Task analysis, Supervised learning, Neural networks, EnAET,
supervised learning
BibRef
Fu, Z.Q.[Zhi-Qiang],
Zhao, Y.[Yao],
Chang, D.X.[Dong-Xia],
Wang, Y.M.[Yi-Ming],
A hierarchical weighted low-rank representation for image clustering
and classification,
PR(112), 2021, pp. 107736.
Elsevier DOI
2102
Low-rank representation, Clustering,
Semi-supervised learning, Similarity graph construction
BibRef
Min, S.,
Chen, X.,
Xie, H.,
Zha, Z.J.,
Zhang, Y.,
A Mutually Attentive Co-Training Framework for Semi-Supervised
Recognition,
MultMed(23), 2021, pp. 899-910.
IEEE DOI
2103
Noise measurement, Data models, Training, Reliability, Task analysis,
Predictive models, Image segmentation, Self-training,
recognition
BibRef
Bai, L.[Liang],
Liang, J.[JiYe],
Cao, F.Y.[Fu-Yuan],
Semi-Supervised Clustering With Constraints of Different Types From
Multiple Information Sources,
PAMI(43), No. 9, September 2021, pp. 3247-3258.
IEEE DOI
2108
Clustering algorithms, Matrix converters,
Machine learning algorithms, Optimization, Benchmark testing,
consensus of constraints
BibRef
Liu, L.[Lu],
Tan, R.T.[Robby T.],
Certainty driven consistency loss on multi-teacher networks for
semi-supervised learning,
PR(120), 2021, pp. 108140.
Elsevier DOI
2109
Semi-supervised learning, Certainty-driven consistency loss,
Uncertainty estimation, Decoupled student-teacher, Noisy labels
BibRef
Li, Y.[Yang],
Kan, S.C.[Shi-Chao],
Cao, W.M.[Wen-Ming],
He, Z.H.[Zhi-Hai],
Learned Model Composition With Critical Sample Look-Ahead for
Semi-Supervised Learning on Small Sets of Labeled Samples,
CirSysVideo(31), No. 9, September 2021, pp. 3444-3455.
IEEE DOI
2109
Semisupervised learning, Predictive models, Training, Entropy,
Task analysis, Integrated circuit modeling, Data models,
deep learning
BibRef
Deng, X.H.[Xiao-Heng],
Jiang, P.[Ping],
Zhao, D.Z.[De-Zheng],
Huang, R.[Rong],
Shen, H.[Hailan],
Effective semi-supervised learning for structured data using
Embedding GANs,
PRL(151), 2021, pp. 127-134.
Elsevier DOI
2110
GAN, Embedding, Semi-supervised learning, Structured data
BibRef
Feng, Z.Y.[Zheng-Yang],
Zhou, Q.Y.[Qian-Yu],
Gu, Q.Q.[Qi-Qi],
Tan, X.[Xin],
Cheng, G.L.[Guang-Liang],
Lu, X.Q.[Xue-Quan],
Shi, J.P.[Jian-Ping],
Ma, L.Z.[Li-Zhuang],
DMT: Dynamic mutual training for semi-supervised learning,
PR(130), 2022, pp. 108777.
Elsevier DOI
2206
Dynamic mutual training, Inter-model disagreement,
Noisy pseudo label, Semi-supervised learning
BibRef
Bdair, T.[Tariq],
Wiestler, B.[Benedikt],
Navab, N.[Nassir],
Albarqouni, S.[Shadi],
ROAM: Random layer mixup for semi-supervised learning in medical
images,
IET-IPR(16), No. 10, 2022, pp. 2593-2608.
DOI Link
2207
BibRef
Li, D.[Di],
Liu, Y.[Yang],
Song, L.[Liang],
Adaptive Weighted Losses With Distribution Approximation for
Efficient Consistency-Based Semi-Supervised Learning,
CirSysVideo(32), No. 11, November 2022, pp. 7832-7842.
IEEE DOI
2211
Training, Data models, Reliability, Predictive models, Convergence,
Task analysis, Semisupervised learning, Semi-supervised learning,
distribution approximation
BibRef
Li, J.[Junnan],
Zhou, M.Q.[Ming-Qiang],
Zhu, Q.S.[Qing-Sheng],
Wu, Q.W.[Quan-Wang],
A framework based on local cores and synthetic examples generation
for self-labeled semi-supervised classification,
PR(134), 2023, pp. 109060.
Elsevier DOI
2212
Semi-supervised learning, Semi-supervised classification,
Self-labeled techniques, Examples generation, Representatives
BibRef
Wu, W.H.[Wen-Hui],
Hou, J.H.[Jun-Hui],
Wang, S.Q.[Shi-Qi],
Kwong, S.[Sam],
Zhou, Y.[Yu],
Semi-supervised adaptive kernel concept factorization,
PR(134), 2023, pp. 109114.
Elsevier DOI
2212
Concept factorization, Semi-supervised learning, Clustering,
Nonnegative matrix factorization, Kernel method
BibRef
Zhang, Y.[Yubo],
Ji, S.Y.[Shu-Yi],
Zou, C.Q.[Chang-Qing],
Zhao, X.B.[Xi-Bin],
Ying, S.H.[Shi-Hui],
Gao, Y.[Yue],
Graph Learning on Millions of Data in Seconds: Label Propagation
Acceleration on Graph Using Data Distribution,
PAMI(45), No. 2, February 2023, pp. 1835-1847.
IEEE DOI
2301
Semisupervised learning, Data models, Task analysis, Supervised learning,
Costs, Adaptation models, Data mining, propagation acceleration
BibRef
Fan, Y.[Yue],
Kukleva, A.[Anna],
Schiele, B.[Bernt],
Revisiting Consistency Regularization for Semi-Supervised Learning,
IJCV(131), No. 3, March 2023, pp. 626-643.
Springer DOI
2302
BibRef
Mey, A.[Alexander],
Loog, M.[Marco],
Improved Generalization in Semi-Supervised Learning:
A Survey of Theoretical Results,
PAMI(45), No. 4, April 2023, pp. 4747-4767.
IEEE DOI
2303
Semisupervised learning, Manifolds, Standards, Geometry,
Complexity theory, Task analysis, Supervised learning,
assumptions
BibRef
Li, J.[Jian],
Liu, Y.[Yong],
Wang, W.P.[Wei-Ping],
Semi-supervised vector-valued learning: Improved bounds and algorithms,
PR(138), 2023, pp. 109356.
Elsevier DOI
2303
Vector-valued learning, Semi-supervised learning,
Excess risk bound, Local rademacher complexity
BibRef
Jiang, Y.B.Y.[Yang-Bang-Yan],
Li, X.D.[Xiao-Dan],
Chen, Y.F.[Yue-Feng],
He, Y.[Yuan],
Xu, Q.Q.[Qian-Qian],
Yang, Z.Y.[Zhi-Yong],
Cao, X.C.[Xiao-Chun],
Huang, Q.M.[Qing-Ming],
MaxMatch: Semi-Supervised Learning With Worst-Case Consistency,
PAMI(45), No. 5, May 2023, pp. 5970-5987.
IEEE DOI
2304
Predictive models, Training, Data models, Semantics,
Perturbation methods, Computational modeling, Benchmark testing,
image classification
BibRef
Huang, Z.[Zhuo],
Yang, J.[Jian],
Gong, C.[Chen],
They are Not Completely Useless: Towards Recycling Transferable
Unlabeled Data for Class-Mismatched Semi-Supervised Learning,
MultMed(25), 2023, pp. 1844-1857.
IEEE DOI
2306
Training, Recycling, Feature extraction, Data models, Birds,
Semisupervised learning, Semi-supervised learning,
domain adaptation
BibRef
Jia, N.[Nan],
Tian, X.L.[Xiao-Lin],
Gao, W.X.[Wen-Xing],
Jiao, L.C.[Li-Cheng],
Deep Graph-Convolutional Generative Adversarial Network for
Semi-Supervised Learning on Graphs,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Streicher, O.[Or],
Gilboa, G.[Guy],
Graph Laplacian for Semi-supervised Learning,
SSVM23(250-262).
Springer DOI
2307
BibRef
Yang, Q.S.[Qiu-Shi],
Chen, Z.[Zhen],
Yuan, Y.X.[Yi-Xuan],
Hierarchical Bias Mitigation for Semi-Supervised Medical Image
Classification,
MedImg(42), No. 8, August 2023, pp. 2200-2210.
IEEE DOI
2308
WWW Link. Feature extraction, Labeling, Predictive models,
Biomedical imaging, Optimization, Training,
consistency-aware heredity
BibRef
Bao, J.Q.[Jia-Qi],
Kudo, M.[Mineichi],
Kimura, K.[Keigo],
Sun, L.[Lu],
Robust embedding regression for semi-supervised learning,
PR(145), 2024, pp. 109894.
Elsevier DOI
2311
Feature selection, Semi-supervised learning, Ridge regression, Nuclear norm
BibRef
Wang, K.[Kai],
Zhang, C.Q.[Chang-Qing],
Geng, Y.[Yu],
Ma, H.[Huan],
Evidential Pseudo-Label Ensemble for semi-supervised classification,
PRL(177), 2024, pp. 135-141.
Elsevier DOI
2401
Semi-supervised learning, Pseudo labeling, Dempster-Shafer theory
BibRef
Tao, H.[Hong],
Jiang, J.C.[Jia-Cheng],
Hou, C.P.[Chen-Ping],
Luo, T.J.[Ting-Jin],
Fan, R.D.[Rui-Dong],
Zhang, J.[Jing],
Compound Weakly Supervised Clustering,
IP(33), 2024, pp. 957-971.
IEEE DOI
2402
Face recognition, Compounds, Image reconstruction,
Clustering methods, Clustering algorithms, Task analysis,
incomplete view learning
BibRef
Chen, Y.B.[Yan-Bei],
Mancini, M.[Massimiliano],
Zhu, X.T.[Xia-Tian],
Akata, Z.[Zeynep],
Semi-Supervised and Unsupervised Deep Visual Learning: A Survey,
PAMI(46), No. 3, March 2024, pp. 1327-1347.
IEEE DOI
2402
Survey, Semi-Supervised Learning. Data models, Visualization, Training, Task analysis,
Semisupervised learning, Deep learning, Unsupervised learning,
visual representation learning
BibRef
Qin, X.[Xiao],
Yuan, C.[Changan],
Jiang, J.H.[Jian-Hui],
Chen, L.[Long],
Deep semi-supervised clustering based on pairwise constraints and
sample similarity,
PRL(178), 2024, pp. 1-6.
Elsevier DOI
2402
Pairwise constraints, Semi-supervised clustering, Sample similarity
BibRef
Zhao, J.G.[Jia-Guo],
Zhang, J.J.[Jun-Jie],
Huang, H.X.[Hua-Xi],
Zhang, J.[Jian],
Enhancing Semi-Supervised Few-Shot Hyperspectral Image Classification
via Progressive Sample Selection,
RS(16), No. 10, 2024, pp. 1747.
DOI Link
2405
BibRef
Liu, Q.[Qiang],
Yue, J.[Jun],
Kuang, Y.[Yang],
Xie, W.Y.[Wei-Ying],
Fang, L.Y.[Le-Yuan],
SemiRS-COC: Semi-Supervised Classification for Complex Remote Sensing
Scenes With Cross-Object Consistency,
IP(33), 2024, pp. 3855-3870.
IEEE DOI
2407
Data models, Feature extraction, Predictive models, Interference,
Labeling, Image color analysis, Task analysis, Image processing,
cross-object consistency
BibRef
Li, M.Y.[Ming-Yu],
Zhou, T.[Tao],
Han, B.[Bo],
Liu, T.L.[Tong-Liang],
Liang, X.[Xinkai],
Zhao, J.J.[Jia-Jia],
Gong, C.[Chen],
Class-Wise Contrastive Prototype Learning for Semi-Supervised
Classification Under Intersectional Class Mismatch,
MultMed(26), 2024, pp. 8145-8156.
IEEE DOI
2408
Prototypes, Training, Semisupervised learning,
Perturbation methods, Entropy, Dogs, Computer science,
semi-supervised learning
BibRef
Pan, Z.Y.[Zhi-Yu],
Cui, J.H.[Jia-Hao],
Wang, K.W.[Ke-Wei],
Wu, Y.Z.[Yi-Zheng],
Cao, Z.G.[Zhi-Guo],
Pseudo Label Fusion With Uncertainty Estimation for Semi-Supervised
Cropping Box Regression,
MultMed(26), 2024, pp. 8157-8171.
IEEE DOI
2408
Task analysis, Uncertainty, Annotations, Semisupervised learning,
Object detection, Data models, Multitasking, Image cropping,
uncertainty estimation
BibRef
Long, Z.G.[Zhi-Guo],
Gao, Y.[Yang],
Meng, H.[Hua],
Chen, Y.[Yuxu],
Kou, H.[Hui],
Semi-supervised clustering guided by pairwise constraints and local
density structures,
PR(156), 2024, pp. 110751.
Elsevier DOI
2408
Semi-supervised clustering, Local density peaks,
Pairwise constraint propagation, Inter-cluster conflict resolution
BibRef
Hou, R.B.[Rui-Bing],
Chang, H.[Hong],
Ma, B.P.[Bing-Peng],
Shan, S.G.[Shi-Guang],
Chen, X.L.[Xi-Lin],
Triplet Adaptation Framework for Robust Semi-Supervised Learning,
PAMI(46), No. 12, December 2024, pp. 8056-8073.
IEEE DOI
2411
Degradation, Adaptation models, Buildings, Semisupervised learning,
Semi-supervised learning, robust semi-supervised learning,
distribution inconsistency
BibRef
Yang, Y.[Yang],
Jiang, N.[Nan],
Xu, Y.[Yi],
Zhan, D.C.[De-Chuan],
Robust Semi-Supervised Learning by Wisely Leveraging Open-Set Data,
PAMI(46), No. 12, December 2024, pp. 8334-8347.
IEEE DOI
2411
Data models, Training, Task analysis, Semisupervised learning,
Biological system modeling, Computational modeling,
open-set data
BibRef
Xiao, R.X.[Rui-Xuan],
Feng, L.[Lei],
Tang, K.[Kai],
Zhao, J.[Junbo],
Li, Y.X.[Yi-Xuan],
Chen, G.[Gang],
Wang, H.[Haobo],
Targeted Representation Alignment for Open-World Semi-Supervised
Learning,
CVPR24(23072-23082)
IEEE DOI
2410
Codes, Prototypes, Clustering algorithms, Semisupervised learning,
Benchmark testing, neural collapse
BibRef
Zhang, F.[Fan],
Hua, X.S.[Xian-Sheng],
Chen, C.[Chong],
Luo, X.[Xiao],
Fine-grained Prototypical Voting with Heterogeneous Mixup for
Semi-supervised 2D-3D Cross-modal Retrieval,
CVPR24(17016-17026)
IEEE DOI
2410
Solid modeling, Semantics, Noise, Prototypes, Benchmark testing,
Data models, Cross-modal Retrieval, Semi-supervised Learning
BibRef
Fooladgar, F.[Fahimeh],
To, M.N.N.[Minh Nguyen Nhat],
Mousavi, P.[Parvin],
Abolmaesumi, P.[Purang],
Manifold DivideMix: A Semi-Supervised Contrastive Learning Framework
for Severe Label Noise,
VAND24(4012-4021)
IEEE DOI Code:
WWW Link.
2410
Manifolds, Representation learning, Noise, Semantics, Training data,
Clustering algorithms, Contrastive learning, noisy labels,
self-supervised learning
BibRef
Ihler, S.[Sontje],
Kuhnke, F.[Felix],
Kuhlgatz, T.[Timo],
Seel, T.[Thomas],
Distribution-Aware Multi-Label FixMatch for Semi-Supervised Learning
on CheXpert,
EnhanceMedIm24(2295-2304)
IEEE DOI
2410
Semisupervised learning, Performance gain, Solids, Filling,
Robustness, Mirrors, Multi-Label Classification
BibRef
Yue, X.[Xin],
Lu, Z.Q.[Zong-Qing],
Lin, X.R.[Xiang-Ru],
Ren, W.J.[Wen-Jia],
Shao, Z.J.[Zhi-Jing],
Hu, H.[Haonan],
Zhang, Y.[Yu],
Liao, Q.M.[Qing-Min],
Semi-Stereo: A Universal Stereo Matching Framework for Imperfect Data
via Semi-supervised Learning,
L3D24(646-655)
IEEE DOI
2410
Measurement, Computer network reliability, Semantics,
Semisupervised learning, Benchmark testing, stereo matching, imperfect data
BibRef
Majurski, M.[Michael],
Menon, S.[Sumeet],
Farvardin, P.[Parniyan],
Chapman, D.[David],
A Method of Moments Embedding Constraint and its Application to
Semi-Supervised Learning,
ZeroShot24(7809-7818)
IEEE DOI Code:
WWW Link.
2410
Deep learning, Sensitivity, Semisupervised learning,
Predictive models, Polynomials, Distance measurement, Generative Modeling
BibRef
Huang, Z.[Zhe],
Jiang, R.J.[Rui-Jie],
Aeron, S.[Shuchin],
Hughes, M.C.[Michael C.],
Systematic comparison of semi-supervised and self-supervised learning
for medical image classification,
CVPR24(22282-22293)
IEEE DOI
2410
Training, Measurement, Accuracy, Systematics, Protocols,
Self-supervised learning, Benchmark testing, Semi-supervised, Self-supervised
BibRef
Tanaka, Y.[Yuki],
Yoshida, S.M.[Shuhei M.],
Shibata, T.[Takashi],
Terao, M.[Makoto],
Okatani, T.[Takayuki],
Sugiyama, M.[Masashi],
Appearance-Based Curriculum for Semi-Supervised Learning with
Multi-Angle Unlabeled Data,
WACV24(2768-2777)
IEEE DOI
2404
Training, Visualization, Semisupervised learning,
Data augmentation, Algorithms, Machine learning architectures,
Image recognition and understanding
BibRef
Nguyen, K.B.[Khanh-Binh],
Debiasing, calibrating, and improving Semi-supervised Learning
performance via simple Ensemble Projector,
WACV24(2430-2439)
IEEE DOI Code:
WWW Link.
2404
Training, Costs, Error analysis, Pipelines, Self-supervised learning,
Semisupervised learning, Algorithms,
Image recognition and understanding
BibRef
Nguyen, K.B.[Khanh-Binh],
SequenceMatch Revisiting the design of weak-strong augmentations for
Semi-supervised learning,
WACV24(96-105)
IEEE DOI Code:
WWW Link.
2404
Training, Error analysis, Pipelines, Semisupervised learning,
Predictive models, Benchmark testing, Data augmentation,
Image recognition and understanding
BibRef
Nguyen, K.B.[Khanh-Binh],
Yang, J.S.[Joon-Sung],
Boosting Semi-Supervised Learning by bridging high and low-confidence
predictions,
LIMIT23(1020-1030)
IEEE DOI
2401
BibRef
Xu, H.M.[Hai-Ming],
Liu, L.Q.[Ling-Qiao],
Chen, H.[Hao],
Abbasnejad, E.[Ehsan],
Felix, R.[Rafael],
Progressive Feature Adjustment for Semi-supervised Learning from
Pretrained Models,
VCL23(3284-3294)
IEEE DOI
2401
BibRef
Pirvu, M.[Mihai],
Marcu, A.[Alina],
Dobrescu, A.[Alexandra],
Belbachir, N.[Nabil],
Leordeanu, M.[Marius],
Multi-Task Hypergraphs for Semi-supervised Learning using Earth
Observations,
VCL23(3396-3406)
IEEE DOI
2401
BibRef
Fan, Y.[Yue],
Kukleva, A.[Anna],
Dai, D.X.[Deng-Xin],
Schiele, B.[Bernt],
SSB: Simple but Strong Baseline for Boosting Performance of Open-Set
Semi-Supervised Learning,
ICCV23(16022-16032)
IEEE DOI Code:
WWW Link.
2401
BibRef
Yang, L.[Lihe],
Zhao, Z.[Zhen],
Qi, L.[Lei],
Qiao, Y.[Yu],
Shi, Y.[Yinghuan],
Zhao, H.S.[Heng-Shuang],
Shrinking Class Space for Enhanced Certainty in Semi-Supervised
Learning,
ICCV23(16141-16150)
IEEE DOI
2401
BibRef
Ma, Q.K.[Qian-Kun],
Gao, J.[Jiyao],
Zhan, B.[Bo],
Guo, Y.P.[Yun-Peng],
Zhou, J.[Jiliu],
Wang, Y.[Yan],
Rethinking Safe Semi-supervised Learning: Transferring the Open-set
Problem to A Close-set One,
ICCV23(16324-16333)
IEEE DOI
2401
BibRef
Du, P.[Pan],
Zhao, S.[Suyun],
Sheng, Z.[Zisen],
Li, C.P.[Cui-Ping],
Chen, H.[Hong],
Semi-Supervised Learning via Weight-aware Distillation under Class
Distribution Mismatch,
ICCV23(16364-16374)
IEEE DOI Code:
WWW Link.
2401
BibRef
Zheng, M.[Mingkai],
You, S.[Shan],
Huang, L.[Lang],
Luo, C.[Chen],
Wang, F.[Fei],
Qian, C.[Chen],
Xu, C.[Chang],
SimMatchV2: Semi-Supervised Learning with Graph Consistency,
ICCV23(16386-16396)
IEEE DOI
2401
BibRef
Zhao, B.C.[Bing-Chen],
Wen, X.[Xin],
Han, K.[Kai],
Learning Semi-supervised Gaussian Mixture Models for Generalized
Category Discovery,
ICCV23(16577-16587)
IEEE DOI Code:
WWW Link.
2401
BibRef
Gui, G.[Guan],
Zhao, Z.[Zhen],
Qi, L.[Lei],
Zhou, L.P.[Lu-Ping],
Wang, L.[Lei],
Shi, Y.[Yinghuan],
Enhancing Sample Utilization through Sample Adaptive Augmentation in
Semi-Supervised Learning,
ICCV23(15834-15843)
IEEE DOI Code:
WWW Link.
2401
BibRef
Li, Z.K.[Ze-Kun],
Qi, L.[Lei],
Shi, Y.[Yinghuan],
Gao, Y.[Yang],
IOMatch: Simplifying Open-Set Semi-Supervised Learning with Joint
Inliers and Outliers Utilization,
ICCV23(15824-15833)
IEEE DOI Code:
WWW Link.
2401
BibRef
Duan, Y.[Yue],
Zhao, Z.[Zhen],
Qi, L.[Lei],
Zhou, L.P.[Lu-Ping],
Wang, L.[Lei],
Shi, Y.[Yinghuan],
Towards Semi-supervised Learning with Non-random Missing Labels,
ICCV23(16075-16085)
IEEE DOI Code:
WWW Link.
2401
BibRef
Hernandez-Sequeira, I.[Itza],
Fernandez-Beltran, R.[Ruben],
Xu, Y.H.[Yong-Hao],
Ghamisi, P.[Pedram],
Pla, F.[Filiberto],
Semi-supervised Classification for Remote Sensing Datasets,
CIAP23(I:463-474).
Springer DOI
2312
BibRef
Karaliolios, N.[Nikolaos],
Chabot, F.[Florian],
Dupont, C.[Camille],
Le Borgne, H.[Hervé],
Pham, Q.C.[Quoc-Cuong],
Audigier, R.[Romaric],
Generalized Pseudo-Labeling in Consistency Regularization for
Semi-Supervised Learning,
ICIP23(525-529)
IEEE DOI
2312
BibRef
Chen, X.X.[Xiao-Xue],
Zheng, Y.H.[Yu-Hang],
Zheng, Y.P.[Yu-Peng],
Zhou, Q.[Qiang],
Zhao, H.[Hao],
Zhou, G.[Guyue],
Zhang, Y.Q.[Ya-Qin],
DPF: Learning Dense Prediction Fields with Weak Supervision,
CVPR23(15347-15357)
IEEE DOI
2309
BibRef
Nassar, I.[Islam],
Hayat, M.[Munawar],
Abbasnejad, E.[Ehsan],
Rezatofighi, H.[Hamid],
Haffari, G.[Gholamreza],
Protocon: Pseudo-Label Refinement via Online Clustering and
Prototypical Consistency for Efficient Semi-Supervised Learning,
CVPR23(11641-11650)
IEEE DOI
2309
BibRef
Sosea, T.[Tiberiu],
Caragea, C.[Cornelia],
MarginMatch: Improving Semi-Supervised Learning with Pseudo-Margins,
CVPR23(15773-15782)
IEEE DOI
2309
BibRef
Li, L.J.[Li-Jian],
Zhang, Y.H.[Yun-He],
Huang, A.[Aiping],
Learnable Subspace Orthogonal Projection for Semi-supervised Image
Classification,
ACCV22(III:477-490).
Springer DOI
2307
BibRef
Masud, U.[Umar],
Cohen, E.[Ethan],
Bendidi, I.[Ihab],
Bollot, G.[Guillaume],
Genovesio, A.[Auguste],
Comparison of Semi-supervised Learning Methods for High Content
Screening Quality Control,
BioImage22(395-405).
Springer DOI
2304
BibRef
Chen, Z.M.[Zhi-Min],
Jing, L.L.[Long-Long],
Yang, L.[Liang],
Li, Y.W.[Ying-Wei],
Li, B.[Bing],
Class-Level Confidence Based 3D Semi-Supervised Learning,
WACV23(633-642)
IEEE DOI
2302
Estimation, Semisupervised learning, Task analysis,
Algorithms: Machine learning architectures, formulations, 3D computer vision
BibRef
Dubost, F.[Florian],
Hong, E.[Erin],
Tang, S.Y.[Si-Yi],
Bhaskhar, N.[Nandita],
Lee-Messer, C.[Christopher],
Rubin, D.[Daniel],
Semi-Supervised Learning for Sparsely-Labeled Sequential Data:
Application to Healthcare Video Processing,
WACV23(1890-1899)
IEEE DOI
2302
Training, Event detection, Neural networks, Training data,
Machine learning, Semisupervised learning, Mathematical models,
Social good
BibRef
Xu, H.Y.[Hai-Yun],
Huang, L.[Lili],
Jiang, B.[Bo],
Tang, J.[Jin],
Zhang, S.J.[Shao-Jie],
Semi-supervised Learning via Multiple Layer Graph Regularized
Perception,
ICPR22(3112-3118)
IEEE DOI
2212
Message passing, Supervised learning, Semisupervised learning,
Logic gates, Propagation losses, Robustness, Topology
BibRef
Wallin, E.[Erik],
Svensson, L.[Lennart],
Kahl, F.[Fredrik],
Hammarstrand, L.[Lars],
Improving Open-Set Semi-Supervised Learning with Self-Supervision,
WACV24(2345-2354)
IEEE DOI Code:
WWW Link.
2404
BibRef
Earlier:
DoubleMatch: Improving Semi-Supervised Learning with Self-Supervision,
ICPR22(2871-2877)
IEEE DOI
2212
Training, Codes, Employment, Focusing, Semisupervised learning,
Benchmark testing, Algorithms, Machine learning architectures,
and algorithms.
Supervised learning, Fitting, Training data, Predictive models
BibRef
Schmarje, L.[Lars],
Santarossa, M.[Monty],
Schröder, S.M.[Simon-Martin],
Zelenka, C.[Claudius],
Kiko, R.[Rainer],
Stracke, J.[Jenny],
Volkmann, N.[Nina],
Koch, R.[Reinhard],
A Data-Centric Approach for Improving Ambiguous Labels with Combined
Semi-supervised Classification and Clustering,
ECCV22(VIII:363-380).
Springer DOI
2211
BibRef
Wang, Z.W.[Zhuo-Wei],
Jiang, J.[Jing],
Long, G.D.[Guo-Dong],
Positive Unlabeled Learning by Semi-Supervised Learning,
ICIP22(2976-2980)
IEEE DOI
2211
Training, Degradation, Semisupervised learning, Benchmark testing,
Image Classification, Positive-Unlabeled Learning, Semi-Supervised Learning
BibRef
Kingetsu, H.[Hiroaki],
Kobayashi, K.[Kenichi],
Okawa, Y.[Yoshihiro],
Yokota, Y.[Yasuto],
Nakazawa, K.[Katsuhito],
Multi-Step Test-Time Adaptation with Entropy Minimization and
Pseudo-Labeling,
ICIP22(4153-4157)
IEEE DOI
2211
Training, Adaptation models, Neural networks, Training data,
Semisupervised learning, Predictive models, Test-Time Adaptation,
Robustness
BibRef
Tang, H.[Hui],
Sun, L.[Lin],
Jia, K.[Kui],
Stochastic Consensus: Enhancing Semi-Supervised Learning with
Consistency of Stochastic Classifiers,
ECCV22(XXXI:330-346).
Springer DOI
2211
BibRef
Rizve, M.N.[Mamshad Nayeem],
Kardan, N.[Navid],
Shah, M.[Mubarak],
Towards Realistic Semi-supervised Learning,
ECCV22(XXXI:437-455).
Springer DOI
2211
BibRef
Yuan, X.K.[Xin-Kai],
Li, Z.L.[Zi-Linghan],
Wang, G.[Gaoang],
ActiveMatch: End-To-End Semi-Supervised Active Representation
Learning,
ICIP22(1136-1140)
IEEE DOI
2211
Training, Representation learning, Semisupervised learning,
Human in the loop, Data models, Classification algorithms,
contrastive learning
BibRef
Hu, H.T.[Heng-Tong],
Xie, L.X.[Ling-Xi],
Huo, X.Y.[Xin-Yue],
Hong, R.C.[Ri-Chang],
Tian, Q.[Qi],
Vibration-Based Uncertainty Estimation for Learning from Limited
Supervision,
ECCV22(XXX:160-176).
Springer DOI
2211
BibRef
Wang, X.D.[Xu-Dong],
Lian, L.[Long],
Yu, S.X.[Stella X.],
Unsupervised Selective Labeling for More Effective Semi-supervised
Learning,
ECCV22(XXX:427-445).
Springer DOI
2211
BibRef
Duan, Y.[Yue],
Qi, L.[Lei],
Wang, L.[Lei],
Zhou, L.P.[Lu-Ping],
Shi, Y.[Yinghuan],
RDA: Reciprocal Distribution Alignment for Robust Semi-supervised
Learning,
ECCV22(XXX:533-549).
Springer DOI
2211
BibRef
Kim, J.[Jiwon],
Min, Y.[Youngjo],
Kim, D.[Daehwan],
Lee, G.[Gyuseong],
Seo, J.[Junyoung],
Ryoo, K.[Kwangrok],
Kim, S.[Seungryong],
ConMatch: Semi-supervised Learning with Confidence-Guided Consistency
Regularization,
ECCV22(XXX:674-690).
Springer DOI
2211
BibRef
He, X.L.[Xin-Lei],
Liu, H.B.[Hong-Bin],
Gong, N.Z.Q.[Neil Zhen-Qiang],
Zhang, Y.[Yang],
Semi-Leak: Membership Inference Attacks Against Semi-supervised
Learning,
ECCV22(XXXI:365-381).
Springer DOI
2211
BibRef
Rizve, M.N.[Mamshad Nayeem],
Kardan, N.[Navid],
Khan, S.[Salman],
Khan, F.S.[Fahad Shahbaz],
Shah, M.[Mubarak],
OpenLDN: Learning to Discover Novel Classes for Open-World
Semi-Supervised Learning,
ECCV22(XXXI:382-401).
Springer DOI
2211
BibRef
Tao, C.X.[Chen-Xin],
Wang, H.H.[Hong-Hui],
Zhu, X.[Xizhou],
Dong, J.H.[Jia-Hua],
Song, S.[Shiji],
Huang, G.[Gao],
Dai, J.F.[Ji-Feng],
Exploring the Equivalence of Siamese Self-Supervised Learning via A
Unified Gradient Framework,
CVPR22(14411-14420)
IEEE DOI
2210
Training, Visualization, Codes, Redundancy, Memory management,
Self-supervised learning, Self- semi- meta- unsupervised learning
BibRef
Ren, S.[Sucheng],
Wang, H.Y.[Hui-Yu],
Gao, Z.Q.[Zheng-Qi],
He, S.F.[Sheng-Feng],
Yuille, A.L.[Alan L.],
Zhou, Y.Y.[Yu-Yin],
Xie, C.[Cihang],
A Simple Data Mixing Prior for Improving Self-Supervised Learning,
CVPR22(14575-14584)
IEEE DOI
2210
Training, Codes, Self-supervised learning,
Transformers, Robustness, Representation learning
BibRef
Zhang, T.[Tong],
Qiu, C.[Congpei],
Ke, W.[Wei],
Süsstrunk, S.[Sabine],
Salzmann, M.[Mathieu],
Leverage Your Local and Global Representations:
A New Self-Supervised Learning Strategy,
CVPR22(16559-16568)
IEEE DOI
2210
Representation learning, Codes, Computational modeling, Crops,
Self-supervised learning, Feature extraction,
Self- semi- meta- unsupervised learning
BibRef
Zhang, S.F.[Shao-Feng],
Qiu, L.[Lyn],
Zhu, F.[Feng],
Yan, J.C.[Jun-Chi],
Zhang, H.R.[Heng-Rui],
Zhao, R.[Rui],
Li, H.Y.[Hong-Yang],
Yang, X.K.[Xiao-Kang],
Align Representations with Base:
A New Approach to Self-Supervised Learning,
CVPR22(16579-16588)
IEEE DOI
2210
Training, Representation learning, Redundancy,
Self-supervised learning, Linear programming, Complexity theory,
Self- semi- meta- unsupervised learning
BibRef
Kim, N.R.[Noo-Ri],
Lee, J.H.[Jee-Hyong],
Propagation Regularizer for Semi-supervised Learning with Extremely
Scarce Labeled Samples,
CVPR22(14381-14390)
IEEE DOI
2210
Degradation, Costs, Computational modeling,
Semisupervised learning, Stability analysis, Data models,
Self- semi- meta- unsupervised learning
BibRef
Zheng, M.K.[Ming-Kai],
You, S.[Shan],
Huang, L.[Lang],
Wang, F.[Fei],
Qian, C.[Chen],
Xu, C.[Chang],
SimMatch: Semi-supervised Learning with Similarity Matching,
CVPR22(14451-14461)
IEEE DOI
2210
Training, Annotations, Semantics, Machine learning,
Semisupervised learning, Benchmark testing,
Self- semi- meta- unsupervised learning
BibRef
He, R.D.[Run-Dong],
Han, Z.Y.[Zhong-Yi],
Lu, X.K.[Xian-Kai],
Yin, Y.L.[Yi-Long],
Safe-Student for Safe Deep Semi-Supervised Learning with Unseen-Class
Unlabeled Data,
CVPR22(14565-14574)
IEEE DOI
2210
Perturbation methods, Semisupervised learning, Performance gain,
Robustness, Iterative methods, Representation learning
BibRef
Tang, H.[Hui],
Jia, K.[Kui],
Towards Discovering the Effectiveness of Moderately Confident Samples
for Semi-Supervised Learning,
CVPR22(14638-14647)
IEEE DOI
2210
Training, Semantics, Prototypes, Semisupervised learning,
Information filters, Taylor series, Synchronization, Representation learning
BibRef
Hou, Z.J.[Ze-Jiang],
Kung, S.Y.[Sun-Yuan],
Semi-Supervised Few-Shot Learning from A Dependency-Discriminant
Perspective,
ECV22(2816-2824)
IEEE DOI
2210
Training, Training data, Benchmark testing, Data models
BibRef
Lee, D.[Doyup],
Kim, S.[Sungwoong],
Kim, I.[Ildoo],
Cheon, Y.[Yeongjae],
Cho, M.[Minsu],
Han, W.S.[Wook-Shin],
Contrastive Regularization for Semi-Supervised Learning,
L3D-IVU22(3910-3919)
IEEE DOI
2210
Training, Analytical models, Memory management,
Semisupervised learning, Benchmark testing
BibRef
Banitalebi-Dehkordi, A.[Amin],
Gujjar, P.[Pratik],
Zhang, Y.[Yong],
AuxMix: Semi-Supervised Learning with Unconstrained Unlabeled Data,
L3D-IVU22(3998-4005)
IEEE DOI
2210
Degradation, Self-supervised learning,
Semisupervised learning, Prediction algorithms, Entropy
BibRef
Lai, Z.F.[Zheng-Feng],
Wang, C.[Chao],
Cheung, S.C.[Sen-Ching],
Chuah, C.N.[Chen-Nee],
SaR: Self-adaptive Refinement on Pseudo Labels for
Multiclass-Imbalanced Semi-supervised Learning,
L3D-IVU22(4090-4099)
IEEE DOI
2210
Training, Semisupervised learning,
Classification algorithms, Task analysis
BibRef
Zhang, Y.H.[Yu-Hang],
Zhang, X.P.[Xiao-Peng],
Xie, L.X.[Ling-Xi],
Li, J.[Jie],
Qiu, R.C.[Robert C.],
Hu, H.T.[Heng-Tong],
Tian, Q.[Qi],
One-bit Active Query with Contrastive Pairs,
CVPR22(9687-9695)
IEEE DOI
2210
Measurement, Learning systems, Training, Uncertainty, Costs,
Predictive models, Benchmark testing,
Self- semi- meta- Others, Representation learning
BibRef
Ganeshan, A.[Aditya],
Vallet, A.[Alexis],
Kudo, Y.[Yasunori],
Maeda, S.I.[Shin-Ichi],
Kerola, T.[Tommi],
Ambrus, R.[Rares],
Park, D.[Dennis],
Gaidon, A.[Adrien],
Warp-Refine Propagation:
Semi-Supervised Auto-Labeling via Cycle-Consistency,
ICCV21(15479-15489)
IEEE DOI
2203
Training, Deep learning, Image segmentation, Annotations, Semantics,
Video sequences, Scene analysis and understanding,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Li, J.N.[Jun-Nan],
Xiong, C.M.[Cai-Ming],
Hoi, S.C.H.[Steven C. H.],
CoMatch: Semi-supervised Learning with Contrastive Graph
Regularization,
ICCV21(9455-9464)
IEEE DOI
2203
Representation learning, Codes, Supervised learning, Training data,
Semisupervised learning, Task analysis, Representation learning
BibRef
Xu, H.M.[Hai-Ming],
Liu, L.Q.[Ling-Qiao],
Gong, D.[Dong],
Semi-supervised Learning via Conditional Rotation Angle Estimation,
DICTA21(01-08)
IEEE DOI
2201
Couplings, Annotations, Digital images, Estimation,
Semisupervised learning, Predictive models, Task analysis
BibRef
Wang, W.J.[Wen-Jing],
Lin, L.[Lilang],
Fan, Z.[Zejia],
Liu, J.Y.[Jia-Ying],
Semi-Supervised Learning for Mars Imagery Classification,
ICIP21(499-503)
IEEE DOI
2201
Space vehicles, Mars, Strips, Image processing, Redundancy,
Semisupervised learning, Mars image, classification,
unsupervised learning
BibRef
Taccari, L.[Leonardo],
Domain-Based Semi-Supervised Learning: Exploiting Label Invariance in
Unlabeled Data from Distributed Cameras,
DSC21(290-297)
IEEE DOI
2112
Image segmentation, Connected vehicles, Time series analysis,
Supervised learning, Semantics, Distributed databases, Semisupervised learning
BibRef
Pham, H.[Hieu],
Dai, Z.H.[Zi-Hang],
Xie, Q.Z.[Qi-Zhe],
Le, Q.V.[Quoc V.],
Meta Pseudo Labels,
CVPR21(11552-11563)
IEEE DOI
2111
Semisupervised learning, Benchmark testing,
Standards
BibRef
Nassar, I.[Islam],
Herath, S.[Samitha],
Abbasnejad, E.[Ehsan],
Buntine, W.[Wray],
Haffari, G.[Gholamreza],
All Labels Are Not Created Equal:
Enhancing Semi-supervision via Label Grouping and Co-training,
CVPR21(7237-7246)
IEEE DOI
2111
Training, Visualization, Semantics, Semisupervised learning,
Predictive models, Labeling
BibRef
Taherkhani, F.[Fariborz],
Dabouei, A.[Ali],
Soleymani, S.[Sobhan],
Dawson, J.[Jeremy],
Nasrabadi, N.M.[Nasser M.],
Self-Supervised Wasserstein Pseudo-Labeling for Semi-Supervised Image
Classification,
CVPR21(12262-12272)
IEEE DOI
2111
Measurement, Training, Clustering algorithms,
Semisupervised learning, Data models,
Convolutional neural networks
BibRef
Hu, Z.J.[Zi-Jian],
Yang, Z.Y.[Zheng-Yu],
Hu, X.F.[Xue-Feng],
Nevatia, R.[Ram],
SimPLE: Similar Pseudo Label Exploitation for Semi-Supervised
Classification,
CVPR21(15094-15103)
IEEE DOI
2111
Training, Codes, Computational modeling,
Transfer learning, Performance gain, Semisupervised learning
BibRef
Cai, Z.W.[Zhao-Wei],
Ravichandran, A.[Avinash],
Maji, S.[Subhransu],
Fowlkes, C.[Charless],
Tu, Z.W.[Zhuo-Wen],
Soatto, S.[Stefano],
Exponential Moving Average Normalization for Self-supervised and
Semi-supervised Learning,
CVPR21(194-203)
IEEE DOI
2111
Training, Codes, Semisupervised learning,
Network architecture, Standards
BibRef
Groenendijk, R.[Rick],
Karaoglu, S.[Sezer],
Gevers, T.[Theo],
Mensink, T.[Thomas],
Multi-Loss Weighting with Coefficient of Variations,
WACV21(1468-1477)
IEEE DOI
2106
Training, Weight measurement, Uncertainty,
Semantics, Estimation, Loss measurement
BibRef
Patro, B.N.[Badri N.],
Kasturi, G.S.,
Jain, A.[Ansh],
Namboodiri, V.P.[Vinay P.],
Self Supervision for Attention Networks,
WACV21(726-735)
IEEE DOI
2106
Deep learning, Visualization, Correlation,
Text categorization, Semantics, Predictive models
BibRef
Jing, L.L.[Long-Long],
Parag, T.[Toufiq],
Wu, Z.[Zhe],
Tian, Y.L.[Ying-Li],
Wang, H.C.[Hong-Cheng],
VideoSSL: Semi-Supervised Learning for Video Classification,
WACV21(1109-1118)
IEEE DOI
2106
Training,
Semisupervised learning, Robustness, Classification algorithms
BibRef
Zhu, J.G.[Jia-Geng],
Xie, H.C.[Han-Chen],
Abd-Almageed, W.[Wael],
Weakly Supervised Invariant Representation Learning via Disentangling
Known and Unknown Nuisance Factors,
Scarce22(382-395).
Springer DOI
2304
BibRef
Xie, H.C.[Han-Chen],
Hussein, M.E.[Mohamed E.],
Galstyan, A.[Aram],
Abd-Almageed, W.[Wael],
MUSCLE: Strengthening Semi-Supervised Learning Via Concurrent
Unsupervised Learning Using Mutual Information Maximization,
WACV21(2585-2594)
IEEE DOI
2106
Training, Neural networks, Training data, Muscles,
Semisupervised learning, Entropy, Task analysis
BibRef
Chen, Z.X.[Ze-Xi],
Dutton, B.[Benjamin],
Ramachandra, B.[Bharathkumar],
Wu, T.F.[Tian-Fu],
Vatsavai, R.R.[Ranga Raju],
Local Clustering with Mean Teacher for Semi-supervised learning,
ICPR21(6243-6250)
IEEE DOI
2105
Training, Perturbation methods, Predictive models,
Benchmark testing, Semisupervised learning, Data models
BibRef
Ortego, D.[Diego],
Arazo, E.[Eric],
Albert, P.[Paul],
O'Connor, N.E.[Noel E.],
McGuinness, K.[Kevin],
Towards Robust Learning with Different Label Noise Distributions,
ICPR21(7020-7027)
IEEE DOI
2105
Training, Degradation, Semisupervised learning, Robustness,
Noise measurement, Labeling
BibRef
Haase-Schütz, C.[Christian],
Stal, R.[Rainer],
Hertlein, H.[Heinz],
Sick, B.[Bernhard],
Iterative Label Improvement: Robust Training by Confidence Based
Filtering and Dataset Partitioning,
ICPR21(9483-9490)
IEEE DOI
2105
Training, Uncertainty, Neural networks, Training data,
Semisupervised learning, Network architecture
BibRef
Wang, Z.X.[Zi-Xiao],
Xu, H.[Hai],
Tian, Y.L.[You-Liang],
Xie, H.T.[Hong-Tao],
Hierarchical Consistency and Refinement for Semi-Supervised Medical
Segmentation,
MMDLCA20(267-276).
Springer DOI
2103
BibRef
Kohli, A.P.S.,
Sitzmann, V.,
Wetzstein, G.,
Semantic Implicit Neural Scene Representations With Semi-Supervised
Training,
3DV20(423-433)
IEEE DOI
2102
Semantics,
Geometry, Image segmentation, Task analysis,
Multi modal Representations
BibRef
Kang, M.G.[Min-Geun],
Lee, K.[Kiwon],
Lee, Y.H.[Yong H.],
Suh, C.H.[Chang-Ho],
Autoencoder-based Graph Construction for Semi-supervised Learning,
ECCV20(XXIV:500-517).
Springer DOI
2012
BibRef
Chen, Y.C.[Yun-Chun],
Chou, C.T.[Chao-Te],
Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Learning to Learn in a Semi-Supervised Fashion,
ECCV20(XVIII:460-478).
Springer DOI
2012
BibRef
Ke, Z.H.[Zhang-Han],
Qiu, D.[Di],
Li, K.C.[Kai-Can],
Yan, Q.[Qiong],
Lau, R.W.H.[Rynson W. H.],
Guided Collaborative Training for Pixel-Wise Semi-Supervised Learning,
ECCV20(XIII:429-445).
Springer DOI
2011
BibRef
Shin, M.C.[Min-Chul],
Semi-supervised Learning with a Teacher-student Network for Generalized
Attribute Prediction,
ECCV20(XI:509-525).
Springer DOI
2011
BibRef
Cheng, L.[Lele],
Zhou, X.Z.[Xiang-Zeng],
Zhao, L.M.[Li-Ming],
Li, D.W.[Dang-Wei],
Shang, H.[Hong],
Zheng, Y.[Yun],
Pan, P.[Pan],
Xu, Y.H.[Ying-Hui],
Weakly Supervised Learning with Side Information for Noisy Labeled
Images,
ECCV20(XXX: 306-321).
Springer DOI
2010
BibRef
Lin, W.Y.[Wan-Yu],
Gao, Z.L.[Zhao-Lin],
Li, B.C.[Bao-Chun],
Shoestring: Graph-Based Semi-Supervised Classification With Severely
Limited Labeled Data,
CVPR20(4173-4181)
IEEE DOI
2008
Semisupervised learning, Measurement, Task analysis, Semantics,
Supervised learning, Laplace equations, Machine learning
BibRef
Chen, P.,
Ma, T.,
Qin, X.,
Xu, W.,
Zhou, S.,
Data-Efficient Semi-Supervised Learning by Reliable Edge Mining,
CVPR20(9189-9198)
IEEE DOI
2008
Reliability, Training, Feature extraction, Task analysis,
Data mining, Entropy, Semisupervised learning
BibRef
Lokhande, V.S.,
Tasneeyapant, S.,
Venkatesh, A.,
Ravi, S.N.,
Singh, V.,
Generating Accurate Pseudo-Labels in Semi-Supervised Learning and
Avoiding Overconfident Predictions via Hermite Polynomial Activations,
CVPR20(11432-11440)
IEEE DOI
2008
Convergence, Optimization, Neural networks, Training,
Semisupervised learning, Supervised learning
BibRef
Li, S.,
Liu, B.,
Chen, D.,
Chu, Q.,
Yuan, L.,
Yu, N.,
Density-Aware Graph for Deep Semi-Supervised Visual Recognition,
CVPR20(13397-13406)
IEEE DOI
2008
Feature extraction, Training, Visualization,
Semisupervised learning, Predictive models, Aggregates
BibRef
Rebuffi, S.A.[Sylvestre-Alvise],
Ehrhardt, S.[Sebastien],
Han, K.[Kai],
Vedaldi, A.[Andrea],
Zisserman, A.[Andrew],
LSD-C: Linearly Separable Deep Clusters,
VIPriors21(1038-1046)
IEEE DOI
2112
BibRef
Earlier:
Semi-Supervised Learning with Scarce Annotations,
DeepVision20(3294-3302)
IEEE DOI
2008
Measurement, Codes, Clustering methods,
Clustering algorithms, Benchmark testing.
Data models, Task analysis, Training, Perturbation methods,
Neural networks, Optimization, Predictive models
BibRef
Ke, Z.,
Wang, D.,
Yan, Q.,
Ren, J.,
Lau, R.,
Dual Student:
Breaking the Limits of the Teacher in Semi-Supervised Learning,
ICCV19(6727-6735)
IEEE DOI
2004
convolutional neural nets, image classification,
moving average processes, supervised learning, Dual Student, Benchmark testing
BibRef
Beyer, L.,
Zhai, X.,
Oliver, A.,
Kolesnikov, A.,
S4L: Self-Supervised Semi-Supervised Learning,
ICCV19(1476-1485)
IEEE DOI
2004
image classification, image representation, supervised learning,
semisupervised ILSVRC-2012, S4L, semisupervised learning, Benchmark testing
BibRef
Wang, Q.,
Li, W.,
Van Gool, L.J.,
Semi-Supervised Learning by Augmented Distribution Alignment,
ICCV19(1466-1475)
IEEE DOI
2004
Code, Learning.
WWW Link. interpolation, neural nets, supervised learning,
semisupervised learning approach, unlabeled data, Benchmark testing
BibRef
Cicek, S.,
Soatto, S.,
Input and Weight Space Smoothing for Semi-Supervised Learning,
MDALC19(1344-1353)
IEEE DOI
2004
gradient methods, learning (artificial intelligence),
minimax techniques, ABCD, weight-space smoothing, gradient ascent,
Deep learning
BibRef
Wu, S.[Si],
Li, J.[Jichang],
Liu, C.[Cheng],
Yu, Z.W.[Zhi-Wen],
Wong, H.S.[Hau-San],
Mutual Learning of Complementary Networks via Residual Correction for
Improving Semi-Supervised Classification,
CVPR19(6493-6502).
IEEE DOI
2002
BibRef
Li, Q.[Qimai],
Wu, X.M.[Xiao-Ming],
Liu, H.[Han],
Zhang, X.T.[Xiao-Tong],
Guan, Z.C.[Zhi-Chao],
Label Efficient Semi-Supervised Learning via Graph Filtering,
CVPR19(9574-9583).
IEEE DOI
2002
BibRef
Wang, S.[Suchen],
Meng, J.J.[Jing-Jing],
Yuan, J.S.[Jun-Song],
Tan, Y.P.[Yap-Peng],
Joint Representative Selection and Feature Learning:
A Semi-Supervised Approach,
CVPR19(5998-6006).
IEEE DOI
2002
BibRef
Iscen, A.[Ahmet],
Tolias, G.[Giorgos],
Avrithis, Y.[Yannis],
Chum, O.[Ondrej],
Label Propagation for Deep Semi-Supervised Learning,
CVPR19(5065-5074).
IEEE DOI
2002
BibRef
Jiang, B.[Bo],
Lin, D.D.[Dou-Dou],
Tang, J.[Jin],
Luo, B.[Bin],
Data Representation and Learning With Graph Diffusion-Embedding
Networks,
CVPR19(10406-10415).
IEEE DOI
2002
BibRef
Jiang, B.[Bo],
Zhang, Z.Y.[Zi-Yan],
Lin, D.D.[Dou-Dou],
Tang, J.[Jin],
Luo, B.[Bin],
Semi-Supervised Learning With Graph Learning-Convolutional Networks,
CVPR19(11305-11312).
IEEE DOI
2002
BibRef
Dornaika, F.,
Bosaghzadeh, A.,
Adaptive Hybrid Representation for Graph-Based Semi-supervised
Classification,
CIAP19(I:164-174).
Springer DOI
1909
BibRef
Zhang, H.[Huan],
Zhang, Z.[Zhao],
Li, S.[Sheng],
Ye, Q.L.[Qiao-Lin],
Zhao, M.B.[Ming-Bo],
Wang, M.[Meng],
Robust Adaptive Label Propagation by Double Matrix Decomposition,
ICPR18(2160-2165)
IEEE DOI
1812
Matrix decomposition, Data models, Adaptation models, Optimization,
Sparse matrices, Predictive models, Field-flow fractionation,
clean space
BibRef
Radosavovic, I.[Ilija],
Dollár, P.[Piotr],
Girshick, R.[Ross],
Gkioxari, G.[Georgia],
He, K.M.[Kai-Ming],
Data Distillation: Towards Omni-Supervised Learning,
CVPR18(4119-4128)
IEEE DOI
1812
Data models, Predictive models, Training, Semisupervised learning,
Transforms, Head, Heating systems
BibRef
Luo, Y.,
Zhu, J.,
Li, M.,
Ren, Y.,
Zhang, B.,
Smooth Neighbors on Teacher Graphs for Semi-Supervised Learning,
CVPR18(8896-8905)
IEEE DOI
1812
Perturbation methods, Training, Predictive models, Manifolds,
Semisupervised learning, Data models
BibRef
Chen, L.,
Yu, S.,
Yang, M.,
Semi-supervised convolutional neural networks with label propagation
for image classification,
ICPR18(1319-1324)
IEEE DOI
1812
Training, Estimation, Training data, Convolutional neural networks,
Convolution, semi-supervised learning, label propagation,
convolutiona neural network
BibRef
Zhu, H.,
Xia, M.,
Scalable Semi-Supervised Learning by Graph Construction with
Approximate Anchors Embedding,
ICPR18(1331-1336)
IEEE DOI
1812
Machine learning, Semisupervised learning, Supervised learning,
Time complexity, Laplace equations, Training data, Vector quantization
BibRef
Hailat, Z.,
Komarichev, A.,
Chen, X.,
Deep Semi-Supervised Learning,
ICPR18(2154-2159)
IEEE DOI
1812
convolution, feedforward neural nets,
learning (artificial intelligence), pattern classification,
Neural networks
BibRef
Park, D.H.,
Hendricks, L.A.,
Akata, Z.,
Rohrbach, A.,
Schiele, B.,
Darrell, T.J.,
Rohrbach, M.,
Multimodal Explanations:
Justifying Decisions and Pointing to the Evidence,
CVPR18(8779-8788)
IEEE DOI
1812
Visualization, Task analysis, Activity recognition,
Image segmentation, Knowledge discovery, Predictive models
BibRef
Gao, M.F.[Ming-Fei],
Li, A.[Ang],
Yu, R.[Ruichi],
Morariu, V.I.[Vlad I.],
Davis, L.S.[Larry S.],
C-WSL: Count-Guided Weakly Supervised Localization,
ECCV18(I: 155-171).
Springer DOI
1810
BibRef
Cicek, S.[Safa],
Fawzi, A.[Alhussein],
Soatto, S.[Stefano],
SaaS: Speed as a Supervisor for Semi-supervised Learning,
ECCV18(II: 152-166).
Springer DOI
1810
BibRef
Mahajan, D.[Dhruv],
Girshick, R.[Ross],
Ramanathan, V.[Vignesh],
He, K.M.[Kai-Ming],
Paluri, M.[Manohar],
Li, Y.X.[Yi-Xuan],
Bharambe, A.[Ashwin],
van der Maaten, L.[Laurens],
Exploring the Limits of Weakly Supervised Pretraining,
ECCV18(II: 185-201).
Springer DOI
1810
BibRef
Qiao, S.Y.[Si-Yuan],
Shen, W.[Wei],
Zhang, Z.S.[Zhi-Shuai],
Wang, B.[Bo],
Yuille, A.L.[Alan L.],
Deep Co-Training for Semi-Supervised Image Recognition,
ECCV18(XV: 142-159).
Springer DOI
1810
BibRef
Odate, R.[Ryosuke],
Shinjo, H.[Hiroshi],
Suzuki, Y.[Yasufumi],
Motobayashi, M.[Masahiro],
Semi-supervised Clustering Framework Based on Active Learning for Real
Data,
SSSPR18(184-193).
Springer DOI
1810
BibRef
Chen, Y.B.[Yan-Bei],
Zhu, X.T.[Xia-Tian],
Gong, S.G.[Shao-Gang],
Semi-supervised Deep Learning with Memory,
ECCV18(I: 275-291).
Springer DOI
1810
BibRef
Shi, W.W.[Wei-Wei],
Gong, Y.H.[Yi-Hong],
Ding, C.[Chris],
Ma, Z.H.[Zhi-Heng],
Tao, X.Y.[Xiao-Yu],
Zheng, N.N.[Nan-Ning],
Transductive Semi-Supervised Deep Learning Using Min-Max Features,
ECCV18(VI: 311-327).
Springer DOI
1810
BibRef
Liu, Y.[Yu],
Song, G.L.[Guang-Lu],
Shao, J.[Jing],
Jin, X.[Xiao],
Wang, X.G.[Xiao-Gang],
Transductive Centroid Projection for Semi-supervised Large-Scale
Recognition,
ECCV18(VI: 72-89).
Springer DOI
1810
BibRef
Robert, T.[Thomas],
Thome, N.[Nicolas],
Cord, M.[Matthieu],
HybridNet: Classification and Reconstruction Cooperation for
Semi-supervised Learning,
ECCV18(VII: 158-175).
Springer DOI
1810
BibRef
Chen, X.,
Gong, C.,
Ma, C.,
Huang, X.,
Yang, J.,
Privileged Semi-Supervised Learning,
ICIP18(2999-3003)
IEEE DOI
1809
Training, Support vector machines, Manifolds,
Semisupervised learning, Kernel, Standards, Feature extraction,
support vector machine
BibRef
Zhang, L.,
Wang, D.,
Zhang, X.,
Gu, N.,
Fan, M.,
Simultaneous Learning of Affinity Matrix and Laplacian Regularized
Least Squares for Semi-Supervised Classification,
ICIP18(1633-1637)
IEEE DOI
1809
Sparse matrices, Laplace equations, Optimization,
Semisupervised learning, Benchmark testing, Manifolds,
Laplacian Regularized Least Squares
BibRef
Ding, Y.F.[Yi-Fan],
Wang, L.Q.[Li-Qiang],
Fan, D.L.[De-Liang],
Gong, B.Q.[Bo-Qing],
A Semi-Supervised Two-Stage Approach to Learning from Noisy Labels,
WACV18(1215-1224)
IEEE DOI
1806
image classification, learning (artificial intelligence),
neural nets, probability, data points, inferred noisy rates,
Training data
BibRef
Huijser, M.[Miriam],
van Gemert, J.C.[Jan C.],
Active Decision Boundary Annotation with Deep Generative Models,
ICCV17(5296-5305)
IEEE DOI
1802
Choose where on a 1D scale to put the boundary.
Interactive learning.
image annotation, learning (artificial intelligence),
active decision boundary annotation, active learning methods,
Visualization
BibRef
Gaur, U.,
Manjunath, B.S.,
Weakly Supervised Manifold Learning for Dense Semantic Object
Correspondence,
ICCV17(1744-1752)
IEEE DOI
1802
feature extraction, feedforward neural nets, geometry,
image classification, learning (artificial intelligence),
Semantics
BibRef
Jacobs, M.[Matt],
A Fast MBO Scheme for Multiclass Data Classification,
SSVM17(335-347).
Springer DOI
1706
semi-supervised data classification
BibRef
Salinas-Gutiérrez, R.[Rogelio],
Hernández-Quintero, A.[Angélica],
Dalmau-Cedeño, O.[Oscar],
Pérez-Díaz, Á.P.[Ángela Paulina],
Modeling Dependencies in Supervised Classification,
MCPR17(117-126).
Springer DOI
1706
BibRef
Valev, V.,
Yanev, N.,
Krzyzak, A.,
A new geometrical approach for solving the supervised pattern
recognition problem,
ICPR16(1648-1652)
IEEE DOI
1705
Color, Complexity theory, Optimization, Partitioning algorithms,
Training
BibRef
Hou, C.Q.[Cui-Qin],
Xia, Y.J.[Ying-Ju],
Xu, Z.R.[Zhuo-Ran],
Sun, J.[Jun],
Semi-supervised learning competence of classifiers based on graph for
dynamic classifier selection,
ICPR16(3650-3654)
IEEE DOI
1705
Classification algorithms, Heuristic algorithms, Optimization,
Testing, Training, Training data, competence,
dynamic classifier selection, ensemble learning, graph, semi-supervised
BibRef
Oh, B.[Byonghwa],
Yang, J.[Jihoon],
Enhancing label inference algorithms considering vertex importance in
graph-based semi-supervised learning,
ICPR16(1671-1676)
IEEE DOI
1705
Algorithm design and analysis, Convergence, Heuristic algorithms,
Inference algorithms, Manifolds, Prediction algorithms, Supervised, learning
BibRef
Sousa, C.A.R.[Celso A. R.],
Batista, G.E.A.P.A.[Gustavo E.A.P.A.],
Constrained Local and Global Consistency for semi-supervised learning,
ICPR16(1689-1694)
IEEE DOI
1705
Benchmark testing, Closed-form solutions, Convex functions,
Laplace equations, Optimization, Robustness, Semisupervised, learning
BibRef
Fu, Y.W.[Yan-Wei],
Sigal, L.[Leonid],
Semi-supervised Vocabulary-Informed Learning,
CVPR16(5337-5346)
IEEE DOI
1612
BibRef
Krijthe, J.H.[Jesse H.],
Loog, M.[Marco],
The Peaking Phenomenon in Semi-supervised Learning,
SSSPR16(299-309).
Springer DOI
1611
BibRef
Kim, K.I.[Kwang In],
Semi-supervised Learning Based on Joint Diffusion of Graph Functions
and Laplacians,
ECCV16(V: 713-729).
Springer DOI
1611
BibRef
Li, A.,
Jabri, A.[Allan],
Joulin, A.[Armand],
van der Maaten, L.[Laurens],
Learning Visual N-Grams from Web Data,
ICCV17(4193-4202)
IEEE DOI
1802
convolution, image annotation, image recognition,
image retrieval, learning (artificial intelligence), neural nets,
Visualization
BibRef
Joulin, A.[Armand],
van der Maaten, L.[Laurens],
Jabri, A.[Allan],
Vasilache, N.[Nicolas],
Learning Visual Features from Large Weakly Supervised Data,
ECCV16(VII: 67-84).
Springer DOI
1611
BibRef
Gangeh, M.J.[Mehrdad J.],
Bedawi, S.M.A.[Safaa M. A.],
Ghodsi, A.[Ali],
Karray, F.[Fakhri],
Semi-supervised Dictionary Learning Based on Hilbert-Schmidt
Independence Criterion,
ICIAR16(12-19).
Springer DOI
1608
BibRef
Li, C.G.[Chun-Guang],
Lin, Z.C.[Zhou-Chen],
Zhang, H.G.[Hong-Gang],
Guo, J.[Jun],
Learning Semi-Supervised Representation Towards a Unified
Optimization Framework for Semi-Supervised Learning,
ICCV15(2767-2775)
IEEE DOI
1602
BibRef
Wang, X.B.[Xiao-Bo],
Guo, X.J.[Xiao-Jie],
Li, S.Z.[Stan Z.],
Adaptively Unified Semi-Supervised Dictionary Learning with Active
Points,
ICCV15(1787-1795)
IEEE DOI
1602
Data models
BibRef
Shi, X.[Xin],
Zhang, C.[Chao],
Wei, F.Y.[Fang-Yun],
Zhang, H.Y.[Hong-Yang],
She, Y.Y.[Yi-Yuan],
Manifold-Regularized Selectable Factor Extraction for Semi-supervised
Image Classification,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Yin, Q.Y.[Qi-Yue],
Wu, S.[Shu],
Wang, L.[Liang],
Partially tagged image clustering,
ICIP15(4012-4016)
IEEE DOI
1512
Image clustering
BibRef
Yang, H.X.[Hong-Xue],
Kong, X.W.[Xiang-Wei],
Fu, H.Y.[Hai-Yan],
Li, M.[Ming],
Zhao, G.P.[Gen-Ping],
Semi-supervised learning based on group sparse for relative
attributes,
ICIP15(3931-3935)
IEEE DOI
1512
Group sparse; labeling; relative attributes; semi-supervised learning
BibRef
Ye, Z.P.[Zhi-Peng],
Liu, P.[Peng],
Tang, X.L.[Xiang-Long],
Zhao, W.[Wei],
May the torcher light our way:
A negative-accelerated active learning framework for image classification,
ICIP15(1658-1662)
IEEE DOI
1512
Image classification
BibRef
Cardona, H.D.V.[Hernán Darío Vargas],
Álvarez, M.A.[Mauricio A.],
Orozco, Á.A.[Álvaro A.],
Convolved Multi-output Gaussian Processes for Semi-Supervised Learning,
CIAP15(I:109-118).
Springer DOI
1511
BibRef
Gómez-González, S.[Sebastián],
Álvarez, M.A.[Mauricio A.],
García, H.F.[Hernan F.],
Ríos, J.I.[Jorge I.],
Orozco, A.A.[Alvaro A.],
Discriminative Training for Convolved Multiple-Output Gaussian
Processes,
CIARP15(595-602).
Springer DOI
1511
BibRef
Peikari, M.[Mohammad],
Zubovits, J.[Judit],
Clarke, G.[Gina],
Martel, A.L.[Anne L.],
Clustering Analysis for Semi-supervised Learning Improves
Classification Performance of Digital Pathology,
MLMI15(263-270).
Springer DOI
1511
BibRef
Wang, Z.H.[Zi-Heng],
Ji, Q.A.[Qi-Ang],
Classifier learning with hidden information,
CVPR15(4969-4977)
IEEE DOI
1510
BibRef
Kim, K.I.[Kwang In],
Tompkin, J.[James],
Pfister, H.[Hanspeter],
Theobalt, C.[Christian],
Semi-supervised learning with explicit relationship regularization,
CVPR15(2188-2196)
IEEE DOI
1510
BibRef
Wuttke, S.,
Middelmann, W.,
Stilla, U.,
Concept for a Compound Analysis in Active Learning for Remote Sensing,
PIA15(273-279).
DOI Link
1504
BibRef
Pham, H.D.[Hien Duy],
Kim, K.H.[Kye-Hyeon],
Choi, S.J.[Seung-Jin],
Semi-supervised Learning on Bi-relational Graph for Image Annotation,
ICPR14(2465-2470)
IEEE DOI
1412
Computational modeling
BibRef
Berton, L.[Lilian],
de Andrade Lopes, A.[Alneu],
Graph Construction Based on Labeled Instances for Semi-supervised
Learning,
ICPR14(2477-2482)
IEEE DOI
1412
Accuracy
BibRef
Yang, Y.[Yi],
Newsam, S.[Shawn],
Semi-supervised Learning of Geospatial Objects through Multi-modal
Data Integration,
ICPR14(4062-4067)
IEEE DOI
1412
Computational modeling
BibRef
Aodha, O.M.[Oisin Mac],
Campbell, N.D.F.[Neill D.F.],
Kautz, J.[Jan],
Brostow, G.J.[Gabriel J.],
Hierarchical Subquery Evaluation for Active Learning on a Graph,
CVPR14(564-571)
IEEE DOI
1409
active learning; semi-supervised learning
BibRef
Lai, H.J.[Han-Jiang],
Pan, Y.[Yan],
Lu, C.Y.[Can-Yi],
Tang, Y.[Yong],
Yan, S.C.[Shui-Cheng],
Efficient k-Support Matrix Pursuit,
ECCV14(II: 617-631).
Springer DOI
1408
semi-supervised classification
BibRef
Lad, S.[Shrenik],
Parikh, D.[Devi],
Interactively Guiding Semi-Supervised Clustering via Attribute-Based
Explanations,
ECCV14(VI: 333-349).
Springer DOI
1408
BibRef
Wigness, M.[Maggie],
Draper, B.A.[Bruce A.],
Beveridge, J.R.[J. Ross],
Selectively guiding visual concept discovery,
WACV14(247-254)
IEEE DOI
1406
Selective Guidance. Give some guidance, cluster to find concepts.
Accuracy
BibRef
Xu, J.S.[Jing-Song],
Wu, Q.A.[Qi-Ang],
Zhang, J.[Jian],
Shen, F.M.[Fu-Min],
Tang, Z.M.[Zhen-Min],
Training boosting-like algorithms with semi-supervised subspace
learning,
ICIP13(4302-4306)
IEEE DOI
1402
AdaBoost
BibRef
Xie, W.X.[Wen-Xuan],
Lu, Z.W.[Zhi-Wu],
Peng, Y.X.[Yu-Xin],
Xiao, J.G.[Jian-Guo],
Multimodal semi-supervised image classification by combining tag
refinement, graph-based learning and support vector regression,
ICIP13(4307-4311)
IEEE DOI
1402
Graph-based semi-supervised learning
BibRef
Hoai, M.[Minh],
Zisserman, A.[Andrew],
Discriminative Sub-categorization,
CVPR13(1666-1673)
IEEE DOI
1309
Weakly supervised with positive and negative examples.
BibRef
Asafi, S.[Shmuel],
Cohen-Or, D.[Daniel],
Constraints as Features,
CVPR13(1634-1641)
IEEE DOI
1309
clustering; image segmentation; machine learning; semi-supervised
Constrained clustering using cannot-link information.
BibRef
Turakhia, N.[Naman],
Parikh, D.[Devi],
Attribute Dominance: What Pops Out?,
ICCV13(1225-1232)
IEEE DOI
1403
attribute based classification
BibRef
Biswas, A.[Arijit],
Parikh, D.[Devi],
Simultaneous Active Learning of Classifiers:
Attributes via Relative Feedback,
CVPR13(644-651)
IEEE DOI
1309
Active Learning. Reduce annotation costs.
BibRef
Shi, L.[Lei],
Khushaba, R.,
Kodagoda, S.,
Dissanayake, G.,
Application of CRF and SVM based semi-supervised learning for semantic
labeling of environments,
ICARCV12(835-840).
IEEE DOI
1304
BibRef
Ebert, S.[Sandra],
Fritz, M.[Mario],
Schiele, B.[Bernt],
Semi-Supervised Learning on a Budget: Scaling Up to Large Datasets,
ACCV12(I:232-245).
Springer DOI
1304
BibRef
Zhang, T.Z.[Tian-Zhu],
Cai, R.[Rui],
Li, Z.W.[Zhi-Wei],
Zhang, L.[Lei],
Lu, H.Q.[Han-Qing],
Hierarchical Object Representations for Visual Recognition via Weakly
Supervised Learning,
ACCV12(I:474-485).
Springer DOI
1304
BibRef
Cao, C.[Chen],
Chen, S.F.[Shi-Feng],
Zou, C.Q.[Chang-Qing],
Liu, J.Z.[Jian-Zhuang],
Locating high-density clusters with noisy queries,
ICPR12(3537-3540).
WWW Link.
1302
BibRef
Hido, S.[Shohei],
Kashima, H.[Hisashi],
Hash-based structural similarity for semi-supervised Learning on
attribute graphs,
ICPR12(3009-3012).
WWW Link.
1302
BibRef
Lopresti, D.P.[Daniel P.],
Nagy, G.[George],
Optimal data partition for semi-automated labeling,
ICPR12(286-289).
WWW Link.
1302
BibRef
Kobayashi, T.[Takumi],
Otsu, N.[Nobuyuki],
Efficient Similarity Derived from Kernel-Based Transition Probability,
ECCV12(VI: 371-385).
Springer DOI
1210
BibRef
Siva, P.[Parthipan],
Russell, C.[Chris],
Xiang, T.[Tao],
In Defence of Negative Mining for Annotating Weakly Labelled Data,
ECCV12(III: 594-608).
Springer DOI
1210
Annotate based on examples that have not occurred previously.
BibRef
Shrivastava, A.[Abhinav],
Singh, S.[Saurabh],
Gupta, A.[Abhinav],
Constrained Semi-Supervised Learning Using Attributes and Comparative
Attributes,
ECCV12(III: 369-383).
Springer DOI
1210
BibRef
Ahumada, H.C.[Hernán C.],
Granitto, P.M.[Pablo M.],
A Simple Hybrid Method for Semi-supervised Learning,
CIARP12(138-145).
Springer DOI
1209
BibRef
Duvenaud, D.[David],
Marlin, B.[Benjamin],
Murphy, K.[Kevin],
Multiscale Conditional Random Fields for Semi-supervised Labeling and
Classification,
CRV11(371-378).
IEEE DOI
1105
BibRef
Kimura, A.[Akisato],
Kameoka, H.[Hirokazu],
Sugiyama, M.[Masashi],
Nakano, T.[Takuho],
Maeda, E.[Eisaku],
Sakano, H.[Hitoshi],
Ishiguro, K.[Katsuhiko],
SemiCCA: Efficient Semi-supervised Learning of Canonical Correlations,
ICPR10(2933-2936).
IEEE DOI
1008
BibRef
Han, X.H.[Xian-Hua],
Chen, Y.W.[Yen-Wei],
Ruan, X.[Xiang],
Semi-supervised and Interactive Semantic Concept Learning for Scene
Recognition,
ICPR10(3045-3048).
IEEE DOI
1008
BibRef
Chandel, A.S.[Arvind Singh],
Tiwari, A.[Aruna],
Chaudhari, N.S.[Narendra S.],
Constructive Semi-Supervised Classification Algorithm and Its Implement
in Data Mining,
PReMI09(62-67).
Springer DOI
0912
BibRef
Gui, J.[Jie],
Huang, D.S.[De-Shuang],
You, Z.H.[Zhu-Hong],
An improvement on learning with local and global consistency,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Zhang, Z.Y.[Zhen-Yue],
Zha, H.Y.[Hong-Yuan],
Zhang, M.[Min],
Spectral methods for semi-supervised manifold learning,
CVPR08(1-6).
IEEE DOI
0806
BibRef
Gong, Y.C.[Yun-Chao],
Chen, C.L.[Chuan-Liang],
Tian, Y.J.[Yin-Jie],
Graph-based semi-supervised learning with redundant views,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Korecki, J.N.[John N.],
Banfield, R.E.[Robert E.],
Hall, L.O.[Lawrence O.],
Bowyer, K.W.[Kevin W.],
Kegelmeyer, W.P.[W. Philip],
Semi-supervised learning on large complex simulations,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Hu, J.Y.[Jian-Ying],
Singh, M.[Moninder],
Mojsilovic, A.[Aleksandra],
Categorization using semi-supervised clustering,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Cheng, Y.B.[Yu-Bo],
Cai, Y.P.[Yun-Peng],
Sun, Y.J.[Yi-Jun],
Li, J.[Jian],
Semi-supervised feature selection under logistic I-RELIEF framework,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Xiao, R.[Rui],
Shi, P.F.[Peng-Fei],
Semi-supervised marginal discriminant analysis based on QR
decomposition,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Tahir, M.A.[Muhammad Atif],
Smith, J.E.[James E.],
Caleb-Solly, P.[Praminda],
A Novel Feature Selection Based Semi-supervised Method for Image
Classification,
CVS08(xx-yy).
Springer DOI
0805
See also Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier.
BibRef
Batra, D.,
Sukthankar, R.,
Chen, T.,
Semi-Supervised Clustering via Learnt Codeword Distances,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Marin-Castro, H.[Heidy],
Sucar, L.E.[L. Enrique],
Morales, E.[Eduardo],
Automatic Image Annotation Using a Semi-supervised Ensemble of
Classifiers,
CIARP07(487-495).
Springer DOI
0711
BibRef
Didaci, L.[Luca],
Fumera, G.[Giorgio],
Roli, F.[Fabio],
Analysis of Co-training Algorithm with Very Small Training Sets,
SSSPR12(719-726).
Springer DOI
1211
BibRef
Didaci, L.[Luca],
Roli, F.[Fabio],
Using Co-training and Self-training in Semi-supervised Multiple
Classifier Systems,
SSPR06(522-530).
Springer DOI
0608
BibRef
Duan, R.[Rong],
Jiang, W.[Wei],
Man, H.[Hong],
Semi-Supervised Image Classification in Likelihood Space,
ICIP06(957-960).
IEEE DOI
0610
BibRef
And:
Robust Adjusted Likelihood Function for Image Analysis,
AIPR06(29-29).
IEEE DOI
0610
BibRef
Song, Y.Q.[Yang-Qiu],
Zhang, C.S.[Chang-Shui],
Lee, J.G.[Jian-Guo],
Graph Based Multi-class Semi-supervised Learning Using Gaussian Process,
SSPR06(450-458).
Springer DOI
0608
BibRef
Saint-Jean, C.,
Frelicot, C.,
A robust semi-supervised EM-based clustering algorithm with a reject
option,
ICPR02(III: 399-402).
IEEE DOI
0211
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Semi-Supervised Clustering Applied to Hyperspectral Data .