Loughner, C.P.[Christopher P.],
Lary, D.J.[David J.],
Sparling, L.C.[Lynn C.],
Cohen, R.C.[Ronald C.],
DeCola, P.[Phil],
Stockwell, W.R.,
A Method to Determine the Spatial Resolution Required to Observe Air
Quality From Space,
GeoRS(45), No. 5, May 2007, pp. 1308-1314.
IEEE DOI
0704
BibRef
Davies, W.H.,
North, P.R.J.,
Grey, W.M.F.,
Barnsley, M.J.,
Improvements in Aerosol Optical Depth Estimation Using Multiangle
CHRIS/PROBA Images,
GeoRS(48), No. 1, January 2010, pp. 18-24.
IEEE DOI
1001
BibRef
Schutgens, N.,
Nakata, M.,
Nakajima, T.,
Estimating Aerosol Emissions by Assimilating Remote Sensing
Observations into a Global Transport Model,
RS(4), No. 11, November 2012, pp. 3528-3543.
DOI Link
1211
BibRef
Rajasegarar, S.,
Havens, T.C.,
Karunasekera, S.,
Leckie, C.,
Bezdek, J.C.,
Jamriska, M.,
Gunatilaka, A.,
Skvortsov, A.,
Palaniswami, M.,
High-Resolution Monitoring of Atmospheric Pollutants Using a System
of Low-Cost Sensors,
GeoRS(52), No. 7, July 2014, pp. 3823-3832.
IEEE DOI
1403
Atmospheric modeling
BibRef
Zawadzka, O.[Olga],
Markowicz, K.M.[Krzysztof M.],
Retrieval of Aerosol Optical Depth from Optimal Interpolation
Approach Applied to SEVIRI Data,
RS(6), No. 8, 2014, pp. 7182-7211.
DOI Link
1410
BibRef
Zhang, Y.[Yang],
Liu, Z.H.[Zhi-Hong],
Wang, Y.Q.[Yong-Qian],
Ye, Z.X.[Zhi-Xiang],
Leng, L.[Lu],
Inversion of Aerosol Optical Depth Based on the CCD and IRS Sensors
on the HJ-1 Satellites,
RS(6), No. 9, 2014, pp. 8760-8778.
DOI Link
1410
BibRef
Shi, G.M.[Guang-Ming],
Li, C.C.[Cheng-Cai],
Ren, T.[Tong],
Wang, Y.F.[Ye-Fang],
Retrieval of Atmospheric Aerosol and Surface Properties Over Land
Using Satellite Observations,
GeoRS(53), No. 2, February 2015, pp. 1039-1047.
IEEE DOI
1411
aerosols
BibRef
Moon, T.[Taesup],
Wang, Y.Q.[Yue-Qing],
Liu, Y.[Yang],
Yu, B.[Bin],
Evaluation of a MISR-Based High-Resolution Aerosol Retrieval Method
Using AERONET DRAGON Campaign Data,
GeoRS(53), No. 8, August 2015, pp. 4328-4339.
IEEE DOI
1506
Bayes methods
BibRef
Djuric, N.[Nemanja],
Kansakar, L.[Lakesh],
Vucetic, S.[Slobodan],
Semi-supervised combination of experts for aerosol optical depth
estimation,
AI(230), No. 1, 2016, pp. 1-13.
Elsevier DOI
1512
Combination of experts
BibRef
Rosser, K.[Kent],
Pavey, K.[Karl],
FitzGerald, N.[Nicholas],
Fatiaki, A.[Anselm],
Neumann, D.[Daniel],
Carr, D.[David],
Hanlon, B.[Brian],
Chahl, J.[Javaan],
Autonomous Chemical Vapour Detection by Micro UAV,
RS(7), No. 12, 2015, pp. 15858.
DOI Link
1601
BibRef
Liu, Y.[Yao],
Zhang, W.J.[Wen-Juan],
Zhang, B.[Bing],
Top-of-Atmosphere Image Simulation in the 4.3-mu-m Mid-infrared
Absorption Bands,
GeoRS(54), No. 1, January 2016, pp. 452-456.
IEEE DOI
1601
atmospheric radiation
BibRef
Sun, L.[Lin],
Wei, J.[Jing],
Bilal, M.[Muhammad],
Tian, X.P.[Xin-Peng],
Jia, C.[Chen],
Guo, Y.M.[Ya-Min],
Mi, X.T.[Xue-Ting],
Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI
Images,
RS(8), No. 1, 2016, pp. 23.
DOI Link
1602
BibRef
Chen, W.[Wei],
Tang, H.Z.[Hong-Zhao],
Zhao, H.M.[Hai-Meng],
Yan, L.[Lei],
Analysis of Aerosol Properties in Beijing Based on Ground-Based Sun
Photometer and Air Quality Monitoring Observations from 2005 to 2014,
RS(8), No. 2, 2016, pp. 110.
DOI Link
1603
BibRef
Zhao, X.P.[Xue-Peng],
Heidinger, A.K.[Andrew K.],
Walther, A.[Andi],
Climatology Analysis of Aerosol Effect on Marine Water Cloud from
Long-Term Satellite Climate Data Records,
RS(8), No. 4, 2016, pp. 300.
DOI Link
1604
BibRef
Hirsch, M.[Michael],
Semeter, J.[Joshua],
Zettergren, M.[Matthew],
Dahlgren, H.[Hanna],
Goenka, C.[Chhavi],
Akbari, H.[Hassanali],
Reconstruction of Fine-Scale Auroral Dynamics,
GeoRS(54), No. 5, May 2016, pp. 2780-2791.
IEEE DOI
1604
atmospheric precipitation.
BibRef
Popp, T.[Thomas],
de Leeuw, G.[Gerrit],
Bingen, C.[Christine],
Brühl, C.[Christoph],
Capelle, V.[Virginie],
Chedin, A.[Alain],
Clarisse, L.[Lieven],
Dubovik, O.[Oleg],
Grainger, R.[Roy],
Griesfeller, J.[Jan],
Heckel, A.[Andreas],
Kinne, S.[Stefan],
Klüser, L.[Lars],
Kosmale, M.[Miriam],
Kolmonen, P.[Pekka],
Lelli, L.[Luca],
Litvinov, P.[Pavel],
Mei, L.[Linlu],
North, P.[Peter],
Pinnock, S.[Simon],
Povey, A.[Adam],
Robert, C.[Charles],
Schulz, M.[Michael],
Sogacheva, L.[Larisa],
Stebel, K.[Kerstin],
Zweers, D.S.[Deborah Stein],
Thomas, G.[Gareth],
Tilstra, L.G.[Lieuwe Gijsbert],
Vandenbussche, S.[Sophie],
Veefkind, P.[Pepijn],
Vountas, M.[Marco],
Xue, Y.[Yong],
Development, Production and Evaluation of Aerosol Climate Data
Records from European Satellite Observations (Aerosol_cci),
RS(8), No. 5, 2016, pp. 421.
DOI Link
1606
BibRef
Chang, I.,
Christopher, S.A.,
Identifying Absorbing Aerosols Above Clouds From the Spinning
Enhanced Visible and Infrared Imager Coupled With NASA A-Train
Multiple Sensors,
GeoRS(54), No. 6, June 2016, pp. 3163-3173.
IEEE DOI
1606
aerosols
BibRef
Zhang, Y.[Yang],
Li, Z.Q.[Zheng-Qiang],
Qie, L.[Lili],
Hou, W.Z.[Wei-Zhen],
Liu, Z.H.[Zhi-Hong],
Zhang, Y.[Ying],
Xie, Y.S.[Yi-Song],
Chen, X.F.[Xing-Feng],
Xu, H.[Hua],
Retrieval of Aerosol Optical Depth Using the Empirical Orthogonal
Functions (EOFs) Based on PARASOL Multi-Angle Intensity Data,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Zhang, Y.[Yang],
Li, Z.Q.[Zheng-Qiang],
Liu, Z.H.[Zhi-Hong],
Zhang, J.[Juan],
Qie, L.[Lili],
Xie, Y.S.[Yi-Song],
Hou, W.Z.[Wei-Zhen],
Wang, Y.Q.[Yong-Qian],
Ye, Z.X.[Zhi-Xiang],
Retrieval of the Fine-Mode Aerosol Optical Depth over East China
Using a Grouped Residual Error Sorting (GRES) Method from Multi-Angle
and Polarized Satellite Data,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Weidmann, D.[Damien],
Macleod, N.[Neil],
Detecting chemical threats at safe standoff distances,
SPIE(Newsroom), May 18, 2016
DOI Link
1608
An eye-safe, mid-IR hyperspectral active standoff detection system
provides identification, detection, and confident quantification of
chemical mixtures.
BibRef
Bao, F.,
Gu, X.,
Cheng, T.,
Wang, Y.,
Guo, H.,
Chen, H.,
Wei, X.,
Xiang, K.,
Li, Y.,
High-Spatial-Resolution Aerosol Optical Properties Retrieval
Algorithm Using Chinese High-Resolution Earth Observation Satellite I,
GeoRS(54), No. 9, September 2016, pp. 5544-5552.
IEEE DOI
1609
aerosols
BibRef
Zeng, Y.,
Li, J.,
Liu, Q.,
Huete, A.R.,
Xu, B.,
Yin, G.,
Zhao, J.,
Yang, L.,
Fan, W.,
Wu, S.,
Yan, K.,
An Iterative BRDF/NDVI Inversion Algorithm Based on A Posteriori
Variance Estimation of Observation Errors,
GeoRS(54), No. 11, November 2016, pp. 6481-6496.
IEEE DOI
1610
Aerosols
BibRef
Sun, K.[Kun],
Chen, X.L.[Xiao-Ling],
Zhu, Z.M.[Zhong-Min],
Zhang, T.H.[Tian-Hao],
High Resolution Aerosol Optical Depth Retrieval Using Gaofen-1 WFV
Camera Data,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Chen, X.[Xi],
Yang, D.X.[Dong-Xu],
Cai, Z.N.[Zhao-Nan],
Liu, Y.[Yi],
Spurr, R.J.D.[Robert J. D.],
Aerosol Retrieval Sensitivity and Error Analysis for the Cloud and
Aerosol Polarimetric Imager on Board TanSat: The Effect of
Multi-Angle Measurement,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
She, L.[Lu],
Mei, L.[Linlu],
Xue, Y.[Yong],
Che, Y.H.[Ya-Hui],
Guang, J.[Jie],
SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese
gAofen Data: 1. Aerosol Algorithm,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
García-Sobrino, J.,
Serra-Sagristà, J.,
Laparra, V.,
Calbet, X.,
Camps-Valls, G.,
Statistical Atmospheric Parameter Retrieval Largely Benefits From
Spatial-Spectral Image Compression,
GeoRS(55), No. 4, April 2017, pp. 2213-2224.
IEEE DOI
1704
atmospheric techniques
BibRef
Sun, Y.C.[Yuan-Chang],
Wu, W.[Wensong],
Xin, J.[Jack],
Computational modeling of spectral data fitting with nonlinear
distortions,
SIViP(11), No. 4, May 2017, pp. 651-658.
Springer DOI
1704
Spectral fingerprints of chemical compounds.
BibRef
Go, S.J.[Su-Jung],
Kim, M.[Mijin],
Kim, J.[Jhoon],
Park, S.S.[Sang Seo],
Jeong, U.[Ukkyo],
Choi, M.J.[Myung-Je],
Detection of Absorbing Aerosol Using Single Near-UV Radiance
Measurements from a Cloud and Aerosol Imager,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Wang, Y.[Yang],
Chen, L.F.[Liang-Fu],
Li, S.S.[Shen-Shen],
Wang, X.H.[Xin-Hui],
Yu, C.[Chao],
Si, Y.[Yidan],
Zhang, Z.L.[Zi-Li],
Interference of Heavy Aerosol Loading on the VIIRS Aerosol Optical
Depth (AOD) Retrieval Algorithm,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Zhong, B.[Bo],
Wu, S.L.[Shan-Long],
Yang, A.[Aixia],
Liu, Q.H.[Qin-Huo],
An Improved Aerosol Optical Depth Retrieval Algorithm for Moderate to
High Spatial Resolution Optical Remotely Sensed Imagery,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Zhong, G.S.[Guo-Sheng],
Wang, X.F.[Xiu-Feng],
Guo, M.[Meng],
Tani, H.[Hiroshi],
Chittenden, A.R.[Anthony R.],
Yin, S.[Shuai],
Sun, Z.Y.[Zhong-Yi],
Matsumura, S.[Shinji],
A Dark Target Algorithm for the GOSAT TANSO-CAI Sensor in Aerosol
Optical Depth Retrieval over Land,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Zhong, G.S.[Guo-Sheng],
Wang, X.F.[Xiu-Feng],
Tani, H.[Hiroshi],
Guo, M.[Meng],
Chittenden, A.R.[Anthony R.],
Yin, S.[Shuai],
Sun, Z.Y.[Zhong-Yi],
Matsumura, S.[Shinji],
A Modified Aerosol Free Vegetation Index Algorithm for Aerosol
Optical Depth Retrieval Using GOSAT TANSO-CAI Data,
RS(8), No. 12, 2016, pp. 998.
DOI Link
1612
BibRef
Schwarz, K.[Katharina],
Cermak, J.[Jan],
Fuchs, J.[Julia],
Andersen, H.[Hendrik],
Mapping the Twilight Zone:
What We Are Missing between Clouds and Aerosols,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Vicent, J.[Jorge],
Sabater, N.[Neus],
Verrelst, J.[Jochem],
Alonso, L.[Luis],
Moreno, J.[Jose],
Assessment of Approximations in Aerosol Optical Properties and
Vertical Distribution into FLEX Atmospherically-Corrected Surface
Reflectance and Retrieved Sun-Induced Fluorescence,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Qin, W.M.[Wen-Min],
Wang, L.C.[Lun-Che],
Lin, A.[Aiwen],
Zhang, M.[Ming],
Bilal, M.[Muhammad],
Improving the Estimation of Daily Aerosol Optical Depth and Aerosol
Radiative Effect Using an Optimized Artificial Neural Network,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Tratt, D.M.,
Young, S.J.,
Hackwell, J.A.,
Rudy, D.J.,
Warren, D.W.,
Vore, A.G.,
Johnson, P.D.,
MAHI: An Airborne Mid-Infrared Imaging Spectrometer for Industrial
Emissions Monitoring,
GeoRS(55), No. 8, August 2017, pp. 4558-4566.
IEEE DOI
1708
Atmospheric measurements, Atmospheric modeling,
Atmospheric waves, Calibration, Gases, Imaging, Water,
Atmospheric measurements, infrared image sensors, spectral, analysis
BibRef
Tosca, M.G.[Mika G.],
Campbell, J.[James],
Garay, M.[Michael],
Lolli, S.[Simone],
Seidel, F.C.[Felix C.],
Marquis, J.[Jared],
Kalashnikova, O.[Olga],
Attributing Accelerated Summertime Warming in the Southeast United
States to Recent Reductions in Aerosol Burden: Indications from
Vertically-Resolved Observations,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Nalli, N.R.,
Gambacorta, A.,
Liu, Q.,
Barnet, C.D.[Christopher D.],
Tan, C.,
Iturbide-Sanchez, F.,
Reale, T.,
Sun, B.,
Wilson, M.,
Borg, L.,
Morris, V.R.,
Validation of Atmospheric Profile Retrievals From the SNPP
NOAA-Unique Combined Atmospheric Processing System. Part 1:
Temperature and Moisture,
GeoRS(56), No. 1, January 2018, pp. 180-190.
IEEE DOI
1801
atmospheric humidity, atmospheric temperature, radiosondes,
remote sensing, statistical analysis, weather forecasting,
soundings
BibRef
Nalli, N.R.,
Gambacorta, A.,
Liu, Q.,
Tan, C.,
Iturbide-Sanchez, F.,
Barnet, C.D.[Christopher D.],
Joseph, E.,
Morris, V.R.,
Oyola, M.,
Smith, J.W.,
Validation of Atmospheric Profile Retrievals from the SNPP
NOAA-Unique Combined Atmospheric Processing System. Part 2: Ozone,
GeoRS(56), No. 1, January 2018, pp. 598-607.
IEEE DOI
1801
atmospheric composition, ozone, remote sensing,
statistical analysis, weather forecasting,
satellite applications
BibRef
Smith, N.[Nadia],
Barnet, C.D.[Christopher D.],
Uncertainty Characterization and Propagation in the Community
Long-Term Infrared Microwave Combined Atmospheric Product System
(CLIMCAPS),
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Xie, X.Z.[Xing-Zhe],
Semanjski, I.[Ivana],
Gautama, S.[Sidharta],
Tsiligianni, E.[Evaggelia],
Deligiannis, N.[Nikos],
Rajan, R.T.[Raj Thilak],
Pasveer, F.[Frank],
Philips, W.[Wilfried],
A Review of Urban Air Pollution Monitoring and Exposure Assessment
Methods,
IJGI(6), No. 12, 2017, pp. xx-yy.
DOI Link
1801
BibRef
Xie, Y.,
Xue, Y.,
Che, Y.,
Guang, J.,
Mei, L.,
Voorhis, D.,
Fan, C.,
She, L.,
Xu, H.,
Ensemble of ESA/AATSR Aerosol Optical Depth Products Based on the
Likelihood Estimate Method With Uncertainties,
GeoRS(56), No. 2, February 2018, pp. 997-1007.
IEEE DOI
1802
aerosols, atmospheric optics, atmospheric techniques,
maximum likelihood estimation, mean square error methods,
ensemble
BibRef
Rouquié, B.[Bastien],
Hagolle, O.[Olivier],
Bréon, F.M.[François-Marie],
Boucher, O.[Olivier],
Desjardins, C.[Camille],
Rémy, S.[Samuel],
Using Copernicus Atmosphere Monitoring Service Products to Constrain
the Aerosol Type in the Atmospheric Correction Processor MAJA,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Lee, S.J.[Su Jeong],
Ahn, M.H.[Myoung-Hwan],
Chung, S.R.[Sung-Rae],
Atmospheric Profile Retrieval Algorithm for Next Generation
Geostationary Satellite of Korea and Its Application to the Advanced
Himawari Imager,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Stachlewska, I.S.[Iwona S.],
Samson, M.[Mateusz],
Zawadzka, O.[Olga],
Harenda, K.M.[Kamila M.],
Janicka, L.[Lucja],
Poczta, P.[Patryk],
Szczepanik, D.[Dominika],
Heese, B.[Birgit],
Wang, D.X.[Dong-Xiang],
Borek, K.[Karolina],
Tetoni, E.[Eleni],
Proestakis, E.[Emmanouil],
Siomos, N.[Nikolaos],
Nemuc, A.[Anca],
Chojnicki, B.H.[Bogdan H.],
Markowicz, K.M.[Krzysztof M.],
Pietruczuk, A.[Aleksander],
Szkop, A.[Artur],
Althausen, D.[Dietrich],
Stebel, K.[Kerstin],
Schuettemeyer, D.[Dirk],
Zehner, C.[Claus],
Modification of Local Urban Aerosol Properties by Long-Range
Transport of Biomass Burning Aerosol,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Schläpfer, D.[Daniel],
Hueni, A.[Andreas],
Richter, R.[Rudolf],
Cast Shadow Detection to Quantify the Aerosol Optical Thickness for
Atmospheric Correction of High Spatial Resolution Optical Imagery,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Kim, M.[Mijin],
Kim, J.[Jhoon],
Torres, O.[Omar],
Ahn, C.W.[Chang-Woo],
Kim, W.[Woogyung],
Jeong, U.[Ukkyo],
Go, S.[Sujung],
Liu, X.[Xiong],
Moon, K.J.[Kyung Jung],
Kim, D.R.[Deok-Rae],
Optimal Estimation-Based Algorithm to Retrieve Aerosol Optical
Properties for GEMS Measurements over Asia,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Witek, M.L.,
Diner, D.J.,
Garay, M.J.,
Xu, F.,
Bull, M.A.,
Seidel, F.C.,
Improving MISR AOD Retrievals With Low-Light-Level Corrections for
Veiling Light,
GeoRS(56), No. 3, March 2018, pp. 1251-1268.
IEEE DOI
1804
aerosols, atmospheric optics, clouds, remote sensing,
AOD overestimation, Antarctica, MAN observations,
stray light
BibRef
Xu, J.[Jian],
Schreier, F.[Franz],
Wetzel, G.[Gerald],
de Lange, A.[Arno],
Birk, M.[Manfred],
Trautmann, T.[Thomas],
Doicu, A.[Adrian],
Wagner, G.[Georg],
Performance Assessment of Balloon-Borne Trace Gas Sounding with the
Terahertz Channel of TELIS,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Zhang, C.[Chao],
Yan, J.C.[Jun-Chi],
Li, C.S.[Chang-Sheng],
Wu, H.[Hao],
Bie, R.F.[Rong-Fang],
End-to-end learning for image-based air quality level estimation,
MVA(29), No. 4, May 2018, pp. 601-615.
Springer DOI
1805
BibRef
Kikuchi, M.,
Murakami, H.,
Suzuki, K.,
Nagao, T.M.,
Higurashi, A.,
Improved Hourly Estimates of Aerosol Optical Thickness Using
Spatiotemporal Variability Derived From Himawari-8 Geostationary
Satellite,
GeoRS(56), No. 6, June 2018, pp. 3442-3455.
IEEE DOI
1806
Aerosols, Clouds, Land surface, Pollution measurement,
Spatiotemporal phenomena, Aerosols, algorithms, remote sensing, satellites
BibRef
Lim, H.[Hyunkwang],
Choi, M.J.[Myung-Je],
Kim, J.[Jhoon],
Kasai, Y.[Yasuko],
Chan, P.W.[Pak Wai],
AHI/Himawari-8 Yonsei Aerosol Retrieval (YAER):
Algorithm, Validation and Merged Products,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
de Donato, P.[Philippe],
Barres, O.[Odile],
Sausse, J.[Judith],
Martin, D.[Delphine],
Near Real-Time Ground-to-Ground Infrared Remote-Sensing Combination
and Inexpensive Visible Camera Observations Applied to Tomographic
Stack Emission Measurements,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
Evaluation of the environmental impact of gas plumes from stack emissions.
BibRef
Bhatia, N.[Nitin],
Tolpekin, V.A.[Valentyn A.],
Stein, A.[Alfred],
Reusen, I.[Ils],
Estimation of AOD Under Uncertainty:
An Approach for Hyperspectral Airborne Data,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
Aerosol Optical Depth.
BibRef
Cecilia, J.M.,
Timón, I.,
Soto, J.,
Santa, J.,
Pereñíguez, F.,
Muñoz, A.,
High-Throughput Infrastructure for Advanced ITS Services:
A Case Study on Air Pollution Monitoring,
ITS(19), No. 7, July 2018, pp. 2246-2257.
IEEE DOI
1807
Big Data, Heterogeneous networks,
Monitoring, Pollution, Real-time systems, Sensors, HPC,
intelligent transport systems
BibRef
Martin, R.K.,
Keyser, C.,
Ausley, L.,
Steinke, M.,
LADAR System and Algorithm Design for Spectropolarimetric Scene
Characterization,
GeoRS(56), No. 7, July 2018, pp. 3735-3746.
IEEE DOI
1807
Atmospheric measurements, Detectors, Imaging, Laser excitation,
Laser radar, Nonlinear optics, Stimulated emission, Laser radar,
polarimetry
BibRef
Balzarolo, M.[Manuela],
Peñuelas, J.[Josep],
Filella, I.[Iolanda],
Portillo-Estrada, M.[Miguel],
Ceulemans, R.[Reinhart],
Assessing Ecosystem Isoprene Emissions by Hyperspectral Remote
Sensing,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Lee, H.[Huikyo],
Garay, M.J.[Michael J.],
Kalashnikova, O.V.[Olga V.],
Yu, Y.[Yan],
Gibson, P.B.[Peter B.],
How Long should the MISR Record Be when Evaluating Aerosol Optical
Depth Climatology in Climate Models?,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Che, Y.H.[Ya-Hui],
Mei, L.[Linlu],
Xue, Y.[Yong],
Guang, J.[Jie],
She, L.[Lu],
Li, Y.[Ying],
Validation of Aerosol Products from AATSR and MERIS/AATSR Synergy
Algorithms: Part 1: Global Evaluation,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
And:
Heckel, A.[Andreas],
North, P.[Peter], Correction:
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
You, Y.,
Lu, C.,
Wang, W.,
Tang, C.,
Relative CNN-RNN: Learning Relative Atmospheric Visibility From
Images,
IP(28), No. 1, January 2019, pp. 45-55.
IEEE DOI
1810
Atmospheric modeling, Atmospheric measurements, Estimation,
Meteorology, Observatories, Support vector machines,
large-scale image collection
BibRef
Rushton, C.[Christopher],
Galatioto, F.[Fabio],
Wright, J.[James],
Nielsen, E.[Erik],
Tsotskas, C.[Christos],
City-wide emissions modelling using fleet probe vehicles,
IET-ITS(12), No. 9, November 2018, pp. 1181-1188.
DOI Link
1810
BibRef
Liu, L.[Li],
Mishchenko, M.I.[Michael I.],
Scattering and Radiative Properties of Morphologically Complex
Carbonaceous Aerosols: A Systematic Modeling Study,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Behera, S.K.,
Dash, A.K.,
Dogra, D.P.,
Roy, P.P.,
Air Signature Recognition Using Deep Convolutional Neural
Network-Based Sequential Model,
ICPR18(3525-3530)
IEEE DOI
1812
Feature extraction,
Convolutional neural networks, Convolution,
Atmospheric modeling
BibRef
Xu, H.,
Chen, Y.,
Wang, L.,
Cross-Track Infrared Sounder Spectral Gap Filling Toward Improving
Intercalibration Uncertainties,
GeoRS(57), No. 1, January 2019, pp. 509-519.
IEEE DOI
1901
Calibration, Atmospheric measurements, Instruments,
Atmospheric modeling, Extraterrestrial measurements,
spectrum gap filling
BibRef
Bitta, J.[Jan],
Pavlíková, I.[Irena],
Svozilík, V.[Vladislav],
Jancík, P.[Petr],
Air Pollution Dispersion Modelling Using Spatial Analyses,
IJGI(7), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Zhao, K.[Kunrong],
He, T.T.[Ting-Ting],
Wu, S.[Shuang],
Wang, S.L.[Song-Ling],
Dai, B.L.[Bi-Lan],
Yang, Q.F.[Qi-Fan],
Lei, Y.[Yutao],
Research on video classification method of key pollution sources
based on deep learning,
JVCIR(59), 2019, pp. 283-291.
Elsevier DOI
1903
Pollution sources, Deep learning,
Surveillance video classification, Convolution neural network
BibRef
She, L.,
Xue, Y.,
Yang, X.,
Leys, J.,
Guang, J.,
Che, Y.,
Fan, C.,
Xie, Y.,
Li, Y.,
Joint Retrieval of Aerosol Optical Depth and Surface Reflectance Over
Land Using Geostationary Satellite Data,
GeoRS(57), No. 3, March 2019, pp. 1489-1501.
IEEE DOI
1903
aerosols, atmospheric optics, geophysical signal processing,
radiative transfer, remote sensing, aerosol optical depth,
optimal estimation
BibRef
Xie, Y.,
Xue, Y.,
Guang, J.,
Mei, L.,
She, L.,
Li, Y.,
Che, Y.,
Fan, C.,
Deriving a Global and Hourly Data Set of Aerosol Optical Depth Over
Land Using Data From Four Geostationary Satellites: GOES-16, MSG-1,
MSG-4, and Himawari-8,
GeoRS(58), No. 3, March 2020, pp. 1538-1549.
IEEE DOI
2003
Aerosols, Monitoring, Geostationary satellites, Remote sensing,
Earth, Optical sensors, Aerosol optical depth (AOD),
MSG-4
BibRef
Schuster, G.L.[Gregory L.],
Espinosa, W.R.[W. Reed],
Ziemba, L.D.[Luke D.],
Beyersdorf, A.J.[Andreas J.],
Rocha-Lima, A.[Adriana],
Anderson, B.E.[Bruce E.],
Martins, J.V.[Jose V.],
Dubovik, O.[Oleg],
Ducos, F.[Fabrice],
Fuertes, D.[David],
Lapyonok, T.[Tatyana],
Shook, M.[Michael],
Derimian, Y.[Yevgeny],
Moore, R.H.[Richard H.],
A Laboratory Experiment for the Statistical Evaluation of Aerosol
Retrieval (STEAR) Algorithms,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Ravindrababu, S.,
Ratnam, M.V.[M. Venkat],
Basha, G.[Ghouse],
Liou, Y.A.[Yuei-An],
Reddy, N.N.[N. Narendra],
Large Anomalies in the Tropical Upper Troposphere Lower Stratosphere
(UTLS) Trace Gases Observed during the Extreme 2015-16 El Niño Event
by Using Satellite Measurements,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Fan, X.L.[Xian-Lei],
Qu, Y.[Ying],
Retrieval of High Spatial Resolution Aerosol Optical Depth from HJ-1
A/B CCD Data,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Xu, F.[Feng],
Diner, D.J.[David J.],
Dubovik, O.[Oleg],
Schechner, Y.Y.[Yoav Y.],
A Correlated Multi-Pixel Inversion Approach for Aerosol Remote
Sensing,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Shi, Z.[Zheng],
Xing, T.Y.[Ting-Yan],
Guang, J.[Jie],
Xue, Y.[Yong],
Che, Y.H.[Ya-Hui],
Aerosol Optical Depth over the Arctic Snow-Covered Regions Derived
from Dual-Viewing Satellite Observations,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Zhang, H.P.[Hao-Peng],
Deng, Q.[Qin],
Deep Learning Based Fossil-Fuel Power Plant Monitoring in High
Resolution Remote Sensing Images: A Comparative Study,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
Monitoring pollution.
BibRef
Dongre, P.K.[Prateek Kumar],
Havemann, S.[Stephan],
Hargrave, P.[Peter],
Orlando, A.[Angiola],
Sudiwala, R.[Rashmikant],
Thomas, C.[Christopher],
Goldie, D.[David],
Withington, S.[Stafford],
End-to-End Instrument Performance Simulation System (EIPS) Framework:
Application to Satellite Microwave Atmospheric Sounding Systems,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Kurmi, I.[Indrajit],
Schedl, D.C.[David C.],
Bimber, O.[Oliver],
Thermal Airborne Optical Sectioning,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Deng, G.R.[Guo-Rong],
Zhang, H.Y.[Hong-Yan],
Guo, X.Y.[Xiao-Yi],
Shan, Y.[Yu],
Ying, H.[Hong],
Rihan, W.[Wu],
Li, H.[Hui],
Han, Y.L.[Yang-Li],
Asymmetric Effects of Daytime and Nighttime Warming on Boreal Forest
Spring Phenology,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Li, W.Z.[Wen-Zhao],
Ali, E.[Elham],
El-Magd, I.A.[Islam Abou],
Mourad, M.M.[Moustafa Mohamed],
El-Askary, H.[Hesham],
Studying the Impact on Urban Health over the Greater Delta Region in
Egypt Due to Aerosol Variability Using Optical Characteristics from
Satellite Observations and Ground-Based AERONET Measurements,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Zhang, W.Z.[Wen-Zhong],
Deng, S.M.[Shu-Mei],
Luo, T.[Tao],
Wu, Y.[Yang],
Liu, N.[Nana],
Li, X.B.[Xue-Bin],
Huang, Y.B.[Yin-Bo],
Zhu, W.[Wenyue],
New Global View of Above-Cloud Absorbing Aerosol Distribution Based
on CALIPSO Measurements,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Mei, L.,
Rozanov, V.,
Jethva, H.,
Meyer, K.G.,
Lelli, L.,
Vountas, M.,
Burrows, J.P.,
Extending XBAER Algorithm to Aerosol and Cloud Condition,
GeoRS(57), No. 10, October 2019, pp. 8262-8275.
IEEE DOI
1910
aerosols, atmospheric optics, atmospheric techniques, clouds, dust,
radiative transfer, radiometers, remote sensing, cloud condition,
satellite
BibRef
Klimov, P.[Pavel],
Khrenov, B.[Boris],
Kaznacheeva, M.[Margarita],
Garipov, G.[Gali],
Panasyuk, M.[Mikhail],
Petrov, V.[Vasily],
Sharakin, S.[Sergei],
Shirokov, A.[Andrei],
Yashin, I.[Ivan],
Zotov, M.[Mikhail],
Grebenyuk, V.[Viktor],
Grinyuk, A.[Andrei],
Lavrova, M.[Maria],
Tkachenko, A.[Artur],
Tkachev, L.[Leonid],
Botvinko, A.[Alla],
Saprykin, O.[Oleg],
Puchkov, A.[Andrei],
Senkovsky, A.[Alexander],
Remote Sensing of the Atmosphere by the Ultraviolet Detector TUS
Onboard the Lomonosov Satellite,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Fan, C.[Cheng],
Fu, G.L.[Guang-Liang],
di Noia, A.[Antonio],
Smit, M.[Martijn],
Rietjens, J.H.H.[Jeroen H.H.],
Ferrare, R.A.[Richard A.],
Burton, S.[Sharon],
Li, Z.Q.[Zheng-Qiang],
Hasekamp, O.P.[Otto P.],
Use of A Neural Network-Based Ocean Body Radiative Transfer Model for
Aerosol Retrievals from Multi-Angle Polarimetric Measurements,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Malmgren-Hansen, D.[David],
Laparra, V.[Valero],
Nielsen, A.A.[Allan Aasbjerg],
Camps-Valls, G.[Gustau],
Statistical retrieval of atmospheric profiles with deep convolutional
neural networks,
PandRS(158), 2019, pp. 231-240.
Elsevier DOI
1912
Atmospheric measurements, Neural networks,
Infrared measurements, Information retrieval
BibRef
Rosenkranz, P.W.,
Cimini, D.,
Speed Dependence of 22- and 118-GHz Line Shapes for Tropospheric
Remote Sensing,
GeoRS(57), No. 12, December 2019, pp. 9702-9708.
IEEE DOI
1912
Shape, Absorption, Doppler effect, Atmospheric measurements,
Atmosphere, Resonant frequency, Remote sensing, spectral shape
BibRef
She, L.[Lu],
Zhang, H.[Hankui],
Wang, W.[Weile],
Wang, Y.J.[Yu-Jie],
Shi, Y.[Yun],
Evaluation of the Multi-Angle Implementation of Atmospheric
Correction (MAIAC) Aerosol Algorithm for Himawari-8 Data,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Ceamanos, X.[Xavier],
Moparthy, S.[Suman],
Carrer, D.[Dominique],
Seidel, F.C.[Felix C.],
Assessing the Potential of Geostationary Satellites for Aerosol
Remote Sensing Based on Critical Surface Albedo,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Wang, Y.W.[Ya-Wen],
Trentmann, J.[Jörg],
Pfeifroth, U.[Uwe],
Yuan, W.P.[Wen-Ping],
Wild, M.[Martin],
Improvement of Air Pollution in China Inferred from Changes between
Satellite-Based and Measured Surface Solar Radiation,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Li, L.[Lianfa],
Optimal Inversion of Conversion Parameters from Satellite AOD to
Ground Aerosol Extinction Coefficient Using Automatic Differentiation,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Zhao, L.[Lewen],
Václavovic, P.[Pavel],
Douša, J.[Jan],
Performance Evaluation of Troposphere Estimated from Galileo-Only
Multi-Frequency Observations,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Wang, W.Y.[Wen-Yu],
Wang, Z.Z.[Zhen-Zhan],
Duan, Y.Q.[Yong-Qiang],
Preliminary Evaluation of the Error Budgets in the TALIS Measurements
and Their Impact on the Retrievals,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
THz Atmospheric Limb Sounder. Measure atmosphere.
BibRef
Augustin, P.[Patrick],
Billet, S.[Sylvain],
Crumeyrolle, S.[Suzanne],
Deboudt, K.[Karine],
Dieudonné, E.[Elsa],
Flament, P.[Pascal],
Fourmentin, M.[Marc],
Guilbaud, S.[Sarah],
Hanoune, B.[Benjamin],
Landkocz, Y.[Yann],
Méausoone, C.[Clémence],
Roy, S.[Sayahnya],
Schmitt, F.G.[François G.],
Sentchev, A.[Alexei],
Sokolov, A.[Anton],
Impact of Sea Breeze Dynamics on Atmospheric Pollutants and Their
Toxicity in Industrial and Urban Coastal Environments,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Banach, M.[Marzena],
Dlugosz, R.[Rafal],
Pauk, J.[Jolanta],
Talaska, T.[Tomasz],
Hardware Efficient Solutions for Wireless Air Pollution Sensors
Dedicated to Dense Urban Areas,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Siomos, N.[Nikolaos],
Fountoulakis, I.[Ilias],
Natsis, A.[Athanasios],
Drosoglou, T.[Theano],
Bais, A.[Alkiviadis],
Automated Aerosol Classification from Spectral UV Measurements Using
Machine Learning Clustering,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Zou, B.[Bin],
Liu, N.[Ning],
Wang, W.[Wei],
Feng, H.H.[Hui-Hui],
Liu, X.P.[Xiang-Ping],
Lin, Y.[Yan],
An Effective and Efficient Enhanced Fixed Rank Smoothing Method for
the Spatiotemporal Fusion of Multiple-Satellite Aerosol Optical Depth
Products,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Chen, B.[Bin],
Air Quality Index Forecasting via Deep Dictionary Learning,
IEICE(E103-D), No. 5, May 2020, pp. 1118-1125.
WWW Link.
2005
BibRef
Zawadzka-Manko, O.[Olga],
Stachlewska, I.S.[Iwona S.],
Markowicz, K.M.[Krzysztof M.],
Near-Real-Time Application of SEVIRI Aerosol Optical Depth Algorithm,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Li, C.[Chong],
Li, J.[Jing],
Dubovik, O.[Oleg],
Zeng, Z.C.[Zhao-Cheng],
Yung, Y.L.[Yuk L.],
Impact of Aerosol Vertical Distribution on Aerosol Optical Depth
Retrieval from Passive Satellite Sensors,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Zhang, T.[Taixin],
Zang, L.[Lin],
Mao, F.Y.[Fei-Yue],
Wan, Y.C.[You-Chuan],
Zhu, Y.N.[Yan-Nian],
Evaluation of Himawari-8/AHI, MERRA-2, and CAMS Aerosol Products over
China,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Liang, Z.[Ze],
Wei, F.L.[Fei-Li],
Wang, Y.Y.[Yue-Yao],
Huang, J.[Jiao],
Jiang, H.[Hong],
Sun, F.Y.[Fu-Yue],
Li, S.C.[Shuang-Cheng],
The Context-Dependent Effect of Urban Form on Air Pollution:
A Panel Data Analysis,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Mei, L.,
Rozanov, V.,
Ritter, C.,
Heinold, B.,
Jiao, Z.,
Vountas, M.,
Burrows, J.P.,
Retrieval of Aerosol Optical Thickness in the Arctic Snow-Covered
Regions Using Passive Remote Sensing: Impact of Aerosol Typing and
Surface Reflection Model,
GeoRS(58), No. 7, July 2020, pp. 5117-5131.
IEEE DOI
2006
Aerosols, Arctic, Clouds, Optical surface waves, Satellites,
Sea surface, Remote sensing, Aerosol, arctic, retrieval, satellite,
snow-covered
BibRef
Zhang, M.[Miao],
Su, B.[Bo],
Bilal, M.[Muhammad],
Atique, L.[Luqman],
Usman, M.[Muhammad],
Qiu, Z.F.[Zhong-Feng],
Ali, M.A.[Md. Arfan],
Han, G.[Ge],
An Investigation of Vertically Distributed Aerosol Optical Properties
over Pakistan Using CALIPSO Satellite Data,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Camps, A.[Adriano],
Alonso-Arroyo, A.[Alberto],
Park, H.[Hyuk],
Onrubia, R.[Raul],
Pascual, D.[Daniel],
Querol, J.[Jorge],
L-Band Vegetation Optical Depth Estimation Using Transmitted GNSS
Signals: Application to GNSS-Reflectometry and Positioning,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
de Vito, S.[Saverio],
di Francia, G.[Girolamo],
Esposito, E.[Elena],
Ferlito, S.[Sergio],
Formisano, F.[Fabrizio],
Massera, E.[Ettore],
Adaptive machine learning strategies for network calibration of IoT
smart air quality monitoring devices,
PRL(136), 2020, pp. 264-271.
Elsevier DOI
2008
BibRef
Hoque, H.M.S.[Hossain Mohammed Syedul],
Irie, H.[Hitoshi],
Damiani, A.[Alessandro],
Momoi, M.[Masahiro],
Primary Evaluation of the GCOM-C Aerosol Products at 380 nm Using
Ground-Based Sky Radiometer Observations,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
González, J.A.[Josep-Abel],
Calbó, J.[Josep],
Assessing Rapid Variability in Atmospheric Apparent Optical Depth
with an Array Spectrometer System,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Song, Z.G.[Zi-Geng],
He, X.Q.[Xian-Qiang],
Bai, Y.[Yan],
Wang, D.F.[Di-Feng],
Hao, Z.Z.[Zeng-Zhou],
Gong, F.[Fang],
Zhu, Q.K.[Qian-Kun],
Changes and Predictions of Vertical Distributions of Global
Light-Absorbing Aerosols Based on CALIPSO Observation,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Remer, L.A.[Lorraine A.],
Levy, R.C.[Robert C.],
Mattoo, S.[Shana],
Tanré, D.[Didier],
Gupta, P.[Pawan],
Shi, Y.X.[Ying-Xi],
Sawyer, V.[Virginia],
Munchak, L.A.[Leigh A.],
Zhou, Y.P.[Ya-Ping],
Kim, M.[Mijin],
Ichoku, C.[Charles],
Patadia, F.[Falguni],
Li, R.R.[Rong-Rong],
Gassó, S.[Santiago],
Kleidman, R.G.[Richard G.],
Holben, B.N.[Brent N.],
The Dark Target Algorithm for Observing the Global Aerosol System:
Past, Present, and Future,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Wu, D.[Dong],
Gong, J.H.[Jian-Hua],
Liang, J.M.[Jian-Ming],
Sun, J.[Jin],
Zhang, G.Y.[Guo-Yong],
Analyzing the Influence of Urban Street Greening and Street Buildings
on Summertime Air Pollution Based on Street View Image Data,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Barreto, Á.[África],
García, O.E.[Omaira Elena],
Schneider, M.[Matthias],
García, R.D.[Rosa Delia],
Hase, F.[Frank],
Sepúlveda, E.[Eliezer],
Almansa, A.F.[Antonio Fernando],
Cuevas, E.[Emilio],
Blumenstock, T.[Thomas],
Spectral Aerosol Optical Depth Retrievals by Ground-Based Fourier
Transform Infrared Spectrometry,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Brisco, B.[Brian],
Mahdianpari, M.[Masoud],
Mohammadimanesh, F.[Fariba],
Hybrid Compact Polarimetric SAR for Environmental Monitoring with the
RADARSAT Constellation Mission,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Galtier, S.[Sandrine],
Pivard, C.[Clément],
Rairoux, P.[Patrick],
Towards DCS in the UV Spectral Range for Remote Sensing of
Atmospheric Trace Gases,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Sasi, S.[Sruthy],
Natraj, V.[Vijay],
García, V.M.[Víctor Molina],
Efremenko, D.S.[Dmitry S.],
Loyola, D.[Diego],
Doicu, A.[Adrian],
Model Selection in Atmospheric Remote Sensing with an Application to
Aerosol Retrieval from DSCOVR/EPIC, Part 1: Theory,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Sasi, S.[Sruthy],
Natraj, V.[Vijay],
García, V.M.[Víctor Molina],
Efremenko, D.S.[Dmitry S.],
Loyola, D.[Diego],
Doicu, A.[Adrian],
Model Selection in Atmospheric Remote Sensing with Application to
Aerosol Retrieval from DSCOVR/EPIC. Part 2: Numerical Analysis,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Zhao, M.,
Si, F.,
Wang, Y.,
Zhou, H.,
Wang, S.,
Jiang, Y.,
Liu, W.,
First Year On-Orbit Calibration of the Chinese Environmental Trace
Gas Monitoring Instrument Onboard GaoFen-5,
GeoRS(58), No. 12, December 2020, pp. 8531-8540.
IEEE DOI
2012
Electromagnetic interference, Calibration, Monitoring, Instruments,
Radiometry, Optical sensors, Earth, Calibration,
solar diffusers (SDs)
BibRef
Go, S.J.[Su-Jung],
Kim, J.[Jhoon],
Park, S.S.[Sang Seo],
Kim, M.[Mijin],
Lim, H.K.[Hyun-Kwang],
Kim, J.Y.[Ji-Young],
Lee, D.W.[Dong-Won],
Im, J.H.[Jung-Ho],
Synergistic Use of Hyperspectral UV-Visible OMI and Broadband
Meteorological Imager MODIS Data for a Merged Aerosol Product,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Kalajdjieski, J.[Jovan],
Zdravevski, E.[Eftim],
Corizzo, R.[Roberto],
Lameski, P.[Petre],
Kalajdziski, S.[Slobodan],
Pires, I.M.[Ivan Miguel],
Garcia, N.M.[Nuno M.],
Trajkovik, V.[Vladimir],
Air Pollution Prediction with Multi-Modal Data and Deep Neural
Networks,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
She, L.[Lu],
Zhang, H.K.[Hankui K.],
Li, Z.Q.[Zheng-Qiang],
de Leeuw, G.[Gerrit],
Huang, B.[Bo],
Himawari-8 Aerosol Optical Depth (AOD) Retrieval Using a Deep Neural
Network Trained Using AERONET Observations,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Yang, F.[Fukun],
Fan, M.[Meng],
Tao, J.H.[Jin-Hua],
An Improved Method for Retrieving Aerosol Optical Depth Using
Gaofen-1 WFV Camera Data,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Doicu, A.[Adrian],
Efremenko, D.S.[Dmitry S.],
Trautmann, T.[Thomas],
A Proof-of-Concept Algorithm for the Retrieval of Total Column Amount
of Trace Gases in a Multi-Dimensional Atmosphere,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Huang, J.T.[Jing-Ting],
Arnott, W.P.[William Patrick],
Barnard, J.C.[James C.],
Holmes, H.A.[Heather A.],
Theoretical Uncertainty Analysis of Satellite Retrieved Aerosol
Optical Depth Associated with Surface Albedo and Aerosol Optical
Properties,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Karpachev, A.[Alexander],
Sub-Auroral, Mid-Latitude, and Low-Latitude Troughs during Severe
Geomagnetic Storms,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Choi, W.[Wonei],
Lee, H.[Hanlim],
Park, J.[Jeonghyeon],
A First Approach to Aerosol Classification Using Space-Borne
Measurement Data: Machine Learning-Based Algorithm and Evaluation,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Zhao, H.M.[Hong-Mei],
Yang, G.Y.[Guang-Yi],
Tong, D.Q.[Daniel Q.],
Zhang, X.L.[Xue-Lei],
Xiu, A.[Aijun],
Zhang, S.C.[Shi-Chun],
Interannual and Seasonal Variability of Greenhouse Gases and Aerosol
Emissions from Biomass Burning in Northeastern China Constrained by
Satellite Observations,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Nicolae, A.[Ajtai],
Alexandru, M.[Mereuta],
Horatiu, S.[Stefanie],
Andrei, R.[Radovici],
Camelia, B.[Botezan],
Olga, Z.M.[Zawadzka-Manko],
Stachlewska, I.S.[Iwona S.],
Kerstin, S.[Stebel],
Claus, Z.[Zehner],
SEVIRI Aerosol Optical Depth Validation Using AERONET and
Intercomparison with MODIS in Central and Eastern Europe,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Várnai, T.[Tamás],
Marshak, A.[Alexander],
Analysis of Near-Cloud Changes in Atmospheric Aerosols Using
Satellite Observations and Global Model Simulations,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Lin, J.Y.[Jian-Yu],
Zheng, Y.[Yu],
Shen, X.Y.[Xin-Yong],
Xing, L.[Lizhu],
Che, H.Z.[Hui-Zheng],
Global Aerosol Classification Based on Aerosol Robotic Network
(AERONET) and Satellite Observation,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Ma, H.,
Liang, S.,
Shi, H.,
Zhang, Y.,
An Optimization Approach for Estimating Multiple Land Surface and
Atmospheric Variables From the Geostationary Advanced Himawari Imager
Top-of-Atmosphere Observations,
GeoRS(59), No. 4, April 2021, pp. 2888-2908.
IEEE DOI
2104
Land surface, Atmospheric modeling, Clouds, Soil, MODIS,
Advanced Himawari imager (AHI),
remote sensing
BibRef
Choi, W.[Wonei],
Lee, H.[Hanlim],
Kim, D.W.[Dae-Won],
Kim, S.[Serin],
Improving Spatial Coverage of Satellite Aerosol Classification Using
a Random Forest Model,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Wang, W.L.[Wei-Lin],
Mao, W.J.[Wen-Jing],
Tong, X.L.[Xue-Li],
Xu, G.[Gang],
A Novel Recursive Model Based on a Convolutional Long Short-Term
Memory Neural Network for Air Pollution Prediction,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Lin, T.H.[Tang-Huang],
Tsay, S.C.[Si-Chee],
Lien, W.H.[Wei-Hung],
Lin, N.H.[Neng-Huei],
Hsiao, T.C.[Ta-Chih],
Spectral Derivatives of Optical Depth for Partitioning Aerosol Type
and Loading,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Robles, J.[José],
Zamorano, J.[Jaime],
Pascual, S.[Sergio],
de Miguel, A.S.[Alejandro Sánchez],
Gallego, J.[Jesús],
Gaston, K.J.[Kevin J.],
Evolution of Brightness and Color of the Night Sky in Madrid,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Burgués, J.[Javier],
Esclapez, M.D.[María Deseada],
Doñate, S.[Silvia],
Pastor, L.[Laura],
Marco, S.[Santiago],
Aerial Mapping of Odorous Gases in a Wastewater Treatment Plant Using
a Small Drone,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Calassou, G.[Gabriel],
Foucher, P.Y.[Pierre-Yves],
Léon, J.F.[Jean-François],
Industrial Plume Properties Retrieved by Optimal Estimation Using
Combined Hyperspectral and Sentinel-2 Data,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Boselli, A.[Antonella],
Sannino, A.[Alessia],
d'Emilio, M.[Mariagrazia],
Wang, X.[Xuan],
Amoruso, S.[Salvatore],
Aerosol Characterization during the Summer 2017 Huge Fire Event on
Mount Vesuvius (Italy) by Remote Sensing and In Situ Observations,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Yu, Z.Q.[Zhong-Qi],
Qu, Y.H.[Yuan-Hao],
Wang, Y.[Yunxin],
Ma, J.H.[Jing-Hui],
Cao, Y.[Yu],
Application of Machine-Learning-Based Fusion Model in Visibility
Forecast: A Case Study of Shanghai, China,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Choi, W.[Wonei],
Kang, H.W.[Hyeong-Woo],
Shin, D.H.[Dong-Ho],
Lee, H.[Hanlim],
Satellite-Based Aerosol Classification for Capital Cities in Asia
Using a Random Forest Model,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Rao, L.[Lanlan],
Xu, J.[Jian],
Efremenko, D.S.[Dmitry S.],
Loyola, D.G.[Diego G.],
Doicu, A.[Adrian],
Optimization of Aerosol Model Selection for TROPOMI/S5P,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Ou, Y.[Yang],
Li, L.[Lei],
Li, Z.Q.[Zheng-Qiang],
Zhang, Y.[Ying],
Dubovik, O.[Oleg],
Derimian, Y.[Yevgeny],
Chen, C.[Cheng],
Fuertes, D.[David],
Xie, Y.S.[Yi-Song],
Lopatin, A.[Anton],
Ducos, F.[Fabrice],
Peng, Z.[Zongren],
Spatio-Temporal Variability of Aerosol Components, Their Optical and
Microphysical Properties over North China during Winter Haze in 2012,
as Derived from POLDER/PARASOL Satellite Observations,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
And:
Correction:
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Zeng, Z.L.[Zhao-Liang],
Wang, Z.[Zemin],
Zhang, B.[Baojun],
An Adjustment Approach for Aerosol Optical Depth Inferred from
CALIPSO,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Tong, C.[Chao],
Zhang, C.X.[Cheng-Xin],
Liu, C.[Cheng],
Investigation on the Relationship between Satellite Air Quality
Measurements and Industrial Production by Generalized Additive
Modeling,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Xu, S.Q.[Shi-Qi],
Wang, S.S.[Shan-Shan],
Xia, M.[Men],
Lin, H.[Hua],
Xing, C.Z.[Cheng-Zhi],
Ji, X.G.[Xiang-Guang],
Su, W.J.[Wen-Jing],
Tan, W.[Wei],
Liu, C.[Cheng],
Hu, Q.H.[Qi-Hou],
Observations by Ground-Based MAX-DOAS of the Vertical Characters of
Winter Pollution and the Influencing Factors of HONO Generation in
Shanghai, China,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Ji, X.G.[Xiang-Guang],
Hu, Q.H.[Qi-Hou],
Hu, B.[Bo],
Wang, S.T.[Shun-Tian],
Liu, H.Y.[Han-Yang],
Xing, C.Z.[Cheng-Zhi],
Lin, H.[Hua],
Lin, J.[Jinan],
Vertical Structure of Air Pollutant Transport Flux as Determined by
Ground-Based Remote Sensing Observations in Fen-Wei Plain, China,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhang, L.[Luo],
Liu, P.[Peng],
Wang, L.[Lizhe],
Liu, J.B.[Jian-Bo],
Song, B.Z.[Bing-Ze],
Zhang, Y.W.[Yu-Wei],
He, G.J.[Guo-Jin],
Zhang, H.[Hui],
Improved 1-km-Resolution Hourly Estimates of Aerosol Optical Depth
Using Conditional Generative Adversarial Networks,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Lin, H.[Hao],
Li, S.W.[Si-Wei],
Xing, J.[Jia],
Yang, J.[Jie],
Wang, Q.X.[Qing-Xin],
Dong, L.[Lechao],
Zeng, X.Y.[Xiao-Yue],
Fusing Retrievals of High Resolution Aerosol Optical Depth from
Landsat-8 and Sentinel-2 Observations over Urban Areas,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Guan, J.[Jian],
Jin, B.[Bohan],
Ding, Y.Z.[Yi-Zhe],
Wang, W.[Wen],
Li, G.X.[Guo-Xiang],
Ciren, P.[Pubu],
Global Surface HCHO Distribution Derived from Satellite Observations
with Neural Networks Technique,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
Formaldehyde. HCHO.
BibRef
Jin, C.L.[Chun-Lin],
Xue, Y.[Yong],
Jiang, X.X.[Xing-Xing],
Sun, Y.X.[Yu-Xin],
Wu, S.H.[Shu-Hui],
Improved Bi-Angle Aerosol Optical Depth Retrieval Algorithm from AHI
Data Based on Particle Swarm Optimization,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Leckey, J.P.[John P.],
Damadeo, R.[Robert],
Hill, C.A.[Charles A.],
Stratospheric Aerosol and Gas Experiment (SAGE) from SAGE III on the
ISS to a Free Flying SAGE IV Cubesat,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Marseille, C.[Charles],
Aubé, M.[Martin],
Barreto, A.[Africa],
Simoneau, A.[Alexandre],
Remote Sensing of Aerosols at Night with the CoSQM Sky Brightness
Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Choi, W.[Wonei],
Lee, H.[Hanlim],
Kim, J.[Jhoon],
Park, J.[Junsung],
First TROPOMI Retrieval of Aerosol Effective Height Using O4
Absorption Band at 477 nm and Aerosol Classification,
GeoRS(59), No. 12, December 2021, pp. 9873-9886.
IEEE DOI
2112
Aerosols, Absorption, Artificial intelligence, Sensors, Monitoring,
Atmospheric measurements, Pollution measurement, Aerosol height,
TROPOspheric Monitoring Instrument (TROPOMI)
BibRef
Shi, C.[Chong],
Hashimoto, M.[Makiko],
Shiomi, K.[Kei],
Nakajima, T.[Teruyuki],
Development of an Algorithm to Retrieve Aerosol Optical Properties
Over Water Using an Artificial Neural Network Radiative Transfer
Scheme: First Result From GOSAT-2/CAI-2,
GeoRS(59), No. 12, December 2021, pp. 9861-9872.
IEEE DOI
2112
Aerosols, Atmospheric modeling, Sea measurements, Water, Satellites,
Estimation, Atmospheric measurements, Aerosols, neural network,
remote sensing
BibRef
Li, H.[Hui],
Shi, R.[Rui],
Jin, S.K.[Shi-Kuan],
Wang, W.[Weiyan],
Fan, R.N.[Ruo-Nan],
Zhang, Y.Q.[Yi-Qun],
Liu, B.M.[Bo-Ming],
Zhao, P.[Peitao],
Gong, W.[Wei],
Zhao, Y.F.[Yue-Feng],
Study of Persistent Haze Pollution in Winter over Jinan (China) Based
on Ground-Based and Satellite Observations,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Shelestov, A.[Andrii],
Yailymova, H.[Hanna],
Yailymov, B.[Bohdan],
Kussul, N.[Nataliia],
Air Quality Estimation in Ukraine Using SDG 11.6.2 Indicator
Assessment,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zheng, L.M.[Lian-Ming],
Lin, R.[Rui],
Wang, X.M.[Xue-Mei],
Chen, W.H.[Wei-Hua],
The Development and Application of Machine Learning in Atmospheric
Environment Studies,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Xia, X.H.[Xing-Hui],
Zhao, B.[Bin],
Zhang, T.H.[Tian-Hao],
Wang, L.[Luyao],
Gu, Y.[Yu],
Liou, K.N.[Kuo-Nan],
Mao, F.Y.[Fei-Yue],
Liu, B.M.[Bo-Ming],
Bo, Y.C.[Yan-Chen],
Huang, Y.[Yusi],
Dong, J.[Jiadan],
Gong, W.[Wei],
Zhu, Z.M.[Zhong-Min],
Satellite-Derived Aerosol Optical Depth Fusion Combining Active and
Passive Remote Sensing Based on Bayesian Maximum Entropy,
GeoRS(60), 2022, pp. 1-13.
IEEE DOI
2112
Aerosols, Cloud computing, Sensors, Satellites, MODIS,
Spatiotemporal phenomena, Remote sensing, Active-passive fusion,
Moderate Resolution Imaging Spectroradiometer (MODIS)
BibRef
Chang, C.W.[Chiao-Wei],
Chen, W.T.[Wei-Ting],
Chen, Y.C.[Yi-Chun],
Susceptibility of East Asian Marine Warm Clouds to Aerosols in Winter
and Spring from Co-Located A-Train Satellite Observations,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Jha, S.S.[Sudhanshu Shekhar],
Nidamanuri, R.R.[Rama Rao],
Ientilucci, E.J.[Emmett J.],
Influence of atmospheric modeling on spectral target detection
through forward modeling approach in multi-platform remote sensing
data,
PandRS(183), 2022, pp. 286-306.
Elsevier DOI
2201
Target detection, Radiative transfer,
Aerosol optical thickness, Atmospheric profiles, Multi-platform dataset
BibRef
Kang, Y.[Yoojin],
Kim, M.[Miae],
Kang, E.[Eunjin],
Cho, D.J.[Dong-Jin],
Im, J.[Jungho],
Improved retrievals of aerosol optical depth and fine mode fraction
from GOCI geostationary satellite data using machine learning over
East Asia,
PandRS(183), 2022, pp. 253-268.
Elsevier DOI
2201
Aerosol optical depth, Fine mode fraction,
Geostationary Ocean Color Imager, Machine learning,
Shapley Additive exPlanations values
BibRef
Grzegorski, M.[Michael],
Poli, G.[Gabriele],
Cacciari, A.[Alessandra],
Jafariserajehlou, S.[Soheila],
Holdak, A.[Andriy],
Lang, R.[Ruediger],
Vazquez-Navarro, M.[Margarita],
Munro, R.[Rosemary],
Fougnie, B.[Bertrand],
Multi-Sensor Retrieval of Aerosol Optical Properties for
Near-Real-Time Applications Using the Metop Series of Satellites:
Concept, Detailed Description, and First Validation,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Banach, M.[Marzena],
Dlugosz, R.[Rafal],
Talaska, T.[Tomasz],
Pedrycz, W.[Witold],
Air Pollution Monitoring System with Prediction Abilities Based on
Smart Autonomous Sensors Equipped with ANNs with Novel Training
Scheme,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Wei, S.W.[Shih-Wei],
Lu, C.H.(.[Cheng-Hsuan (Sarah)],
Johnson, B.T.[Benjamin T.],
Dang, C.[Cheng],
Stegmann, P.[Patrick],
Grogan, D.[Dustin],
Ge, G.Q.[Guo-Qing],
Hu, M.[Ming],
The Influence of Aerosols on Satellite Infrared Radiance Simulations
and Jacobians: Numerical Experiments of CRTM and GSI,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Tong, Y.C.[Yi-Cheng],
Chen, S.[Sijie],
Xiao, D.[Da],
Zhang, K.[Kai],
Fang, J.[Jing],
Liu, C.[Chong],
Shen, Y.B.[Yi-Bing],
Liu, D.[Dong],
Lidar Ratio Regional Transfer Method for Extinction Coefficient
Accuracy Improvement in Lidar Networks,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
Lidar for aerosol analysis.
BibRef
Ou, Y.[Yang],
Li, Z.Q.[Zheng-Qiang],
Chen, C.[Cheng],
Zhang, Y.[Ying],
Li, K.[Kaitao],
Shi, Z.[Zheng],
Dong, J.T.[Jian-Tao],
Xu, H.[Hua],
Peng, Z.[Zongren],
Xie, Y.S.[Yi-Song],
Luo, J.[Jie],
Evaluation of MERRA-2 Aerosol Optical and Component Properties over
China Using SONET and PARASOL/GRASP Data,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Sun, J.[Jie],
Ding, K.[Kaihua],
Lai, Z.L.[Zu-Long],
Huang, H.J.[Hai-Jun],
Global and Regional Variations and Main Drivers of Aerosol Loadings
over Land during 1980-2018,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Chen, X.F.[Xing-Feng],
Zhao, L.M.[Li-Min],
Zheng, F.J.[Feng-Jie],
Li, J.G.[Jia-Guo],
Li, L.[Lei],
Ding, H.[Haonan],
Zhang, K.N.[Kai-Nan],
Liu, S.[Shumin],
Li, D.H.[Dong-Hui],
de Leeuw, G.[Gerrit],
Neural Network AEROsol Retrieval for Geostationary Satellite
(NNAeroG) Based on Temporal, Spatial and Spectral Measurements,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Chiesa, S.[Stefano],
di Pietro, A.[Antonio],
Pollino, M.[Maurizio],
Taraglio, S.[Sergio],
Urban Air Pollutant Monitoring through a Low-Cost Mobile Device
Connected to a Smart Road,
IJGI(11), No. 2, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Popp, T.[Thomas],
Mittaz, J.P.D.[Jonathan P.D.],
Systematic Propagation of AVHRR AOD Uncertainties:
A Case Study to Demonstrate the FIDUCEO Approach,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Fajardo-Zambrano, C.M.[Carlos Mario],
Bravo-Aranda, J.A.[Juan Antonio],
Granados-Muñoz, M.J.[María José],
Montilla-Rosero, E.[Elena],
Casquero-Vera, J.A.[Juan Andrés],
Rejano, F.[Fernando],
Castillo, S.[Sonia],
Alados-Arboledas, L.[Lucas],
Lidar and Radar Signal Simulation: Stability Assessment of the
Aerosol-Cloud Interaction Index,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
She, L.[Lu],
Zhang, H.K.[Hankui K.],
Bu, Z.Q.[Zi-Qiang],
Shi, Y.[Yun],
Yang, L.[Lu],
Zhao, J.T.[Jin-Tao],
A Deep-Neural-Network-Based Aerosol Optical Depth (AOD) Retrieval
from Landsat-8 Top of Atmosphere Data,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Lee, S.[Seunghee],
Kim, G.[Ganghan],
Lee, M.I.[Myong-In],
Choi, Y.H.[Yong-Han],
Song, C.K.[Chang-Keun],
Kim, H.K.[Hyeon-Kook],
Seasonal Dependence of Aerosol Data Assimilation and Forecasting
Using Satellite and Ground-Based Observations,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Wang, P.D.[Pei-Dong],
Holloway, T.[Tracey],
Bindl, M.[Matilyn],
Harkey, M.[Monica],
de Smedt, I.[Isabelle],
Ambient Formaldehyde over the United States from Ground-Based (AQS)
and Satellite (OMI) Observations,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Keppens, A.[Arno],
Compernolle, S.[Steven],
Hubert, D.[Daan],
Verhoelst, T.[Tijl],
Granville, J.[José],
Lambert, J.C.[Jean-Christopher],
Removing Prior Information from Remotely Sensed Atmospheric Profiles
by Wiener Deconvolution Based on the Complete Data Fusion Framework,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Su, Y.Y.[Yue-Yuan],
Han, Y.[Yong],
Luo, H.[Hao],
Zhang, Y.[Yuan],
Shao, S.Y.[Shi-Yong],
Xie, X.X.[Xin-Xin],
Physical-Optical Properties of Marine Aerosols over the South China
Sea: Shipboard Measurements and MERRA-2 Reanalysis,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Qin, X.N.[Xue-Ning],
Do, T.H.[Tien Huu],
Hofman, J.[Jelle],
Bonet, E.R.[Esther Rodrigo],
Manna, V.P.L.[Valerio Panzica La],
Deligiannis, N.[Nikos],
Philips, W.[Wilfried],
Fine-Grained Urban Air Quality Mapping from Sparse Mobile Air
Pollution Measurements and Dense Traffic Density,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Li, W.T.[Wei-Tao],
Su, X.[Xin],
Feng, L.[Lan],
Wu, J.Y.[Jin-Yang],
Zhang, Y.J.[Yu-Jie],
Cao, M.D.[Meng-Dan],
Comprehensive Validation and Comparison of Three VIIRS Aerosol
Products over the Ocean on a Global Scale,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Chen, L.R.[Li-Rong],
Wang, J.[Junyi],
Wang, H.[Hui],
Jin, T.C.[Tian-Cheng],
Urban Air Quality Assessment by Fusing Spatial and Temporal Data from
Multiple Study Sources Using Refined Estimation Methods,
IJGI(11), No. 6, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Rahman, M.M.[Md Masudur],
Shuo, W.[Wang],
Zhao, W.X.[Wei-Xiong],
Xu, X.Z.[Xue-Zhe],
Zhang, W.J.[Wei-Jun],
Arshad, A.[Arfan],
Investigating the Relationship between Air Pollutants and
Meteorological Parameters Using Satellite Data over Bangladesh,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Chen, Y.L.[Yuan-Lin],
Fan, M.[Meng],
Li, M.Y.[Ming-Yang],
Li, Z.B.[Zhong-Bin],
Tao, J.H.[Jin-Hua],
Wang, Z.B.[Zhi-Bao],
Chen, L.[Liangfu],
Himawari-8/AHI Aerosol Optical Depth Detection Based on Machine
Learning Algorithm,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Suel, E.[Esra],
Sorek-Hamer, M.[Meytar],
Moise, I.[Izabela],
von Pohle, M.[Michael],
Sahasrabhojanee, A.[Adwait],
Asanjan, A.A.[Ata Akbari],
Arku, R.E.[Raphael E.],
Alli, A.S.[Abosede S.],
Barratt, B.[Benjamin],
Clark, S.N.[Sierra N.],
Middel, A.[Ariane],
Deardorff, E.[Emily],
Lingenfelter, V.[Violet],
Oza, N.C.[Nikunj C.],
Yadav, N.[Nishant],
Ezzati, M.[Majid],
Brauer, M.[Michael],
What You See Is What You Breathe? Estimating Air Pollution Spatial
Variation Using Street-Level Imagery,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Han, J.[Jie],
Wu, J.J.[Jia-Ji],
Zhang, L.J.[Li-Jun],
Wang, H.G.[Hong-Guang],
Zhu, Q.L.[Qing-Lin],
Zhang, C.[Chao],
Zhao, H.[Hui],
Zhang, S.B.[Shou-Bao],
A Classifying-Inversion Method of Offshore Atmospheric Duct
Parameters Using AIS Data Based on Artificial Intelligence,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Freitas, A.D.[Arthur Dias],
Fornaro, A.[Adalgiza],
Atmospheric Formaldehyde Monitored by TROPOMI Satellite Instrument
throughout 2020 over Sao Paulo State, Brazil,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Falah, S.[Somaya],
Mhawish, A.[Alaa],
Omar, A.H.[Ali H.],
Sorek-Hamer, M.[Meytar],
Lyapustin, A.I.[Alexei I.],
Banerjee, T.[Tirthankar],
Kizel, F.[Fadi],
Broday, D.M.[David M.],
Intercomparison of Aerosol Types Reported as Part of Aerosol Product
Retrieval over Diverse Geographic Regions,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Phillips, M.C.[Mark C.],
Bernacki, B.E.[Bruce E.],
Conry, P.T.[Patrick T.],
Brown, M.J.[Michael J.],
Standoff Infrared Measurements of Chemical Plume Dynamics in Complex
Terrain Using a Combination of Active Swept-ECQCL Laser Spectroscopy
with Passive Hyperspectral Imaging,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Ge, B.Y.[Bang-Yu],
Li, Z.Q.[Zheng-Qiang],
Chen, C.[Cheng],
Hou, W.Z.[Wei-Zhen],
Xie, Y.S.[Yi-Song],
Zhu, S.[Sifeng],
Qie, L.[Lili],
Zhang, Y.[Ying],
Li, K.[Kaitao],
Xu, H.[Hua],
Ma, Y.[Yan],
Yan, L.[Lei],
Mei, X.D.[Xiao-Dong],
An Improved Aerosol Optical Depth Retrieval Algorithm for Multiangle
Directional Polarimetric Camera (DPC),
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Tang, F.Y.[Fu-Ying],
Wang, W.H.[Wei-He],
Si, F.Q.[Fu-Qi],
Zhou, H.J.[Hai-Jin],
Luo, Y.H.[Yu-Han],
Qian, Y.Y.[Yuan-Yuan],
Successful Derivation of Absorbing Aerosol Index from the
Environmental Trace Gases Monitoring Instrument (EMI),
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, S.Q.[Shu-Qun],
Hu, H.[Hao],
Fang, C.G.[Cheng-Gege],
Wang, S.C.[Si-Chen],
Xun, S.P.[Shang-Pei],
He, B.F.[Bin-Fang],
Wu, W.Y.[Wen-Yu],
Huo, Y.F.[Yan-Feng],
Hyperspectral Infrared Atmospheric Sounder (HIRAS) Atmospheric
Sounding System,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Sun, Y.Q.[Yue-Qiang],
Wang, B.[Bowen],
Meng, X.G.[Xiang-Guang],
Tang, X.C.[Xin-Chun],
Yan, F.[Feng],
Zhang, X.G.[Xian-Guo],
Bai, W.H.[Wei-Hua],
Du, Q.F.[Qi-Fei],
Wang, X.[Xianyi],
Cai, Y.R.[Yue-Rong],
Guo, B.[Bibo],
Wei, S.[Shilong],
Qiao, H.[Hao],
Hu, P.[Peng],
Li, Y.P.[Yong-Ping],
Wang, X.Y.[Xin-Yue],
Analysis of Orbital Atmospheric Density from QQ-Satellite Precision
Orbits Based on GNSS Observations,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Fang, L.[Li],
Hasekamp, O.[Otto],
Fu, G.L.[Guang-Liang],
Gong, W.S.[Wei-Shu],
Wang, S.P.[Shu-Peng],
Wang, W.H.[Wei-He],
Han, Q.J.[Qi-Jin],
Tang, S.H.[Shi-Hao],
Retrieval of Aerosol Optical Properties over Land Using an Optimized
Retrieval Algorithm Based on the Directional Polarimetric Camera,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Li, H.[Hui],
Liu, B.M.[Bo-Ming],
Ma, X.[Xin],
Ma, Y.Y.[Ying-Ying],
Jin, S.K.[Shi-Kuan],
Fan, R.N.[Ruo-Nan],
Wang, W.[Weiyan],
Fang, J.[Jing],
Zhao, Y.F.[Yue-Feng],
Gong, W.[Wei],
The Influence of Temperature Inversion on the Vertical Distribution
of Aerosols,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Jiang, X.X.[Xing-Xing],
Xue, Y.[Yong],
Jin, C.L.[Chun-Lin],
Bai, R.[Rui],
Sun, Y.X.[Yu-Xin],
Wu, S.H.[Shu-Hui],
A Simple Band Ratio Library (BRL) Algorithm for Retrieval of Hourly
Aerosol Optical Depth Using FY-4A AGRI Geostationary Satellite Data,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Bai, J.Y.[Jing-Yu],
Bai, L.[Lu],
Li, J.[Jinlu],
Wang, Y.K.[Yan-Kun],
Xie, J.[Jinyu],
Zhang, D.[Danmeng],
Guo, L.X.[Li-Xin],
Sensitivity Analysis of 1,3-Butadiene Monitoring Based on Space-Based
Detection in the Infrared Band,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Yu, X.Y.[Xin-Yu],
Nichol, J.[Janet],
Lee, K.H.[Kwon Ho],
Li, J.[Jing],
Wong, M.S.[Man Sing],
Analysis of Long-Term Aerosol Optical Properties Combining AERONET
Sunphotometer and Satellite-Based Observations in Hong Kong,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Ma, Q.H.[Qi-Han],
Liu, Y.Y.[Ying-Ying],
Qiu, T.[Ting],
Huang, T.X.[Ting-Xuan],
Deng, T.[Tao],
Hu, Z.Y.[Zhi-Yuan],
Cui, T.W.[Ting-Wei],
Satellite-Observed Four-Dimensional Spatiotemporal Characteristics of
Maritime Aerosol Types over the Coastal Waters of the Guangdong-Hong
Kong-Macao Greater Bay Area and the Northern South China Sea,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Ding, H.N.[Hao-Nan],
Zhao, L.M.[Li-Min],
Liu, S.W.[Shan-Wei],
Chen, X.F.[Xing-Feng],
de Leeuw, G.[Gerrit],
Wang, F.[Fu],
Zheng, F.J.[Feng-Jie],
Zhang, Y.[Yuhuan],
Liu, J.[Jun],
Li, J.G.[Jia-Guo],
She, L.[Lu],
Si, Y.[Yidan],
Gu, X.F.[Xing-Fa],
FY-4A/AGRI Aerosol Optical Depth Retrieval Capability Test and
Validation Based on NNAeroG,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Han, Y.Y.[Yuan-Yuan],
Xie, F.[Fei],
Cui, F.[Fei],
Wang, F.[Feiyang],
Li, X.[Xin],
Feng, W.[Wuhu],
Extreme Change Events of Stratospheric HCl and N2O in the
Mid-Latitude Region of the Northern Hemisphere,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Xiao, X.J.[Xian-Jun],
Weng, F.Z.[Fu-Zhong],
A Comparison of Information Content at Microwave to Millimeter Wave
Bands for Atmospheric Sounding,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Shevtsov, B.M.[Boris M.],
Perezhogin, A.N.[Andrey N.],
Seredkin, I.N.[Ilya N.],
Atmospheric Optical Characteristics in the Area of 30-400 km,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Belikovich, M.V.[Mikhail V.],
Makarov, D.S.[Dmitriy S.],
Serov, E.A.[Evgeny A.],
Kulikov, M.Y.[Mikhail Yu.],
Feigin, A.M.[Alexander M.],
Validation of Atmospheric Absorption Models within the 20-60 GHz Band
by Simultaneous Radiosonde and Microwave Observations:
The Advantage of Using ECS Formalism,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Gu, H.R.[Hao-Ran],
Zhang, Y.[Yuhuan],
Fan, C.[Cheng],
Li, Z.Q.[Zheng-Qiang],
Hou, W.Z.[Wei-Zhen],
Liu, Z.H.[Zhen-Hai],
Xie, Y.S.[Yi-Song],
Xu, H.[Hua],
Zhang, L.[Luo],
Ma, J.[Jinji],
A Comprehensive Analysis of Ultraviolet Remote Sensing for Aerosol
Layer Height Retrieval from Multi-Angle Polarization Satellite
Measurements,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Liu, N.[Nana],
Cui, S.C.[Sheng-Cheng],
Luo, T.[Tao],
Chen, S.P.[Shun-Ping],
Yang, K.X.[Kai-Xuan],
Ma, X.B.[Xue-Bin],
Sun, G.[Gang],
Li, X.B.[Xue-Bin],
Characteristics of Aerosol Extinction Hygroscopic Growth in the
Typical Coastal City of Qingdao, China,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Pan, Y.F.[Yu-Feng],
Zhao, J.B.[Jin-Biao],
Lu, P.[Ping],
Sima, C.T.[Chao-Tan],
Liu, D.M.[De-Ming],
Recent Advances in Light-Induced Thermoelastic Spectroscopy for Gas
Sensing: A Review,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Hashim, M.[Mazlan],
Ng, H.L.[Hui Lin],
Zakari, D.M.[Dahiru Mohammed],
Sani, D.A.[Dalhatu Aliyu],
Chindo, M.M.[Musa Muhammad],
Hassan, N.[Noordyana],
Azmy, M.M.[Muna Maryam],
Pour, A.B.[Amin Beiranvand],
Mapping of Greenhouse Gas Concentration in Peninsular Malaysia
Industrial Areas Using Unmanned Aerial Vehicle-Based Sniffer Sensor,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Javed, S.[Sadaf],
Shahzad, M.I.[Muhammad Imran],
Abbas, S.[Sawaid],
Nazeer, M.[Majid],
Long-Term Variability of Atmospheric Visual Range (1980-2020) over
Diverse Topography of Pakistan,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Fan, Y.Z.[Yi-Zhe],
Sun, X.B.[Xia-Bing],
Ti, R.[Rufang],
Huang, H.L.[Hong-Lian],
Liu, X.[Xiao],
Yu, H.X.[Hai-Xiao],
Aerosol Retrieval Study from a Particulate Observing Scanning
Polarimeter Onboard Gao-Fen 5B without Prior Surface Knowledge, Based
on the Optimal Estimation Method,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Barnet, C.D.[Chris D.],
Smith, N.[Nadia],
Ide, K.[Kayo],
Garrett, K.[Kevin],
Jones, E.[Erin],
Evaluating the Value of CrIS Shortwave-Infrared Channels in
Atmospheric-Sounding Retrievals,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Zang, Z.L.[Zeng-Liang],
Bao, X.[Xulun],
Li, Y.[Yi],
Qu, Y.M.[You-Ming],
Niu, D.[Dan],
Liu, N.[Ning],
Chen, X.[Xisong],
A Modified RNN-Based Deep Learning Method for Prediction of
Atmospheric Visibility,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Tao, S.C.[Si-Chen],
Sun, Z.C.[Zong-Chen],
Lin, X.[Xingwen],
Zhang, Z.Z.[Zhen-Zhen],
Wu, C.F.[Chao-Fan],
Zhang, Z.Y.[Zhao-Yang],
Zhou, B.Z.[Ben-Zhi],
Zhao, Z.[Zhen],
Cao, C.C.[Chen-Chen],
Guan, X.Y.[Xin-Yu],
Zhuang, Q.J.[Qian-Jin],
Wen, Q.Q.[Qing-Qing],
Xu, Y.L.[Yu-Ling],
Negative Air Ion (NAI) Dynamics over Zhejiang Province, China, Based
on Multivariate Remote Sensing Products,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Wang, Y.X.[Yu-Xuan],
Sun, X.B.[Xia-Bing],
Huang, H.L.[Hong-Lian],
Ti, R.[Rufang],
Liu, X.[Xiao],
Fan, Y.Z.[Yi-Zhe],
Study on Influencing Factors of the Information Content of Satellite
Remote-Sensing Aerosol Vertical Profiles Using Oxygen A-Band,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Li, S.[Sheng],
Liu, Y.[Yanna],
Du, K.[Ke],
Quantifying Emissions from Fugitive Area Sources Using a Hybrid
Method of Multi-Path Optical Remote Sensing and Tomographic
Inverse-Dispersion Techniques,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Huang, C.[Congwu],
Niu, T.[Tao],
Wu, H.[Hao],
Qu, Y.[Yawei],
Wang, T.[Tijian],
Li, M.M.[Meng-Meng],
Li, R.[Rong],
Liu, H.L.[Hong-Li],
A Data Assimilation Method Combined with Machine Learning and Its
Application to Anthropogenic Emission Adjustment in CMAQ,
RS(15), No. 6, 2023, pp. 1711.
DOI Link
2304
BibRef
Lemmouchi, F.[Farouk],
Cuesta, J.[Juan],
Lachatre, M.[Mathieu],
Brajard, J.[Julien],
Coman, A.[Adriana],
Beekmann, M.[Matthias],
Derognat, C.[Claude],
Machine Learning-Based Improvement of Aerosol Optical Depth from
CHIMERE Simulations Using MODIS Satellite Observations,
RS(15), No. 6, 2023, pp. 1510.
DOI Link
2304
BibRef
Scarlatti, F.[Francesco],
Gómez-Amo, J.L.[José L.],
Valdelomar, P.C.[Pedro C.],
Estellés, V.[Víctor],
Utrillas, M.P.[María Pilar],
A Machine Learning Approach to Derive Aerosol Properties from All-Sky
Camera Imagery,
RS(15), No. 6, 2023, pp. 1676.
DOI Link
2304
BibRef
Demeyer, S.[Séverine],
Kristoffersen, S.K.[Samuel K.],
Le Pichon, A.[Alexis],
Larsonnier, F.[Franck],
Fischer, N.[Nicolas],
Contribution to Uncertainty Propagation Associated with On-Site
Calibration of Infrasound Monitoring Systems,
RS(15), No. 7, 2023, pp. 1892.
DOI Link
2304
Atmospheric infrasound is comprised of pressure waves.
BibRef
Xia, X.H.[Xing-Hui],
Zhang, T.H.[Tian-Hao],
Wang, L.[Lunche],
Gong, W.[Wei],
Zhu, Z.M.[Zhong-Min],
Wang, W.[Wei],
Gu, Y.[Yu],
Lin, Y.[Yun],
Zhou, X.Y.[Xiang-Yang],
Dong, J.[Jiadan],
Fan, S.[Shumin],
Xu, W.F.[Wen-Fa],
Spatial-Temporal Fusion of 10-Min Aerosol Optical Depth Products with
the GEO-LEO Satellite Joint Observations,
RS(15), No. 8, 2023, pp. 2038.
DOI Link
2305
BibRef
Maulik, U.[Ujjwal],
Kundu, S.[Srimanta],
Automatic Vehicle Pollution Detection Using Feedback Based Iterative
Deep Learning,
ITS(24), No. 5, May 2023, pp. 4804-4814.
IEEE DOI
2305
Surveillance, Engines, Deep learning, Air pollution, Roads,
Iterative methods, Image color analysis, Vehicle pollution, majority voting
BibRef
White, E.[Evan],
Shephard, M.W.[Mark W.],
Cady-Pereira, K.E.[Karen E.],
Kharol, S.K.[Shailesh K.],
Ford, S.[Sean],
Dammers, E.[Enrico],
Chow, E.[Evan],
Thiessen, N.[Nikolai],
Tobin, D.[David],
Quinn, G.[Greg],
O'Brien, J.[Jason],
Bash, J.[Jesse],
Accounting for Non-Detects: Application to Satellite Ammonia
Observations,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Shah, S.S.A.[Syed Shakeel Ahmad],
Huang, Z.W.[Zhong-Wei],
ul Haq, E.[Ehtiram],
Alam, K.[Khan], and Its Relationship with Meteorology over the
Exploring the Spatiotemporal Variation in Light-Absorbing AerosolsH
Hindukush-Himalaya-Karakoram Region,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Long, Z.Y.[Zhi-Yong],
Jin, Z.[Zichun],
Meng, Y.Z.[Yi-Zhen],
Ma, J.[Jin],
Generation of High Temporal Resolution Full-Coverage Aerosol Optical
Depth Based on Remote Sensing and Reanalysis Data,
RS(15), No. 11, 2023, pp. 2769.
DOI Link
2306
BibRef
Li, H.[Han],
Gu, M.J.[Ming-Jian],
Zhang, C.M.[Chun-Ming],
Xie, M.Z.[Meng-Zhen],
Yang, T.[Tianhang],
Hu, Y.[Yong],
Retrieving Atmospheric Gas Profiles Using FY-3E/HIRAS-II Infrared
Hyperspectral Data by Neural Network Approach,
RS(15), No. 11, 2023, pp. 2931.
DOI Link
2306
BibRef
Koushafar, M.[Mohammad],
Sohn, G.[Gunho],
Gordon, M.[Mark],
Deep Convolutional Neural Network for Plume Rise Measurements in
Industrial Environments,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Kokhanovsky, A.A.[Alexander A.],
Brell, M.[Maximillian],
Segl, K.[Karl],
Bianchini, G.[Giovanni],
Lanconelli, C.[Christian],
Lupi, A.[Angelo],
Petkov, B.[Boyan],
Picard, G.[Ghislain],
Arnaud, L.[Laurent],
Stone, R.S.[Robert S.],
Chabrillat, S.[Sabine],
First Retrievals of Surface and Atmospheric Properties Using EnMAP
Measurements over Antarctica,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Guo, Y.H.[Yu-Hang],
Li, X.Y.[Xiao-Ying],
Cheng, T.H.[Tian-Hai],
Li, S.S.[Shen-Shen],
Zhang, X.Y.[Xin-Yuan],
Lu, W.J.[Wen-Jing],
Fang, W.F.[Wei-Fang],
Construction of the Global Reference Atmospheric Profile Database,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Kim, J.[Juhuhn],
Emmerich, M.T.M.[Michael T. M.],
Voors, R.[Robert],
Ording, B.[Barend],
Lee, J.S.[Jong-Seok],
A Systematic Approach to Identify Shipping Emissions Using
Spatio-Temporally Resolved TROPOMI Data,
RS(15), No. 13, 2023, pp. 3453.
DOI Link
2307
BibRef
Kim, M.[Mijeong],
Lee, K.[Kyunghwa],
Choi, M.[Myungje],
Spectral and Spatial Dependencies in the Validation of
Satellite-Based Aerosol Optical Depth from the Geostationary Ocean
Color Imager Using the Aerosol Robotic Network,
RS(15), No. 14, 2023, pp. 3621.
DOI Link
2307
BibRef
Du, J.[Jia],
Li, D.[Dianjia],
Song, K.[Kaishan],
Zheng, Z.[Zhi],
Wang, Y.[Yan],
Comparative Analysis of the Impact of Two Common Residue Burning
Parameters on Urban Air Quality Indicators,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Li, S.J.[Shi-Jie],
Wu, T.[Tong],
Zhong, K.[Kai],
Zhang, X.Z.[Xian-Zhong],
Sun, Y.[Yue],
Zhang, Y.J.[Yi-Jian],
Wang, Y.[Yu],
Li, X.[Xinqi],
Xu, D.[Degang],
Yao, J.Q.[Jian-Quan],
Gluing Atmospheric Lidar Signals Based on an Improved Gray Wolf
Optimizer,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
laser in AoD
BibRef
Xie, M.Z.[Meng-Zhen],
Gu, M.J.[Ming-Jian],
Zhang, C.M.[Chun-Ming],
Hu, Y.[Yong],
Yang, T.H.[Tian-Hang],
Huang, P.Y.[Peng-Yu],
Li, H.[Han],
Comparative Study of the Atmospheric Gas Composition Detection
Capabilities of FY-3D/HIRAS-I and FY-3E/HIRAS-II Based on Information
Capacity,
RS(15), No. 16, 2023, pp. 4096.
DOI Link
2309
BibRef
Liu, J.J.[Jing-Jing],
Li, M.[Mengping],
Zhou, L.[Luyao],
Ge, J.M.[Jin-Ming],
Liu, J.T.[Jing-Tao],
Guo, Z.[Zhuqi],
Liu, Y.Y.[Yang-Yang],
Wang, J.[Jun],
Yan, Q.[Qing],
Hua, D.X.[Deng-Xin],
Analysis of Aerosol Optical Depth and Forward Scattering in an
Ultraviolet Band Based on Sky Radiometer Measurements,
RS(15), No. 17, 2023, pp. 4342.
DOI Link
2310
BibRef
Wang, Y.M.[Yong-Mei],
Zhang, Z.[Zhuo],
Mao, J.H.[Jing-Hua],
Wang, H.[Houmao],
Shi, E.[Entao],
Liu, X.H.[Xiao-Hong],
Li, P.D.[Peng-Da],
Liu, J.[Jiu],
In-Flight Preliminary Performance of GF-5B/Absorbing Aerosol Sensor,
RS(15), No. 17, 2023, pp. 4343.
DOI Link
2310
BibRef
Zhang, T.[Tony],
Dick, R.P.[Robert P.],
Image-Based Air Quality Forecasting Through Multi-Level Attention,
ICIP22(686-690)
IEEE DOI
2211
Visualization, Atmospheric measurements, Fuses,
Atmospheric modeling, Predictive models, Time measurement, attention
BibRef
Dubey, R.,
Bharadwaj, S.,
Zafar, M.I.,
Biswas, S.,
Collaborative Air Quality Mapping of Different Metropolitan Cities Of
India,
ISPRS21(B4-2021: 87-94).
DOI Link
2201
BibRef
Ridzuan, N.,
Ujang, U.,
Azri, S.,
Choon, T.L.,
3d Air Pollution Computational Fluid Modelling Data Analysis Using
Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV)
Approach,
SmartCityApp21(451-456).
DOI Link
2201
BibRef
Garcia, D.,
Vázquez-Gallego, F.,
Parés, M.E.,
On the Organization and Validation of a Pilot Test of a Mobile
Crowdsourced Air Quality Monitoring System,
ISPRS21(B4-2021: 361-366).
DOI Link
2201
BibRef
Chen, Z.[Zikun],
The Application of Artificial Intelligence on the Traceability and
Dispersion of Air Pollution,
ICIVC21(404-407)
IEEE DOI
2112
Image resolution, Atmospheric modeling, Computational modeling,
Stochastic processes, Interference, Position measurement,
fuzzy data processing
BibRef
Mukherjee, R.[Ryan],
Rollend, D.[Derek],
Christie, G.[Gordon],
Hadzic, A.[Armin],
Matson, S.[Sally],
Saksena, A.[Anshu],
Hughes, M.[Marisa],
Towards Indirect Top-Down Road Transport Emissions Estimation,
EarthVision21(1092-1101)
IEEE DOI
2109
Training, Climate change, Visualization, Satellites, Uncertainty,
Roads, Estimation
BibRef
Hofman, J.[Jelle],
Do, T.H.[Tien Huu],
Qin, X.[Xuening],
Rodrigo, E.[Esther],
Nikolaou, M.E.[Martha E.],
Philips, W.[Wilfried],
Deligiannis, N.[Nikos],
La Manna, V.P.[Valerio Panzica],
Spatiotemporal Air Quality Inference of Low-cost Sensor Data;
Application on a Cycling Monitoring Network,
MAES20(139-147).
Springer DOI
2103
BibRef
Alpan, K.,
Sekeroglu, B.,
Prediction of Pollutant Concentrations By Meteorological Data Using
Machine Learning Algorithms,
SmartCityApp20(21-27).
DOI Link
2012
BibRef
Casella, V.,
Franzini, M.,
Bellazzi, R.,
Larizza, C.,
Pala, D.,
Dynamic Assessment of Personal Exposure to Air Pollution for Everyone:
A Smartphone-based Approach,
ISPRS20(B4:655-663).
DOI Link
2012
BibRef
Parés, M.E.,
Garcia, D.,
Vázquez-Gallego, F.,
Mapping Air Quality with A Mobile Crowdsourced Air Quality Monitoring
System (C-AQM),
ISPRS20(B4:685-690).
DOI Link
2012
BibRef
Ridzuan, N.,
Ujang, U.,
Azri, S.,
Choon, T.L.,
Visualising Urban Air Quality Using Aermod, Calpuff and Cfd Models: A
Critical Review,
SmartCityApp20(355-363).
DOI Link
2012
BibRef
Calassou, G.,
Foucher, P.Y.,
Leon, J.F.,
Aerosol Plumes Characterization By Hyperspectral Images Coupled With
Sentinel-2 Products,
ISPRS20(B3:791-797).
DOI Link
2012
BibRef
Luo, Z.,
Yu, Y.,
Zhang, D.,
Feng, S.,
Yu, H.,
Chang, Y.,
Shen, W.,
Air Quality Inference with Deep Convolutional Conditional Random
Field,
ICIVC20(296-302)
IEEE DOI
2009
Air quality, Convolution, Neural networks, Indexes,
Data models, Biological system modeling, air quality inference
BibRef
Zhang, T.,
Dick, R.P.,
Estimation of Multiple Atmospheric Pollutants Through Image Analysis,
ICIP19(2060-2064)
IEEE DOI
1910
Air Quality, Light Attenuation, Support Vector Regression, Atmospheric Modeling
BibRef
Ma, J.[Jian],
Li, K.[Kun],
Han, Y.H.[Ya-Hong],
Yang, J.Y.[Jing-Yu],
Image-based Air Pollution Estimation Using Hybrid Convolutional
Neural Network,
ICPR18(471-476)
IEEE DOI
1812
Air pollution, Feature extraction, Atmospheric measurements,
Pollution measurement, Convolutional neural networks, Scattering, Training
BibRef
Mechtley, B.[Brandon],
Roberts, C.[Christopher],
Stein, J.[Julian],
Nandin, B.[Benjamin],
Sha, X.W.[Xin Wei],
Enactive Steering of an Experiential Model of the Atmosphere,
VAMR18(I: 126-144).
Springer DOI
1807
BibRef
Yoshida, T.,
Wasenmüller, O.,
Stricker, D.,
Time-of-flight sensor depth enhancement for automotive exhaust gas,
ICIP17(1955-1959)
IEEE DOI
1803
Automotive engineering, Gaussian distribution,
Gaussian mixture model, Mathematical model, Solids, Standards,
image processing
BibRef
Luffarelli, M.,
Govaerts, Y.,
Goossens, C.,
Wolters, E.L.A.,
Swinnen, E.,
Joint retrieval of surface reflectance and aerosol properties from
PROBA-V observations, part I: Algorithm performance evaluation,
MultiTemp17(1-6)
IEEE DOI
1712
BibRef
And: A4, A5, A1, A3, A2:
Joint Surface Reflectance and AeRosol properties retrieval in the
PV-LAC framework, part II: Validation,
MultiTemp17(1-4)
IEEE DOI
1712
aerosols, PROBA-V observations, aerosol properties,
algorithm performance evaluation, atmospheric state variables,
joint retrieval.
aerosols, atmospheric optics, AOT observations,
Aerosol Optical Thickness,
validation
BibRef
Eu, K.S.[Kok Seng],
Yap, K.M.[Kian Meng],
Tan, W.C.[Wan Chew],
A Simulation Study of Micro-Drone Chemical Plume Tracking Performance
in Tree Farm Environments,
IVIC17(260-269).
Springer DOI
1711
BibRef
Presles, B.,
Debayle, J.,
A distance-based shape descriptor invariant to similitude and its
application to shape classification,
ICPR16(2598-2603)
IEEE DOI
1705
Atmospheric measurements, Noise measurement,
Particle measurements, Robustness, Sensitivity, Shape, Shape, measurement
BibRef
Ghosh, R.,
Ghosh, D.,
Roy, S.,
Mukherjee, A.,
Exploring the self similar properties for monitoring of air quality
information,
ICAPR15(1-6)
IEEE DOI
1511
air pollution control
BibRef
Lin, T.H.[Tang-Huang],
Liu, G.R.[Gin-Rong],
Liu, C.Y.[Chian-Yi],
A Novel Index For Atmospheric Aerosol Types Categorization With
Spectral Optical Depths From Satellite Retrieval,
ISPRS16(B8: 277-279).
DOI Link
1610
BibRef
Marek, L.,
Campbell, M.,
Epton, M.,
Storer, M.,
Kingham, S.,
Real-time Environmental Sensors To Improve Health In The Sensing City,
ISPRS16(B2: 729-733).
DOI Link
1610
BibRef
Levis, A.[Aviad],
Schechner, Y.Y.[Yoav Y.],
Davis, A.B.,
Multiple-Scattering Microphysics Tomography,
CVPR17(5797-5806)
IEEE DOI
1711
Atmospheric modeling, Clouds, Computational modeling,
Mathematical model, Scattering, Tomography
BibRef
Levis, A.[Aviad],
Schechner, Y.Y.[Yoav Y.],
Aides, A.[Amit],
Davis, A.B.,
Airborne Three-Dimensional Cloud Tomography,
ICCV15(3379-3387)
IEEE DOI
1602
Atmospheric modeling
BibRef
Veikherman, D.[Dmitry],
Aides, A.[Amit],
Schechner, Y.Y.[Yoav Y.],
Levis, A.[Aviad],
Clouds in the Cloud,
ACCV14(IV: 659-674).
Springer DOI
1504
Light-field imaging for spaceborne instruments. Monitor the atmosphere.
BibRef
Rajitha, K.,
Mohan, M.M.P.[M.M. Prakash],
Varma, M.R.R.,
Effect of cirrus cloud on normalized difference Vegetation Index
(NDVI) and Aerosol Free Vegetation Index (AFRI): A study based on
LANDSAT 8 images,
ICAPR15(1-5)
IEEE DOI
1511
aerosols
BibRef
Julien, Y.,
Sobrino, J.A.,
CloudSim: A fair benchmark for comparison of methods for times series
reconstruction from cloud and atmospheric contamination,
MultiTemp15(1-4)
IEEE DOI
1511
clouds
BibRef
Liu, G.L.[Gui-Liang],
Seemingly unrelated regression modeling of urban air quality by
direct Monte Carlo algorithm,
ICWAPR15(171-174)
IEEE DOI
1511
Bayes methods
BibRef
Bhattacharjee, S.,
Ghosh, S.K.,
Exploring spatial dependency of meteorological attributes for
multivariate analysis: A granger causality test approach,
ICAPR15(1-6)
IEEE DOI
1511
atmospheric humidity
BibRef
Wijeratne, I.K.,
Bijker, W.,
Mapping Dispersion of Urban Air Pollution with Remote Sensing,
IfromI06(xx-yy).
PDF File.
0607
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Aerosols, Aerosol Optical Depth, Air Quality, Specific Sites .