Dipix Technologies,
2001
WWW Link.
Vendor, Inspection. Industrial inspection systems for food industry.
Ellips B.V.,
1989.
WWW Link.
Vendor, Inspection. Industrial inspection systems for food industry.
JLI Vision,
1985.
Founded as Jřrgen Lćssře Ingeniřrfirma Aps
WWW Link.
Vendor, Inspection. Industrial inspection systems for food industry.
Tillett and Hague Technology Ltd,
2005.
WWW Link.
Vendor, Inspection. Automation for agriculture, e.g. visual guided spraying.
Buhler Sortex,
2010
WWW Link.
Vendor, Inspection. Food inspection and sorting using images.
Han, M.H.[Min-Hong],
Jang, D.[Dongsig],
Foster, J.[Joseph],
Inspection of 2-D objects using pattern matching method,
PR(22), No. 5, 1989, pp. 567-575.
Elsevier DOI
0309
BibRef
Ghorbel, F.,
de Bougrenet de la Tocnaye, J.L.,
Automatic Control of Lamellibranch Larva Growth Using Contour Invariant
Feature Extraction,
PR(23), No. 3-4, 1990, pp. 319-323.
Elsevier DOI
0401
BibRef
Arnason, H.,
Asmundsson, M.,
Computer Vision in Food Handling and Sorting,
HPRCV97(Chapter IV:1).
(Marel HF,Iceland)
BibRef
9700
Edan, Y.,
Design of an Autonomous Agricultural Robot,
AppIntel(5), No. 1, January 1995, pp. 41-50.
BibRef
9501
Li, Y.F.,
Lee, M.H.,
Applying Vision Guidance in Robotic Food Handling,
RAMag(3), No. 1, March 1996, pp. 4-12.
BibRef
9603
Patel, V.C.,
McClendon, R.W.,
Goodrum, J.W.,
Detection of Cracks in Eggs Using Color Computer Vision and
Artificial Neural Networks,
AIApp(10), No. 3, 1996, pp. 19-28.
9702
BibRef
Patel, V.C.,
McClendon, R.W.,
Goodrum, J.W.,
Crack Detection in Eggs Using Computer Vision and Neural Networks,
AIApp(8), No. 2, 1994, pp. 21-31.
BibRef
9400
Patel, V.C.,
McClendon, R.W.,
Goodrum, J.W.,
Color Computer Vision and Artificial Neural Networks for the
Detection of Defects in Poultry Eggs,
AIR(12), No. 1-3, February 1998, pp. 163-176.
WWW Link.
9807
BibRef
Ni, H.,
Gunasekaran, S.,
A Computer Vision Method for Determining Length Of Cheese Shreds,
AIR(12), No. 1-3, February 1998, pp. 27-37.
WWW Link.
9807
BibRef
Ding, K.,
Gunasekaran, S.,
3-Dimensional Image Reconstruction Procedure for
Food Microstructure Evaluation,
AIR(12), No. 1-3, February 1998, pp. 245-262.
9807
BibRef
McQueen, A.M.[Alexander M.],
Cherry, C.D.[Craig D.],
Rando, J.F.[Joseph F.],
Schler, M.D.[Matt D.],
Latimer, D.L.[David L.],
McMahon, S.A.[Steven A.],
Turkal, R.J.[Randy J.],
Reddersen, B.R.[Brad R.],
Object recognition system and method,
US_Patent6,069,696, May 30, 2000
WWW Link. Color, weight, size, point of sale terminal.
BibRef
0005
Chen, Z.[Zikuan],
Tao, Y.[Yang],
Food safety inspection using 'from presence to classification'
object-detection model,
PR(34), No. 12, December 2001, pp. 2331-2338.
Elsevier DOI
0110
BibRef
Casasent, D.[David],
Chen, X.W.[Xue-Wen],
New training strategies for RBF neural networks for X-ray agricultural
product inspection,
PR(36), No. 2, February 2003, pp. 535-547.
Elsevier DOI
0211
BibRef
Codrea, C.M.,
Aittokallio, T.,
Keränen, M.,
Tyystjärvi, E.,
Nevalainen, O.S.,
Feature learning with a genetic algorithm for fluorescence
fingerprinting of plant species,
PRL(24), No. 15, November 2003, pp. 2663-2673.
Elsevier DOI
0308
BibRef
Pandit, R.B.[Ram Bhuwan],
Tang, J.[Juming],
Liu, F.[Frank],
Mikhaylenko, G.[Galina],
A computer vision method to locate cold spots in foods in microwave
sterilization processes,
PR(40), No. 12, December 2007, pp. 3667-3676.
Elsevier DOI
0709
Color values; Image processing; Chemical marker;
Heating patterns; Microwave sterilization; Process validation;
IMAQ vision builder; Cold spot
BibRef
Meade, R.[Ronald],
Oven conveyor alignment system apparatus and method,
US_Patent7,131,529, Nov 7, 2006
WWW Link.
BibRef
0611
And:
US_Patent7,222,726, May 29, 2007
WWW Link.
BibRef
Sun, D.W.[Da-Wen], (Ed.)
Computer Vision Technology for Food Quality Evaluation,
ElsevierInc., 2008.
ISBN: 978-0-12-373642-0
WWW Link.
Buy this book: Computer Vision Technology for Food Quality Evaluation (Food Science and Technology)
BibRef
0800
Bossu, J.[Jérémie],
Gee, C.[Christelle],
Truchetet, F.[Frederic],
Development of a machine vision system for a real time precision
sprayer,
ELCVIA(7), No. 3, 2008, pp. xx-yy.
DOI Link
0909
BibRef
Galleguillos, C.[Carolina],
Belongie, S.J.[Serge J.],
Context based object categorization: A critical survey,
CVIU(114), No. 6, June 2010, pp. 712-722.
Elsevier DOI
1006
Object recognition; Context; Object categorization; Computer vision systems
Appearance alone is not enough. Incorporate various kinds of context.
BibRef
McFee, B.[Brian],
Galleguillos, C.[Carolina],
Lanckriet, G.R.G.[Gert R.G.],
Contextual Object Localization With Multiple Kernel Nearest Neighbor,
IP(19), No. 2, February 2011, pp. 570-585.
IEEE DOI
1102
BibRef
Galleguillos, C.[Carolina],
McFee, B.[Brian],
Lanckriet, G.R.G.[Gert R.G.],
Iterative Category Discovery via Multiple Kernel Metric Learning,
IJCV(108), No. 1-2, May 2014, pp. 115-132.
Springer DOI
1405
BibRef
Galleguillos, C.[Carolina],
McFee, B.[Brian],
Belongie, S.J.[Serge J.],
Lanckriet, G.R.G.[Gert R.G.],
From region similarity to category discovery,
CVPR11(2665-2672).
IEEE DOI
1106
BibRef
Earlier:
Multi-class object localization by combining local contextual
interactions,
CVPR10(113-120).
IEEE DOI
1006
BibRef
Rabinovich, A.[Andrew],
Vedaldi, A.[Andrea],
Galleguillos, C.[Carolina],
Wiewiora, E.[Eric],
Belongie, S.J.[Serge J.],
Objects in Context,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Merler, M.[Michele],
Galleguillos, C.[Carolina],
Belongie, S.J.[Serge J.],
Recognizing Groceries in situ Using in vitro Training Data,
SLAM07(1-8).
IEEE DOI
0706
BibRef
Galleguillos, C.[Carolina],
Faymonville, P.[Peter],
Belongie, S.J.[Serge J.],
BUBL: An effective region labeling tool using a hexagonal lattice,
Emergent09(2072-2079).
IEEE DOI
0910
BibRef
Galleguillos, C.[Carolina],
Babenko, B.[Boris],
Rabinovich, A.[Andrew],
Belongie, S.J.[Serge J.],
Weakly Supervised Object Localization with Stable Segmentations,
ECCV08(I: 193-207).
Springer DOI
0810
BibRef
Galleguillos, C.[Carolina],
Rabinovich, A.[Andrew],
Belongie, S.J.[Serge J.],
Object categorization using co-occurrence, location and appearance,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Mantelli Neto, S.L.[Sylvio Luiz],
Besen de Aguiar, D.[Daniel],
Sens dos Santos, B.[Bianca],
von Wangenheim, A.[Aldo],
Multivariate Bayesian cognitive modeling for unsupervised quality
control of baked pizzas,
MVA(23), No. 3, May 2012, pp. 491-499.
WWW Link.
1204
BibRef
Kumar, P.D.[P. Dinesh],
Evangeline, C.,
Jasmi, R.P.[R. Praiseline],
Device analysis and computer modelling of a-Si:H solar cell,
IJCVR(3), No. 3, 2013, pp. 251-260.
DOI Link
1402
BibRef
Ljungqvist, M.G.[Martin Georg],
Nielsen, O.H.A.[Otto Hřjager Attermann],
Frosch, S.[Stina],
Nielsen, M.E.[Michael Engelbrecht],
Clemmensen, L.H.[Line Harder],
Ersbřll, B.K.[Bjarne Kjćr],
Hyperspectral imaging based on diffused laser light for prediction of
astaxanthin coating concentration,
MVA(25), No. 2, February 2014, pp. 327-343.
Springer DOI
1412
Fish feed pellet coating.
BibRef
Baravalle, R.[Rodrigo],
Delrieux, C.[Claudio],
Gomez, J.[Juan],
Multifractal characterisation and classification of bread crumb
digital images,
JIVP(2015), No. 1, 2015, pp. 9.
DOI Link
1505
BibRef
Story, D.[David],
Kacira, M.[Murat],
Design and implementation of a computer vision-guided greenhouse crop
diagnostics system,
MVA(26), No. 4, May 2015, pp. 495-506.
Springer DOI
1506
BibRef
Chi, J.N.[Jian-Ning],
Eramian, M.G.,
Enhancement of Textural Differences Based on Morphological Component
Analysis,
IP(24), No. 9, September 2015, pp. 2671-2684.
IEEE DOI
1506
image enhancement
BibRef
Yi, X.[Xin],
Eramian, M.G.[Mark G.],
Wang, R.J.[Ruo-Jing],
Neufeld, E.[Eric],
Identification of Morphologically Similar Seeds Using Multi-kernel
Learning,
CRV14(143-150)
IEEE DOI
1406
Accuracy
BibRef
Impoco, G.,
Tuminello, L.,
Incremental learning to segment micrographs,
CVIU(140), No. 1, 2015, pp. 144-152.
Elsevier DOI
1509
Image analysis
BibRef
Impoco, G.[Gaetano],
Licitra, G.[Giuseppe],
An Interactive Level Set Approach to Semi-automatic Detection of
Features in Food Micrographs,
CAIP09(914-921).
Springer DOI
0909
BibRef
Behmann, J.[Jan],
Mahlein, A.K.[Anne-Katrin],
Paulus, S.[Stefan],
Dupuis, J.[Jan],
Kuhlmann, H.[Heiner],
Oerke, E.C.[Erich-Christian],
Plümer, L.[Lutz],
Generation and application of hyperspectral 3D plant models:
Methods and challenges,
MVA(27), No. 5, July 2016, pp. 611-624.
Springer DOI
1608
BibRef
Earlier: A1, A2, A3, A5, A6, A7, Only:
Generation and Application of Hyperspectral 3D Plant Models,
PlantType14(117-130).
Springer DOI
1504
BibRef
Benoit, L.[Landry],
Benoit, R.[Romain],
Belin, É.[Étienne],
Vadaine, R.[Rodolphe],
Demilly, D.[Didier],
Chapeau-Blondeau, F.[François],
Rousseau, D.[David],
On the value of the Kullback-Leibler divergence for cost-effective
spectral imaging of plants by optimal selection of wavebands,
MVA(27), No. 5, July 2016, pp. 625-635.
Springer DOI
1608
BibRef
Augustin, M.[Marco],
Haxhimusa, Y.[Yll],
Busch, W.[Wolfgang],
Kropatsch, W.G.[Walter G.],
A framework for the extraction of quantitative traits from 2D images of
mature Arabidopsis thaliana,
MVA(27), No. 5, July 2016, pp. 647-661.
Springer DOI
1608
BibRef
Santos, T.T.[Thiago T.],
Rodrigues, G.C.[Gustavo C.],
Flexible three-dimensional modeling of plants using low- resolution
cameras and visual odometry,
MVA(27), No. 5, July 2016, pp. 695-707.
Springer DOI
1608
BibRef
Kosmala, M.[Margaret],
Crall, A.[Alycia],
Cheng, R.[Rebecca],
Hufkens, K.[Koen],
Henderson, S.[Sandra],
Richardson, A.D.[Andrew D.],
Season Spotter: Using Citizen Science to Validate and Scale Plant
Phenology from Near-Surface Remote Sensing,
RS(8), No. 9, 2016, pp. 726.
DOI Link
1610
BibRef
Zheng, P.[Peng],
Zhao, Z.Q.[Zhong-Qiu],
Gao, J.[Jun],
Wu, X.D.[Xin-Dong],
Image set classification based on cooperative sparse representation,
PR(63), No. 1, 2017, pp. 206-217.
Elsevier DOI
1612
Sparse representation
BibRef
Zhao, Z.Q.[Zhong-Qiu],
Hong, Y.[Yan],
Zheng, P.[Peng],
Wu, X.D.[Xin-Dong],
Plant identification using triangular representation based on salient
points and margin points,
ICIP15(1145-1149)
IEEE DOI
1512
Feature extraction
BibRef
Bell, J.[Jonathan],
Dee, H.M.[Hannah M.],
Watching plants grow: a position paper on computer vision and
Arabidopsis thaliana,
IET-CV(11), No. 2, March 2017, pp. 113-121.
DOI Link
1703
BibRef
Li, D.W.[Da-Wei],
Xu, L.H.[Li-Hong],
Tang, X.S.[Xue-Song],
Sun, S.Y.[Shao-Yuan],
Cai, X.[Xin],
Zhang, P.[Peng],
3D Imaging of Greenhouse Plants with an Inexpensive Binocular Stereo
Vision System,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Han, X.H.[Xian-Hua],
Chen, Y.W.[Yen-Wei],
Generalized Aggregation of Sparse Coded Multi-Spectra for Satellite
Scene Classification,
IJGI(6), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Kusumoto, R.[Riko],
Han, X.H.[Xian-Hua],
Chen, Y.W.[Yen-Wei],
Hybrid Aggregation of Sparse Coded Descriptors for Food Recognition,
ICPR14(1490-1495)
IEEE DOI
1412
Encoding
BibRef
Kim, D.W.[Dong-Wook],
Yun, H.S.[Hee Sup],
Jeong, S.J.[Sang-Jin],
Kwon, Y.S.[Young-Seok],
Kim, S.G.[Suk-Gu],
Lee, W.S.[Won Suk],
Kim, H.J.[Hak-Jin],
Modeling and Testing of Growth Status for Chinese Cabbage and White
Radish with UAV-Based RGB Imagery,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Xu, J.[Jing],
Ma, L.[Long],
Wu, J.[Jie],
Xu, X.M.[Xiao-Meng],
Sun, Y.[Ye],
Liu, Q.A.[Qi-Ang],
Pan, L.Q.[Lei-Qing],
Tu, K.[Kang],
Applications of hyperspectral and optical scattering imaging technique
in the detection of food microorganism,
IJCVR(8), No. 3, 2018, pp. 267-282.
DOI Link
1807
BibRef
Strickland, E.,
3 sensors to track every bite and gulp,
Spectrum(55), No. 7, July 2018, pp. 9-10.
IEEE DOI
1807
[News item]
health care, medical computing, mobile computing, bite, calories,
diets, dozens
BibRef
de Sousa Ribeiro, F.,
Gong, L.,
Calivá, F.,
Swainson, M.,
Gudmundsson, K.,
Yu, M.,
Leontidis, G.,
Ye, X.,
Kollias, S.,
An End-to-End Deep Neural Architecture for Optical Character
Verification and Recognition in Retail Food Packaging,
ICIP18(2376-2380)
IEEE DOI
1809
Feature extraction, Geometry,
Machine learning, Food packaging,
maximally stable extremal regions
BibRef
Laursen, L.,
Automated eyes watch plants grow: Crop scientists hope to replace
traditional painstaking monitoring methods,
Spectrum(56), No. 01, January 2019, pp. 9-10.
IEEE DOI
1901
[News]
BibRef
Tonioni, A.[Alessio],
di Stefano, L.[Luigi],
Domain invariant hierarchical embedding for grocery products
recognition,
CVIU(182), 2019, pp. 81-92.
Elsevier DOI
1905
Grocery products recognition, Embedding learning,
Generative adversarial networks, Object recognition
BibRef
Polak, A.[Adam],
Coutts, F.K.[Fraser K.],
Murray, P.[Paul],
Marshall, S.[Stephen],
Use of hyperspectral imaging for cake moisture and hardness prediction,
IET-IPR(13), No. 7, 30 May 2019, pp. 1152-1160.
DOI Link
1906
BibRef
Li, J.[Jia],
Ge, W.Z.[Wen-Zhang],
Wei, Y.G.[Yao-Guang],
An, D.[Dong],
Supervised discriminative manifold learning with subsidiary-view
information for near infrared spectroscopic classification of crop
seeds,
PRL(125), 2019, pp. 381-388.
Elsevier DOI
1909
Dimensionality reduction, NIRS, Manifold learning,
Classification, Multi-view learning
BibRef
Raj, A.P.S.S.[Anubha Pearline Sundara Sobitha],
Vajravelu, S.K.[Sathiesh Kumar],
DDLA: dual deep learning architecture for classification of plant
species,
IET-IPR(13), No. 12, October 2019, pp. 2176-2182.
DOI Link
1911
BibRef
Madsen, S.L.[Simon Leminen],
Mortensen, A.K.[Anders Krogh],
Jřrgensen, R.N.[Rasmus Nyholm],
Karstoft, H.[Henrik],
Disentangling Information in Artificial Images of Plant Seedlings
Using Semi-Supervised GAN,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Díaz-Galián, M.V.[María Victoria],
Perez-Sanz, F.[Fernando],
Sanchez-Pagán, J.D.[Jose David],
Weiss, J.[Julia],
Egea-Cortines, M.[Marcos],
Navarro, P.J.[Pedro J.],
A Proposed Methodology to Analyze Plant Growth and Movement from
Phenomics Data,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
Close up views.
BibRef
Navarro, P.J.[Pedro J.],
Miller, L.[Leanne],
Gila-Navarro, A.[Alberto],
Díaz-Galián, M.V.[María Victoria],
Aguila, D.J.[Diego J.],
Egea-Cortines, M.[Marcos],
3DeepM: An Ad Hoc Architecture Based on Deep Learning Methods for
Multispectral Image Classification,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Pawara, P.[Pornntiwa],
Okafor, E.[Emmanuel],
Groefsema, M.[Marc],
He, S.[Sheng],
Schomaker, L.R.B.[Lambert R.B.],
Wiering, M.A.[Marco A.],
One-vs-One classification for deep neural networks,
PR(108), 2020, pp. 107528.
Elsevier DOI
2008
BibRef
Earlier: A1, A2, A5, A6, Only:
Data Augmentation for Plant Classification,
ACIVS17(615-626).
Springer DOI
1712
Deep learning, Multi-class classification,
One-vs-One classification, Plant recognition
BibRef
Dang, L.M.[L. Minh],
Wang, H.X.[Han-Xiang],
Li, Y.F.[Yan-Fen],
Min, K.[Kyungbok],
Kwak, J.T.[Jin Tae],
Lee, O.N.[O. New],
Park, H.Y.[Han-Yong],
Moon, H.J.[Hyeon-Joon],
Fusarium Wilt of Radish Detection Using RGB and Near Infrared Images
from Unmanned Aerial Vehicles,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Machefer, M.[Mélissande],
Lemarchand, F.[François],
Bonnefond, V.[Virginie],
Hitchins, A.[Alasdair],
Sidiropoulos, P.[Panagiotis],
Mask R-CNN Refitting Strategy for Plant Counting and Sizing in UAV
Imagery,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Kämper, W.[Wiebke],
Trueman, S.J.[Stephen J.],
Tahmasbian, I.[Iman],
Bai, S.H.[Shahla Hosseini],
Rapid Determination of Nutrient Concentrations in Hass Avocado Fruit
by Vis/NIR Hyperspectral Imaging of Flesh or Skin,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Wang, L.[Long],
Sun, J.[Jun],
Wu, X.H.[Xiao-Hong],
Shen, J.F.[Ji-Feng],
Lu, B.[Bing],
Tan, W.J.[Wen-Jun],
Identification of crop diseases using improved convolutional neural
networks,
IET-CV(14), No. 7, October 2020, pp. 538-545.
DOI Link
2010
BibRef
Hosseiny, B.[Benyamin],
Rastiveis, H.[Heidar],
Homayouni, S.[Saeid],
An Automated Framework for Plant Detection Based on Deep Simulated
Learning from Drone Imagery,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Ma, X.[Xu],
Liu, Y.[Yong],
A Modified Geometrical Optical Model of Row Crops Considering
Multiple Scattering Frame,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
And:
Correction:
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Yan, Y.L.[Yu-Lin],
Ryu, Y.[Youngryel],
Exploring Google Street View with deep learning for crop type mapping,
PandRS(171), 2021, pp. 278-296.
Elsevier DOI
2012
Crop type mapping, Deep learning, Google Earth Engine,
Google Street View, Ground referencing
BibRef
Weksler, S.[Shahar],
Rozenstein, O.[Offer],
Haish, N.[Nadav],
Moshelion, M.[Menachem],
Wallach, R.[Rony],
Ben-Dor, E.[Eyal],
Pepper Plants Leaf Spectral Reflectance Changes as a Result of Root
Rot Damage,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Rabab, S.[Saba],
Breen, E.[Edmond],
Gebremedhin, A.[Alem],
Shi, F.[Fan],
Badenhorst, P.[Pieter],
Chen, Y.P.P.[Yi-Ping Phoebe],
Daetwyler, H.D.[Hans D.],
A New Method for Extracting Individual Plant Bio-Characteristics from
High-Resolution Digital Images,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Kim, C.[Changhyeon],
van Iersel, M.W.[Marc W.],
Morphological and Physiological Screening to Predict Lettuce Biomass
Production in Controlled Environment Agriculture,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Kasthuri, N.,
Devi, T.M.[T. Meera],
Shangar, A.T.[Arivazhagan T.],
Yashwin, R.,
Shabhareesh, J.S.,
Plant leaf disease classification using deep neural network,
IJCVR(12), No. 5, 2022, pp. 443-463.
DOI Link
2209
BibRef
Falcioni, R.[Renan],
Gonçalves, J.V.F.[Joăo Vitor Ferreira],
de Oliveira, K.M.[Karym Mayara],
Antunes, W.C.[Werner Camargos],
Nanni, M.R.[Marcos Rafael],
VIS-NIR-SWIR Hyperspectroscopy Combined with Data Mining and Machine
Learning for Classification of Predicted Chemometrics of Green
Lettuce,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Li, C.L.[Chun-Lei],
Li, H.Y.[Huan-Yu],
Liao, L.[Liang],
Liu, Z.F.[Zhou-Feng],
Dong, Y.[Yan],
Real-time seed sorting system via 2D information entropy-based CNN
pruning and TensorRt acceleration,
IET-IPR(17), No. 6, 2023, pp. 1694-1708.
DOI Link
2305
2D information entropy, CNN pruning, seed sorting, TensorRt
BibRef
Liu, J.Y.[Jia-Yao],
Wang, L.F.[Lin-Feng],
Wang, Y.S.[Yun-Sheng],
An, M.M.[Ming-Ming],
Jiang, W.F.[Wen-Fei],
Xu, S.[Shipu],
Cross-class pest and disease vegetation detection based on small
sample registration,
IET-IPR(17), No. 8, 2023, pp. 2299-2308.
DOI Link
2306
cross-training set, few-shot learning, pest detection
BibRef
Kuang, Z.K.[Zhan-Kun],
Yu, X.Y.[Xiang-Yang],
Guo, Y.C.[Yu-Chen],
Cai, Y.[Yefan],
Hong, W.B.[Wei-Bin],
Design of a Multimodal Detection System Tested on Tea Impurity
Detection,
RS(16), No. 9, 2024, pp. 1590.
DOI Link
2405
BibRef
Lee, D.H.[Dong-Ho],
Park, J.H.[Jong-Hwa],
Development of a UAS-Based Multi-Sensor Deep Learning Model for
Predicting Napa Cabbage Fresh Weight and Determining Optimal Harvest
Time,
RS(16), No. 18, 2024, pp. 3455.
DOI Link
2410
BibRef
Hartley, Z.K.J.[Zane K. J.],
Lind, R.J.[Rob J.],
Smith, N.[Nicholas],
Collison, B.[Bob],
French, A.P.[Andrew P.],
Unlocking Comparative Plant Scoring with Siamese Neural Networks and
Pairwise Pseudo Labelling,
CVPPA23(678-684)
IEEE DOI
2401
BibRef
Körschens, M.[Matthias],
Bucher, S.F.[Solveig Franziska],
Römermann, C.[Christine],
Denzler, J.[Joachim],
Unified Automatic Plant Cover and Phenology Prediction,
CVPPA23(685-693)
IEEE DOI
2401
BibRef
Villalpando, A.P.[Antonio Pico],
Kubisch, M.[Matthias],
Colliaux, D.[David],
Hanappe, P.[Peter],
Hafner, V.V.[Verena V.],
Reinforcement learning with space carving for plant scanning,
CVPPA23(694-701)
IEEE DOI
2401
BibRef
Rodrigues, J.P.[Joăo Pedro],
Pacheco, O.R.[Osvaldo Rocha],
Correia, P.L.[Paulo Lobato],
Seabream Freshness Classification Using Vision Transformers,
CIARP23(I:510-525).
Springer DOI
2312
BibRef
Costa, D.[Dinis],
Silva, C.[Catarina],
Costa, J.[Joana],
Ribeiro, B.[Bernardete],
Improving Pest Detection via Transfer Learning,
CIARP23(II:105-116).
Springer DOI
2312
BibRef
Anagnostopoulou, D.[Dafni],
Retsinas, G.[George],
Efthymiou, N.[Niki],
Filntisis, P.[Panagiotis],
Maragos, P.[Petros],
A Realistic Synthetic Mushroom Scenes Dataset,
AgriVision23(6282-6289)
IEEE DOI
2309
BibRef
Retsinas, G.[George],
Efthymiou, N.[Niki],
Maragos, P.[Petros],
Mushroom Segmentation and 3D Pose Estimation from Point Clouds using
Fully Convolutional Geometric Features and Implicit Pose Encoding,
AgriVision23(6264-6271)
IEEE DOI
2309
BibRef
Miranda, M.[Miro],
Drees, L.[Lukas],
Roscher, R.[Ribana],
Controlled Multi-modal Image Generation for Plant Growth Modeling,
ICPR22(5118-5124)
IEEE DOI
2212
Measurement, Image synthesis, Ecosystems, Predictive models,
Generative adversarial networks, Task analysis
BibRef
Lu, F.X.[Fu-Xiang],
Zhao, W.[Wei],
Zhang, W.Y.[Wen-Yu],
Yuan, M.[Min],
Arg-Cnn: An Attention-Based Network for Plant Identification,
ICIP22(4063-4067)
IEEE DOI
2211
Training, Interpolation, Convolution, Plants (biology),
Neural networks, Focusing, Plant identification, attention,
convolutional neural network
BibRef
Sáez-Pérez, J.[Javier],
Gallego, A.J.[Antonio Javier],
Valero-Mas, J.J.[Jose J.],
Zaragoza, J.C.[Jorge Calvo],
Domain Adaptation in Robotics: A Study Case on Kitchen Utensil
Recognition,
IbPRIA22(366-377).
Springer DOI
2205
BibRef
Picek, L.[Luká],
ulc, M.[Milan],
Matas, J.G.[Jirí G.],
Jeppesen, T.S.[Thomas S.],
Heilmann-Clausen, J.[Jacob],
Lćssře, T.[Thomas],
Frřslev, T.[Tobias],
Danish Fungi 2020: Not Just Another Image Recognition Dataset,
WACV22(3281-3291)
IEEE DOI
2202
Fungi, Training, Visualization, Codes, Metadata,
Benchmark testing, Datasets,
Evaluation and Comparison of Vision Algorithms
Object Detection/Recognition/Categorization
BibRef
Pan, H.L.[Hao-Lin],
Hétroy-Wheeler, F.[Franck],
Charlaix, J.[Julie],
Colliaux, D.[David],
Multi-scale Space-time Registration of Growing Plants,
3DV21(310-319)
IEEE DOI
2201
Measurement, Point cloud compression, Shape, Skeleton,
Random forests, 3d vision, shape correspondence,
space-time registration
BibRef
Valencia, Y.M.,
Majin, J.J.,
Taveira, V.B.,
Salazar, J.D.,
Stivanello, M.E.,
Ferreira, L.C.,
Stemmer, M.R.,
A Novel Method for Inspection Defects in Commercial Eggs Using Computer
Vision,
ISPRS21(B2-2021: 809-816).
DOI Link
2201
BibRef
Qian, J.X.[Jia-Xin],
Yu, P.F.[Peng-Fei],
Li, H.Y.[Hai-Yan],
Li, H.S.[Hong-Song],
Research on Classification of Wild Fungi Based on Improved Resnet50
Network,
ICIVC21(168-173)
IEEE DOI
2112
Fungi, Training, Image recognition, Transfer learning, Usability,
Task analysis, Residual neural networks, wild fungi,
transfer learning
BibRef
Kushida, T.[Takahiro],
Tanaka, K.[Kenichiro],
Funatomi, T.[Takuya],
Tahara, K.[Komei],
Kagawa, Y.[Yukihiro],
Mukaigawa, Y.[Yasuhiro],
Practical Descattering of Transmissive Inspection Using Slanted
Linear Image Sensors,
MVA21(1-5)
DOI Link
2109
Food production line.
Image sensors, Computational modeling,
Frequency-domain analysis, Prototypes, Production, Inspection
BibRef
Forero, M.G.[Manuel G.],
Beltrán, C.E.[Carlos E.],
González-Santos, C.[Christian],
Automatic Classification of Zingiberales from RGB Images,
MCPR21(198-206).
Springer DOI
2108
BibRef
Murcia, H.[Harold],
Sanabria, D.[David],
Méndez, D.[Dehyro],
Forero, M.G.[Manuel G.],
A Comparative Study of 3D Plant Modeling Systems Based on Low-Cost 2D
LiDAR and Kinect,
MCPR21(272-281).
Springer DOI
2108
BibRef
Frank, L.[Logan],
Wiegman, C.[Christopher],
Davis, J.[Jim],
Shearer, S.[Scott],
Confidence-Driven Hierarchical Classification of Cultivated Plant
Stresses,
WACV21(2502-2511)
IEEE DOI
2106
Deep learning, Plants (biology), Surveillance,
Agriculture, Convolutional neural networks
BibRef
Leo, M.[Marco],
Carcagně, P.[Pierluigi],
Distante, C.[Cosimo],
A Systematic Investigation on end-to-end Deep Recognition of Grocery
Products in the Wild,
ICPR21(7234-7241)
IEEE DOI
2105
Systematics, Image recognition, Pipelines, Machine learning,
Radiometry, Object recognition
BibRef
Ong, J.D.L.[Josh Daniel L.],
Abigan, E.G.T.[Erinn Giannice T.],
Cajucom, L.G.[Luis Gabriel],
Abu, P.A.R.[Patricia Angela R.],
Estuar, M.R.J.E.[Ma. Regina Justina E.],
Ensemble Convolutional Neural Networks for the Detection of Microscopic
Fusarium Oxysporum,
ISVC20(I:321-332).
Springer DOI
2103
BibRef
Huang, S.,
Luo, P.,
Wang, Z.,
Analysis and Study of Egg Quality Based on Hyperspectral Image Data
of Different Forms of Egg Yolks,
CVIDL20(177-181)
IEEE DOI
2102
data analysis, food processing industry, food products,
hyperspectral imaging, image processing, Egg quality analysis
BibRef
Paturkar, A.,
Gupta, G.S.,
Bailey, D.,
Plant Trait Segmentation for Plant Growth Monitoring,
IVCNZ20(1-6)
IEEE DOI
2012
Image segmentation,
Machine learning algorithms, Neural networks, Training data,
Point cloud segmentation
BibRef
Yang, C.,
Baireddy, S.,
Chen, Y.,
Cai, E.,
Caldwell, D.,
Méline, V.,
Iyer-Pascuzzi, A.S.,
Delp, E.J.,
Plant Stem Segmentation Using Fast Ground Truth Generation,
SSIAI20(62-65)
IEEE DOI
2009
biology computing, botany, image segmentation,
learning (artificial intelligence), neural nets,
Tomato
BibRef
Cai, E.,
Baireddy, S.,
Yang, C.,
Crawford, M.,
Delp, E.J.,
Deep Transfer Learning For Plant Center Localization,
AgriVision20(277-284)
IEEE DOI
2008
Training, Machine learning, Task analysis, Agriculture, Data models,
Training data, Shape
BibRef
Louedec, J.L.,
Montes, H.A.,
Duckett, T.,
Cielniak, G.,
Segmentation and detection from organised 3D point clouds:
A case study in broccoli head detection,
AgriVision20(285-293)
IEEE DOI
2008
Feature extraction, Sensors,
Agriculture, Shape, Task analysis, Head
BibRef
Chiu, M.T.[Mang Tik],
Xu, X.Q.[Xing-Qian],
Wang, K.[Kai],
Hobbs, J.[Jennifer],
Hovakimyan, N.[Naira],
Huang, T.S.[Thomas S.],
Shi, H.H.[Hong-Hui],
Wei, Y.C.[Yun-Chao],
Huang, Z.L.[Zi-Long],
Schwing, A.[Alexander],
Brunner, R.[Robert],
Dozier, I.[Ivan],
Dozier, W.[Wyatt],
Ghandilyan, K.[Karen],
Wilson, D.[David],
Park, H.S.[Hyun-Seong],
Kim, J.[Junhee],
Kim, S.H.[Sung-Ho],
Liu, Q.H.[Qing-Hui],
Kampffmeyer, M.C.[Michael C.],
Jenssen, R.[Robert],
Salberg, A.B.[Arnt B.],
Barbosa, A.[Alexandre],
Trevisan, R.[Rodrigo],
Zhao, B.C.[Bing-Chen],
Yu, S.Z.[Shao-Zuo],
Yang, S.W.[Si-Wei],
Wang, Y.[Yin],
Sheng, H.[Hao],
Chen, X.[Xiao],
Su, J.Y.[Jing-Yi],
Rajagopal, R.[Ram],
Ng, A.[Andrew],
Huynh, V.T.[Van Thong],
Kim, S.H.[Soo-Hyung],
Na, I.S.[In-Seop],
Baid, U.[Ujjwal],
Innani, S.[Shubham],
Dutande, P.[Prasad],
Baheti, B.[Bhakti],
Talbar, S.[Sanjay],
Tang, J.Y.[Jian-Yu],
The 1st Agriculture-Vision Challenge: Methods and Results,
AgriVision20(212-218)
IEEE DOI
2008
Semantics, Image segmentation,
Agriculture, Computational modeling
BibRef
Phillips, T.,
Abdulla, W.,
Class Embodiment Autoencoder (CEAE) for classifying the botanical
origins of honey,
IVCNZ19(1-5)
IEEE DOI
2004
botany, data compression, feature extraction, image classification,
neural nets, CEAE, New Zealand honey, class embodiment autoencoder,
hyperspectral imaging
BibRef
Koporec, G.,
Per, J.,
Deep Learning Performance in the Presence of Significant Occlusions:
An Intelligent Household Refrigerator Case,
ACVR19(2532-2540)
IEEE DOI
2004
learning (artificial intelligence), object detection,
rendering (computer graphics), deep learning performance,
refrigerator
BibRef
Riegler-Nurscher, P.[Peter],
Prankl, J.[Johann],
Vincze, M.[Markus],
Tillage Machine Control Based on a Vision System for Soil Roughness and
Soil Cover Estimation,
CVS19(201-210).
Springer DOI
1912
BibRef
Saberi, A.,
Khesali, E.,
Fakhri, M.,
Enayati, H.,
Koushapoor, M.,
Design and Evaluation of a Controller to Achieve Optimum Seeding Rate
With Specific Spatial Management in Agricultural Machinery,
SMPR19(917-921).
DOI Link
1912
BibRef
Deglint, J.L.[Jason L.],
Jin, C.[Chao],
Wong, A.[Alexander],
Investigating the Automatic Classification of Algae Using the Spectral
and Morphological Characteristics via Deep Residual Learning,
ICIAR19(II:269-280).
Springer DOI
1909
BibRef
Follmann, P.[Patrick],
Drost, B.[Bertram],
Böttger, T.[Tobias],
Acquire, Augment, Segment and Enjoy:
Weakly Supervised Instance Segmentation of Supermarket Products,
GCPR18(363-376).
Springer DOI
1905
BibRef
Jiang, Y.J.[Yi-Jun],
Schenck, E.[Elim],
Kranz, S.[Spencer],
Banerjee, S.[Sean],
Banerjee, N.K.[Natasha Kholgade],
CNN-Based Non-contact Detection of Food Level in Bottles from RGB
Images,
MMMod19(I:202-213).
Springer DOI
1901
BibRef
Galati, R.,
Reina, G.,
Messina, A.,
Gentile, A.,
Survey and navigation in agricultural environments using robotic
technologies,
AVSS17(1-6)
IEEE DOI
1806
agriculture, farming, image fusion, intelligent robots,
mobile robots, robot vision, telerobotics,
Wheels
BibRef
Bhosle, K.,
Musande, V.,
Stress Monitoring of Mulberry Plants By Finding Rep Using Hyperspectral
Data,
Hannover17(383-386).
DOI Link
1805
BibRef
Gao, K.,
White, T.,
Palaniappan, K.,
Warmund, M.,
Bunyak, F.,
Museed: A mobile image analysis application for plant seed
morphometry,
ICIP17(2826-2830)
IEEE DOI
1803
Image analysis, Image edge detection, Image segmentation, Kernel,
Mobile applications, Shape, image analysis, mobile application,
plant seed morphometry
BibRef
Alves, W.A.L.[Wonder A. L.],
Gobber, C.F.[Charles F.],
Hashimoto, R.F.[Ronaldo F.],
Plant Bounding Box Detection from Desirable Residues of the Ultimate
Levelings,
ICIAR18(474-481).
Springer DOI
1807
BibRef
Earlier: A2, A1, A3:
Ultimate Leveling Based on Mumford-Shah Energy Functional Applied to
Plant Detection,
CIARP17(220-228).
Springer DOI
1802
BibRef
Chen, Y.,
Ribera, J.,
Boomsma, C.,
Delp, E.J.[Edward J.],
Locating Crop Plant Centers from UAV-Based RGB Imagery,
CVPPP17(2030-2037)
IEEE DOI
1802
Greenhouses, Plants (biology), Training data,
Unmanned aerial vehicles
BibRef
Fiorucci, M.[Marco],
Fratton, M.[Marco],
Dulecha, T.G.[Tinsae G.],
Pelillo, M.[Marcello],
Pravato, A.[Alberto],
Roncato, A.[Alessandro],
A Computer Vision System for the Automatic Inventory of a Cooler,
CIAP17(I:575-585).
Springer DOI
1711
BibRef
Ahmad, N.M.[Norul Maslissa],
Ali, N.M.[Nazlena Mohamad],
Baharin, H.[Hanif],
MyRedList: Virtual Application for Threatened Plant Species,
IVIC17(445-454).
Springer DOI
1711
BibRef
Carstensen, J.M.,
Fast, versatile, and non-destructive biscuit inspection system using
spectral imaging,
MVA17(502-505)
DOI Link
1708
Image color analysis, Imaging, Indexes, Moisture,
Moisture measurement, Reflectivity, Training
BibRef
Bindlish, E.,
Abbott, A.L.,
Balota, M.,
Assessment of Peanut Pod Maturity,
WACV17(688-696)
IEEE DOI
1609
Agriculture, Calibration, Color, Image color analysis, Imaging, Soil,
Visualization
BibRef
Mendiola-Lau, V.[Victor],
Silva Mata, F.J.[Francisco José],
Martínez-Díaz, Y.[Yoanna],
Bustamante, I.T.[Isneri Talavera],
de Marsico, M.[Maria],
Automatic Classification of Herbal Substances Enhanced with an Entropy
Criterion,
CIARP16(233-240).
Springer DOI
1703
BibRef
Marin, R.D.C.[Ricardo D. C.],
Green, R.D.[Richard D.],
A Hidden Markov Model for modeling and extracting vine structure in
images,
ICVNZ15(1-6)
IEEE DOI
1701
feature extraction
BibRef
Brilhador, A.[Anderson],
Serrarens, D.A.[Daniel A.],
Lopes, F.M.[Fabrício M.],
A Computer Vision Approach for Automatic Measurement of the Inter-plant
Spacing,
CIARP15(219-227).
Springer DOI
1511
BibRef
Liang, B.[Bing],
Song, G.X.[Gu-Xin],
Li, G.L.[Gong-Li],
Discussion about the effect of digital plants library on the plants
landscape restoration in Yuanmingyuan,
CIPA15(43-48).
DOI Link
1508
BibRef
Ávila, M.M.[M. Mar],
Caballero, D.[Daniel],
Durán, M.L.[M. Luisa],
Caro, A.[Andrés],
Pérez-Palacios, T.[Trinidad],
Antequera, T.[Teresa],
Including 3D-textures in a Computer Vision System to Analyze Quality
Traits of Loin,
CVS15(456-465).
Springer DOI
1507
BibRef
Chaudhury, A.[Ayan],
Ward, C.[Christopher],
Talasaz, A.[Ali],
Ivanov, A.G.[Alexander G.],
Huner, N.P.A.[Norman P.A.],
Grodzinski, B.[Bernard],
Patel, R.V.[Rajni V.],
Barron, J.L.[John L.],
Computer Vision Based Autonomous Robotic System for 3D Plant Growth
Measurement,
CRV15(290-296)
IEEE DOI
1507
Image reconstruction
BibRef
Lam, A.,
Kuno, Y.,
Sato, I.,
Evaluating freshness of produce using transfer learning,
FCV15(1-4)
IEEE DOI
1506
agricultural products
BibRef
Skytte, J.[Jacob],
Mřller, F.[Flemming],
Abildgaard, O.[Otto],
Dahl, A.[Anders],
Larsen, R.[Rasmus],
Discriminating Yogurt Microstructure Using Diffuse Reflectance Images,
SCIA15(187-198).
Springer DOI
1506
BibRef
Ward, B.[Ben],
Bastian, J.[John],
van den Hengel, A.[Anton],
Pooley, D.[Daniel],
Bari, R.[Rajendra],
Berger, B.[Bettina],
Tester, M.[Mark],
A Model-Based Approach to Recovering the Structure of a Plant from
Images,
PlantType14(215-230).
Springer DOI
1504
BibRef
van den Hengel, A.J.[Anton J.],
Russell, C.[Chris],
Dick, A.[Anthony],
Bastian, J.[John],
Pooley, D.[Daniel],
Fleming, L.[Lachlan],
Agapito, L.[Lourdes],
Part-based modelling of compound scenes from images,
CVPR15(878-886)
IEEE DOI
1510
BibRef
Benoit, L.[Landry],
Semaan, G.[Georges],
Franconi, F.[Florence],
Belin, É.[Étienne],
Chapeau-Blondeau, F.[François],
Demilly, D.[Didier],
Rousseau, D.[David],
3D Multimodal Simulation of Image Acquisition by X-Ray and MRI for
Validation of Seedling Measurements with Segmentation Algorithms,
PlantType14(131-139).
Springer DOI
1504
BibRef
Pound, M.P.[Michael P.],
French, A.P.[Andrew P.],
Murchie, E.H.[Erik H.],
Pridmore, T.P.[Tony P.],
Surface Reconstruction of Plant Shoots from Multiple Views,
PlantType14(158-173).
Springer DOI
1504
BibRef
Klodt, M.[Maria],
Cremers, D.[Daniel],
High-Resolution Plant Shape Measurements from Multi-view Stereo
Reconstruction,
PlantType14(174-184).
Springer DOI
1504
BibRef
Skoien, K.R.[Kristoffer Rist],
Alver, M.O.[Morten Omholt],
Alfredsen, J.A.[Jo Arve],
A computer vision approach for detection and quantification of feed
particles in marine fish farms,
ICIP14(1648-1652)
IEEE DOI
1502
Aquaculture
BibRef
Yokoya, N.[Naoto],
Kokawa, M.[Mito],
Sugiyama, J.[Junichi],
Spectral unmixing of fluorescence fingerprint imagery for
visualization of constituents in pie pastry,
ICIP14(679-683)
IEEE DOI
1502
Dairy products
BibRef
Afridi, M.J.[Muhammad Jamal],
Liu, X.M.[Xiao-Ming],
McGrath, J.M.[J. Mitchell],
An Automated System for Plant-Level Disease Rating in Real Fields,
ICPR14(148-153)
IEEE DOI
1412
Diseases
BibRef
Djuricic, A.,
Weinmann, M.,
Jutzi, B.,
Potentials of small, lightweight and low cost Multi-Echo Laser Scanners
for detecting Grape Berries,
CloseRange14(211-216).
DOI Link
1411
BibRef
Dubosclard, P.[Pierre],
Larnier, S.[Stanislas],
Konik, H.[Hubert],
Herbulot, A.[Ariane],
Devy, M.[Michel],
Automatic Method for Visual Grading of Seed Food Products,
ICIAR14(I: 485-495).
Springer DOI
1410
BibRef
Nggada, S.H.[Shawulu Hunira],
Muyingi, H.N.N.[Hippolyte N'Sung-Nza],
Dheedan, A.[Amer],
Gorejena, M.[Marshal],
Farmer Assisted Mobile Framework for Improving Agricultural Products,
ICISP14(647-657).
Springer DOI
1406
BibRef
Tarry, C.[Cole],
Wspanialy, P.[Patrick],
Veres, M.[Matthew],
Moussa, M.[Medhat],
An Integrated Bud Detection and Localization System for Application
in Greenhouse Automation,
CRV14(344-348)
IEEE DOI
1406
Cameras
BibRef
Botterill, T.,
Green, R.D.,
Mills, S.,
Finding a vine's structure by bottom-up parsing of cane edges,
IVCNZ13(112-117)
IEEE DOI
1412
edge detection. Vine pruning robot.
BibRef
Floriello, D.,
Botterill, T.,
Green, R.D.,
Defining a geometric probability measure in correspondence problems
for branched structures,
IVCNZ13(311-316)
IEEE DOI
1412
computer vision
BibRef
Marin, R.D.C.,
Botterill, T.,
Green, R.D.,
Split-and-merge EM for vine image segmentation,
IVCNZ13(270-275)
IEEE DOI
1412
Gaussian processes
BibRef
McCulloch, J.,
Green, R.,
Detecting wires in the canopy of grapevines using neural networks:
A robust and heuristic free approach,
IVCNZ13(334-339)
IEEE DOI
1412
manipulators
BibRef
Wang, B.[Bin],
Gao, Y.S.[Yong-Sheng],
Sun, C.M.[Chang-Ming],
Blumenstein, M.[Michael],
La Salle, J.[John],
A Local Scale Selection Scheme for Multiscale Area Integral
Invariants,
DICTA16(1-6)
IEEE DOI
1701
Australia
BibRef
Quevedo, R.[Roberto],
Valencia, E.[Emir],
Bastías, J.M.[José Miguel],
Cárdenas, S.[Stefany],
Description of the Enzymatic Browning in Avocado Slice Using GLCM Image
Texture,
PSIVTWS13(93-101).
Springer DOI
1412
BibRef
Sharifzadeh, S.[Sara],
Clemmensen, L.H.[Line H.],
Lřje, H.[Hanne],
Ersbřll, B.K.[Bjarne K.],
Statistical Quality Assessment of Pre-fried Carrots Using Multispectral
Imaging,
SCIA13(620-629).
Springer DOI
1311
BibRef
Masoudian, A.[Alireza],
Mcisaac, K.A.[Kenneth A.],
Application of Support Vector Machine to Detect Microbial Spoilage of
Mushrooms,
CRV13(281-287)
IEEE DOI
1308
Accuracy
BibRef
Elibol, A.[Armagan],
Posch, S.[Stefan],
Maurer, A.[Andreas],
Pillen, K.[Klaus],
Möller, B.[Birgit],
Vision-Based 3D-Reconstruction of Barley Plants,
IbPRIA13(406-415).
Springer DOI
1307
BibRef
Bin, W.[Wang],
Zhuo, W.[Wang],
Yuan, M.Z.[Ming-Zhe],
Intelligent control based on case-based reasoning for outlet tobacco
moisture percentage of loosening resurgence machine,
ICARCV12(1728-1732).
IEEE DOI
1304
BibRef
Hazisawa, T.[Takeshi],
Toda, M.[Masashi],
Sakoil, T.[Teruvasu],
Matumural, K.[Kazuhiro],
Fukuda, M.[Masahito],
Image analysis method for grading raw shiitake mushrooms,
FCV13(46-52).
IEEE DOI
1304
BibRef
Roomi, S.M.M.[S. Mohamed Mansoor],
Priya, R.J.[R. Jyothi],
Bhumesh, S.,
Monisha, P.,
Classification of mangoes by object features and contour modeling,
IMVIP12(165-168).
IEEE DOI
1302
BibRef
Romeijn, H.,
Sheth, F.,
Pettit, C.J.,
An Evaluative Review of Simulated Dynamic Smart 3d Objects,
AnnalsPRS(I-4), No. 2012, pp. 125-130.
DOI Link
1209
3D models of plants.
BibRef
Marchant, R.[Ross],
Jackway, P.T.[Paul T.],
Generalised Hilbert Transforms for the Estimation of Growth Direction
in Coral Cores,
DICTA11(660-665).
IEEE DOI
1205
BibRef
Cohen, C.J.[Charles J.],
Haanpaa, D.[Doug],
Zott, J.P.[James P.],
Machine vision algorithms for robust animal species identification,
AIPR15(1-7)
IEEE DOI
1605
Haar transforms
BibRef
Cohen, C.J.[Charles J.],
Haanpaa, D.[Doug],
Rowe, S.[Steve],
Zott, J.P.[James P.],
Vision algorithms for automated census of animals,
AIPR11(1-5).
IEEE DOI
1204
BibRef
Salo, H.[Heikki],
Tirronen, V.[Ville],
Neri, F.[Ferrante],
Evolutionary Regression Machines for Precision Agriculture,
EvoIASP12(356-365).
Springer DOI
1204
BibRef
Patel, J.J.[Jalpa J.],
Modi, C.K.[Chintan K.],
Jain, K.R.[Kavindra R.],
Quality evaluation of Foeniculum vulgare (Fennel) seeds using
colorization,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Yeh, M.C.[Mei-Chen],
Tai, J.[Jason],
A Hierarchical Approach to Practical Beverage Package Recognition,
PSIVT11(I: 348-357).
Springer DOI
1111
BibRef
Moonrinta, J.,
Chaivivatrakul, S.,
Dailey, M.N.,
Ekpanyapong, M.,
Fruit detection, tracking, and 3D reconstruction for crop mapping and
yield estimation,
ICARCV10(1181-1186).
IEEE DOI
1109
BibRef
Buus, O.T.[Ole Thomsen],
Jřrgensen, J.R.[Johannes Ravn],
Carstensen, J.M.[Jens Michael],
Analysis of Seed Sorting Process by Estimation of Seed Motion
Trajectories,
SCIA11(273-284).
Springer DOI
1105
BibRef
Nielsen, O.H.A.[Otto Hřjager Attermann],
Dahl, A.L.[Anders Lindbjerg],
Larsen, R.[Rasmus],
Mřller, F.[Flemming],
Nielsen, F.D.[Frederik Donbćk],
Thomsen, C.L.[Carsten L.],
Aanćs, H.[Henrik],
Carstensen, J.M.[Jens Michael],
Supercontinuum Light Sources for Hyperspectral Subsurface Laser
Scattering:
Applications for Food Inspection,
SCIA11(327-337).
Springer DOI
1105
BibRef
Nohara, S.[Sachiyo],
Kato, K.[Kunihito],
Yamamoto, K.[Kazuhiko],
Yoshimura, W.[Wakako],
Kasamatsu, C.[Chinatsu],
A deliciousness information extraction method by controlling of image
information,
FCV11(1-6).
IEEE DOI
1102
Visual evaluation of food for taste.
BibRef
Nakajima, C.[Chikahito],
Nogata, Y.[Yasuyuki],
Sugimoto, M.[Masaaki],
Autodetection of barnacle larvae at power plants,
FCV11(1-4).
IEEE DOI
1102
BibRef
Perciano, T.[Talita],
Hirata, R.[Roberto],
de Castro Jorge, L.A.[Lúcio André],
Parameter Estimation for Ridge Detection in Images with Thin Structures,
CIARP10(386-393).
Springer DOI
1011
BibRef
Villette, S.,
Gee, C.,
Piron, E.,
Martin, R.,
Miclet, D.,
Paindavoine, M.,
An efficient vision system to measure granule velocity and mass flow
distribution in fertiliser centrifugal spreading,
IPTA10(543-548).
IEEE DOI
1007
BibRef
Wei, Z.B.[Zhen-Bo],
Wang, J.[Jun],
Discrimination of Honeys by Electronic Tongue and Different Analytical
Techniques,
CISP09(1-5).
IEEE DOI
0910
BibRef
Dissing, B.S.[Bjorn S.],
Clemmesen, L.H.[Line H.],
Loje, H.[Hanne],
Ersboll, B.K.[Bjarne K.],
Adler-Nissen, J.[Jens],
Temporal reflectance changes in vegetables,
CRICV09(1917-1922).
IEEE DOI
0910
BibRef
Zhang, Z.Y.[Zhuo-Yong],
Wang, F.X.[Feng-Xia],
de B Harrington, P.,
Two-Dimensional Mid- and Near-Infrared Correlation Spectroscopy for
Rhubarb Identification,
CISP09(1-6).
IEEE DOI
0910
BibRef
Liu, Q.S.[Qing-Sheng],
Liu, G.H.[Gao-Huan],
Using Tasseled Cap Transformation of CBERS-02 Images to Detect Dieback
or Dead Robinia Pseudoacacia Plantation,
CISP09(1-5).
IEEE DOI
0910
BibRef
Backes, A.R.[André R.],
de M. Sá Junior, J.J.[Jarbas J.],
Kolb, R.M.[Rosana M.],
Bruno, O.M.[Odemir M.],
Plant Species Identification Using Multi-scale Fractal Dimension
Applied to Images of Adaxial Surface Epidermis,
CAIP09(680-688).
Springer DOI
0909
See also Shape Skeleton Classification Using Graph and Multi-scale Fractal Dimension.
BibRef
Portman, N.[Nataliya],
Grenander, U.[Ulf],
Vrscay, E.R.[Edward R.],
Direct Estimation of Biological Growth Properties from Image Data Using
the 'GRID' Model,
ICIAR09(832-843).
Springer DOI
0907
BibRef
Ma, W.[Wei],
Zha, H.B.[Hong-Bin],
Convenient reconstruction of natural plants by images,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Xie, N.H.[Nian-Hua],
Li, X.[Xi],
Zhang, X.Q.[Xiao-Qin],
Hu, W.M.[Wei-Ming],
Wang, J.Z.[James Z.],
Boosted cannabis image recognition,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Taouil, K.[Khaled],
Chtourou, Z.[Zied],
Kamoun, L.[Lotfi],
Machine Vision Based Quality Monitoring in Olive Oil Conditioning,
IPTA08(1-4).
IEEE DOI
0811
BibRef
Belhumeur, P.N.[Peter N.],
Chen, D.Z.[Dao-Zheng],
Feiner, S.[Steven],
Jacobs, D.W.[David W.],
Kress, W.J.[W. John],
Ling, H.B.[Hai-Bin],
Lopez, I.[Ida],
Ramamoorthi, R.[Ravi],
Sheorey, S.[Sameer],
White, S.[Sean],
Zhang, L.[Ling],
Searching the World's Herbaria:
A System for Visual Identification of Plant Species,
ECCV08(IV: 116-129).
Springer DOI
0810
BibRef
Lumme, J.,
Karjalainen, M.,
Kaartinen, H.,
Kukko, A.,
Hyyppä, J.,
Hyyppä, H.,
Jaakkola, A.,
Kleemola, J.,
Terrestrial Laser Scanning of Agricultural Crops,
ISPRS08(B5: 563 ff).
PDF File.
0807
BibRef
eatovic, D.[Dejan],
A Segmentation Approach in Novel Real Time 3D Plant Recognition System,
CVS08(xx-yy).
Springer DOI
0805
BibRef
Song, Y.[Yu],
Wilson, R.G.[Roland G.],
Edmondson, R.[Rodney],
Parsons, N.[Nick],
Surface Modelling of Plants from Stereo Images,
3DIM07(312-319).
IEEE DOI
0708
BibRef
Mizuno, S.J.[Shin-Ji],
Noda, K.[Keiichi],
Ezaki, N.[Nobuo],
Takizawa, H.[Hotaka],
Yamamoto, S.J.[Shin-Ji],
Detection of Wilt by Analyzing Color and Stereo Vision Data of Plant,
MIRAGE07(400-411).
Springer DOI
0703
BibRef
Guo, M.[Mingen],
Ou, Z.Y.[Zong-Ying],
Wei, H.L.[Hong-Lei],
Inspecting Ingredients of Starches in Starch-Noodle based on Image
Processing and Pattern Recognition,
ICPR06(II: 877-880).
IEEE DOI
0609
BibRef
Dahl, A.B.[Anders Bjorholm],
Aanćs, H.[Henrik],
Larsen, R.[Rasmus],
Ersbřll, B.K.[Bjarne K.],
Classification of Biological Objects Using Active Appearance Modelling
and Color Cooccurrence Matrices,
SCIA07(938-947).
Springer DOI
0706
Active Appearance Models. AAM for logs and vegetables.
BibRef
Kita, N.,
Kita, Y.,
Yang, H.Q.[Hai-Quan],
Archiving technology for plant inspection images captured by mobile
active cameras '4D visible memory',
3DPVT02(208-213).
0206
BibRef
Tadeo, F.,
Matia, D.,
Laya, D.,
Santos, F.,
Alvarez, T.,
Gonzalez, S.,
Detection of Phases in Sugar Crystallization Using Wavelets,
ICIP01(III: 178-181).
IEEE DOI
0108
BibRef
Rodenacker, K.,
Gais, P.,
Juetting, U.,
Hense, B.A.,
(Semi-) Automatic Recognition of Microorganisms in Water,
ICIP01(III: 30-33).
IEEE DOI
0108
BibRef
Davies, R.[Roger],
Heleno, P.[Paulo],
Correia, B.A.B.[Bento A. Brázio],
Dinis, J.[Joăo],
VIP3D: An Application of Image Processing Technology for Quality
Control in the Food Industry,
ICIP01(I: 293-296).
IEEE DOI
0108
BibRef
Mallant, J.P.,
Visual Inspection in the Food Industry,
SCIA99(Invited Talk).
BibRef
9900
Jones, R.[Ronald],
Frydendal, I.[Ib],
Segmentation of Sugar Beets Using Image and Graph Processing,
ICPR98(Vol II: 1697-1699).
IEEE DOI
9808
BibRef
Hahn, F.[Federico],
Mota, R.[Rafael],
Nobel Chile Jalapeno sorting using structured laser and neural network
classifiers,
CIAP97(II: 517-523).
Springer DOI
9709
BibRef
Gregori, M.,
Lombardi, L.,
Savini, M.,
Scianna, A.,
Autonomous plant inspection and anomaly detection,
CIAP97(II: 509-516).
Springer DOI
9709
BibRef
Bolle, R.M.,
Connell, J.H.,
Haas, N.,
Mohan, R., and
Taubin, G.,
VeggieVision: A Produce Recognition System,
WACV96(244-251).
IEEE DOI
9609
BibRef
Garcia-Consuegra, J.,
Cisneros, G.,
Martinez, A.,
A methodology for woody crop location and discrimination in remote
sensing,
CIAP99(810-815).
IEEE DOI
9909
BibRef
Samal, A.,
Peterson, B.,
Holliday, D.J.,
Recognizing plants using stochastic L-systems,
ICIP94(I: 183-187).
IEEE DOI
9411
BibRef
Dobrusin, Y.[Yuri],
Edan, Y.[Yael],
Grinshpun, J.[Joseph],
Peiper, U.M.[Uri M.],
Wolf, I.[Isaac],
Hetzroni, A.[Amots],
Computer image analysis to locate targets for an agricultural robot,
CAIP93(775-779).
Springer DOI
9309
BibRef
Berke, J.[József],
Gyorffy, K.[Katalin],
Fischl, G.[Géza],
Kárpáti, L.[László],
Bakonyi, J.[József],
The application of digital image processing in the evaluation of
agricultural experiments,
CAIP93(780-787).
Springer DOI
9309
BibRef
Belaid, A.,
Metrology in quality control of nuts,
ICPR90(I: 636-638).
IEEE DOI
9006
BibRef
Fox, J.S.,
Weldon, Jr., E., and
Ang, M.,
Machine Vision Techniques for Finding Sugarcane Seedeyes,
CVPR85(653-655). (Univ. of Hawaii)
Hough.
Feature Computation. Interesting use of pyramids and hough transform.
BibRef
8500
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Inspection of Food Grains .