20.7.3.7 Agriculture, Inspection -- Food Products, Plants, Farms

Chapter Contents (Back)
Real Time Vision. Application, Inspection. Inspection, Food. Food Inspection. Plant Inspection.
See also Inspection of Food Grains.
See also Plant Phenotyping. Food industry level analysis. For food on the table, dishes to eat, etc.:
See also Food Descriptions, Dishes, Recipe Generation.
See also Weed Detection, Close Range.
See also Plant Disease Analysis, General Plant Diseasses.

Dipix Technologies,
2001
WWW Link. Vendor, Inspection. Industrial inspection systems for food industry.

Ellips B.V.,
1989.
WWW Link. Vendor, Inspection. Industrial inspection systems for food industry.

JLI Vision,
1985. Founded as Jřrgen Lćssře Ingeniřrfirma Aps
WWW Link. Vendor, Inspection. Industrial inspection systems for food industry.

Tillett and Hague Technology Ltd,
2005.
WWW Link. Vendor, Inspection. Automation for agriculture, e.g. visual guided spraying.

Buhler Sortex,
2010
WWW Link. Vendor, Inspection. Food inspection and sorting using images.

Han, M.H.[Min-Hong], Jang, D.[Dongsig], Foster, J.[Joseph],
Inspection of 2-D objects using pattern matching method,
PR(22), No. 5, 1989, pp. 567-575.
Elsevier DOI 0309
BibRef

Ghorbel, F., de Bougrenet de la Tocnaye, J.L.,
Automatic Control of Lamellibranch Larva Growth Using Contour Invariant Feature Extraction,
PR(23), No. 3-4, 1990, pp. 319-323.
Elsevier DOI 0401
BibRef

Arnason, H., Asmundsson, M.,
Computer Vision in Food Handling and Sorting,
HPRCV97(Chapter IV:1). (Marel HF,Iceland) BibRef 9700

Edan, Y.,
Design of an Autonomous Agricultural Robot,
AppIntel(5), No. 1, January 1995, pp. 41-50. BibRef 9501

Li, Y.F., Lee, M.H.,
Applying Vision Guidance in Robotic Food Handling,
RAMag(3), No. 1, March 1996, pp. 4-12. BibRef 9603

Patel, V.C., McClendon, R.W., Goodrum, J.W.,
Detection of Cracks in Eggs Using Color Computer Vision and Artificial Neural Networks,
AIApp(10), No. 3, 1996, pp. 19-28. 9702
BibRef

Patel, V.C., McClendon, R.W., Goodrum, J.W.,
Crack Detection in Eggs Using Computer Vision and Neural Networks,
AIApp(8), No. 2, 1994, pp. 21-31. BibRef 9400

Patel, V.C., McClendon, R.W., Goodrum, J.W.,
Color Computer Vision and Artificial Neural Networks for the Detection of Defects in Poultry Eggs,
AIR(12), No. 1-3, February 1998, pp. 163-176.
WWW Link. 9807
BibRef

Ni, H., Gunasekaran, S.,
A Computer Vision Method for Determining Length Of Cheese Shreds,
AIR(12), No. 1-3, February 1998, pp. 27-37.
WWW Link. 9807
BibRef

Ding, K., Gunasekaran, S.,
3-Dimensional Image Reconstruction Procedure for Food Microstructure Evaluation,
AIR(12), No. 1-3, February 1998, pp. 245-262. 9807
BibRef

McQueen, A.M.[Alexander M.], Cherry, C.D.[Craig D.], Rando, J.F.[Joseph F.], Schler, M.D.[Matt D.], Latimer, D.L.[David L.], McMahon, S.A.[Steven A.], Turkal, R.J.[Randy J.], Reddersen, B.R.[Brad R.],
Object recognition system and method,
US_Patent6,069,696, May 30, 2000
WWW Link. Color, weight, size, point of sale terminal. BibRef 0005

Chen, Z.[Zikuan], Tao, Y.[Yang],
Food safety inspection using 'from presence to classification' object-detection model,
PR(34), No. 12, December 2001, pp. 2331-2338.
Elsevier DOI 0110
BibRef

Casasent, D.[David], Chen, X.W.[Xue-Wen],
New training strategies for RBF neural networks for X-ray agricultural product inspection,
PR(36), No. 2, February 2003, pp. 535-547.
Elsevier DOI 0211
BibRef

Codrea, C.M., Aittokallio, T., Keränen, M., Tyystjärvi, E., Nevalainen, O.S.,
Feature learning with a genetic algorithm for fluorescence fingerprinting of plant species,
PRL(24), No. 15, November 2003, pp. 2663-2673.
Elsevier DOI 0308
BibRef

Pandit, R.B.[Ram Bhuwan], Tang, J.[Juming], Liu, F.[Frank], Mikhaylenko, G.[Galina],
A computer vision method to locate cold spots in foods in microwave sterilization processes,
PR(40), No. 12, December 2007, pp. 3667-3676.
Elsevier DOI 0709
Color values; Image processing; Chemical marker; Heating patterns; Microwave sterilization; Process validation; IMAQ vision builder; Cold spot BibRef

Meade, R.[Ronald],
Oven conveyor alignment system apparatus and method,
US_Patent7,131,529, Nov 7, 2006
WWW Link. BibRef 0611
And: US_Patent7,222,726, May 29, 2007
WWW Link. BibRef

Sun, D.W.[Da-Wen], (Ed.)
Computer Vision Technology for Food Quality Evaluation,
ElsevierInc., 2008. ISBN: 978-0-12-373642-0
WWW Link. Buy this book: Computer Vision Technology for Food Quality Evaluation (Food Science and Technology) BibRef 0800

Bossu, J.[Jérémie], Gee, C.[Christelle], Truchetet, F.[Frederic],
Development of a machine vision system for a real time precision sprayer,
ELCVIA(7), No. 3, 2008, pp. xx-yy.
DOI Link 0909
BibRef

Galleguillos, C.[Carolina], Belongie, S.J.[Serge J.],
Context based object categorization: A critical survey,
CVIU(114), No. 6, June 2010, pp. 712-722.
Elsevier DOI 1006
Object recognition; Context; Object categorization; Computer vision systems Appearance alone is not enough. Incorporate various kinds of context. BibRef

McFee, B.[Brian], Galleguillos, C.[Carolina], Lanckriet, G.R.G.[Gert R.G.],
Contextual Object Localization With Multiple Kernel Nearest Neighbor,
IP(19), No. 2, February 2011, pp. 570-585.
IEEE DOI 1102
BibRef

Galleguillos, C.[Carolina], McFee, B.[Brian], Lanckriet, G.R.G.[Gert R.G.],
Iterative Category Discovery via Multiple Kernel Metric Learning,
IJCV(108), No. 1-2, May 2014, pp. 115-132.
Springer DOI 1405
BibRef

Galleguillos, C.[Carolina], McFee, B.[Brian], Belongie, S.J.[Serge J.], Lanckriet, G.R.G.[Gert R.G.],
From region similarity to category discovery,
CVPR11(2665-2672).
IEEE DOI 1106
BibRef
Earlier:
Multi-class object localization by combining local contextual interactions,
CVPR10(113-120).
IEEE DOI 1006
BibRef

Rabinovich, A.[Andrew], Vedaldi, A.[Andrea], Galleguillos, C.[Carolina], Wiewiora, E.[Eric], Belongie, S.J.[Serge J.],
Objects in Context,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Merler, M.[Michele], Galleguillos, C.[Carolina], Belongie, S.J.[Serge J.],
Recognizing Groceries in situ Using in vitro Training Data,
SLAM07(1-8).
IEEE DOI 0706
BibRef

Galleguillos, C.[Carolina], Faymonville, P.[Peter], Belongie, S.J.[Serge J.],
BUBL: An effective region labeling tool using a hexagonal lattice,
Emergent09(2072-2079).
IEEE DOI 0910
BibRef

Galleguillos, C.[Carolina], Babenko, B.[Boris], Rabinovich, A.[Andrew], Belongie, S.J.[Serge J.],
Weakly Supervised Object Localization with Stable Segmentations,
ECCV08(I: 193-207).
Springer DOI 0810
BibRef

Galleguillos, C.[Carolina], Rabinovich, A.[Andrew], Belongie, S.J.[Serge J.],
Object categorization using co-occurrence, location and appearance,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Mantelli Neto, S.L.[Sylvio Luiz], Besen de Aguiar, D.[Daniel], Sens dos Santos, B.[Bianca], von Wangenheim, A.[Aldo],
Multivariate Bayesian cognitive modeling for unsupervised quality control of baked pizzas,
MVA(23), No. 3, May 2012, pp. 491-499.
WWW Link. 1204
BibRef

Kumar, P.D.[P. Dinesh], Evangeline, C., Jasmi, R.P.[R. Praiseline],
Device analysis and computer modelling of a-Si:H solar cell,
IJCVR(3), No. 3, 2013, pp. 251-260.
DOI Link 1402
BibRef

Ljungqvist, M.G.[Martin Georg], Nielsen, O.H.A.[Otto Hřjager Attermann], Frosch, S.[Stina], Nielsen, M.E.[Michael Engelbrecht], Clemmensen, L.H.[Line Harder], Ersbřll, B.K.[Bjarne Kjćr],
Hyperspectral imaging based on diffused laser light for prediction of astaxanthin coating concentration,
MVA(25), No. 2, February 2014, pp. 327-343.
Springer DOI 1412
Fish feed pellet coating. BibRef

Baravalle, R.[Rodrigo], Delrieux, C.[Claudio], Gomez, J.[Juan],
Multifractal characterisation and classification of bread crumb digital images,
JIVP(2015), No. 1, 2015, pp. 9.
DOI Link 1505
BibRef

Story, D.[David], Kacira, M.[Murat],
Design and implementation of a computer vision-guided greenhouse crop diagnostics system,
MVA(26), No. 4, May 2015, pp. 495-506.
Springer DOI 1506
BibRef

Chi, J.N.[Jian-Ning], Eramian, M.G.,
Enhancement of Textural Differences Based on Morphological Component Analysis,
IP(24), No. 9, September 2015, pp. 2671-2684.
IEEE DOI 1506
image enhancement BibRef

Yi, X.[Xin], Eramian, M.G.[Mark G.], Wang, R.J.[Ruo-Jing], Neufeld, E.[Eric],
Identification of Morphologically Similar Seeds Using Multi-kernel Learning,
CRV14(143-150)
IEEE DOI 1406
Accuracy BibRef

Impoco, G., Tuminello, L.,
Incremental learning to segment micrographs,
CVIU(140), No. 1, 2015, pp. 144-152.
Elsevier DOI 1509
Image analysis BibRef

Impoco, G.[Gaetano], Licitra, G.[Giuseppe],
An Interactive Level Set Approach to Semi-automatic Detection of Features in Food Micrographs,
CAIP09(914-921).
Springer DOI 0909
BibRef

Behmann, J.[Jan], Mahlein, A.K.[Anne-Katrin], Paulus, S.[Stefan], Dupuis, J.[Jan], Kuhlmann, H.[Heiner], Oerke, E.C.[Erich-Christian], Plümer, L.[Lutz],
Generation and application of hyperspectral 3D plant models: Methods and challenges,
MVA(27), No. 5, July 2016, pp. 611-624.
Springer DOI 1608
BibRef
Earlier: A1, A2, A3, A5, A6, A7, Only:
Generation and Application of Hyperspectral 3D Plant Models,
PlantType14(117-130).
Springer DOI 1504
BibRef

Benoit, L.[Landry], Benoit, R.[Romain], Belin, É.[Étienne], Vadaine, R.[Rodolphe], Demilly, D.[Didier], Chapeau-Blondeau, F.[François], Rousseau, D.[David],
On the value of the Kullback-Leibler divergence for cost-effective spectral imaging of plants by optimal selection of wavebands,
MVA(27), No. 5, July 2016, pp. 625-635.
Springer DOI 1608
BibRef

Augustin, M.[Marco], Haxhimusa, Y.[Yll], Busch, W.[Wolfgang], Kropatsch, W.G.[Walter G.],
A framework for the extraction of quantitative traits from 2D images of mature Arabidopsis thaliana,
MVA(27), No. 5, July 2016, pp. 647-661.
Springer DOI 1608
BibRef

Santos, T.T.[Thiago T.], Rodrigues, G.C.[Gustavo C.],
Flexible three-dimensional modeling of plants using low- resolution cameras and visual odometry,
MVA(27), No. 5, July 2016, pp. 695-707.
Springer DOI 1608
BibRef

Kosmala, M.[Margaret], Crall, A.[Alycia], Cheng, R.[Rebecca], Hufkens, K.[Koen], Henderson, S.[Sandra], Richardson, A.D.[Andrew D.],
Season Spotter: Using Citizen Science to Validate and Scale Plant Phenology from Near-Surface Remote Sensing,
RS(8), No. 9, 2016, pp. 726.
DOI Link 1610
BibRef

Zheng, P.[Peng], Zhao, Z.Q.[Zhong-Qiu], Gao, J.[Jun], Wu, X.D.[Xin-Dong],
Image set classification based on cooperative sparse representation,
PR(63), No. 1, 2017, pp. 206-217.
Elsevier DOI 1612
Sparse representation BibRef

Zhao, Z.Q.[Zhong-Qiu], Hong, Y.[Yan], Zheng, P.[Peng], Wu, X.D.[Xin-Dong],
Plant identification using triangular representation based on salient points and margin points,
ICIP15(1145-1149)
IEEE DOI 1512
Feature extraction BibRef

Bell, J.[Jonathan], Dee, H.M.[Hannah M.],
Watching plants grow: a position paper on computer vision and Arabidopsis thaliana,
IET-CV(11), No. 2, March 2017, pp. 113-121.
DOI Link 1703
BibRef

Li, D.W.[Da-Wei], Xu, L.H.[Li-Hong], Tang, X.S.[Xue-Song], Sun, S.Y.[Shao-Yuan], Cai, X.[Xin], Zhang, P.[Peng],
3D Imaging of Greenhouse Plants with an Inexpensive Binocular Stereo Vision System,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Han, X.H.[Xian-Hua], Chen, Y.W.[Yen-Wei],
Generalized Aggregation of Sparse Coded Multi-Spectra for Satellite Scene Classification,
IJGI(6), No. 6, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Kusumoto, R.[Riko], Han, X.H.[Xian-Hua], Chen, Y.W.[Yen-Wei],
Hybrid Aggregation of Sparse Coded Descriptors for Food Recognition,
ICPR14(1490-1495)
IEEE DOI 1412
Encoding BibRef

Kim, D.W.[Dong-Wook], Yun, H.S.[Hee Sup], Jeong, S.J.[Sang-Jin], Kwon, Y.S.[Young-Seok], Kim, S.G.[Suk-Gu], Lee, W.S.[Won Suk], Kim, H.J.[Hak-Jin],
Modeling and Testing of Growth Status for Chinese Cabbage and White Radish with UAV-Based RGB Imagery,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Xu, J.[Jing], Ma, L.[Long], Wu, J.[Jie], Xu, X.M.[Xiao-Meng], Sun, Y.[Ye], Liu, Q.A.[Qi-Ang], Pan, L.Q.[Lei-Qing], Tu, K.[Kang],
Applications of hyperspectral and optical scattering imaging technique in the detection of food microorganism,
IJCVR(8), No. 3, 2018, pp. 267-282.
DOI Link 1807
BibRef

Strickland, E.,
3 sensors to track every bite and gulp,
Spectrum(55), No. 7, July 2018, pp. 9-10.
IEEE DOI 1807
[News item] health care, medical computing, mobile computing, bite, calories, diets, dozens BibRef

de Sousa Ribeiro, F., Gong, L., Calivá, F., Swainson, M., Gudmundsson, K., Yu, M., Leontidis, G., Ye, X., Kollias, S.,
An End-to-End Deep Neural Architecture for Optical Character Verification and Recognition in Retail Food Packaging,
ICIP18(2376-2380)
IEEE DOI 1809
Feature extraction, Geometry, Machine learning, Food packaging, maximally stable extremal regions BibRef

Laursen, L.,
Automated eyes watch plants grow: Crop scientists hope to replace traditional painstaking monitoring methods,
Spectrum(56), No. 01, January 2019, pp. 9-10.
IEEE DOI 1901
[News] BibRef

Tonioni, A.[Alessio], di Stefano, L.[Luigi],
Domain invariant hierarchical embedding for grocery products recognition,
CVIU(182), 2019, pp. 81-92.
Elsevier DOI 1905
Grocery products recognition, Embedding learning, Generative adversarial networks, Object recognition BibRef

Polak, A.[Adam], Coutts, F.K.[Fraser K.], Murray, P.[Paul], Marshall, S.[Stephen],
Use of hyperspectral imaging for cake moisture and hardness prediction,
IET-IPR(13), No. 7, 30 May 2019, pp. 1152-1160.
DOI Link 1906
BibRef

Li, J.[Jia], Ge, W.Z.[Wen-Zhang], Wei, Y.G.[Yao-Guang], An, D.[Dong],
Supervised discriminative manifold learning with subsidiary-view information for near infrared spectroscopic classification of crop seeds,
PRL(125), 2019, pp. 381-388.
Elsevier DOI 1909
Dimensionality reduction, NIRS, Manifold learning, Classification, Multi-view learning BibRef

Raj, A.P.S.S.[Anubha Pearline Sundara Sobitha], Vajravelu, S.K.[Sathiesh Kumar],
DDLA: dual deep learning architecture for classification of plant species,
IET-IPR(13), No. 12, October 2019, pp. 2176-2182.
DOI Link 1911
BibRef

Madsen, S.L.[Simon Leminen], Mortensen, A.K.[Anders Krogh], Jřrgensen, R.N.[Rasmus Nyholm], Karstoft, H.[Henrik],
Disentangling Information in Artificial Images of Plant Seedlings Using Semi-Supervised GAN,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Díaz-Galián, M.V.[María Victoria], Perez-Sanz, F.[Fernando], Sanchez-Pagán, J.D.[Jose David], Weiss, J.[Julia], Egea-Cortines, M.[Marcos], Navarro, P.J.[Pedro J.],
A Proposed Methodology to Analyze Plant Growth and Movement from Phenomics Data,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
Close up views. BibRef

Navarro, P.J.[Pedro J.], Miller, L.[Leanne], Gila-Navarro, A.[Alberto], Díaz-Galián, M.V.[María Victoria], Aguila, D.J.[Diego J.], Egea-Cortines, M.[Marcos],
3DeepM: An Ad Hoc Architecture Based on Deep Learning Methods for Multispectral Image Classification,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Pawara, P.[Pornntiwa], Okafor, E.[Emmanuel], Groefsema, M.[Marc], He, S.[Sheng], Schomaker, L.R.B.[Lambert R.B.], Wiering, M.A.[Marco A.],
One-vs-One classification for deep neural networks,
PR(108), 2020, pp. 107528.
Elsevier DOI 2008
BibRef
Earlier: A1, A2, A5, A6, Only:
Data Augmentation for Plant Classification,
ACIVS17(615-626).
Springer DOI 1712
Deep learning, Multi-class classification, One-vs-One classification, Plant recognition BibRef

Dang, L.M.[L. Minh], Wang, H.X.[Han-Xiang], Li, Y.F.[Yan-Fen], Min, K.[Kyungbok], Kwak, J.T.[Jin Tae], Lee, O.N.[O. New], Park, H.Y.[Han-Yong], Moon, H.J.[Hyeon-Joon],
Fusarium Wilt of Radish Detection Using RGB and Near Infrared Images from Unmanned Aerial Vehicles,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Machefer, M.[Mélissande], Lemarchand, F.[François], Bonnefond, V.[Virginie], Hitchins, A.[Alasdair], Sidiropoulos, P.[Panagiotis],
Mask R-CNN Refitting Strategy for Plant Counting and Sizing in UAV Imagery,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Kämper, W.[Wiebke], Trueman, S.J.[Stephen J.], Tahmasbian, I.[Iman], Bai, S.H.[Shahla Hosseini],
Rapid Determination of Nutrient Concentrations in Hass Avocado Fruit by Vis/NIR Hyperspectral Imaging of Flesh or Skin,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link 2010
BibRef

Wang, L.[Long], Sun, J.[Jun], Wu, X.H.[Xiao-Hong], Shen, J.F.[Ji-Feng], Lu, B.[Bing], Tan, W.J.[Wen-Jun],
Identification of crop diseases using improved convolutional neural networks,
IET-CV(14), No. 7, October 2020, pp. 538-545.
DOI Link 2010
BibRef

Hosseiny, B.[Benyamin], Rastiveis, H.[Heidar], Homayouni, S.[Saeid],
An Automated Framework for Plant Detection Based on Deep Simulated Learning from Drone Imagery,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Ma, X.[Xu], Liu, Y.[Yong],
A Modified Geometrical Optical Model of Row Crops Considering Multiple Scattering Frame,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link 2011
BibRef
And: Correction: RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Yan, Y.L.[Yu-Lin], Ryu, Y.[Youngryel],
Exploring Google Street View with deep learning for crop type mapping,
PandRS(171), 2021, pp. 278-296.
Elsevier DOI 2012
Crop type mapping, Deep learning, Google Earth Engine, Google Street View, Ground referencing BibRef

Weksler, S.[Shahar], Rozenstein, O.[Offer], Haish, N.[Nadav], Moshelion, M.[Menachem], Wallach, R.[Rony], Ben-Dor, E.[Eyal],
Pepper Plants Leaf Spectral Reflectance Changes as a Result of Root Rot Damage,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Rabab, S.[Saba], Breen, E.[Edmond], Gebremedhin, A.[Alem], Shi, F.[Fan], Badenhorst, P.[Pieter], Chen, Y.P.P.[Yi-Ping Phoebe], Daetwyler, H.D.[Hans D.],
A New Method for Extracting Individual Plant Bio-Characteristics from High-Resolution Digital Images,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Kim, C.[Changhyeon], van Iersel, M.W.[Marc W.],
Morphological and Physiological Screening to Predict Lettuce Biomass Production in Controlled Environment Agriculture,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Kasthuri, N., Devi, T.M.[T. Meera], Shangar, A.T.[Arivazhagan T.], Yashwin, R., Shabhareesh, J.S.,
Plant leaf disease classification using deep neural network,
IJCVR(12), No. 5, 2022, pp. 443-463.
DOI Link 2209
BibRef

Falcioni, R.[Renan], Gonçalves, J.V.F.[Joăo Vitor Ferreira], de Oliveira, K.M.[Karym Mayara], Antunes, W.C.[Werner Camargos], Nanni, M.R.[Marcos Rafael],
VIS-NIR-SWIR Hyperspectroscopy Combined with Data Mining and Machine Learning for Classification of Predicted Chemometrics of Green Lettuce,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Li, C.L.[Chun-Lei], Li, H.Y.[Huan-Yu], Liao, L.[Liang], Liu, Z.F.[Zhou-Feng], Dong, Y.[Yan],
Real-time seed sorting system via 2D information entropy-based CNN pruning and TensorRt acceleration,
IET-IPR(17), No. 6, 2023, pp. 1694-1708.
DOI Link 2305
2D information entropy, CNN pruning, seed sorting, TensorRt BibRef

Liu, J.Y.[Jia-Yao], Wang, L.F.[Lin-Feng], Wang, Y.S.[Yun-Sheng], An, M.M.[Ming-Ming], Jiang, W.F.[Wen-Fei], Xu, S.[Shipu],
Cross-class pest and disease vegetation detection based on small sample registration,
IET-IPR(17), No. 8, 2023, pp. 2299-2308.
DOI Link 2306
cross-training set, few-shot learning, pest detection BibRef

Kuang, Z.K.[Zhan-Kun], Yu, X.Y.[Xiang-Yang], Guo, Y.C.[Yu-Chen], Cai, Y.[Yefan], Hong, W.B.[Wei-Bin],
Design of a Multimodal Detection System Tested on Tea Impurity Detection,
RS(16), No. 9, 2024, pp. 1590.
DOI Link 2405
BibRef

Lee, D.H.[Dong-Ho], Park, J.H.[Jong-Hwa],
Development of a UAS-Based Multi-Sensor Deep Learning Model for Predicting Napa Cabbage Fresh Weight and Determining Optimal Harvest Time,
RS(16), No. 18, 2024, pp. 3455.
DOI Link 2410
BibRef


El Amine-Sehaba, M.[Mohammed], Crispim-Junior, C.[Carlos], Rodet, L.T.[Laure Tougne],
Embedded plant recognition: a benchmark for low footprint deep neural networks,
CVPPA23(670-677)
IEEE DOI 2401
BibRef

Hartley, Z.K.J.[Zane K. J.], Lind, R.J.[Rob J.], Smith, N.[Nicholas], Collison, B.[Bob], French, A.P.[Andrew P.],
Unlocking Comparative Plant Scoring with Siamese Neural Networks and Pairwise Pseudo Labelling,
CVPPA23(678-684)
IEEE DOI 2401
BibRef

Körschens, M.[Matthias], Bucher, S.F.[Solveig Franziska], Römermann, C.[Christine], Denzler, J.[Joachim],
Unified Automatic Plant Cover and Phenology Prediction,
CVPPA23(685-693)
IEEE DOI 2401
BibRef

Villalpando, A.P.[Antonio Pico], Kubisch, M.[Matthias], Colliaux, D.[David], Hanappe, P.[Peter], Hafner, V.V.[Verena V.],
Reinforcement learning with space carving for plant scanning,
CVPPA23(694-701)
IEEE DOI 2401
BibRef

Rodrigues, J.P.[Joăo Pedro], Pacheco, O.R.[Osvaldo Rocha], Correia, P.L.[Paulo Lobato],
Seabream Freshness Classification Using Vision Transformers,
CIARP23(I:510-525).
Springer DOI 2312
BibRef

Costa, D.[Dinis], Silva, C.[Catarina], Costa, J.[Joana], Ribeiro, B.[Bernardete],
Improving Pest Detection via Transfer Learning,
CIARP23(II:105-116).
Springer DOI 2312
BibRef

Anagnostopoulou, D.[Dafni], Retsinas, G.[George], Efthymiou, N.[Niki], Filntisis, P.[Panagiotis], Maragos, P.[Petros],
A Realistic Synthetic Mushroom Scenes Dataset,
AgriVision23(6282-6289)
IEEE DOI 2309
BibRef

Retsinas, G.[George], Efthymiou, N.[Niki], Maragos, P.[Petros],
Mushroom Segmentation and 3D Pose Estimation from Point Clouds using Fully Convolutional Geometric Features and Implicit Pose Encoding,
AgriVision23(6264-6271)
IEEE DOI 2309
BibRef

Miranda, M.[Miro], Drees, L.[Lukas], Roscher, R.[Ribana],
Controlled Multi-modal Image Generation for Plant Growth Modeling,
ICPR22(5118-5124)
IEEE DOI 2212
Measurement, Image synthesis, Ecosystems, Predictive models, Generative adversarial networks, Task analysis BibRef

Lu, F.X.[Fu-Xiang], Zhao, W.[Wei], Zhang, W.Y.[Wen-Yu], Yuan, M.[Min],
Arg-Cnn: An Attention-Based Network for Plant Identification,
ICIP22(4063-4067)
IEEE DOI 2211
Training, Interpolation, Convolution, Plants (biology), Neural networks, Focusing, Plant identification, attention, convolutional neural network BibRef

Sáez-Pérez, J.[Javier], Gallego, A.J.[Antonio Javier], Valero-Mas, J.J.[Jose J.], Zaragoza, J.C.[Jorge Calvo],
Domain Adaptation in Robotics: A Study Case on Kitchen Utensil Recognition,
IbPRIA22(366-377).
Springer DOI 2205
BibRef

Picek, L.[Lukáš], Šulc, M.[Milan], Matas, J.G.[Jirí G.], Jeppesen, T.S.[Thomas S.], Heilmann-Clausen, J.[Jacob], Lćssře, T.[Thomas], Frřslev, T.[Tobias],
Danish Fungi 2020: Not Just Another Image Recognition Dataset,
WACV22(3281-3291)
IEEE DOI 2202
Fungi, Training, Visualization, Codes, Metadata, Benchmark testing, Datasets, Evaluation and Comparison of Vision Algorithms Object Detection/Recognition/Categorization BibRef

Pan, H.L.[Hao-Lin], Hétroy-Wheeler, F.[Franck], Charlaix, J.[Julie], Colliaux, D.[David],
Multi-scale Space-time Registration of Growing Plants,
3DV21(310-319)
IEEE DOI 2201
Measurement, Point cloud compression, Shape, Skeleton, Random forests, 3d vision, shape correspondence, space-time registration BibRef

Valencia, Y.M., Majin, J.J., Taveira, V.B., Salazar, J.D., Stivanello, M.E., Ferreira, L.C., Stemmer, M.R.,
A Novel Method for Inspection Defects in Commercial Eggs Using Computer Vision,
ISPRS21(B2-2021: 809-816).
DOI Link 2201
BibRef

Qian, J.X.[Jia-Xin], Yu, P.F.[Peng-Fei], Li, H.Y.[Hai-Yan], Li, H.S.[Hong-Song],
Research on Classification of Wild Fungi Based on Improved Resnet50 Network,
ICIVC21(168-173)
IEEE DOI 2112
Fungi, Training, Image recognition, Transfer learning, Usability, Task analysis, Residual neural networks, wild fungi, transfer learning BibRef

Kushida, T.[Takahiro], Tanaka, K.[Kenichiro], Funatomi, T.[Takuya], Tahara, K.[Komei], Kagawa, Y.[Yukihiro], Mukaigawa, Y.[Yasuhiro],
Practical Descattering of Transmissive Inspection Using Slanted Linear Image Sensors,
MVA21(1-5)
DOI Link 2109
Food production line. Image sensors, Computational modeling, Frequency-domain analysis, Prototypes, Production, Inspection BibRef

Forero, M.G.[Manuel G.], Beltrán, C.E.[Carlos E.], González-Santos, C.[Christian],
Automatic Classification of Zingiberales from RGB Images,
MCPR21(198-206).
Springer DOI 2108
BibRef

Murcia, H.[Harold], Sanabria, D.[David], Méndez, D.[Dehyro], Forero, M.G.[Manuel G.],
A Comparative Study of 3D Plant Modeling Systems Based on Low-Cost 2D LiDAR and Kinect,
MCPR21(272-281).
Springer DOI 2108
BibRef

Frank, L.[Logan], Wiegman, C.[Christopher], Davis, J.[Jim], Shearer, S.[Scott],
Confidence-Driven Hierarchical Classification of Cultivated Plant Stresses,
WACV21(2502-2511)
IEEE DOI 2106
Deep learning, Plants (biology), Surveillance, Agriculture, Convolutional neural networks BibRef

Leo, M.[Marco], Carcagně, P.[Pierluigi], Distante, C.[Cosimo],
A Systematic Investigation on end-to-end Deep Recognition of Grocery Products in the Wild,
ICPR21(7234-7241)
IEEE DOI 2105
Systematics, Image recognition, Pipelines, Machine learning, Radiometry, Object recognition BibRef

Ong, J.D.L.[Josh Daniel L.], Abigan, E.G.T.[Erinn Giannice T.], Cajucom, L.G.[Luis Gabriel], Abu, P.A.R.[Patricia Angela R.], Estuar, M.R.J.E.[Ma. Regina Justina E.],
Ensemble Convolutional Neural Networks for the Detection of Microscopic Fusarium Oxysporum,
ISVC20(I:321-332).
Springer DOI 2103
BibRef

Huang, S., Luo, P., Wang, Z.,
Analysis and Study of Egg Quality Based on Hyperspectral Image Data of Different Forms of Egg Yolks,
CVIDL20(177-181)
IEEE DOI 2102
data analysis, food processing industry, food products, hyperspectral imaging, image processing, Egg quality analysis BibRef

Paturkar, A., Gupta, G.S., Bailey, D.,
Plant Trait Segmentation for Plant Growth Monitoring,
IVCNZ20(1-6)
IEEE DOI 2012
Image segmentation, Machine learning algorithms, Neural networks, Training data, Point cloud segmentation BibRef

Yang, C., Baireddy, S., Chen, Y., Cai, E., Caldwell, D., Méline, V., Iyer-Pascuzzi, A.S., Delp, E.J.,
Plant Stem Segmentation Using Fast Ground Truth Generation,
SSIAI20(62-65)
IEEE DOI 2009
biology computing, botany, image segmentation, learning (artificial intelligence), neural nets, Tomato BibRef

Cai, E., Baireddy, S., Yang, C., Crawford, M., Delp, E.J.,
Deep Transfer Learning For Plant Center Localization,
AgriVision20(277-284)
IEEE DOI 2008
Training, Machine learning, Task analysis, Agriculture, Data models, Training data, Shape BibRef

Louedec, J.L., Montes, H.A., Duckett, T., Cielniak, G.,
Segmentation and detection from organised 3D point clouds: A case study in broccoli head detection,
AgriVision20(285-293)
IEEE DOI 2008
Feature extraction, Sensors, Agriculture, Shape, Task analysis, Head BibRef

Chiu, M.T.[Mang Tik], Xu, X.Q.[Xing-Qian], Wang, K.[Kai], Hobbs, J.[Jennifer], Hovakimyan, N.[Naira], Huang, T.S.[Thomas S.], Shi, H.H.[Hong-Hui], Wei, Y.C.[Yun-Chao], Huang, Z.L.[Zi-Long], Schwing, A.[Alexander], Brunner, R.[Robert], Dozier, I.[Ivan], Dozier, W.[Wyatt], Ghandilyan, K.[Karen], Wilson, D.[David], Park, H.S.[Hyun-Seong], Kim, J.[Junhee], Kim, S.H.[Sung-Ho], Liu, Q.H.[Qing-Hui], Kampffmeyer, M.C.[Michael C.], Jenssen, R.[Robert], Salberg, A.B.[Arnt B.], Barbosa, A.[Alexandre], Trevisan, R.[Rodrigo], Zhao, B.C.[Bing-Chen], Yu, S.Z.[Shao-Zuo], Yang, S.W.[Si-Wei], Wang, Y.[Yin], Sheng, H.[Hao], Chen, X.[Xiao], Su, J.Y.[Jing-Yi], Rajagopal, R.[Ram], Ng, A.[Andrew], Huynh, V.T.[Van Thong], Kim, S.H.[Soo-Hyung], Na, I.S.[In-Seop], Baid, U.[Ujjwal], Innani, S.[Shubham], Dutande, P.[Prasad], Baheti, B.[Bhakti], Talbar, S.[Sanjay], Tang, J.Y.[Jian-Yu],
The 1st Agriculture-Vision Challenge: Methods and Results,
AgriVision20(212-218)
IEEE DOI 2008
Semantics, Image segmentation, Agriculture, Computational modeling BibRef

Phillips, T., Abdulla, W.,
Class Embodiment Autoencoder (CEAE) for classifying the botanical origins of honey,
IVCNZ19(1-5)
IEEE DOI 2004
botany, data compression, feature extraction, image classification, neural nets, CEAE, New Zealand honey, class embodiment autoencoder, hyperspectral imaging BibRef

Koporec, G., Perš, J.,
Deep Learning Performance in the Presence of Significant Occlusions: An Intelligent Household Refrigerator Case,
ACVR19(2532-2540)
IEEE DOI 2004
learning (artificial intelligence), object detection, rendering (computer graphics), deep learning performance, refrigerator BibRef

Riegler-Nurscher, P.[Peter], Prankl, J.[Johann], Vincze, M.[Markus],
Tillage Machine Control Based on a Vision System for Soil Roughness and Soil Cover Estimation,
CVS19(201-210).
Springer DOI 1912
BibRef

Saberi, A., Khesali, E., Fakhri, M., Enayati, H., Koushapoor, M.,
Design and Evaluation of a Controller to Achieve Optimum Seeding Rate With Specific Spatial Management in Agricultural Machinery,
SMPR19(917-921).
DOI Link 1912
BibRef

Deglint, J.L.[Jason L.], Jin, C.[Chao], Wong, A.[Alexander],
Investigating the Automatic Classification of Algae Using the Spectral and Morphological Characteristics via Deep Residual Learning,
ICIAR19(II:269-280).
Springer DOI 1909
BibRef

Follmann, P.[Patrick], Drost, B.[Bertram], Böttger, T.[Tobias],
Acquire, Augment, Segment and Enjoy: Weakly Supervised Instance Segmentation of Supermarket Products,
GCPR18(363-376).
Springer DOI 1905
BibRef

Jiang, Y.J.[Yi-Jun], Schenck, E.[Elim], Kranz, S.[Spencer], Banerjee, S.[Sean], Banerjee, N.K.[Natasha Kholgade],
CNN-Based Non-contact Detection of Food Level in Bottles from RGB Images,
MMMod19(I:202-213).
Springer DOI 1901
BibRef

Galati, R., Reina, G., Messina, A., Gentile, A.,
Survey and navigation in agricultural environments using robotic technologies,
AVSS17(1-6)
IEEE DOI 1806
agriculture, farming, image fusion, intelligent robots, mobile robots, robot vision, telerobotics, Wheels BibRef

Bhosle, K., Musande, V.,
Stress Monitoring of Mulberry Plants By Finding Rep Using Hyperspectral Data,
Hannover17(383-386).
DOI Link 1805
BibRef

Gao, K., White, T., Palaniappan, K., Warmund, M., Bunyak, F.,
Museed: A mobile image analysis application for plant seed morphometry,
ICIP17(2826-2830)
IEEE DOI 1803
Image analysis, Image edge detection, Image segmentation, Kernel, Mobile applications, Shape, image analysis, mobile application, plant seed morphometry BibRef

Alves, W.A.L.[Wonder A. L.], Gobber, C.F.[Charles F.], Hashimoto, R.F.[Ronaldo F.],
Plant Bounding Box Detection from Desirable Residues of the Ultimate Levelings,
ICIAR18(474-481).
Springer DOI 1807
BibRef
Earlier: A2, A1, A3:
Ultimate Leveling Based on Mumford-Shah Energy Functional Applied to Plant Detection,
CIARP17(220-228).
Springer DOI 1802
BibRef

Chen, Y., Ribera, J., Boomsma, C., Delp, E.J.[Edward J.],
Locating Crop Plant Centers from UAV-Based RGB Imagery,
CVPPP17(2030-2037)
IEEE DOI 1802
Greenhouses, Plants (biology), Training data, Unmanned aerial vehicles BibRef

Fiorucci, M.[Marco], Fratton, M.[Marco], Dulecha, T.G.[Tinsae G.], Pelillo, M.[Marcello], Pravato, A.[Alberto], Roncato, A.[Alessandro],
A Computer Vision System for the Automatic Inventory of a Cooler,
CIAP17(I:575-585).
Springer DOI 1711
BibRef

Ahmad, N.M.[Norul Maslissa], Ali, N.M.[Nazlena Mohamad], Baharin, H.[Hanif],
MyRedList: Virtual Application for Threatened Plant Species,
IVIC17(445-454).
Springer DOI 1711
BibRef

Carstensen, J.M.,
Fast, versatile, and non-destructive biscuit inspection system using spectral imaging,
MVA17(502-505)
DOI Link 1708
Image color analysis, Imaging, Indexes, Moisture, Moisture measurement, Reflectivity, Training BibRef

Bindlish, E., Abbott, A.L., Balota, M.,
Assessment of Peanut Pod Maturity,
WACV17(688-696)
IEEE DOI 1609
Agriculture, Calibration, Color, Image color analysis, Imaging, Soil, Visualization BibRef

Mendiola-Lau, V.[Victor], Silva Mata, F.J.[Francisco José], Martínez-Díaz, Y.[Yoanna], Bustamante, I.T.[Isneri Talavera], de Marsico, M.[Maria],
Automatic Classification of Herbal Substances Enhanced with an Entropy Criterion,
CIARP16(233-240).
Springer DOI 1703
BibRef

Marin, R.D.C.[Ricardo D. C.], Green, R.D.[Richard D.],
A Hidden Markov Model for modeling and extracting vine structure in images,
ICVNZ15(1-6)
IEEE DOI 1701
feature extraction BibRef

Brilhador, A.[Anderson], Serrarens, D.A.[Daniel A.], Lopes, F.M.[Fabrício M.],
A Computer Vision Approach for Automatic Measurement of the Inter-plant Spacing,
CIARP15(219-227).
Springer DOI 1511
BibRef

Liang, B.[Bing], Song, G.X.[Gu-Xin], Li, G.L.[Gong-Li],
Discussion about the effect of digital plants library on the plants landscape restoration in Yuanmingyuan,
CIPA15(43-48).
DOI Link 1508
BibRef

Ávila, M.M.[M. Mar], Caballero, D.[Daniel], Durán, M.L.[M. Luisa], Caro, A.[Andrés], Pérez-Palacios, T.[Trinidad], Antequera, T.[Teresa],
Including 3D-textures in a Computer Vision System to Analyze Quality Traits of Loin,
CVS15(456-465).
Springer DOI 1507
BibRef

Chaudhury, A.[Ayan], Ward, C.[Christopher], Talasaz, A.[Ali], Ivanov, A.G.[Alexander G.], Huner, N.P.A.[Norman P.A.], Grodzinski, B.[Bernard], Patel, R.V.[Rajni V.], Barron, J.L.[John L.],
Computer Vision Based Autonomous Robotic System for 3D Plant Growth Measurement,
CRV15(290-296)
IEEE DOI 1507
Image reconstruction BibRef

Lam, A., Kuno, Y., Sato, I.,
Evaluating freshness of produce using transfer learning,
FCV15(1-4)
IEEE DOI 1506
agricultural products BibRef

Skytte, J.[Jacob], Mřller, F.[Flemming], Abildgaard, O.[Otto], Dahl, A.[Anders], Larsen, R.[Rasmus],
Discriminating Yogurt Microstructure Using Diffuse Reflectance Images,
SCIA15(187-198).
Springer DOI 1506
BibRef

Ward, B.[Ben], Bastian, J.[John], van den Hengel, A.[Anton], Pooley, D.[Daniel], Bari, R.[Rajendra], Berger, B.[Bettina], Tester, M.[Mark],
A Model-Based Approach to Recovering the Structure of a Plant from Images,
PlantType14(215-230).
Springer DOI 1504
BibRef

van den Hengel, A.J.[Anton J.], Russell, C.[Chris], Dick, A.[Anthony], Bastian, J.[John], Pooley, D.[Daniel], Fleming, L.[Lachlan], Agapito, L.[Lourdes],
Part-based modelling of compound scenes from images,
CVPR15(878-886)
IEEE DOI 1510
BibRef

Benoit, L.[Landry], Semaan, G.[Georges], Franconi, F.[Florence], Belin, É.[Étienne], Chapeau-Blondeau, F.[François], Demilly, D.[Didier], Rousseau, D.[David],
3D Multimodal Simulation of Image Acquisition by X-Ray and MRI for Validation of Seedling Measurements with Segmentation Algorithms,
PlantType14(131-139).
Springer DOI 1504
BibRef

Pound, M.P.[Michael P.], French, A.P.[Andrew P.], Murchie, E.H.[Erik H.], Pridmore, T.P.[Tony P.],
Surface Reconstruction of Plant Shoots from Multiple Views,
PlantType14(158-173).
Springer DOI 1504
BibRef

Klodt, M.[Maria], Cremers, D.[Daniel],
High-Resolution Plant Shape Measurements from Multi-view Stereo Reconstruction,
PlantType14(174-184).
Springer DOI 1504
BibRef

Skoien, K.R.[Kristoffer Rist], Alver, M.O.[Morten Omholt], Alfredsen, J.A.[Jo Arve],
A computer vision approach for detection and quantification of feed particles in marine fish farms,
ICIP14(1648-1652)
IEEE DOI 1502
Aquaculture BibRef

Yokoya, N.[Naoto], Kokawa, M.[Mito], Sugiyama, J.[Junichi],
Spectral unmixing of fluorescence fingerprint imagery for visualization of constituents in pie pastry,
ICIP14(679-683)
IEEE DOI 1502
Dairy products BibRef

Afridi, M.J.[Muhammad Jamal], Liu, X.M.[Xiao-Ming], McGrath, J.M.[J. Mitchell],
An Automated System for Plant-Level Disease Rating in Real Fields,
ICPR14(148-153)
IEEE DOI 1412
Diseases BibRef

Djuricic, A., Weinmann, M., Jutzi, B.,
Potentials of small, lightweight and low cost Multi-Echo Laser Scanners for detecting Grape Berries,
CloseRange14(211-216).
DOI Link 1411
BibRef

Dubosclard, P.[Pierre], Larnier, S.[Stanislas], Konik, H.[Hubert], Herbulot, A.[Ariane], Devy, M.[Michel],
Automatic Method for Visual Grading of Seed Food Products,
ICIAR14(I: 485-495).
Springer DOI 1410
BibRef

Nggada, S.H.[Shawulu Hunira], Muyingi, H.N.N.[Hippolyte N'Sung-Nza], Dheedan, A.[Amer], Gorejena, M.[Marshal],
Farmer Assisted Mobile Framework for Improving Agricultural Products,
ICISP14(647-657).
Springer DOI 1406
BibRef

Tarry, C.[Cole], Wspanialy, P.[Patrick], Veres, M.[Matthew], Moussa, M.[Medhat],
An Integrated Bud Detection and Localization System for Application in Greenhouse Automation,
CRV14(344-348)
IEEE DOI 1406
Cameras BibRef

Botterill, T., Green, R.D., Mills, S.,
Finding a vine's structure by bottom-up parsing of cane edges,
IVCNZ13(112-117)
IEEE DOI 1412
edge detection. Vine pruning robot. BibRef

Floriello, D., Botterill, T., Green, R.D.,
Defining a geometric probability measure in correspondence problems for branched structures,
IVCNZ13(311-316)
IEEE DOI 1412
computer vision BibRef

Marin, R.D.C., Botterill, T., Green, R.D.,
Split-and-merge EM for vine image segmentation,
IVCNZ13(270-275)
IEEE DOI 1412
Gaussian processes BibRef

McCulloch, J., Green, R.,
Detecting wires in the canopy of grapevines using neural networks: A robust and heuristic free approach,
IVCNZ13(334-339)
IEEE DOI 1412
manipulators BibRef

Wang, B.[Bin], Gao, Y.S.[Yong-Sheng], Sun, C.M.[Chang-Ming], Blumenstein, M.[Michael], La Salle, J.[John],
A Local Scale Selection Scheme for Multiscale Area Integral Invariants,
DICTA16(1-6)
IEEE DOI 1701
Australia BibRef

Quevedo, R.[Roberto], Valencia, E.[Emir], Bastías, J.M.[José Miguel], Cárdenas, S.[Stefany],
Description of the Enzymatic Browning in Avocado Slice Using GLCM Image Texture,
PSIVTWS13(93-101).
Springer DOI 1412
BibRef

Sharifzadeh, S.[Sara], Clemmensen, L.H.[Line H.], Lřje, H.[Hanne], Ersbřll, B.K.[Bjarne K.],
Statistical Quality Assessment of Pre-fried Carrots Using Multispectral Imaging,
SCIA13(620-629).
Springer DOI 1311
BibRef

Masoudian, A.[Alireza], Mcisaac, K.A.[Kenneth A.],
Application of Support Vector Machine to Detect Microbial Spoilage of Mushrooms,
CRV13(281-287)
IEEE DOI 1308
Accuracy BibRef

Elibol, A.[Armagan], Posch, S.[Stefan], Maurer, A.[Andreas], Pillen, K.[Klaus], Möller, B.[Birgit],
Vision-Based 3D-Reconstruction of Barley Plants,
IbPRIA13(406-415).
Springer DOI 1307
BibRef

Bin, W.[Wang], Zhuo, W.[Wang], Yuan, M.Z.[Ming-Zhe],
Intelligent control based on case-based reasoning for outlet tobacco moisture percentage of loosening resurgence machine,
ICARCV12(1728-1732).
IEEE DOI 1304
BibRef

Hazisawa, T.[Takeshi], Toda, M.[Masashi], Sakoil, T.[Teruvasu], Matumural, K.[Kazuhiro], Fukuda, M.[Masahito],
Image analysis method for grading raw shiitake mushrooms,
FCV13(46-52).
IEEE DOI 1304
BibRef

Roomi, S.M.M.[S. Mohamed Mansoor], Priya, R.J.[R. Jyothi], Bhumesh, S., Monisha, P.,
Classification of mangoes by object features and contour modeling,
IMVIP12(165-168).
IEEE DOI 1302
BibRef

Romeijn, H., Sheth, F., Pettit, C.J.,
An Evaluative Review of Simulated Dynamic Smart 3d Objects,
AnnalsPRS(I-4), No. 2012, pp. 125-130.
DOI Link 1209
3D models of plants. BibRef

Marchant, R.[Ross], Jackway, P.T.[Paul T.],
Generalised Hilbert Transforms for the Estimation of Growth Direction in Coral Cores,
DICTA11(660-665).
IEEE DOI 1205
BibRef

Cohen, C.J.[Charles J.], Haanpaa, D.[Doug], Zott, J.P.[James P.],
Machine vision algorithms for robust animal species identification,
AIPR15(1-7)
IEEE DOI 1605
Haar transforms BibRef

Cohen, C.J.[Charles J.], Haanpaa, D.[Doug], Rowe, S.[Steve], Zott, J.P.[James P.],
Vision algorithms for automated census of animals,
AIPR11(1-5).
IEEE DOI 1204
BibRef

Salo, H.[Heikki], Tirronen, V.[Ville], Neri, F.[Ferrante],
Evolutionary Regression Machines for Precision Agriculture,
EvoIASP12(356-365).
Springer DOI 1204
BibRef

Patel, J.J.[Jalpa J.], Modi, C.K.[Chintan K.], Jain, K.R.[Kavindra R.],
Quality evaluation of Foeniculum vulgare (Fennel) seeds using colorization,
ICIIP11(1-6).
IEEE DOI 1112
BibRef

Yeh, M.C.[Mei-Chen], Tai, J.[Jason],
A Hierarchical Approach to Practical Beverage Package Recognition,
PSIVT11(I: 348-357).
Springer DOI 1111
BibRef

Moonrinta, J., Chaivivatrakul, S., Dailey, M.N., Ekpanyapong, M.,
Fruit detection, tracking, and 3D reconstruction for crop mapping and yield estimation,
ICARCV10(1181-1186).
IEEE DOI 1109
BibRef

Buus, O.T.[Ole Thomsen], Jřrgensen, J.R.[Johannes Ravn], Carstensen, J.M.[Jens Michael],
Analysis of Seed Sorting Process by Estimation of Seed Motion Trajectories,
SCIA11(273-284).
Springer DOI 1105
BibRef

Nielsen, O.H.A.[Otto Hřjager Attermann], Dahl, A.L.[Anders Lindbjerg], Larsen, R.[Rasmus], Mřller, F.[Flemming], Nielsen, F.D.[Frederik Donbćk], Thomsen, C.L.[Carsten L.], Aanćs, H.[Henrik], Carstensen, J.M.[Jens Michael],
Supercontinuum Light Sources for Hyperspectral Subsurface Laser Scattering: Applications for Food Inspection,
SCIA11(327-337).
Springer DOI 1105
BibRef

Nohara, S.[Sachiyo], Kato, K.[Kunihito], Yamamoto, K.[Kazuhiko], Yoshimura, W.[Wakako], Kasamatsu, C.[Chinatsu],
A deliciousness information extraction method by controlling of image information,
FCV11(1-6).
IEEE DOI 1102
Visual evaluation of food for taste. BibRef

Nakajima, C.[Chikahito], Nogata, Y.[Yasuyuki], Sugimoto, M.[Masaaki],
Autodetection of barnacle larvae at power plants,
FCV11(1-4).
IEEE DOI 1102
BibRef

Perciano, T.[Talita], Hirata, R.[Roberto], de Castro Jorge, L.A.[Lúcio André],
Parameter Estimation for Ridge Detection in Images with Thin Structures,
CIARP10(386-393).
Springer DOI 1011
BibRef

Villette, S., Gee, C., Piron, E., Martin, R., Miclet, D., Paindavoine, M.,
An efficient vision system to measure granule velocity and mass flow distribution in fertiliser centrifugal spreading,
IPTA10(543-548).
IEEE DOI 1007
BibRef

Wei, Z.B.[Zhen-Bo], Wang, J.[Jun],
Discrimination of Honeys by Electronic Tongue and Different Analytical Techniques,
CISP09(1-5).
IEEE DOI 0910
BibRef

Dissing, B.S.[Bjorn S.], Clemmesen, L.H.[Line H.], Loje, H.[Hanne], Ersboll, B.K.[Bjarne K.], Adler-Nissen, J.[Jens],
Temporal reflectance changes in vegetables,
CRICV09(1917-1922).
IEEE DOI 0910
BibRef

Zhang, Z.Y.[Zhuo-Yong], Wang, F.X.[Feng-Xia], de B Harrington, P.,
Two-Dimensional Mid- and Near-Infrared Correlation Spectroscopy for Rhubarb Identification,
CISP09(1-6).
IEEE DOI 0910
BibRef

Liu, Q.S.[Qing-Sheng], Liu, G.H.[Gao-Huan],
Using Tasseled Cap Transformation of CBERS-02 Images to Detect Dieback or Dead Robinia Pseudoacacia Plantation,
CISP09(1-5).
IEEE DOI 0910
BibRef

Backes, A.R.[André R.], de M. Sá Junior, J.J.[Jarbas J.], Kolb, R.M.[Rosana M.], Bruno, O.M.[Odemir M.],
Plant Species Identification Using Multi-scale Fractal Dimension Applied to Images of Adaxial Surface Epidermis,
CAIP09(680-688).
Springer DOI 0909

See also Shape Skeleton Classification Using Graph and Multi-scale Fractal Dimension. BibRef

Portman, N.[Nataliya], Grenander, U.[Ulf], Vrscay, E.R.[Edward R.],
Direct Estimation of Biological Growth Properties from Image Data Using the 'GRID' Model,
ICIAR09(832-843).
Springer DOI 0907
BibRef

Ma, W.[Wei], Zha, H.B.[Hong-Bin],
Convenient reconstruction of natural plants by images,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Xie, N.H.[Nian-Hua], Li, X.[Xi], Zhang, X.Q.[Xiao-Qin], Hu, W.M.[Wei-Ming], Wang, J.Z.[James Z.],
Boosted cannabis image recognition,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Taouil, K.[Khaled], Chtourou, Z.[Zied], Kamoun, L.[Lotfi],
Machine Vision Based Quality Monitoring in Olive Oil Conditioning,
IPTA08(1-4).
IEEE DOI 0811
BibRef

Belhumeur, P.N.[Peter N.], Chen, D.Z.[Dao-Zheng], Feiner, S.[Steven], Jacobs, D.W.[David W.], Kress, W.J.[W. John], Ling, H.B.[Hai-Bin], Lopez, I.[Ida], Ramamoorthi, R.[Ravi], Sheorey, S.[Sameer], White, S.[Sean], Zhang, L.[Ling],
Searching the World's Herbaria: A System for Visual Identification of Plant Species,
ECCV08(IV: 116-129).
Springer DOI 0810
BibRef

Lumme, J., Karjalainen, M., Kaartinen, H., Kukko, A., Hyyppä, J., Hyyppä, H., Jaakkola, A., Kleemola, J.,
Terrestrial Laser Scanning of Agricultural Crops,
ISPRS08(B5: 563 ff).
PDF File. 0807
BibRef

Šeatovic, D.[Dejan],
A Segmentation Approach in Novel Real Time 3D Plant Recognition System,
CVS08(xx-yy).
Springer DOI 0805
BibRef

Song, Y.[Yu], Wilson, R.G.[Roland G.], Edmondson, R.[Rodney], Parsons, N.[Nick],
Surface Modelling of Plants from Stereo Images,
3DIM07(312-319).
IEEE DOI 0708
BibRef

Mizuno, S.J.[Shin-Ji], Noda, K.[Keiichi], Ezaki, N.[Nobuo], Takizawa, H.[Hotaka], Yamamoto, S.J.[Shin-Ji],
Detection of Wilt by Analyzing Color and Stereo Vision Data of Plant,
MIRAGE07(400-411).
Springer DOI 0703
BibRef

Guo, M.[Mingen], Ou, Z.Y.[Zong-Ying], Wei, H.L.[Hong-Lei],
Inspecting Ingredients of Starches in Starch-Noodle based on Image Processing and Pattern Recognition,
ICPR06(II: 877-880).
IEEE DOI 0609
BibRef

Dahl, A.B.[Anders Bjorholm], Aanćs, H.[Henrik], Larsen, R.[Rasmus], Ersbřll, B.K.[Bjarne K.],
Classification of Biological Objects Using Active Appearance Modelling and Color Cooccurrence Matrices,
SCIA07(938-947).
Springer DOI 0706
Active Appearance Models. AAM for logs and vegetables. BibRef

Kita, N., Kita, Y., Yang, H.Q.[Hai-Quan],
Archiving technology for plant inspection images captured by mobile active cameras '4D visible memory',
3DPVT02(208-213). 0206
BibRef

Tadeo, F., Matia, D., Laya, D., Santos, F., Alvarez, T., Gonzalez, S.,
Detection of Phases in Sugar Crystallization Using Wavelets,
ICIP01(III: 178-181).
IEEE DOI 0108
BibRef

Rodenacker, K., Gais, P., Juetting, U., Hense, B.A.,
(Semi-) Automatic Recognition of Microorganisms in Water,
ICIP01(III: 30-33).
IEEE DOI 0108
BibRef

Davies, R.[Roger], Heleno, P.[Paulo], Correia, B.A.B.[Bento A. Brázio], Dinis, J.[Joăo],
VIP3D: An Application of Image Processing Technology for Quality Control in the Food Industry,
ICIP01(I: 293-296).
IEEE DOI 0108
BibRef

Mallant, J.P.,
Visual Inspection in the Food Industry,
SCIA99(Invited Talk). BibRef 9900

Jones, R.[Ronald], Frydendal, I.[Ib],
Segmentation of Sugar Beets Using Image and Graph Processing,
ICPR98(Vol II: 1697-1699).
IEEE DOI 9808
BibRef

Hahn, F.[Federico], Mota, R.[Rafael],
Nobel Chile Jalapeno sorting using structured laser and neural network classifiers,
CIAP97(II: 517-523).
Springer DOI 9709
BibRef

Gregori, M., Lombardi, L., Savini, M., Scianna, A.,
Autonomous plant inspection and anomaly detection,
CIAP97(II: 509-516).
Springer DOI 9709
BibRef

Bolle, R.M., Connell, J.H., Haas, N., Mohan, R., and Taubin, G.,
VeggieVision: A Produce Recognition System,
WACV96(244-251).
IEEE DOI 9609
BibRef

Garcia-Consuegra, J., Cisneros, G., Martinez, A.,
A methodology for woody crop location and discrimination in remote sensing,
CIAP99(810-815).
IEEE DOI 9909
BibRef

Samal, A., Peterson, B., Holliday, D.J.,
Recognizing plants using stochastic L-systems,
ICIP94(I: 183-187).
IEEE DOI 9411
BibRef

Dobrusin, Y.[Yuri], Edan, Y.[Yael], Grinshpun, J.[Joseph], Peiper, U.M.[Uri M.], Wolf, I.[Isaac], Hetzroni, A.[Amots],
Computer image analysis to locate targets for an agricultural robot,
CAIP93(775-779).
Springer DOI 9309
BibRef

Berke, J.[József], Gyorffy, K.[Katalin], Fischl, G.[Géza], Kárpáti, L.[László], Bakonyi, J.[József],
The application of digital image processing in the evaluation of agricultural experiments,
CAIP93(780-787).
Springer DOI 9309
BibRef

Belaid, A.,
Metrology in quality control of nuts,
ICPR90(I: 636-638).
IEEE DOI 9006
BibRef

Fox, J.S., Weldon, Jr., E., and Ang, M.,
Machine Vision Techniques for Finding Sugarcane Seedeyes,
CVPR85(653-655). (Univ. of Hawaii) Hough. Feature Computation. Interesting use of pyramids and hough transform. BibRef 8500

Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Inspection of Food Grains .


Last update:Nov 26, 2024 at 16:40:19