Strat, T.M., and
Fischler, M.A.,
Context-Based Vision:
Recognizing Objects Using Information from Both 2-D and 3-D Imagery,
PAMI(13), No. 10, October 1991, pp. 1050-1065.
IEEE DOI
System: Condor.
BibRef
9110
Earlier:
A Context-Based Recognition System for Natural Scenes and
Complex Domains,
DARPA90(456-472).
BibRef
Earlier: A2, A1:
Recognizing Objects in a Natural Environment:
A Contextual Vision System,
DARPA89(774-796).
BibRef
And:
Context-Based Vision: Recognition of Natural Scenes,
Asilomar89(532-536).
System: CVS.
Recognition, Context Based. This discusses the current SRI high-level vision effort. Addresses:
object recognition without accurate object delineation, use of
contest, use of geometry, and control of complexity. Uses context
sets and cliques.
BibRef
Strat, T.M.,
Decision Analysis Using Belief Functions,
ApproximateR(4), No. 5, September, 1990, pp. 391-418.
BibRef
9009
And:
in Advances in the Dempster-Shafer Theory of Evidence,
ed. by R. Yager, M. Fedrizzi, and J. Kacprzyk, John Wiley & sons,
New York, 1994, pp. 275-310.
See also Mathematical Theory of Evidence, A.
BibRef
Strat, T.M.,
Explaining Evidential Analyses,
ApproximateR(3), No. 4, July 1989, pp. 299-353.
BibRef
8907
Strat, T.M.,
Natural Object Recognition,
New York:
Springer1992, 165pp.
ISBN 0-387-97832-1.
BibRef
9200
And:
STAN-CS-91-1376, Stanford, CA, December 1990.
BibRef
Ph.D.Thesis.
System: Condor.
Rule Based Analysis. The
BibRef
Bookfrom his thesis on general object recognition using
contextual cues. A set of processes interact through shared data structures.
Each process has an associated context set, that when satisfied causes
the process to run.
BibRef
Strat, T.M.,
Photogrammetry and Knowledge Representation in Computer Vision,
ISPRS94Symposium on Spatial Information from Digital
Photogrammetry and Computer Vision, Munich, September 1994.
BibRef
9409
Strat, T.M.,
Fischler, M.A.,
Natural Object Recognition:
A Theoretical Framework and Its Implementation,
IJCAI91(1264-1270).
BibRef
9100
Strat, T.M.[Thomas M.],
Fischler, M.A.[Martin A.],
The Use of Context in Vision,
Context95(xx)
BibRef
9500
Strat, T.M.[Thomas M.],
Fua, P.V.,
Connolly, C.I.,
Context-Based Vision,
Radius97(373-388).
BibRef
9700
Smith, G.B.,
Strat, T.M.,
Information Management in a Sensor-Based Autonomous System,
DARPA87(170-177).
BibRef
8700
Strat, T.M.,
Smith, G.B.,
Core Knowledge System:
Storage and Retrieval of Inconsistent Information,
DARPA88(660-665).
BibRef
8800
Strat, T.M.,
Using Context to Control Computer Vision Algorithms,
Ascona95(3-12).
BibRef
9500
Earlier:
Employing Contextual Information in Computer Vision,
DARPA93(217-229).
System: Condor. The use of context in understanding objects.
Describes the Prolog-like language used to control algorithms
in RCDE
BibRef
Strat, T.M.,
Smith, G.B.,
The Management of Spatial Information in a Mobile Robot,
SRMSF87(240-249).
BibRef
8700
Lowrance, J.,
Strat, T.M.,
Wesley, L.P.,
Garvey, T.D., and
Ruspini, E.,
The Theory, Implementation, and Practice of Evidential Reasoning,
Final Report,
SRIProject 5701, June 1991.
BibRef
9106
Lowrance, J.,
Ruspini, E., and
Strat, T.M.,
Understanding Evidential Reasoning,
SRI-TN-501, January 1991.
BibRef
9101
Bell, B.,
Pau, L.F.,
Context Knowledge and Search Control Issues in
Object-Oriented Prolog-Based Image Understanding,
PRL(13), 1992, pp. 279-290.
BibRef
9200
Pau, L.F.,
Context Related Issues in Image Understanding,
HPRCV97(Chapter IV:3).
(Digital Equipment Europe)
BibRef
9700
Liedtke, C.E.,
Bückner, J.,
Pahl, M.,
Stahlhut, O.,
Knowledge Based System for the Interpretation of Complex Scenes,
Ascona01(3-12).
Combine various features for roads and buildings.
0201
BibRef
Bückner, J.,
Pahl, M.,
Stahlhut, O.,
Liedtke, C.E.,
A Knowledge-Based System for Context Dependent Evaluation of Remote
Sensing Data,
DAGM02(58 ff.).
Springer DOI
0303
BibRef
Bückner, J.[Jürgen],
Pahl, M.[Martin],
Stahlhut, O.[Oliver],
Semantic Interpretation of Remote Sensing Data,
PCV02(A: 62).
0305
BibRef
Vailaya, A.[Aditya],
Zhang, H.J.[Hong-Jiang],
Yang, C.J.[Chang-Jiang],
Liu, F.I.[Feng-I],
Jain, A.K.[Anil K.],
Automatic image orientation detection,
IP(11), No. 7, July 2002, pp. 746-755.
IEEE DOI
0207
BibRef
Earlier: A1, A2, A5 Only:
ICIP99(II:600-604).
IEEE DOI Find the orientation of the natural image using features.
BibRef
Zhou, G.D.[Guo-Dong],
Direct modelling of output context dependence in discriminative hidden
Markov model,
PRL(26), No. 5, April 2005, pp. 545-553.
Elsevier DOI
0501
BibRef
Luo, J.B.[Jie-Bo],
Boutell, M.R.[Matthew R.],
Automatic Image Orientation Detection via Confidence-Based Integration
of Low-Level and Semantic Cues,
PAMI(27), No. 5, May 2005, pp. 715-726.
IEEE Abstract.
0501
BibRef
Earlier:
A Probabilistic Approach to Image Orientation Detection via
Confidence-Based Integration of Low-Level and Semantic Cues,
MMDE04(141).
IEEE DOI
0406
How to display random collections of (consumer) images in the correct
orientation.
Low level cues are not sufficient.
BibRef
Boutell, M.R.[Matthew R.],
Luo, J.B.[Jie-Bo],
Bayesian fusion of camera metadata cues in semantic scene
classification,
CVPR04(II: 623-630).
IEEE DOI
0408
Use camera metadata to aid classification (e.g. exposure time).
BibRef
Wolf, L.B.[Lior B.],
Bileschi, S.M.[Stanley M.],
A Critical View of Context,
IJCV(69), No. 2, August 2006, pp. 251-261.
Springer DOI
0606
Use context to select locations likely to contain particular objects.
BibRef
Wolf, L.B.[Lior B.],
Bileschi, S.M.[Stan M.],
Meyers, E.[Ethan],
Perception Strategies in Hierarchical Vision Systems,
CVPR06(II: 2153-2160).
IEEE DOI
0606
BibRef
Bileschi, S.M.[Stanley M.],
StreetScenes: Towards Scene Understanding in Still Images,
Ph.D.Thesis, May 2006, MIT.
PDF File.
BibRef
0605
Bileschi, S.M.[Stanley M.],
CBCL StreetScenes Challenge Framework,
Online2007.
WWW Link.
Dataset, Object Detection. Primarily for Cars, people, and street scenes.
Data is labeled.
BibRef
0700
Hoiem, D.[Derek],
Efros, A.A.[Alexei A.],
Hebert, M.[Martial],
Recovering Surface Layout from an Image,
IJCV(75), No. 1, October 2007, pp. 151-172.
Springer DOI
0709
BibRef
Earlier:
Geometric Context from a Single Image,
ICCV05(I: 654-661).
IEEE DOI
0510
Dataset, Recognition. The example data is available:
HTML Version. Kanade issue.
Coarse properties (ground plane, sky, planar regions) from one
image.
Probabilistic approach to estimate 3D geometry so that not every
possible view is needed.
BibRef
Quickly determine the approximate surface structure from variety of cues.
Hoiem, D.[Derek],
Efros, A.A.[Alexei A.],
Hebert, M.[Martial],
Closing the loop in scene interpretation,
CVPR08(1-8).
IEEE DOI
PDF File.
0806
Combining the IU tasks.
BibRef
Efros, A.A.[Alexei Alyosha],
Qualitative 3D from a Single Image,
3DPVT10(xx-yy).
WWW Link.
1005
BibRef
Hoiem, D.[Derek],
Efros, A.A.[Alexei A.],
Hebert, M.[Martial],
Putting Objects in Perspective,
IJCV(80), No. 1, October 2008, pp. xx-yy.
Springer DOI
PDF File.
0809
BibRef
Earlier:
CVPR06(II: 2137-2144).
IEEE DOI
HTML Version.
0606
Award, CVPR.
BibRef
Divvala, S.K.[Santosh Kumar],
Efros, A.A.[Alexei A.],
Hebert, M.[Martial],
Lazebnik, S.[Svetlana],
Unsupervised Patch-based Context from Millions of Images,
CMU-RI-TR-11-38, December, 2011.
PDF File.
1202
BibRef
Divvala, S.K.[Santosh K.],
Efros, A.A.[Alexei A.],
Hebert, M.[Martial],
Object Instance Sharing by Enhanced Bounding Box Correspondence,
BMVC12(60).
DOI Link
1301
BibRef
Divvala, S.K.[Santosh K.],
Efros, A.A.[Alexei A.],
Hebert, M.[Martial],
Can similar scenes help surface layout estimation?,
InterNet08(1-8).
IEEE DOI
0806
BibRef
Hoiem, D.[Derek],
Seeing the World Behind the Image:
Spatial Layout for 3D Scene Understanding,
CMU-RI-TR-07-28, August, 2007.
BibRef
0708
Ph.D.Thesis.
WWW Link.
BibRef
Hoiem, D.[Derek],
Rother, C.[Carsten],
Winn, J.[John],
3D Layout CRF for Multi-View Object Class Recognition and Segmentation,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Bauckhage, C.,
Wachsmuth, S.,
Hanheide, M.,
Wrede, S.,
Sagerer, G.F.,
Heidemann, G.,
Ritter, H.,
The visual active memory perspective on integrated recognition systems,
IVC(26), No. 1, 1 January 2008, pp. 5-14.
Elsevier DOI
0711
Cognitive vision; Contextual reasoning; Fusion; Architecture;
System integration
BibRef
Carbonetto, P.[Peter],
Dorkó, G.[Gyuri],
Schmid, C.[Cordelia],
Kück, H.[Hendrik],
de Freitas, N.[Nando],
Learning to Recognize Objects with Little Supervision,
IJCV(77), No. 1-3, May 2008, pp. 219-237.
Springer DOI
0803
BibRef
Earlier:
A Semi-supervised Learning Approach to Object Recognition with Spatial
Integration of Local Features and Segmentation Cues,
CLOR06(277-300).
Springer DOI
0711
BibRef
Kück, H.[Hendrik],
Hoffman, M.[Matt],
Doucet, A.[Arnaud],
de Freitas, N.[Nando],
Inference and Learning for Active Sensing, Experimental Design and
Control,
IbPRIA09(1-10).
Springer DOI
0906
BibRef
Carbonetto, P.[Peter],
de Freitas, N.[Nando],
Barnard, K.[Kobus],
A Statistical Model for General Contextual Object Recognition,
ECCV04(Vol I: 350-362).
Springer DOI
0405
Given the image and captions (or descriptions)
learn the spatial relationships.
BibRef
Kück, H.[Hendrik],
Carbonetto, P.[Peter],
de Freitas, N.[Nando],
A Constrained Semi-supervised Learning Approach to Data Association,
ECCV04(Vol III: 1-12).
Springer DOI
0405
Show how a wide class of data association tasks arising in computer
vision can be interpreted as a constrained semi-supervised learning
problem.
BibRef
Fan, J.P.,
Shen, Y.,
Yang, C.,
Zhou, N.,
Structured Max-Margin Learning for Inter-Related Classifier Training
and Multilabel Image Annotation,
IP(20), No. 3, March 2011, pp. 837-854.
IEEE DOI
1103
See also Generalized feature learning and indexing for object localization and recognition.
BibRef
Dong, P.X.[Pei-Xiang],
Mei, K.Z.[Kui-Zhi],
Zheng, N.N.[Nan-Ning],
Lei, H.[Hao],
Fan, J.P.[Jian-Ping],
Training inter-related classifiers for automatic image classification
and annotation,
PR(46), No. 5, May 2013, pp. 1382-1395.
Elsevier DOI
1302
Inter-related classifier training; Large-scale image classification;
Structural learning; Visual concept network
BibRef
Lei, H.[Hao],
Mei, K.Z.[Kui-Zhi],
Zheng, N.N.[Nan-Ning],
Dong, P.X.[Pei-Xiang],
Zhou, N.[Ning],
Fan, J.P.[Jian-Ping],
Learning group-based dictionaries for discriminative image
representation,
PR(47), No. 2, 2014, pp. 899-913.
Elsevier DOI
1311
Group-based dictionary learning
BibRef
Xue, X.Y.[Xiang-Yang],
Luo, H.Z.[Hang-Zai],
Fan, J.P.[Jian-Ping],
Structured max-margin learning for multi-label image annotation,
CIVR10(82-88).
DOI Link
1007
Multiple classifiers.
BibRef
Zhou, N.[Ning],
Shen, Y.[Yi],
Peng, J.Y.[Jin-Ye],
Fan, J.P.[Jian-Ping],
Learning inter-related visual dictionary for object recognition,
CVPR12(3490-3497).
IEEE DOI
1208
BibRef
Zhou, N.[Ning],
Cheung, W.K.[William K.],
Qiu, G.P.[Guo-Ping],
Xue, X.Y.[Xiang-Yang],
A Hybrid Probabilistic Model for Unified Collaborative and
Content-Based Image Tagging,
PAMI(33), No. 7, July 2011, pp. 1281-1294.
IEEE DOI
1106
BibRef
Earlier: A1, A2, A4, A3:
Collaborative and content-based image labeling,
ICPR08(1-4).
IEEE DOI
0812
User data with labels provided. Integrate low-level image features with
user provided tags.
BibRef
Liu, X.B.[Xiao-Bai],
Lin, L.[Liang],
Yan, S.C.[Shui-Cheng],
Jin, H.[Hai],
Tao, W.B.[Wen-Bing],
Integrating Spatio-Temporal Context With Multiview Representation for
Object Recognition in Visual Surveillance,
CirSysVideo(21), No. 4, April 2011, pp. 393-407.
IEEE DOI
1104
set of deformable object templates for a pose, temporal context,
BibRef
Choi, M.J.[Myung Jin],
Torralba, A.B.[Antonio B.],
Willsky, A.S.[Alan S.],
A Tree-Based Context Model for Object Recognition,
PAMI(34), No. 2, February 2012, pp. 240-252.
IEEE DOI
1112
BibRef
Earlier:
Add A2:
Lim, J.J.[Joseph J.],
CSAIL(TR-2010-050). 2010-10-29
WWW Link.
1101
Recognition in context in addition to local features. Context rules out
unlikely conbinations or locations.
Also gets most typical or least typical scene in dataset.
BibRef
Choi, M.J.[Myung Jin],
Torralba, A.B.[Antonio B.],
Willsky, A.S.[Alan S.],
Context models and out-of-context objects,
PRL(33), No. 7, 1 May 2012, pp. 853-862.
Elsevier DOI
1203
Award, IAPR, J.K. Aggarwal. Object detection; Context model; Out-of-context object
BibRef
Choi, M.J.[Myung Jin],
Lim, J.J.[Joseph J.],
Torralba, A.B.[Antonio B.],
Willsky, A.S.[Alan S.],
Exploiting hierarchical context on a large database of object
categories,
CVPR10(129-136).
IEEE DOI
1006
BibRef
Helmy, T.[Tarek],
A Computational Model for Context-based Image Categorization and
Description,
IJIG(12), No. 1, January 2012, pp. 1250001.
DOI Link
1203
BibRef
Parikh, D.[Devi],
Zitnick, C.L.[C. Lawrence],
Chen, T.H.[Tsu-Han],
Exploring Tiny Images: The Roles of Appearance and Contextual
Information for Machine and Human Object Recognition,
PAMI(34), No. 10, October 2012, pp. 1978-1991.
IEEE DOI
1208
BibRef
Earlier:
From appearance to context-based recognition:
Dense labeling in small images,
CVPR08(1-8).
IEEE DOI
0806
Context in addition to the object itself.
BibRef
Zitnick, C.L.[C. Lawrence],
Parikh, D.[Devi],
The role of image understanding in contour detection,
CVPR12(622-629).
IEEE DOI
1208
BibRef
Earlier: A2, A1:
The role of features, algorithms and data in visual recognition,
CVPR10(2328-2335).
IEEE DOI
1006
Analysis of human performance for designing recognition systems.
BibRef
Guo, Z.Y.[Zhen-Yu],
Wang, Z.J.,
An Unsupervised Hierarchical Feature Learning Framework for One-Shot
Image Recognition,
MultMed(15), No. 3, 2013, pp. 621-632.
IEEE DOI
1303
BibRef
Earlier:
One-shot Recognition Using Unsupervised Attribute-Learning,
PSIVT10(1-6).
IEEE DOI
1011
High level descriptions to aid recognition.
BibRef
Xue, J.R.[Jian-Ru],
Wang, L.[Le],
Zheng, N.N.[Nan-Ning],
Hua, G.[Gang],
Automatic salient object extraction with contextual cue and its
applications to recognition and alpha matting,
PR(46), No. 11, November 2013, pp. 2874-2889.
Elsevier DOI
1306
BibRef
Earlier: A2, A1, A3, A4:
Automatic salient object extraction with contextual cue,
ICCV11(105-112).
IEEE DOI
1201
Salient object; Object extraction; Graph cut; Visual
attention; Visual context
BibRef
Grim, J.[Jirí],
Sequential pattern recognition by maximum conditional informativity,
PRL(45), No. 1, 2014, pp. 39-45.
Elsevier DOI
1407
Multivariate statistics. Choose the next feature to measure.
BibRef
Sun, L.J.[Lin-Jia],
Liang, X.H.[Xiao-Hui],
Zhao, Q.P.[Qin-Ping],
Automatic sub-category partitioning and parts localization for
learning a robust object model,
IVC(32), No. 9, 2014, pp. 579-589.
Elsevier DOI
1408
Object model learning from topic model. Multiple versions (categories)
for same object.
BibRef
Pinz, A.J.[Axel J.],
Object Categorization,
FTCGV(1), Issue 4, 2005, pp. 255-353.
DOI Link
1410
Published September 2006.
BibRef
Lin, L.,
Zhang, R.,
Duan, X.,
Adaptive Scene Category Discovery With Generative Learning and
Compositional Sampling,
CirSysVideo(25), No. 2, February 2015, pp. 251-260.
IEEE DOI
1502
Clustering algorithms
BibRef
Cao, X.,
Wei, X.,
Han, Y.,
Chen, X.,
An Object-Level High-Order Contextual Descriptor Based on Semantic,
Spatial, and Scale Cues,
Cyber(45), No. 7, July 2015, pp. 1327-1339.
IEEE DOI
1506
Context
BibRef
Lang, H.,
Ling, H.,
Covert Photo Classification by Fusing Image Features and Visual
Attributes,
IP(24), No. 10, October 2015, pp. 2996-3008.
IEEE DOI
1507
Cameras. I.e. which photos were taken without the subject's awareness.
BibRef
Zhang, X.S.[Xi-Shan],
Yang, Y.[Yang],
Zhang, Y.D.[Yong-Dong],
Luan, H.B.[Huan-Bo],
Li, J.T.[Jin-Tao],
Zhang, H.W.[Han-Wang],
Chua, T.S.[Tat-Seng],
Enhancing Video Event Recognition Using Automatically Constructed
Semantic-Visual Knowledge Base,
MultMed(17), No. 9, September 2015, pp. 1562-1575.
IEEE DOI
1509
image classification
BibRef
Zhang, X.S.[Xi-Shan],
Zhang, H.W.[Han-Wang],
Zhang, Y.D.[Yong-Dong],
Yang, Y.[Yang],
Wang, M.[Meng],
Luan, H.B.[Huan-Bo],
Li, J.T.[Jin-Tao],
Chua, T.S.[Tat-Seng],
Deep Fusion of Multiple Semantic Cues for Complex Event Recognition,
IP(25), No. 3, March 2016, pp. 1033-1046.
IEEE DOI
1602
feature extraction
BibRef
Ohn-Bar, E.[Eshed],
Trivedi, M.M.[Mohan Manubhai],
Multi-scale volumes for deep object detection and localization,
PR(61), No. 1, 2017, pp. 557-572.
Elsevier DOI
1705
BibRef
Earlier:
Detection and localization with multi-scale models,
ICPR16(1382-1387)
IEEE DOI
1705
Analytical models, Automobiles, Computational modeling,
Feature extraction, Image resolution, Pipelines, Training.
Multi-scale reasoning
See also Learning to Detect Vehicles by Clustering Appearance Patterns.
BibRef
Premachandran, V.[Vittal],
Tarlow, D.[Daniel],
Yuille, A.L.,
Batra, D.[Dhruv],
Empirical Minimum Bayes Risk Prediction,
PAMI(39), No. 1, January 2017, pp. 75-86.
IEEE DOI
1612
BibRef
Earlier: A1, A2, A4, Only:
Empirical Minimum Bayes Risk Prediction: How to Extract an Extra Few
% Performance from Vision Models with Just Three More Parameters,
CVPR14(1043-1050)
IEEE DOI
1409
Decision theory.
Maximize for specific performance measure.
BibRef
Huang, C.[Chao],
Li, H.L.[Hong-Liang],
Li, W.[Wei],
Wu, Q.B.[Qing-Bo],
Xu, L.F.[Lin-Feng],
Store classification using Text-Exemplar-Similarity and
Hypotheses-Weighted-CNN,
JVCIR(44), No. 1, 2017, pp. 21-28.
Elsevier DOI
1703
Store classification. what kind of store is it.
BibRef
Oramas Mogrovejo, J.A.[José Antonio],
de Raedt, L.[Luc],
Tuytelaars, T.[Tinne],
Context-based object viewpoint estimation: A 2D relational approach,
CVIU(160), No. 1, 2017, pp. 100-113.
Elsevier DOI
1706
BibRef
Earlier:
Allocentric Pose Estimation,
ICCV13(289-296)
IEEE DOI
1403
Context.
allocentric; collective; configuration; context; pose; viewpoint
Use context of other objects.
BibRef
Zhang, C.J.[Chun-Jie],
Huang, Q.M.[Qing-Ming],
Tian, Q.[Qi],
Contextual Exemplar Classifier-Based Image Representation for
Classification,
CirSysVideo(27), No. 8, August 2017, pp. 1691-1699.
IEEE DOI
1708
Computational modeling, Context modeling, Feature extraction,
Image representation, Semantics, Training, Visualization,
image processing, pattern classification
BibRef
Tariq, A.[Amara],
Foroosh, H.[Hassan],
Designing a symmetric classifier for image annotation using
multi-layer sparse coding,
IVC(69), No. 1, 2018, pp. 33-43.
Elsevier DOI
1712
BibRef
Earlier:
Feature-independent context estimation for automatic image annotation,
CVPR15(1958-1965)
IEEE DOI
1510
BibRef
Earlier:
Scene-based automatic image annotation,
ICIP14(3047-3051)
IEEE DOI
1502
Automatic image annotation.
Computational modeling
BibRef
Zhuang, Y.T.[Yue-Ting],
Song, J.[Jun],
Wu, F.[Fei],
Li, X.[Xi],
Zhang, Z.F.[Zhong-Fei],
Rui, Y.[Yong],
Multimodal Deep Embedding via Hierarchical Grounded Compositional
Semantics,
CirSysVideo(28), No. 1, January 2018, pp. 76-89.
IEEE DOI
1801
Bicycles, Buildings, Correlation, Feature extraction,
Machine learning, Semantics, Visualization,
multimodal embedding.
BibRef
Owens, A.[Andrew],
Wu, J.J.[Jia-Jun],
McDermott, J.H.[Josh H.],
Freeman, W.T.[William T.],
Torralba, A.B.[Antonio B.],
Learning Sight from Sound: Ambient Sound Provides Supervision for
Visual Learning,
IJCV(126), No. 10, October 2018, pp. 1120-1137.
Springer DOI
1809
BibRef
Earlier:
Ambient Sound Provides Supervision for Visual Learning,
ECCV16(I: 801-816).
Springer DOI
1611
Context (ocean, traffic, etc.)
BibRef
Zhuang, C.[Can],
Xie, Z.[Zhong],
Ma, K.[Kai],
Guo, M.Q.[Ming-Qiang],
Wu, L.[Liang],
A Task-Oriented Knowledge Base for Geospatial Problem-Solving,
IJGI(7), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Liang, K.M.[Kong-Ming],
Chang, H.[Hong],
Ma, B.,
Shan, S.G.[Shi-Guang],
Chen, X.L.[Xi-Lin],
Unifying Visual Attribute Learning with Object Recognition in a
Multiplicative Framework,
PAMI(41), No. 7, July 2019, pp. 1747-1760.
IEEE DOI
1906
BibRef
Earlier: A1, A2, A4, A5, Only:
A Unified Multiplicative Framework for Attribute Learning,
ICCV15(2506-2514)
IEEE DOI
1602
Visualization, Semantics, Predictive models, Task analysis,
Machine learning, Training, Correlation, Attribute learning,
image understanding.
mid-level semantic properties of objects
BibRef
Sun, N.,
Li, W.,
Liu, J.,
Han, G.,
Wu, C.,
Fusing Object Semantics and Deep Appearance Features for Scene
Recognition,
CirSysVideo(29), No. 6, June 2019, pp. 1715-1728.
IEEE DOI
1906
Feature extraction, Semantics, Image recognition, Databases,
Visualization, Hidden Markov models, Benchmark testing,
scene recognition
BibRef
Ji, Q.A.[Qi-Ang],
Combining knowledge with data for efficient and generalizable visual
learning,
PRL(124), 2019, pp. 31-38.
Elsevier DOI
1906
Propose to classify knowledge into permanent knowledge, circumstantial
knowledge, subjective knowledge, and data knowledge.
Machine learning, Object recognition
BibRef
Shen, F.M.[Fu-Min],
Zhou, X.[Xiang],
Yu, J.[Jun],
Yang, Y.[Yang],
Liu, L.[Li],
Shen, H.T.[Heng Tao],
Scalable Zero-Shot Learning via Binary Visual-Semantic Embeddings,
IP(28), No. 7, July 2019, pp. 3662-3674.
IEEE DOI
1906
Semantics, Visualization, Task analysis, Binary codes, Training,
Image coding, Hamming distance, Zero-shot learning, binary embeddings
BibRef
Liu, Y.[Yang],
Gao, X.B.[Xin-Bo],
Han, J.G.[Jun-Gong],
Liu, L.[Li],
Shao, L.[Ling],
Zero-shot learning via a specific rank-controlled semantic
autoencoder,
PR(122), 2022, pp. 108237.
Elsevier DOI
2112
Zero-shot learning, Rank, Domain shift, Autoencoder
BibRef
Yang, J.[Junbo],
Hu, B.[Borui],
Li, H.Y.[Han-Yu],
Liu, Y.[Yang],
Gao, X.B.[Xin-Bo],
Han, J.G.[Jun-Gong],
Chen, F.L.[Fang-Lin],
Wu, X.[Xuangou],
Dynamic VAEs via semantic-aligned matching for continual zero-shot
learning,
PR(160), 2025, pp. 111199.
Elsevier DOI
2501
Continual zero-shot learning, Catastrophic forgetting,
Semantic-aligned matching, Variational autoencoders
BibRef
Gao, R.[Rui],
Hou, X.S.[Xing-Song],
Qin, J.[Jie],
Shen, Y.M.[Yu-Ming],
Long, Y.[Yang],
Liu, L.[Li],
Zhang, Z.[Zhao],
Shao, L.[Ling],
Visual-Semantic Aligned Bidirectional Network for Zero-Shot Learning,
MultMed(25), 2023, pp. 1649-1664.
IEEE DOI
2306
Semantics, Visualization, Task analysis, Training, Standards,
Data models, Computational modeling, Bidirectional network,
zero-shot learning
BibRef
Long, Y.[Yang],
Liu, L.[Li],
Shao, L.[Ling],
Towards Fine-Grained Open Zero-Shot Learning:
Inferring Unseen Visual Features from Attributes,
WACV17(944-952)
IEEE DOI
1609
BibRef
Earlier:
Attribute Embedding with Visual-Semantic Ambiguity Removal for
Zero-shot Learning,
BMVC16(xx-yy).
HTML Version.
1805
Correlation, Gold, Semantics, Support vector machines, Training,
Training data, Visualization
BibRef
Tang, Y.W.[Yun-Wei],
Jing, L.H.[Lin-Hai],
Shi, F.[Fan],
Li, X.[Xiao],
Qiu, F.[Fang],
A Hybrid Model Integrating Spatial Pattern, Spatial Correlation, and
Edge Information for Image Classification,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Min, W.,
Mei, S.,
Liu, L.,
Wang, Y.,
Jiang, S.,
Multi-Task Deep Relative Attribute Learning for Visual Urban
Perception,
IP(29), No. 1, 2020, pp. 657-669.
IEEE DOI
1910
Quantify perceptual attributes (e.g., safe and depressing attributes)
of physical urban environment from crowd-sourced street-view images.
data visualisation, feature extraction,
learning (artificial intelligence), regression analysis,
multi-task learning
BibRef
Yang, S.J.[Shi-Jie],
Li, L.[Liang],
Wang, S.H.[Shu-Hui],
Zhang, W.G.[Wei-Gang],
Huang, Q.M.[Qing-Ming],
Tian, Q.[Qi],
SkeletonNet: A Hybrid Network With a Skeleton-Embedding Process for
Multi-View Image Representation Learning,
MultMed(21), No. 11, November 2019, pp. 2916-2929.
IEEE DOI
1911
Semantics, Correlation, Visualization, Skeleton,
Matrix decomposition, Kernel, Laplace equations,
deep auto-encoders
BibRef
Ren, C.X.[Chuan-Xian],
Luo, Y.W.[You-Wei],
Xu, X.L.[Xiao-Lin],
Dai, D.Q.[Dao-Qing],
Yan, H.[Hong],
Discriminative Residual Analysis for Image Set Classification With
Posture and Age Variations,
IP(29), 2020, pp. 2875-2888.
IEEE DOI
2001
Image set -- find the intrinsic connection when images have variations.
Image recognition, Feature extraction, Noise measurement, Training,
Task analysis, Databases, Image set recognition, residual analysis,
regularization
BibRef
Peng, H.,
Zhang, Y.,
Yang, S.,
Song, B.,
Battlefield Image Situational Awareness Application Based on Deep
Learning,
IEEE_Int_Sys(35), No. 1, January 2020, pp. 36-43.
IEEE DOI
2004
Convolution, Feature extraction, Training data, Deep learning,
Object detection, Neural networks, Human computer interaction,
Situational awareness
BibRef
Liu, J.Y.[Jing-Yu],
Wang, W.[Wei],
Wang, L.[Liang],
Yang, M.H.[Ming-Hsuan],
Attribute-Guided Attention for Referring Expression Generation and
Comprehension,
IP(29), 2020, pp. 5244-5258.
IEEE DOI
2004
The goal of referring expression is to refer to a particular object in
some scenarios.
Task analysis, Visualization, Training, Detectors, Standards,
Natural languages, Feature extraction, Referring expression,
attribute-guided attention
BibRef
Chen, G.W.[Gong-Wei],
Song, X.H.[Xin-Hang],
Zeng, H.T.[Hai-Tao],
Jiang, S.Q.[Shu-Qiang],
Scene Recognition With Prototype-Agnostic Scene Layout,
IP(29), 2020, pp. 5877-5888.
IEEE DOI
2005
Layout, Semantics, Prototypes, Image recognition, Convolution,
Neural networks, Deformable models, Scene classification,
scene layout
BibRef
Zeng, H.T.[Hai-Tao],
Song, X.H.[Xin-Hang],
Chen, G.W.[Gong-Wei],
Jiang, S.Q.[Shu-Qiang],
Learning Scene Attribute for Scene Recognition,
MultMed(22), No. 6, June 2020, pp. 1519-1530.
IEEE DOI
2005
Scene attributes, not object features.
Feature extraction, Visualization, Semantics, Context modeling,
Image recognition, Aggregates, Scene recognition,
scene attribute
BibRef
Nguyen, K.[Kien],
Fookes, C.[Clinton],
Sridharan, S.[Sridha],
Context from within: Hierarchical context modeling for semantic
segmentation,
PR(105), 2020, pp. 107358.
Elsevier DOI
2006
Semantic segmentation, Context modeling, Network evolution,
Conditional random field, Probabilistic graphical models
BibRef
Fernández-Torres, M.Á.[Miguel-Ángel],
González-Díaz, I.[Iván],
Díaz-de-María, F.[Fernando],
Probabilistic Topic Model for Context-Driven Visual Attention
Understanding,
CirSysVideo(30), No. 6, June 2020, pp. 1653-1667.
IEEE DOI
2006
Visualization, Task analysis, Adaptation models,
Feature extraction, Computational modeling, Probabilistic logic,
latent topic models
BibRef
Ärje, J.[Johanna],
Raitoharju, J.[Jenni],
Iosifidis, A.[Alexandros],
Tirronen, V.[Ville],
Meissner, K.[Kristian],
Gabbouj, M.[Moncef],
Kiranyaz, S.[Serkan],
Kärkkäinen, S.[Salme],
Human experts vs. machines in taxa recognition,
SP:IC(87), 2020, pp. 115917.
Elsevier DOI
2007
Hierarchical classification, Taxonomy,
Convolutional neural networks, Taxonomic expert, Biomonitoring
BibRef
Lv, F.M.[Feng-Mao],
Lin, G.S.[Guo-Sheng],
Liu, P.[Peng],
Yang, G.W.[Guo-Wu],
Pan, S.J.L.[Sinno Jia-Lin],
Duan, L.X.[Li-Xin],
Weakly-Supervised Cross-Domain Road Scene Segmentation via
Multi-Level Curriculum Adaptation,
CirSysVideo(31), No. 9, September 2021, pp. 3493-3503.
IEEE DOI
2109
Image segmentation, Semantics, Annotations, Roads, Training,
Task analysis, Reliability, Semantic segmentation,
weakly-supervised learning
BibRef
Fu, L.Y.[Li-Yong],
Zhang, D.[Dong],
Ye, Q.L.[Qiao-Lin],
Recurrent Thrifty Attention Network for Remote Sensing Scene
Recognition,
GeoRS(59), No. 10, October 2021, pp. 8257-8268.
IEEE DOI
2109
Acquire context for remote sensing analysis.
Image recognition, Task analysis, Standards, Object detection,
Manuals, Forestry, Semantics, Attention learning, RSS recognition
BibRef
Ghadi, Y.Y.[Yazeed Yasin],
Rafique, A.A.[Adnan Ahmed],
al Shloul, T.[Tamara],
Alsuhibany, S.A.[Suliman A.],
Jalal, A.[Ahmad],
Park, J.M.[Jeong-Min],
Robust Object Categorization and Scene Classification over Remote
Sensing Images via Features Fusion and Fully Convolutional Network,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Hao, Y.B.[Yan-Bin],
Wang, S.[Shuo],
Cao, P.[Pei],
Gao, X.J.[Xin-Jian],
Xu, T.[Tong],
Wu, J.M.[Jin-Meng],
He, X.N.[Xiang-Nan],
Attention in Attention:
Modeling Context Correlation for Efficient Video Classification,
CirSysVideo(32), No. 10, October 2022, pp. 7120-7132.
IEEE DOI
2210
WWW Link. Context modeling, Computational modeling, Correlation,
Visualization, Convolutional neural networks, Standards, efficient calculation
BibRef
Yuan, J.W.[Jing-Wen],
Wang, S.G.[Shu-Gen],
HCFPN: Hierarchical Contextual Feature-Preserved Network for Remote
Sensing Scene Classification,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Wang, X.[Xuan],
Zhu, Z.G.[Zhi-Gang],
Context understanding in computer vision: A survey,
CVIU(229), 2023, pp. 103646.
Elsevier DOI
2303
Context, Computer Vision, Deep Learning Models, Context Integration
BibRef
Wang, X.[Xuan],
Tang, H.[Hao],
Zhu, Z.G.[Zhi-Gang],
GMC: A general framework of multi-stage context learning and
utilization for visual detection tasks,
CVIU(241), 2024, pp. 103944.
Elsevier DOI
2403
Context, Context integration, Object detection, Pedestrian detection
BibRef
Ramrakhya, R.[Ram],
Kembhavi, A.[Aniruddha],
Batra, D.[Dhruv],
Kira, Z.[Zsolt],
Zeng, K.H.[Kuo-Hao],
Weihs, L.[Luca],
Seeing the Unseen: Visual Common Sense for Semantic Placement,
CVPR24(16273-16283)
IEEE DOI
2410
Visualization, Machine vision, Computational modeling, Semantics,
Pipelines, Predictive models, Embodied AI, Common Sense Reasoning
BibRef
Bhowmik, A.[Aritra],
Wang, Y.[Yu],
Baka, N.[Nora],
Oswald, M.R.[Martin R.],
Snoek, C.G.M.[Cees G. M.],
Detecting Objects with Context-Likelihood Graphs and Graph Refinement,
ICCV23(6501-6510)
IEEE DOI
2401
Objects in context.
BibRef
Kim, B.[Byeonghwi],
Kim, J.[Jinyeon],
Kim, Y.[Yuyeong],
Min, C.[Cheolhong],
Choi, J.H.[Jong-Hyun],
Context-Aware Planning and Environment-Aware Memory for Instruction
Following Embodied Agents,
ICCV23(10902-10912)
IEEE DOI
2401
BibRef
Zhang, Z.Y.[Zhong-Yan],
Wang, L.[Lei],
Zhou, L.P.[Lu-Ping],
Koniusz, P.[Piotr],
Learning Spatial-Context-Aware Global Visual Feature Representation
for Instance Image Retrieval,
ICCV23(11216-11225)
IEEE DOI Code:
WWW Link.
2401
BibRef
Chang, D.[Doosoo],
Han, B.H.[Bo-Hyung],
Knowledge-based Visual Context-Aware Framework for Applications in
Robotic Services,
RealWorld23(1-9)
IEEE DOI
2302
Visualization, Service robots, Surveillance, Scalability,
Knowledge based systems, Context awareness, Knowledge representation
BibRef
Jiang, H.X.[Han-Xiao],
Mao, Y.S.[Yong-Sen],
Savva, M.[Manolis],
Chang, A.X.[Angel X.],
OPD: Single-View 3D Openable Part Detection,
ECCV22(XXIX:410-426).
Springer DOI
2211
What parts of an object can open and how they move when they do so.
BibRef
Bomatter, P.[Philipp],
Zhang, M.[Mengmi],
Karev, D.[Dimitar],
Madan, S.[Spandan],
Tseng, C.[Claire],
Kreiman, G.[Gabriel],
When Pigs Fly: Contextual Reasoning in Synthetic and Natural Scenes,
ICCV21(255-264)
IEEE DOI
2203
Visualization, Solid modeling, Computational modeling,
Transformers, Cognition, Recognition and classification,
Scene analysis and understanding
BibRef
Ruan, D.S.[Dong-Sheng],
Wang, D.[Daiyin],
Zheng, Y.[Yuan],
Zheng, N.G.[Neng-Gan],
Zheng, M.[Min],
Gaussian Context Transformer,
CVPR21(15124-15133)
IEEE DOI
2111
Transforms, Detectors, Benchmark testing,
Transformers, Solids
BibRef
Seo, P.H.[Paul Hongsuck],
Nagrani, A.[Arsha],
Schmid, C.[Cordelia],
Look Before you Speak: Visually Contextualized Utterances,
CVPR21(16872-16882)
IEEE DOI
2111
Visualization, Annotations, Manuals,
Benchmark testing, Transformers
BibRef
Unal, M.E.[Mesut Erhan],
Kovashka, A.[Adriana],
Context for Object Detection via Lightweight Global and Mid-level
Representations,
ICPR21(8423-8430)
IEEE DOI
2105
Visualization, Annotations, Image edge detection, Semantics,
Object detection, Switches, Linguistics
BibRef
Palacio, S.[Sebastian],
Engler, P.[Philipp],
Hees, J.[Jörn],
Dengel, A.[Andreas],
Contextual Classification Using Self-Supervised Auxiliary Models for
Deep Neural Networks,
ICPR21(8937-8944)
IEEE DOI
2105
Neural networks, Focusing, Predictive models,
Prediction algorithms, Minimization, Classification algorithms
BibRef
Wu, T.Y.[Tz-Ying],
Morgado, P.[Pedro],
Wang, P.[Pei],
Ho, C.H.[Chih-Hui],
Vasconcelos, N.M.[Nuno M.],
Solving Long-tailed Recognition with Deep Realistic Taxonomic
Classifier,
ECCV20(VIII:171-189).
Springer DOI
2011
BibRef
Kim, M.C.[Min-Chul],
Park, J.C.[Jong-Chan],
Na, S.[Seil],
Park, C.M.[Chang Min],
Yoo, D.G.[Dong-Geun],
Learning Visual Context by Comparison,
ECCV20(V:576-592).
Springer DOI
2011
BibRef
Singh, K.K.,
Mahajan, D.,
Grauman, K.,
Lee, Y.J.,
Feiszli, M.,
Ghadiyaram, D.,
Don't Judge an Object by Its Context:
Learning to Overcome Contextual Bias,
CVPR20(11067-11075)
IEEE DOI
2008
Context modeling, Visualization, Training, Decorrelation,
Task analysis, Data models, Microwave imaging
BibRef
Zhang, M.,
Tseng, C.,
Kreiman, G.,
Putting Visual Object Recognition in Context,
CVPR20(12982-12991)
IEEE DOI
2008
Visualization, Context modeling, Computational modeling,
Task analysis, Object recognition, Feature extraction, Modulation
BibRef
Liu, Y.,
Jia, X.,
Tan, M.,
Vemulapalli, R.,
Zhu, Y.,
Green, B.,
Wang, X.,
Search to Distill: Pearls Are Everywhere but Not the Eyes,
CVPR20(7536-7545)
IEEE DOI
2008
Task analysis, Knowledge engineering, Training, Neural networks,
Computer architecture, Standards, Learning (artificial intelligence)
BibRef
Choi, S.,
Kim, J.T.,
Choo, J.,
Cars Can't Fly Up in the Sky: Improving Urban-Scene Segmentation via
Height-Driven Attention Networks,
CVPR20(9370-9380)
IEEE DOI
2008
Semantics, Image segmentation, Roads, Feature extraction,
Computer architecture, Convolutional codes, Entropy
BibRef
Muhammad, U.R.[Umar Riaz],
Yang, Y.X.[Yong-Xin],
Hospedales, T.M.[Timothy M.],
Xiang, T.[Tao],
Song, Y.Z.[Yi-Zhe],
Goal-Driven Sequential Data Abstraction,
ICCV19(71-80)
IEEE DOI
2004
data handling, data structures,
learning (artificial intelligence), automatic data abstraction,
BibRef
Zhang, J.J.[Jun-Jie],
Wu, Q.[Qi],
Zhang, J.[Jian],
Shen, C.H.[Chun-Hua],
Lu, J.F.[Jian-Feng],
Mind Your Neighbours: Image Annotation With Metadata Neighbourhood
Graph Co-Attention Networks,
CVPR19(2951-2959).
IEEE DOI
2002
BibRef
Shetty, R.[Rakshith],
Schiele, B.[Bernt],
Fritz, M.[Mario],
Not Using the Car to See the Sidewalk -- Quantifying and Controlling
the Effects of Context in Classification and Segmentation,
CVPR19(8210-8218).
IEEE DOI
2002
BibRef
Aggarwal, D.[Divyansh],
Valiyev, E.[Elchin],
Sener, F.[Fadime],
Yao, A.[Angela],
Learning Style Compatibility for Furniture,
GCPR18(552-566).
Springer DOI
1905
BibRef
Nie, B.,
Sun, S.,
Joint Knowledge Base Embedding with Neighborhood Context,
ICPR18(379-384)
IEEE DOI
1812
Semantics, Knowledge based systems, Context modeling,
Knowledge representation, Logic gates, Training, Task analysis
BibRef
Abate, A.F.[Andrea F.],
Nappi, M.[Michele],
Barra, S.[Silvio],
de Marsico, M.[Maria],
What are you doing while answering your smartphone?,
ICPR18(3120-3125)
IEEE DOI
1812
Accelerometers, Gyroscopes, Legged locomotion,
Support vector machines, Ear, Intelligent sensors
BibRef
Chen, X.L.[Xin-Lei],
Li, L.J.[Li-Jia],
Fei-Fei, L.[Li],
Gupta, A.[Abhinav],
Iterative Visual Reasoning Beyond Convolutions,
CVPR18(7239-7248)
IEEE DOI
1812
Cognition, Semantics, Visualization, Image edge detection,
Knowledge based systems, Computer architecture, Automobiles
BibRef
Yu, F.[Fisher],
Wang, D.Q.[De-Quan],
Shelhamer, E.[Evan],
Darrell, T.J.[Trevor J.],
Deep Layer Aggregation,
CVPR18(2403-2412)
IEEE DOI
1812
Across representation (low to high) levels.
Semantics, Task analysis, Computer architecture, Visualization,
Aggregates, Spatial resolution, Convolution
BibRef
Wu, Z.R.[Zhi-Rong],
Efros, A.A.[Alexei A.],
Yu, S.X.[Stella X.],
Improving Generalization via Scalable Neighborhood Component Analysis,
ECCV18(VII: 712-728).
Springer DOI
1810
BibRef
Xie, Y.[Youye],
Tang, Y.H.[Ying-Heng],
Tang, G.G.[Gong-Guo],
Hoff, W.A.[William A.],
Learning To Find Good Correspondences Of Multiple Objects,
ICPR21(2779-2786)
IEEE DOI
2105
Deep architecture, Prediction algorithms, Object recognition
BibRef
Xie, Y.[Youye],
Tang, G.G.[Gong-Guo],
Hoff, W.A.[William A.],
Chess Piece Recognition Using Oriented Chamfer Matching with a
Comparison to CNN,
WACV18(2001-2009)
IEEE DOI
1806
augmented reality, feature extraction,
feedforward neural nets, image matching, image texture,
BibRef
Malinowski, M.[Mateusz],
Mokarian, A.[Ashkan],
Fritz, M.[Mario],
Mean Box Pooling: A Rich Image Representation and Output Embedding for
the Visual Madlibs Task,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Yu, W.[Wei],
Tao, Y.[Yi],
Yao, H.X.[Hong-Xun],
The shortest matching path based on novel cycle consistency,
ICIP17(1975-1979)
IEEE DOI
1803
Feature extraction, Image matching, Optimization, Reliability,
Search problems, Task analysis, CNN feature pyramid,
Shortest path searching
BibRef
Liu, Y.,
Fan, B.,
Wang, L.,
Bai, J.,
Xiang, S.,
Pan, C.,
Context-aware cascade network for semantic labeling in VHR image,
ICIP17(575-579)
IEEE DOI
1803
Automobiles, Context, Convolution, Labeling, Semantics, Training,
Vegetation, Context, Convolutional Neural Networks,
VHR Image
BibRef
Zhang, Y.[Yinda],
Bai, M.R.[Ming-Ru],
Kohli, P.[Pushmeet],
Izadi, S.[Shahram],
Xiao, J.X.[Jian-Xiong],
DeepContext: Context-Encoding Neural Pathways for 3D Holistic Scene
Understanding,
ICCV17(1201-1210)
IEEE DOI
1802
CAD, convolution, neural nets, object detection, object recognition,
rendering (computer graphics), solid modelling,
Training data
BibRef
Hung, W.C.,
Tsai, Y.H.,
Shen, X.,
Lin, Z.,
Sunkavalli, K.,
Lu, X.,
Yang, M.H.,
Scene Parsing with Global Context Embedding,
ICCV17(2650-2658)
IEEE DOI
1802
Context modeling, Encoding, Image coding, Image segmentation,
Measurement, Semantics
BibRef
Apicella, A.[Andrea],
Corazza, A.[Anna],
Isgrò, F.[Francesco],
Vettigli, G.[Giuseppe],
Exploiting Context Information for Image Description,
CIAP17(I:320-331).
Springer DOI
1711
BibRef
Misra, I.[Ishan],
Gupta, A.[Abhinav],
Hebert, M.[Martial],
From Red Wine to Red Tomato: Composition with Context,
CVPR17(1160-1169)
IEEE DOI
1711
Automobiles, Context modeling, Training,
Training data, Transforms, Visualization
BibRef
Abdulnabi, A.H.,
Shuai, B.,
Winkler, S.,
Wang, G.,
Episodic CAMN: Contextual Attention-Based Memory Networks with
Iterative Feedback for Scene Labeling,
CVPR17(6278-6287)
IEEE DOI
1711
Adaptation models, Context modeling, Convolution,
Feature extraction, Labeling, Semantics
BibRef
Marino, K.,
Salakhutdinov, R.,
Gupta, A.,
The More You Know: Using Knowledge Graphs for Image Classification,
CVPR17(20-28)
IEEE DOI
1711
Automobiles, Bicycles, Mice,
Propagation, losses
BibRef
Vittayakorn, S.[Sirion],
Berg, A.C.[Alexander C.],
Berg, T.L.[Tamara L.],
When Was That Made?,
WACV17(715-724)
IEEE DOI
1609
Deep learning.
Automobiles, Clothing, Estimation, Feature extraction, Flickr,
Machine learning, Visualization
BibRef
Shahriari, M.,
Bergevin, R.,
A Two-Stage Outdoor-Indoor Scene Classification Framework:
Experimental Study for the Outdoor Stage,
DICTA16(1-8)
IEEE DOI
1701
BibRef
And:
Can Contextual Information Improve Scene Classification Performance?,
DICTA16(1-7)
IEEE DOI
1701
Buildings.
Context
BibRef
Volokitin, A.[Anna],
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
Deep Features or Not:
Temperature and Time Prediction in Outdoor Scenes,
Robust16(1136-1144)
IEEE DOI
1612
See also Hot or Not: Exploring Correlations between Appearance and Temperature.
BibRef
Singh, S.[Saurabh],
Hoiem, D.[Derek],
Forsyth, D.A.[David A.],
Learning to Localize Little Landmarks,
CVPR16(260-269)
IEEE DOI
1612
Light switch, door handle.
BibRef
Liu, B.[Buyu],
He, X.M.[Xu-Ming],
Learning Dynamic Hierarchical Models for Anytime Scene Labeling,
ECCV16(VI: 650-666).
Springer DOI
1611
Time tradeoffs vs. accuracy.
BibRef
Bappy, J.H.[Jawadul H.],
Paul, S.[Sujoy],
Roy-Chowdhury, A.K.[Amit K.],
Online Adaptation for Joint Scene and Object Classification,
ECCV16(VIII: 227-243).
Springer DOI
1611
BibRef
Chen, X.S.,
He, H.,
Davis, L.S.,
Object detection in 20 questions,
WACV16(1-9)
IEEE DOI
1606
Context
BibRef
Johnson, J.[Justin],
Ballan, L.[Lamberto],
Fei-Fei, L.[Li],
Love Thy Neighbors: Image Annotation by Exploiting Image Metadata,
ICCV15(4624-4632)
IEEE DOI
1602
Recognize using social network metadata.
BibRef
Glasner, D.[Daniel],
Fua, P.[Pascal],
Zickler, T.E.[Todd E.],
Zelnik-Manor, L.[Lihi],
Hot or Not: Exploring Correlations between Appearance and Temperature,
ICCV15(3997-4005)
IEEE DOI
1602
Cameras. E.g. foliage, reflective oriented surfaces. Heat induced vibrations.
See also Deep Features or Not: Temperature and Time Prediction in Outdoor Scenes.
BibRef
Liang, X.D.[Xiao-Dan],
Liu, S.[Si],
Wei, Y.C.[Yun-Chao],
Liu, L.Q.[Luo-Qi],
Lin, L.[Liang],
Yan, S.C.[Shui-Cheng],
Towards Computational Baby Learning:
A Weakly-Supervised Approach for Object Detection,
ICCV15(999-1007)
IEEE DOI
1602
Computational modeling. Learn a few examples with CNN, concept from these.
BibRef
Cadík, M.[Martin],
Vašícek, J.[Jan],
Hradiš, M.[Michal],
Radenovic, F.[Filip],
Chum, O.[Ondrej],
Camera Elevation Estimation from a Single Mountain Landscape Photograph,
BMVC15(xx-yy).
DOI Link
1601
Elevation about sea level.
Based on features.
BibRef
Wang, X.G.[Xing-Gang],
Yang, X.[Xin],
Liu, W.Y.[Wen-Yu],
Duan, C.[Chen],
Latecki, L.J.[Longin Jan],
Location-Aware Image Classification,
MMMod16(I: 829-841).
Springer DOI
1601
BibRef
Zhang, C.Y.[Cheng-Yue],
Han, Y.H.[Ya-Hong],
Describing Images with Ontology-Aware Dictionary Learning,
MMMod16(I: 349-358).
Springer DOI
1601
BibRef
Caesar, H.[Holger],
Uijlings, J.[Jasper],
Ferrari, V.[Vittorio],
COCO-Stuff: Thing and Stuff Classes in Context,
CVPR18(1209-1218)
IEEE DOI
1812
Protocols, Bridges, Vegetation mapping, Automobiles, Semantics,
Image segmentation, Shape
BibRef
Gonzalez-Garcia, A.,
Modolo, D.,
Ferrari, V.,
Objects as Context for Detecting Their Semantic Parts,
CVPR18(6907-6916)
IEEE DOI
1812
Proposals, Semantics, Wheels, Automobiles, Context modeling,
Task analysis, Object detection
BibRef
Uijlings, J.,
Konyushkova, K.,
Lampert, C.H.,
Ferrari, V.,
Learning Intelligent Dialogs for Bounding Box Annotation,
CVPR18(9175-9184)
IEEE DOI
1812
Detectors, Manuals, Cats, Proposals, Image segmentation
BibRef
Vezhnevets, A.[Alexander],
Ferrari, V.[Vittorio],
Object localization in ImageNet by looking out of the window,
BMVC15(xx-yy).
DOI Link
1601
Not just features in the sliding window.
BibRef
Gonzalez-Garcia, A.[Abel],
Vezhnevets, A.[Alexander],
Ferrari, V.[Vittorio],
An active search strategy for efficient object class detection,
CVPR15(3022-3031)
IEEE DOI
1510
BibRef
Codevilla, F.[Felipe],
Botelho, S.S.C.[Silvia S. C.],
Duarte, N.[Nelson],
Purkis, S.[Samuel],
Shihavuddin, A.S.M.,
Garcia, R.[Rafael],
Gracias, N.[Nuno],
Geostatistics for Context-Aware Image Classification,
CVS15(228-239).
Springer DOI
1507
BibRef
Terayama, K.[Kei],
Hioki, H.[Hirohisa],
A practical classifier for photographs and non-photographic images
based on local visual features,
MVA15(307-311)
IEEE DOI
1507
Is it a photograph or some other source.
BibRef
Lang, H.T.[Hai-Tao],
Xi, Y.Y.[Yu-Yang],
Hu, J.Y.[Jian-Ying],
Du, L.[Liang],
Ling, H.B.[Hai-Bin],
Scene Classification by Feature Co-occurrence Matrix,
AutoSystems14(501-510).
Springer DOI
1504
e.g. mountain vs. forest.
BibRef
Li, S.,
Chen, C.[Chen],
Ren, Y.Z.[Yu-Zhuo],
Kuo, C.C.J.[C.C. Jay],
Improving Object Classification Performance via Confusing Categories
Study,
WACV18(1774-1783)
IEEE DOI
1806
convolution, feature extraction, feedforward neural nets,
image classification, learning (artificial intelligence),
Visualization
BibRef
Chen, C.[Chen],
Ren, Y.Z.[Yu-Zhuo],
Kuo, C.C.J.[C.C. Jay],
Large-Scale Indoor/Outdoor Image Classification via Expert Decision
Fusion (EDF),
AutoSystems14(426-442).
Springer DOI
1504
BibRef
Tucker, J.D.[Jonathan D.],
Stanfill, S.R.[S. Robert],
Context Exploitation in Intelligence, Surveillance, and
Reconnaissance for Detection Algorithms,
AAVE15(13-20)
IEEE DOI
1503
BibRef
Dibra, E.[Endri],
Maye, J.[Jerome],
Diamanti, O.[Olga],
Siegwart, R.[Roland],
Beardsley, P.[Paul],
Extending the Performance of Human Classifiers Using a Viewpoint
Specific Approach,
WACV15(765-772)
IEEE DOI
1503
Cameras
BibRef
Mathews, A.[Alexander],
Xie, L.X.[Le-Xing],
He, X.M.[Xu-Ming],
Choosing Basic-Level Concept Names Using Visual and Language Context,
WACV15(595-602)
IEEE DOI
1503
Context
BibRef
Klaghstan, M.,
Haensch, R.,
Coquil, D.,
Hellwich, O.,
Impact of hierarchical structures in image categorization systems,
IPTA12(367-370)
IEEE DOI
1503
feature extraction. Divide categorization problem into smaller problems.
BibRef
Jung, H.J.[Ho-Jung],
Kurazume, R.[Ryo],
Iwashita, Y.[Yumi],
Mozos, O.M.[Oscar Martinez],
Two-dimensional local ternary patterns using synchronized images for
outdoor place categorization,
ICIP14(5726-5730)
IEEE DOI
1502
Histograms. Texture and depth combineed. Categorize outdoor scenes by type.
BibRef
Albaradei, S.[Somayah],
Wang, Y.[Yang],
Object Classification Using a Semantic Hierarchy,
ISVC14(I: 228-237).
Springer DOI
1501
BibRef
Chen, Z.H.[Zeng-Hai],
Chi, Z.[Zheru],
Fu, H.[Hong],
A Hybrid Holistic/Semantic Approach for Scene Classification,
ICPR14(2299-2304)
IEEE DOI
1412
Global features vs. features of parts.
BibRef
Lawson, W.[Wallace],
Hiatt, L.[Laura],
Trafton, J.G.[J. Gregory],
Leveraging Cognitive Context for Object Recognition,
Cognition14(387-392)
IEEE DOI
1409
ACT-R; Contextual Information; LVis; Neural Networks; Object Recognition
BibRef
Xie, L.X.[Ling-Xi],
Wang, J.D.[Jing-Dong],
Guo, B.N.[Bai-Ning],
Zhang, B.[Bo],
Tian, Q.[Qi],
Orientational Pyramid Matching for Recognizing Indoor Scenes,
CVPR14(3734-3741)
IEEE DOI
1409
Orientational Pyramid Matching
BibRef
Zhu, X.X.[Xiang-Xin],
Anguelov, D.[Dragomir],
Ramanan, D.[Deva],
Capturing Long-Tail Distributions of Object Subcategories,
CVPR14(915-922)
IEEE DOI
1409
BibRef
Wang, X.L.[Xiao-Long],
Gupta, A.[Abhinav],
Generative Image Modeling Using Style and Structure Adversarial
Networks,
ECCV16(IV: 318-335).
Springer DOI
1611
Style (texture mapping), structure (3D model).
BibRef
Doersch, C.[Carl],
Gupta, A.[Abhinav],
Efros, A.A.[Alexei A.],
Context as Supervisory Signal:
Discovering Objects with Predictable Context,
ECCV14(III: 362-377).
Springer DOI
1408
BibRef
Maeda, D.,
Morimoto, M.,
An Object Recognition Method Using RGB-D Sensor,
ACPR13(857-861)
IEEE DOI
1408
feature extraction. Within categories.
BibRef
Wan, S.H.[Shao-Hua],
Aggarwal, J.K.,
Scene recognition by jointly modeling latent topics,
WACV14(706-713)
IEEE DOI
1406
recognize scene categories.
BibRef
Lin, D.[Dahua],
Xiao, J.X.[Jian-Xiong],
Characterizing Layouts of Outdoor Scenes Using Spatial Topic
Processes,
ICCV13(841-848)
IEEE DOI
1403
BibRef
Pan, J.[Jiyan],
Kanade, T.[Takeo],
Coherent Object Detection with 3D Geometric Context from a Single
Image,
ICCV13(2576-2583)
IEEE DOI
1403
3D geometric context; object detection
BibRef
Shao, M.[Ming],
Li, L.Y.[Liang-Yue],
Fu, Y.[Yun],
What Do You Do? Occupation Recognition in a Photo via Social Context,
ICCV13(3631-3638)
IEEE DOI
1403
Occupation Recognition; Social Context; Visual Attributes
BibRef
Kristan, M.[Matej],
Boben, M.[Marko],
Tabernik, D.[Domen],
Leonardis, A.[Ales],
Adding Discriminative Power to Hierarchical Compositional Models for
Object Class Detection,
SCIA13(444-455).
Springer DOI
1311
BibRef
Govender, N.[Natasha],
Claassens, J.[Jonathan],
Nicolls, F.[Fred],
Warrell, J.[Jonathan],
Active object recognition using vocabulary trees,
WORV13(20-26)
IEEE DOI
1307
BibRef
Douillard, B.,
Quadros, A.,
Morton, P.,
Underwood, J.P.,
de Deuge, M.,
A 3D classifier trained without field samples,
ICARCV12(805-810).
IEEE DOI
1304
Detecte ground surface first.
BibRef
Park, S.[Sangdon],
Kim, W.S.[Won-Sik],
Lee, K.M.[Kyoung Mu],
Abnormal Object Detection by Canonical Scene-Based Contextual Model,
ECCV12(III: 651-664).
Springer DOI
1210
BibRef
Lang, H.T.[Hai-Tao],
Ling, H.B.[Hai-Bin],
Classifying covert photographs,
CVPR12(1178-1185).
IEEE DOI
1208
Features that are different, composition, blur, etc.
BibRef
Nwogu, I.[Ifeoma],
Zhou, Y.B.[Ying-Bo],
Brown, C.[Christopher],
An ontology for generating descriptions about natural outdoor scenes,
SIG11(656-663).
IEEE DOI
1201
BibRef
Li, C.C.[Cong-Cong],
Parikh, D.[Devi],
Chen, T.H.[Tsu-Han],
Automatic discovery of groups of objects for scene understanding,
CVPR12(2735-2742).
IEEE DOI
1208
BibRef
Earlier:
Extracting adaptive contextual cues from unlabeled regions,
ICCV11(511-518).
IEEE DOI
1201
BibRef
Parikh, D.[Devi],
Recognizing jumbled images: The role of local and global information in
image classification,
ICCV11(519-526).
IEEE DOI
1201
BibRef
Bannour, H.[Hichem],
Hudelot, C.[Céline],
Building Semantic Hierarchies Faithful to Image Semantics,
MMMod12(4-15).
Springer DOI
1201
BibRef
Bergström, N.[Niklas],
Ek, C.H.[Carl Henrik],
Björkman, M.[Mårten],
Kragic, D.[Danica],
Scene Understanding through Autonomous Interactive Perception,
CVS11(153-162).
Springer DOI
1109
BibRef
Wang, W.N.[Wei-Ning],
Yi, J.J.[Jing-Jian],
Li, H.P.[Hao-Pan],
Lu, Y.[Yin],
Local Semantic Classification of Natural Image Based on Spatial Context,
ICIG11(482-487).
IEEE DOI
1109
BibRef
Perina, A.[Alessandro],
Jojic, N.[Nebojsa],
Image analysis by counting on a grid,
CVPR11(1985-1992).
IEEE DOI
1106
Not just a bag of features, but location matters.
BibRef
del Pero, L.[Luca],
Guan, J.Y.[Jin-Yan],
Brau, E.[Ernesto],
Schlecht, J.[Joseph],
Barnard, K.[Kobus],
Sampling bedrooms,
CVPR11(2009-2016).
IEEE DOI
1106
Understand indoor scenes. Lots of planar orthogonal surfaces, and boxes.
Model using only boxes.
BibRef
Huang, Q.X.[Qi-Xing],
Han, M.[Mei],
Wu, B.[Bo],
Ioffe, S.[Sergey],
A hierarchical conditional random field model for labeling and
segmenting images of street scenes,
CVPR11(1953-1960).
IEEE DOI
1106
BibRef
Aboutalib, S.[Sarah],
Multiple-Cue Object Recognition for interactionable Objects,
CMU-CS-10-153, December 2010.
BibRef
1012
Ph.D.Thesis, CMU, December 2010
HTML Version.
1102
multiple intrinsic cues or human annotation.
BibRef
Leibo, J.Z.[Joel Z.],
Mutch, J.[Jim],
Rosasco, L.[Lorenzo],
Ullman, S.[Shimon],
Poggio, T.[Tomaso],
Learning Generic Invariances in Object Recognition:
Translation and Scale,
CSAIL(TR-2010-061). 2010-12-30
WWW Link.
1101
BibRef
Leibo, J.Z.[Joel Z.],
Mutch, J.[Jim],
Ullman, S.[Shimon],
Poggio, T.[Tomaso],
From primal templates to invariant recognition,
CSAIL(TR-2010-057). 2010-12-04
WWW Link.
1101
BibRef
Baba, T.[Takayuki],
Chen, T.H.[Tsu-Han],
Object-driven image group annotation,
ICIP10(2641-2644).
IEEE DOI
1009
Separate by time (so similar objects)
BibRef
Rohrbach, M.[Marcus],
Stark, M.[Michael],
Schiele, B.[Bernt],
Evaluating knowledge transfer and zero-shot learning in a large-scale
setting,
CVPR11(1641-1648).
IEEE DOI
1106
BibRef
Rohrbach, M.[Marcus],
Stark, M.[Michael],
Szarvas, G.[Gyorgy],
Gurevych, I.[Iryna],
Schiele, B.[Bernt],
What helps where - and why? Semantic relatedness for knowledge transfer,
CVPR10(910-917).
IEEE DOI Video of talk:
WWW Link.
1006
Scale recognition to large numbers of classes.
BibRef
Semenovich, D.[Dimitri],
Sowmya, A.[Arcot],
Tensor Power Method for Efficient MAP Inference in Higher-order MRFs,
ICPR10(734-737).
IEEE DOI
1008
BibRef
Semenovich, D.[Dimitri],
Sowmya, A.[Arcot],
A spectral method for context based disambiguation of image annotations,
ICIP09(789-792).
IEEE DOI
0911
BibRef
Parizi, S.N.[Sobhan Naderi],
Laptev, I.[Ivan],
Targhi, A.T.[Alireza Tavakoli],
Modeling Image Context Using Object Centered Grid,
DICTA09(476-483).
IEEE DOI
0912
BibRef
Viswanathan, P.[Pooja],
Southey, T.[Tristram],
Little, J.J.[James J.],
Mackworth, A.K.[Alan K.],
Place Classification Using Visual Object Categorization and Global
Information,
CRV11(1-7).
IEEE DOI
1105
BibRef
Earlier:
Automated Place Classification Using Object Detection,
CRV10(324-330).
IEEE DOI
1005
BibRef
Viswanathan, P.[Pooja],
Meger, D.[David],
Southey, T.[Tristram],
Little, J.J.[James J.],
Mackworth, A.K.[Alan K.],
Automated Spatial-Semantic Modeling with Applications to Place Labeling
and Informed Search,
CRV09(284-291).
IEEE DOI
0905
BibRef
Li, L.J.[Li-Jia],
Socher, R.[Richard],
Fei-Fei, L.[Li],
Towards total scene understanding: Classification, annotation and
segmentation in an automatic framework,
CVPR09(2036-2043).
IEEE DOI
0906
Classify general category, segment and annotate individual objects
(regions and patches). Apply to 3 sports scenes.
BibRef
Socher, R.[Richard],
Fei-Fei, L.[Li],
Connecting modalities: Semi-supervised segmentation and annotation of
images using unaligned text corpora,
CVPR10(966-973).
IEEE DOI
1006
BibRef
Hays, J.H.[James H.],
Large Scale Scene Matching for Graphics and Vision,
CMU-CS-09-152, July 2009.
BibRef
0907
Ph.D.Thesis, CMU, 2009.
HTML Version.
1102
BibRef
Divvala, S.K.[Santosh K.],
Hoiem, D.[Derek],
Hays, J.H.[James H.],
Efros, A.A.[Alexei A.],
Hebert, M.[Martial],
An empirical study of context in object detection,
CVPR09(1271-1278).
IEEE DOI
0906
BibRef
Lazebnik, S.[Svetlana],
Raginsky, M.[Maxim],
An empirical Bayes approach to contextual region classification,
CVPR09(2380-2387).
IEEE DOI
0906
BibRef
Ross, S.[Stephane],
Munoz, D.[Daniel],
Hebert, M.[Martial],
Bagnell, J.A.[J. Andrew],
Learning message-passing inference machines for structured prediction,
CVPR11(2737-2744).
IEEE DOI
1106
For approximate inference in hierarchical/sequential labeling system.
message-passing: Belief Propogation.
BibRef
Munoz, D.[Daniel],
Bagnell, J.A.[J. Andrew],
Hebert, M.[Martial],
Stacked Hierarchical Labeling,
ECCV10(VI: 57-70).
Springer DOI
1009
BibRef
Munoz, D.[Daniel],
Bagnell, J.A.[J. Andrew],
Vandapel, N.[Nicolas],
Hebert, M.[Martial],
Contextual classification with functional Max-Margin Markov Networks,
CVPR09(975-982).
IEEE DOI
0906
BibRef
Chong, W.[Wang],
Blei, D.M.[David M.],
Fei-Fei, L.[Li],
Simultaneous image classification and annotation,
CVPR09(1903-1910).
IEEE DOI
0906
Class label is a global descriptor, annotation is local descriptor.
BibRef
Rabinovich, A.[Andrew],
Belongie, S.J.[Serge J.],
Scenes vs. objects:
A comparative study of two approaches to context based recognition,
VCL-ViSU09(92-99).
IEEE DOI
0906
BibRef
Dong, L.[Le],
Izquierdo, E.[Ebroul],
Global-to-local oriented perception on blurry visual information,
ICIP08(2168-2171).
IEEE DOI
0810
BibRef
McDaniel, T.L.[Troy L.],
Kahol, K.[Kanav],
Panchanathan, S.[Sethuraman],
A Bayesian Approach to Visual Size Classification of Everyday Objects,
ICPR06(II: 255-259).
IEEE DOI
0609
BibRef
Kumar, S.[Sanjiv],
Hebert, M.[Martial],
A Hierarchical Field Framework for Unified Context-Based Classification,
ICCV05(II: 1284-1291).
IEEE DOI
0510
BibRef
Kumar, S.[Sanjiv],
Models for Learning Spatial Interactions in Natural Images for
Context-Based Classification,
CMU-CS-05-28, Robotics Institute, August, 2005.
WWW Link.
BibRef
0508
Morgenstern, C.[Christian],
Heisele, B.[Bernd],
Component based recognition of objects in an office environment,
MIT AIM-2003-024, November 28, 2003.
WWW Link.
0501
BibRef
Schlecht, J.[Joseph],
Barnard, K.[Kobus],
Pryor, B.[Barry],
Statistical Inference of Biological Structure and Point Spread
Functions in 3D Microscopy,
3DPVT06(373-380).
IEEE DOI
0606
BibRef
Louie, J.[Jennifer],
A Biological Model of Object Recognition with Feature Learning,
MIT AI-TR-2003-009, May 28, 2003.
BibRef
0305
Ph.D.Thesis. 2003.
WWW Link. This thesis
presents a new model that integrates learning of object-specific features with the HMAX of Riesenhuber and Poggio
0306
BibRef
Serre, T.[Thomas],
Learning a Dictionary of Shape-Components in Visual Cortex:
Comparison with Neurons, Humans and Machines,
CSAIL-2006-028, April 2006.
WWW Link.
BibRef
0604
Serre, T.[Thomas],
Wolf, L.B.[Lior B.],
Poggio, T.[Tomaso],
A new biologically motivated framework for robust object recognition,
MIT AIM-2004-026, November 14, 2004.
WWW Link.
0501
BibRef
Serre, T.[Thomas],
Riesenhuber, M.[Maximilian],
Louie, J.[Jennifer],
Poggio, T.[Tomaso],
On the Role of Object-Specific Features for Real World Object
Recognition in Biological Vision,
BMCV02(387 ff.).
Springer DOI
0303
See also Robust Object Recognition with Cortex-Like Mechanisms.
BibRef
Pinhanez, C.[Claudio],
Bobick, A.F.[Aaron F.],
Using Approximate Models as Source of Contextual Information
for Vision Processing,
Context95(xx)
BibRef
9500
Hild, M., and
Shirai, Y.,
Interpretation of Natural Scenes Using Multi-Parameter Default
Models and Qualitative Constraints,
ICCV93(497-501).
IEEE DOI Looks like a basic recognition scheme like early Ohta work
and UMass work.
BibRef
9300
Kadono, K.,
Asada, M.,
Shirai, Y.,
Context-Constrained Matching of Hierarchical CAD-Based Models for
Outdoor Scene Interpretation,
CADBV91(186-195).
BibRef
9100
Hild, M.,
Shirai, Y.,
Asada, M.,
Initial Segmentation For Knowledge Indexing,
ICPR92(I:587-590).
IEEE DOI
BibRef
9200
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Context, Fine-Grained Classification .