TEASER++: Certifiable 3D Registration,
WWW Link.
Code, Point Cloud Registration.
2002
A fast and robust point-cloud registration library.
From the papers:
See also TEASER: Fast and Certifiable Point Cloud Registration.
Benjemaa, R.[Raouf],
Schmitt, F.[Francis],
Fast global registration of 3D sampled surfaces using a multi-z-buffer
technique,
IVC(17), No. 2, February 1999, pp. 113-123.
Elsevier DOI
BibRef
9902
Earlier:
A Solution for the Registration of Multiple 3-D Point Sets
Using Unit Quaternions,
ECCV98(II: 34).
Springer DOI
BibRef
Earlier:
Fast Global Registration of 3D Sampled Surfaces Using a
Mini-Buffer Technique,
3DIM97(4 - View Registration)
9702
See also Multi-view scans alignment for 3D spherical mosaicing in large-scale unstructured environments.
BibRef
Pottmann, H.[Helmut],
Leopoldseder, S.[Stefan],
Hofer, M.[Michael],
Registration without ICP,
CVIU(95), No. 1, July 2004, pp. 54-71.
Elsevier DOI
0407
BibRef
Earlier:
Simultaneous Registration of Multiple Views of a 3D Object,
PCV02(A: 265).
0305
Relies on instantaneous kinematics and on the geometry of the
squared distance function of a surface.
See also On Surface Approximation Using Developable Surfaces.
BibRef
Pottmann, H.[Helmut],
Leopoldseder, S.[Stefan],
Wallner, J.[Johannes],
Peternell, M.[Martin],
Recognition and Reconstruction of Special Surfaces from Point Clouds,
PCV02(A: 271).
0305
BibRef
Hofer, M.[Manuel],
Donoser, M.[Michael],
Bischof, H.[Horst],
Semi-Global 3D Line Modeling for Incremental Structure-from-Motion,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Hofer, M.[Manuel],
Wendel, A.[Andreas],
Bischof, H.[Horst],
Incremental Line-based 3D Reconstruction using Geometric Constraints,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Hofer, M.,
Odehnal, B.,
Pottmann, H.,
Steiner, T.,
Wallner, J.,
3D Shape Recognition and Reconstruction Based on Line Element Geometry,
ICCV05(II: 1532-1538).
IEEE DOI
0510
BibRef
Pottmann, H.[Helmut],
Wallner, J.[Johannes],
Freeform Architecture and Discrete Differential Geometry,
DGCI17(3-8).
Springer DOI
1711
BibRef
Pottmann, H.[Helmut],
Hofer, M.[Michael],
Odehnal, B.[Boris],
Wallner, J.[Johannes],
Line Geometry for 3D Shape Understanding and Reconstruction,
ECCV04(Vol I: 297-309).
Springer DOI
0405
From surface normals, estimate shapes.
BibRef
Diez, Y.[Yago],
Martí, J.[Joan],
Salvi, J.[Joaquim],
Hierarchical Normal Space Sampling to speed up point cloud coarse
matching,
PRL(33), No. 16, 1 December 2012, pp. 2127-2133.
Elsevier DOI
1210
Coarse point cloud matching; Normal space sampling; Hierarchical
algorithms; Data Structures
BibRef
Roure, F.[Ferran],
Lladó, X.[Xavier],
Salvi, J.[Joaquim],
Diez, Y.[Yago],
GridDS: a hybrid data structure for residue computation in point set
matching,
MVA(30), No. 2, March 2019, pp. 291-307.
Springer DOI
1904
BibRef
Salvi, J.[Joaquim],
Matabosch, C.[Carles],
Fofi, D.[David],
Forest, J.[Josep],
A review of recent range image registration methods with accuracy
evaluation,
IVC(25), No. 5, 1 May 2007, pp. 578-596.
Elsevier DOI
Survey, Range Registration.
0703
BibRef
Earlier: A2, A3, A1, A4:
Registration of Moving Surfaces by Means of One-Shot Laser Projection,
IbPRIA05(I:145).
Springer DOI
0509
3D reconstruction; Range image; Registration
BibRef
Díez, Y.[Yago],
Roure, F.[Ferran],
Lladó, X.[Xavier],
Salvi, J.[Joaquim],
A Qualitative Review on 3D Coarse Registration Methods,
Surveys(47), No. 3, April 2015, pp. Article No 45.
DOI Link
1506
Survey, Range Registration. 3D registration or matching is a crucial step in 3D model
reconstruction. Registration applications span along a variety of
research fields, including computational geometry, and geometric modeling.
BibRef
Pribanic, T.[Tomislav],
Diez, Y.[Yago],
Roure, F.[Ferran],
Salvi, J.[Joaquim],
An efficient surface registration using smartphone,
MVA(27), No. 4, May 2016, pp. 559-576.
Springer DOI
1605
BibRef
Basdogan, C.[Cagatay],
Oztireli, A.C.[A. Cengiz],
A new feature-based method for robust and efficient rigid-body
registration of overlapping point clouds,
VC(24), No. 7-9, July 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Meng, Y.[Yu],
Zhang, H.[Hui],
Registration of point clouds using sample-sphere and adaptive distance
restriction,
VC(27), No. 6-8, June 2011, pp. 543-553.
WWW Link.
1107
BibRef
Schenk, S.[Stefan],
Hanke, K.[Klaus],
Genetic Algorithms for Automatic Registration of Laser Scans with
Imperfect and Subdivided Features (GAReg-ISF),
PFG(2009), No. 1, 2009, pp. 23-32.
WWW Link.
1211
BibRef
Earlier:
Combining genetic algorithms with imperfect and subdivided features for
the automatic registration of point clouds (GAReg-ISF),
3DARCH09(xx-yy).
PDF File.
0902
BibRef
Mandow, A.[Anthony],
Martinez, J.L.[Jorge L.],
Reina, A.J.[Antonio J.],
Morales, J.[Jesus],
Fast range-independent spherical subsampling of 3D laser scanner points
and data reduction performance evaluation for scene registration,
PRL(31), No. 11, 1 August 2010, pp. 1239-1250.
Elsevier DOI
1008
3D measurement system; Laser ranging; Point subsampling; Scene
registration; Mobile robotics; Point matching
BibRef
Martínez, J.L.[Jorge L.],
Reina, A.J.[Antonio J.],
Mandow, A.[Anthony],
Morales, J.[Jesús],
3D registration of laser range scenes by coincidence of coarse binary
cubes,
MVA(23), No. 5, September 2012, pp. 857-867.
WWW Link.
1208
BibRef
Muhle, D.[Daniel],
Abraham, S.[Steffen],
Wiggenhagen, M.[Manfred],
Heipke, C.[Christian],
Identifying Correspondences in Sparse and Varying 3D Point Clouds using
Distinctive Features,
PFG(2012), No. 5, 2012, pp. 535-546.
WWW Link.
1211
BibRef
Mateo, X.[Xavier],
Orriols, X.,
Binefa, X.[Xavier],
Bayesian perspective for the registration of multiple 3D views,
CVIU(118), No. 1, 2014, pp. 84-96.
Elsevier DOI
1312
BibRef
Earlier: A1, A3, Only:
Plane Filtering for the Registration of Urban Range Laser Imagery,
IbPRIA09(136-143).
Springer DOI
0906
3D registration
BibRef
Cirujeda, P.[Pol],
Mateo, X.[Xavier],
Dicente, Y.[Yashin],
Binefa, X.[Xavier],
MCOV: A Covariance Descriptor for Fusion of Texture and Shape
Features in 3D Point Clouds,
3DV14(551-558)
IEEE DOI
1503
Covariance matrices
BibRef
Cheng, L.[Liang],
Wu, Y.[Yang],
Tong, L.H.[Li-Hua],
Chen, Y.M.[Yan-Ming],
Li, M.C.[Man-Chun],
Hierarchical Registration Method for Airborne and Vehicle LiDAR Point
Cloud,
RS(7), No. 10, 2015, pp. 13921.
DOI Link
1511
BibRef
Govindu, V.M.,
Pooja, A.,
On Averaging Multiview Relations for 3D Scan Registration,
IP(23), No. 3, March 2014, pp. 1289-1302.
IEEE DOI
1403
Lie algebras
BibRef
Wang, Y.B.[Yong-Bo],
Wang, Y.J.[Yun-Jia],
Wu, K.[Kan],
Yang, H.C.[Hua-Chao],
Zhang, H.[Hua],
A dual quaternion-based, closed-form pairwise registration algorithm
for point clouds,
PandRS(94), No. 1, 2014, pp. 63-69.
Elsevier DOI
1407
LiDAR
BibRef
Weber, T.,
Hänsch, R.,
Hellwich, O.,
Automatic registration of unordered point clouds acquired by Kinect
sensors using an overlap heuristic,
PandRS(102), No. 1, 2015, pp. 96-109.
Elsevier DOI
1503
Point cloud fusion
BibRef
Ge, X.M.[Xu-Ming],
Wunderlich, T.[Thomas],
Surface-based matching of 3D point clouds with variable coordinates
in source and target system,
PandRS(111), No. 1, 2016, pp. 1-12.
Elsevier DOI
1601
3D surface matching
BibRef
Ge, X.M.[Xu-Ming],
Non-rigid registration of 3D point clouds under isometric deformation,
PandRS(121), No. 1, 2016, pp. 192-202.
Elsevier DOI
1609
Point clouds
BibRef
Ge, X.M.[Xu-Ming],
Automatic markerless registration of point clouds with
semantic-keypoint-based 4-points congruent sets,
PandRS(130), No. 1, 2017, pp. 344-357.
Elsevier DOI
1708
Coarse, registration
BibRef
Amamra, A.[Abdenour],
Aouf, N.[Nabil],
Stuart, D.[Dowling],
Richardson, M.[Mark],
A recursive robust filtering approach for 3D registration,
SIViP(10), No. 5, May 2016, pp. 835-842.
Springer DOI
1608
BibRef
Guo, H.[Hao],
Zhu, D.[Dehai],
Mordohai, P.[Philippos],
Correspondence estimation for non-rigid point clouds with automatic
part discovery,
VC(32), No. 12, December 2016, pp. 1511-1524.
WWW Link.
1611
BibRef
Sun, J.H.[Jun-Hua],
Zhang, J.[Jie],
Zhang, G.J.[Guang-Jun],
An automatic 3D point cloud registration method based on regional
curvature maps,
IVC(56), No. 1, 2016, pp. 49-58.
Elsevier DOI
1612
3D point cloud
BibRef
Meng, T.W.[Ting Wei],
Choi, G.P.T.[Gary Pui-Tung],
Lui, L.M.[Lok Ming],
TEMPO: Feature-Endowed Teichmüller Extremal Mappings of Point Clouds,
SIIMS(9), No. 4, 2016, pp. 1922-1962.
DOI Link
1612
BibRef
Lui, L.M.[Lok Ming],
Lam, K.C.[Ka Chun],
Yau, S.T.[Shing-Tung],
Gu, X.F.[Xian-Feng],
Teichmüller extremal mapping and its applications to
landmark matching registration,
OnlineNovember 2012.
WWW Link.
BibRef
1211
Guislain, M.[Maximilien],
Digne, J.[Julie],
Chaine, R.[Raphaëlle],
Monnier, G.[Gilles],
Fine scale image registration in large-scale urban LIDAR point sets,
CVIU(157), No. 1, 2017, pp. 90-102.
Elsevier DOI
1704
Large scale point sets
BibRef
Persad, R.A.[Ravi Ancil],
Armenakis, C.[Costas],
Automatic co-registration of 3D multi-sensor point clouds,
PandRS(130), No. 1, 2017, pp. 162-186.
Elsevier DOI
1708
Keypoints
BibRef
Lai, R.J.[Rong-Jie],
Zhao, H.K.[Hong-Kai],
Multiscale Nonrigid Point Cloud Registration Using Rotation-Invariant
Sliced-Wasserstein Distance via Laplace-Beltrami Eigenmap,
SIIMS(10), No. 2, 2017, pp. 449-483.
DOI Link
1708
BibRef
Xiang, R.[Rui],
Lai, R.J.[Rong-Jie],
Zhao, H.K.[Hong-Kai],
Efficient and Robust Shape Correspondence via Sparsity-Enforced
Quadratic Assignment,
CVPR20(9510-9519)
IEEE DOI
2008
Shape, Sparse matrices, Stochastic processes, Iterative methods,
Kernel, Manifolds, Perturbation methods
BibRef
Ma, Y.X.[Yan-Xin],
Guo, Y.L.[Yu-Lan],
Lei, Y.J.[Yin-Jie],
Lu, M.[Min],
Zhang, J.[Jun],
Efficient rotation estimation for 3D registration and global
localization in structured point clouds,
IVC(67), No. 1, 2017, pp. 52-66.
Elsevier DOI
1710
Structured point clouds
BibRef
Sanchez, J.[Julia],
Denis, F.[Florence],
Checchin, P.[Paul],
Dupont, F.[Florent],
Trassoudaine, L.[Laurent],
Global Registration of 3D LiDAR Point Clouds Based on Scene Features:
Application to Structured Environments,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Luo, N.[Nan],
Wang, Q.[Quan],
Effective outlier matches pruning algorithm for rigid pairwise point
cloud registration using distance disparity matrix,
IET-CV(12), No. 2, March 2018, pp. 220-232.
DOI Link
1804
BibRef
Altantsetseg, E.[Enkhbayar],
Khorloo, O.[Oyundolgor],
Konno, K.[Kouichi],
Rigid registration of noisy point clouds based on higher-dimensional
error metrics,
VC(34), No. 6-8, June 2018, pp. 1021-1030.
WWW Link.
1806
BibRef
Navarrete, J.[Javier],
Viejo, D.[Diego],
Cazorla, M.[Miguel],
Compression and registration of 3D point clouds using GMMs,
PRL(110), 2018, pp. 8-15.
Elsevier DOI
1806
3D compression, 3D registration
BibRef
Qin, N.N.[Nan-Nan],
Hu, X.Y.[Xiang-Yun],
Dai, H.M.[Heng-Ming],
Deep fusion of multi-view and multimodal representation of ALS point
cloud for 3D terrain scene recognition,
PandRS(143), 2018, pp. 205-212.
Elsevier DOI
1808
Deep learning, 3D scene recognition, ALS,
Multi-view representation, Fusion network
BibRef
Chen, L.[Lei],
Kuang, W.[Wenyue],
Fu, K.[Kun],
A resample strategy and artificial bee colony optimization-based 3d
range imaging registration,
CVIU(175), 2018, pp. 44-51.
Elsevier DOI
1812
Range image registration, Low overlapping rate,
Resample strategy, Artificial bee colony algorithm,
Bionic intelligence optimization
BibRef
Pribanic, T.[Tomislav],
Petkovic, T.[Tomislav],
Đonlic, M.[Matea],
3D registration based on the direction sensor measurements,
PR(88), 2019, pp. 532-546.
Elsevier DOI
1901
3D rigid registration, 3D reconstruction, Smartphone, Tablet,
Accelerometer, Magnetometer, Structured light pattern
BibRef
Pu, C.[Can],
Song, R.[Runzi],
Tylecek, R.[Radim],
Li, N.[Nanbo],
Fisher, R.B.[Robert B.],
SDF-MAN: Semi-Supervised Disparity Fusion with Multi-Scale
Adversarial Networks,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Pu, C.,
Fisher, R.B.,
UDFNET: Unsupervised Disparity Fusion with Adversarial Networks,
ICIP19(1765-1769)
IEEE DOI
1910
Disparity Fusion, Adversarial network, Unsupervised,
Stereo-stereo fusion, Stereo-lidar fusion
BibRef
Xu, Y.S.[Yu-Sheng],
Boerner, R.[Richard],
Yao, W.[Wei],
Hoegner, L.[Ludwig],
Stilla, U.[Uwe],
Pairwise coarse registration of point clouds in urban scenes using
voxel-based 4-planes congruent sets,
PandRS(151), 2019, pp. 106-123.
Elsevier DOI
1904
Point cloud, Coarse registration, Voxelization, Planar surface,
4PCS, Urban scene
BibRef
Zhang, X.F.[Xian-Feng],
Gao, R.[Renqiang],
Sun, Q.[Quan],
Cheng, J.[Junyi],
An Automated Rectification Method for Unmanned Aerial Vehicle LiDAR
Point Cloud Data Based on Laser Intensity,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Pujol-Miró, A.[Alba],
Casas, J.R.[Josep R.],
Ruiz-Hidalgo, J.[Javier],
Correspondence matching in unorganized 3D point clouds using
Convolutional Neural Networks,
IVC(83-84), 2019, pp. 51-60.
Elsevier DOI
1904
Matching, Point cloud, Convolutional Neural Networks
BibRef
Boerner, R.[Richard],
Xu, Y.S.[Yu-Sheng],
Baran, R.[Ramona],
Steinbacher, F.[Frank],
Hoegner, L.[Ludwig],
Stilla, U.[Uwe],
Registration of Multi-Sensor Bathymetric Point Clouds in Rural Areas
Using Point-to-Grid Distances,
IJGI(8), No. 4, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Zhang, S.[Shuang],
Wang, H.[Hua],
Gao, J.G.[Jin-Gang],
Xing, C.Q.[Chun-Qi],
Frequency domain point cloud registration based on the Fourier
transform,
JVCIR(61), 2019, pp. 170-177.
Elsevier DOI
1906
Fourier transform, Point cloud data, Frequency domain, Registration
BibRef
Young, M.[Matthew],
Pretty, C.[Chris],
Agostinho, S.[Sérgio],
Green, R.[Richard],
Chen, X.Q.[Xiao-Qi],
Loss of Significance and Its Effect on Point Normal Orientation and
Cloud Registration,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Yu, J.[Jie],
Lin, Y.[Yi],
Wang, B.[Bin],
Ye, Q.[Qin],
Cai, J.Q.[Jian-Qing],
An Advanced Outlier Detected Total Least-Squares Algorithm for 3-D
Point Clouds Registration,
GeoRS(57), No. 7, July 2019, pp. 4789-4798.
IEEE DOI
1907
Solid modeling, Feature extraction,
Mathematical model, Data models, Parameter estimation, Convergence,
total least squares
BibRef
Zhao, B.[Bao],
Chen, X.B.[Xiao-Bo],
Le, X.Y.[Xin-Yi],
Xi, J.T.[Jun-Tong],
A quantitative evaluation of comprehensive 3D local descriptors
generated with spatial and geometrical features,
CVIU(190), 2020, pp. 102842.
Elsevier DOI
1911
Local feature descriptor, Local reference axis,
Local reference frame, Object recognition, 3D registration
BibRef
Bao, Z.S.[Zhen-Shan],
Li, B.[Bowen],
Zhang, W.B.[Wen-Bo],
Robustness of ToF and stereo fusion for high-accuracy depth map,
IET-CV(13), No. 7, Octomber 2019, pp. 676-681.
DOI Link
1911
BibRef
Prokop, M.[Milo],
Shaikh, S.A.[Salman Ahmed],
Kim, K.S.[Kyoung-Sook],
Low Overlapping Point Cloud Registration Using Line Features
Detection,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Chang, S.G.[Seung-Gyu],
Ahn, C.[Chanho],
Lee, M.[Minsik],
Oh, S.H.[Song-Hwai],
Graph-matching-based correspondence search for nonrigid point cloud
registration,
CVIU(192), 2020, pp. 102899.
Elsevier DOI
2002
Nonrigid registration, Graph matching, Point cloud, Mesh
BibRef
Moyou, M.,
Rangarajan, A.,
Corring, J.,
Peter, A.M.,
A Grassmannian Graph Approach to Affine Invariant Feature Matching,
IP(29), 2020, pp. 3374-3387.
IEEE DOI
2002
Shape matching, 2D and 3D point registration, affine invariance,
invariant coordinates, Grassmann manifold,
object recognition
BibRef
Chang, W.C.[Wen-Chung],
Wu, C.H.[Chia-Hung],
Candidate-based matching of 3-D point clouds with axially switching
pose estimation,
VC(36), No. 3, March 2020, pp. 593-607.
WWW Link.
2002
BibRef
Yang, H.[Heng],
Shi, J.N.[Jing-Nan],
Carlone, L.[Luca],
TEASER: Fast and Certifiable Point Cloud Registration,
To Appear
WWW Link.
2002
BibRef
Earlier: A1, A3, Only:
A Polynomial-time Solution for Robust Registration
with Extreme Outlier Rates,
CRA19
WWW Link.
BibRef
Chen, S.,
Nan, L.,
Xia, R.,
Zhao, J.,
Wonka, P.,
PLADE: A Plane-Based Descriptor for Point Cloud Registration With
Small Overlap,
GeoRS(58), No. 4, April 2020, pp. 2530-2540.
IEEE DOI
2004
Data set, descriptor, point cloud, registration, scanning
BibRef
Jia, X.[Xin],
Yang, S.R.[Shou-Rui],
Peng, Y.X.[Yu-Xin],
Zhang, J.C.[Jun-Chao],
Chen, S.Y.[Sheng-Yong],
DV-Net: Dual-view network for 3D reconstruction by fusing multiple
sets of gated control point clouds,
PRL(131), 2020, pp. 376-382.
Elsevier DOI
2004
3D reconstruction, Deep learning, Point cloud fusion, Multiple views
BibRef
Buján, S.[Sandra],
Cordero, M.[Miguel],
Miranda, D.[David],
Hybrid Overlap Filter for LiDAR Point Clouds Using Free Software,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Li, W.[Wei],
Wang, C.[Cheng],
Lin, C.[Congren],
Xiao, G.[Guobao],
Wen, C.[Chenglu],
Li, J.[Jonathan],
Inlier extraction for point cloud registration via supervoxel
guidance and game theory optimization,
PandRS(163), 2020, pp. 284-299.
Elsevier DOI
2005
Supervoxel segmentation, Non-cooperative game,
Keypoint correspondences, Point cloud registration
BibRef
Wang, C.[Chen],
Jiang, Y.X.[Yu-Xi],
Wang, M.N.[Man-Ning],
Fast correspondence-based point cloud registration by pair-wise
inlier checking and transformation decomposition,
PRL(135), 2020, pp. 418-424.
Elsevier DOI
2006
Point cloud registration, Correspondence,
Potential inlier selection, Transformation decomposition
BibRef
Gopalakrishnan, R.[Ranjith],
Ali-Sisto, D.[Daniela],
Kukkonen, M.[Mikko],
Savolainen, P.[Pekka],
Packalen, P.[Petteri],
Using ALS Data to Improve Co-Registration of Photogrammetry-Based
Point Cloud Data in Urban Areas,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Zhou, R.[Ruqin],
Jiang, W.[Wanshou],
A Ridgeline-Based Terrain Co-Registration for Satellite LiDAR Point
Clouds in Rough Areas,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Li, J.Y.[Jia-Yuan],
Hu, Q.W.[Qing-Wu],
Ai, M.Y.[Ming-Yao],
GESAC: Robust graph enhanced sample consensus for point cloud
registration,
PandRS(167), 2020, pp. 363-374.
Elsevier DOI
2008
Point cloud registration, Coarse registration,
Feature correspondence, RANSAC, Robust cost
BibRef
Chaudhury, A.,
Multilevel Optimization for Registration of Deformable Point Clouds,
IP(29), 2020, pp. 8735-8746.
IEEE DOI
2009
Strain, Geometry, Shape,
Deformable models, Optimization,
expectation maximization
BibRef
Quan, S.,
Yang, J.,
Compatibility-Guided Sampling Consensus for 3-D Point Cloud
Registration,
GeoRS(58), No. 10, October 2020, pp. 7380-7392.
IEEE DOI
2009
Pose estimation, Task analysis,
Feature extraction, Robustness, Measurement,
transformation estimation
BibRef
Fotsing, C.[Cedrique],
Nziengam, N.[Nafissetou],
Bobda, C.[Christophe],
Large Common Plansets-4-Points Congruent Sets for Point Cloud
Registration,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Zhang, Y.[Yuhe],
Li, C.H.[Chun-Hui],
Guo, B.[Bao],
Guo, C.H.[Chen-Hao],
Zhang, S.[Shunli],
KDD: A kernel density based descriptor for 3D point clouds,
PR(111), 2021, pp. 107691.
Elsevier DOI
2012
3D feature descriptor, Kernel density estimation,
Point cloud registration, KL divergence
BibRef
Zou, X.Y.[Xu-Yan],
He, H.W.[Han-Wu],
Wu, Y.M.[Yue-Ming],
Chen, Y.B.[You-Bin],
Xu, M.X.[Ming-Xi],
Automatic 3D point cloud registration algorithm based
on triangle similarity ratio consistency,
IET-IPR(14), No. 14, December 2020, pp. 3314-3323
DOI Link
2012
BibRef
Huang, R.[Rong],
Xu, Y.S.[Yu-Sheng],
Yao, W.[Wei],
Hoegner, L.[Ludwig],
Stilla, U.[Uwe],
Robust global registration of point clouds by closed-form solution in
the frequency domain,
PandRS(171), 2021, pp. 310-329.
Elsevier DOI
2012
Point cloud registration, Fourier transforms,
Multidimensional phase correlation, Low-frequency components, Robust estimation
BibRef
Toschi, I.,
Farella, E.M.,
Welponer, M.,
Remondino, F.,
Quality-based registration refinement of airborne LiDAR and
photogrammetric point clouds,
PandRS(172), 2021, pp. 160-170.
Elsevier DOI
2101
Registration, Aerial images, Airborne laser scanning,
Quality evaluation, Dense image matching, Data fusion
BibRef
Zampogiannis, K.[Konstantinos],
Fermüller, C.[Cornelia],
Aloimonos, Y.F.[Yi-Fannis],
Topology-Aware Non-Rigid Point Cloud Registration,
PAMI(43), No. 3, March 2021, pp. 1056-1069.
IEEE DOI
2102
Topology, Dynamics, Motion estimation,
Geometry, Estimation, Image reconstruction, Non-rigid registration,
dynamic topology
BibRef
Kuçak, R.A.[Ramazan Alper],
Erol, S.[Serdar],
Erol, B.[Bihter],
An Experimental Study of a New Keypoint Matching Algorithm for
Automatic Point Cloud Registration,
IJGI(10), No. 4, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Bolkas, D.[Dimitrios],
Walton, G.[Gabriel],
Kromer, R.[Ryan],
Sichler, T.[Timothy],
Registration of multi-platform point clouds using edge detection for
rockfall monitoring,
PandRS(175), 2021, pp. 366-385.
Elsevier DOI
2105
Point clouds, Registration, UAS, Laser scanning, Monitoring,
Multi-scale transform
BibRef
Stanley, M.H.[Michael H.],
Laefer, D.F.[Debra F.],
Metrics for aerial, urban lidar point clouds,
PandRS(175), 2021, pp. 268-281.
Elsevier DOI
2105
Remote sensing, LiDAR, urban aerial laser scanning,
LiDAR density, LiDAR accuracy, registration error
BibRef
Yu, D.[Deng],
Li, L.[Lei],
Zheng, Y.Y.[You-Yi],
Lau, M.[Manfred],
Song, Y.Z.[Yi-Zhe],
Tai, C.L.[Chiew-Lan],
Fu, H.B.[Hong-Bo],
SketchDesc: Learning Local Sketch Descriptors for Multi-View
Correspondence,
CirSysVideo(31), No. 5, 2021, pp. 1738-1750.
IEEE DOI
2105
BibRef
Li, L.[Lei],
Zhu, S.Y.[Si-Yu],
Fu, H.B.[Hong-Bo],
Tan, P.[Ping],
Tai, C.L.[Chiew-Lan],
End-to-End Learning Local Multi-View Descriptors for 3D Point Clouds,
CVPR20(1916-1925)
IEEE DOI
2008
Rendering (computer graphics),
Feature extraction, Neural networks, Shape, Geometry, Pipelines
BibRef
Zhou, L.[Lei],
Zhu, S.Y.[Si-Yu],
Luo, Z.X.[Zi-Xin],
Shen, T.W.[Tian-Wei],
Zhang, R.[Runze],
Zhen, M.M.[Ming-Min],
Fang, T.[Tian],
Quan, L.[Long],
Learning and Matching Multi-View Descriptors for Registration of Point
Clouds,
ECCV18(XV: 527-544).
Springer DOI
1810
BibRef
Li, S.M.[Shi-Ming],
Ge, X.M.[Xu-Ming],
Li, S.F.[Sheng-Fu],
Xu, B.[Bo],
Wang, Z.D.[Zhen-Dong],
Linear-Based Incremental Co-Registration of MLS and Photogrammetric
Point Clouds,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Wang, Y.B.[Yong-Bo],
Zheng, N.S.[Nan-Shan],
Bian, Z.F.[Zheng-Fu],
A Closed-Form Solution to Planar Feature-Based Registration of LiDAR
Point Clouds,
IJGI(10), No. 7, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Wang, Y.[Yongbo],
Zheng, N.[Nanshan],
Bian, Z.[Zhengfu],
Zhang, H.[Hua],
A Closed-Form Solution to Linear Feature-Based Registration of LiDAR
Point Clouds,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Li, S.K.[Shi-Kun],
Lu, R.D.[Ruo-Dan],
Liu, J.Y.[Jian-Ya],
Guo, L.[Liang],
Super Edge 4-Points Congruent Sets-Based Point Cloud Global
Registration,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Wang, F.Y.[Fei-Yu],
Li, W.[Wen],
Xu, D.[Dong],
Cross-Dataset Point Cloud Recognition Using Deep-Shallow Domain
Adaptation Network,
IP(30), 2021, pp. 7364-7377.
IEEE DOI
2109
Task analysis, Feature extraction,
Adaptation models, Image recognition, Target recognition, Training,
transfer learning
BibRef
Wang, Z.C.[Zi-Cheng],
Li, W.[Wen],
Xu, D.[Dong],
Domain Adaptive Sampling for Cross-Domain Point Cloud Recognition,
CirSysVideo(33), No. 12, December 2023, pp. 7604-7615.
IEEE DOI
2312
BibRef
Li, J.[Jian],
Huang, S.W.[Shuo-Wen],
Cui, H.[Hao],
Ma, Y.R.[Yu-Rong],
Chen, X.L.[Xiao-Long],
Automatic Point Cloud Registration for Large Outdoor Scenes Using a
Priori Semantic Information,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
And:
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Liu, W.B.[Wen-Bo],
Sun, W.[Wei],
Wang, S.[Shuxuan],
Liu, Y.[Yi],
Coarse registration of point clouds with low overlap rate on feature
regions,
SP:IC(98), 2021, pp. 116428.
Elsevier DOI
2109
Feature extraction, Low overlap rate, Point cloud registration,
4-points congruent sets
BibRef
Wang, H.F.[Hua-Feng],
Zhang, Y.M.[Ya-Ming],
Liu, W.Q.[Wan-Quan],
Gu, X.F.[Xian-Feng],
Jing, X.[Xin],
Liu, Z.C.[Zi-Cheng],
A novel GCN-based point cloud classification model robust to pose
variances,
PR(121), 2022, pp. 108251.
Elsevier DOI
2109
Point cloud, Pose robust, Graph convolutional network, Classification
BibRef
Zhou, R.[Ruqin],
Li, X.X.[Xi-Xing],
Jiang, W.S.[Wan-Shou],
SCANet: A Spatial and Channel Attention based Network for
Partial-to-Partial Point Cloud Registration,
PRL(151), 2021, pp. 120-126.
Elsevier DOI
2110
BibRef
Wang, K.K.[Kang-Kan],
Zhang, G.F.[Guo-Feng],
Zheng, H.Y.[Hua-Yu],
Yang, J.[Jian],
Learning Dense Correspondences for Non-Rigid Point Clouds With
Two-Stage Regression,
IP(30), 2021, pp. 8468-8482.
IEEE DOI
2110
Estimation, Solid modeling, Shape,
Predictive models, Deep learning, Data models,
weak supervision
BibRef
Li, J.Y.[Jia-Yuan],
Hu, Q.W.[Qing-Wu],
Ai, M.Y.[Ming-Yao],
Point Cloud Registration Based on One-Point RANSAC and
Scale-Annealing Biweight Estimation,
GeoRS(59), No. 11, November 2021, pp. 9716-9729.
IEEE DOI
2111
Estimation, Robustness, Laser radar,
Feature extraction, Detectors, Shape, Biweight estimator,
random sample consensus (RANSAC)
BibRef
Zhao, G.P.[Gen-Ping],
Zhang, W.G.[Wei-Guang],
Peng, Y.[Yeping],
Wu, H.[Heng],
Wang, Z.W.[Zhuo-Wei],
Cheng, L.L.[Liang-Lun],
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D
LiDAR Point Cloud Classification,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Ge, X.M.[Xu-Ming],
Zhu, Q.[Qing],
Huang, L.[Lei],
Li, S.F.[Sheng-Fu],
Li, S.M.[Shi-Ming],
Global Registration of Multiview Unordered Forest Point Clouds Guided
by Common Subgraphs,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Forestry, Vegetation, Registers,
Reliability engineering, Merging, Germanium, Common subgraphs,
tree-trunk
BibRef
Yang, J.Q.[Jia-Qi],
Huang, Z.Q.[Zhi-Qiang],
Quan, S.[Siwen],
Qi, Z.S.[Zhao-Shuai],
Zhang, Y.N.[Yan-Ning],
SAC-COT: Sample Consensus by Sampling Compatibility Triangles in
Graphs for 3-D Point Cloud Registration,
GeoRS(60), 2022, pp. 1-15.
IEEE DOI
2112
Pose estimation, Sampling methods, Robustness, Deep learning,
Gaussian noise, Clutter, 3-D point cloud, sample consensus
BibRef
Song, Y.[Yanan],
Shen, W.M.[Wei-Ming],
Lu, P.[Peng],
A novel partial-to-partial registration method based on sampling
network,
JVCIR(82), 2022, pp. 103411.
Elsevier DOI
2201
Point cloud registration, Partial correspondence,
Sampling network, Deep learning
BibRef
Cong, Y.Z.[Yang-Zi],
Chen, C.[Chi],
Yang, B.S.[Bi-Sheng],
Li, J.P.[Jian-Ping],
Wu, W.T.[Wei-Tong],
Li, Y.H.[Yu-Hao],
Yang, Y.D.[Yan-Di],
3D-CSTM: A 3D continuous spatio-temporal mapping method,
PandRS(186), 2022, pp. 232-245.
Elsevier DOI
2203
Continuous 3D Mapping, Structural features, LiDAR, B-Spline
BibRef
Kadam, P.[Pranav],
Zhang, M.[Min],
Liu, S.[Shan],
Kuo, C.C.J.[C.C. Jay],
R-PointHop: A Green, Accurate, and Unsupervised Point Cloud
Registration Method,
IP(31), 2022, pp. 2710-2725.
IEEE DOI
2204
Point cloud compression, Feature extraction, Task analysis,
Transforms, Deep learning, Principal component analysis, 3D feature descriptor
BibRef
Li, J.Y.[Jia-Yuan],
A Practical O(N^2) Outlier Removal Method for Correspondence-Based
Point Cloud Registration,
PAMI(44), No. 8, August 2022, pp. 3926-3939.
IEEE DOI
2207
Upper bound, Feature extraction, Estimation, Time complexity,
Detectors, Point cloud registration, outlier removal,
O(N^2) running time
BibRef
Li, J.Y.[Jia-Yuan],
Shi, P.C.[Peng-Cheng],
Hu, Q.W.[Qing-Wu],
Zhang, Y.J.[Yong-Jun],
QGORE: Quadratic-Time Guaranteed Outlier Removal for Point Cloud
Registration,
PAMI(45), No. 9, September 2023, pp. 11136-11151.
IEEE DOI
2309
BibRef
Nie, W.Z.[Wei-Zhi],
Ke, Y.Q.[Yu-Qi],
Zhao, Y.[Yue],
Liang, Q.[Qi],
Su, Y.T.[Yu-Ting],
LIMAN: Local Information-Based Multiattention Network for 3D Shape
Recognition,
MultMedMag(29), No. 1, January 2022, pp. 65-73.
IEEE DOI
2205
Solid modeling, Feature extraction,
Correlation, Visualization, Training data
BibRef
Li, J.W.[Jian-Wei],
Zhan, J.[Jiawang],
Zhou, T.[Ting],
Bento, V.A.[Virgílio A.],
Wang, Q.F.[Qian-Feng],
Point cloud registration and localization based on voxel plane
features,
PandRS(188), 2022, pp. 363-379.
Elsevier DOI
2205
Localization, Registration, Plane feature, Voxel, 3D point cloud
BibRef
Arvanitis, G.[Gerasimos],
Zacharaki, E.I.[Evangelia I.],
Vása, L.[Libor],
Moustakas, K.[Konstantinos],
Broad-to-Narrow Registration and Identification of 3D Objects in
Partially Scanned and Cluttered Point Clouds,
MultMed(24), 2022, pp. 2230-2245.
IEEE DOI
2205
Feature extraction, Solid modeling,
Shape, Object recognition, Histograms, Data models, cluttered scene
BibRef
Zhang, Z.Y.[Zhi-Yuan],
Sun, J.[Jiadai],
Dai, Y.C.[Yu-Chao],
Fan, B.[Bin],
Liu, Q.[Qi],
Searching Dense Point Correspondences via Permutation Matrix Learning,
SPLetters(29), 2022, pp. 1192-1196.
IEEE DOI
2206
Point cloud compression, Shape,
Estimation, Feature extraction, Transformers, Task analysis,
end-to-end learning
BibRef
Wang, Z.W.[Zi-Wei],
Yan, S.J.[Si-Jie],
Wu, L.[Long],
Zhang, X.J.[Xiao-Jian],
Chen, B.J.[Bin-Jiang],
Robust point clouds registration with point-to-point lp distance
constraints in large-scale metrology,
PandRS(189), 2022, pp. 23-35.
Elsevier DOI
2206
Large-scale metrology, Point clouds registration,
Featureless point clouds, norm constraints
BibRef
Brun, A.[Aurélien],
Cucci, D.A.[Davide A.],
Skaloud, J.[Jan],
Lidar point-to-point correspondences for rigorous registration of
kinematic scanning in dynamic networks,
PandRS(189), 2022, pp. 185-200.
Elsevier DOI
2206
Lidar, Georeferencing, Point cloud registration, UAVs,
Pose-graph optimization, Dynamic networks
BibRef
Li, S.K.[Shi-Kun],
Ye, Y.[Yang],
Liu, J.Y.[Jian-Ya],
Guo, L.[Liang],
VPRNet: Virtual Points Registration Network for Partial-to-Partial
Point Cloud Registration,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Zhang, Z.Y.[Zhi-Yuan],
Sun, J.D.[Jia-Dai],
Dai, Y.C.[Yu-Chao],
Zhou, D.F.[Ding-Fu],
Song, X.B.[Xi-Bin],
He, M.Y.[Ming-Yi],
Self-supervised rigid transformation equivariance for accurate 3D
point cloud registration,
PR(130), 2022, pp. 108784.
Elsevier DOI
2206
Point cloud, Rigid transformation equivariance, Learned cost volume
BibRef
Zhang, Z.Y.[Zhi-Yuan],
Sun, J.[Jiadai],
Dai, Y.C.[Yu-Chao],
Fan, B.[Bin],
He, M.Y.[Ming-Yi],
VRNet: Learning the Rectified Virtual Corresponding Points for 3D
Point Cloud Registration,
CirSysVideo(32), No. 8, August 2022, pp. 4997-5010.
IEEE DOI
2208
Point cloud compression, Reliability, Shape, Feature extraction,
Geometry, Task analysis, Point cloud registration, hybrid loss function
BibRef
Ghorbani, F.[Fariborz],
Ebadi, H.[Hamid],
Pfeifer, N.[Norbert],
Sedaghat, A.[Amin],
Uniform and Competency-Based 3D Keypoint Detection for Coarse
Registration of Point Clouds with Homogeneous Structure,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Huang, H.[Hong],
Ye, Z.[Zehao],
Zhang, C.[Cheng],
Yue, Y.[Yong],
Cui, C.[Chunyi],
Hammad, A.[Amin],
Adaptive Cloud-to-Cloud (AC2C) Comparison Method for Photogrammetric
Point Cloud Error Estimation Considering Theoretical Error Space,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zhao, L.[Lidu],
Xiang, Z.F.[Zhong-Fu],
Chen, M.L.[Mao-Lin],
Ma, X.[Xiaping],
Zhou, Y.[Yin],
Zhang, S.C.[Shuang-Cheng],
Hu, C.[Chuan],
Hu, K.X.[Kai-Xin],
Establishment and Extension of a Fast Descriptor for Point Cloud
Registration,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Yu, J.J.[Jin-Jin],
Zhang, F.H.[Feng-Hao],
Chen, Z.[Zhi],
Liu, L.M.[Li-Man],
MSPR-Net: A Multi-Scale Features Based Point Cloud Registration
Network,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Wang, X.[Xin],
Ding, H.[Hui],
Zhao, G.W.[Guang-Wei],
Peng, Y.X.[Ya-Xin],
Shen, C.M.[Chao-Min],
Scale robust point matching-Net:
End-to-end scale point matching using Lie group,
IET-CV(16), No. 7, 2022, pp. 655-666.
DOI Link
2210
BibRef
Huang, X.S.[Xiao-Shui],
Wang, Y.F.[Yang-Fu],
Li, S.[Sheng],
Mei, G.F.[Guo-Feng],
Xu, Z.Y.[Zong-Yi],
Wang, Y.C.[Yu-Cheng],
Zhang, J.[Jian],
Bennamoun, M.[Mohammed],
Robust real-world point cloud registration by inlier detection,
CVIU(224), 2022, pp. 103556.
Elsevier DOI
2211
Point cloud registration, Matching, Localization, 3d reconstruction
BibRef
Jia, X.[Xin],
Yang, S.[Shourui],
Wang, Y.[Yunbo],
Zhang, J.H.[Jian-Hua],
Peng, Y.X.[Yu-Xin],
Chen, S.Y.[Sheng-Yong],
Dual-View 3D Reconstruction via Learning Correspondence and
Dependency of Point Cloud Regions,
IP(31), 2022, pp. 6831-6846.
IEEE DOI
2212
Point cloud compression, Shape, Transformers, Image reconstruction,
Solid modeling, Task analysis, Multi-view 3D reconstruction,
dependency
BibRef
Wang, J.T.[Jing-Tao],
Yang, C.[Changcai],
Wei, L.F.[Li-Fang],
Chen, R.[Riqing],
CSCE-Net: Channel-Spatial Contextual Enhancement Network for Robust
Point Cloud Registration,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Marcon, M.[Marlon],
Spezialetti, R.[Riccardo],
Salti, S.[Samuele],
Silva, L.[Luciano],
di Stefano, L.[Luigi],
Unsupervised Learning of Local Equivariant Descriptors for Point Clouds,
PAMI(44), No. 12, December 2022, pp. 9687-9702.
IEEE DOI
2212
Deep learning, Decoding, Computer architecture, Training,
Training data, Shape, Deep learning on point clouds,
registration
BibRef
Wang, Y.J.[Yu-Jie],
Yan, C.G.[Cheng-Gang],
Feng, Y.T.[Yu-Tong],
Du, S.Y.[Shao-Yi],
Dai, Q.H.[Qiong-Hai],
Gao, Y.[Yue],
STORM: Structure-Based Overlap Matching for Partial Point Cloud
Registration,
PAMI(45), No. 1, January 2023, pp. 1135-1149.
IEEE DOI
2212
Point cloud compression, Feature extraction, Storms,
Prediction algorithms, Shape, Pipelines, Point cloud registration,
point cloud sampling
BibRef
Zhao, M.Y.[Ming-Yang],
Ma, L.[Lei],
Jia, X.H.[Xiao-Hong],
Yan, D.M.[Dong-Ming],
Huang, T.J.[Tie-Jun],
GraphReg: Dynamical Point Cloud Registration With Geometry-Aware
Graph Signal Processing,
IP(31), 2022, pp. 7449-7464.
IEEE DOI
2212
Point cloud compression, Surface treatment, Probabilistic logic,
Geometry, Simulated annealing, Robustness, simulated annealing
BibRef
Zhang, Z.Y.[Zhi-Yuan],
Dai, Y.C.[Yu-Chao],
Fan, B.[Bin],
Sun, J.[Jiadai],
He, M.Y.[Ming-Yi],
Learning a Task-Specific Descriptor for Robust Matching of 3D Point
Clouds,
CirSysVideo(32), No. 12, December 2022, pp. 8462-8475.
IEEE DOI
2212
Point cloud compression, Convolutional neural networks, Task analysis,
Geometry, Transformers, Feature extraction, dynamic fusion module
BibRef
Huang, J.H.[Jia-Hui],
Birdal, T.[Tolga],
Gojcic, Z.[Zan],
Guibas, L.J.[Leonidas J.],
Hu, S.M.[Shi-Min],
Multiway Non-Rigid Point Cloud Registration via Learned Functional
Map Synchronization,
PAMI(45), No. 2, February 2023, pp. 2038-2053.
IEEE DOI
2301
Point cloud compression, Synchronization, Shape, Strain,
Task analysis, Optimization, 3D point cloud,
functional map synchronization
BibRef
Poiesi, F.[Fabio],
Boscaini, D.[Davide],
Learning General and Distinctive 3D Local Deep Descriptors for Point
Cloud Registration,
PAMI(45), No. 3, March 2023, pp. 3979-3985.
IEEE DOI
2302
Point cloud compression, Histograms, Electronics packaging,
Training, Covariance matrices, Aggregates, contrastive learning
BibRef
Lv, C.L.[Chen-Lei],
Lin, W.S.[Wei-Si],
Zhao, B.Q.[Bao-Quan],
Intrinsic and Isotropic Resampling for 3D Point Clouds,
PAMI(45), No. 3, March 2023, pp. 3274-3291.
IEEE DOI
2302
Point cloud compression, Optimization, Level measurement,
Surface fitting, Costs, Shape, Isotropic resampling, shape registration
BibRef
Li, Q.[Qing],
Wang, C.[Cheng],
Wen, C.[Chenglu],
Li, X.[Xin],
DeepSIR: Deep semantic iterative registration for LiDAR point clouds,
PR(137), 2023, pp. 109306.
Elsevier DOI
2302
Feature learning, 3D registration, LiDAR point clouds,
Point score, Semantic segmentation
BibRef
Monji-Azad, S.[Sara],
Hesser, J.[Jürgen],
Löw, N.[Nikolas],
A review of non-rigid transformations and learning-based 3D point
cloud registration methods,
PandRS(196), 2023, pp. 58-72.
Elsevier DOI
2302
Point cloud registration, Non-rigid transformation,
Quantitative assessments metrics, Robustness, Registration datasets
BibRef
Bash, E.A.[Eleanor A.],
Wecker, L.[Lakin],
Rahman, M.M.[Mir Mustafizur],
Dow, C.F.[Christine F.],
McDermid, G.[Greg],
Samavati, F.F.[Faramarz F.],
Whitehead, K.[Ken],
Moorman, B.J.[Brian J.],
Medrzycka, D.[Dorota],
Copland, L.[Luke],
A Multi-Resolution Approach to Point Cloud Registration without
Control Points,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Lv, C.[Chenlei],
Lin, W.S.[Wei-Si],
Zhao, B.Q.[Bao-Quan],
KSS-ICP: Point Cloud Registration Based on Kendall Shape Space,
IP(32), 2023, pp. 1681-1693.
IEEE DOI
2303
Point cloud compression, Shape, Deep learning, Training, Manifolds,
Task analysis, Kendall shape space, point cloud registration
BibRef
Ren, S.[Siyu],
Zeng, Y.M.[Yi-Ming],
Hou, J.H.[Jun-Hui],
Chen, X.D.[Xiao-Dong],
CorrI2P: Deep Image-to-Point Cloud Registration via Dense
Correspondence,
CirSysVideo(33), No. 3, March 2023, pp. 1198-1208.
IEEE DOI
2303
Point cloud compression, Feature extraction, Cameras, Detectors,
Feeds, Visualization, Point cloud, registration, cross-modality, deep learning
BibRef
Zhang, Y.X.[Yu-Xin],
Sun, Z.L.[Zhan-Li],
Zeng, Z.G.[Zhi-Gang],
Lam, K.M.[Kin-Man],
Point Cloud Registration Using Multiattention Mechanism and Deep
Hybrid Features,
IEEE_Int_Sys(38), No. 1, January 2023, pp. 58-68.
IEEE DOI
2303
Point cloud compression, Feature extraction, Task analysis, Intelligent systems,
Convolution, Sun, point cloud registration, deep hybrid feature
BibRef
Wu, Y.[Yue],
Zhang, Y.[Yue],
Fan, X.L.[Xiao-Long],
Gong, M.[Maoguo],
Miao, Q.G.[Qi-Guang],
Ma, W.P.[Wen-Ping],
INENet: Inliers Estimation Network With Similarity Learning for
Partial Overlapping Registration,
CirSysVideo(33), No. 3, March 2023, pp. 1413-1426.
IEEE DOI
2303
Point cloud compression, Feature extraction, Estimation,
Prediction algorithms, Probability, Deep learning, Transforms,
partial overlap registration
BibRef
Fu, K.X.[Ke-Xue],
Luo, J.Z.[Jia-Zheng],
Luo, X.Y.[Xiao-Yuan],
Liu, S.L.[Shao-Lei],
Zhang, C.X.[Chen-Xi],
Wang, M.N.[Man-Ning],
Robust Point Cloud Registration Framework Based on Deep Graph
Matching,
PAMI(45), No. 5, May 2023, pp. 6183-6195.
IEEE DOI
2304
BibRef
Earlier: A1, A4, A3, A6, Only:
CVPR21(8889-8898)
IEEE DOI
2111
Point cloud compression, Feature extraction, Neural networks,
Transformers, Prediction algorithms, Geometry, Deep learning,
point cloud registration.
Transforms, Robot sensing systems, Topology
BibRef
Yuan, M.Z.[Ming-Zhi],
Li, Z.H.[Zhi-Hao],
Jin, Q.Y.[Qiu-Ye],
Chen, X.R.[Xin-Rong],
Wang, M.N.[Man-Ning],
PointCLM: A Contrastive Learning-based Framework for Multi-instance
Point Cloud Registration,
ECCV22(IX:595-611).
Springer DOI
2211
BibRef
Cheng, X.Y.[Xiao-Ya],
Yan, S.[Shen],
Liu, Y.[Yan],
Zhang, M.[Maojun],
Chen, C.[Chen],
R-PCR: Recurrent Point Cloud Registration Using High-Order Markov
Decision,
RS(15), No. 7, 2023, pp. 1889.
DOI Link
2304
BibRef
Zhao, Y.[Yang],
Fan, L.[Lei],
Review on Deep Learning Algorithms and Benchmark Datasets for
Pairwise Global Point Cloud Registration,
RS(15), No. 8, 2023, pp. 2060.
DOI Link
2305
BibRef
He, J.F.[Jian-Feng],
Deng, J.C.[Jia-Cheng],
Zhang, T.Z.[Tian-Zhu],
Zhang, Z.[Zhe],
Zhang, Y.D.[Yong-Dong],
Hierarchical Shape-Consistent Transformer for Unsupervised Point
Cloud Shape Correspondence,
IP(32), 2023, pp. 2734-2748.
IEEE DOI
2305
Shape, Point cloud compression, Transformers, Feature extraction,
Task analysis, Semantics, Shape correspondence, transformer,
shape-consistent constraint
BibRef
Yan, L.[Li],
Wei, P.C.[Peng-Cheng],
Xie, H.[Hong],
Dai, J.C.[Ji-Cheng],
Wu, H.[Hao],
Huang, M.[Ming],
A New Outlier Removal Strategy Based on Reliability of Correspondence
Graph for Fast Point Cloud Registration,
PAMI(45), No. 7, July 2023, pp. 7986-8002.
IEEE DOI
2306
Point cloud compression, Reliability,
Transmission line matrix methods, Task analysis, Histograms,
reliability of graph
BibRef
Li, J.W.[Jian-Wei],
Huang, X.[Xin],
Zhan, J.[Jiawang],
High-Precision Motion Detection and Tracking Based on Point Cloud
Registration and Radius Search,
ITS(24), No. 6, June 2023, pp. 6322-6335.
IEEE DOI
2306
Tracking, Radar tracking, Point cloud compression,
Motion detection, Target tracking, Sensors, Feature extraction,
registration
BibRef
Zhang, Y.[Yu],
Zhang, W.H.[Wen-Hao],
Li, J.L.[Jin-Long],
Partial-to-Partial Point Cloud Registration by Rotation Invariant
Features and Spatial Geometric Consistency,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Qin, Z.[Zheng],
Yu, H.[Hao],
Wang, C.J.[Chang-Jian],
Guo, Y.L.[Yu-Lan],
Peng, Y.X.[Yu-Xing],
Ilic, S.[Slobodan],
Hu, D.[Dewen],
Xu, K.[Kai],
GeoTransformer: Fast and Robust Point Cloud Registration With
Geometric Transformer,
PAMI(45), No. 8, August 2023, pp. 9806-9821.
IEEE DOI
2307
BibRef
Earlier: A1, A2, A3, A4, A5, A8, Only:
Geometric Transformer for Fast and Robust Point Cloud Registration,
CVPR22(11133-11142)
IEEE DOI
2210
Point cloud compression, Transformers, Feature extraction,
Benchmark testing, Convergence, Task analysis,
transformer.
Codes, Estimation, Encoding, Pose estimation and tracking,
Scene analysis and understanding
BibRef
Wang, C.J.[Cheng-Jun],
Zheng, Z.[Zhen],
Zha, B.T.[Bing-Ting],
Li, H.J.[Hao-Jie],
Fast Robust Point Cloud Registration Based on Compatibility Graph and
Accelerated Guided Sampling,
RS(16), No. 15, 2024, pp. 2789.
DOI Link
2408
BibRef
Chu, G.H.[Guang-Han],
Fan, D.Z.[Da-Zhao],
Dong, Y.[Yang],
Ji, S.[Song],
Gu, L.-.Y.[Lin--Yu],
Li, D.Z.[Dong-Zi],
Zhang, W.[Wu],
Robust registration of aerial and close-range photogrammetric point
clouds using visual context features and scale consistency,
IET-IPR(17), No. 9, 2023, pp. 2698-2709.
DOI Link
2307
computer vision, image matching, image processing
BibRef
Wu, X.[Xin],
Wei, X.L.[Xiao-Long],
Xu, H.J.[Hao-Jun],
Li, C.Z.[Cai-Zhi],
Hou, Y.H.[Yuan-Han],
Yin, Y.Z.[Yi-Zhen],
He, W.F.[Wei-Feng],
PointCNT: A One-Stage Point Cloud Registration Approach Based on
Complex Network Theory,
RS(15), No. 14, 2023, pp. 3545.
DOI Link
2307
BibRef
Wu, Y.[Yue],
Hu, X.[Xidao],
Zhang, Y.[Yue],
Gong, M.[Maoguo],
Ma, W.P.[Wen-Ping],
Miao, Q.G.[Qi-Guang],
SACF-Net: Skip-Attention Based Correspondence Filtering Network for
Point Cloud Registration,
CirSysVideo(33), No. 8, August 2023, pp. 3585-3595.
IEEE DOI
2308
Feature extraction, Point cloud compression, Decoding, Task analysis,
Estimation, Pipelines, Point cloud, partial overlap registration
BibRef
Wang, X.[Xuchu],
Yuan, Y.[Yue],
GCMTN: Low-Overlap Point Cloud Registration Network Combining Dense
Graph Convolution and Multilevel Interactive Transformer,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Lu, F.[Fan],
Chen, G.[Guang],
Liu, Y.L.[Yin-Long],
Zhan, Y.B.[Yi-Bing],
Li, Z.J.[Zhi-Jun],
Tao, D.C.[Da-Cheng],
Jiang, C.J.[Chang-Jun],
Sparse-to-Dense Matching Network for Large-Scale LiDAR Point Cloud
Registration,
PAMI(45), No. 9, September 2023, pp. 11270-11282.
IEEE DOI
2309
BibRef
Lu, F.[Fan],
Chen, G.[Guang],
Liu, Y.L.[Yin-Long],
Zhang, L.J.[Li-Jun],
Qu, S.Q.[San-Qing],
Liu, S.[Shu],
Gu, R.Q.[Rong-Qi],
Jiang, C.J.[Chang-Jun],
HRegNet: A Hierarchical Network for Efficient and Accurate Outdoor
LiDAR Point Cloud Registration,
PAMI(45), No. 10, October 2023, pp. 11884-11897.
IEEE DOI
2310
BibRef
Earlier: A1, A2, A3, A4, A5, A6, A7, Only:
HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point
Cloud Registration,
ICCV21(15994-16003)
IEEE DOI
2203
Point cloud compression, Laser radar,
Computer network reliability, Pipelines, Feature extraction,
Vision applications and systems
BibRef
Xue, W.Y.[Wei-Yi],
Lu, F.[Fan],
Chen, G.[Guang],
HDMNet: A Hierarchical Matching Network with Double Attention for
Large-scale Outdoor LiDAR Point Cloud Registration,
WACV24(3381-3391)
IEEE DOI
2404
Point cloud compression, Laser radar,
Computer network reliability, Pose estimation, Neural networks,
3D computer vision
BibRef
Zhao, T.M.[Tian-Ming],
Li, L.F.[Lin-Feng],
Tian, T.[Tian],
Ma, J.Y.[Jia-Yi],
Tian, J.W.[Jin-Wen],
Patch-guided point matching for point cloud registration with low
overlap,
PR(144), 2023, pp. 109876.
Elsevier DOI
2310
Point cloud registration, Low overlap, Matching pyramid, Cross-level fusion
BibRef
Yao, R.Z.[Run-Zhao],
Du, S.[Shaoyi],
Cui, W.T.[Wen-Ting],
Ye, A.[Aixue],
Wen, F.[Feng],
Zhang, H.B.[Hong-Bo],
Tian, Z.Q.[Zhi-Qiang],
Gao, Y.[Yue],
Hunter: Exploring High-Order Consistency for Point Cloud Registration
With Severe Outliers,
PAMI(45), No. 12, December 2023, pp. 14760-14776.
IEEE DOI
2311
BibRef
Feng, Y.[Yong],
Leung, K.L.[Ka Lun],
Li, Y.K.[Ying-Kui],
Wong, K.L.[Kwai Lam],
An AI-Based Workflow for Fast Registration of UAV-Produced 3D Point
Clouds,
RS(15), No. 21, 2023, pp. 5163.
DOI Link
2311
BibRef
Glira, P.[Philipp],
Weidinger, C.[Christoph],
Otepka-Schremmer, J.[Johannes],
Ressl, C.[Camillo],
Pfeifer, N.[Norbert],
Haberler-Weber, M.[Michaela],
Nonrigid Point Cloud Registration Using Piecewise Tricubic
Polynomials as Transformation Model,
RS(15), No. 22, 2023, pp. 5348.
DOI Link
2311
BibRef
Slimani, K.[Karim],
Achard, C.[Catherine],
Tamadazte, B.[Brahim],
RoCNet++: Triangle-based descriptor for accurate and robust point
cloud registration,
PR(147), 2024, pp. 110108.
Elsevier DOI
2312
Point cloud learning, Registration, Geometric descriptor,
Attention mechanism, Pose estimation
BibRef
Chen, Y.[Yilin],
Mei, Y.[Yang],
Yu, B.C.[Bao-Cheng],
Xu, W.X.[Wen-Xia],
Wu, Y.Q.[Yi-Qi],
Zhang, D.J.[De-Jun],
Yan, X.H.[Xiao-Hu],
A Robust Multi-Local to Global with Outlier Filtering for Point Cloud
Registration,
RS(15), No. 24, 2023, pp. 5641.
DOI Link
2401
BibRef
Cui, C.H.[Cheng-Hao],
Liu, Y.L.[Yu-Ling],
Zhang, F.[Fubo],
Shi, M.[Minan],
Chen, L.[Longyong],
Li, W.J.[Wen-Jie],
Li, Z.H.[Zhen-Hua],
A Novel Automatic Registration Method for Array InSAR Point Clouds in
Urban Scenes,
RS(16), No. 3, 2024, pp. 601.
DOI Link
2402
BibRef
Han, T.Y.[Tian-Yu],
Zhang, R.J.[Rui-Jie],
Kan, J.M.[Jiang-Ming],
Dong, R.[Ruifang],
Zhao, X.X.[Xi-Xuan],
Yao, S.[Shun],
A Point Cloud Registration Framework with Color Information
Integration,
RS(16), No. 5, 2024, pp. 743.
DOI Link
2403
BibRef
Xing, X.J.[Xue-Jun],
Lu, Z.[Zhengda],
Wang, Y.Q.[Yi-Qun],
Xiao, J.[Jun],
Efficient Single Correspondence Voting for Point Cloud Registration,
IP(33), 2024, pp. 2116-2130.
IEEE DOI Code:
WWW Link.
2403
Point cloud compression, Iterative methods,
Feature extraction, Deep learning, 3D point cloud
BibRef
Zeng, T.J.[Tian-Jiao],
Zhang, W.[Wensi],
Zhan, X.[Xu],
Xu, X.[Xiaowo],
Liu, Z.Y.[Zi-Yang],
Wang, B.Y.[Bao-You],
Zhang, X.L.[Xiao-Ling],
A Novel Multimodal Fusion Framework Based on Point Cloud Registration
for Near-Field 3D SAR Perception,
RS(16), No. 6, 2024, pp. 952.
DOI Link
2403
BibRef
Yu, H.[Hao],
Hou, J.[Ji],
Qin, Z.[Zheng],
Saleh, M.[Mahdi],
Shugurov, I.[Ivan],
Wang, K.[Kai],
Busam, B.[Benjamin],
Ilic, S.[Slobodan],
RIGA: Rotation-Invariant and Globally-Aware Descriptors for Point
Cloud Registration,
PAMI(46), No. 5, May 2024, pp. 3796-3812.
IEEE DOI
2404
Point cloud compression, Geometry, Task analysis,
Benchmark testing, Shape, Pattern analysis, coarse-to-fine correspondences
BibRef
Lyu, M.J.[Meng-Jin],
Yang, J.[Jie],
Qi, Z.Q.[Zhi-Quan],
Xu, R.J.[Rui-Jie],
Liu, J.B.[Jia-Bin],
Rigid pairwise 3D point cloud registration: A survey,
PR(151), 2024, pp. 110408.
Elsevier DOI
2404
3D point cloud, Registration, Review, Deep learning
BibRef
Xu, Z.Y.[Zong-Yi],
Jiang, X.[Xinqi],
Gao, X.Y.[Xin-Yu],
Gao, R.[Rui],
Gu, C.J.[Chang-Jun],
Zhang, Q.[Qianni],
Li, W.S.[Wei-Sheng],
Gao, X.B.[Xin-Bo],
IGReg: Image-Geometry-Assisted Point Cloud Registration via Selective
Correlation Fusion,
MultMed(26), 2024, pp. 7475-7489.
IEEE DOI
2405
Point cloud compression, Feature extraction, Correlation,
Reliability, Geometry, Iterative methods, Low-geometry area,
repetitive patterns
BibRef
Wang, Y.[Yong],
Zhou, P.[Pengbo],
Geng, G.H.[Guo-Hua],
An, L.[Li],
Zhang, Q.[Qi],
Low-Overlap Point Cloud Registration With Transformer,
SPLetters(31), 2024, pp. 1469-1473.
IEEE DOI
2406
Point cloud compression, Encoding, Transformers,
Heuristic algorithms, Noise, Adaptation models, low overlap
BibRef
Yuan, M.[Munan],
Li, X.[Xiru],
Point cloud registration method for indoor depth sensor acquisition
system based on dual graph computation with irregular shape factors,
IET-IPR(18), No. 8, 2024, pp. 2161-2178.
DOI Link
2406
computer vision, image registration, learning (artificial intelligence)
BibRef
Zhao, Y.F.[Ya-Fei],
Chen, L.N.[Li-Neng],
Zhou, Q.C.[Quan-Chen],
Zuo, J.B.[Jia-Bao],
Wang, H.[Huan],
Ren, M.W.[Ming-Wu],
A Registration Method of Overlap Aware Point Clouds Based on
Transformer-to-Transformer Regression,
RS(16), No. 11, 2024, pp. 1898.
DOI Link
2406
BibRef
Zhao, H.X.[Hai-Xia],
Sun, J.Q.[Jia-Qi],
Dong, B.[Bin],
DAMF-Net: Unsupervised Domain-Adaptive Multimodal Feature Fusion
Method for Partial Point Cloud Registration,
RS(16), No. 11, 2024, pp. 1993.
DOI Link
2406
BibRef
Jia, S.[Shoujun],
Liu, C.[Chun],
Wu, H.[Hangbin],
Huan, W.H.[Wei-Hua],
Wang, S.[Shufan],
Incremental registration towards large-scale heterogeneous point
clouds by hierarchical graph matching,
PandRS(213), 2024, pp. 87-106.
Elsevier DOI
2406
Point cloud, Incremental registration, Graph matching,
Large-scale scene, Geometric heterogeneity
BibRef
Ma, T.J.[Tian-Jiao],
Han, G.L.[Guang-Liang],
Chu, Y.Z.[Yong-Zhi],
Ren, H.[Hong],
Sparse-to-Dense Point Cloud Registration Based on Rotation-Invariant
Features,
RS(16), No. 13, 2024, pp. 2485.
DOI Link
2407
BibRef
Yuan, M.Z.[Ming-Zhi],
Fu, K.[Kexue],
Li, Z.H.[Zhi-Hao],
Meng, Y.C.[Yu-Cong],
Shen, A.[Ao],
Wang, M.[Manning],
Robust Point Cloud Registration via Random Network Co-Ensemble,
CirSysVideo(34), No. 7, July 2024, pp. 5742-5752.
IEEE DOI Code:
WWW Link.
2407
Feature extraction, Point cloud compression, Training,
Ensemble learning, Estimation, Kernel, Learning systems,
random network
BibRef
Jiang, Y.[Yinuo],
Zhou, B.T.[Bei-Tong],
Liu, X.Y.[Xiao-Yu],
Li, Q.Y.[Qing-Yi],
Cheng, C.[Cheng],
GTINet: Global Topology-Aware Interactions for Unsupervised Point
Cloud Registration,
CirSysVideo(34), No. 7, July 2024, pp. 6363-6375.
IEEE DOI
2407
Point cloud compression, Feature extraction,
Circuits and systems, Context modeling, Training, contextual interactions
BibRef
Zhang, S.K.[Shi-Kun],
Yang, J.Q.[Jia-Qi],
Qi, Z.S.[Zhao-Shuai],
Zhang, Y.N.[Yan-Ning],
Toward Meta-Shape-Based Multi-View 3D Point Cloud Registration:
An Evaluation,
CirSysVideo(34), No. 7, July 2024, pp. 5361-5375.
IEEE DOI
2407
Point cloud compression, Shape, Optimization,
Three-dimensional displays, Quaternions, Matrix decomposition,
performance evaluation
BibRef
Xiang, S.[Siyi],
Guo, S.Y.[Shi-Yi],
Wei, H.[Hao],
Liu, B.X.[Bing-Xi],
Zhang, D.[Dabo],
An Efficient Outlier Rejection Algorithm for Point Cloud Registration,
SPLetters(31), 2024, pp. 1775-1779.
IEEE DOI
2408
Point cloud compression, Feature extraction, Accuracy,
Signal processing algorithms, Noise, Noise reduction, spatial consistency
BibRef
Cao, F.L.[Fei-Long],
Wang, L.P.[Ling-Peng],
Ye, H.L.[Hai-Liang],
SharpGConv: A Novel Graph Method With Plug-and-Play Sharpening
Convolution for Point Cloud Registration,
CirSysVideo(34), No. 8, August 2024, pp. 7095-7105.
IEEE DOI
2408
Point cloud compression, Feature extraction, Convolution,
Transformers, Data mining, Circuits and systems, Deep learning,
feature matching
BibRef
Zhou, K.Y.[Ke-Yang],
Bhatnagar, B.L.[Bharat Lal],
Schiele, B.[Bernt],
Pons-Moll, G.[Gerard],
Adjoint Rigid Transform Network:
Task-conditioned Alignment of 3D Shapes,
3DV22(1-11)
IEEE DOI
2408
Point cloud compression, Interpolation, Shape,
Subspace constraints, Semantics, Neural networks
BibRef
Efroni, O.[Omri],
Ginzburg, D.[Dvir],
Raviv, D.[Dan],
Spectral Teacher for a Spatial Student:
Spectrum-Aware Real-Time Dense Shape Correspondence,
3DV22(1-10)
IEEE DOI
2408
Training, Codes, Shape, Databases, Real-time systems,
Stability analysis, 3D Point Clouds, Non Rigid Shapes, Functional Space
BibRef
Fischer, K.[Kai],
Simon, M.[Martin],
Milz, S.[Stefan],
Mäder, P.[Patrick],
MagneticPillars: Efficient Point Cloud Registration through
Hierarchized Birds-Eye-View Cell Correspondence Refinement,
WACV24(7371-7380)
IEEE DOI
2404
Point cloud compression, Runtime, Laser radar, Magnetic separation,
Pose estimation, Optimization methods, Vectors, Applications, Robotics
BibRef
Burgdorfer, N.[Nathaniel],
Mordohai, P.[Philippos],
V-FUSE: Volumetric Depth Map Fusion with Long-Range Constraints,
ICCV23(3426-3435)
IEEE DOI Code:
WWW Link.
2401
BibRef
Liu, Q.[Quan],
Zhu, H.Z.[Hong-Zi],
Zhou, Y.S.[Yun-Song],
Li, H.Y.[Hong-Yang],
Chang, S.[Shan],
Guo, M.[Minyi],
Density-invariant Features for Distant Point Cloud Registration,
ICCV23(18169-18179)
IEEE DOI Code:
WWW Link.
2401
BibRef
Xing, X.Y.[Xiao-Yan],
Groh, K.[Konrad],
Karaoglu, S.[Sezer],
Gevers, T.[Theo],
Intrinsic Appearance Decomposition Using Point Cloud Representation,
CVMeta23(4234-4238)
IEEE DOI
2401
BibRef
Chen, G.Y.[Guang-Yan],
Wang, M.L.[Mei-Ling],
Yuan, L.[Li],
Yang, Y.[Yi],
Yue, Y.F.[Yu-Feng],
Rethinking Point Cloud Registration as Masking and Reconstruction,
ICCV23(17671-17681)
IEEE DOI Code:
WWW Link.
2401
BibRef
Liu, J.M.[Jiu-Ming],
Wang, G.M.[Guang-Ming],
Liu, Z.[Zhe],
Jiang, C.K.[Chao-Kang],
Pollefeys, M.[Marc],
Wang, H.S.[He-Sheng],
RegFormer: An Efficient Projection-Aware Transformer Network for
Large-Scale Point Cloud Registration,
ICCV23(8417-8426)
IEEE DOI Code:
WWW Link.
2401
BibRef
Chen, S.[Suyi],
Xu, H.[Hao],
Li, R.[Ru],
Liu, G.H.[Guang-Hui],
Fu, C.W.[Chi-Wing],
Liu, S.C.[Shuai-Cheng],
SIRA-PCR: Sim-to-Real Adaptation for 3D Point Cloud Registration,
ICCV23(14348-14359)
IEEE DOI Code:
WWW Link.
2401
BibRef
Hatem, A.[Ahmed],
Qian, Y.M.[Yi-Ming],
Wang, Y.[Yang],
Point-TTA: Test-Time Adaptation for Point Cloud Registration Using
Multitask Meta-Auxiliary Learning,
ICCV23(16448-16458)
IEEE DOI
2401
BibRef
Dang, Z.[Zheng],
Salzmann, M.[Mathieu],
AutoSynth: Learning to Generate 3D Training Data for Object Point
Cloud Registration,
ICCV23(8975-8985)
IEEE DOI
2401
BibRef
Huang, T.X.[Tian-Xin],
Ding, Z.G.[Zhong-Gan],
Zhang, J.N.[Jiang-Ning],
Tai, Y.[Ying],
Zhang, Z.Y.[Zhen-Yu],
Chen, M.[Mingang],
Wang, C.J.[Cheng-Jie],
Liu, Y.[Yong],
Learning to Measure the Point Cloud Reconstruction Loss in a
Representation Space,
CVPR23(12208-12217)
IEEE DOI
2309
BibRef
Widdowson, D.[Daniel],
Kurlin, V.[Vitaliy],
Recognizing Rigid Patterns of Unlabeled Point Clouds by Complete and
Continuous Isometry Invariants with no False Negatives and no False
Positives,
CVPR23(1275-1284)
IEEE DOI
2309
BibRef
Mei, G.F.[Guo-Feng],
Tang, H.[Hao],
Huang, X.S.[Xiao-Shui],
Wang, W.J.[Wei-Jie],
Liu, J.[Juan],
Zhang, J.[Jian],
Van Gool, L.J.[Luc J.],
Wu, Q.[Qiang],
Unsupervised Deep Probabilistic Approach for Partial Point Cloud
Registration,
CVPR23(13611-13620)
IEEE DOI
2309
BibRef
Zhang, X.[Xiyu],
Yang, J.Q.[Jia-Qi],
Zhang, S.K.[Shi-Kun],
Zhang, Y.N.[Yan-Ning],
3D Registration with Maximal Cliques,
CVPR23(17745-17754)
IEEE DOI
2309
BibRef
Jiang, H.[Haobo],
Dang, Z.[Zheng],
Wei, Z.[Zhen],
Xie, J.[Jin],
Yang, J.[Jian],
Salzmann, M.[Mathieu],
Robust Outlier Rejection for 3D Registration with Variational Bayes,
CVPR23(1148-1157)
IEEE DOI
2309
BibRef
Jiang, P.[Puhua],
Sun, M.Z.[Ming-Ze],
Huang, R.[Ruqi],
Neural Intrinsic Embedding for Non-Rigid Point Cloud Matching,
CVPR23(21835-21845)
IEEE DOI
2309
BibRef
Ao, S.[Sheng],
Hu, Q.Y.[Qing-Yong],
Wang, H.[Hanyun],
Xu, K.[Kai],
Guo, Y.L.[Yu-Lan],
BUFFER: Balancing Accuracy, Efficiency, and Generalizability in Point
Cloud Registration,
CVPR23(1255-1264)
IEEE DOI
2309
BibRef
Wang, H.P.[Hai-Ping],
Liu, Y.[Yuan],
Dong, Z.[Zhen],
Guo, Y.L.[Yu-Lan],
Liu, Y.S.[Yu-Shen],
Wang, W.P.[Wen-Ping],
Yang, B.S.[Bi-Sheng],
Robust Multiview Point Cloud Registration with Reliable Pose Graph
Initialization and History Reweighting,
CVPR23(9506-9515)
IEEE DOI
2309
BibRef
Yu, J.[Junle],
Ren, L.[Luwei],
Zhou, W.H.[Wen-Hui],
Zhang, Y.[Yu],
Lin, L.[Lili],
Dai, G.J.[Guo-Jun],
PEAL: Prior-embedded Explicit Attention Learning for Low-overlap
Point Cloud Registration,
CVPR23(17702-17711)
IEEE DOI
2309
BibRef
Yu, H.[Hao],
Qin, Z.[Zheng],
Hou, J.[Ji],
Saleh, M.[Mahdi],
Li, D.S.[Dong-Sheng],
Busam, B.[Benjamin],
Ilic, S.[Slobodan],
Rotation-Invariant Transformer for Point Cloud Matching,
CVPR23(5384-5393)
IEEE DOI
2309
BibRef
Qin, Z.[Zheng],
Yu, H.[Hao],
Wang, C.J.[Chang-Jian],
Peng, Y.X.[Yu-Xing],
Xu, K.[Kai],
Deep Graph-based Spatial Consistency for Robust Non-rigid Point Cloud
Registration,
CVPR23(5394-5403)
IEEE DOI
2309
BibRef
Deng, J.C.[Jia-Cheng],
Wang, C.X.[Chu-Xin],
Lu, J.H.[Jia-Hao],
He, J.F.[Jian-Feng],
Zhang, T.Z.[Tian-Zhu],
Yu, J.[Jiyang],
Zhang, Z.[Zhe],
SE-ORNet: Self-Ensembling Orientation-Aware Network for Unsupervised
Point Cloud Shape Correspondence,
CVPR23(5364-5373)
IEEE DOI
2309
BibRef
Qiao, D.H.[Dong-Hao],
Zulkernine, F.[Farhana],
Adaptive Feature Fusion for Cooperative Perception using LiDAR Point
Clouds,
WACV23(1186-1195)
IEEE DOI
2302
Point cloud compression, Adaptation models, Laser radar,
Adaptive systems, Vehicle detection, Neural networks, Urban areas, Robotics
BibRef
Mei, G.F.[Guo-Feng],
Poiesi, F.[Fabio],
Saltori, C.[Cristiano],
Zhang, J.[Jian],
Ricci, E.[Elisa],
Sebe, N.[Nicu],
Overlap-guided Gaussian Mixture Models for Point Cloud Registration,
WACV23(4500-4509)
IEEE DOI
2302
Point cloud compression, Neural networks, Probabilistic logic,
Transformers, Minimization, Algorithms: 3D computer vision
BibRef
Flood, G.[Gabrielle],
Tegler, E.[Erik],
Gillsjö, D.[David],
Heyden, A.[Anders],
Ĺström, K.[Kalle],
Minimal Solvers for Point Cloud Matching with Statistical
Deformations,
ICPR22(4196-4203)
IEEE DOI
2212
Point cloud compression, Simultaneous localization and mapping, Shape,
Merging, Task analysis
BibRef
Liu, X.Y.[Xing-Yu],
Wang, G.[Gu],
Li, Y.[Yi],
Ji, X.Y.[Xiang-Yang],
CATRE: Iterative Point Clouds Alignment for Category-Level Object Pose
Refinement,
ECCV22(II:499-516).
Springer DOI
2211
BibRef
Ginzburg, D.[Dvir],
Raviv, D.[Dan],
Deep Weighted Consensus Dense Correspondence Confidence Maps for 3d
Shape Registration,
ICIP22(71-75)
IEEE DOI
2211
Point cloud compression, Shape, Pipelines, Iterative methods,
Task analysis, Rigid alignment, Geometric deep learning, Robust optimization
BibRef
Mei, G.F.[Guo-Feng],
Huang, X.S.[Xiao-Shui],
Zhang, J.[Jian],
Wu, Q.[Qiang],
Partial Point Cloud Registration Via Soft Segmentation,
ICIP22(681-685)
IEEE DOI
2211
Point cloud compression, Degradation, Image segmentation,
Partitioning algorithms, Registration, correspondences-free, partial overlapped
BibRef
Bökman, G.[Georg],
Kahla, F.[Fredrik],
Flinth, A.[Axel],
ZZ-Net: A Universal Rotation Equivariant Architecture for 2D Point
Clouds,
CVPR22(10966-10975)
IEEE DOI
2210
Point cloud compression, Deep learning, Neural networks,
Memory management, Estimation, Machine learning
BibRef
El Banani, M.[Mohamed],
Johnson, J.[Justin],
Bootstrap Your Own Correspondences,
ICCV21(6413-6422)
IEEE DOI
2203
Point cloud compression, Representation learning, Visualization,
Scalability, Pipelines, Supervised learning, Stereo,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Choe, J.[Jaesung],
Im, S.H.[Sung-Hoon],
Rameau, F.[Francois],
Kang, M.J.[Min-Jun],
Kweon, I.S.[In So],
VolumeFusion: Deep Depth Fusion for 3D Scene Reconstruction,
ICCV21(16066-16075)
IEEE DOI
2203
Deep learning, Surface reconstruction, Convolution,
Neural networks, Estimation, Feature extraction,
Vision applications and systems
BibRef
Lee, D.[Donghoon],
Hamsici, O.C.[Onur C.],
Feng, S.[Steven],
Sharma, P.[Prachee],
Gernoth, T.[Thorsten],
DeepPRO: Deep Partial Point Cloud Registration of Objects,
ICCV21(5663-5672)
IEEE DOI
2203
Point cloud compression, Solid modeling, Shape, Databases,
Transforms, Real-time systems, Stereo,
Vision applications and systems
BibRef
Agostinho, S.[Sérgio],
Oep, A.[Aljoa],
del Bue, A.[Alessio],
Leal-Taixé, L.[Laura],
(Just) A Spoonful of Refinements Helps the Registration Error Go Down,
ICCV21(6088-6097)
IEEE DOI
2203
Training, Point cloud compression, Linear systems, Estimation,
Mathematical models, Stereo, 3D from multiview and other sensors,
Optimization and learning methods
BibRef
Deng, Z.[Zhi],
Yao, Y.X.[Yu-Xin],
Deng, B.[Bailin],
Zhang, J.[Juyong],
A Robust Loss for Point Cloud Registration,
ICCV21(6118-6127)
IEEE DOI
2203
Measurement, Point cloud compression, Learning systems, Shape,
Optimization, Stereo, 3D from multiview and other sensors,
Motion and tracking
BibRef
Liu, W.X.[Wei-Xiao],
Wu, H.T.[Hong-Tao],
Chirikjian, G.S.[Gregory S.],
LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point
Cloud Registration,
ICCV21(15273-15282)
IEEE DOI
2203
Point cloud compression, Geometry, Maximum likelihood estimation,
Laser radar, Graphics processing units, Optimization methods,
Vision applications and systems
BibRef
Min, T.[Taewon],
Song, C.[Chonghyuk],
Kim, E.S.[Eun-Seok],
Shim, I.[Inwook],
Distinctiveness oriented Positional Equilibrium for Point Cloud
Registration,
ICCV21(5470-5478)
IEEE DOI
2203
Point cloud compression, Refining, Benchmark testing,
Graph neural networks, Feeds, Task analysis, Stereo,
Recognition and classification
BibRef
Xu, H.[Hao],
Liu, S.C.[Shuai-Cheng],
Wang, G.[Guangfu],
Liu, G.H.[Guang-Hui],
Zeng, B.[Bing],
OMNet: Learning Overlapping Mask for Partial-to-Partial Point Cloud
Registration,
ICCV21(3112-3121)
IEEE DOI
2203
Point cloud compression, Deep learning, Solid modeling, Shape,
Computational modeling,
3D from multiview and other sensors
BibRef
Horache, S.[Sofiane],
Deschaud, J.E.[Jean-Emmanuel],
Goulette, F.[François],
3D Point Cloud Registration with Multi-Scale Architecture and
Unsupervised Transfer Learning,
3DV21(1351-1361)
IEEE DOI
2201
Point cloud compression, Deep learning, Codes, Convolution,
Transfer learning, Supervised learning, Deep Learning,
Registration
BibRef
Lang, I.[Itai],
Ginzburg, D.[Dvir],
Avidan, S.[Shai],
Raviv, D.[Dan],
DPC: Unsupervised Deep Point Correspondence via Cross and Self
Construction,
3DV21(1442-1451)
IEEE DOI
2201
Point cloud compression, Codes, Shape, Animals,
Computational modeling, Training data, 3D Point Clouds, Real Time
BibRef
Saponaro, M.,
Capolupo, A.,
Caporusso, G.,
Tarantino, E.,
Influence of Co-alignment Procedures on the Co-registration Accuracy Of
Multi-Epoch SFM Points Clouds,
ISPRS21(B2-2021: 231-238).
DOI Link
2201
BibRef
Zhan, K.,
Fritsch, D.,
Wagner, J.F.,
Photogrammetry and Computed Tomography Point Cloud Registration Using
Virtual Control Points,
ISPRS21(B2-2021: 265-270).
DOI Link
2201
BibRef
Partovi, T.,
Dähne, M.,
Maboudi, M.,
Krueger, D.,
Gerke, M.,
Automatic Integration of Laser Scanning and Photogrammetric Point
Clouds: From Acquisition to Co-registration,
ISPRS21(B1-2021: 85-92).
DOI Link
2201
BibRef
Tun, S.W.[Su Wai],
Komuro, T.[Takashi],
Nagahara, H.[Hajime],
3D Registration of Deformable Objects Using a Time-of-Flight Camera,
ISVC21(I:455-465).
Springer DOI
2112
BibRef
Efraim, A.[Amit],
Francos, J.M.[Joseph M.],
Dual Transformation and Manifold Distances Voting for Outlier
Rejection in Point Cloud Registration,
TAG-CV21(4187-4195)
IEEE DOI
2112
Manifolds, Conferences
BibRef
Ren, Z.Z.[Zhong-Zheng],
Misra, I.[Ishan],
Schwing, A.G.[Alexander G.],
Girdhar, R.[Rohit],
3D Spatial Recognition without Spatially Labeled 3D,
CVPR21(13199-13208)
IEEE DOI
2111
Training, Couplings, Semantics, Object detection, Pattern recognition
BibRef
Deng, Y.[Yu],
Yang, J.L.[Jiao-Long],
Tong, X.[Xin],
Deformed Implicit Field: Modeling 3D Shapes with Learned Dense
Correspondence,
CVPR21(10281-10291)
IEEE DOI
2111
Deformable models, Solid modeling,
Uncertainty, Shape, Shape measurement, Neural networks
BibRef
Zeng, Y.M.[Yi-Ming],
Qian, Y.[Yue],
Zhu, Z.Y.[Zhi-Yu],
Hou, J.H.[Jun-Hui],
Yuan, H.[Hui],
He, Y.[Ying],
CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence
for 3D Point Clouds,
CVPR21(6048-6057)
IEEE DOI
2111
Symmetric matrices, Sequences, Shape,
Supervised learning, Redundancy, Transforms
BibRef
Thalhammer, S.[Stefan],
Patten, T.[Timothy],
Vincze, M.[Markus],
COPE: End-to-end trainable Constant Runtime Object Pose Estimation,
WACV23(2859-2869)
IEEE DOI
2302
Runtime, Pose estimation, Prediction algorithms, Real-time systems,
Task analysis, Standards, Algorithms: 3D computer vision, visual reasoning
BibRef
Bauer, D.[Dominik],
Patten, T.[Timothy],
Vincze, M.[Markus],
ReAgent: Point Cloud Registration using Imitation and Reinforcement
Learning,
CVPR21(14581-14589)
IEEE DOI
2111
Solid modeling,
Pose estimation, Reinforcement learning, Real-time systems, Trajectory
BibRef
Ao, S.[Sheng],
Hu, Q.Y.[Qing-Yong],
Yang, B.[Bo],
Markham, A.[Andrew],
Guo, Y.L.[Yu-Lan],
SpinNet: Learning a General Surface Descriptor for 3D Point Cloud
Registration,
CVPR21(11748-11757)
IEEE DOI
2111
Convolutional codes,
Detectors, Feature extraction, Transformers
BibRef
El Banani, M.[Mohamed],
Gao, L.[Luya],
Johnson, J.[Justin],
UnsupervisedR&R:
Unsupervised Point Cloud Registration via Differentiable Rendering,
CVPR21(7125-7135)
IEEE DOI
2111
Training, Simultaneous localization and mapping,
Robot vision systems, Feature extraction,
Sensors
BibRef
Huang, S.Y.[Sheng-Yu],
Gojcic, Z.[Zan],
Usvyatsov, M.[Mikhail],
Wieser, A.[Andreas],
Schindler, K.[Konrad],
PREDATOR: Registration of 3D Point Clouds with Low Overlap,
CVPR21(4265-4274)
IEEE DOI
2111
Convolutional codes, Solid modeling, Image matching, Encoding
BibRef
Bai, X.Y.[Xu-Yang],
Luo, Z.X.[Zi-Xin],
Zhou, L.[Lei],
Chen, H.K.[Hong-Kai],
Li, L.[Lei],
Hu, Z.[Zeyu],
Fu, H.B.[Hong-Bo],
Tai, C.L.[Chiew-Lan],
PointDSC: Robust Point Cloud Registration using Deep Spatial
Consistency,
CVPR21(15854-15864)
IEEE DOI
2111
Deep learning, Costs, Codes, Spatial coherence, Robustness
BibRef
Zhao, Y.X.[Ya-Xin],
Jiao, J.[Jichao],
Li, N.[Ning],
Deng, Z.L.[Zhong-Liang],
MANet: Multimodal Attention Network based Point-View Fusion for 3D
Shape Recognition,
ICPR21(134-141)
IEEE DOI
2105
Deep learning, Image recognition,
Shape, Fuses, Neural networks, Big Data, point-cloud, multi-view,
multimodel attention network
BibRef
Pan, X.[Xiang],
Ji, X.Y.[Xiao-Yi],
Cheng, S.[Sisi],
3D Point Cloud Registration Based on Cascaded Mutual Information
Attention Network,
ICPR21(10644-10649)
IEEE DOI
2105
Correlation, Stacking,
Pattern recognition, Reliability, Mutual information, Convergence
BibRef
Zodage, T.,
Chakwate, R.,
Sarode, V.,
Srivatsan, R.A.,
Choset, H.,
Correspondence Matrices are Underrated,
3DV20(603-612)
IEEE DOI
2102
Registers, Training, Task analysis,
Perturbation methods, Robustness, Matrix converters, registration,
partial point cloud
BibRef
Saleh, M.,
Dehghani, S.,
Busam, B.,
Navab, N.,
Graphite: Graph-Induced Feature Extraction for Point Cloud
Registration,
3DV20(241-251)
IEEE DOI
2102
Feature extraction, Graphite,
Pipelines, Measurement, Data mining, Graph Neural Networks
BibRef
Kadam, P.,
Zhang, M.,
Liu, S.,
Kuo, C.C.J.,
Unsupervised Point Cloud Registration via Salient Points Analysis
(SPA),
VCIP20(5-8)
IEEE DOI
2102
Deep learning, Training,
Visual communication, Image processing, Registers,
unsupervised machine learning
BibRef
Kuo, C.C.J.[C.C. Jay],
Interpretable and Effective Learning for 3D Point Cloud Registration,
Classification and Segmentation,
VCIP20(1-2)
IEEE DOI
2102
Task analysis, Visualization, Training,
Three-dimensional printing, Multimedia computing
BibRef
Krahn, M.[Maximilian],
Bernard, F.[Florian],
Golyanik, V.[Vladislav],
Convex Joint Graph Matching and Clustering via Semidefinite
Relaxations,
3DV21(1216-1226)
IEEE DOI
2201
Couplings, Codes, Training data, Hilbert space, Cognition, Compounds,
joint graph matching and clustering, semidefinite relaxation,
rigid point set registration
BibRef
Golyanik, V.[Vladislav],
Shimada, S.,
Theobalt, C.,
Fast Simultaneous Gravitational Alignment of Multiple Point Sets,
3DV20(91-100)
IEEE DOI
2102
Acceleration, Complexity theory,
Transforms, Solid modeling, Runtime, Probabilistic logic
BibRef
Zhu, N.,
Yang, B.,
Jia, Y.,
Registration of MMS Lidar Points and Panoramic Image Sequence Using
Relative Orientation Model,
ISPRS20(B1:291-298).
DOI Link
2012
BibRef
Ai, M.,
Liu, C.,
Shen, H.,
Cheng, F.,
Indoor Scene Registration Based on Key Points Sampling and Hierarchical
Feature Learning,
ISPRS20(B2:177-182).
DOI Link
2012
BibRef
Li, J.H.[Jia-Hao],
Zhang, C.H.[Chang-Hao],
Xu, Z.[Ziyao],
Zhou, H.N.[Hang-Ning],
Zhang, C.[Chi],
Iterative Distance-aware Similarity Matrix Convolution with
Mutual-supervised Point Elimination for Efficient Point Cloud
Registration,
ECCV20(XXIV:378-394).
Springer DOI
2012
BibRef
Urbach, D.[Dahlia],
Ben-Shabat, Y.Z.[Yi-Zhak],
Lindenbaum, M.[Michael],
DPDist: Comparing Point Clouds Using Deep Point Cloud Distance,
ECCV20(XI:545-560).
Springer DOI
2011
BibRef
Yang, L.[Lei],
Liu, W.X.[Wen-Xi],
Cui, Z.M.[Zhi-Ming],
Chen, N.L.[Neng-Lun],
Wang, W.P.[Wen-Ping],
Mapping in a Cycle:
Sinkhorn Regularized Unsupervised Learning for Point Cloud Shapes,
ECCV20(X:455-472).
Springer DOI
2011
BibRef
Yang, Z.T.[Ze-Tong],
Sun, Y.[Yanan],
Liu, S.[Shu],
Qi, X.J.[Xiao-Juan],
Jia, J.Y.[Jia-Ya],
CN: Channel Normalization for Point Cloud Recognition,
ECCV20(X:600-616).
Springer DOI
2011
BibRef
Sanghi, A.[Aditya],
Info3D: Representation Learning on 3D Objects Using Mutual Information
Maximization and Contrastive Learning,
ECCV20(XXIX: 626-642).
Springer DOI
2010
BibRef
Mei, G.F.[Guo-Feng],
Point Cloud Registration with Self-supervised Feature Learning and
Beam Search,
DICTA21(01-08)
IEEE DOI
2201
Point cloud compression, Representation learning, Training, Shape,
Digital images, Neural networks, point cloud registration,
beam search
BibRef
Huang, X.S.[Xiao-Shui],
Mei, G.F.[Guo-Feng],
Zhang, J.[Jian],
Feature-Metric Registration: A Fast Semi-Supervised Approach for
Robust Point Cloud Registration Without Correspondences,
CVPR20(11363-11371)
IEEE DOI
2008
Feature extraction, Estimation,
Task analysis, Robustness, Jacobian matrices, Neural networks
BibRef
Gojcic, Z.,
Zhou, C.,
Wegner, J.D.,
Guibas, L.J.[Leonidas J.],
Birdal, T.[Tolga],
Learning Multiview 3D Point Cloud Registration,
CVPR20(1756-1766)
IEEE DOI
2008
Synchronization,
Closed-form solutions, Pipelines, Task analysis, Robustness, Estimation
BibRef
Chen, J.,
Zhou, F.,
Liu, B.,
Bai, X.,
Zhang, Y.,
Zhao, T.,
Li, N.,
Zhou, Y.,
3D Rigid Registration of Patient Body Surface Point Clouds by Integer
Linear Programming,
IVCNZ19(1-6)
IEEE DOI
2004
computerised tomography, feature extraction, graph theory,
image matching, image registration, integer programming,
feature correspondence
BibRef
Zhao, J.,
Qi, X.,
Wen, C.,
Lei, N.,
Gu, X.,
Automatic and Robust Skull Registration Based on Discrete
Uniformization,
ICCV19(431-440)
IEEE DOI
2004
combinatorial mathematics, image reconstruction,
image registration, medical image processing, mesh generation, Face
BibRef
Gojcic, Z.[Zan],
Zhou, C.F.[Cai-Fa],
Wegner, J.D.[Jan D.],
Wieser, A.[Andreas],
The Perfect Match: 3D Point Cloud Matching With Smoothed Densities,
CVPR19(5540-5549).
IEEE DOI
2002
BibRef
Donne, S.[Simon],
Geiger, A.[Andreas],
Learning Non-Volumetric Depth Fusion Using Successive Reprojections,
CVPR19(7626-7635).
IEEE DOI
2002
BibRef
Li, X.Q.[Xue-Qian],
Pontes, J.K.[Jhony Kaesemodel],
Lucey, S.[Simon],
PointNetLK Revisited,
CVPR21(12758-12767)
IEEE DOI
2111
Training, Jacobian matrices, Solid modeling,
Robustness, Sensors, Pattern recognition
BibRef
Aoki, Y.[Yasuhiro],
Goforth, H.[Hunter],
Srivatsan, R.A.[Rangaprasad Arun],
Lucey, S.[Simon],
PointNetLK: Robust and Efficient Point Cloud Registration Using PointNet,
CVPR19(7156-7165).
IEEE DOI
2002
BibRef
Le, H.M.[Huu M.],
Do, T.T.[Thanh-Toan],
Hoang, T.[Tuan],
Cheung, N.M.[Ngai-Man],
SDRSAC: Semidefinite-Based Randomized Approach for Robust Point Cloud
Registration Without Correspondences,
CVPR19(124-133).
IEEE DOI
2002
BibRef
Deng, H.[Haowen],
Birdal, T.[Tolga],
Ilic, S.[Slobodan],
3D Local Features for Direct Pairwise Registration,
CVPR19(3239-3248).
IEEE DOI
2002
BibRef
Moradi, L.,
Saadatseresht, M.,
Simultaneous Registration and Integration of Two Sequential Velodyne
Point Clouds Using Voxel-based Least Square Adjustment,
SMPR19(759-763).
DOI Link
1912
BibRef
Huang, R.,
Ye, Z.,
Boerner, R.,
Yao, W.,
Xu, Y.,
Stilla, U.,
Fast Pairwise Coarse Registration Between Point Clouds of Construction
Sites Using 2d Projection Based Phase Correlation,
Laser19(1015-1020).
DOI Link
1912
BibRef
Groß, J.[Johannes],
Oep, A.[Aljoa],
Leibe, B.[Bastian],
AlignNet-3D:
Fast Point Cloud Registration of Partially Observed Objects,
3DV19(623-632)
IEEE DOI
1911
Laser radar, Target tracking,
State estimation, Task analysis, Motion segmentation, Sensors, Robotics
BibRef
Wong, X.I.,
Singla, P.,
Lee, T.,
Majji, M.,
Optimal Linear Attitude Estimator for Alignment of Point Clouds,
Odometry18(1577-15778)
IEEE DOI
1812
Symmetric matrices,
Transmission line matrix methods, Matrix decomposition,
Robot sensing systems
BibRef
Yuan, W.,
Khot, T.,
Held, D.,
Mertz, C.,
Hebert, M.,
PCN: Point Completion Network,
3DV18(728-737)
IEEE DOI
1812
learning (artificial intelligence),
object detection, optical radar, radar computing,
point cloud registration
BibRef
Eckart, B.,
Kim, K.,
Jan, K.,
EOE: Expected Overlap Estimation over Unstructured Point Cloud Data,
3DV18(747-755)
IEEE DOI
1812
expectation-maximisation algorithm, Gaussian processes,
image registration, iterative methods,
overlap estimation
BibRef
Su, H.[Hang],
Jampani, V.[Varun],
Sun, D.Q.[De-Qing],
Maji, S.[Subhransu],
Kalogerakis, E.[Evangelos],
Yang, M.H.[Ming-Hsuan],
Kautz, J.[Jan],
SPLATNet: Sparse Lattice Networks for Point Cloud Processing,
CVPR18(2530-2539)
IEEE DOI
1812
Award, CVPR, HM. Lattices, Convolution,
Shape, Standards
BibRef
Pan, Y.,
Yang, B.,
Liang, F.,
Dong, Z.,
Iterative Global Similarity Points: A Robust Coarse-to-Fine
Integration Solution for Pairwise 3D Point Cloud Registration,
3DV18(180-189)
IEEE DOI
1812
feature extraction, geometry, image matching, image registration,
iterative methods, iterative global similarity points,
energy optimization
BibRef
Xu, D.,
Anguelov, D.,
Jain, A.,
PointFusion: Deep Sensor Fusion for 3D Bounding Box Estimation,
CVPR18(244-253)
IEEE DOI
1812
Solid modeling,
Robot sensing systems, Laser radar,
Object detection
BibRef
Sekkati, H.,
Boisvert, J.,
Godin, G.,
Borgeat, L.,
Real-Time Large-Scale Fusion of High Resolution 3D Scans with Details
Preservation,
CRV18(63-70)
IEEE DOI
1812
Solid modeling, Cameras,
Graphics processing units, Real-time systems, Shape,
GPU
BibRef
Liu, Y.L.[Yin-Long],
Wang, C.[Chen],
Song, Z.J.[Zhi-Jian],
Wang, M.[Manning],
Efficient Global Point Cloud Registration by Matching Rotation
Invariant Features Through Translation Search,
ECCV18(XII: 460-474).
Springer DOI
1810
BibRef
Yew, Z.J.[Zi Jian],
Lee, G.H.[Gim Hee],
3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud
Registration,
ECCV18(XV: 630-646).
Springer DOI
1810
BibRef
Shen, T.W.[Tian-Wei],
Luo, Z.X.[Zi-Xin],
Zhou, L.[Lei],
Zhang, R.[Runze],
Zhu, S.[Siyu],
Fang, T.[Tian],
Quan, L.[Long],
Matchable Image Retrieval by Learning from Surface Reconstruction,
ACCV18(I:415-431).
Springer DOI
1906
Code and data:
WWW Link. Retrieve images with overlaps for 3D reconstructions.
BibRef
Seib, V.,
Paulus, D.,
A Low-Dimensional Feature Transform for Keypoint Matching and
Classification of Point Clouds without Normal Computation,
ICIP18(2949-2953)
IEEE DOI
1809
Histograms, Transforms, Shape,
Computational modeling, Indexes, Pipelines, Descriptor Transform,
Shape Classification
BibRef
Peng, H.L.[Hong-Li],
Shen, Z.[Zhen],
Shang, X.Q.[Xiu-Qin],
Liu, X.W.[Xi-Wei],
Xiong, G.[Gang],
Liu, T.Z.[Tao-Zhong],
Nyberg, T.R.[Timo R.],
Foot Modeling Based on Machine Vision and Social Manufacturing Research,
PSIVTWS17(144-157).
Springer DOI
1806
BibRef
Gézero, L.,
Antunes, C.,
A Registration Method of Point Clouds Collected By Mobile Lidar Using
Solely Standard Las Files Information,
Hannover17(121-128).
DOI Link
1805
BibRef
Karkalou, E.,
Stentoumis, C.,
Karras, G.,
Semi-global Matching with Self-adjusting Penalties,
3DARCH17(353-360).
DOI Link
1805
BibRef
Che Ku Abdullah, C.K.A.F.,
Baharuddin, N.Z.S.,
Ariff, M.F.M.,
Majid, Z.,
Lau, C.L.,
Yusoff, A.R.,
Idris, K.M.,
Aspuri, A.,
Integration of Point Clouds Dataset From Different Sensors,
3DARCH17(9-15).
DOI Link
1805
BibRef
Chiem, Q.T.[Quang Tri],
Wilkinson, R.H.[Richardt H.],
Lech, M.[Margaret],
Cheng2, E.[Eva],
Investigating Keypoint Repeatability for 3D Correspondence Estimation
in Cluttered Scenes,
DICTA17(1-7)
IEEE DOI
1804
feature extraction, image matching, object detection,
object recognition, 3D correspondence estimation,
BibRef
Arvanitis, G.,
Spathis-Papadiotis, A.,
Lalos, A.S.,
Moustakas, K.,
Fakotakis, N.,
Outliers Removal and Consolidation of DYNAMIC Point Cloud,
ICIP18(3888-3892)
IEEE DOI
1809
Laplace equations, Interpolation,
Sparse matrices, Surface treatment, Surface emitting lasers,
weighted Laplacian interpolation
BibRef
Arvanitis, G.,
Lalos, A.S.,
Moustakas, K.,
Fakotakis, N.,
Weighted Regularized Laplacian Interpolation for Consolidation of
Highly-Incomplete Time Varying Point Clouds,
3DTV-CON17(1-4)
IEEE DOI
1804
image reconstruction, interpolation,
highly-incomplete time varying point clouds,
weighted Laplacian interpolation
BibRef
Zanuttigh, P.,
Minto, L.,
Deep learning for 3D shape classification from multiple depth maps,
ICIP17(3615-3619)
IEEE DOI
1803
Convolutional neural networks, Machine learning, Shape,
Solid modeling, Task analysis,
Depth Map
BibRef
Shafiq, U.,
Taj, M.,
Ali, M.,
More for less:
Insights into convolutional nets for 3D point cloud recognition,
ICIP17(1607-1611)
IEEE DOI
1803
Convolution, Shape, Solid modeling,
Training, recognition
BibRef
Klokov, R.,
Lempitsky, V.[Victor],
Escape from Cells:
Deep Kd-Networks for the Recognition of 3D Point Cloud Models,
ICCV17(863-872)
IEEE DOI
1802
learning (artificial intelligence), shape recognition,
solid modelling, trees (mathematics), 3D point cloud models,
BibRef
Avidar, D.,
Malah, D.,
Barzohar, M.,
Local-to-Global Point Cloud Registration Using a Dictionary of
Viewpoint Descriptors,
ICCV17(891-899)
IEEE DOI
1802
discrete Fourier transforms, feature extraction,
image registration, Airborne Laser Scanning, DFT domain,
Urban areas
BibRef
Briales, J.,
Gonzalez-Jimenez, J.,
Convex Global 3D Registration with Lagrangian Duality,
CVPR17(5612-5621)
IEEE DOI
1711
Optimization, Pipelines, Proposals,
Simultaneous localization and mapping,
BibRef
Golyanik, V.,
Reis, G.,
Taetz, B.,
Strieker, D.,
A framework for an accurate point cloud based registration of full 3D
human body scans,
MVA17(67-72)
DOI Link
1708
Foot, Image reconstruction, Pipelines, Semantics, Skeleton,
Topology
BibRef
Matusiak, K.,
Skulimowski, P.,
Strumillo, P.,
Improving matching performance of the keypoints in images of 3D
scenes by using depth information,
WSSIP17(1-5)
IEEE DOI
1707
Algorithm design and analysis, Detectors, Feature extraction,
Image edge detection, Object recognition,
depth map, feature matching,
keypoints detection, object, recognition
BibRef
Psarrou, A.,
Angelopoulou, A.,
Mentzelopoulos, M.,
García-Rodríguez, J.,
Performance evaluation of a statistical and a neural network model
for nonrigid shape-based registration,
IPTA16(1-6)
IEEE DOI
1703
Hebbian learning
BibRef
Casanova, A.,
Pujol-Miró, A.,
Ruiz-Hidalgo, J.,
Casas, J.R.,
Interactive registration method for 3D data fusion,
IC3D16(1-8)
IEEE DOI
1703
image registration
BibRef
Yi, Z.L.[Zi-Li],
Li, Y.[Yang],
Gong, M.L.[Ming-Lun],
An Efficient Algorithm for Feature-Based 3D Point Cloud Correspondence
Search,
ISVC16(I: 485-496).
Springer DOI
1701
BibRef
Ma, Y.,
Guo, Y.,
Zhao, J.,
Lu, M.,
Zhang, J.,
Wan, J.,
Fast and Accurate Registration of Structured Point Clouds with Small
Overlaps,
LS3D16(643-651)
IEEE DOI
1612
BibRef
Kang, Z.,
Lindenbergh, R.,
Pu, S.,
Speeding Up Coarse Point Cloud Registration By Threshold-independent
Baysac Match Selection,
ISPRS16(B5: 493-500).
DOI Link
1610
BibRef
Bueno, M.,
Martínez-Sánchez, J.,
González-Jorge, H.,
Lorenzo, H.,
Detection Of Geometric Keypoints And Its Application To Point Cloud
Coarse Registration,
ISPRS16(B3: 187-194).
DOI Link
1610
BibRef
Attia, M.,
Slama, Y.,
Kamoun, M.A.,
On Performance Evaluation of Registration Algorithms for 3D Point
Clouds,
CGiV16(45-50)
IEEE DOI
1608
computational geometry
BibRef
Al-Nuaimi, A.,
Steinbach, E.,
Lopes, W.B.,
Lopes, C.G.,
6DOF point cloud alignment using geometric algebra-based adaptive
filtering,
WACV16(1-9)
IEEE DOI
1606
Calculus
BibRef
Qiu, R.Q.[Rong-Qi],
Neumann, U.[Ulrich],
IPDC: Iterative part-based dense correspondence between point clouds,
WACV16(1-9)
IEEE DOI
1606
Colored noise
BibRef
Ahmed, M.T.[Mirza Tahir],
Mohamad, M.[Mustafa],
Marshall, J.A.[Joshua A.],
Greenspan, M.[Michael],
Registration of Noisy Point Clouds Using Virtual Interest Points,
CRV15(31-38)
IEEE DOI
1507
Feature extraction
BibRef
Lachhani, K.[Kishan],
Duan, J.F.[Ji-Fang],
Baghsiahi, H.[Hadi],
Willman, E.[Eero],
Selviah, D.R.[David R.],
Correspondence rejection by trilateration for 3D point cloud
registration,
MVA15(337-340)
IEEE DOI
1507
Estimation
BibRef
Du, J.[Jia],
Xiong, W.[Wei],
Chen, W.Y.[Wen-Yu],
Cheng, J.[Jierong],
Wang, Y.[Yue],
Gu, Y.[Ying],
Chia, S.C.[Shue-Ching],
Multi-view Point Cloud Registration Using Affine Shape Distributions,
ACCV14(II: 147-161).
Springer DOI
1504
BibRef
Lu, M.[Min],
Zhao, J.[Jian],
Guo, Y.L.[Yu-Lan],
Ou, J.P.[Jian-Ping],
Li, J.,
A 3D pointcloud registration algorithm based on fast coherent point
drift,
AIPR14(1-6)
IEEE DOI
1504
computational complexity
BibRef
Papon, J.[Jeremie],
Schoeler, M.[Markus],
Worgotter, F.[Florentin],
Spatially Stratified Correspondence Sampling for Real-Time Point
Cloud tracking,
WACV15(124-131)
IEEE DOI
1503
Accuracy
See also Voxel Cloud Connectivity Segmentation: Supervoxels for Point Clouds.
BibRef
Matsopoulos, G.K.[George K.],
Economopoulos, T.L.,
Karanasiou, I.S.,
Koutsoupidou, M.,
Ventouras, E.,
Alignment of three-dimensional point clouds using combined
descriptors,
IPTA14(1-5)
IEEE DOI
1503
computational geometry
BibRef
Transue, S.[Shane],
Choi, M.H.[Min-Hyung],
Intuitive Alignment of Point-Clouds with Painting-Based Feature
Correspondence,
ISVC14(II: 746-756).
Springer DOI
1501
BibRef
Deng, Y.[Yan],
Rangarajan, A.[Anand],
Eisenschenk, S.[Stephan],
Vemuri, B.C.[Baba C.],
A Riemannian Framework for Matching Point Clouds Represented by the
Schrodinger Distance Transform,
CVPR14(3756-3761)
IEEE DOI
1409
Point clouds matching
BibRef
Ridene, T.,
Goulette, F.,
Chendeb, S.,
Feature-Based Quality Evaluation of 3D Point Clouds:
Study of the Performance of 3D Registration Algorithms,
GeoInfo13(59-64).
DOI Link
1402
BibRef
Altuntas, C.,
Integration of Point Clouds Originated from Laser Scaner and
Photogrammetric Images for Visualization of Complex Details of
Historical Buildings,
3D-Arch15(431-435).
DOI Link
1504
BibRef
Marques, M.[Manuel],
Costeira, J.P.[Joao P.],
Guided search consensus: Large scale point cloud registration by
convex optimization,
ICIP13(156-160)
IEEE DOI
1402
Cameras
BibRef
Wang, C.P.[Chun-Po],
Wilson, K.,
Snavely, N.,
Accurate Georegistration of Point Clouds Using Geographic Data,
3DV13(33-40)
IEEE DOI
1311
Internet
BibRef
Palossi, D.[Daniele],
Tombari, F.[Federico],
Salti, S.[Samuele],
Ruggiero, M.[Martino],
di Stefano, L.[Luigi],
Benini, L.[Luca],
GPU-SHOT: Parallel Optimization for Real-Time 3D Local Description,
ECVW13(584-591)
IEEE DOI
1309
3D descriptor; 3D feature; 3D object recognition; GPU optimization; SHOT
BibRef
Weinmann, M.,
Dittrich, A.,
Hinz, S.,
Jutzi, B.,
Automatic Feature-Based Point Cloud Registration for a Moving Sensor
Platform,
Hannover13(373-378).
DOI Link
1308
BibRef
Dyshkant, N.[Natalia],
Comparison of Point Clouds Acquired by 3D Scanner,
DGCI13(47-58).
Springer DOI
1304
BibRef
Varadarajan, K.M.[Karthik Mahesh],
Vincze, M.[Markus],
Compressive Distance Classifier Correlation Filter,
ICIP13(3307-3311)
IEEE DOI
1402
BibRef
Earlier:
MRF Guided Anisotropic Depth Diffusion for Kinect Range Image
Enhancement,
CDF12(II:223-235).
Springer DOI
1304
BibRef
Tsay, J.R.,
Lee, M.S.,
Sift for Dense Point Cloud Matching and Aero Triangulation,
ISPRS12(XXXIX-B3:69-74).
DOI Link
1209
BibRef
Hesabi, S.[Somayeh],
Laurendeau, D.[Denis],
Aligning 3D Local Data of Leapfrog Locations along Elongated
Structures,
CRV16(77-84)
IEEE DOI
1612
3D registration; alignment; cylinder; elongated structures; pipeline
BibRef
Nguyen, V.T.[Van Tung],
Tran, T.T.[Trung-Thien],
Cao, V.T.[Van-Toan],
Laurendeau, D.[Denis],
3D Point Cloud Registration Based on the Vector Field Representation,
ACPR13(491-495)
IEEE DOI
1408
computer graphics
BibRef
Nguyen, V.T.[Van Tung],
Laurendeau, D.[Denis],
A Global Registration Method Based on the Vector Field Representation,
CRV11(132-139).
IEEE DOI
1105
point cloud registration
BibRef
Huhle, B.,
Schairer, T.,
Schilling, A.,
Strasser, W.,
6DoF Registration of 2D Laser Scans,
3DIMPVT11(148-155).
IEEE DOI
1109
See also Normalized Cross-Correlation using SOFT.
BibRef
Herrmann, M.[Martin],
Srinivasa, S.[Siddhartha],
Exploiting Passthrough Information for Multi-view Object
Reconstruction with Sparse and Noisy Laser Data,
CMU-RI-TR-10-07, February, 2010.
WWW Link.
1102
laser scanner. Build model of an object.
BibRef
Temerinac-Ott, M.[Maja],
Keuper, M.[Margret],
Burkhardt, H.[Hans],
Evaluation of a New Point Clouds Registration Method Based on Group
Averaging Features,
ICPR10(2452-2455).
IEEE DOI
1008
BibRef
Detchev, I.[Ivan],
Habib, A.[Ayman],
Bang, K.I.[Ki In],
Kersting, A.[Ana],
Automated multiple surface registration of irregular point clouds:
A comparative analysis of two approaches,
CGC10(39).
PDF File.
1006
BibRef
Sehgal, A.[Anuj],
Cernea, D.[Daniel],
Makaveeva, M.[Milena],
Real-Time Scale Invariant 3D Range Point Cloud Registration,
ICIAR10(I: 220-229).
Springer DOI
1006
BibRef
Agugiaro, G.,
Kolbe, T.,
Definition of a transition surface with the purpose of integration
between a laser scanner 3D model and a low resolution DTM,
3DARCH09(xx-yy).
PDF File.
0902
BibRef
Molkenstruck, S.[Sven],
Winkelbach, S.[Simon],
Wahl, F.M.[Friedrich M.],
3D Body Scanning in a Mirror Cabinet,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Earlier: A2, A1, A3:
Low-Cost Laser Range Scanner and Fast Surface Registration Approach,
DAGM06(718-728).
Springer DOI
0610
Award, GCPR.
BibRef
Mahmoudi, M.[Mona],
Sapiro, G.[Guillermo],
Three-dimensional point cloud recognition via distributions of
geometric distances,
S3D08(1-8).
IEEE DOI
0806
BibRef
Biswas, S.,
Aggarwal, G.,
Chellappa, R.,
Invariant Geometric Representation of 3D Point Clouds for Registration
and Matching,
ICIP06(1209-1212).
IEEE DOI
0610
BibRef
Makadia, A.[Ameesh],
Patterson, A.I.[Alexander I.],
Daniilidis, K.[Kostas],
Fully Automatic Registration of 3D Point Clouds,
CVPR06(I: 1297-1304).
IEEE DOI
0606
Correlation of EGI in Fourier domain.
BibRef
Jagannathan, A.,
Miller, E.L.,
Unstructured Point Cloud Matching within Graph-Theoretic and
Thermodynamic Frameworks,
CVPR05(II: 1008-1015).
IEEE DOI
0507
BibRef
Mure-Dubois, J.[James],
Hugli, H.[Heinz],
Fusion of Time of Flight Camera Point Clouds,
M2SFA208(xx-yy).
0810
BibRef
Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
RGB-D Registeration, RGBD Registraion, Color and LiDAR .