Andrews, H.C.,
Multidimensional Rotations in Feature Selection,
TC(20), No. 9, September 1971, pp. 1045.
BibRef
7109
Rasek, E.,
A contribution to the problem of feature selection with similarity
functionals in pattern recognition,
PR(3), No. 1, April 1971, pp. 31-36.
Elsevier DOI
0309
BibRef
Chen, C.H.,
On a class of computationally efficient feature selection criteria,
PR(7), No. 1-2, June 1975, pp. 87-94.
Elsevier DOI
0309
BibRef
Kowalski, B.R.,
Bender, C.F.,
An orthogonal feature selection method,
PR(8), No. 1, January 1976, pp. 1-4.
Elsevier DOI
0309
BibRef
Christensen, R.,
Reichert, T.,
Unit measure violations in pattern recognition:
Ambiguity and irrelevancy,
PR(8), No. 4, October 1976, pp. 239-245.
Elsevier DOI
0309
BibRef
Decell, Jr., H.P.,
Guseman, Jr., L.F.,
Linear feature selection with applications,
PR(11), No. 1, 1979, pp. 55-63.
Elsevier DOI
0309
BibRef
Bryant, J.[Jack],
Guseman, Jr., L.F.,
Distance preserving linear feature selection,
PR(11), No. 5-6, 1979, pp. 347-352.
Elsevier DOI
0309
BibRef
Boekee, D.E.,
van der Lubbe, J.C.A.,
Some aspects of error bounds in feature selection,
PR(11), No. 5-6, 1979, pp. 353-360.
Elsevier DOI
0309
BibRef
Peters, C.[Charles],
Feature selection for best mean square approximation of class densities,
PR(11), No. 5-6, 1979, pp. 361-364.
Elsevier DOI
0309
BibRef
Young, D.M.[Dean M.],
Odell, P.L.[Patrick L.],
A formulation and comparison of two linear feature selection techniques
applicable to statistical classification,
PR(17), No. 3, 1984, pp. 331-337.
Elsevier DOI
0309
BibRef
Hester, C.F.,
Casasent, D.,
Multivariant Techniques for Multiclass Pattern Recognition,
AppOpt(19), 1980, pp, 1758-1761.
BibRef
8000
Wismath, S.K.,
Soong, H.P.,
Akl, S.G.,
Feature selection by interactive clustering,
PR(14), No. 1-6, 1981, pp. 75-80.
Elsevier DOI
0309
BibRef
di Gesù, V.,
Maccarone, M.C.,
Features selection and 'possibility theory',
PR(19), No. 1, 1986, pp. 63-72.
Elsevier DOI
0309
BibRef
Bidasaria, H.B.,
Least desirable feature elimination in a general pattern recognition
problem,
PR(20), No. 3, 1987, pp. 365-370.
Elsevier DOI
0309
BibRef
Morgera, S.D., and
Datta, L.,
Toward a Fundamental Theory of Optimal Feature Selection: Part I,
PAMI(6), No. 5, September 1984, pp. 601-616.
BibRef
8409
Earlier:
Optimal Feature Selection: Part I Theory,
ICPR84(134-137).
BibRef
Morgera, S.D.,
Toward a Fundamental Theory of Optimal Feature Selection:
Part II -- Implementation and Computational Complexity,
PAMI(9), No. 1, January 1987, pp. 29-38.
BibRef
8701
Datta, L., and
Morgera, S.D.,
Optimal Feature Selection: Part II -- Implementation,
ICPR84(138-141).
BibRef
8400
Malina, W.,
On an Extended Fischer Criterion for Feature Selection,
PAMI(3), 1981, pp. 611-614.
BibRef
8100
Kudo, M.[Mineichi],
Shimbo, M.[Masaru],
Feature selection based on the structural indices of categories,
PR(26), No. 6, June 1993, pp. 891-901.
Elsevier DOI
0401
BibRef
Siddiqui, K.J.,
Liu, Y.H.,
Hay, D.R.,
Suen, C.Y.,
Feature-Selection Using A Proximity-Index Optimization Model,
PRL(15), No. 11, November 1994, pp. 1137-1141.
BibRef
9411
Krishnan, S.,
Samudravijaya, K.,
Rao, P.V.S.,
Feature-Selection for Pattern-Classification with Gaussian Mixture-Models:
A New Objective Criterion,
PRL(17), No. 8, July 1 1996, pp. 803-809.
9608
BibRef
Thawonmas, R.,
Abe, S.,
A Novel-Approach to Feature-Selection Based on Analysis of
Class Regions,
SMC-B(27), No. 2, April 1997, pp. 196-207.
IEEE Top Reference.
9704
BibRef
Jelonek, J.,
Stefanowski, J.,
Feature Subset-Selection for Classification of Histological Images,
AIMed(9), No. 3, March 1997, pp. 227-239.
9704
BibRef
Hardie, R.C.,
Vaidyanathan, M.,
McManamon, F.,
Spectral Band Selection and Classifier Design for a
Multispectral Imaging Laser-Radar,
OptEng(37), No. 3, March 1998, pp. 752-762.
9804
BibRef
Holz, H.J.,
Loew, M.H.,
Multiclass Classifier Independent Feature Analysis,
PRL(18), No. 11-13, November 1997, pp. 1219-1224.
9806
BibRef
Cozzi, A.,
Worgotter, F.,
Reclustering Techniques Improve Early Vision Feature Maps,
PAA(1), No. 1, 1998, pp. 42-51.
BibRef
9800
Klimesova, D.,
Saic, S.,
Feature Selection Algorithm and Cobweb Correlation,
PRL(19), No. 8, June 1998, pp. 681-685.
9808
BibRef
Meyer-Baese, A.[Anke],
Watzel, R.[Rolf],
Transformation radial basis neural network for relevant feature
selection,
PRL(19), No. 14, December 1998, pp. 1301-1306.
BibRef
9812
Brunzell, H.,
Eriksson, J.,
Feature reduction for classification of multidimensional data,
PR(33), No. 10, October 2000, pp. 1741-1748.
Elsevier DOI
0006
BibRef
Kudo, M.[Mineichi],
Sklansky, J.[Jack],
Comparison of algorithms that select features for pattern classifiers,
PR(33), No. 1, January 2000, pp. 25-41.
Elsevier DOI
0005
BibRef
Vishwanathan, S.V.N.,
Murty, M.N.[M. Narasimha],
Kohonen's SOM with cache,
PR(33), No. 11, November 2000, pp. 1927-1929.
Elsevier DOI
0011
BibRef
Last, M.[Mark],
Kandel, A.[Abraham],
Maimon, O.[Oded],
Information-theoretic algorithm for feature selection,
PRL(22), No. 6-7, May 2001, pp. 799-811.
Elsevier DOI
0105
BibRef
Yang, J.[Jian],
Yang, J.Y.[Jing-Yu],
Generalized K-L transform based combined feature extraction,
PR(35), No. 1, January 2002, pp. 295-297.
Elsevier DOI
0111
BibRef
Sebban, M.[Marc],
Nock, R.[Richard],
A hybrid filter/wrapper approach of feature selection using information
theory,
PR(35), No. 4, April 2002, pp. 835-846.
Elsevier DOI
0201
BibRef
Devi, V.S.[V. Susheela],
Murty, M.N.[M. Narasimha],
An incremental prototype set building technique,
PR(35), No. 2, February 2002, pp. 505-513.
Elsevier DOI
0201
BibRef
Swiniarski, R.W.[Roman W.],
Skowron, A.[Andrzej],
Rough set methods in feature selection and recognition,
PRL(24), No. 6, March 2003, pp. 833-849.
Elsevier DOI
0301
BibRef
Skowron, A.[Andrzej],
Bazan, J.[Jan],
Wojnarski, M.[Marcin],
Interactive Rough-Granular Computing in Pattern Recognition,
PReMI09(92-97).
Springer DOI
0912
BibRef
Skowron, A.[Andrzej],
Discovery of Process Models from Data and Domain Knowledge:
A Rough-Granular Approach,
PReMI07(192-197).
Springer DOI
0712
BibRef
Choi, E.[Euisun],
Lee, C.H.[Chul-Hee],
Feature extraction based on the Bhattacharyya distance,
PR(36), No. 8, August 2003, pp. 1703-1709.
Elsevier DOI
0304
BibRef
Earlier: A2, A1:
Optimizing Feature Extraction for Multiclass Problems,
ICPR00(Vol II: 402-405).
IEEE DOI
0009
BibRef
Dong, M.[Ming],
Kothari, R.[Ravi],
Feature subset selection using a new definition of classifiability,
PRL(24), No. 9-10, June 2003, pp. 1215-1225.
Elsevier DOI
0304
BibRef
Bressan, M.[Marco],
Vitria, J.[Jordi],
On the selection and classification of independent features,
PAMI(25), No. 10, October 2003, pp. 1312-1317.
IEEE Abstract.
0310
Feature selection when classes are modeled by statistically
independent features.
BibRef
Shen, Q.A.[Qi-Ang],
Jensen, R.[Richard],
Selecting informative features with fuzzy-rough sets and its
application for complex systems monitoring,
PR(37), No. 7, July 2004, pp. 1351-1363.
Elsevier DOI
0405
BibRef
Valev, V.[Ventzeslav],
Sankur, B.[Bulent],
Generalized Non-reducible Descriptors,
PR(37), No. 9, September 2004, pp. 1809-1815.
Elsevier DOI
0407
BibRef
Earlier:
Add A2:
Radeva, P.I.,
ICPR00(Vol II: 394-397).
IEEE DOI
0009
BibRef
Asaithambi, A.[Asai],
Valev, V.[Ventzeslav],
Construction of all non-reducible descriptors,
PR(37), No. 9, September 2004, pp. 1817-1823.
Elsevier DOI
0407
BibRef
Ahmad, A.[Amir],
Dey, L.[Lipika],
A feature selection technique for classificatory analysis,
PRL(26), No. 1, 1 January 2005, pp. 43-56.
Elsevier DOI
0501
BibRef
Shih, F.Y.[Frank Y.],
Cheng, S.X.[Shou-Xian],
Improved feature reduction in input and feature spaces,
PR(38), No. 5, May 2005, pp. 651-659.
Elsevier DOI
0501
See also improved incremental training algorithm for support vector machines using active query, An.
BibRef
Hsing, T.[Tailen],
Liu, L.Y.[Li-Yu],
Brun, M.[Marcel],
Dougherty, E.R.[Edward R.],
The coefficient of intrinsic dependence (feature selection using el
CID),
PR(38), No. 5, May 2005, pp. 623-636.
Elsevier DOI
0501
BibRef
Silva, P.J.S.[Paulo J.S.],
Hashimoto, R.F.[Ronaldo F.],
Kim, S.[Seungchan],
Barrera, J.[Junior],
Brandão, L.O.[Leônidas O.],
Suh, E.[Edward],
Dougherty, E.R.[Edward R.],
Feature selection algorithms to find strong genes,
PRL(26), No. 10, 15 July 2005, pp. 1444-1453.
Elsevier DOI
0506
BibRef
Peng, H.C.[Han-Chuan],
Long, F.H.[Fu-Hui],
Ding, C.[Chris],
Feature Selection Based on Mutual Information:
Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy,
PAMI(27), No. 8, August 2005, pp. 1226-1238.
IEEE Abstract.
0506
BibRef
Coetzee, F.M.[Frans M.],
Correcting the Kullback-Leibler distance for feature selection,
PRL(26), No. 11, August 2005, pp. 1675-1683.
Elsevier DOI
0506
BibRef
Brown, M.,
Costen, N.P.,
Exploratory basis pursuit classification,
PRL(26), No. 12, September 2005, pp. 1907-1915.
Elsevier DOI
0508
BibRef
Earlier:
Non-Linear Feature Selection for Classification,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Luebke, K.[Karsten],
Weihs, C.[Claus],
Improving feature extraction by replacing the Fisher criterion by an
upper error bound,
PR(38), No. 11, November 2005, pp. 2220-2223.
Elsevier DOI
0509
BibRef
Sima, C.[Chao],
Attoor, S.N.[Sanju N.],
Braga-Neto, U.M.[Ulisses M.],
Lowey, J.[James],
Suh, E.[Edward],
Dougherty, E.R.[Edward R.],
Impact of error estimation on feature selection,
PR(38), No. 12, December 2005, pp. 2472-2482.
Elsevier DOI
0510
BibRef
Sima, C.[Chao],
Dougherty, E.R.[Edward R.],
The peaking phenomenon in the presence of feature-selection,
PRL(29), No. 11, 1 August 2008, pp. 1667-1674.
Elsevier DOI
0804
Classification, Feature-selection, Peaking phenomenon
BibRef
Gasca, E.,
Sánchez, J.S.,
Alonso, R.,
Eliminating redundancy and irrelevance using a new MLP-based feature
selection method,
PR(39), No. 2, February 2006, pp. 313-315.
Elsevier DOI
0512
BibRef
Nanni, L.[Loris],
Cluster-Based Pattern Discrimination:
A Novel Technique for Feature Selection,
PRL(27), No. 6, 15 April 2006, pp. 682-687.
Elsevier DOI Feature evaluation and selection, Clustering, Ensemble of classifiers
0604
BibRef
Cord, A.[Aurélien],
Ambroise, C.[Christophe],
Cocquerez, J.P.[Jean-Pierre],
Feature selection in robust clustering based on Laplace mixture,
PRL(27), No. 6, 15 April 2006, pp. 627-635.
Elsevier DOI Clustering, Feature selection, Laplace distribution;
Kruskal-Wallis statistical test, EM algorithm
0604
BibRef
Abe, N.[Naoto],
Kudo, M.[Mineichi],
Non-parametric classifier-independent feature selection,
PR(39), No. 5, May 2006, pp. 737-746.
Elsevier DOI
0604
Garbage feature, Non-parametric, Two-stage feature selection
Classifier-independent feature selection, Bayes classifier;
BibRef
Tenmoto, H.[Hiroshi],
Kudo, M.[Mineichi],
Soft Feature Selection by Using a Histogram-Based Classifier,
SSPR08(572-581).
Springer DOI
0812
BibRef
Aoki, K.[Kazuaki],
Kudo, M.[Mineichi],
Feature and Classifier Selection in Class Decision Trees,
SSPR08(562-571).
Springer DOI
0812
BibRef
Lee, G.N.[Gobert N.],
Bottema, M.J.[Murk J.],
Significance of classification scores subsequent to feature selection,
PRL(27), No. 14, 15 October 2006, pp. 1702-1709.
Elsevier DOI
0609
Multiple comparisons, Statistical significance, Computer-aided diagnosis
BibRef
Tang, W.Y.[Wen-Yin],
Mao, K.Z.,
Feature selection algorithm for mixed data with both nominal and
continuous features,
PRL(28), No. 5, 1 April 2007, pp. 563-571.
Elsevier DOI
0703
Feature selection, Mixed data, Continuous feature, Nominal feature
BibRef
Wang, H.Z.[Hong-Zhi],
Angelopoulou, E.[Elli],
Sensor band selection for multispectral imaging via average normalized
information,
RealTimeIP(1), No. 2, December 2006, pp. 109-121.
Springer DOI
0001
BibRef
Sun, Y.J.[Yi-Jun],
Iterative RELIEF for Feature Weighting:
Algorithms, Theories, and Applications,
PAMI(29), No. 6, June 2007, pp. 1035-1051.
IEEE DOI
0704
See also Machine Learning Research: Four Current Directions.
BibRef
Guyon, I.[Isabelle],
Li, J.W.[Ji-Wen],
Mader, T.[Theodor],
Pletscher, P.A.[Patrick A.],
Schneider, G.[Georg],
Uhr, M.[Markus],
Competitive baseline methods set new standards for the NIPS 2003
feature selection benchmark,
PRL(28), No. 12, 1 September 2007, pp. 1438-1444.
Elsevier DOI
0707
Feature selection, Matlab, Machine learning, Classification;
Challenge, Benchmark, Curriculum
BibRef
Akselrod-Ballin, A.[Ayelet],
Ullman, S.[Shimon],
Distinctive and compact features,
IVC(26), No. 9, 1 September 2008, pp. 1269-1276.
Elsevier DOI
0806
Feature selection, Object recognition, Distinctive features, Facial features
BibRef
Feng, G.Y.[Gui-Yu],
Zhang, D.[David],
Yang, J.[Jian],
Hu, D.[Dewen],
A Theoretical Framework For Matrix-based Feature Extraction Algorithms
With Its Application To Image Recognition,
IJIG(8), No. 1, January 2008, pp. 1-23.
0801
BibRef
Ng, W.W.Y.[Wing W.Y.],
Yeung, D.S.[Daniel S.],
Firth, M.[Michael],
Tsang, E.C.C.[Eric C.C.],
Wang, X.Z.[Xi-Zhao],
Feature selection using localized generalization error for supervised
classification problems using RBFNN,
PR(41), No. 12, December 2008, pp. 3706-3719.
Elsevier DOI
0810
Feature selection, Neural network, Generalization error, RBFNN
BibRef
Paskaleva, B.,
Hayat, M.M.[Majeed M.],
Wang, Z.,
Tyo, J.S.[J. Scott],
Krishna, S.,
Canonical Correlation Feature Selection for Sensors With Overlapping
Bands: Theory and Application,
GeoRS(46), No. 10, October 2008, pp. 3346-3358.
IEEE DOI
0810
Specific to issues of overlapping bands.
BibRef
Parthalain, N.M.[Neil Mac],
Shen, Q.A.[Qi-Ang],
Exploring the boundary region of tolerance rough sets for feature
selection,
PR(42), No. 5, May 2009, pp. 655-667.
Elsevier DOI
0902
Feature selection, Attribute reduction, Rough sets, Classification
BibRef
Liu, H.W.[Hua-Wen],
Sun, J.G.[Ji-Gui],
Liuand, L.[Lei],
Zhang, H.J.[Hui-Jie],
Feature selection with dynamic mutual information,
PR(42), No. 7, July 2009, pp. 1330-1339.
Elsevier DOI
0903
Classification, Feature selection, Mutual information, Filter method
BibRef
Garcia, H.C.[Hugo C.],
Villalobos, J.R.[Jesus Rene],
Pan, R.[Rong],
Runger, G.C.[George C.],
A Novel Feature Selection Methodology for Automated Inspection Systems,
PAMI(31), No. 7, July 2009, pp. 1338-1344.
IEEE DOI
0905
Stepwise variable selection procedure using misclassification error.
BibRef
Zhang, W.[Wei],
Lin, Z.C.[Zhou-Chen],
Tang, X.[Xiaoou],
Tensor linear Laplacian discrimination (TLLD) for feature extraction,
PR(42), No. 9, September 2009, pp. 1941-1948.
Elsevier DOI
0905
Discriminant feature extraction, Tensor, Contextual distance
BibRef
Zhao, D.L.[De-Li],
Lin, Z.C.[Zhou-Chen],
Xiao, R.[Rong],
Tang, X.[Xiaoou],
Linear Laplacian Discrimination for Feature Extraction,
CVPR07(1-7).
IEEE DOI
0706
BibRef
Hou, C.Q.[Cui-Qin],
Jiao, L.C.[Li-Cheng],
Selecting features of linear-chain conditional random fields via greedy
stage-wise algorithms,
PRL(31), No. 2, 15 January 2010, pp. 151-162.
Elsevier DOI
1001
Greedy stage-wise, Feature selection, Linear-chain conditional random
fields, Pseudo-likelihood
BibRef
Derrac, J.[Joaquín],
García, S.[Salvador],
Herrera, F.[Francisco],
IFS-CoCo: Instance and feature selection based on cooperative
coevolution with nearest neighbor rule,
PR(43), No. 6, June 2010, pp. 2082-2105.
Elsevier DOI
1003
BibRef
Earlier:
IFS-CoCo in the Landscape Contest: Description and Results,
ICPR-Contests10(56-65).
Springer DOI
1008
Evolutionary algorithms, Feature selection, Instance selection;
Cooperative coevolution, Nearest neighbor
BibRef
Zhang, J.C.[Jian-Chun],
Zhang, D.Q.[Dao-Qiang],
A novel ensemble construction method for multi-view data using random
cross-view correlation between within-class examples,
PR(44), No. 6, June 2011, pp. 1162-1171.
Elsevier DOI
1102
Random correlation, Canonical correlation analysis, Feature
extraction, Ensemble construction
BibRef
Balagani, K.S.[Kiran S.],
Phoha, V.V.[Vir V.],
Iyengar, S.S.,
Balakrishnan, N.,
On Guo and Nixon's Criterion for Feature Subset Selection:
Assumptions, Implications, and Alternative Options,
SMC-A(40), No. 3, May 2010, pp. 651-655.
IEEE DOI
1003
BibRef
Balagani, K.S.[Kiran S.],
Phoha, V.V.[Vir V.],
On the Feature Selection Criterion Based on an Approximation of
Multidimensional Mutual Information,
PAMI(32), No. 7, July 2010, pp. 1342-1343.
IEEE DOI
1006
derive the criterion from multidimensional mutual information
between features and the calss. Relate to Bayes classification error.
BibRef
Garcia-Borroto, M.[Milton],
Martínez-Trinidad, J.F.[José Francisco],
Carrasco-Ochoa, J.A.[Jesus Ariel],
Medina-Perez, M.A.[Miguel Angel],
Ruiz-Shulcloper, J.[Jose],
LCMine: An efficient algorithm for mining discriminative regularities
and its application in supervised classification,
PR(43), No. 9, September 2010, pp. 3025-3034.
Elsevier DOI
1006
Discriminative regularities, Emerging patterns, Mixed incomplete data;
Comprehensible classifiers
BibRef
Medina-Pérez, M.A.[Miguel Angel],
García-Borroto, M.[Milton],
Ruiz-Shulcloper, J.[José],
Object Selection Based on Subclass Error Correcting for ALVOT,
CIARP07(496-505).
Springer DOI
0711
BibRef
Medina-Pérez, M.A.[Miguel Angel],
García-Borroto, M.[Milton],
Villuendas-Rey, Y.[Yenny],
Ruiz-Shulcloper, J.[José],
Selecting Objects for ALVOT,
CIARP06(606-613).
Springer DOI
0611
Objects described by non-numeric features.
BibRef
Villuendas-Rey, Y.[Yenny],
García-Borroto, M.[Milton],
Ruiz-Shulcloper, J.[José],
Selecting Features and Objects for Mixed and Incomplete Data,
CIARP08(381-388).
Springer DOI
0809
BibRef
Villuendas-Rey, Y.[Yenny],
García-Lorenzo, M.M.[María Matilde],
Mixed Data Balancing through Compact Sets Based Instance Selection,
CIARP13(I:254-261).
Springer DOI
1311
BibRef
Villuendas-Rey, Y.[Yenny],
García-Borroto, M.[Milton],
Medina-Pérez, M.A.[Miguel A.],
Ruiz-Shulcloper, J.[José],
Simultaneous Features and Objects Selection for Mixed and Incomplete
Data,
CIARP06(597-605).
Springer DOI
0611
for the
Most Similar Neighbor classifier.
BibRef
Pena, J.M.[Jose M.],
Nilsson, R.[Roland],
On the Complexity of Discrete Feature Selection for Optimal
Classification,
PAMI(32), No. 8, August 2010, pp. 1517-1522.
IEEE DOI
1007
Only discrete features.
BibRef
Somol, P.[Petr],
Novovicová, J.[Jana],
Evaluating Stability and Comparing Output of Feature Selectors that
Optimize Feature Subset Cardinality,
PAMI(32), No. 11, November 2010, pp. 1921-1939.
IEEE DOI
1011
BibRef
Earlier:
Evaluating the Stability of Feature Selectors That Optimize Feature
Subset Cardinality,
SSPR08(956-966).
Springer DOI
0812
Robustness of methods.
Evaluation of different methods.
BibRef
Novovicová, J.[Jana],
Somol, P.[Petr],
Haindl, M.[Michal],
Pudil, P.[Pavel],
Conditional Mutual Information Based Feature Selection for
Classification Task,
CIARP07(417-426).
Springer DOI
0711
BibRef
Nikolaidis, K.,
Goulermas, J.Y.,
Wu, Q.H.,
A class boundary preserving algorithm for data condensation,
PR(44), No. 3, March 2011, pp. 704-715.
Elsevier DOI
1011
Machine learning, Instance based learning, Instance condensation
BibRef
Nikolaidis, K.,
Mu, T.T.,
Goulermas, J.Y.[John Y.],
Prototype reduction based on Direct Weighted Pruning,
PRL(36), No. 1, 2014, pp. 22-28.
Elsevier DOI
1312
Data condensation
BibRef
Mohanty, D.[Debadutta],
Covering based approximation: A new type approach,
IJCVR(1), No. 3, 2010, pp. 335-345.
DOI Link
1102
Rough set theory.
BibRef
Hedjazi, L.[Lyamine],
Aguilar-Martin, J.[Joseph],
le Lann, M.V.[Marie-Veronique],
Similarity-margin based feature selection for symbolic interval data,
PRL(32), No. 4, 1 March 2011, pp. 578-585.
Elsevier DOI
1102
Interval data, Feature selection, Margin, Optimization, Symbolic data
analysis, Classification
BibRef
He, X.F.[Xiao-Fei],
Ji, M.[Ming],
Zhang, C.Y.[Chi-Yuan],
Bao, H.J.[Hu-Jun],
A Variance Minimization Criterion to Feature Selection Using Laplacian
Regularization,
PAMI(33), No. 10, October 2011, pp. 2013-2025.
IEEE DOI
1109
BibRef
Fan, M.Y.[Ming-Yu],
Zhang, X.Q.[Xiao-Qin],
Lin, Z.C.[Zhou-Chen],
Zhang, Z.F.[Zhong-Fei],
Bao, H.J.[Hu-Jun],
A Regularized Approach for Geodesic-Based Semisupervised
Multimanifold Learning,
IP(23), No. 5, May 2014, pp. 2133-2147.
IEEE DOI
1405
face recognition
BibRef
Wang, J.P.[Jiang-Ping],
Fan, J.Y.[Jie-Yan],
Li, H.H.[Huang-Huang],
Wu, D.P.[Da-Peng],
Kernel-based feature extraction under maximum margin criterion,
JVCIR(23), No. 1, January 2012, pp. 53-62.
Elsevier DOI
1112
Feature extraction, Kernel method, Pattern classification, RELIEF;
Maximum margin criterion, LFE, KLFE, Nonlinear transformation
BibRef
Li, M.[Min],
Deng, S.B.[Shao-Bo],
Feng, S.Z.[Sheng-Zhong],
Fan, J.P.[Jian-Ping],
An effective discretization based on Class-Attribute Coherence
Maximization,
PRL(32), No. 15, 1 November 2011, pp. 1962-1973.
Elsevier DOI
1112
Discretization, CAIM, CACM, Classification, Class-Attribute
Independence Redundancy (CAIR)
BibRef
Sun, X.[Xin],
Liu, Y.H.[Yan-Heng],
Li, J.[Jin],
Zhu, J.Q.[Jian-Qi],
Chen, H.L.[Hui-Ling],
Liu, X.J.[Xue-Jie],
Feature evaluation and selection with cooperative game theory,
PR(45), No. 8, August 2012, pp. 2992-3002.
Elsevier DOI
1204
Machine learning, Feature selection, Cooperative game theory, Filter
method
BibRef
Zhang, L.,
Chen, C.[Chun],
Bu, J.J.[Jia-Jun],
He, X.,
A Unified Feature and Instance Selection Framework Using Optimum
Experimental Design,
IP(21), No. 5, May 2012, pp. 2379-2388.
IEEE DOI
1204
BibRef
Ekbal, A.[Asif],
Saha, S.[Sriparna],
Multiobjective optimization for classifier ensemble and feature
selection: an application to named entity recognition,
IJDAR(15), No. 2, June 2012, pp. 143-166.
WWW Link.
1205
BibRef
Boubezoul, A.[Abderrahmane],
Paris, S.[Sébastien],
Application of global optimization methods to model and feature
selection,
PR(45), No. 10, October 2012, pp. 3676-3686.
Elsevier DOI
1206
Cross-Entropy Method, Feature selection, Particle swarm optimization;
Hyper-parameters optimization, Support vector machines
BibRef
Deng, T.Q.[Ting-Quan],
Yang, C.D.[Cheng-Dong],
Wang, X.F.[Xiao-Fei],
A reduct derived from feature selection,
PRL(33), No. 12, 1 September 2012, pp. 1638-1646.
Elsevier DOI
1208
Attribute reduction, Feature selection, Decision systems, Rough sets;
Data mining
BibRef
Hu, W.J.[Wen-Jun],
Choi, K.S.[Kup-Sze],
Gu, Y.G.[Yong-Gen],
Wang, S.T.[Shi-Tong],
Minimum-maximum local structure information for feature selection,
PRL(34), No. 5, 1 April 2013, pp. 527-535.
Elsevier DOI
1303
Feature selection, Laplacian Score, Locality preserving, Laplacian
Eigenmap, Manifold learning
BibRef
Peng, X.J.[Xin-Jun],
Xu, D.[Dong],
A local information-based feature-selection algorithm for data
regression,
PR(46), No. 9, September 2013, pp. 2519-2530.
Elsevier DOI
1305
Feature selection, Local information, Irrelevant feature, Least squares
loss, Gradient descent, Data regression
BibRef
Bennasar, M.[Mohamed],
Setchi, R.[Rossitza],
Hicks, Y.A.[Yulia A.],
Feature Interaction Maximisation,
PRL(34), No. 14, 2013, pp. 1630-1635.
Elsevier DOI
1308
Feature selection
BibRef
Marques, J.[Joselene],
Igel, C.[Christian],
Lillholm, M.[Martin],
Dam, E.B.[Erik B.],
Linear feature selection in texture analysis: A PLS based method,
MVA(24), No. 7, October 2013, pp. 1435-1444.
Springer DOI
1309
BibRef
Marques, J.[Joselene],
Dam, E.B.[Erik B.],
Texture Analysis by a PLS Based Method for Combined Feature Extraction
and Selection,
MLMI11(109-116).
Springer DOI
1109
Partial least square regression.
BibRef
Bahrampour, S.[Soheil],
Ray, A.[Asok],
Sarkar, S.[Soumalya],
Damarla, T.[Thyagaraju],
Nasrabadi, N.M.[Nasser M.],
Performance comparison of feature extraction algorithms for target
detection and classification,
PRL(34), No. 16, 2013, pp. 2126-2134.
Elsevier DOI
1310
Feature extraction
BibRef
Lu, Z.C.[Zheng-Cai],
Qin, Z.[Zheng],
Zhang, Y.Q.[Yong-Qiang],
Fang, J.[Jun],
A fast feature selection approach based on rough set boundary regions,
PRL(36), No. 1, 2014, pp. 81-88.
Elsevier DOI
1312
Feature selection
BibRef
Zhang, D.[Di],
He, J.Z.[Jia-Zhong],
Zhao, Y.[Yun],
Luo, Z.L.[Zhong-Liang],
Du, M.H.[Ming-Hui],
Global plus local:
A complete framework for feature extraction and recognition,
PR(47), No. 3, 2014, pp. 1433-1442.
Elsevier DOI
1312
Feature extraction.
linear discriminant analysis.
BibRef
Reif, M.[Matthias],
Shafait, F.[Faisal],
Efficient feature size reduction via predictive forward selection,
PR(47), No. 4, 2014, pp. 1664-1673.
Elsevier DOI
1402
Feature selection
BibRef
Gilani, S.Z.[Syed Zulqarnain],
Shafait, F.[Faisal],
Mian, A.[Ajmal],
Gradient based efficient feature selection,
WACV14(191-197)
IEEE DOI
1406
Accuracy
BibRef
Yildiz, O.T.[Olcay Taner],
On the feature extraction in discrete space,
PR(47), No. 5, 2014, pp. 1988-1993.
Elsevier DOI
1402
Feature extraction
BibRef
Cataltepe, Z.[Zehra],
Sonmez, A.[Abdullah],
Senliol, B.[Baris],
Feature enrichment and selection for transductive classification on
networked data,
PRL(37), No. 1, 2014, pp. 41-53.
Elsevier DOI
1402
Feature enrichment
BibRef
Liu, R.C.[Ruo-Chen],
Chen, Y.Y.[Yang-Yang],
Jiao, L.C.[Li-Cheng],
Li, Y.Y.[Yang-Yang],
A particle swarm optimization based simultaneous learning framework
for clustering and classification,
PR(47), No. 6, 2014, pp. 2143-2152.
Elsevier DOI
1403
Classification
BibRef
Wu, B.,
Zhang, L.,
Zhao, Y.,
Feature Selection via Cramer's V-Test Discretization for
Remote-Sensing Image Classification,
GeoRS(52), No. 5, May 2014, pp. 2593-2606.
IEEE DOI
1403
Association index. Applied to multiple classification techniques.
BibRef
Bolón-Canedo, V.,
Porto-Díaz, I.,
Sánchez-Maroño, N.,
Alonso-Betanzos, A.,
A framework for cost-based feature selection,
PR(47), No. 7, 2014, pp. 2481-2489.
Elsevier DOI
1404
Cost-based feature selection
BibRef
Sharma, A.[Alok],
Paliwal, K.K.[Kuldip K.],
Imoto, S.[Seiya],
Miyano, S.[Satoru],
A feature selection method using improved regularized linear
discriminant analysis,
MVA(25), No. 3, April 2014, pp. 775-786.
Springer DOI
1404
BibRef
Li, S.,
Wei, D.,
Extremely High-Dimensional Feature Selection via Feature Generating
Samplings,
Cyber(44), No. 6, June 2014, pp. 737-747.
IEEE DOI
1406
Algorithm design and analysis
BibRef
Wang, D.Q.[De-Qing],
Zhang, H.[Hui],
Liu, R.[Rui],
Lv, W.F.[Wei-Feng],
Wang, D.[Datao],
t-Test feature selection approach based on term frequency for text
categorization,
PRL(45), No. 1, 2014, pp. 1-10.
Elsevier DOI
1407
Feature selection
BibRef
Rivera, J.P.[Juan Pablo],
Verrelst, J.[Jochem],
Delegido, J.[Jesús],
Veroustraete, F.[Frank],
Moreno, J.[José],
On the Semi-Automatic Retrieval of Biophysical Parameters Based on
Spectral Index Optimization,
RS(6), No. 6, 2014, pp. 4927-4951.
DOI Link
1407
BibRef
Qiu, J.Y.[Jun-Yang],
Wang, Y.B.[Yi-Bing],
Pan, Z.S.[Zhi-Song],
Jia, B.[Bo],
Semi-Supervised Feature Selection with Universum Based on Linked Social
Media Data,
IEICE(E97-D), No. 9, September 2014, pp. 2522-2525.
WWW Link.
1410
BibRef
Corrêa, G.N.[Geraldo N.],
Marcacini, R.M.[Ricardo M.],
Hruschka, E.R.[Eduardo R.],
Rezende, S.O.[Solange O.],
Interactive textual feature selection for consensus clustering,
PRL(52), No. 1, 2015, pp. 25-31.
Elsevier DOI
1412
Interactive feature selection
BibRef
Hocke, J.[Jens],
Martinetz, T.[Thomas],
Maximum distance minimization for feature weighting,
PRL(52), No. 1, 2015, pp. 48-52.
Elsevier DOI
1412
Feature selection
BibRef
Banka, H.[Haider],
Dara, S.[Suresh],
A Hamming distance based binary particle swarm optimization (HDBPSO)
algorithm for high dimensional feature selection, classification and
validation,
PRL(52), No. 1, 2015, pp. 94-100.
Elsevier DOI
1412
Feature selection
BibRef
Freeman, C.[Cecille],
Kulic, D.[Dana],
Basir, O.[Otman],
An evaluation of classifier-specific filter measure performance for
feature selection,
PR(48), No. 5, 2015, pp. 1812-1826.
Elsevier DOI
1502
Feature selection
BibRef
Jiang, F.[Feng],
Sui, Y.F.[Yue-Fei],
Zhou, L.[Lin],
A relative decision entropy-based feature selection approach,
PR(48), No. 7, 2015, pp. 2151-2163.
Elsevier DOI
1504
Rough sets
BibRef
Zeng, Z.[Zilin],
Zhang, H.J.[Hong-Jun],
Zhang, R.[Rui],
Yin, C.X.[Cheng-Xiang],
A novel feature selection method considering feature interaction,
PR(48), No. 8, 2015, pp. 2656-2666.
Elsevier DOI
1505
Feature selection
BibRef
Liu, Y.,
Tang, F.,
Zeng, Z.,
Feature Selection Based on Dependency Margin,
Cyber(45), No. 6, June 2015, pp. 1209-1221.
IEEE DOI
1506
Approximation algorithms
BibRef
Chen, X.,
Fang, T.,
Huo, H.,
Li, D.,
Measuring the Effectiveness of Various Features for Thematic
Information Extraction From Very High Resolution Remote Sensing
Imagery,
GeoRS(53), No. 9, September 2015, pp. 4837-4851.
IEEE DOI
1506
Accuracy
BibRef
Jiang, Z.L.[Zhuo-Lin],
Lin, Z.[Zhe],
Ling, H.B.[Hai-Bin],
Porikli, F.M.[Fatih M.],
Shao, L.[Ling],
Turaga, P.K.[Pavan K.],
Discriminative feature learning from big data for visual recognition,
PR(48), No. 10, 2015, pp. 2961-2963.
Elsevier DOI
1507
BibRef
Yang, Y.B.[Yu-Bin],
Zhu, Q.H.[Qi-Hai],
Mao, X.J.[Xiao-Jiao],
Pan, L.Y.[Lin-Yan],
Visual feature coding for image classification integrating dictionary
structure,
PR(48), No. 10, 2015, pp. 3067-3075.
Elsevier DOI
1507
Visual feature coding
BibRef
Bouhamed, S.A.[S. Ammar],
Kallel, I.K.[I. Khanfir],
Masmoudi, D.S.[D. Sellami],
Solaiman, B.,
Feature selection in possibilistic modeling,
PR(48), No. 11, 2015, pp. 3627-3640.
Elsevier DOI
1506
Feature selection
BibRef
Huttunen, H.[Heikki],
Tohka, J.[Jussi],
Model selection for linear classifiers using Bayesian error
estimation,
PR(48), No. 11, 2015, pp. 3739-3748.
Elsevier DOI
1506
Logistic regression
BibRef
Saha, A.[Arkajyoti],
Das, S.[Swagatam],
Automated feature weighting in clustering with separable distances
and inner product induced norms: A theoretical generalization,
PRL(63), No. 1, 2015, pp. 50-58.
Elsevier DOI
1508
Automated feature weights
BibRef
Wong, W.K.,
Lai, Z.,
Xu, Y.,
Wen, J.,
Ho, C.P.,
Joint Tensor Feature Analysis For Visual Object Recognition,
Cyber(45), No. 11, November 2015, pp. 2425-2436.
IEEE DOI
1511
Algorithm design and analysis
BibRef
Paul, S.[Sujoy],
Das, S.[Swagatam],
Simultaneous feature selection and weighting:
An evolutionary multi-objective optimization approach,
PRL(65), No. 1, 2015, pp. 51-59.
Elsevier DOI
1511
Feature selection
BibRef
Feng, G.Z.[Guo-Zhong],
Guo, J.H.[Jian-Hua],
Jing, B.Y.[Bing-Yi],
Sun, T.[Tieli],
Feature subset selection using naive Bayes for text classification,
PRL(65), No. 1, 2015, pp. 109-115.
Elsevier DOI
1511
Bayesian model averaging
BibRef
Fade, J.[Julien],
Stochastic complexity-based model selection with false alarm rate
control in optical spectroscopy,
PRL(65), No. 1, 2015, pp. 152-156.
Elsevier DOI
1511
model selection
BibRef
Chen, X.B.[Xiao-Bo],
Cai, Y.F.[Ying-Feng],
Chen, L.[Long],
Li, Z.Y.[Zuo-Yong],
Discriminant feature extraction for image recognition using complete
robust maximum margin criterion,
MVA(26), No. 7-8, November 2015, pp. 857-870.
WWW Link.
Springer DOI
1511
BibRef
Min, H.K.[Hwang-Ki],
Hou, Y.X.[Yu-Xi],
Park, S.[Sangwoo],
Song, I.[Iickho],
A computationally efficient scheme for feature extraction with kernel
discriminant analysis,
PR(50), No. 1, 2016, pp. 45-55.
Elsevier DOI
1512
Kernel discriminant analysis
BibRef
Luo, Y.,
Wen, Y.,
Tao, D.,
Gui, J.,
Xu, C.,
Large Margin Multi-Modal Multi-Task Feature Extraction for Image
Classification,
IP(25), No. 1, January 2016, pp. 414-427.
IEEE DOI
1601
Correlation
BibRef
Vinh, N.X.[Nguyen Xuan],
Zhou, S.[Shuo],
Chan, J.[Jeffrey],
Bailey, J.[James],
Can high-order dependencies improve mutual information based feature
selection?,
PR(53), No. 1, 2016, pp. 46-58.
Elsevier DOI
1602
Feature selection
BibRef
Zhao, J.[Ji],
Wang, L.T.[Lian-Tao],
Cabral, R.S.,
de la Torre, F.,
Feature and Region Selection for Visual Learning,
IP(25), No. 3, March 2016, pp. 1084-1094.
IEEE DOI
1602
image processing
BibRef
Yuan, Y.,
Lin, J.,
Wang, Q.,
Dual-Clustering-Based Hyperspectral Band Selection by Contextual
Analysis,
GeoRS(54), No. 3, March 2016, pp. 1431-1445.
IEEE DOI
1603
Context
BibRef
Villela, S.M.[Saulo Moraes],
de Castro Leite, S.[Saul],
Neto, R.F.[Raul Fonseca],
Incremental p-margin algorithm for classification with arbitrary norm,
PR(55), No. 1, 2016, pp. 261-272.
Elsevier DOI
1604
Large margin classifiers
BibRef
Zhang, X.[Xiao],
Mei, C.L.[Chang-Lin],
Chen, D.G.[De-Gang],
Li, J.H.[Jin-Hai],
Feature selection in mixed data:
A method using a novel fuzzy rough set-based information entropy,
PR(56), No. 1, 2016, pp. 1-15.
Elsevier DOI
1604
Mixed data
BibRef
Aksakalli, V.[Vural],
Malekipirbazari, M.[Milad],
Feature selection via binary simultaneous perturbation stochastic
approximation,
PRL(75), No. 1, 2016, pp. 41-47.
Elsevier DOI
1604
Classification
BibRef
Armanfard, N.[Narges],
Reilly, J.P.[James P.],
Komeili, M.[Majid],
Local Feature Selection for Data Classification,
PAMI(38), No. 6, June 2016, pp. 1217-1227.
IEEE DOI
1605
Feature extraction. Localized method.
BibRef
Wang, J.,
Wang, W.,
Wang, R.,
Gao, W.,
CSPS: An Adaptive Pooling Method for Image Classification,
MultMed(18), No. 6, June 2016, pp. 1000-1010.
IEEE DOI
1605
Dictionaries
BibRef
Sayed, S.A.F.[Safinaz Abd_El-Fattah],
Nabil, E.[Emad],
Badr, A.[Amr],
A binary clonal flower pollination algorithm for feature selection,
PRL(77), No. 1, 2016, pp. 21-27.
Elsevier DOI
1606
Feature selection
BibRef
Dornaika, F.[Fadi],
El Traboulsi, Y.[Youssof],
Assoum, A.,
Inductive and flexible feature extraction for semi-supervised pattern
categorization,
PR(60), No. 1, 2016, pp. 275-285.
Elsevier DOI
1609
BibRef
Earlier: A1, A2, Only:
A Flexible Semi-supervised Feature Extraction Method for Image
Classification,
FSLCV14(III: 122-137).
Springer DOI
1504
Feature extraction
BibRef
Dornaika, F.[Fadi],
El Traboulsi, Y.[Youssof],
Cases, B.,
Assoum, A.,
Image Classification via Semi-supervised Feature Extraction with
Out-of-Sample Extension,
ISVC14(I: 182-192).
Springer DOI
1501
BibRef
Li, L.[Liling],
Du, L.[Lan],
Zhang, W.[Wei],
He, H.[Hua],
Wang, P.H.[Peng-Hui],
Enhancing information discriminant analysis: Feature extraction with
linear statistical model and information-theoretic criteria,
PR(60), No. 1, 2016, pp. 554-570.
Elsevier DOI
1609
Feature transformation
BibRef
Ghaemi, M.[Manizheh],
Feizi-Derakhshi, M.R.[Mohammad-Reza],
Feature selection using Forest Optimization Algorithm,
PR(60), No. 1, 2016, pp. 121-129.
Elsevier DOI
1609
Feature selection
BibRef
Wang, Y.T.[Yin-Tong],
Wang, J.D.[Jian-Dong],
Liao, H.[Hao],
Chen, H.Y.[Hai-Yan],
An efficient semi-supervised representatives feature selection
algorithm based on information theory,
PR(61), No. 1, 2017, pp. 511-523.
Elsevier DOI
1705
Feature selection
BibRef
Sheikhpour, R.[Razieh],
Sarram, M.A.[Mehdi Agha],
Gharaghani, S.[Sajjad],
Chahooki, M.A.Z.[Mohammad Ali Zare],
A Survey on semi-supervised feature selection methods,
PR(64), No. 1, 2017, pp. 141-158.
Elsevier DOI
1701
Semi-supervised learning
BibRef
Das, A.[Ayan],
Das, S.[Swagatam],
Feature weighting and selection with a Pareto-optimal trade-off
between relevancy and redundancy,
PRL(88), No. 1, 2017, pp. 12-19.
Elsevier DOI
1703
Feature selection
BibRef
Li, F.[Feng],
Miao, D.Q.[Duo-Qian],
Pedrycz, W.[Witold],
Granular multi-label feature selection based on mutual information,
PR(67), No. 1, 2017, pp. 410-423.
Elsevier DOI
1704
Granular computing
BibRef
Kifah, S.[Saif],
Abdullah, S.[Salwani],
Arajy, Y.Z.[Yahya Z.],
Solving feature selection problem using intelligent double treatment
iterative composite neighbourhood structure algorithm,
IJCVR(7), No. 3, 2017, pp. 255-275.
DOI Link
1704
BibRef
Jia, Y.,
Ma, J.,
Gan, L.,
Combined Optimization of Feature Reduction and Classification for
Radiometric Identification,
SPLetters(24), No. 5, May 2017, pp. 584-588.
IEEE DOI
1704
feature extraction
BibRef
Liu, C.[Chuan],
Wang, W.Y.[Wen-Yong],
Zhao, Q.A.[Qi-Ang],
Shen, X.M.[Xiao-Ming],
Konan, M.[Martin],
A new feature selection method based on a validity index of feature
subset,
PRL(92), No. 1, 2017, pp. 1-8.
Elsevier DOI
1705
Feature selection.
BibRef
Yuan, M.S.[Ming-Shun],
Yang, Z.J.[Zi-Jiang],
Huang, G.Z.[Guang-Zao],
Ji, G.[Guoli],
Feature selection by maximizing correlation information for
integrated high-dimensional protein data,
PRL(92), No. 1, 2017, pp. 17-24.
Elsevier DOI
1705
Feature, selection
BibRef
Yang, B.[Bin],
Lu, Y.L.[Yu-Liang],
Zhu, K.L.[Kai-Long],
Yang, G.Z.[Guo-Zheng],
Liu, J.W.[Jing-Wei],
Yin, H.B.[Hai-Bo],
Feature Selection Based on Modified Bat Algorithm,
IEICE(E100-D), No. 8, August 2017, pp. 1860-1869.
WWW Link.
1708
BibRef
Xie, G.S.[Guo-Sen],
Zhang, X.Y.[Xu-Yao],
Yan, S.C.[Shui-Cheng],
Liu, C.L.[Cheng-Lin],
SDE: A Novel Selective, Discriminative and Equalizing Feature
Representation for Visual Recognition,
IJCV(124), No. 2, September 2017, pp. 145-168.
Springer DOI
1708
BibRef
Xie, G.S.[Guo-Sen],
Zhang, X.Y.[Xu-Yao],
Shu, X.B.[Xiang-Bo],
Yan, S.C.[Shui-Cheng],
Liu, C.L.[Cheng-Lin],
Task-Driven Feature Pooling for Image Classification,
ICCV15(1179-1187)
IEEE DOI
1602
Encoding
BibRef
Prasad, Y.[Yamuna],
Khandelwal, D.[Dinesh],
Biswas, K.K.,
Max-Margin feature selection,
PRL(95), No. 1, 2017, pp. 51-57.
Elsevier DOI
1708
Feature selection
BibRef
Chen, S.,
Yang, J.,
Luo, L.,
Wei, Y.,
Zhang, K.,
Tai, Y.,
Low-Rank Latent Pattern Approximation With Applications to Robust
Image Classification,
IP(26), No. 11, November 2017, pp. 5519-5530.
IEEE DOI
1709
Feature extraction, Image reconstruction, Lighting, Measurement,
Robustness, Testing, Training, ADMM,
BibRef
Hafiz, F.[Faizal],
Swain, A.[Akshya],
Patel, N.[Nitish],
Naik, C.[Chirag],
A two-dimensional (2-D) learning framework for Particle Swarm based
feature selection,
PR(76), No. 1, 2018, pp. 416-433.
Elsevier DOI
1801
Classification
BibRef
Liu, M.,
Xu, C.,
Luo, Y.,
Xu, C.,
Wen, Y.,
Tao, D.,
Cost-Sensitive Feature Selection by Optimizing F-Measures,
IP(27), No. 3, March 2018, pp. 1323-1335.
IEEE DOI
1801
Computational modeling, Cost function,
Feature extraction, Prediction algorithms,
imbalanced data
BibRef
Huang, J.,
Li, G.,
Huang, Q.,
Wu, X.,
Joint Feature Selection and Classification for Multilabel Learning,
Cyber(48), No. 3, March 2018, pp. 876-889.
IEEE DOI
1802
Algorithm design and analysis, Computers, Control engineering,
Correlation, Feature extraction, Prediction algorithms, Transforms,
shared features
BibRef
Zheng, K.F.[Kang-Feng],
Wang, X.J.[Xiu-Juan],
Feature selection method with joint maximal information entropy
between features and class,
PR(77), 2018, pp. 20-29.
Elsevier DOI
1802
BPSO, Entropy, Feature selection, Maximal information coefficient
BibRef
Gao, W.[Wanfu],
Hu, L.[Liang],
Zhang, P.[Ping],
Class-specific mutual information variation for feature selection,
PR(79), 2018, pp. 328-339.
Elsevier DOI
1804
Feature selection, Information theory, Dynamic change, Classification
BibRef
Gao, W.[Wanfu],
Hu, L.[Liang],
Zhang, P.[Ping],
He, J.[Jialong],
Feature selection considering the composition of feature relevancy,
PRL(112), 2018, pp. 70-74.
Elsevier DOI
1809
Feature selection, Information theory, Classification,
Composition of feature relevancy
BibRef
Zhu, H.B.[Hong-Bin],
Qian, H.[Hua],
Luo, X.L.[Xi-Liang],
Yang, Y.[Yang],
Adaptive Queuing Censoring for Big Data Processing,
SPLetters(25), No. 5, May 2018, pp. 610-614.
IEEE DOI
1805
Big Data, queueing theory, regression analysis,
wireless sensor networks, adaptive queuing censoring,
parameter estimation
BibRef
Li, X.R.[Xiang-Rui],
Zhu, D.X.[Dong-Xiao],
Robust feature selection via L2,1-norm in finite mixture of
regression,
PRL(108), 2018, pp. 15-22.
Elsevier DOI
1805
Finite mixture of regression, Feature selection, Non-convex optimization
BibRef
Li, Z.W.[Zhu-Wen],
Cheong, L.F.[Loong-Fah],
Yang, S.G.[Shuo-Guang],
Toh, K.C.[Kim-Chuan],
Simultaneous Clustering and Model Selection: Algorithm, Theory and
Applications,
PAMI(40), No. 8, August 2018, pp. 1964-1978.
IEEE DOI
1807
BibRef
Earlier: A1, A3, A2, A4:
Simultaneous Clustering and Model Selection for Tensor Affinities,
CVPR16(5347-5355)
IEEE DOI
1612
Analytical models, Clustering algorithms,
Eigenvalues and eigenfunctions, Optimization, Robustness,
segmentation
BibRef
Li, Z.W.[Zhu-Wen],
Cheong, L.F.[Loong-Fah],
Zhou, S.Z.Y.[Steven Zhi-Ying],
SCAMS: Simultaneous Clustering and Model Selection,
CVPR14(264-271)
IEEE DOI
1409
BibRef
Yu, T.,
Guo, C.,
Wang, L.,
Xiang, S.,
Pan, C.,
Self-Paced AutoEncoder,
SPLetters(25), No. 7, July 2018, pp. 1054-1058.
IEEE DOI
1807
feature extraction, image classification,
knowledge acquisition, unsupervised learning, TSPAE,
video analysis
BibRef
Talukdar, U.[Upasana],
Hazarika, S.M.[Shyamanta M],
Gan, J.Q.[John Q.],
A Kernel Partial least square based feature selection method,
PR(83), 2018, pp. 91-106.
Elsevier DOI
1808
Feature selection, Kernel partial least square,
Regression coefficients, Relevance, Classification
BibRef
Zhang, C.,
Sang, J.,
Zhu, G.,
Tian, Q.,
Bundled Local Features for Image Representation,
CirSysVideo(28), No. 8, August 2018, pp. 1719-1726.
IEEE DOI
1808
Encoding, Shape, Image representation, Feature extraction,
Image reconstruction, Correlation, Bundled features,
feature selection
BibRef
Huang, R.[Rui],
Jiang, W.D.[Wei-Dong],
Sun, G.L.[Guang-Ling],
Manifold-based constraint Laplacian score for multi-label feature
selection,
PRL(112), 2018, pp. 346-352.
Elsevier DOI
1809
BibRef
Huang, R.[Rui],
Wu, Z.J.[Zhe-Jun],
Multi-label feature selection via manifold regularization and
dependence maximization,
PR(120), 2021, pp. 108149.
Elsevier DOI
2109
Multi-label learning, Feature selection, Sparse regression,
Manifold regularization, Dependence maximization
BibRef
Sharmin, S.[Sadia],
Shoyaib, M.[Mohammad],
Ali, A.A.[Amin Ahsan],
Khan, M.A.H.[Muhammad Asif Hossain],
Chae, O.[Oksam],
Simultaneous feature selection and discretization based on mutual
information,
PR(91), 2019, pp. 162-174.
Elsevier DOI
1904
BibRef
Earlier: A1, A3, A4, A2, Only:
Feature Selection and Discretization based on Mutual Information,
IVPR17(1-6)
IEEE DOI
1704
Feature selection, Mutual information, Bias, Dynamic discretization.
Classification algorithms
BibRef
Yu, E.,
Sun, J.,
Li, J.,
Chang, X.,
Han, X.,
Hauptmann, A.G.,
Adaptive Semi-Supervised Feature Selection for Cross-Modal Retrieval,
MultMed(21), No. 5, May 2019, pp. 1276-1288.
IEEE DOI
1905
data handling, feature selection, graph theory,
learning (artificial intelligence), matrix algebra, optimisation,
feature selection
BibRef
Wang, S.,
Ding, Z.,
Fu, Y.,
Discerning Feature Supported Encoder for Image Representation,
IP(28), No. 8, August 2019, pp. 3728-3738.
IEEE DOI
1907
feature selection, image classification, image coding,
image representation, learning (artificial intelligence),
learning systems
BibRef
Thuy, N.N.[Nguyen Ngoc],
Wongthanavasu, S.[Sartra],
A new approach for reduction of attributes based on stripped quotient
sets,
PR(97), 2020, pp. 106999.
Elsevier DOI
1910
Rough set, Attribute reduction, Core attributes,
Stripped quotient set, Attribute significance measure
BibRef
Georges, N.[Nicolas],
Mhiri, I.[Islem],
Rekik, I.[Islem],
Identifying the best data-driven feature selection method for
boosting reproducibility in classification tasks,
PR(101), 2020, pp. 107183.
Elsevier DOI
2003
Feature selection methods, Multi-graph topological analysis,
Feature reproducibility, Biomarker discovery, Cross-validation
BibRef
Maleki, M.H.[Mohammad Hassan],
Hodtani, G.A.[Ghosheh Abed],
Hashemi, S.H.O.[Seyed Hesam Odin],
KSR-BOF: a new and exemplified method (as KSRs method) for image
classification,
IET-IPR(14), No. 5, 17 April 2020, pp. 853-861.
DOI Link
2004
KSR: K-strongest responses.
BibRef
Rivera-López, R.[Rafael],
Mezura-Montes, E.[Efrén],
Canul-Reich, J.[Juana],
Cruz-Chávez, M.A.[Marco Antonio],
A permutational-based Differential Evolution algorithm for feature
subset selection,
PRL(133), 2020, pp. 86-93.
Elsevier DOI
2005
Machine learning, Evolutionary algorithms, Wrapper scheme
BibRef
Zhou, P.[Peng],
Du, L.[Liang],
Li, X.J.[Xue-Jun],
Shen, Y.D.[Yi-Dong],
Qian, Y.H.[Yu-Hua],
Unsupervised feature selection with adaptive multiple graph learning,
PR(105), 2020, pp. 107375.
Elsevier DOI
2006
Feature selection, Multiple graph learning, Consensus learning
BibRef
Zhao, J.[Jie],
Liang, J.M.[Jia-Ming],
Dong, Z.N.[Zhen-Ning],
Tang, D.Y.[De-Yu],
Liu, Z.[Zhen],
Accelerating information entropy-based feature selection using rough
set theory with classified nested equivalence classes,
PR(107), 2020, pp. 107517.
Elsevier DOI
2008
Feature selection, Rough set theory, Attribute reduction, Information entropy
BibRef
Zhao, J.[Jie],
Wu, D.Y.[Dai-Yang],
Wu, J.X.[Jia-Xin],
Ye, W.H.[Wen-Hao],
Huang, F.L.[Fa-Liang],
Wang, J.H.[Jia-Hai],
See-To, E.W.K.[Eric W.K.],
Consistency approximation: Incremental feature selection based on
fuzzy rough set theory,
PR(155), 2024, pp. 110652.
Elsevier DOI
2408
Fuzzy rough set, Incremental feature selection, Consistency approximation
BibRef
Thom de Souza, R.C.[Rodrigo Clemente],
de Macedo, C.A.[Camila Andrade],
dos Santos Coelho, L.[Leandro],
Pierezan, J.[Juliano],
Mariani, V.C.[Viviana Cocco],
Binary coyote optimization algorithm for feature selection,
PR(107), 2020, pp. 107470.
Elsevier DOI
2008
Wrapper feature selection, Classification, Coyote optimization algorithm (COA),
Bio-inspired optimization, Binary COA
BibRef
Aziz, F.[Furqan],
Ullah, A.[Afan],
Shah, F.[Faiza],
Feature selection and learning for graphlet kernel,
PRL(136), 2020, pp. 63-70.
Elsevier DOI
2008
Structural characterization of families of graphs,
Small world graphs, complex networks, Graph algorithms
BibRef
Ircio, J.[Josu],
Lojo, A.[Aizea],
Mori, U.[Usue],
Lozano, J.A.[Jose A.],
Mutual information based feature subset selection in multivariate
time series classification,
PR(108), 2020, pp. 107525.
Elsevier DOI
2008
Multivariate time series, Supervised classification,
Feature susbset selection, Mutual information
BibRef
Solorio-Fernández, S.[Saúl],
Martínez-Trinidad, J.F.[José Fco.],
Carrasco-Ochoa, J.A.[J. Ariel],
A Supervised Filter Feature Selection method for mixed data based on
Spectral Feature Selection and Information-theory redundancy analysis,
PRL(138), 2020, pp. 321-328.
Elsevier DOI
2010
Supervised feature selection, Mixed data,
Filter feature subset selection, Redundancy analysis
BibRef
Ben Said, F.[Fatma],
Alimi, A.M.[Adel M.],
Online feature selection system for big data classification based on
multi-objective automated negotiation,
PR(110), 2021, pp. 107629.
Elsevier DOI
2011
Feature selection, Online learning,
Multi-objective automated negotiation, Trust, Classification, Big data
BibRef
García-Pedrajas, N.[Nicolás],
del Castillo, J.A.R.[Juan A. Romero],
Cerruela-García, G.[Gonzalo],
SI(FS)2: Fast simultaneous instance and feature selection for
datasets with many features,
PR(111), 2021, pp. 107723.
Elsevier DOI
2012
Instance selection, Feature selection, Evolutionary algorithms,
nearest neighbor rule
BibRef
Lall, S.[Snehalika],
Sinha, D.[Debajyoti],
Ghosh, A.[Abhik],
Sengupta, D.[Debarka],
Bandyopadhyay, S.[Sanghamitra],
Stable feature selection using copula based mutual information,
PR(112), 2021, pp. 107697.
Elsevier DOI
2102
Copula, Feature selection, Mutual information, Stability,
Classification accuracy
BibRef
Zhang, X.Y.[Xian-Yong],
Fan, Y.R.[Yun-Rui],
Yang, J.L.[Ji-Lin],
Feature selection based on fuzzy-neighborhood relative decision
entropy,
PRL(146), 2021, pp. 100-107.
Elsevier DOI
2105
Rough set, Fuzzy neighborhood rough set, Feature selection,
Relative decision entropy, Uncertainty measurement, Granulation monotonicity
BibRef
Viharos, Z.J.[Zsolt János],
Kis, K.B.[Krisztián Balázs],
Fodor, Á.[Ádám],
Büki, M.I.[Máté István],
Adaptive, Hybrid Feature Selection (AHFS),
PR(116), 2021, pp. 107932.
Elsevier DOI
2106
Adaptive, Hybrid Feature Selection (AHFS),
Combination of methods, Statistics, Information theory, Exhausting evaluation
BibRef
Shpakova, T.[Tatiana],
Sokolovska, N.[Nataliya],
Probabilistic personalised cascade with abstention,
PRL(147), 2021, pp. 8-15.
Elsevier DOI
2106
Graphical models, Learning under budget, Feature selection, Cascade classifier
BibRef
Zhong, W.C.[Wei-Chan],
Chen, X.J.[Xiao-Jun],
Wu, Q.Y.[Qing-Yao],
Yang, M.[Min],
Huang, J.Z.[Joshua Zhexue],
Selection of diverse features with a diverse regularization,
PR(120), 2021, pp. 108154.
Elsevier DOI
2109
Feature selection, Supervised feature selection,
Diverse feature, Regularization
BibRef
Komeili, M.[Majid],
Armanfard, N.[Narges],
Hatzinakos, D.[Dimitrios],
Multiview Feature Selection for Single-View Classification,
PAMI(43), No. 10, October 2021, pp. 3573-3586.
IEEE DOI
2109
Feature extraction, Training, Dimensionality reduction,
Correlation, Error analysis, Biomedical imaging, Feature selection,
classification
BibRef
Zhang, S.[Sikai],
Lang, Z.Q.[Zi-Qiang],
Orthogonal least squares based fast feature selection for linear
classification,
PR(123), 2022, pp. 108419.
Elsevier DOI
2112
Feature selection, Orthogonal least squares,
Canonical correlation analysis, Linear discriminant analysis,
Feature interaction
BibRef
Dai, J.D.[Jin-Dou],
Wu, Y.W.[Yu-Wei],
Gao, Z.[Zhi],
Jia, Y.D.[Yun-De],
Infinite-dimensional feature aggregation via a factorized bilinear
model,
PR(124), 2022, pp. 108397.
Elsevier DOI
2203
Feature aggregation, Infinite-dimensional features,
Non-approximate method, Second-order statistics
BibRef
Wan, J.H.[Ji-Hong],
Chen, H.M.[Hong-Mei],
Li, T.R.[Tian-Rui],
Huang, W.[Wei],
Li, M.[Min],
Luo, C.[Chuan],
R2CI: Information theoretic-guided feature selection with multiple
correlations,
PR(127), 2022, pp. 108603.
Elsevier DOI
2205
Feature selection, Information theory, Relevance, Redundancy,
Complementarity, Interaction
BibRef
Barisin, T.[Tin],
Jung, C.[Christian],
Müsebeck, F.[Franziska],
Redenbach, C.[Claudia],
Cao, W.M.[Wen-Ming],
Zhang, Z.F.[Zhong-Fan],
Liu, C.[Cheng],
Li, R.[Rui],
Jiao, Q.F.[Qian-Fen],
Yu, Z.W.[Zhi-Wen],
Wong, H.S.[Hau-San],
Unsupervised discriminative feature learning via finding a
clustering-friendly embedding space,
PR(129), 2022, pp. 108768.
Elsevier DOI
2206
Deep clustering, Unsupervised learning,
Generative adversarial networks, Siamese network
BibRef
Souza, F.[Francisco],
Premebida, C.[Cristiano],
Araújo, R.[Rui],
High-order conditional mutual information maximization for dealing
with high-order dependencies in feature selection,
PR(131), 2022, pp. 108895.
Elsevier DOI
2208
Feature selection, Mutual information, Information theory
BibRef
Liu, Y.[Yi],
Qin, W.[Wei],
Zheng, Q.B.[Qi-Bin],
Li, G.S.[Gen-Song],
Li, M.M.[Meng-Meng],
An Interpretable Feature Selection Based on Particle Swarm Optimization,
IEICE(E105-D), No. 8, August 2022, pp. 1495-1500.
WWW Link.
2207
BibRef
Eskandari, S.,
Seifaddini, M.,
Online and offline streaming feature selection methods with bat
algorithm for redundancy analysis,
PR(133), 2023, pp. 109007.
Elsevier DOI
2210
Feature selection, Online feature selection,
Streamwise feature selection, Dimension reduction, Bat algorithm
BibRef
Liu, P.F.[Peng-Fei],
Guo, Y.H.[Yu-Han],
Tan, J.[Jiubin],
Wang, W.[Weibo],
Loss reweight in scale dimension: A simple while effective feature
selection strategy for anchor-free detectors,
IVC(128), 2022, pp. 104593.
Elsevier DOI
2212
Object detection, Feature selection, Deep learning
BibRef
Deng, Y.X.[Yu-Xin],
Ma, J.Y.[Jia-Yi],
ReDFeat: Recoupling Detection and Description for Multimodal Feature
Learning,
IP(32), 2023, pp. 591-602.
IEEE DOI
2301
Feature extraction, Detectors, Training, Reliability,
Representation learning, Optimization, Benchmark testing, image matching
BibRef
Wang, Y.[Yadi],
Wang, J.[Jun],
Tao, D.C.[Da-Cheng],
Neurodynamics-driven supervised feature selection,
PR(136), 2023, pp. 109254.
Elsevier DOI
2301
Feature selection, Biconvex Optimization,
Information-theoretic measures, Neurodynamic optimization
BibRef
Wu, T.[Ting],
Hao, Y.H.[Yi-Hang],
Yang, B.[Bo],
Peng, L.Z.[Li-Zhi],
ECM-EFS: An ensemble feature selection based on enhanced
co-association matrix,
PR(139), 2023, pp. 109449.
Elsevier DOI
2304
Ensemble feature selection, Machine learning, Feature kernel,
Relative-co-association matrix (RCM)
BibRef
Liu, Z.G.[Zhao-Geng],
Yang, J.L.[Jie-Long],
Wang, L.[Li],
Chang, Y.[Yi],
A novel relation aware wrapper method for feature selection,
PR(140), 2023, pp. 109566.
Elsevier DOI
2305
Feature selection, Sample relation, Feature relation, Classification
BibRef
Wang, P.[Peng],
Xue, B.[Bing],
Liang, J.[Jing],
Zhang, M.J.[Meng-Jie],
Feature clustering-Assisted feature selection with differential
evolution,
PR(140), 2023, pp. 109523.
Elsevier DOI
2305
Differential evolution, Feature selection,
Multiple optimal feature subsets, Classification
BibRef
Lahmar, I.[Ines],
Zaier, A.[Aida],
Yahia, M.[Mohamed],
Boaullegue, R.[Ridha],
A Novel Improved Binary Harris Hawks Optimization For High
dimensionality Feature Selection,
PRL(171), 2023, pp. 170-176.
Elsevier DOI
2306
Harris hawk optimizer, Simulated annealing,
Chaotic opposition-Based initialization, Feature selection,
Classification
BibRef
Hou, C.P.[Chen-Ping],
Fan, R.D.[Rui-Dong],
Zeng, L.L.[Ling-Li],
Hu, D.[Dewen],
Adaptive Feature Selection With Augmented Attributes,
PAMI(45), No. 8, August 2023, pp. 9306-9324.
IEEE DOI
2307
Feature extraction, Optimization, Principal component analysis,
Data models, Covariance matrices, Convergence, reusability
BibRef
Chen, Y.L.[Yi-Lin],
Gao, B.[Bo],
Lu, T.[Tao],
Li, H.[Hui],
Wu, Y.Q.[Yi-Qi],
Zhang, D.J.[De-Jun],
Liao, X.Y.[Xiang-Yun],
A Hybrid Binary Dragonfly Algorithm with an Adaptive Directed
Differential Operator for Feature Selection,
RS(15), No. 16, 2023, pp. 3980.
DOI Link
2309
BibRef
Takhanov, R.[Rustem],
Abylkairov, Y.S.[Y. Sultan],
Wan, J.H.[Ji-Hong],
Chen, H.M.[Hong-Mei],
Li, T.R.[Tian-Rui],
Li, M.[Min],
Yang, X.L.[Xiao-Ling],
High-order interaction feature selection for classification learning:
A robust knowledge metric perspective,
PR(143), 2023, pp. 109733.
Elsevier DOI
2310
Feature selection, Fuzzy rough set, High-order interaction,
Robust knowledge metric, Uncertainty measures, Classification
BibRef
Yuan, L.X.[Li-Xin],
Mei, C.[Cheng],
Wang, W.H.[Wen-Hai],
Lu, T.[Tong],
Feature Selection Based on Intrusive Outliers Rather Than All
Instances,
IP(33), 2024, pp. 809-824.
IEEE DOI
2402
Feature extraction, Training, Task analysis, Solid modeling,
Mutual information, Measurement, Face recognition,
classification
BibRef
Zhong, J.Y.[Jing-Yu],
Shang, R.H.[Rong-Hua],
Xu, S.H.[Song-Hua],
Li, Y.Y.[Yang-Yang],
Graph embedding orthogonal decomposition: A synchronous feature
selection technique based on collaborative particle swarm
optimization,
PR(152), 2024, pp. 110453.
Elsevier DOI
2405
Clustering label orthogonal decomposition, Graph-embedded,
Local structure preserving, Particle swarm optimization
BibRef
Li, Q.[Qing],
Zhao, S.[Shuai],
He, T.J.[Teng-Jiao],
Wen, J.M.[Jin-Ming],
A simple and efficient filter feature selection method via
document-term matrix unitization,
PRL(181), 2024, pp. 23-29.
Elsevier DOI
2405
Filter feature selection, Text processing, Document-term matrix unitization
BibRef
Li, C.N.[Chun-Na],
Huang, L.W.[Ling-Wei],
Shao, Y.H.[Yuan-Hai],
Guo, T.T.[Ting-Ting],
Mao, Y.[Yu],
Feature selection by Universum embedding,
PR(153), 2024, pp. 110514.
Elsevier DOI
2405
Feature selection, Universum, Support vector machine,
Universum support vector machine, Embedded support vector machine
BibRef
Yuan, A.[Aihong],
Huang, J.H.[Jia-Hao],
Wei, C.[Chen],
Zhang, W.J.[Wen-Jie],
Zhang, N.[Naidan],
You, M.B.[Meng-Bo],
Unsupervised Feature Selection via Feature-Grouping and Orthogonal
Constraint,
ICPR22(720-726)
IEEE DOI
2212
Correlation, Source coding, Machine learning, Benchmark testing,
Feature extraction, Data structures, Data models
BibRef
Biaggi, L.[Lucas],
Papa, J.P.[João P.],
Costa, K.A.P.[Kelton A. P],
Pereira, D.R.[Danillo R.],
Passos, L.A.[Leandro A.],
FEMa-FS: Finite Element Machines for Feature Selection,
ICPR22(1784-1791)
IEEE DOI
2212
Learning systems, Feature extraction, Computer networks,
Finite element analysis, Security,
Finite Element Method
BibRef
Jaiswal, S.[Shantanu],
Fernando, B.[Basura],
Tan, C.[Cheston],
TDAM: Top-Down Attention Module for Contextually Guided Feature
Selection in CNNs,
ECCV22(XXV:259-276).
Springer DOI
2211
BibRef
Panda, P.[Pranoy],
Kancheti, S.S.[Sai Srinivas],
Balasubramanian, V.N.[Vineeth N.],
Instance-wise Causal Feature Selection for Model Interpretation,
CiV21(1756-1759)
IEEE DOI
2109
Training, Measurement, Visualization,
Feature extraction, Linear programming, Entropy
BibRef
Kawamura, N.[Naoki],
Kubota, S.[Susumu],
Sample-Dependent Distance for 1: N Identification via Discriminative
Feature Selection,
ICPR21(3365-3371)
IEEE DOI
2105
Training, Feature extraction, Extraterrestrial measurements,
Task analysis
BibRef
König, G.[Gunnar],
Molnar, C.[Christoph],
Bischl, B.[Bernd],
Grosse-Wentrup, M.[Moritz],
Relative Feature Importance,
ICPR21(9318-9325)
IEEE DOI
2105
Training, Perturbation methods, Machine learning,
feature importance, causality
BibRef
Xie, X.[Xiang],
Stork, W.[Wilhelm],
Watermelon: a Novel Feature Selection Method Based on Bayes Error
Rate Estimation and a New Interpretation of Feature Relevance and
Redundancy,
ICPR21(1360-1367)
IEEE DOI
2105
Correlation coefficient, Correlation, Error analysis, Redundancy,
Estimation, Feature extraction
BibRef
Shen, W.,
Li, F.,
Liu, R.,
Learning to Find Correlated Features by Maximizing Information Flow
in Convolutional Neural Networks,
SDL-CV19(733-737)
IEEE DOI
2004
convolutional neural nets, feature extraction,
image classification, learning (artificial intelligence), Information flow
BibRef
Mas, I.,
Morros, R.,
Vilaplana, V.,
Picking Groups Instead of Samples: A Close Look at Static Pool-Based
Meta-Active Learning,
MDALC19(1354-1362)
IEEE DOI
2004
feature selection, pattern classification, supervised learning,
unsupervised learning, static pool-based meta-active learning,
Learning under constraints
BibRef
Zaeemzadeh, A.[Alireza],
Joneidi, M.[Mohsen],
Rahnavard, N.[Nazanin],
Shah, M.[Mubarak],
Iterative Projection and Matching: Finding Structure-Preserving
Representatives and Its Application to Computer Vision,
CVPR19(5409-5418).
IEEE DOI
2002
BibRef
Rodrigues dos Santos, F.C.[Fábio Cosme],
Henriques Librantz, A.F.[André Felipe],
Sassi, R.J.[Renato José],
An Approach to Clustering Using the Expectation-Maximization and
Selection of Attributes ReliefF Applied to Water Treatment Plants
process,
CIARP17(558-565).
Springer DOI
1802
ReliefF algorithm.
BibRef
Ghosh, S.[Soumen],
Sai Prasad, P.S.V.S.,
Rao, C.R.[C. Raghavendra],
Third Order Backward Elimination Approach for Fuzzy-Rough Set Based
Feature Selection,
PReMI17(254-262).
Springer DOI
1711
BibRef
Chowdhury, H.A.[Hussain A.],
Bhattacharyya, D.K.[Dhruba K.],
mRMR+: An Effective Feature Selection Algorithm for Classification,
PReMI17(424-430).
Springer DOI
1711
BibRef
Mi, J.X.[Jian-Xun],
Fu, Q.K.[Qian-Kun],
Li, W.S.[Wei-Sheng],
Adaptive Class Preserving Representation for Image Classification,
CVPR17(2624-2632)
IEEE DOI
1711
Adaptation models, Correlation,
Image classification, Optimization, Telecommunications, Training
BibRef
Yassine, A.,
Mohamed, C.,
Zinedine, A.,
Feature selection based on pairwise evalution,
ISCV17(1-6)
IEEE DOI
1710
decision trees, feature selection, AUC, area under the ROC curve,
decision tree algorithm, hybrid filter-wrapper algorithm,
pairwise evaluation, pairwise feature selection,
BibRef
Rodríguez-Diez, V.[Vladímir],
Martínez-Trinidad, J.F.[José Francisco],
Carrasco-Ochoa, J.A.[J. Ariel],
Lazo-Cortés, M.S.[Manuel S.],
Fast-BR vs. Fast-CT_EXT: An Empirical Performance Study,
MCPR17(127-136).
Springer DOI
1706
feature selection in supervised classification
BibRef
Cui, L.X.[Li-Xin],
Jiao, Y.H.[Yu-Hang],
Bai, L.[Lu],
Rossi, L.[Luca],
Hancock, E.R.[Edwin R.],
Adaptive Feature Selection Based on the Most Informative Graph-Based
Features,
GbRPR17(276-287).
Springer DOI
1706
BibRef
Kourid, A.,
Batouche, M.,
A novel approach for feature selection based on MapReduce for
biomarker discovery,
ICCVIA15(1-11)
IEEE DOI
1603
Big Data
BibRef
Gao, T.,
Wang, Z.,
Ji, Q.,
Structured Feature Selection,
ICCV15(4256-4264)
IEEE DOI
1602
Approximation algorithms
BibRef
Liu, C.[Chao],
Skaff, S.[Sandra],
Martinello, M.[Manuel],
Learning Discriminative Spectral Bands for Material Classification,
ISVC15(I: 671-681).
Springer DOI
1601
BibRef
Liu, L.J.[Li-Juan],
Bao, Y.[Yu],
Li, H.J.[Hao-Jie],
Fan, X.[Xin],
Luo, Z.X.[Zhong-Xuan],
Discriminative Feature Learning with an Optimal Pattern Model for Image
Classification,
MMMod16(I: 675-685).
Springer DOI
1601
BibRef
Alhutaish, R.[Roiss],
Omar, N.[Nazlia],
Abdullah, S.[Salwani],
A Comparison of Multi-label Feature Selection Methods Using the
Algorithm Adaptation Approach,
IVIC15(199-212).
Springer DOI
1511
BibRef
Vicente, F.F.R.[Fábio F. R.],
Menezes, E.[Euler],
Rubino, G.[Gabriel],
de Oliveira, J.[Juliana],
Lopes, F.M.[Fabrício Martins],
A Feature Selection Approach for Evaluate the Inference of GRNs Through
Biological Data Integration - A Case Study on A. Thaliana,
CIARP15(667-675).
Springer DOI
1511
BibRef
Eriksson, A.[Anders],
Pham, T.T.[Trung Thanh],
Chin, T.J.[Tat-Jun],
Reid, I.D.[Ian D.],
The k-support norm and convex envelopes of cardinality and rank,
CVPR15(3349-3357)
IEEE DOI
1510
BibRef
Ferreira, A.J.[Artur J.],
Figueiredo, M.A.T.[Mário A. T.],
Exploiting the Bin-Class Histograms for Feature Selection on Discrete
Data,
IbPRIA15(345-353).
Springer DOI
1506
BibRef
Xie, G.S.[Guo-Sen],
Zhang, X.Y.[Xu-Yao],
Liu, C.L.[Cheng-Lin],
Efficient Feature Coding Based on Auto-encoder Network for Image
Classification,
ACCV14(I: 628-642).
Springer DOI
1504
BibRef
Fu, J.L.[Jian-Long],
Wang, J.Q.[Jin-Qiao],
Wang, X.J.[Xin-Jing],
Rui, Y.[Yong],
Lu, H.Q.[Han-Qing],
What Visual Attributes Characterize an Object Class?,
ACCV14(I: 243-259).
Springer DOI
1504
Much more than feature selection for classification, higher level attributes.
BibRef
Macák, J.[Jan],
Drbohlav, O.[Ondrej],
A Simple Stochastic Algorithm for Structural Features Learning,
FSLCV14(III: 44-55).
Springer DOI
1504
BibRef
Sarkar, R.[Rituparna],
Skadron, K.[Kevin],
Acton, S.T.[Scott T.],
A meta-algorithm for classification by feature nomination,
ICIP14(5187-5191)
IEEE DOI
1502
Accuracy
BibRef
Rodrigues, D.[Douglas],
Pereira, L.A.M.[Luis A.M.],
Papa, J.P.[Joao P.],
Weber, S.A.T.[Silke A.T.],
A Binary Krill Herd Approach for Feature Selection,
ICPR14(1407-1412)
IEEE DOI
1412
Accuracy
BibRef
Huang, S.R.[Shang-Rong],
Zhang, J.[Jian],
Liu, X.W.[Xin-Wang],
Wang, L.[Lei],
A Method of Discriminative Information Preservation and In-Dimension
Distance Minimization Method for Feature Selection,
ICPR14(1615-1620)
IEEE DOI
1412
Accuracy
BibRef
Touazi, A.[Azzedine],
Mokdad, F.[Fatiha],
Bouchaffra, D.[Djamel],
Feature Selection Scheme Based on Zero-Sum Two-Player Game,
ICPR14(1342-1347)
IEEE DOI
1412
Accuracy
BibRef
Kärkkäinen, T.[Tommi],
On Cross-Validation for MLP Model Evaluation,
SSSPR14(291-300).
Springer DOI
1408
BibRef
Liu, Y.L.[Ying-Lu],
Hou, X.W.[Xin-Wen],
Liu, C.L.[Cheng-Lin],
A Compact Spatial Feature Representation for Image Classification,
ACPR13(601-605)
IEEE DOI
1408
feature extraction
BibRef
Mochizuki, T.,
Sumiyoshi, H.,
Sano, M.,
Fujii, M.,
Visual-Based Image Retrieval by Block Reallocation Considering Object
Region,
ACPR13(371-375)
IEEE DOI
1408
feature extraction
BibRef
Rodriguez, P.A.[Pedro A.],
Drenkow, N.[Nathan],
DeMenthon, D.F.[Daniel F.],
Koterba, Z.[Zachary],
Kauffman, K.[Kathleen],
Cornish, D.[Duane],
Paulhamus, B.[Bart],
Vogelstein, R.J.[R. Jacob],
Selection of universal features for image classification,
WACV14(355-362)
IEEE DOI
1406
Feature extraction
BibRef
Ishii, M.[Masato],
Sato, A.[Atsushi],
Feature selection using graph cuts based on relevance and redundancy,
ICIP13(4292-4296)
IEEE DOI
1402
Machine learning, feature selction, graph cut, submodular function
BibRef
Duarte, J.M.M.[João M.M.],
Fred, A.L.N.[Ana L.N.],
Duarte, F.J.F.[Fernando Jorge F.],
A Constraint Acquisition Method for Data Clustering,
CIARP13(I:108-116).
Springer DOI
1311
BibRef
Bosveld, J.,
Huynh, D.Q.,
Boosted Particle Swarm Optimization of Gabor Filter Feature Vector,
DICTA12(1-7).
IEEE DOI
1303
to select Gabor filters that maximize difference between positive and
negative samples
BibRef
Miao, L.S.[Lin-Song],
Liu, M.X.[Ming-Xia],
Zhang, D.Q.[Dao-Qiang],
Cost-sensitive feature selection with application in software defect
prediction,
ICPR12(967-970).
WWW Link.
1302
BibRef
Sun, Y.[Yu],
Bhanu, B.[Bir],
Multiple local kernel integrated feature selection for image
classification,
ICPR12(2230-2233).
WWW Link.
1302
BibRef
Beinrucker, A.[Andre],
Dogan, U.[Urun],
Blanchard, G.[Gilles],
Early stopping for mutual information based feature selection,
ICPR12(975-978).
WWW Link.
1302
BibRef
Ai, D.N.[Dan-Ni],
Duan, G.F.[Gui-Fang],
Han, X.H.[Xian-Hua],
Chen, Y.W.[Yen-Wei],
Multiple feature selection and fusion based on generalized
N-dimensional independent component analysis,
ICPR12(971-974).
WWW Link.
1302
BibRef
Fei, T.[Tai],
Kraus, D.[Dieter],
Zoubir, A.M.[Abdelhak M.],
A hybrid relevance measure for feature selection and its application to
underwater objects recognition,
ICIP12(97-100).
IEEE DOI
1302
BibRef
Alba, E.[Eduardo],
Guilcapi, D.[Diego],
Ibarra, J.[Julio],
New Strategies for Evaluating the Performance of Typical Testor
Algorithms,
CIARP12(813-820).
Springer DOI
1209
BibRef
Duarte-Villaseñor, M.M.[Miriam Mónica],
Carrasco-Ochoa, J.A.[Jesús Ariel],
Martínez-Trinidad, J.F.[José Francisco],
Flores-Garrido, M.[Marisol],
Nested Dichotomies Based on Clustering,
CIARP12(162-169).
Springer DOI
1209
BibRef
Beinrucker, A.,
Dogan, Ü.,
Blanchard, G.,
A Simple Extension of Stability Feature Selection,
DAGM12(256-265).
Springer DOI
1209
BibRef
He, R.[Ran],
Tan, T.N.[Tie-Niu],
Wang, L.[Liang],
Zheng, W.S.[Wei-Shi],
l2, 1 Regularized correntropy for robust feature selection,
CVPR12(2504-2511).
IEEE DOI
1208
BibRef
Gonçalves, N.[Nicolau],
Vigário, R.[Ricardo],
Clustering through SOM Consistency,
ICIAR12(I: 61-68).
Springer DOI
1206
SOM: self organizing maps
BibRef
Wang, L.[Lei],
Shen, C.H.[Chun-Hua],
Hartley, R.I.,
On the Optimality of Sequential Forward Feature Selection Using Class
Separability Measure,
DICTA11(203-208).
IEEE DOI
1205
BibRef
Cuaya, G.[German],
Muñoz-Meléndez, A.[Angélica],
Morales, E.F.[Eduardo F.],
A Minority Class Feature Selection Method,
CIARP11(417-424).
Springer DOI
1111
BibRef
Carmona, P.L.[Pedro Latorre],
Martínez Sotoca, J.[José],
Pla, F.[Filiberto],
Phoa, F.K.H.[Frederick K.H.],
Bioucas-Dias, J.M.[José M.],
Feature Selection in Regression Tasks Using Conditional Mutual
Information,
IbPRIA11(224-231).
Springer DOI
1106
BibRef
Somol, P.[Petr],
Grim, J.[Jiri],
Pudil, P.[Pavel],
The Problem of Fragile Feature Subset Preference in Feature Selection
Methods and a Proposal of Algorithmic Workaround,
ICPR10(4396-4399).
IEEE DOI
1008
BibRef
Dukkipati, A.[Ambedkar],
Yadav, A.K.[Abhay Kumar],
Murty, M.N.[M. Narasimha],
Maximum Entropy Model Based Classification with Feature Selection,
ICPR10(565-568).
IEEE DOI
1008
BibRef
Ekbal, A.[Asif],
Saha, S.[Sriparna],
Garbe, C.S.[Christoph S.],
Feature Selection Using Multiobjective Optimization for Named Entity
Recognition,
ICPR10(1937-1940).
IEEE DOI
1008
BibRef
Lin, Y.Y.[Yen-Yu],
Liu, T.L.[Tyng-Luh],
Fuh, C.S.[Chiou-Shann],
Clustering Complex Data with Group-Dependent Feature Selection,
ECCV10(VI: 84-97).
Springer DOI
1009
BibRef
Zhong, Q.Q.[Qing-Qing],
Yao, M.[Min],
Jiang, W.[Wei],
Quantum fuzzy particle swarm optimization algorithm for image
clustering,
IASP10(276-279).
IEEE DOI
1004
BibRef
Murthy, C.A.,
Pradhan, S.[Sourav],
Metric in Feature Space,
PReMI09(50-55).
Springer DOI
0912
For feature selection. Distance between features.
BibRef
Jain, N.[Namita],
Murthy, C.A.,
Feature Selection Using Non Linear Feature Relation Index,
PReMI09(7-12).
Springer DOI
0912
BibRef
Roig, G.[Gemma],
Boix, X.[Xavier],
de la Torre, F.[Fernando],
Optimal feature selection for subspace image matching,
Subspace09(200-205).
IEEE DOI
0910
BibRef
Bo, S.K.[Shu-Kui],
Jing, Y.J.[Yong-Ju],
The Effect of Partitioning of Feature Space on Specific Class
Extraction Based on Bayesian Decision,
CISP09(1-4).
IEEE DOI
0910
BibRef
Zhao, X.[Xu],
Liu, X.[Xi],
Hao, X.Y.[Xiao-Yan],
Liu, K.Y.[Kai-Ying],
An Algorithm of Feature Selection and Feature Weighting Adjustment
Based on Chinese FrameNet,
CISP09(1-4).
IEEE DOI
0910
BibRef
Deng, Y.[Yan],
Liu, J.[Jia],
Feature Selection Based on Mutual Information for Language Recognition,
CISP09(1-4).
IEEE DOI
0910
BibRef
Aghdam, H.H.[Hamed Habibi],
Payvar, S.[Saeid],
Novel Framework for Selecting the Optimal Feature Vector from Large
Feature Spaces,
ICIAR09(307-316).
Springer DOI
0907
BibRef
Watanabe, K.[Kenji],
Kurita, T.[Takio],
Locality preserving multi-nominal logistic regression,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Krasotkina, O.,
Mottl, V.,
Adaptive nonstationary regression analysis,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Hidaka, A.[Akinori],
Kurita, T.[Takio],
Non-Neighboring Rectangular Feature selection using Particle Swarm
Optimization,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Springer, C.[Clayton],
Kegelmeyer, W.P.[W. Philip],
Feature selection via decision tree surrogate splits,
ICPR08(1-5).
IEEE DOI
0812
BibRef
Murata, R.,
Mishina, Y.,
Yamauchi, Y.,
Yamashita, T.,
Fujiyoshi, H.,
Efficient feature selection method using contribution ratio by random
forest,
FCV15(1-6)
IEEE DOI
1506
feature selection
BibRef
Tsuchiya, M.[Masamitsu],
Fujiyoshi, H.[Hironobu],
A method of feature selection using contribution ratio based on
boosting,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Liu, D.[David],
Hua, G.[Gang],
Viola, P.A.[Paul A.],
Chen, T.H.[Tsu-Han],
Integrated feature selection and higher-order spatial feature
extraction for object categorization,
CVPR08(1-8).
IEEE DOI
0806
BibRef
de Stefano, C.,
Fontanella, F.,
Marrocco, C.,
A GA-Based Feature Selection Algorithm for Remote Sensing Images,
EvoIASP08(xx-yy).
Springer DOI
0804
BibRef
Liu, X.M.[Xiao-Ming],
Yu, T.[Ting],
Gradient Feature Selection for Online Boosting,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Weinshall, D.[Daphna],
Zamir, L.[Lior],
Image Classification from Small Sample, with Distance Learning and
Feature Selection,
ISVC07(II: 106-115).
Springer DOI
0711
BibRef
Chang, H.Y.[Hsin-Yun],
Sun, C.S.[Chung-Shan],
A Novel Hybrid Taguchi-Grey-Based Method for Feature Subset Selection,
CIARP07(457-465).
Springer DOI
0711
BibRef
Sánchez, L.[Luis],
Martínez, F.[Fernando],
Castellanos, G.[Germán],
Salazar, A.[Augusto],
Feature Extraction of Weighted Data for Implicit Variable Selection,
CAIP07(840-847).
Springer DOI
0708
BibRef
Arguelles-Cruz, A.J.[Amadeo José],
López-Yáñez, I.[Itzamá],
Aldape-Pérez, M.[Mario],
Conde-Gaxiola, N.[Napoleón],
Alpha-Beta Weightless Neural Networks,
CIARP08(496-503).
Springer DOI
0809
BibRef
Aldape-Pérez, M.[Mario],
Román-Godínez, I.[Israel],
Camacho-Nieto, O.[Oscar],
Thresholded Learning Matrix for Efficient Pattern Recalling,
CIARP08(445-452).
Springer DOI
0809
BibRef
Aldape-Pérez, M.[Mario],
Yáñez-Márquez, C.[Cornelio],
Argüelles-Cruz, A.J.[Amadeo José],
FPGA Implementation of Parallel Alpha-Beta Associative Memories,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Earlier:
Optimized Associative Memories for Feature Selection,
IbPRIA07(I: 435-442).
Springer DOI
0706
BibRef
Ponsa, D.[Daniel],
López, A.M.[Antonio M.],
Feature Selection Based on a New Formulation of the
Minimal-Redundancy-Maximal-Relevance Criterion,
IbPRIA07(I: 47-54).
Springer DOI
0706
BibRef
Dollar, P.[Piotr],
Tu, Z.W.[Zhuo-Wen],
Tao, H.[Hai],
Belongie, S.J.[Serge J.],
Feature Mining for Image Classification,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Reyes, M.M.[Miguel Mendoza],
Lorenzo-Ginori, J.V.[Juan V.],
Taboada-Crispí, A.,
Carvajal, Y.L.[Yakelin Luna],
System Classification by Using Discriminant Functions of Time-Frequency
Features,
CIARP06(920-928).
Springer DOI
0611
BibRef
Bello, R.[Rafael],
Puris, A.[Amilkar],
Falcón, R.[Rafael],
Gómez, Y.[Yudel],
Feature Selection through Dynamic Mesh Optimization,
CIARP08(348-355).
Springer DOI
0809
BibRef
Sagheer, A.[Alaa],
Tsuruta, N.[Naoyuki],
Taniguchi, R.I.[Rin-Ichiro],
Arita, D.[Daisaku],
Maeda, S.[Sakashi],
Fast Feature Extraction Approach for Multi-Dimension Feature Space
Problems,
ICPR06(III: 417-420).
IEEE DOI
0609
BibRef
Frintrop, S.[Simone],
Jensfelt, P.[Patric],
Christensen, H.I.[Henrik I.],
Pay Attention When Selecting Features,
ICPR06(II: 163-166).
IEEE DOI
0609
BibRef
Krížek, P.[Pavel],
Kittler, J.V.[Josef V.],
Hlavác, V.[Václav],
Improving Stability of Feature Selection Methods,
CAIP07(929-936).
Springer DOI
0708
BibRef
Krizek, P.[Pavel],
Kittler, J.V.[Josef V.],
Hlavac, V.[Vaclav],
Feature condensing algorithm for feature selection,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Earlier:
Feature selection based on the training set manipulation,
ICPR06(II: 658-661).
IEEE DOI
0609
BibRef
Franceschi, E.,
Odone, F.,
Smeraldi, F.,
Verri, A.,
Feature Selection with Nonparametric Statistics,
ICIP05(I: 325-328).
IEEE DOI
0512
BibRef
Yoon, S.H.[Sang-Ho],
Gray, R.M.,
Feature Selection Based on Maximizing Separability in Gauss Mixture
Model and its Application to Image Classification,
ICIP05(II: 1198-1201).
IEEE DOI
0512
BibRef
Le Saux, B.[Bertrand],
Bunke, H.[Horst],
Feature Selection for Graph-Based Image Classifiers,
IbPRIA05(II:147).
Springer DOI
0509
BibRef
Binaghi, E.[Elisabetta],
Gallo, I.[Ignazio],
Boschetti, M.[Mirco],
Brivio, P.A.[P. Alessandro],
A Neural Adaptive Algorithm for Feature Selection and Classification of
High Dimensionality Data,
CIAP05(753-760).
Springer DOI
0509
BibRef
Xu, Q.R.[Qian-Ren],
Kamel, M.,
Salama, M.M.A.,
Significance Test for Feature Subset Selection on Image Recognition,
ICIAR04(I: 244-252).
Springer DOI
0409
BibRef
Hu, J.Y.[Jian-Ying],
Ratzlaff, E.,
Probability table compression using distributional clustering for
scanning N-tuple classifiers,
ICPR04(II: 533-536).
IEEE DOI
0409
BibRef
Markou, M.,
Singh, S.,
Feature selection based on a black hole model of data reorganization,
ICPR04(IV: 565-568).
IEEE DOI
0409
BibRef
Singh, S.,
Singh, M.,
Markou, M.,
Feature selection for face recognition based on data partitioning,
ICPR02(I: 680-683).
IEEE DOI
0211
BibRef
Farmer, M.E.,
Bapna, S.,
Jain, A.K.,
Large scale feature selection using modified random mutation hill
climbing,
ICPR04(II: 287-290).
IEEE DOI
0409
BibRef
Wu, Y.M.[Yi-Min],
Zhang, A.D.[Ai-Dong],
Feature selection for classifying high-dimensional numerical data,
CVPR04(II: 251-258).
IEEE DOI
0408
BibRef
Li, J.M.[Jian-Min],
Mang, B.[Bo],
Lin, F.[Fuzong],
A new strategy for selecting working sets applied in SMO,
ICPR02(III: 427-430).
IEEE DOI
0211
BibRef
Torkkola, K.,
Learning feature transforms is an easier problem than feature selection,
ICPR02(II: 104-107).
IEEE DOI
0211
BibRef
Al-Ani, A.,
Deriche, M.,
Feature selection using a mutual information based measure,
ICPR02(IV: 82-85).
IEEE DOI
0211
BibRef
Vasconcelos, N.M.[Nuno M.],
Carneiro, G.[Gustavo],
What Is the Role of Independence for Visual Recognition?,
ECCV02(I: 297 ff.).
Springer DOI
0205
BibRef
Onnia, V.,
Tico, M.,
Saarinen, J.,
Feature Selection Method Using Neural Network,
ICIP01(I: 513-516).
IEEE DOI
0108
BibRef
Bins, J.[Jose],
Draper, B.A.[Bruce A.],
Feature Selection from Huge Feature Sets,
ICCV01(II: 159-165).
IEEE DOI
0106
BibRef
Smits, P.C.,
Annoni, A.,
Cost-based Feature Subset Selection for Interactive Image Analysis,
ICPR00(Vol II: 386-389).
IEEE DOI
0009
BibRef
Holz, H.J.,
Loew, M.H.,
Validation of Relative Feature Importance Using a Natural Data Set,
ICPR00(Vol II: 414-417).
IEEE DOI
0009
BibRef
Baesens, B.,
Viaene, S.,
Vanthienen, J.,
Dedene, G.,
Wrapped Feature Selection by Means of Guided Neural Network
Optimisation,
ICPR00(Vol II: 113-116).
IEEE DOI
0009
BibRef
Xuan, G.,
Peiqi, C.,
Minhui, W.,
Bhattacharyya Distance Feature Selection,
ICPR96(II: 195-199).
IEEE DOI
9608
(Tongji Univ., PRC)
BibRef
Yamakawa, H.,
Matchability Oriented Feature Selection for
Recognition Structure Learning,
ICPR96(IV: 123-127).
IEEE DOI
9608
(Real World Computing Partners., J)
BibRef
Kuncheva, L.I.[Ludmila I.],
Kounchev, R.K.[Roumen K.],
On feature selection via rough sets,
CAIP95(625-630).
Springer DOI
9509
BibRef
Mao, J.C.[Jian-Chang],
Mohiuddin, K.M.,
Jain, A.K.,
Parsimonious network design and feature selection through node pruning,
ICPR94(B:622-624).
IEEE DOI
9410
BibRef
Raudys, S.J.[Sarunas J.],
Accuracy of feature selection and extraction in statistical and neural
net pattern classification,
ICPR92(II:62-70).
IEEE DOI
9208
BibRef
Earlier:
On the accuracy of a bootstrap estimate of the classification error,
ICPR88(II: 1230-1232).
IEEE DOI
8811
BibRef
Kira, K., and
Rendell, L.A.,
A Practical Approach to Feature Selection,
ConferenceNinth Conference on Machine Learning, 1992, pp. 249-256.
RELIEF Algorithm
See also Machine Learning Research: Four Current Directions.
BibRef
9200
Sheinvald, J.,
Dom, B.,
Niblack, W.,
A modeling approach to feature selection,
ICPR90(I: 535-539 vol).
IEEE DOI
9006
BibRef
Chen, M.H.,
Lee, D.,
Pavlidis, T.,
Some results on feature detection using residual analysis,
ICPR90(I: 668-670).
IEEE DOI
9006
BibRef
Dom, B.,
Niblack, W.,
Sheinvald, J.,
Feature selection with stochastic complexity,
CVPR89(241-248).
IEEE DOI
0403
BibRef
Blanz, W.E.,
Nonparametric feature selection for multiple class processes,
ICPR88(II: 1032-1035).
IEEE DOI
8811
BibRef
Selkainaho, K.,
Pakkinen, J.,
ICC statistic as criterion for classification and feature selection,
ICPR88(II: 709-711).
IEEE DOI
8811
BibRef
Xu, L.[Lei],
Yan, P.F.[Ping-Fan],
Chang, T.[Tong],
Best first strategy for feature selection,
ICPR88(II: 706-708).
IEEE DOI
8811
BibRef
Bobrowski, L.,
Feature selection based on some homogeneity coefficient,
ICPR88(I: 544-546).
IEEE DOI
8811
BibRef
Segen, J.,
Clumping with feature selection and Occam's razor,
ICPR88(I: 541-543).
IEEE DOI
8811
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Sparse Feature Selection .