16.7.3.3 Detecting Anomalies, Abnormal Event, Abnormal Behavior, or Rare Events, Rare Behaviors

Chapter Contents (Back)
Anomaly Detection. Abnormal Event. Unusual Event. Rare Event. Event Detection. Anomalous event

Scarth, G.B.[Gordon B.], Somorjai, R.L.,
Method and apparatus for detection of events or novelties over a change of state,
US_Patent6,064,770, May 16, 2000
WWW Link. BibRef 0005

Piciarelli, C.[Claudio], Foresti, G.L.[Gian Luca],
On-line trajectory clustering for anomalous events detection,
PRL(27), No. 15, November 2006, pp. 1835-1842.
Elsevier DOI 0609
trajectory clustering; On-line clustering; Behaviour analysis BibRef

Piciarelli, C.[Claudio], Micheloni, C.[Christian], Foresti, G.L.[Gian Luca],
Trajectory-Based Anomalous Event Detection,
CirSysVideo(18), No. 11, November 2008, pp. 1544-1554.
IEEE DOI 0811
BibRef
And:
Anomalous trajectory patterns detection,
ICPR08(1-4).
IEEE DOI 0812
BibRef
And:
Support vector machines for robust trajectory clustering,
ICIP08(2540-2543).
IEEE DOI 0810
BibRef
And:
Kernel-based unsupervised trajectory clusters discovery,
VS08(xx-yy). 0810
BibRef
Earlier:
An Autonomous Surveillance Vehicle for People Tracking,
CIAP05(1140-1147).
Springer DOI 0509
See also Detecting moving people in video streams. BibRef

Piciarelli, C.[Claudio], Foresti, G.L.[Gian Luca],
Surveillance-Oriented Event Detection in Video Streams,
IEEE_Int_Sys(26), No. 3, May-June 2011, pp. 32-41.
IEEE DOI 1107
BibRef
Earlier:
Anomalous trajectory detection using support vector machines,
AVSBS07(153-158).
IEEE DOI 0709
Use Explicit event analysis or Anomaly detection. BibRef

Han, S.J.[Sang-Jun], Cho, S.B.[Sung-Bae],
Evolutionary neural networks for anomaly detection based on the behavior of a program,
SMC-B(36), No. 3, June 2006, pp. 559-570.
IEEE DOI 0606
Really other kinds of anomalies. BibRef

Hu, W.M.[Wei-Ming], Xiao, X.J.[Xue-Juan], Fu, Z.Y.[Zhou-Yu], Xie, D., Tan, T.N.[Tie-Niu], Maybank, S.J.[Steve J.],
A System for Learning Statistical Motion Patterns,
PAMI(28), No. 9, September 2006, pp. 1450-1464.
IEEE DOI 0608
Learn patterns for anomaly detection and prediction of behaviors. Track, then learn patterns of trajectories. Detect anomalies. Some comparisons with others: See also Learning the Distribution of Object Trajectories for Event Recognition. See also Learning Spatio-temporal Patterns for Predicting Object Behaviour. See also Learning Semantic Scene Models From Observing Activity in Visual Surveillance. See also Multi feature path modeling for video surveillance. (these do not use probability distributions on the motion patterns) See also Learning Patterns of Activity Using Real-Time Tracking. See also Application of the Self-Organizing Map to Trajectory Classification. See also Utilizing Learned Motion Patterns to Robustly Track Persons. BibRef

Markou, M.[Markos], Singh, S.[Sameer],
A Neural Network-Based Novelty Detector for Image Sequence Analysis,
PAMI(28), No. 10, October 2006, pp. 1664-1677.
IEEE DOI 0609
BibRef

Laur, P.A.[Pierre-Alain], Nock, R.[Richard], Symphor, J.E.[Jean-Emile], Poncelet, P.[Pascal],
Mining evolving data streams for frequent patterns,
PR(40), No. 2, February 2007, pp. 492-503.
Elsevier DOI 0611
BibRef
Earlier: A2, A1, A3, Only:
Statistical Borders for Incremental Mining,
ICPR06(III: 212-215).
IEEE DOI 0609
Data streams; Concentration inequalities; Precision; Recall; Accuracy. BibRef

Huang, Y.[Yan], Pei, J.[Jian], Xiong, H.[Hui],
Mining Co-Location Patterns with Rare Events from Spatial Data Sets,
GeoInfo(10), No. 3, September 2006, pp. 239-260.
Springer DOI 0703
BibRef

Boiman, O.[Oren], Irani, M.[Michal],
Detecting Irregularities in Images and in Video,
IJCV(74), No. 1, August 2007, pp. 17-31.
Springer DOI 0705
BibRef ICCV05(I: 462-469).
IEEE DOI 0510
Award, Marr Prize, HM. Irregular defined in context. BibRef

Adam, A.[Amit], Rivlin, E.[Ehud], Shimshoni, I.[Ilan], Reinitz, D.[Daviv],
Robust Real-Time Unusual Event Detection using Multiple Fixed-Location Monitors,
PAMI(30), No. 3, March 2008, pp. 555-560.
IEEE DOI 0801
Multiple local monitors which collect low-level statistics, each issues an alert which are integrated to the result. BibRef

Xiang, T.[Tao], Gong, S.G.[Shao-Gang],
Video Behavior Profiling for Anomaly Detection,
PAMI(30), No. 5, May 2008, pp. 893-908.
IEEE DOI 0803
BibRef
Earlier:
Optimal Dynamic Graphs for Video Content Analysis,
BMVC06(I:177).
PDF File. 0609
BibRef
Earlier:
Online Video Behaviour Abnormality Detection Using Reliability Measure,
BMVC05(xx-yy).
HTML Version. 0509
BibRef
Earlier:
Activity Based Video Content Trajectory Representation and Segmentation,
BMVC04(xx-yy).
HTML Version. 0508
group behaviors through learning. Find anomalies. BibRef

Li, J.[Jian], Gong, S.G.[Shao-Gang], Xiang, T.[Tao],
Learning Behavioural Context,
IJCV(97), No. 3, May 2012, pp. 276-304.
WWW Link. 1203
BibRef
Earlier:
Global Behaviour Inference using Probabilistic Latent Semantic Analysis,
BMVC08(xx-yy).
PDF File. 0809
Complex behavior recogniton and anomaly detection. Behavior spatiao, correlation, temporal context. See also Quantifying and Transferring Contextual Information in Object Detection. BibRef

Xiang, T.[Tao], Gong, S.G.[Shao-Gang],
Model Selection for Unsupervised Learning of Visual Context,
IJCV(69), No. 2, August 2006, pp. 181-201.
Springer DOI 0606
Choosing the model for learning. Bayesian Information Criterion. (small data sets) Completed Likelihood Akaike's Information Criterion. (otherwise) See also Optimising dynamic graphical models for video content analysis. BibRef

Xiang, T.[Tao], Gong, S.G.[Shao-Gang],
Incremental and adaptive abnormal behaviour detection,
CVIU(111), No. 1, July 2008, pp. 59-73.
Elsevier DOI 0711
Behaviour analysis and recognition; Visual surveillance; Abnormality detection; Incremental learning; Likelihood ratio test; Dynamic scene modelling; Dynamic Bayesian networks BibRef

Xiang, T.[Tao], Gong, S.G.[Shao-Gang], Parkinson, D.,
Autonomous Visual Events Detection and Classification without Explicit Object-Centred Segmentation and Tracking,
BMVC02(Poster Session). 0208
BibRef

Fu, Y.W.[Yan-Wei], Hospedales, T.M.[Timothy M.], Xiang, T.[Tao], Gong, S.G.[Shao-Gang],
Learning Multimodal Latent Attributes,
PAMI(36), No. 2, February 2014, pp. 303-316.
IEEE DOI 1402
BibRef
Earlier:
Attribute Learning for Understanding Unstructured Social Activity,
ECCV12(IV: 530-543).
Springer DOI 1210
learning (artificial intelligence) See also Unsupervised Domain Adaptation for Zero-Shot Learning. See also Transductive Multi-label Zero-shot Learning. BibRef

Hospedales, T.M.[Timothy M.], Gong, S.G.[Shao-Gang], Xiang, T.[Tao],
A Unifying Theory of Active Discovery and Learning,
ECCV12(V: 453-466).
Springer DOI 1210
BibRef

Li, J.[Jian], Hospedales, T.M.[Timothy M.], Gong, S.G.[Shao-Gang], Xiang, T.[Tao],
Learning Rare Behaviours,
ACCV10(II: 293-307).
Springer DOI 1011
BibRef

Xu, X.[Xun], Hospedales, T.M.[Timothy M.], Gong, S.G.[Shao-Gang],
Transductive Zero-Shot Action Recognition by Word-Vector Embedding,
IJCV(123), No. 3, July 2017, pp. 309-333.
Springer DOI 1706
BibRef
Earlier:
Semantic embedding space for zero-shot action recognition,
ICIP15(63-67)
IEEE DOI 1512
action recognition; zero-shot learning BibRef

Pruteanu-Malinici, I.[Iulian], Carin, L.[Lawrence],
Infinite Hidden Markov Models for Unusual-Event Detection in Video,
IP(17), No. 5, May 2008, pp. 811-822.
IEEE DOI 0804
BibRef
Earlier:
Infinite Hidden Markov Models and ISA Features for Unusual-Event Detection in Video,
ICIP07(V: 137-140).
IEEE DOI 0709
BibRef

Sudo, K.[Kyoko], Osawa, T.[Tatsuya], Wakabayashi, K.[Kaoru], Koike, H.[Hideki], Arakawa, K.[Kenichi],
Estimating Anomality of the Video Sequences for Surveillance Using 1-Class SVM,
IEICE(E91-D), No. 7, July 2008, pp. 1929-1936.
DOI Link 0807
BibRef

Jager, M., Knoll, C., Hamprecht, F.A.,
Weakly Supervised Learning of a Classifier for Unusual Event Detection,
IP(17), No. 9, September 2008, pp. 1700-1708.
IEEE DOI 0810
BibRef

Tziakos, I.[Ioannis], Cavallaro, A.[Andrea], Xu, L.Q.[Li-Qun],
Video event segmentation and visualisation in non-linear subspace,
PRL(30), No. 2, 15 January 2009, pp. 123-131,.
Elsevier DOI 0804
Unusual event detection; Dimensionality reduction; Laplacian eigenmaps BibRef

Singh, S., Tu, H., Donat, W., Pattipati, K., Willett, P.,
Anomaly Detection via Feature-Aided Tracking and Hidden Markov Models,
SMC-A(39), No. 1, January 2009, pp. 144-159.
IEEE DOI 0901
BibRef

Monachino, C.A.[Cheryl A.], Paradis, R.D.[Rosemary D.],
Scene analysis surveillance system,
US_Patent7,310,442, Dec 18, 2007
WWW Link. BibRef 0712

Silva, J.[Jorge], Willett, R.M.[Rebecca M.],
Hypergraph-Based Anomaly Detection of High-Dimensional Co-Occurrences,
PAMI(31), No. 3, March 2009, pp. 563-569.
IEEE DOI 0902
Small training set. Find anomalies. Applied to non-image tasks. BibRef

Rao, C.[Chinmay], Ray, A.[Asok], Sarkar, S.[Soumik], Yasar, M.[Murat],
Review and comparative evaluation of symbolic dynamic filtering for detection of anomaly patterns,
SIViP(3), No. 2, June 2009, pp. xx-yy.
Springer DOI 0903
Deviation from nominal behavior. PR method, not applied directly to images. BibRef

Jiang, F.[Fan], Wu, Y.[Ying], Katsaggelos, A.K.[Aggelos K.],
A Dynamic Hierarchical Clustering Method for Trajectory-Based Unusual Video Event Detection,
IP(18), No. 4, April 2009, pp. 907-913.
IEEE DOI 0903
BibRef
Earlier:
Abnormal Event Detection from Surveillance Video by Dynamic Hierarchical Clustering,
ICIP07(V: 145-148).
IEEE DOI 0709
BibRef

Yuan, J.S.[Jun-Song], Liu, Z.C.[Zi-Cheng], Wu, Y.[Ying],
Discriminative Video Pattern Search for Efficient Action Detection,
PAMI(33), No. 9, September 2011, pp. 1728-1743.
IEEE DOI 1109
BibRef
Earlier:
Discriminative subvolume search for efficient action detection,
CVPR09(2442-2449).
IEEE DOI 0906
Actions as spatio-temporal patterns. Find re-occurrence of such patterns, with intra-pattern variation. Does not require human detection and tracking. BibRef

Cong, Y.[Yang], Yuan, J.S.[Jun-Song], Liu, J.[Ji],
Abnormal Event Detection in Crowded Scenes Using Sparse Representation,
PR(46), No. 7, July 2013, pp. 1851-1864.
Elsevier DOI 1303
BibRef
Earlier:
Sparse reconstruction cost for abnormal event detection,
CVPR11(3449-3456).
IEEE DOI 1106
Sparse representation; Abnormal event; Crowd analysis; Video surveillance See also Learning Actionlet Ensemble for 3D Human Action Recognition. BibRef

Zhu, X.B.[Xiao-Bin], Liu, J.[Jing], Wang, J.Q.[Jin-Qiao], Li, C.S.[Chang-Sheng], Lu, H.Q.[Han-Qing],
Sparse Representation for Robust Abnormality Detection in Crowded Scenes,
PR(47), No. 5, 2014, pp. 1791-1799.
Elsevier DOI 1402
Nonnegative matrix factorization BibRef

Dong, Q., Wu, Y., Hu, Z.,
Pointwise Motion Image (PMI): A Novel Motion Representation and Its Applications to Abnormality Detection and Behavior Recognition,
CirSysVideo(19), No. 3, March 2009, pp. 407-416.
IEEE DOI 0903
BibRef

Khalid, S.[Shehzad],
Motion-based behaviour learning, profiling and classification in the presence of anomalies,
PR(43), No. 1, January 2010, pp. 173-186,.
Elsevier DOI 0909
Object trajectory; Dimensionality reduction; Trajectory modelling; Trajectory clustering; Event mining; Anomaly detection; Motion recognition BibRef

Khalid, S.[Shehzad],
Activity classification and anomaly detection using m-mediods based modelling of motion patterns,
PR(43), No. 10, October 2010, pp. 3636-3647.
Elsevier DOI 1007
Object trajectory; Dimensionality reduction; Trajectory modelling; Event mining; Anomaly detection; Motion recognition BibRef

Khalid, S.[Shehzad], Razzaq, S.[Shahid],
Frameworks for multivariate m-mediods based modeling and classification in Euclidean and general feature spaces,
PR(45), No. 3, March 2012, pp. 1092-1103.
Elsevier DOI 1111
Multivariate m-mediods; Classification; Anomaly detection; Data mining; Dynamic modeling BibRef

Loy, C.C.[Chen Change], Xiang, T.[Tao], Gong, S.G.[Shao-Gang],
Time-Delayed Correlation Analysis for Multi-Camera Activity Understanding,
IJCV(90), No. 1, October 2010, pp. xx-yy.
Springer DOI 1007
BibRef
Earlier:
Modelling Activity Global Temporal Dependencies Using Time Delayed Probabilistic Graphical Model,
ICCV09(120-127).
IEEE DOI 0909
BibRef
And:
Modelling Multi-object Activity by Gaussian Processes,
BMVC09(xx-yy).
PDF File. 0909
BibRef
And:
Multi-camera activity correlation analysis,
CVPR09(1988-1995).
IEEE DOI 0906
BibRef
Earlier:
From local temporal correlation to global anomaly detection,
MLMotion08(xx-yy). 0810
BibRef

Loy, C.C.[Chen Change], Xiang, T.[Tao], Gong, S.G.[Shao-Gang],
Detecting and discriminating behavioural anomalies,
PR(44), No. 1, January 2011, pp. 117-132.
Elsevier DOI 1003
Anomaly detection; Dynamic Bayesian Networks; Visual surveillance; Behavior decomposition; Duration modelling BibRef

Zhu, X.T.[Xia-Tian], Loy, C.C.[Chen Change], Gong, S.G.[Shao-Gang],
Learning from Multiple Sources for Video Summarisation,
IJCV(117), No. 3, May 2016, pp. 247-268.
Springer DOI 1605
BibRef
Earlier: A1, A3, A2:
Comparing Visual Feature Coding for Learning Disjoint Camera Dependencies,
BMVC12(94).
DOI Link 1301
BibRef

Venkatesh, S., Konrad, J., Jodoin, P.M.,
Video Anomaly Identification,
SPMag(27), No. 5, 2010, pp. 18-33.
IEEE DOI 1003
BibRef

Moshtaghi, M.[Masud], Havens, T.C.[Timothy C.], Bezdek, J.C.[James C.], Park, L.[Laurence], Leckie, C.[Christopher], Rajasegarar, S.[Sutharshan], Keller, J.M.[James M.], Palaniswami, M.[Marimuthu],
Clustering ellipses for anomaly detection,
PR(44), No. 1, January 2011, pp. 55-69.
Elsevier DOI 1003
Cluster analysis; Elliptical anomalies in wireless sensor networks; Reordered dissimilarity images; Similarity of ellipsoids; Single linkage clustering; Visual assessment BibRef

Benezeth, Y.[Yannick], Jodoin, P.M.[Pierre-Marc], Saligrama, V.[Venkatesh],
Abnormality detection using low-level co-occurring events,
PRL(32), No. 3, 1 February 2011, pp. 423-431.
Elsevier DOI 1101
Video surveillance; Abnormality detection; Motion detection BibRef

Benezeth, Y., Jodoin, P.M., Saligrama, V., Rosenberger, C.,
Abnormal events detection based on spatio-temporal co-occurences,
CVPR09(2458-2465).
IEEE DOI 0906
BibRef

Ermis, E.B.[Erhan Baki], Saligrama, V.[Venkatesh], Jodoin, P.M.[Pierre-Marc], Konrad, J.[Janusz],
Motion segmentation and abnormal behavior detection via behavior clustering,
ICIP08(769-772).
IEEE DOI 0810
BibRef
And:
Abnormal behavior detection and behavior matching for networked cameras,
ICDSC08(1-10).
IEEE DOI 0809
BibRef

Chen, D.Y.[Duan-Yu], Huang, P.C.[Po-Chung],
Motion-based unusual event detection in human crowds,
JVCIR(22), No. 2, February 2011, pp. 178-186.
Elsevier DOI 1102
Human crowd analysis; Unusual event detection; Video surveillance; Optical flows; Unsupervised clustering; Force field model; Adjacency matrix; Spatial-temporal analysis BibRef

Tung, F.[Frederick], Zelek, J.S.[John S.], Clausi, D.A.[David A.],
Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance,
IVC(29), No. 4, March 2011, pp. 230-240.
Elsevier DOI 1102
Video surveillance; Behaviour understanding; Trajectory analysis; Anomaly detection BibRef

Jiang, F.[Fan], Yuan, J.S.[Jun-Song], Tsaftaris, S.A.[Sotirios A.], Katsaggelos, A.K.[Aggelos K.],
Anomalous video event detection using spatiotemporal context,
CVIU(115), No. 3, March 2011, pp. 323-333.
Elsevier DOI 1103
BibRef
Earlier:
Video anomaly detection in spatiotemporal context,
ICIP10(705-708).
IEEE DOI 1009
Video surveillance; Anomaly detection; Data mining; Clustering; Context BibRef

Tran, D.[Du], Yuan, J.S.[Jun-Song], Forsyth, D.A.,
Video Event Detection: From Subvolume Localization to Spatiotemporal Path Search,
PAMI(36), No. 2, February 2014, pp. 404-416.
IEEE DOI 1402
BibRef
Earlier: A1, A3, Only:
Optimal spatio-temporal path discovery for video event detection,
CVPR11(3321-3328).
IEEE DOI 1106
image motion analysis BibRef

Yan, X.[Xinchen], Yuan, J.S.[Jun-Song], Liang, H.[Hui],
Efficient Online Spatio-Temporal Filtering for Video Event Detection,
VECTaR14(769-785).
Springer DOI 1504
BibRef

Liu, C.[Chang], Wang, G.J.[Gui-Jin], Ning, W.X.[Wen-Xin], Lin, X.G.[Xing-Gang],
Drastic Anomaly Detection in Video Using Motion Direction Statistics,
IEICE(E94-D), No. 8, August 2011, pp. 1700-1707.
WWW Link. 1108
BibRef

Liu, C.[Chang], Wang, G.J.[Gui-Jin], Ning, W.X.[Wen-Xin], Lin, X.G.[Xing-Gang], Li, L.[Liang], Liu, Z.[Zhou],
Anomaly detection in surveillance video using motion direction statistics,
ICIP10(717-720).
IEEE DOI 1009
BibRef

Ntalampiras, S., Potamitis, I., Fakotakis, N.,
Probabilistic Novelty Detection for Acoustic Surveillance Under Real-World Conditions,
MultMed(13), No. 4, 2011, pp. 713-719.
IEEE DOI 1108
BibRef

Moore, B.E.[Brian E.], Ali, S.[Saad], Mehran, R.[Ramin], Shah, M.[Mubarak],
Visual Crowd Surveillance Through a Hydrodynamics Lens,
CACM(54), No. 12, December 2011, pp. 64-73.
DOI Link 1112
People in high-density crowds appear to move with the flow of the crowd, like particles in a liquid. BibRef

Mehran, R.[Ramin], Moore, B.E.[Brian E.], Shah, M.[Mubarak],
A Streakline Representation of Flow in Crowded Scenes,
ECCV10(III: 439-452).
Springer DOI 1009
BibRef

Mehran, R.[Ramin], Oyama, A.[Alexis], Shah, M.[Mubarak],
Abnormal crowd behavior detection using social force model,
CVPR09(935-942).
IEEE DOI 0906
BibRef

Bertini, M.[Marco], del Bimbo, A.[Alberto], Seidenari, L.[Lorenzo],
Multi-scale and real-time non-parametric approach for anomaly detection and localization,
CVIU(116), No. 3, March 2012, pp. 320-329.
Elsevier DOI 1201
BibRef
Earlier: A3, A1, A2:
Dense spatio-temporal features for non-parametric anomaly detection and localization,
ARTEMIS10(27-32).
DOI Link 1111
Video surveillance; Anomaly detection; Space-time features BibRef

Wiliem, A.[Arnold], Madasu, V.[Vamsi], Boles, W.[Wageeh], Yarlagadda, P.[Prasad],
A suspicious behaviour detection using a context space model for smart surveillance systems,
CVIU(116), No. 2, February 2012, pp. 194-209.
Elsevier DOI 1201
BibRef
Earlier:
An Update-Describe Approach for Human Action Recognition in Surveillance Video,
DICTA10(270-275).
IEEE DOI 1012
BibRef
Earlier:
A Context-Based Approach for Detecting Suspicious Behaviours,
DICTA09(146-153).
IEEE DOI 0912
BibRef
Earlier:
Detecting Uncommon Trajectories,
DICTA08(398-404).
IEEE DOI 0812
Suspicious behaviour; Context; Surveillance system; Security BibRef

Sharif, M.H.[Md. Haidar], Djeraba, C.[Chabane],
An entropy approach for abnormal activities detection in video streams,
PR(45), No. 7, July 2012, pp. 2543-2561.
Elsevier DOI 1203
BibRef
Earlier:
PedVed: Pseudo Euclidian Distances for Video Events Detection,
ISVC09(II: 674-685).
Springer DOI 0911
BibRef
And:
A Simple Method for Eccentric Event Espial Using Mahalanobis Metric,
CIARP09(417-424).
Springer DOI 0911
Abnormality; Circular variance; Degree of randomness; Entropy E.g. escalator monitoring BibRef

Sharif, M.H.[M. Haidar], Ihaddadene, N.[Nacim], Djeraba, C.[Chabane],
Covariance Matrices for Crowd Behaviour Monitoring on the Escalator Exits,
ISVC08(II: 470-481).
Springer DOI 0812
BibRef

Loy, C.C.[Chen Change], Xiang, T.[Tao], Gong, S.G.[Shao-Gang],
Incremental Activity Modeling in Multiple Disjoint Cameras,
PAMI(34), No. 9, September 2012, pp. 1799-1813.
IEEE DOI 1208
BibRef
And:
Stream-Based Active Unusual Event Detection,
ACCV10(I: 161-175).
Springer DOI 1011
BibRef

Loy, C.C.[Chen Change], Hospedales, T.M.[Timothy M.], Xiang, T.[Tao], Gong, S.G.[Shao-Gang],
Stream-based joint exploration-exploitation active learning,
CVPR12(1560-1567).
IEEE DOI 1208
BibRef

Popoola, O.P., Wang, K.,
Video-Based Abnormal Human Behavior Recognition: A Review,
SMC-C(42), No. 6, November 2012, pp. 865-878.
IEEE DOI 1210
Survey, Human Activity. BibRef

Ouivirach, K.[Kan], Gharti, S.[Shashi], Dailey, M.N.[Matthew N.],
Incremental behavior modeling and suspicious activity detection,
PR(46), No. 3, March 2013, pp. 671-680.
Elsevier DOI 1212
Hidden Markov models; Incremental learning; Behavior clustering; Sufficient statistics; Anomaly detection; Bootstrapping BibRef

Varadarajan, J.[Jagannadan], Emonet, R.[Rémi], Odobez, J.M.[Jean-Marc],
A Sequential Topic Model for Mining Recurrent Activities from Long Term Video Logs,
IJCV(103), No. 1, May 2013, pp. 100-126.
Springer DOI 1305
BibRef

Emonet, R.[Remi], Varadarajan, J.[Jagannadan], Odobez, J.M.[Jean-Marc],
Temporal Analysis of Motif Mixtures Using Dirichlet Processes,
PAMI(36), No. 1, 2014, pp. 140-156.
IEEE DOI 1312
BibRef
Earlier:
Extracting and locating temporal motifs in video scenes using a hierarchical non parametric Bayesian model,
CVPR11(3233-3240).
IEEE DOI 1106
BibRef
Earlier: A2, A1, A3:
Probabilistic Latent Sequential Motifs: Discovering temporal activity patterns in video scenes,
BMVC10(xx-yy).
HTML Version. 1009
Bayesian modeling BibRef

Varadarajan, J.[Jagannadan], Odobez, J.M.[Jean-Marc],
Topic models for scene analysis and abnormality detection,
VS09(1338-1345).
IEEE DOI 0910
BibRef

Chen, C., Zhang, D., Castro, P.S., Li, N., Sun, L., Li, S., Wang, Z.,
iBOAT: Isolation-Based Online Anomalous Trajectory Detection,
ITS(14), No. 2, 2013, pp. 806-818.
IEEE DOI Global Positioning System; Roads; Trajectory; Anomalous trajectory detection 1307
BibRef

Yang, W.Q.[Wan-Qi], Gao, Y.[Yang], Cao, L.B.[Long-Bing],
TRASMIL: A local anomaly detection framework based on trajectory segmentation and multi-instance learning,
CVIU(117), No. 10, 2013, pp. 1273-1286.
Elsevier DOI 1309
Local anomaly detection BibRef

Roshtkhari, M.J.[Mehrsan Javan], Levine, M.D.[Martin D.],
An on-line, real-time learning method for detecting anomalies in videos using spatio-temporal compositions,
CVIU(117), No. 10, 2013, pp. 1436-1452.
Elsevier DOI 1309
BibRef
And:
Online Dominant and Anomalous Behavior Detection in Videos,
CVPR13(2611-2618)
IEEE DOI 1309
BibRef
Earlier:
A Multi-Scale Hierarchical Codebook Method for Human Action Recognition in Videos Using a Single Example,
CRV12(182-189).
IEEE DOI 1207
Video surveillance Anomaly detection BibRef

Roshtkhari, M.J.[Mehrsan Javan], Levine, M.[Martin],
Multiple Object Tracking Using Local Motion Patterns,
BMVC14(xx-yy).
HTML Version. 1410
BibRef

Roshtkhari, M.J.[Mehrsan Javan], Levine, M.D.[Martin D.],
Human activity recognition in videos using a single example,
IVC(31), No. 11, 2013, pp. 864-876.
Elsevier DOI 1311
Action recognition BibRef

Thida, M.[Myo], Eng, H.L.[How-Lung], Remagnino, P.[Paolo],
Laplacian Eigenmap With Temporal Constraints for Local Abnormality Detection in Crowded Scenes,
Cyber(43), No. 6, 2013, pp. 2147-2156.
IEEE DOI 1312
feature extraction BibRef

Thida, M.[Myo], Eng, H.L.[How-Lung], Dorothy, M.[Monekosso], Remagnino, P.[Paolo],
Learning Video Manifold for Segmenting Crowd Events and Abnormality Detection,
ACCV10(I: 439-449).
Springer DOI 1011
BibRef

Li, W.X.[Wei-Xin], Mahadevan, V.[Vijay], Vasconcelos, N.M.[Nuno M.],
Anomaly Detection and Localization in Crowded Scenes,
PAMI(36), No. 1, 2014, pp. 18-32.
IEEE DOI 1312
Uses: See also Biologically Inspired Object Tracking Using Center-Surround Saliency Mechanisms. And model of normal behavior. BibRef

Mahadevan, V.[Vijay], Li, W.X.[Wei-Xin], Bhalodia, V.[Viral], Vasconcelos, N.M.[Nuno M.],
Anomaly detection in crowded scenes,
CVPR10(1975-1981).
IEEE DOI Video of talk:
WWW Link. 1006
BibRef

Lee, S.C.[Sung Chun], Nevatia, R.[Ram],
Hierarchical abnormal event detection by real time and semi-real time multi-tasking video surveillance system,
MVA(25), No. 1, January 2014, pp. 133-143.
Springer DOI 1402
BibRef

Mo, X.[Xuan], Monga, V., Bala, R., Fan, Z.G.[Zhi-Gang],
Adaptive Sparse Representations for Video Anomaly Detection,
CirSysVideo(24), No. 4, April 2014, pp. 631-645.
IEEE DOI 1405
greedy algorithms Transportation domain to identify unusual patterns such as traffic violations, accidents, unsafe driver behavior, street crime, and other suspicious activities. BibRef

Kim, J.[Jiman], Kim, D.J.[Dai-Jin],
Accurate Static Region Classification Using Multiple Cues for ARO Detection,
SPLetters(21), No. 8, August 2014, pp. 937-941.
IEEE DOI 1406
Conferences BibRef

Kim, J.[Jiman], Kang, B.N.[Bong-Nam], Wang, H.[Hai], Kim, D.J.[Dai-Jin],
Abnormal Object Detection Using Feedforward Model and Sequential Filters,
AVSS12(70-75).
IEEE DOI 1211
BibRef

Laxhammar, R., Falkman, G.,
Online Learning and Sequential Anomaly Detection in Trajectories,
PAMI(36), No. 6, June 2014, pp. 1158-1173.
IEEE DOI 1406
Algorithm design and analysis BibRef

Song, L., Jiang, F., Shi, Z., Molina, R., Katsaggelos, A.K.,
Toward Dynamic Scene Understanding by Hierarchical Motion Pattern Mining,
ITS(15), No. 3, June 2014, pp. 1273-1285.
IEEE DOI 1407
Hidden Markov models BibRef

Alvar, M.[Manuel], Torsello, A.[Andrea], Sanchez-Miralles, A.[Alvaro], Armingol, J.M.[José María],
Abnormal behavior detection using dominant sets,
MVA(25), No. 5, July 2014, pp. 1351-1368.
Springer DOI 1407
BibRef

Kang, K.[Kai], Liu, W.B.[Wei-Bin], Xing, W.W.[Wei-Wei],
Motion Pattern Study and Analysis from Video Monitoring Trajectory,
IEICE(E97-D), No. 6, June 2014, pp. 1574-1582.
WWW Link. 1407
Abnormality detection. BibRef

Wan, Y.[Yiwen], Yang, T.I.[Tze-I], Keathly, D., Buckles, B.,
Dynamic scene modelling and anomaly detection based on trajectory analysis,
IET-ITS(8), No. 6, September 2014, pp. 526-533.
DOI Link 1411
pattern clustering BibRef

Huang, D.Y.[Deng-Yuan], Chen, C.H.[Chao-Ho], Chen, T.Y.[Tsong-Yi], Hu, W.C.[Wu-Chih], Chen, B.C.[Bo-Cin],
Rapid detection of camera tampering and abnormal disturbance for video surveillance system,
JVCIR(25), No. 8, 2014, pp. 1865-1877.
Elsevier DOI 1411
Camera tampering BibRef

Huang, D.Y.[Deng-Yuan], Chen, C.H.[Chao-Ho], Chen, T.Y.[Tsong-Yi], Hu, W.C.[Wu-Chih], Feng, K.W.[Kai-Wei],
Vehicle detection and inter-vehicle distance estimation using single-lens video camera on urban/suburb roads,
JVCIR(46), No. 1, 2017, pp. 250-259.
Elsevier DOI 1706
Vehicle, detection BibRef

Hu, W.C.[Wu-Chih], Chen, C.H.[Chao-Ho], Chen, T.Y.[Tsong-Yi], Huang, D.Y.[Deng-Yuan], Wu, Z.C.[Zong-Che],
Moving object detection and tracking from video captured by moving camera,
JVCIR(30), No. 1, 2015, pp. 164-180.
Elsevier DOI 1507
Object detection BibRef

Talha, A.M.[Ayesha M.], Junejo, I.N.[Imran N.],
Dynamic scene understanding using temporal association rules,
IVC(32), No. 12, 2014, pp. 1102-1116.
Elsevier DOI 1412
Scene understanding. Spatio-temporal abnormalities in event analysis. BibRef

Ren, W.Y.[Wei-Ya], Li, G.H.[Guo-Hui], Sun, B.L.[Bo-Liang], Huang, K.H.[Kui-Hua],
Unsupervised kernel learning for abnormal events detection,
VC(31), No. 3, March 2015, pp. 245-255.
WWW Link. 1503
BibRef

Xiao, T., Zhang, C., Zha, H.,
Learning to Detect Anomalies in Surveillance Video,
SPLetters(22), No. 9, September 2015, pp. 1477-1481.
IEEE DOI 1503
Context modeling BibRef

Susan, S.[Seba], Hanmandlu, M.[Madasu],
Unsupervised detection of nonlinearity in motion using weighted average of non-extensive entropies,
SIViP(9), No. 3, March 2015, pp. 511-525.
Springer DOI 1503
Motion for detecting abnormal motion in videos. BibRef

Xu, J., Denman, S., Sridharan, S., Fookes, C.,
An Efficient and Robust System for Multiperson Event Detection in Real-World Indoor Surveillance Scenes,
CirSysVideo(25), No. 6, June 2015, pp. 1063-1076.
IEEE DOI 1506
Cameras BibRef

Abbasnejad, I., Sridharan, S., Denman, S., Fookes, C., Lucey, S.,
Complex Event Detection Using Joint Max Margin and Semantic Features,
DICTA16(1-8)
IEEE DOI 1701
BibRef
Earlier:
Learning Temporal Alignment Uncertainty for Efficient Event Detection,
DICTA15(1-8)
IEEE DOI 1603
Adaptation models. image representation BibRef

Umakanthan, S.[Sabanadesan], Denman, S.[Simon], Fookes, C.[Clinton], Sridharan, S.[Sridha],
Supervised Latent Dirichlet Allocation Models for Efficient Activity Representation,
DICTA14(1-6)
IEEE DOI 1502
BibRef
Earlier:
Multiple Instance Dictionary Learning for Activity Representation,
ICPR14(1377-1382)
IEEE DOI 1412
BibRef
Earlier:
Semi-Binary Based Video Features for Activity Representation,
DICTA13(1-7)
IEEE DOI 1402
feature extraction BibRef

Xu, J.X.[Jing-Xin], Denman, S.[Simon], Fookes, C.[Clinton], Sridharan, S.[Sridha],
Unusual Scene Detection Using Distributed Behaviour Model and Sparse Representation,
AVSS12(48-53).
IEEE DOI 1211
BibRef
Earlier:
Unusual Event Detection in Crowded Scenes Using Bag of LBPs in Spatio-Temporal Patches,
DICTA11(549-554).
IEEE DOI 1205
BibRef

Ryan, D.[David], Denman, S.[Simon], Fookes, C.[Clinton], Sridharan, S.[Sridha],
Textures of optical flow for real-time anomaly detection in crowds,
AVSBS11(230-235).
IEEE DOI 1111
See also Crowd Counting Using Group Tracking and Local Features. BibRef

Kwon, J.[Junseok], Lee, K.M.[Kyoung Mu],
A Unified Framework for Event Summarization and Rare Event Detection from Multiple Views,
PAMI(37), No. 9, September 2015, pp. 1737-1750.
IEEE DOI 1508
BibRef
Earlier:
A unified framework for event summarization and rare event detection,
CVPR12(1266-1273).
IEEE DOI 1208
Cameras BibRef

Zhang, Z.[Zhong], Liu, S.[Shuang], Zhang, Z.W.[Zhi-Wei],
Consistent Sparse Representation for Abnormal Event Detection,
IEICE(E98-D), No. 10, October 2015, pp. 1866-1870.
WWW Link. 1511
BibRef

Cheng, K.W.[Kai-Wen], Chen, Y.T.[Yie-Tarng], Fang, W.H.[Wen-Hsien],
Gaussian Process Regression-Based Video Anomaly Detection and Localization With Hierarchical Feature Representation,
IP(24), No. 12, December 2015, pp. 5288-5301.
IEEE DOI 1512
BibRef
Earlier:
Video anomaly detection and localization using hierarchical feature representation and Gaussian process regression,
CVPR15(2909-2917)
IEEE DOI 1510
Gaussian processes BibRef

Jiang, M.[Meng], Cui, P.[Peng], Faloutsos, C.,
Suspicious Behavior Detection: Current Trends and Future Directions,
IEEE_Int_Sys(31), No. 1, January 2016, pp. 31-39.
IEEE DOI 1602
open systems BibRef

Ahmadi, P., Tabandeh, M., Gholampour, I.,
Abnormal event detection and localisation in traffic videos based on group sparse topical coding,
IET-IP(10), No. 3, 2016, pp. 235-246.
DOI Link 1603
feature extraction BibRef

Zhang, Z., Mei, X., Xiao, B.,
Abnormal Event Detection via Compact Low-Rank Sparse Learning,
IEEE_Int_Sys(31), No. 2, March 2016, pp. 29-36.
IEEE DOI 1604
Event detection BibRef

Epaillard, E.[Elise], Bouguila, N.[Nizar],
Proportional data modeling with hidden Markov models based on generalized Dirichlet and Beta-Liouville mixtures applied to anomaly detection in public areas,
PR(55), No. 1, 2016, pp. 125-136.
Elsevier DOI 1604
Hidden Markov models BibRef

Fortunati, S.[Stefano], Gini, F.[Fulvio], Greco, M.S.[Maria S.], Farina, A.[Alfonso], Graziano, A.[Antonio], Giompapa, S.[Sofia],
An improvement of the state-of-the-art covariance-based methods for statistical anomaly detection algorithms,
SIViP(10), No. 4, April 2016, pp. 687-694.
Springer DOI 1604
BibRef

Ben Abdallah, A.C.[Ahmed Chamseddine], Gouiffčs, M.[Michčle], Lacassagne, L.[Lionel],
A modular system for global and local abnormal event detection and categorization in videos,
MVA(27), No. 4, May 2016, pp. 463-481.
Springer DOI 1605
BibRef

Choudhary, A.[Ayesha], Chaudhury, S.[Santanu],
Video analytics revisited,
IET-CV(10), No. 4, 2016, pp. 237-247.
DOI Link 1608
correlation theory BibRef

Choudhary, A.[Ayesha], Pal, M.[Manish], Banerjee, S.[Subhashis], Chaudhury, S.[Santanu],
Unusual Activity Analysis Using Video Epitomes and pLSA,
ICCVGIP08(390-397).
IEEE DOI 0812
BibRef

Hu, X., Hu, S., Huang, Y., Zhang, H., Wu, H.,
Video anomaly detection using deep incremental slow feature analysis network,
IET-CV(10), No. 4, 2016, pp. 258-265.
DOI Link 1608
video signal processing BibRef

Gunduz, A.E.[Ayse Elvan], Ongun, C.[Cihan], Temizel, T.T.[Tugba Taskaya], Temizel, A.[Alptekin],
Density aware anomaly detection in crowded scenes,
IET-CV(10), No. 5, 2016, pp. 374-381.
DOI Link 1609
BibRef
Earlier: A1, A3, A4, Only:
Pedestrian zone anomaly detection by non-parametric temporal modelling,
AVSS14(131-135)
IEEE DOI 1411
BibRef
Earlier: A2, A4, A3, Only:
Local anomaly detection in crowded scenes using Finite-Time Lyapunov Exponent based clustering,
AVSS14(331-336)
IEEE DOI 1411
feature extraction. Clustering algorithms BibRef

Blair, C.G., Robertson, N.M.,
Video Anomaly Detection in Real Time on a Power-Aware Heterogeneous Platform,
CirSysVideo(26), No. 11, November 2016, pp. 2109-2122.
IEEE DOI 1609
Algorithm design and analysis BibRef

Sun, Q.[Qianru], Liu, H.[Hong], Harada, T.[Tatsuya],
Online growing neural gas for anomaly detection in changing surveillance scenes,
PR(64), No. 1, 2017, pp. 187-201.
Elsevier DOI 1701
Anomaly detection BibRef

Xu, D.[Dan], Yan, Y.[Yan], Ricci, E.[Elisa], Sebe, N.[Nicu],
Detecting anomalous events in videos by learning deep representations of appearance and motion,
CVIU(156), No. 1, 2017, pp. 117-127.
Elsevier DOI 1702
Video surveillance BibRef

Xu, D.[Dan], Song, J.K.[Jing-Kuan], Alameda-Pineda, X., Ricci, E.[Elisa], Sebe, N.[Nicu],
Multi-Paced Dictionary Learning for cross-domain retrieval and recognition,
ICPR16(3228-3233)
IEEE DOI 1705
Dictionaries, Image reconstruction, Learning systems, Optimization, Silicon, Training, Training, data BibRef

Xu, D.[Dan], Ricci, E.[Elisa], Yan, Y.[Yan], Song, J.K.[Jing-Kuan], Sebe, N.[Nicu],
Learning Deep Representations of Appearance and Motion for Anomalous Event Detection,
BMVC15(xx-yy).
DOI Link 1601
BibRef

Kumar, D.[Dheeraj], Bezdek, J.C.[James C.], Rajasegarar, S.[Sutharshan], Leckie, C.[Christopher], Palaniswami, M.[Marimuthu],
A visual-numeric approach to clustering and anomaly detection for trajectory data,
VC(33), No. 3, March 2017, pp. 265-281.
Springer DOI 1702
BibRef

Singh, D.[Dinesh], Mohan, C.K.[C. Krishna],
Graph formulation of video activities for abnormal activity recognition,
PR(65), No. 1, 2017, pp. 265-272.
Elsevier DOI 1702
Abnormal activity recognition BibRef

Cosar, S., Donatiello, G., Bogorny, V., Garate, C., Alvares, L.O., Brémond, F.,
Toward Abnormal Trajectory and Event Detection in Video Surveillance,
CirSysVideo(27), No. 3, March 2017, pp. 683-695.
IEEE DOI 1703
Acceleration BibRef

Colque, R.V.H.M., Caetano, C., de Andrade, M.T.L., Schwartz, W.R.,
Histograms of Optical Flow Orientation and Magnitude and Entropy to Detect Anomalous Events in Videos,
CirSysVideo(27), No. 3, March 2017, pp. 673-682.
IEEE DOI 1703
Computer vision BibRef

Yu, B., Liu, Y., Sun, Q.,
A Content-Adaptively Sparse Reconstruction Method for Abnormal Events Detection With Low-Rank Property,
SMCS(47), No. 4, April 2017, pp. 704-716.
IEEE DOI 1704
Dictionaries BibRef

Bensch, R.[Robert], Scherf, N.[Nico], Huisken, J.[Jan], Brox, T.[Thomas], Ronneberger, O.[Olaf],
Spatiotemporal Deformable Prototypes for Motion Anomaly Detection,
IJCV(122), No. 3, May 2017, pp. 502-523.
Springer DOI 1704
BibRef
Earlier: A1, A4, A5, Only: BMVC15(xx-yy).
DOI Link 1601
BibRef

Leyva, R.[Roberto], Sanchez, V.[Victor], Li, C.T.[Chang-Tsun],
Video Anomaly Detection With Compact Feature Sets for Online Performance,
IP(26), No. 7, July 2017, pp. 3463-3478.
IEEE DOI 1706
Cameras, Data mining, Feature extraction, Optical imaging, Training, Video anomaly detection, online processing, video surveillance BibRef

Martin, R.A.[R. Abraham], Blackburn, L.[Landen], Pulsipher, J.[Joshua], Franke, K.[Kevin], Hedengren, J.D.[John D.],
Potential Benefits of Combining Anomaly Detection with View Planning for UAV Infrastructure Modeling,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Chebi, H., Acheli, D., Kesraoui, M.,
Strategy of detecting abnormal behaviors by fuzzy logic,
ISCV17(1-5)
IEEE DOI 1710
abnormal behavior detection, automatic processing, fuzzy logic, surveillance cameras, video streaming, video surveillance, Cameras, Fuzzy logic, Image motion analysis, BibRef

Fuse, T., Kamiya, K.,
Statistical Anomaly Detection in Human Dynamics Monitoring Using a Hierarchical Dirichlet Process Hidden Markov Model,
ITS(18), No. 11, November 2017, pp. 3083-3092.
IEEE DOI 1711
BibRef
Earlier: A2, A1:
Statistical Anomaly Detection for Monitoring of Human Dynamics,
Seamless15(93-98).
DOI Link 1508
Bayes methods, Hidden Markov models, Monitoring, Sociology, Anomaly detection, hidden Markov models, human dynamics, BibRef

Li, S.F.[Shi-Feng], Yang, Y.Q.[Yu-Qiang], Liu, C.X.[Chun-Xiao],
Anomaly detection based on two global grid motion templates,
SP:IC(60), No. 1, 2018, pp. 6-12.
Elsevier DOI 1712
Anomaly detection BibRef


Masoudirad, S.M., Hadadnia, J.,
Anomaly detection in video using two-part sparse dictionary in 170 FPS,
IPRIA17(133-139)
IEEE DOI 1712
feature extraction, image motion analysis, object detection, pedestrians, sensitivity analysis, video coding, Sparse Coding BibRef

Turchini, F.[Francesco], Seidenari, L.[Lorenzo], del Bimbo, A.[Alberto],
Convex Polytope Ensembles for Spatio-Temporal Anomaly Detection,
CIAP17(I:174-184).
Springer DOI 1711
Improve surveillance monitoring. BibRef

Halbe, M.[Madhura], Vyas, V.[Vibha], Vaidya, Y.M.[Yogita M.],
Abnormal Crowd Behavior Detection Based on Combined Approach of Energy Model and Threshold,
PReMI17(187-195).
Springer DOI 1711
BibRef

Smeureanu, S.[Sorina], Ionescu, R.T.[Radu Tudor], Popescu, M.[Marius], Alexe, B.[Bogdan],
Deep Appearance Features for Abnormal Behavior Detection in Video,
CIAP17(II:779-789).
Springer DOI 1711
BibRef

Vignesh, K., Yadav, G., Sethi, A.,
Abnormal Event Detection on BMTT-PETS 2017 Surveillance Challenge,
PETS17(2161-2168)
IEEE DOI 1709
Cameras, Feature extraction, Histograms, Support vector machines, Surveillance, Tracking, Videos BibRef

Lawson, W., Bekele, E., Sullivan, K.,
Finding Anomalies with Generative Adversarial Networks for a Patrolbot,
DeepLearnRV17(484-485)
IEEE DOI 1709
Anomaly detection, Cameras, Gallium nitride, Image reconstruction, Robots, Training BibRef

Abuolaim, A.A.[Abdullah A.], Leow, W.K.[Wee Kheng], Varadarajan, J.[Jagannadan], Ahuja, N.[Narendra],
On the Essence of Unsupervised Detection of Anomalous Motion in Surveillance Videos,
CAIP17(I: 160-171).
Springer DOI 1708
BibRef

Munawar, A., Vinayavekhin, P., Magistris, G.D.,
Spatio-Temporal Anomaly Detection for Industrial Robots through Prediction in Unsupervised Feature Space,
WACV17(1017-1025)
IEEE DOI 1609
Clustering algorithms, Feature extraction, Image color analysis, Service robots, Surveillance, Visualization BibRef

Varadarajan, J.[Jagannadan], Subramanian, R., Ahuja, N., Moulin, P., Odobez, J.M.[Jean-Marc],
Active Online Anomaly Detection Using Dirichlet Process Mixture Model and Gaussian Process Classification,
WACV17(615-623)
IEEE DOI 1609
Gaussian processes, Junctions, Labeling, Mixture models, Surveillance, Trajectory, Videos BibRef

Maiorano, F., Petrosino, A.,
Granular trajectory based anomaly detection for surveillance,
ICPR16(2066-2072)
IEEE DOI 1705
Real-time systems, Rough sets, Surveillance, Training, Trajectory, Granular Computation, Online Anomaly Detection, Outlier Detection, Rough Sets, Surveillance BibRef

Bao, T.L.[Tian-Long], Ding, C.H.[Chun-Hui], Karmoshi, S.[Saleem], Zhu, M.[Ming],
Video Anomaly Detection Based on Adaptive Multiple Auto-Encoders,
ISVC16(II: 83-91).
Springer DOI 1701
BibRef

del Giorno, A.[Allison], Bagnell, J.A.[J. Andrew], Hebert, M.[Martial],
A Discriminative Framework for Anomaly Detection in Large Videos,
ECCV16(V: 334-349).
Springer DOI 1611
BibRef

Zhu, Z.P.[Zi-Ping], Wang, J.J.[Jing-Jing], Yu, N.H.[Neng-Hai],
Anomaly detection via 3D-HOF and fast double sparse representation,
ICIP16(286-290)
IEEE DOI 1610
Cameras BibRef

Zhao, Y., Zhou, L., Fu, K.[Keren], Yang, J.[Jie],
Abnormal event detection using spatio-temporal feature and nonnegative locality-constrained linear coding,
ICIP16(3354-3358)
IEEE DOI 1610
Computer vision BibRef

Sarkar, R., Vaccari, A., Acton, S.T.,
SSPARED: Saliency and sparse code analysis for rare event detection in video,
IVMSP16(1-5)
IEEE DOI 1608
Cameras BibRef

Ghrab, N.B.[Najla Bouarada], Fendri, E.[Emna], Hammami, M.[Mohamed],
Abnormal Events Detection Based on Trajectory Clustering,
CGiV16(301-306)
IEEE DOI 1608
BibRef
And:
Clustering-Based Abnormal Event Detection: Experimental Comparison for Similarity Measures' Efficiency,
ICIAR16(367-374).
Springer DOI 1608
feature extraction BibRef

Xu, H.T.[Hong-Teng], Zhou, Y.[Yang], Lin, W.Y.[Wei-Yao], Zha, H.Y.[Hong-Yuan],
Unsupervised Trajectory Clustering via Adaptive Multi-kernel-Based Shrinkage,
ICCV15(4328-4336)
IEEE DOI 1602
Clustering algorithms BibRef

Ren, H.M.[Hua-Min], Pan, H., Olsen, S.I.[Sřren Ingvor], Jensen, M.B., Moeslund, T.B.[Thomas B.],
An in-depth study of sparse codes on abnormality detection,
AVSS16(66-72)
IEEE DOI 1611
Approximation algorithms BibRef

Ren, H.M.[Hua-Min], Liu, W.F.[Wei-Feng], Olsen, S.I.[Sřren Ingvor], Escalera, S.[Sergio], Moeslund, T.B.[Thomas B.],
Unsupervised Behavior-Specific Dictionary Learning for Abnormal Event Detection,
BMVC15(xx-yy).
DOI Link 1601
BibRef

Wen, H.[Hui], Ge, S.M.[Shi-Ming], Chen, S.[Shuixian], Wang, H.T.[Hong-Tao], Sun, L.M.[Li-Min],
Abnormal event detection via adaptive cascade dictionary learning,
ICIP15(847-851)
IEEE DOI 1512
BibRef

Mousavi, H.[Hossein], Nabi, M.[Moin], Galoogahi, H.K.[Hamed Kiani], Perina, A.[Alessandro], Murino, V.[Vittorio],
Abnormality Detection with Improved Histogram of Oriented Tracklets,
CIAP15(II:722-732).
Springer DOI 1511
BibRef

Lung, F.B.[Fam Boon], Jaward, M.H.[Mohamed Hisham], Parkkinen, J.[Jussi],
Spatio-temporal descriptor for abnormal human activity detection,
MVA15(471-474)
IEEE DOI 1507
Computational efficiency BibRef

Pathak, D.[Deepak], Sharang, A.[Abhijit], Mukerjee, A.[Amitabha],
Anomaly Localization in Topic-Based Analysis of Surveillance Videos,
WACV15(389-395)
IEEE DOI 1503
Computational modeling BibRef

Mo, X.[Xuan], Monga, V.[Vishal], Bala, R.[Raja],
Simultaneous sparsity model for multi-perspective video anomaly detection,
ICIP14(2314-2318)
IEEE DOI 1502
Encoding BibRef

Kaltsa, V.[Vagia], Briassouli, A.[Alexia], Kompatsiaris, I.[Ioannis], Strintzis, M.G.[Michael G.],
Swarm-based motion features for anomaly detection in crowds,
ICIP14(2353-2357)
IEEE DOI 1502
Computer vision BibRef

Li, N.N.[Nan-Nan], Guo, H.[Huiwen], Xu, D.[Dan], Wu, X.Y.[Xin-Yu],
Multi-scale analysis of contextual information within spatio-temporal video volumes for anomaly detection,
ICIP14(2363-2367)
IEEE DOI 1502
Cameras BibRef

Ben Hadf, S.[Saima], Bobin, J.[Jerome], Woiselle, A.[Arnaud],
Blind source separation based anomaly detection in multi-spectral images,
ICIP14(5147-5151)
IEEE DOI 1502
Blind source separation BibRef

Yun, K.[Kimin], Kim, J.[Jiyun], Kim, S.W.[Soo Wan], Jeong, H.[Hawook], Choi, J.Y.[Jin Young],
Learning with Adaptive Rate for Online Detection of Unusual Appearance,
ISVC14(I: 698-707).
Springer DOI 1501
BibRef

Lee, D.G.[Dong-Gyu], Suk, H.I.[Heung-Il], Lee, S.W.[Seong-Whan],
Modeling crowd motions for abnormal activity detection,
AVSS14(325-330)
IEEE DOI 1411
Adaptive optics BibRef

Ren, H.M.[Hua-Min], Moeslund, T.B.[Thomas B.],
Abnormal event detection using local sparse representation,
AVSS14(125-130)
IEEE DOI 1411
Dictionaries BibRef

Iscen, A.[Ahmet], Armagan, A.[Anil], Duygulu, P.[Pinar],
What Is Usual in Unusual Videos? Trajectory Snippet Histograms for Discovering Unusualness,
WebScale14(808-813)
IEEE DOI 1409
event anomaly detection BibRef

Biswas, S.[Sovan], Babu, R.V.[R. Venkatesh],
Sparse representation based anomaly detection with enhanced local dictionaries,
ICIP14(5532-5536)
IEEE DOI 1502
BibRef
Earlier:
Real time anomaly detection in H.264 compressed videos,
NCVPRIPG13(1-4)
IEEE DOI 1408
Computational modeling. data compression BibRef

Zhang, T., Liu, L., Wiliem, A., Lovell, B.C.,
Is alice chasing or being chased?: Determining subject and object of activities in videos,
WACV16(1-7)
IEEE DOI 1606
Adaptation models BibRef

Zhang, T.[Teng], Wiliem, A., Lovell, B.C.,
Region-Based Anomaly Localisation in Crowded Scenes via Trajectory Analysis and Path Prediction,
DICTA13(1-7)
IEEE DOI 1402
feature extraction BibRef

Sandhan, T., Srivastava, T., Sethi, A., Choi, J.Y.[Jin Young],
Unsupervised learning approach for abnormal event detection in surveillance video by revealing infrequent patterns,
IVCNZ13(494-499)
IEEE DOI 1402
image motion analysis BibRef

Lu, C.[Cewu], Shi, J.P.[Jian-Ping], Jia, J.Y.[Jia-Ya],
Abnormal Event Detection at 150 FPS in MATLAB,
ICCV13(2720-2727)
IEEE DOI 1403
abnormal event detection BibRef

Xu, D.[Dan], Wu, X.Y.[Xin-Yu], Song, D.Z.[De-Zhen], Li, N.N.[Nan-Nan], Chen, Y.L.[Yen-Lun],
Hierarchical activity discovery within spatio-temporal context for video anomaly detection,
ICIP13(3597-3601)
IEEE DOI 1402
Visual surveillance BibRef

Wang, C.[Can], Liu, H.[Hong],
Unusual events detection based on multi-dictionary sparse representation using kinect,
ICIP13(2968-2972)
IEEE DOI 1402
Anomaly Detection; Kinect; Sparse Representation BibRef

Yuan, F.[Fei], Tang, C.[Chu], Tian, S.[Shu], Hao, H.W.[Hong-Wei],
A Framework for Quick and Accurate Access of Interesting Visual Events in Surveillance Videos,
ISVC13(II:168-177).
Springer DOI 1311
BibRef

Hu, Y.[Yang], Zhang, Y.[Yangmuzi], Davis, L.S.[Larry S.],
Unsupervised Abnormal Crowd Activity Detection Using Semiparametric Scan Statistic,
SISM13(767-774)
IEEE DOI 1309
BibRef

Zhu, X.B.[Xiao-Bin], Liu, J.[Jing], Wang, J.Q.[Jin-Qiao], Fu, W.[Wei], Lu, H.Q.[Han-Qing],
Weighted Interaction Force Estimation for Abnormality Detection in Crowd Scenes,
ACCV12(III:507-518).
Springer DOI 1304
BibRef

Nallaivarothayan, H., Ryan, D., Denman, S., Sridharan, S., Fookes, C.,
An Evaluation of Different Features and Learning Models for Anomalous Event Detection,
DICTA13(1-8)
IEEE DOI 1402
BibRef
Earlier:
Anomalous Event Detection Using a Semi-Two Dimensional Hidden Markov Model,
DICTA12(1-7).
IEEE DOI 1303
Gaussian processes BibRef

Lin, C.C.[Chung-Ching], Pankanti, S., Smith, J.,
Accurate coverage summarization of UAV videos,
AIPR14(1-5)
IEEE DOI 1504
Event summarys to determine whether to look at them. aerospace computing BibRef

Trinh, H.[Hoang], Li, J.[Jun], Miyazawa, S.[Sachiko], Moreno, J.[Juan], Pankanti, S.[Sharath],
Efficient UAV video event summarization,
ICPR12(2226-2229).
WWW Link. 1302
BibRef

Nguyen, T.V.[Tien Vu], Phung, D.Q.[Dinh Q.], Rana, S.[Santu], Pham, D.S.[Duc Son], Venkatesh, S.[Svetha],
Multi-modal abnormality detection in video with unknown data segmentation,
ICPR12(1322-1325).
WWW Link. 1302
BibRef

Lu, T.[Tong], Wu, L.[Liang], Ma, X.L.[Xiao-Lin], Shivakumara, P.[Palaiahnakote], Tan, C.L.[Chew Lim],
Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes,
ICPR14(2203-2208)
IEEE DOI 1412
Context BibRef

Ma, X.L.[Xiao-Lin], Lu, T.[Tong], Xu, F.[Feiming], Su, F.[Feng],
Anomaly detection with spatio-temporal context using depth images,
ICPR12(2590-2593).
WWW Link. 1302
BibRef

Feng, J.[Jie], Zhang, C.[Chao], Hao, P.W.[Peng-Wei],
Online anomaly detection in videos by clustering dynamic exemplars,
ICIP12(3097-3100).
IEEE DOI 1302
BibRef

Tao, Y.[Yisi], Chen, Y.Z.[Yuan-Zhe], Lin, W.Y.[Wei-Yao], Han, X.T.[Xin-Tong], Li, H.X.[Hong-Xiang], Lu, Z.[Zheng],
A patch-based framework for detecting abnormal activities with a PTZ camera,
VCIP12(1-6).
IEEE DOI 1302
BibRef

Wang, T.[Tian], Snoussi, H.[Hichem],
Histograms of optical flow orientation for abnormal events detection,
PETS13(45-52)
IEEE DOI 1411
BibRef
Earlier:
Histograms of Optical Flow Orientation for Visual Abnormal Events Detection,
AVSS12(13-18).
IEEE DOI 1211
object detection BibRef

Ito, Y.[Yuichi], Kitani, K.M.[Kris M.], Bagnell, J.A.[James A.], Hebert, M.[Martial],
Detecting Interesting Events Using Unsupervised Density Ratio Estimation,
ARTEMIS12(III: 151-161).
Springer DOI 1210
BibRef

Saligrama, V.[Venkatesh], Chen, Z.[Zhu],
Video anomaly detection based on local statistical aggregates,
CVPR12(2112-2119).
IEEE DOI 1208
BibRef

Yu, Y.H.[Yuan-Hao], Lei, Z.[Zhen], Yi, D.[Dong], Li, S.Z.[Stan Z.],
Detecting individual in crowd with moving feature's structure consistency,
ARTEMIS11(934-941).
IEEE DOI 1201
BibRef

Raghavendra, R., del Bue, A.[Alessio], Cristani, M.[Marco], Murino, V.[Vittorio],
Optimizing interaction force for global anomaly detection in crowded scenes,
MSVALC11(136-143).
IEEE DOI 1201
BibRef

Antic, B.[Borislav], Milbich, T., Ommer, B.[Bjorn],
Less Is More: Video Trimming for Action Recognition,
HACI13(515-521)
IEEE DOI 1403
image classification BibRef

Antic, B.[Borislav], Ommer, B.[Björn],
Per-Sample Kernel Adaptation for Visual Recognition and Grouping,
ICCV15(1251-1259)
IEEE DOI 1602
BibRef
Earlier:
Learning Latent Constituents for Recognition of Group Activities in Video,
ECCV14(I: 33-47).
Springer DOI 1408
BibRef
Earlier:
Video parsing for abnormality detection,
ICCV11(2415-2422).
IEEE DOI 1201
Image recognition BibRef

Schuster, R.[Rene], Schulter, S.[Samuel], Poier, G.[Georg], Hirzer, M.[Martin], Birchbauer, J.[Josef], Roth, P.M.[Peter M.], Bischof, H.[Horst], Winter, M.[Martin], Schallauer, P.[Peter],
Multi-cue learning and visualization of unusual events,
VS11(1933-1940).
IEEE DOI 1201
BibRef

Birchbauer, J.[Josef], Schulter, S.[Samuel], Schuster, R.[Rene], Poier, G.[Georg], Winter, M.[Martin], Schallauer, P.[Peter], Roth, P.M.[Peter M.], Bischof, H.[Horst],
OUTLIER: Online learning and visualization of unusual events,
AVSBS11(533-534).
IEEE DOI 1111
AVSS 2011 demo session. BibRef

Hommes, S., State, R., Zinnen, A., Engel, T.,
Detection of abnormal behaviour in a surveillance environment using control charts,
AVSBS11(113-118).
IEEE DOI 1111
BibRef

Chang, H.J.[Hyung Jin], Kim, J.[Jiyun], Cho, J.C.[Jung-Chan], Oh, S.H.[Song-Hwai], Yi, K.[Kwang], Choi, J.Y.[Jin Young],
Action Chart: A Representation for Efficient Recognition of Complex Activity,
BMVC13(xx-yy).
DOI Link 1402
BibRef

Jeong, H.[Hawook], Chang, H.J.[Hyung Jin], Choi, J.Y.[Jin Young],
Modeling of moving object trajectory by spatio-temporal learning for abnormal behavior detection,
AVSBS11(119-123).
IEEE DOI 1111
BibRef

Rolland, P., Krebs, W., Burger, A.,
Naturalistic data sets for image and behavior analysis: 'normal' versus 'anomalous' events,
AVSBS11(325-330).
IEEE DOI 1111
BibRef

Chockalingam, T.[Thiyagarajan], Emonet, R.[Remi], Odobez, J.M.[Jean-Marc],
Localized anomaly detection via hierarchical integrated activity discovery,
AVSS13(51-56)
IEEE DOI 1311
Cameras BibRef

Emonet, R.[Rémi], Varadarajan, J.[Jagannadan], Odobez, J.M.[Jean-Marc],
Multi-camera open space human activity discovery for anomaly detection,
AVSBS11(218-223).
IEEE DOI 1111
BibRef

Jouneau, E.[Erwan], Carincotte, C.[Cyril],
Particle-based tracking model for automatic anomaly detection,
ICIP11(513-516).
IEEE DOI 1201
BibRef
Earlier:
Mono versus Multi-view tracking-based model for automatic scene activity modeling and anomaly detection,
AVSBS11(95-100).
IEEE DOI 1111
BibRef

Krausz, B.[Barbara], Bauckhage, C.[Christian],
Analyzing pedestrian behavior in crowds for automatic detection of congestions,
MSVALC11(144-149).
IEEE DOI 1201
BibRef
And:
Automatic detection of dangerous motion behavior in human crowds,
AVSBS11(224-229).
IEEE DOI 1111
BibRef

Bouttefroy, P.L.M., Beghdadi, A., Bouzerdoum, A., Phung, S.L.,
Markov random fields for abnormal behavior detection on highways,
EUVIP10(149-154).
IEEE DOI 1110
BibRef

Cho, S.H.[Sang-Hyun], Kang, H.B.[Hang-Bong],
Panoramic Background Generation and Abnormal Behavior Detection in PTZ Camera Networks,
ISVC11(I: 748-757).
Springer DOI 1109
BibRef

Holzer, P.[Peter], Pinz, A.[Axel],
Mobile Surveillance by 3D-Outlier Analysis,
VS10(195-204).
Springer DOI 1109
BibRef

Liao, H.H.[Hong-Hong], Xiang, J.H.[Jin-Hai], Sun, W.P.[Wei-Ping], Feng, Q.[Qing], Dai, J.H.[Jiang-Hua],
An Abnormal Event Recognition in Crowd Scene,
ICIG11(731-736).
IEEE DOI 1109
BibRef

Li, C.[Ce], Han, Z.J.[Zhen-Jun], Ye, Q.X.[Qi-Xiang], Jiao, J.B.[Jian-Bin],
Abnormal Behavior Detection via Sparse Reconstruction Analysis of Trajectory,
ICIG11(807-810).
IEEE DOI 1109
BibRef

Aghazadeh, O.[Omid], Sullivan, J.[Josephine], Carlsson, S.[Stefan],
Novelty detection from an ego-centric perspective,
CVPR11(3297-3304).
IEEE DOI 1106
Chest mounted camera while doing routine tasks, compare to previous sequences. BibRef

Cui, X.[Xinyi], Liu, Q.S.[Qing-Shan], Gao, M.C.[Ming-Chen], Metaxas, D.N.[Dimitris N.],
Abnormal detection using interaction energy potentials,
CVPR11(3161-3167).
IEEE DOI 1106
BibRef

Li, L.J.[Li-Jia], Zhu, J.[Jun], Su, H.[Hao], Xing, E.P.[Eric P.], Fei-Fei, L.[Li],
Multi-Level Structured Image Coding on High-Dimensional Image Representation,
ACCV12(II:147-161).
Springer DOI 1304
BibRef

Zhao, B.[Bin], Fei-Fei, L.[Li], Xing, E.P.[Eric P.],
Online detection of unusual events in videos via dynamic sparse coding,
CVPR11(3313-3320).
IEEE DOI 1106
BibRef

Al-Khateeb, H.[Hussein], Petrou, M.[Maria],
An extended fuzzy SOM for anomalous behaviour detection,
CVCG11(31-36).
IEEE DOI 1106
BibRef

Reddy, V.[Vikas], Sanderson, C.[Conrad], Lovell, B.C.[Brian C.],
Improved anomaly detection in crowded scenes via cell-based analysis of foreground speed, size and texture,
MLVMA11(55-61).
IEEE DOI 1106
BibRef

Srivastava, S.[Satyam], Delp, E.J.[Edward J.],
Standoff video analysis for the detection of security anomalies in vehicles,
AIPR10(1-8).
IEEE DOI 1010
BibRef

Hendel, A.[Avishai], Weinshall, D.[Daphna], Peleg, S.[Shmuel],
Identifying Surprising Events in Videos Using Bayesian Topic Models,
ACCV10(III: 448-459).
Springer DOI 1011
BibRef

Barr, J.R.[Jeremiah R.], Bowyer, K.W.[Kevin W.], Flynn, P.J.[Patrick J.],
Detecting questionable observers using face track clustering,
WACV11(182-189).
IEEE DOI 1101
Who appears too often. Tracking and recognizing. BibRef

Petrás, I.[István], Beleznai, C.[Csaba], Dedeoglu, Y.[Yigithan], Pardŕs, M.[Montse], Kovács, L.[Levente], Szlávik, Z.[Zoltán], Havasi, L.[László], Szirányi, T.[Tamás], Töreyin, B.U.[B. Ugur], Güdükbay, U.[Ugur], Çetin, A.E.[A. Enis], Canton-Ferrer, C.[Cristian],
Flexible test-bed for unusual behavior detection,
CIVR07(105-108).
DOI Link 0707
BibRef

Chang, C.W.[Chueh-Wei], Yang, T.H.[Ti-Hua], Tsao, Y.Y.[Yu-Yu],
Abnormal Spatial Event Detection and Video Content Searching in a Multi-Camera Surveillance System,
MVA09(170-).
PDF File. 0905
BibRef

Tziakos, I., Cavallaro, A., Xu, L.Q.[Li-Qun],
Local Abnormality Detection in Video Using Subspace Learning,
AVSS10(519-525).
IEEE DOI 1009
BibRef

Espinosa-Isidrón, D.L.[Dustin L.], García-Reyes, E.B.[Edel B.],
A New Dissimilarity Measure for Trajectories with Applications in Anomaly Detection,
CIARP10(193-201).
Springer DOI 1011
BibRef

Nishio, S.[Shuichi], Okamoto, H.[Hiromi], Babaguchi, N.[Noboru],
Hierarchical Anomality Detection Based on Situation,
ICPR10(1108-1111).
IEEE DOI 1008
Pedestrian trajectories. BibRef

Shi, Y.H.[Ying-Huan], Gao, Y.[Yang], Wang, R.[Ruili],
Real-Time Abnormal Event Detection in Complicated Scenes,
ICPR10(3653-3656).
IEEE DOI 1008
BibRef

Yuen, J.[Jenny], Torralba, A.B.[Antonio B.],
A Data-Driven Approach for Event Prediction,
ECCV10(II: 707-720).
Springer DOI 1009
To find unusual events in large collection of short videos. BibRef

Zaharescu, A.[Andrei], Wildes, R.P.[Richard P.],
Spatiotemporal Salience via Centre-Surround Comparison of Visual Spacetime Orientations,
ACCV12(III:533-546).
Springer DOI 1304
BibRef
Earlier:
Anomalous Behaviour Detection Using Spatiotemporal Oriented Energies, Subset Inclusion Histogram Comparison and Event-Driven Processing,
ECCV10(I: 563-576).
Springer DOI 1009
BibRef

Wu, S.D.[Shan-Dong], Moore, B.E.[Brian E.], Shah, M.[Mubarak],
Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes,
CVPR10(2054-2060).
IEEE DOI 1006
BibRef

Breitenstein, M.D.[Michael D.], Grabner, H.[Helmut], Van Gool, L.J.[Luc J.],
Hunting Nessie: Real-time abnormality detection from webcams,
VS09(1243-1250).
IEEE DOI 0910
BibRef

Li, J.[Jian], Gong, S.G.[Shao-Gang], Xiang, T.[Tao],
On-the-fly global activity prediction and anomaly detection,
VS09(1330-1337).
IEEE DOI 0910
BibRef

Nater, F.[Fabian], Grabner, H.[Helmut], Jaeggli, T.[Tobias], Van Gool, L.J.[Luc J.],
Tracker trees for unusual event detection,
VS09(1113-1120).
IEEE DOI 0910
BibRef

Matilainen, M.[Matti], Barnard, M.[Mark], Silvén, O.[Olli],
Unusual Activity Recognition in Noisy Environments,
ACIVS09(389-399).
Springer DOI 0909
BibRef

Zutis, K.[Krists], Hoey, J.[Jesse],
Who's Counting? Real-Time Blackjack Monitoring for Card Counting Detection,
CVS09(354-363).
Springer DOI 0910
Detect anomalous playing patterns. BibRef

Ivanov, I.[Ivan], DuFaux, F.[Frederic], Ha, T.M.[Thien M.], Ebrahimi, T.[Touradj],
Towards Generic Detection of Unusual Events in Video Surveillance,
AVSBS09(61-66).
IEEE DOI 0909
BibRef

Kim, J.[Jaechul], Grauman, K.[Kristen],
Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates,
CVPR09(2921-2928).
IEEE DOI 0906
BibRef

Roberts, R.[Richard], Potthast, C.[Christian], Dellaert, F.[Frank],
Learning general optical flow subspaces for egomotion estimation and detection of motion anomalies,
CVPR09(57-64).
IEEE DOI 0906
BibRef

Yu, T.H.[Tsz-Ho], Moon, Y.S.[Yiu-Sang],
Unsupervised Abnormal Behavior Detection for Real-Time Surveillance Using Observed History,
MVA09(166-).
PDF File. 0905
BibRef
And:
Unsupervised Real-Time Unusual Behavior Detection for Biometric-Assisted Visual Surveillance,
ICB09(1019-1029).
Springer DOI 0906
BibRef

Yin, J.[Jun], Meng, Y.[Yan],
Abnormal Behavior Recognition Using Self-Adaptive Hidden Markov Models,
ICIAR09(337-346).
Springer DOI 0907
BibRef

Reif, M.[Matthias], Goldstein, M.[Markus], Stahl, A.[Armin], Breuel, T.M.[Thomas M.],
Anomaly detection by combining decision trees and parametric densities,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Iwai, Y.[Yoshio],
A Framework for Suspicious Action Detection with Mixture Distributions of Action Primitives,
PSIVT09(519-530).
Springer DOI 0901
BibRef

Zhou, J.Q.[Jun-Qiang], Ntafos, S.[Simeon], Prabhakaran, B.[Balakrishnan],
Fault Detection Framework for Video Surveillance Systems,
AVSBS08(219-226).
IEEE DOI 0809
BibRef

Zou, X.T.[Xiao-Tao], Bhanu, B.[Bir],
Anomalous activity classification in the distributed camera network,
ICIP08(781-784).
IEEE DOI 0810
BibRef

Goshorn, R.[Rachel], Goshorn, D.[Deborah], Goshorn, J.[Joshua], Goshorn, L.[Lawrence],
Abnormal behavior-detection using sequential syntactical classification in a network of clustered cameras,
ICDSC08(1-10).
IEEE DOI 0809
BibRef

Goshorn, R.[Rachel], Goshorn, J.[Joshua], Goshorn, D.[Deborah], Aghajan, H.,
Architecture for Cluster-Based Automated Surveillance Network for Detecting and Tracking Multiple Persons,
ICDSC07(219-226).
IEEE DOI 0709
BibRef

Zelniker, E.E.[Emanuel E.], Gong, S.G.[Shao-Gang], Xiang, T.[Tao],
Global Abnormal Behaviour Detection Using a Network of CCTV Cameras,
VS08(xx-yy). 0810
BibRef

Cardinaux, F.[Fabien], Brownsell, S.[Simon], Hawley, M.[Mark], Bradley, D.[David],
Modelling of Behavioural Patterns for Abnormality Detection in the Context of Lifestyle Reassurance,
CIARP08(243-25).
Springer DOI 0809
BibRef

Russell, D.M.[David M.], Gong, S.G.[Shao-Gang],
Multi-layered Decomposition of Recurrent Scenes,
ECCV08(III: 574-587).
Springer DOI 0810
BibRef
Earlier:
Exploiting Periodicity in Recurrent Scenes,
BMVC08(xx-yy).
PDF File. 0809
E.g. road intersections. BibRef

Sillito, R.R.[Rowland R.], Fisher, R.B.[Robert B.],
Parametric Trajectory Representations for Behaviour Classification,
BMVC09(xx-yy).
PDF File. 0909
BibRef
Earlier:
Semi-supervised Learning for Anomalous Trajectory Detection,
BMVC08(xx-yy).
PDF File. 0809
BibRef

Basharat, A.[Arslan], Gritai, A.[Alexei], Shah, M.[Mubarak],
Learning object motion patterns for anomaly detection and improved object detection,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Dickinson, P.[Patrick], Hunter, A.[Andrew],
Using Inactivity to Detect Unusual behavior,
Motion08(1-6).
IEEE DOI 0801
BibRef

Pritch, Y.[Yael], Rav-Acha, A.[Alex], Gutman, A.[Avital], Peleg, S.[Shmuel],
Webcam Synopsis: Peeking Around the World,
ICCV07(1-8).
IEEE DOI 0710
A short version that contains only those parts where something happens. Generate the action based description. BibRef

Reulke, R.[Ralf], Meysel, F.[Frederik], Bauer, S.[Sascha],
Situation Analysis and Atypical Event Detection with Multiple Cameras and Multi-Object Tracking,
RobVis08(234-247).
Springer DOI 0802
BibRef

Saglam, A.[Ali], Temizel, A.[Alptekin],
Real-Time Adaptive Camera Tamper Detection for Video Surveillance,
AVSBS09(430-435).
IEEE DOI 0909
BibRef

Aksay, A.[Anil], Temizel, A.[Alptekin], Cetin, A.E.[A. Enis],
Camera Tamper Detection Using Wavelet Analysis for Video Surveillance,
AVSBS07(558-562).
IEEE DOI 0709
BibRef

Izo, T.[Tomas], Grimson, W.E.L.[W. Eric L.],
Unsupervised Modeling of Object Tracks for Fast Anomaly Detection,
ICIP07(IV: 529-532).
IEEE DOI 0709
BibRef

Irani, M.[Michal],
Seeing the Invisible and Predicting the Unexpected,
IbPRIA07(I: 7-8).
Springer DOI 0706
BibRef

Salas, J.[Joaquin], Jimenez-Hernandez, H.[Hugo], Gonzalez-Barbosa, J.J.[Jose-Joel], Hurtado-Ramos, J.B.[Juan B.], Canchola, S.[Sandra],
A Double Layer Background Model to Detect Unusual Events,
ACIVS07(406-416).
Springer DOI 0708
BibRef

Cui, P.[Peng], Sun, L.F.[Li-Feng], Liu, Z.Q.[Zhi-Qiang], Yang, S.Q.[Shi-Qiang],
A Sequential Monte Carlo Approach to Anomaly Detection in Tracking Visual Events,
VS07(1-8).
IEEE DOI 0706
BibRef

O'Callaghan, R.[Robert], Haga, T.[Tetsuji],
Robust Change-Detection by Normalised Gradient-Correlation,
VS07(1-8).
IEEE DOI 0706
BibRef

Lin, D.T.[Daw-Tung], Liu, M.J.[Ming-Ju],
Face Occlusion Detection for Automated Teller Machine Surveillance,
PSIVT06(641-651).
Springer DOI 0612
BibRef

Branzan Albu, A.[Alexandra], Beugeling, T.[Trevor], Virji-Babul, N.[Naznin], Beach, C.[Cheryl],
Analysis of Irregularities in Human Actions with Volumetric Motion History Images,
Motion07(16-16).
IEEE DOI 0702
BibRef

Gaucel, J.M.[Jean-Michel], Guillaume, M.[Mireille], Bourennane, S.[Salah],
Non Orthogonal Component Analysis: Application to Anomaly Detection,
ACIVS06(1198-1209).
Springer DOI 0609
BibRef

Au, C.E.[Carmen E.], Skaff, S.[Sandra], Clark, J.J.[James J.],
Anomaly Detection for Video Surveillance Applications,
ICPR06(IV: 888-891).
IEEE DOI 0609
BibRef

Zhou, H.N.[Han-Ning], Kimber, D.[Don],
Unusual Event Detection via Multi-camera Video Mining,
ICPR06(III: 1161-1166).
IEEE DOI 0609
BibRef

Yu, E.[Elden], Aggarwal, J.K.,
Human action recognition with extremities as semantic posture representation,
SLAM09(1-8).
IEEE DOI 0906
BibRef

Yu, E.[Elden], Aggarwal, J.K.,
Detection of stable contacts for human motion analysis,
VSSN06(87-94).
WWW Link. 0701
BibRef
And:
Detection of Fence Climbing from Monocular Video,
ICPR06(I: 375-378).
IEEE DOI 0609
extended star-skeleton representation, stable contacts are formed by stationary extreme points. BibRef

Wang, D.[Dong], Li, J.M.[Jian-Min], Zhang, B.[Bo],
Relay Boost Fusion for Learning Rare Concepts in Multimedia,
CIVR06(271-280).
Springer DOI 0607
BibRef

Voorhies, R.C.[Randolph C.], Elazary, L.[Lior], Itti, L.[Laurent],
Neuromorphic Bayesian Surprise for Far-Range Event Detection,
AVSS12(1-6).
IEEE DOI 1211
BibRef

Itti, L.[Laurent], Baldi, P.[Pierre],
A Principled Approach to Detecting Surprising Events in Video,
CVPR05(I: 631-637).
IEEE DOI 0507
BibRef

Zhong, H.[Hua], Shi, J.B.[Jian-Bo], Visontai, M.,
Detecting unusual activity in video,
CVPR04(II: 819-826).
IEEE DOI 0408
BibRef

Dee, H.M., Hogg, D.C.,
On the feasibility of using a cognitive model to filter surveillance data,
AVSBS05(34-39).
IEEE DOI 0602
BibRef
Earlier:
Detecting inexplicable behaviour,
BMVC04(xx-yy).
HTML Version. 0508
BibRef

Chan, M.T.[Michael T.], Hoogs, A.J.[Anthony J.], Bhotika, R.[Rahul], Perera, A.[Amitha], Schmiederer, J.[John], Doretto, G.[Gianfranco],
Joint Recognition of Complex Events and Track Matching,
CVPR06(II: 1615-1622).
IEEE DOI 0606
BibRef

Chan, M.T.[Michael T.], Hoogs, A.J.[Anthony J.], Sun, Z.H.[Zhao-Hui], Schmiederer, J.[John], Bhotika, R.[Rahul], Doretto, G.[Gianfranco],
Event Recognition with Fragmented Object Tracks,
ICPR06(I: 412-416).
IEEE DOI 0609
BibRef

Chan, M.T.[Michael T.], Hoogs, A.J.[Anthony J.], Schmiederer, J.[John], Petersen, M.,
Detecting rare events in video using semantic primitives with HMM,
ICPR04(IV: 150-154).
IEEE DOI 0409
BibRef

Zhong, H., Shi, J.,
Finding (Un)Usual Events in Video,
CMU-RI-TR-03-05, May, 2003.
HTML Version. 0306
BibRef

Mori, H., Ishiguro, H., Kotani, S., Yasutomi, S., Chino, Y.,
A mobile robot strategy applied to Harunobu-4,
ICPR88(I: 525-530).
IEEE DOI 8811
Apply analysis of stereotypical patterns of motion. BibRef

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Human Motion Understanding and Analysis .


Last update:Dec 7, 2017 at 17:23:10