Ince, F.[Fuat],
The application of the coalescence clustering algorithm to remotely
sensed multispectral data,
PR(14), No. 1-6, 1981, pp. 121-126.
Elsevier DOI
0309
BibRef
Sawada, N.[Nobuo],
Numagami, H.[Hideo],
Shinoda, H.[Hidenori],
Kidode, M.[Masatsugu],
Watanabe, S.[Sadakazu],
Application of a parallel pattern processor to remote sensing,
PR(14), No. 1-6, 1981, pp. 331-343.
Elsevier DOI
0309
BibRef
Lobo, A.,
Image Segmentation and Discriminant-Analysis for the Identification of
Land-Cover Units in Ecology,
GeoRS(35), No. 5, September 1997, pp. 1136-1145.
IEEE Top Reference.
9710
BibRef
Kavzoglu, T.,
Mather, P.M.,
Pruning artificial neural networks: an example using land cover
classification of multi-sensor images,
JRS(20), No. 14, September 1999, pp. 2787.
BibRef
9909
Kavzoglu, T.,
Mather, P.M.,
The role of feature selection in artificial neural network applications,
JRS(23), No. 15, August 2002, pp. 2919-2937.
0211
BibRef
Steele, B.M.[Brian M.],
Combining Multiple Classifiers. An Application Using Spatial and
Remotely Sensed Information for Land Cover Type Mapping,
RSE(74), No. 3, 2000, pp. 545- 556.
0102
BibRef
Liu, X.H.[Xue-Hua],
Skidmore, A.K.,
van Oosten, H.,
Integration of classification methods for improvement of land-cover map
accuracy,
PandRS(56), No. 4, July 2002, pp. 257-268.
HTML Version.
0207
BibRef
Debeir, O.[Olivier],
van den Steen, I.[Isabelle],
Latinne, P.[Patrice],
van Ham, P.[Philippe],
Wolff, E.[Eléonore],
Textural and Contextual Land-Cover Classification Using Single and
Multiple Classifier Systems,
PhEngRS(68), No. 6, June 2002, pp. 597.
WWW Link.
0207
Improve the accuracy of land-cover clasification with textural,
contextual, and multiple classifier system.
BibRef
Hlavka, C.A.,
Dungan, J.L.,
Areal Estimates of Fragmented Land Cover:
Effects of Pixel Size and Model-Based Corrections,
JRS(23), No. 4, February 2002, pp. 711-724.
0202
BibRef
King, R.B.,
Land cover mapping principles: a return to interpretation fundamentals,
JRS(23), No. 18, September 2002, pp. 3525-3545.
WWW Link.
0211
BibRef
Huang, C.,
Davis, L.S.,
Townshend, J.R.G.,
An assessment of support vector machines for land cover classification,
JRS(23), No. 4, February 2002, pp. 725-749.
0202
BibRef
Shao, G.F.[Guo-Fan],
We, W.C.[Wen-Chun],
Wu, G.[Gang],
Zhou, X.H.[Xin-Hua],
Wu, J.G.[Jian-Guo],
An Explicit Index for Assessing the Accuracy of Cover-Class Areas,
PhEngRS(69), No. 8, August 2003, pp. 907-914.
WWW Link.
0401
The accuracy of cover class areas is not strongly related to
conventional classification accuracy assessment indices, but can be
assessed with a new index called Relative Errors of Area (REA).
BibRef
Kempeneers, P.,
de Backer, S.,
Debruyn, W.,
Coppin, P.,
Scheunders, P.,
Generic Wavelet-Based Hyperspectral Classification Applied to
Vegetation Stress Detection,
GeoRS(43), No. 3, March 2005, pp. 610-614.
IEEE Abstract.
0501
BibRef
Tran, L.T.[Liem T.],
Wickham, J.D.[James D.],
Jarnagin, S.T.[S. Taylor],
Knight, C.G.[C. Gregory],
Mapping Spatial Thematic Accuracy with Fuzzy Sets,
PhEngRS(71), No. 1, January 2005, pp. 29-36.
WWW Link.
0509
BibRef
Li, X.Z.[Xiu-Zhen],
He, H.S.[Hong S.],
Bu, R.[Rencang],
Wen, Q.C.[Qing-Chun],
Chang, Y.[Yu],
Hu, Y.M.[Yuan-Man],
Li, Y.H.[Yue-Hui],
The adequacy of different landscape metrics for various landscape
patterns,
PR(38), No. 12, December 2005, pp. 2626-2638.
Elsevier DOI
0510
BibRef
Chen, L.[Li],
Nested Hyper-Rectangle Learning Model for Remote Sensing:
Land Cover Classification,
PhEngRS(71), No. 3, March 2005, pp. 333.
The NHLM learning model is presented and tested with SPOT data to
illustrate an efficient and accurate supervised classification method.
WWW Link.
0509
BibRef
Herold, M.,
Woodcock, C.,
di Gregorio, A.,
Mayaux, P.,
Belward, A.S.,
Latham, J.,
Schmullius, C.C.,
A Joint Initiative for Harmonization and Validation of Land Cover
Datasets,
GeoRS(44), No. 7, Part 1, July 2006, pp. 1719-1727.
IEEE DOI
0606
BibRef
Aitkenhead, M.J.,
Dyer, R.,
Improving Land-cover Classification Using Recognition Threshold Neural
Networks,
PhEngRS(73), No. 4, April 2007, pp. 413-421.
WWW Link.
0704
Improving land-cover classification from remote sensing imagery with neural
networks using a threshold of recognition below which the recognition system
applies additional bootstrapped information to classify pixels.
BibRef
Bagan, H.[Hasi],
Wang, Q.X.[Qin-Xue],
Watanabe, M.[Masataka],
Kameyama, S.[Satoshi],
Bao, Y.H.[Yu-Hai],
Land-cover Classification Using ASTER Multi-band Combinations Based on
Wavelet Fusion and SOM Neural Network,
PhEngRS(74), No. 3, March 2008, pp. 333-342.
WWW Link.
0803
A land-cover classification methodology using ASTER VNIR, SWIR, and
TIR band combinations based on wavelet fusion and SOM neural network
methods, and classification accuracy of different band combinations.
BibRef
Trias-Sanz, R.[Roger],
Stamon, G.[Georges],
Louchet, J.[Jean],
Using colour, texture, and hierarchial segmentation for high-resolution
remote sensing,
PandRS(63), No. 2, March 2008, pp. 156-168.
Elsevier DOI
0803
Segmentation; Hierarchical; Colour; Cartography; Land cover
BibRef
Tseng, M.H.[Ming-Hseng],
Chen, S.J.[Sheng-Jhe],
Hwang, G.H.[Gwo-Haur],
Shen, M.Y.[Ming-Yu],
A genetic algorithm rule-based approach for land-cover classification,
PandRS(63), No. 2, March 2008, pp. 202-212.
Elsevier DOI
0803
Classification; Land-cover; Rule-based; Genetic algorithm; Knowledge rules
BibRef
Mitrakis, N.E.,
Topaloglou, C.A.,
Alexandridis, T.K.,
Theocharis, J.B.,
Zalidis, G.C.,
Decision Fusion of GA Self-Organizing Neuro-Fuzzy Multilayered
Classifiers for Land Cover Classification Using Textural and Spectral
Features,
GeoRS(46), No. 7, July 2008, pp. 2137-2152.
IEEE DOI
0806
BibRef
Stavrakoudis, D.G.,
Theocharis, J.B.,
Zalidis, G.C.,
A Boosted Genetic Fuzzy Classifier for land cover classification of
remote sensing imagery,
PandRS(66), No. 4, July 2011, pp. 529-544.
Elsevier DOI
1107
AdaBoost; Genetic fuzzy rule-based classification systems (GFRBCS);
Local feature selection; Textural and spatial features; Multispectral
image classification
BibRef
Stavrakoudis, D.G.,
Galidaki, G.N.,
Gitas, I.Z.,
Theocharis, J.B.,
A Genetic Fuzzy-Rule-Based Classifier for Land Cover Classification
From Hyperspectral Imagery,
GeoRS(50), No. 1, January 2012, pp. 130-148.
IEEE DOI
1201
BibRef
Mylonas, S.K.[Stelios K.],
Stavrakoudis, D.G.[Dimitris G.],
Theocharis, J.B.[John B.],
Mastorocostas, P.A.[Paris A.],
A Region-Based GeneSIS Segmentation Algorithm for the Classification
of Remotely Sensed Images,
RS(7), No. 3, 2015, pp. 2474-2508.
DOI Link
1504
BibRef
Mylonas, S.K.[Stelios K.],
Stavrakoudis, D.G.[Dimitris G.],
Theocharis, J.B.[John B.],
Mastorocostas, P.A.[Paris A.],
Classification of Remotely Sensed Images Using the GeneSIS Fuzzy
Segmentation Algorithm,
GeoRS(53), No. 10, October 2015, pp. 5352-5376.
IEEE DOI
1509
feature extraction
BibRef
Smikrud, K.M.[Kathy M.],
Prakash, A.[Anupma],
Nichols, J.V.[Jeff V.],
Decision-based Fusion for Improved Fluvial Landscape Classification
Using Digital Aerial Photographs and Forward Looking Infrared Images,
PhEngRS(74), No. 7, July 2008, pp. 903-912.
WWW Link.
0804
Comparing different image processing routines to classify macro fish
habitat indicators in a large river floodplain using digital aerial
photographs and forward looking infrared images leading to a
decision-based fusion strategy to provide the best results.
BibRef
Duca, R.,
del Frate, F.,
Hyperspectral and Multiangle CHRIS-PROBA Images for the Generation of
Land Cover Maps,
GeoRS(46), No. 10, October 2008, pp. 2857-2866.
IEEE DOI
0810
BibRef
Li, Z.[Zhe],
Fuzzy ARTMAP-based Neurocomputational Spatial Uncertainty Measures,
PhEngRS(74), No. 12, December 2008, pp. 1573-1584.
WWW Link.
0804
Non-parametric Commitment and Typicality measures for the fuzzy ARTMAP
computational neural network to handle spatial uncertainty in remotely
sensed imagery classification.
BibRef
Liu, X.,
Li, X.,
Liu, L.,
He, J.,
Ai, B.,
An Innovative Method to Classify Remote-Sensing Images Using Ant Colony
Optimization,
GeoRS(46), No. 12, December 2008, pp. 4198-4208.
IEEE DOI
0812
BibRef
Lehner, P.E.,
Adelman, L.,
DiStasio, R.J.,
Erie, M.C.,
Mittel, J.S.,
Olson, S.L.,
Confirmation Bias in the Analysis of Remote Sensing Data,
SMC-A(39), No. 1, January 2009, pp. 218-226.
IEEE DOI
0901
BibRef
Wuest, B.[Ben],
Zhang, Y.[Yun],
Region based segmentation of QuickBird multispectral imagery through
band ratios and fuzzy comparison,
PandRS(64), No. 1, January 2009, pp. 55-64.
Elsevier DOI
0804
Remote sensing; Segmentation; QuickBird; Algorithms; Land cover
BibRef
Tolpekin, V.A.,
Stein, A.,
Quantification of the Effects of Land-Cover-Class Spectral Separability
on the Accuracy of Markov-Random-Field-Based Superresolution Mapping,
GeoRS(47), No. 9, September 2009, pp. 3283-3297.
IEEE DOI
0909
BibRef
Borengasser, M.[Marcus],
Hungate, W.S.[William S.],
Watkins, R.[Russell],
Hyperspectral Remote Sensing: Principles and Applications,
CRC PressDecember, 2007, ISBN: 9781566706544
WWW Link.
Buy this book: Hyperspectral Remote Sensing
0910
BibRef
Mather, P.[Paul],
Tso, B.[Brandt],
Bie-Tou,
Classification Methods for Remotely Sensed Data,
CRC PressMay 2009, ISBN: 9781420090727.
Second Edition.
WWW Link.
Buy this book: Classification Methods for Remotely Sensed Data, Second Edition
0910
BibRef
Congalton, R.G.[Russell G.],
Green, K.[Kass],
Assessing the Accuracy of Remotely Sensed Data:
Principles and Practices,
CRC PressDecember, 2008, ISBN: 9781420055122
WWW Link.
Buy this book: Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Second Edition (Mapping Science)
0910
BibRef
Baraldi, A.,
Gironda, M.,
Simonetti, D.,
Operational Two-Stage Stratified Topographic Correction of Spaceborne
Multispectral Imagery Employing an Automatic Spectral-Rule-Based
Decision-Tree Preliminary Classifier,
GeoRS(48), No. 1, January 2010, pp. 112-146.
IEEE DOI
1001
BibRef
Forzieri, G.,
Castelli, F.,
Vivoni, E.R.,
A Predictive Multidimensional Model for Vegetation Anomalies Derived
From Remote-Sensing Observations,
GeoRS(48), No. 4, April 2010, pp. 1729-1741.
IEEE DOI
1003
BibRef
Xie, Y.C.[Yi-Chun],
Sha, Z.Y.[Zong-Yao],
Bai, Y.F.[Yong-Fei],
Classifying historical remotely sensed imagery using a tempo-spatial
feature evolution (T-SFE) model,
PandRS(65), No. 2, March 2010, pp. 182-190.
Elsevier DOI
1003
Classification; GIS; History; Landsat; Vegetation
BibRef
Salberg, A.B.[Arnt-Břrre],
Land Cover Classification of Cloud-Contaminated Multitemporal
High-Resolution Images,
GeoRS(49), No. 1, January 2011, pp. 377-387.
IEEE DOI
1101
BibRef
Liu, Q.H.[Qing-Hui],
Kampffmeyer, M.[Michael],
Jenssen, R.[Robert],
Salberg, A.B.[Arnt-Břrre],
Dense Dilated Convolutions' Merging Network for Land Cover
Classification,
GeoRS(58), No. 9, September 2020, pp. 6309-6320.
IEEE DOI
2008
Semantics, Remote sensing,
Image segmentation, Machine learning, Task analysis, Data models,
very high-resolution (VHR) optical imagery
BibRef
Liu, K.[Kimfung],
Shi, W.Z.[Wen-Zhong],
Zhang, H.[Hua],
A fuzzy topology-based maximum likelihood classification,
PandRS(66), No. 1, January 2011, pp. 103-114.
Elsevier DOI
1101
Fuzzy topology; Maximum likelihood classification (MLC); Thresholding;
Remote sensing; Land cover mapping
BibRef
Li, W.,
Guo, Q.,
Elkan, C.,
A Positive and Unlabeled Learning Algorithm for One-Class
Classification of Remote-Sensing Data,
GeoRS(49), No. 2, February 2011, pp. 717-725.
IEEE DOI
1102
BibRef
Li, W.,
Guo, Q.,
A New Accuracy Assessment Method for One-Class Remote Sensing
Classification,
GeoRS(52), No. 8, August 2014, pp. 4621-4632.
IEEE DOI
1403
Accuracy
BibRef
Baek, J.,
Kim, J.W.,
Lim, G.J.,
Lee, D.C.,
Electromagnetic Land Surface Classification Through Integration of
Optical and Radar Remote Sensing Data,
GeoRS(49), No. 4, April 2011, pp. 1214-1222.
IEEE DOI
1104
BibRef
Jun, G.,
Ghosh, J.,
Spatially Adaptive Classification of Land Cover With Remote Sensing
Data,
GeoRS(49), No. 7, July 2011, pp. 2662-2673.
IEEE DOI
1107
BibRef
Jun, G.,
Ghosh, J.,
Semisupervised Learning of Hyperspectral Data With Unknown Land-Cover
Classes,
GeoRS(51), No. 1, January 2013, pp. 273-282.
IEEE DOI
1301
BibRef
Li, W.D.[Wei-Dong],
Zhang, C.R.[Chuan-Rong],
A Markov Chain Geostatistical Framework for Land-Cover Classification
With Uncertainty Assessment Based on Expert-Interpreted Pixels From
Remotely Sensed Imagery,
GeoRS(49), No. 8, August 2011, pp. 2983-2992.
IEEE DOI
1108
BibRef
Nidamanuri, R.R.[Rama Rao],
Zbell, B.[Bernd],
Use of field reflectance data for crop mapping using airborne
hyperspectral image,
PandRS(66), No. 5, September 2011, pp. 683-691.
Elsevier DOI
1110
Field spectrometry; HyMAP; Hyperspectral remote sensing; Crop
classification; Spectral library
BibRef
Rodriguez-Galiano, V.F.,
Ghimire, B.,
Rogan, J.,
Chica-Olmo, M.,
Rigol-Sanchez, J.P.,
An assessment of the effectiveness of a random forest classifier for
land-cover classification,
PandRS(67), No. 1, January 2012, pp. 93-104.
Elsevier DOI
1202
Remote sensing; Machine learning; Classification; Random forest;
Land-cover; Landsat Thematic Mapper
BibRef
Li, A.[Ainong],
Jiang, J.G.[Jin-Gang],
Bian, J.H.[Jin-Hu],
Deng, W.[Wei],
Combining the matter element model with the associated function of
probability transformation for multi-source remote sensing data
classification in mountainous regions,
PandRS(67), No. 1, January 2012, pp. 80-92.
Elsevier DOI
1202
Remote sensing; Classification; Matter element model; Associated
function; Mountainous region.
Land cover integrating constraints and remote sensing information.
BibRef
Yoshioka, H.,
Miura, T.,
Obata, K.,
Derivation of Relationships between Spectral Vegetation Indices from
Multiple Sensors Based on Vegetation Isolines,
RS(4), No. 3, March 2012, pp. 583-597.
DOI Link
1204
BibRef
Obata, K.[Kenta],
Sensitivity Analysis Method for Spectral Band Adjustment between
Hyperspectral Sensors: A Case Study Using the CLARREO Pathfinder and
HISUI,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Dandois, J.,
Ellis, E.,
Remote Sensing of Vegetation Structure Using Computer Vision,
RS(2), No. 4, April 2010, pp. 1157-1176.
DOI Link
1203
BibRef
Motohka, T.,
Nasahara, K.,
Oguma, H.,
Tsuchida, S.,
Applicability of Green-Red Vegetation Index for Remote Sensing of
Vegetation Phenology,
RS(2), No. 10, October 2010, pp. 2369-2387.
DOI Link
1203
BibRef
Neugebauer, N.[Nikolaus],
Vuolo, F.[Francesco],
Crop Water Requirements on Regional Level using Remote Sensing Data:
A Case Study in the Marchfeld Region,
PFG(2014), No. 5, 2014, pp. 369-381.
DOI Link
1411
BibRef
Roscher, R.[Ribana],
Förstner, W.[Wolfgang],
Waske, B.[Björn],
I2VM: Incremental import vector machines,
IVC(30), No. 4-5, May 2012, pp. 263-278.
Elsevier DOI
1206
BibRef
Earlier: A1, A3, A2:
Incremental import vector machines for large area land cover
classification,
CVRSE11(243-248).
IEEE DOI
1201
Import vector machines; Incremental learning; Concept-drifts
BibRef
Roscher, R.[Ribana],
Wenzel, S.,
Waske, B.[Björn],
Discriminative archetypal self-taught learning for multispectral
landcover classification,
PRRS16(1-5)
IEEE DOI
1704
Markov processes
BibRef
Roscher, R.[Ribana],
Waske, B.[Björn],
Shapelet-Based Sparse Representation for Landcover Classification of
Hyperspectral Images,
GeoRS(54), No. 3, March 2016, pp. 1623-1634.
IEEE DOI
1603
Dictionaries
BibRef
Yang, J.X.[Jing-Xue],
Wang, Y.P.[Yun-Peng],
Classification of 10m-resolution SPOT data using a combined
Bayesian Network Classifier-shape adaptive neighborhood method,
PandRS(72), No. 1, August 2012, pp. 36-45.
Elsevier DOI
1209
Bayesian Network Classifier; Shape adaptive neighborhood; Fisher
optimal division; Maximum Likelihood Classifier; Remote sensing;
Classification
BibRef
Huo, H.,
Qing, J.,
Fang, T.,
Li, N.,
Land Cover Classification Using Local Softened Affine Hull,
GeoRS(50), No. 11, November 2012, pp. 4369-4383.
IEEE DOI
1210
BibRef
Vuolo, F.,
Atzberger, C.,
Exploiting the Classification Performance of Support Vector Machines
with Multi-Temporal Moderate-Resolution Imaging Spectroradiometer
(MODIS) Data in Areas of Agreement and Disagreement of Existing Land
Cover Products,
RS(4), No. 10, October 2012, pp. 3143-3167.
DOI Link
1210
BibRef
Verrelst, J.,
Romijn, E.,
Kooistra, L.,
Mapping Vegetation Density in a Heterogeneous River Floodplain
Ecosystem Using Pointable CHRIS/PROBA Data,
RS(4), No. 9, September 2012, pp. 2866-2889.
DOI Link
1210
BibRef
Pan, Y.,
Hu, T.,
Zhu, X.,
Zhang, J.,
Wang, X.,
Mapping Cropland Distributions Using a Hard and Soft Classification
Model,
GeoRS(50), No. 11, November 2012, pp. 4301-4312.
IEEE DOI
1210
BibRef
Arnold, S.[Stephan],
Integration of remote sensing data in national and European spatial
data infrastructures derivation of CORINE Land Cover data from the
DLM-DE,
PFG(2009), No. 2, 2009, pp. 129-141.
WWW Link.
1211
BibRef
Arnold, S.,
Digital Landscape Model DLM-DE: Deriving land cover information by
integration of topographic reference data with remote sensing data,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Waser, L.T.[Lars T.],
Klonus, S.[Sascha],
Ehlers, M.[Manfred],
Küchler, M.[Meinrad],
Jung, A.[András],
Potential of Digital Sensors for Land Cover and Tree Species
Classifications A Case Study in the Framework of the DGPF-Project,
PFG(2010), No. 2, 2010, pp. 141-156.
WWW Link.
1211
BibRef
Jung, A.[András],
Götze, C.[Christian],
Glässer, C.[Cornelia],
Overview of Experimental Setups in Spectroscopic Laboratory Measurements:
The SpecTour Project,
PFG(2012), No. 4, 2012, pp. 433-442.
WWW Link.
1211
BibRef
Buck, O.[Oliver],
Peter, B.[Benedikt],
Büker, C.[Cordt],
Zwei-skaliger Ansatz zur Aktualisierung landwirtschaftlicher
Referenzkulissen (LPIS),
PFG(2011), No. 5, 2011, pp. 339-348.
WWW Link.
1211
BibRef
Kersten, J.[Jens],
Gähler, M.[Monika],
Voigt, S.[Stefan],
A General Framework for Fast and Interactive Classification of Optical
VHR Satellite Imagery Using Hierarchical and Planar Markov Random
Fields,
PFG(2010), No. 6, 2010, pp. 439-449.
WWW Link.
1211
BibRef
Moser, G.,
Serpico, S.B.,
Benediktsson, J.A.,
Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information
in Very-High-Resolution Remote Sensing Images,
PIEEE(100), No. 3, March 2013, pp. 631-651.
IEEE DOI
1303
BibRef
Moser, G.,
de Giorgi, A.,
Serpico, S.B.,
Multiresolution Supervised Classification of Panchromatic and
Multispectral Images by Markov Random Fields and Graph Cuts,
GeoRS(54), No. 9, September 2016, pp. 5054-5070.
IEEE DOI
1609
Markov processes
BibRef
Barb, A.[Adrian],
Kilicay-Ergin, N.[Nil],
Genetic Optimization for Associative Semantic Ranking Models
of Satellite Images by Land Cover,
IJGI(2), No. 2, 2013, pp. 531-552.
DOI Link
1307
BibRef
Hu, F.[Fan],
Yang, W.[Wen],
Chen, J.[Jiayu],
Sun, H.[Hong],
Tile-Level Annotation of Satellite Images Using Multi-Level
Max-Margin Discriminative Random Field,
RS(5), No. 5, 2013, pp. 2275-2291.
DOI Link
1307
BibRef
Xu, J.B.[Jian Bo],
Song, L.S.[Li Sheng],
Zhong, D.F.[De Fu],
Zhao, Z.Z.[Zhi Zhong],
Zhao, K.[Kai],
Remote Sensing Image Classification Based on a Modified
Self-organizing Neural Network with a Priori Knowledge,
Sensors(153), No. 6, June 2013, pp. 29-36.
HTML Version.
1307
BibRef
Kasetkasem, T.[Teerasit],
Rakwatin, P.[Preesan],
Sirisommai, R.[Ratchawit],
Eiumnoh, A.[Apisit],
A Joint Land Cover Mapping and Image Registration Algorithm Based on
a Markov Random Field Model,
RS(5), No. 10, 2013, pp. 5089-5121.
DOI Link
1311
BibRef
Zhu, X.L.[Xiao-Lin],
Liu, D.[Desheng],
MAP-MRF Approach to Landsat ETM+ SLC-Off Image Classification,
GeoRS(52), No. 2, February 2014, pp. 1131-1141.
IEEE DOI
1402
geophysical image processing
BibRef
Luo, W.[Wang],
Li, H.L.[Hong-Liang],
Liu, G.H.[Guang-Hui],
Zeng, L.Y.[Liao-Yuan],
Semantic Annotation of Satellite Images Using Author-Genre-Topic
Model,
GeoRS(52), No. 2, February 2014, pp. 1356-1368.
IEEE DOI
1402
feature extraction
BibRef
Luo, B.[Bin],
Zhang, L.P.[Liang-Pei],
Robust Autodual Morphological Profiles for the Classification of
High-Resolution Satellite Images,
GeoRS(52), No. 2, February 2014, pp. 1451-1462.
IEEE DOI
1402
artificial satellites
BibRef
Marconcini, M.,
Fernandez-Prieto, D.,
Buchholz, T.,
Targeted Land-Cover Classification,
GeoRS(52), No. 7, July 2014, pp. 4173-4193.
IEEE DOI
1403
Accuracy
BibRef
Chiang, J.L.,
Liou, J.J.,
Wei, C.,
Cheng, K.S.,
A Feature-Space Indicator Kriging Approach for Remote Sensing Image
Classification,
GeoRS(52), No. 7, July 2014, pp. 4046-4055.
IEEE DOI
1403
Accuracy
BibRef
Liu, M.W.,
Ozdogan, M.,
Zhu, X.,
Crop Type Classification by Simultaneous Use of Satellite Images of
Different Resolutions,
GeoRS(52), No. 6, June 2014, pp. 3637-3649.
IEEE DOI
1403
Agriculture
BibRef
Voisin, A.,
Krylov, V.A.,
Moser, G.,
Serpico, S.B.,
Zerubia, J.B.,
Supervised Classification of Multisensor and Multiresolution Remote
Sensing Images With a Hierarchical Copula-Based Approach,
GeoRS(52), No. 6, June 2014, pp. 3346-3358.
IEEE DOI
1403
Data models
BibRef
Wawrzaszek, A.[Anna],
Aleksandrowicz, S.[Sebastian],
Krupiski, M.[Michal],
Drzewiecki, W.[Wojciech],
Influence of Image Filtering on Land Cover Classification when using
Fractal and Multifractal Features,
PFG(2014), No. 2, April 2014, pp. 101-115.
DOI Link
1405
BibRef
Tran, T.V.[Trung V.],
Julian, J.P.[Jason P.],
de Beurs, K.M.[Kirsten M.],
Land Cover Heterogeneity Effects on Sub-Pixel and Per-Pixel
Classifications,
IJGI(3), No. 2, 2014, pp. 540-553.
DOI Link
1405
BibRef
Ji, L.[Lei],
Zhang, L.[Li],
Rover, J.[Jennifer],
Wylie, B.K.[Bruce K.],
Chen, X.X.[Xue-Xia],
Geostatistical estimation of signal-to-noise ratios for spectral
vegetation indices,
PandRS(96), No. 1, 2014, pp. 20-27.
Elsevier DOI
1410
Geostatistics
BibRef
Gu, J.Y.[Jian-Yu],
Congalton, R.G.[Russell G.],
Pan, Y.Z.[Yao-Zhong],
The Impact of Positional Errors on Soft Classification Accuracy
Assessment: A Simulation Analysis,
RS(7), No. 1, 2015, pp. 579-599.
DOI Link
1502
BibRef
Chew, C.C.,
Small, E.E.,
Larson, K.M.,
Zavorotny, V.U.,
Vegetation Sensing Using GPS-Interferometric Reflectometry:
Theoretical Effects of Canopy Parameters on Signal-to-Noise Ratio
Data,
GeoRS(53), No. 5, May 2015, pp. 2755-2764.
IEEE DOI
1502
Global Positioning System
BibRef
Siegmann, B.[Bastian],
Glässer, C.[Cornelia],
Itzerott, S.[Sibylle],
Neumann, C.[Carsten],
An Enhanced Classification Approach using Hyperspectral Image Data in
Combination with in situ Spectral Measurements for the Mapping of
Vegetation Communities,
PFG(2014), No. 6, 2014, pp. 523-533.
DOI Link
1503
BibRef
Burai, P.[Péter],
Deák, B.[Balázs],
Valkó, O.[Orsolya],
Tomor, T.[Tamás],
Classification of Herbaceous Vegetation Using Airborne Hyperspectral
Imagery,
RS(7), No. 2, 2015, pp. 2046-2066.
DOI Link
1503
BibRef
See, L.[Linda],
Schepaschenko, D.[Dmitry],
Lesiv, M.[Myroslava],
McCallum, I.[Ian],
Fritz, S.[Steffen],
Comber, A.J.[Alexis J.],
Perger, C.[Christoph],
Schill, C.[Christian],
Zhao, Y.Y.[Yuan-Yuan],
Maus, V.[Victor],
Siraj, M.A.[Muhammad Athar],
Albrecht, F.[Franziska],
Cipriani, A.[Anna],
Vakolyuk, M.[Maryana],
Garcia, A.[Alfredo],
Rabia, A.H.[Ahmed H.],
Singha, K.[Kuleswar],
Marcarini, A.A.[Abel Alan],
Kattenborn, T.[Teja],
Hazarika, R.[Rubul],
Schepaschenko, M.[Maria],
van der Velde, M.[Marijn],
Kraxner, F.[Florian],
Obersteiner, M.[Michael],
Building a hybrid land cover map with crowdsourcing and
geographically weighted regression,
PandRS(103), No. 1, 2015, pp. 48-56.
Elsevier DOI
1504
Land cover
BibRef
Wu, X.C.[Xiao-Cui],
Ju, W.M.[Wei-Min],
Zhou, Y.[Yanlian],
He, M.Z.[Ming-Zhu],
Law, B.E.[Beverly E.],
Black, T.A.[T. Andrew],
Margolis, H.A.[Hank A.],
Cescatti, A.[Alessandro],
Gu, L.H.[Lian-Hong],
Montagnani, L.[Leonardo],
Noormets, A.[Asko],
Griffis, T.J.[Timothy J.],
Pilegaard, K.[Kim],
Varlagin, A.[Andrej],
Valentini, R.[Riccardo],
Blanken, P.D.[Peter D.],
Wang, S.Q.[Shao-Qiang],
Wang, H.M.[Hui-Min],
Han, S.J.[Shi-Jie],
Yan, J.H.[Jun-Hua],
Li, Y.N.[Ying-Nian],
Zhou, B.B.[Bing-Bing],
Liu, Y.[Yibo],
Performance of Linear and Nonlinear Two-Leaf Light Use Efficiency
Models at Different Temporal Scales,
RS(7), No. 3, 2015, pp. 2238-2278.
DOI Link
1504
productivity of plants.
BibRef
Hou, D.Y.[Dong-Yang],
Chen, J.[Jun],
Wu, H.[Hao],
Li, S.N.[Song-Nian],
Chen, F.[Fei],
Zhang, W.W.[Wei-Wei],
Active Collection of Land Cover Sample Data from Geo-Tagged Web Texts,
RS(7), No. 5, 2015, pp. 5805-5827.
DOI Link
1506
BibRef
Xing, H.Q.[Hua-Qiao],
Chen, J.[Jun],
Wu, H.[Hao],
Hou, D.Y.[Dong-Yang],
A Web Service-Oriented Geoprocessing System for Supporting
Intelligent Land Cover Change Detection,
IJGI(8), No. 1, 2019, pp. xx-yy.
DOI Link
1901
BibRef
Yan, S.[Shuang],
Jiang, L.M.[Ling-Mei],
Chai, L.[Linna],
Yang, J.T.[Jun-Tao],
Kou, X.K.[Xiao-Kang],
Calibration of the L-MEB Model for Croplands in HiWATER Using PLMR
Observation,
RS(7), No. 8, 2015, pp. 10878.
DOI Link
1509
BibRef
Bachmann, M.[Martin],
Makarau, A.[Aliaksei],
Segl, K.[Karl],
Richter, R.[Rudolf],
Estimating the Influence of Spectral and Radiometric Calibration
Uncertainties on EnMAP Data Products: Examples for Ground Reflectance
Retrieval and Vegetation Indices,
RS(7), No. 8, 2015, pp. 10689.
DOI Link
1509
BibRef
Ishihara, M.[Mitsunori],
Inoue, Y.[Yoshio],
Ono, K.[Keisuke],
Shimizu, M.[Mariko],
Matsuura, S.[Shoji],
The Impact of Sunlight Conditions on the Consistency of Vegetation
Indices in Croplands: Effective Usage of Vegetation Indices from
Continuous Ground-Based Spectral Measurements,
RS(7), No. 10, 2015, pp. 14079.
DOI Link
1511
BibRef
Zhao, F.[Feng],
Guo, Y.Q.[Yi-Qing],
Huang, Y.B.[Yan-Bo],
Verhoef, W.[Wout],
van der Tol, C.[Christiaan],
Dai, B.[Bo],
Liu, L.Y.[Liang-Yun],
Zhao, H.J.[Hui-Jie],
Liu, G.[Guang],
Quantitative Estimation of Fluorescence Parameters for Crop Leaves
with Bayesian Inversion,
RS(7), No. 10, 2015, pp. 14179.
DOI Link
1511
BibRef
Bue, B.D.[Brian D.],
Thompson, D.R.[David R.],
Sellar, R.G.[R. Glenn],
Podest, E.V.[Erika V.],
Eastwood, M.L.[Michael L.],
Helmlinger, M.C.[Mark C.],
McCubbin, I.B.[Ian B.],
Morgan, J.D.[John D.],
Leveraging in-scene spectra for vegetation species discrimination
with MESMA-MDA,
PandRS(108), No. 1, 2015, pp. 33-48.
Elsevier DOI
1511
Hyperspectral
BibRef
Szulkin, M.[Marta],
Zelazowski, P.[Przemyslaw],
Marrot, P.[Pascal],
Charmantier, A.[Anne],
Application of High Resolution Satellite Imagery to Characterize
Individual-Based Environmental Heterogeneity in a Wild Blue Tit
Population,
RS(7), No. 10, 2015, pp. 13319.
DOI Link
1511
BibRef
Xie, Y.H.[Yan-Hui],
Shi, J.C.[Jian-Cheng],
Lei, Y.H.[Yong-Hui],
Li, Y.Q.[Yun-Qing],
Modeling Microwave Emission from Short Vegetation-Covered Surfaces,
RS(7), No. 10, 2015, pp. 14099.
DOI Link
1511
BibRef
Peng, J.J.[Jing-Jing],
Fan, W.J.[Wen-Jie],
Xu, X.[Xiru],
Wang, L.Z.[Li-Zhao],
Liu, Q.H.[Qin-Huo],
Li, J.[Jvcai],
Zhao, P.[Peng],
Estimating Crop Albedo in the Application of a Physical Model Based
on the Law of Energy Conservation and Spectral Invariants,
RS(7), No. 11, 2015, pp. 15536.
DOI Link
1512
BibRef
Wu, X.D.[Xiao-Dan],
Xiao, Q.[Qing],
Wen, J.G.[Jian-Guang],
Liu, Q.A.[Qi-Ang],
You, D.Q.[Dong-Qin],
Dou, B.C.[Bao-Cheng],
Tang, Y.[Yong],
Li, X.W.[Xiao-Wen],
Optimal Nodes Selectiveness from WSN to Fit Field Scale Albedo
Observation and Validation in Long Time Series in the Foci Experiment
Areas, Heihe,
RS(7), No. 11, 2015, pp. 14757.
DOI Link
1512
BibRef
Atoum, Y.[Yousef],
Afridi, M.J.[Muhammad Jamal],
Liu, X.M.[Xiao-Ming],
McGrath, J.M.[J. Mitchell],
Hanson, L.E.[Linda E.],
On developing and enhancing plant-level disease rating systems in
real fields,
PR(53), No. 1, 2016, pp. 287-299.
Elsevier DOI
1602
CLS Rater
BibRef
Luo, H.[Heng],
Li, L.[Lin],
Zhu, H.H.[Hai-Hong],
Kuai, X.[Xi],
Zhang, Z.J.[Zhi-Jun],
Liu, Y.[Yu],
Land Cover Extraction from High Resolution ZY-3 Satellite Imagery
Using Ontology-Based Method,
IJGI(5), No. 3, 2016, pp. 31.
DOI Link
1604
BibRef
Sawada, Y.,
Tsutsui, H.,
Koike, T.,
Rasmy, M.,
Seto, R.,
Fujii, H.,
A Field Verification of an Algorithm for Retrieving Vegetation Water
Content From Passive Microwave Observations,
GeoRS(54), No. 4, April 2016, pp. 2082-2095.
IEEE DOI
1604
Land surface
BibRef
Chang, T.[Tommy],
Comandur, B.[Bharath],
Park, J.[Johnny],
Kak, A.C.[Avinash C.],
A variance-based Bayesian framework for improving Land-Cover
classification through wide-area learning from large geographic
regions,
CVIU(147), No. 1, 2016, pp. 3-22.
Elsevier DOI
1605
BibRef
Sicre, C.M.[Claire Marais],
Inglada, J.[Jordi],
Fieuzal, R.[Rémy],
Baup, F.[Frédéric],
Valero, S.[Silvia],
Cros, J.[Jérôme],
Huc, M.[Mireille],
Demarez, V.[Valérie],
Early Detection of Summer Crops Using High Spatial Resolution Optical
Image Time Series,
RS(8), No. 7, 2016, pp. 591.
DOI Link
1608
BibRef
Chen, Y.Y.[Yuan-Yuan],
Wang, Q.F.[Quan-Fang],
Wang, Y.L.[Yan-Long],
Duan, S.B.[Si-Bo],
Xu, M.Z.[Miao-Zhong],
Li, Z.L.[Zhao-Liang],
A Spectral Signature Shape-Based Algorithm for Landsat Image
Classification,
IJGI(5), No. 9, 2016, pp. 154.
DOI Link
1610
More than just the value at the point.
BibRef
Wang, H.S.[He-Song],
Jia, G.S.[Gen-Suo],
Zhang, A.Z.[An-Zhi],
Miao, C.[Chen],
Assessment of Spatial Representativeness of Eddy Covariance Flux Data
from Flux Tower to Regional Grid,
RS(8), No. 9, 2016, pp. 742.
DOI Link
1610
BibRef
Block, S.[Sebastián],
González, E.J.[Edgar J.],
Gallardo-Cruz, J.A.[J. Alberto],
Fernández, A.[Ana],
Solórzano, J.V.[Jonathan V.],
Meave, J.A.[Jorge A.],
Using Google Earth Surface Metrics to Predict Plant Species Richness
in a Complex Landscape,
RS(8), No. 10, 2016, pp. 865.
DOI Link
1609
BibRef
Connette, K.J.L.[Katherine J. LaJeunesse],
Connette, G.[Grant],
Bernd, A.[Asja],
Phyo, P.[Paing],
Aung, K.H.[Kyaw Htet],
Tun, Y.L.[Ye Lin],
Thein, Z.M.[Zaw Min],
Horning, N.[Ned],
Leimgruber, P.[Peter],
Songer, M.[Melissa],
Assessment of Mining Extent and Expansion in Myanmar Based on
Freely-Available Satellite Imagery,
RS(8), No. 11, 2016, pp. 912.
DOI Link
1612
BibRef
Volpi, M.,
Tuia, D.[Devis],
Dense Semantic Labeling of Subdecimeter Resolution Images With
Convolutional Neural Networks,
GeoRS(55), No. 2, February 2017, pp. 881-893.
IEEE DOI
1702
geophysical image processing
BibRef
Tan, Q.Y.[Qiao-Yu],
Liu, Y.[Yezi],
Chen, X.[Xia],
Yu, G.X.[Guo-Xian],
Multi-Label Classification Based on Low Rank Representation for Image
Annotation,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Yan, L.[Li],
Zhu, R.X.[Rui-Xi],
Mo, N.[Nan],
Liu, Y.[Yi],
Improved Class-Specific Codebook with Two-Step Classification for
Scene-Level Classification of High Resolution Remote Sensing Images,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Yan, L.[Li],
Zhu, R.X.[Rui-Xi],
Liu, Y.[Yi],
Mo, N.[Nan],
Scene Capture and Selected Codebook-Based Refined Fuzzy
Classification of Large High-Resolution Images,
GeoRS(56), No. 7, July 2018, pp. 4178-4192.
IEEE DOI
1807
feature extraction, fuzzy set theory, image classification,
image representation, image resolution, image segmentation,
selection of representative vocabularies
BibRef
Rozenstein, O.[Offer],
Adamowski, J.[Jan],
Linking Spaceborne and Ground Observations of Autumn Foliage
Senescence in Southern Québec, Canada,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Lu, X.,
Zheng, X.,
Yuan, Y.,
Remote Sensing Scene Classification by Unsupervised Representation
Learning,
GeoRS(55), No. 9, September 2017, pp. 5148-5157.
IEEE DOI
1709
spatial pyramid model, weighted deconvolution model,
BibRef
Santara, A.,
Mani, K.,
Hatwar, P.,
Singh, A.,
Garg, A.,
Padia, K.,
Mitra, P.,
BASS Net: Band-Adaptive Spectral-Spatial Feature Learning Neural
Network for Hyperspectral Image Classification,
GeoRS(55), No. 9, September 2017, pp. 5293-5301.
IEEE DOI
1709
deep learning based land cover classification algorithms,
BibRef
Marinoni, A.,
Iannelli, G.C.,
Gamba, P.,
An Information Theory-Based Scheme for Efficient Classification of
Remote Sensing Data,
GeoRS(55), No. 10, October 2017, pp. 5864-5876.
IEEE DOI
1710
feature extraction, remote sensing,
BibRef
Liu, Q.,
Hang, R.,
Song, H.,
Li, Z.,
Learning Multiscale Deep Features for High-Resolution Satellite Image
Scene Classification,
GeoRS(56), No. 1, January 2018, pp. 117-126.
IEEE DOI
1801
Feature extraction, Histograms, Learning systems, Satellites,
Spatial resolution, Training, Visualization,
spatial pyramid pooling
BibRef
Chen, W.T.[Wei-Tao],
Li, X.J.[Xian-Ju],
He, H.X.[Hai-Xia],
Wang, L.Z.[Li-Zhe],
Assessing Different Feature Sets' Effects on Land Cover
Classification in Complex Surface-Mined Landscapes by ZiYuan-3
Satellite Imagery,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Svendsen, D.H.[Daniel H.],
Martino, L.[Luca],
Campos-Taberner, M.[Manuel],
Garcia-Haro, F.J.,
Camps-Valls, G.[Gustau],
Joint Gaussian Processes for Biophysical Parameter Retrieval,
GeoRS(56), No. 3, March 2018, pp. 1718-1727.
IEEE DOI
1804
Gaussian processes, geophysical image processing,
inverse problems, learning (artificial intelligence),
vegetation monitoring
BibRef
Camps-Valls, G.[Gustau],
Svendsen, D.H.[Daniel H.],
Martino, L.[Luca],
Muńoz-Marí, J.[Jordi],
Laparra, V.[Valero],
Campos-Taberner, M.[Manuel],
Luengo, D.[David],
Physics-Aware Gaussian Processes for Earth Observation,
SCIA17(II: 205-217).
Springer DOI
1706
BibRef
Zhang, X.N.[Xiao-Ning],
Jiao, Z.[Ziti],
Dong, Y.D.[Ya-Dong],
Zhang, H.[Hu],
Li, Y.[Yang],
He, D.D.[Dan-Dan],
Ding, A.X.[An-Xin],
Yin, S.Y.[Si-Yang],
Cui, L.[Lei],
Chang, Y.X.[Ya-Xuan],
Potential Investigation of Linking PROSAIL with the Ross-Li BRDF
Model for Vegetation Characterization,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Guo, R.[Rui],
Liu, J.B.[Jian-Bo],
Li, N.[Na],
Liu, S.B.[Shi-Bin],
Chen, F.[Fu],
Cheng, B.[Bo],
Duan, J.B.[Jian-Bo],
Li, X.P.[Xin-Peng],
Ma, C.H.[Cai-Hong],
Pixel-Wise Classification Method for High Resolution Remote Sensing
Imagery Using Deep Neural Networks,
IJGI(7), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Xia, W.[Wei],
Ma, C.H.[Cai-Hong],
Liu, J.B.[Jian-Bo],
Liu, S.B.[Shi-Bin],
Chen, F.[Fu],
Yang, Z.[Zhi],
Duan, J.B.[Jian-Bo],
High-Resolution Remote Sensing Imagery Classification of Imbalanced
Data Using Multistage Sampling Method and Deep Neural Networks,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Wen, J.G.[Jian-Guang],
Liu, Q.A.[Qi-Ang],
Xiao, Q.[Qing],
Liu, Q.H.[Qin-Huo],
You, D.Q.[Dong-Qin],
Hao, D.L.[Da-Lei],
Wu, S.B.[Sheng-Biao],
Lin, X.W.[Xing-Wen],
Characterizing Land Surface Anisotropic Reflectance over Rugged
Terrain: A Review of Concepts and Recent Developments,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Hao, D.L.[Da-Lei],
Wen, J.G.[Jian-Guang],
Xiao, Q.[Qing],
Wu, S.B.[Sheng-Biao],
Lin, X.W.[Xing-Wen],
Dou, B.C.[Bao-Cheng],
You, D.Q.[Dong-Qin],
Tang, Y.[Yong],
Simulation and Analysis of the Topographic Effects on Snow-Free
Albedo over Rugged Terrain,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Wu, S.B.[Sheng-Biao],
Wen, J.G.[Jian-Guang],
Lin, X.W.[Xing-Wen],
Hao, D.L.[Da-Lei],
You, D.Q.[Dong-Qin],
Xiao, Q.[Qing],
Liu, Q.H.[Qin-Huo],
Yin, T.G.[Tian-Gang],
Modeling Discrete Forest Anisotropic Reflectance Over a Sloped
Surface With an Extended GOMS and SAIL Model,
GeoRS(57), No. 2, February 2019, pp. 944-957.
IEEE DOI
1901
Surface topography, Atmospheric modeling, Forestry, Vegetation,
Scattering, Remote sensing, Canopy reflectance,
sloped surface
BibRef
Marcinkowska-Ochtyra, A.[Adriana],
Zagajewski, B.[Bogdan],
Raczko, E.[Edwin],
Ochtyra, A.[Adrian],
Jarocinska, A.[Anna],
Classification of High-Mountain Vegetation Communities within a
Diverse Giant Mountains Ecosystem Using Airborne APEX Hyperspectral
Imagery,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Costa, H.[Hugo],
Almeida, D.[Diana],
Vala, F.[Francisco],
Marcelino, F.[Filipe],
Caetano, M.[Mário],
Land Cover Mapping from Remotely Sensed and Auxiliary Data for
Harmonized Official Statistics,
IJGI(7), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Hao, Y.L.[Yan-Ling],
Cui, T.W.[Ting-Wei],
Singh, V.P.[Vijay P.],
Zhang, J.[Jie],
Yu, R.H.[Rui-Hong],
Zhao, W.J.[Wen-Jing],
Diurnal Variation of Light Absorption in the Yellow River Estuary,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Mahdianpari, M.[Masoud],
Salehi, B.[Bahram],
Rezaee, M.[Mohammad],
Mohammadimanesh, F.[Fariba],
Zhang, Y.[Yun],
Very Deep Convolutional Neural Networks for Complex Land Cover
Mapping Using Multispectral Remote Sensing Imagery,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Yang, G.,
Shen, H.,
Sun, W.,
Li, J.,
Diao, N.,
He, Z.,
On the Generation of Gapless and Seamless Daily Surface Reflectance
Data,
GeoRS(56), No. 8, August 2018, pp. 4289-4306.
IEEE DOI
1808
geophysical image processing, image reconstruction, land cover,
remote sensing, time series,
time series
BibRef
Yu, Y.L.[Yun-Long],
Liu, F.X.[Fu-Xian],
Dense Connectivity Based Two-Stream Deep Feature Fusion Framework for
Aerial Scene Classification,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Levy, C.R.[Charlotte R.],
Burakowski, E.[Elizabeth],
Richardson, A.D.[Andrew D.],
Novel Measurements of Fine-Scale Albedo: Using a Commercial
Quadcopter to Measure Radiation Fluxes,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Sun, H.[Hua],
Wang, Q.[Qing],
Wang, G.X.[Guang-Xing],
Lin, H.[Hui],
Luo, P.[Peng],
Li, J.P.[Ji-Ping],
Zeng, S.Q.[Si-Qi],
Xu, X.Y.[Xiao-Yu],
Ren, L.X.[Lan-Xiang],
Optimizing kNN for Mapping Vegetation Cover of Arid and Semi-Arid
Areas Using Landsat Images,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Garcia-Salgado, B.P.[Beatriz P.],
Ponomaryov, V.I.[Volodymyr I.],
Sadovnychiy, S.[Sergiy],
Robles-Gonzalez, M.[Marco],
Parallel supervised land-cover classification system for hyperspectral
and multispectral images,
RealTimeIP(14), No. 3, October 2018, pp. 687-704.
Springer DOI
1811
BibRef
Zeng, Y.[Yelu],
Xu, B.D.[Bao-Dong],
Yin, G.F.[Gao-Fei],
Wu, S.B.[Sheng-Biao],
Hu, G.Q.[Guo-Qing],
Yan, K.[Kai],
Yang, B.[Bin],
Song, W.J.[Wan-Juan],
Li, J.[Jing],
Spectral Invariant Provides a Practical Modeling Approach for Future
Biophysical Variable Estimations,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Campos, J.C.[Joăo Carlos],
Brito, J.C.[José Carlos],
Mapping underrepresented land cover heterogeneity in arid regions:
The Sahara-Sahel example,
PandRS(146), 2018, pp. 211-220.
Elsevier DOI
1812
Arid regions, Ecoregions, Landsat, Remote sensing, Supervised classification
BibRef
Zhao, W.Z.[Wen-Zhi],
Emery, W.J.[William J.],
Bo, Y.C.[Yan-Chen],
Chen, J.G.[Jia-Ge],
Land Cover Mapping with Higher Order Graph-Based Co-Occurrence Model,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Gaetano, R.[Raffaele],
Ienco, D.[Dino],
Ose, K.[Kenji],
Cresson, R.[Remi],
A Two-Branch CNN Architecture for Land Cover Classification of PAN
and MS Imagery,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Zhang, W.[Wei],
Tang, P.[Ping],
Zhao, L.J.[Li-Jun],
Remote Sensing Image Scene Classification Using CNN-CapsNet,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
da Re, D.[Daniele],
de Clercq, E.M.[Eva M.],
Tordoni, E.[Enrico],
Madder, M.[Maxime],
Rousseau, R.[Raphaël],
Vanwambeke, S.O.[Sophie O.],
Looking for Ticks from Space: Using Remotely Sensed Spectral
Diversity to Assess Amblyomma and Hyalomma Tick Abundance,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Park, S.E.[Sang-Eun],
Jung, Y.T.[Yoon Taek],
Cho, J.H.[Jae-Hyoung],
Moon, H.[Hyoi],
Han, S.H.[Seung-Hoon],
Theoretical Evaluation of Water Cloud Model Vegetation Parameters,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
For scattering.
BibRef
Muhammad, U.[Usman],
Wang, W.Q.A.[Wei-Qi-Ang],
Hadid, A.[Abdenour],
Pervez, S.[Shahbaz],
Bag of words KAZE (BoWK) with two-step classification for
high-resolution remote sensing images,
IET-CV(13), No. 4, June 2019, pp. 395-403.
DOI Link
1906
See also KAZE Features.
BibRef
Ratajczak, R.,
Crispim-Junior, C.F.,
Faure, E.,
Fervers, B.,
Tougne, L.,
Automatic Land Cover Reconstruction From Historical Aerial Images:
An Evaluation of Features Extraction and Classification Algorithms,
IP(28), No. 7, July 2019, pp. 3357-3371.
IEEE DOI
1906
computer vision, convolutional neural nets, feature extraction,
filtering theory, geophysical image processing,
historical aerial images
BibRef
Gewali, U.B.[Utsav B.],
Monteiro, S.T.[Sildomar T.],
Saber, E.[Eli],
Gaussian Processes for Vegetation Parameter Estimation from
Hyperspectral Data with Limited Ground Truth,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Stanimirova, R.[Radost],
Cai, Z.Z.[Zhan-Zhang],
Melaas, E.K.[Eli K.],
Gray, J.M.[Josh M.],
Eklundh, L.[Lars],
Jönsson, P.[Per],
Friedl, M.A.[Mark A.],
An Empirical Assessment of the MODIS Land Cover Dynamics and TIMESAT
Land Surface Phenology Algorithms,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Stewart, E.L.[Ethan L.],
Wiesner-Hanks, T.[Tyr],
Kaczmar, N.[Nicholas],
DeChant, C.[Chad],
Wu, H.[Harvey],
Lipson, H.[Hod],
Nelson, R.J.[Rebecca J.],
Gore, M.A.[Michael A.],
Quantitative Phenotyping of Northern Leaf Blight in UAV Images Using
Deep Learning,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Petliak, H.[Helen],
Cerovski-Darriau, C.[Corina],
Zaliva, V.[Vadim],
Stock, J.[Jonathan],
Where's the Rock: Using Convolutional Neural Networks to Improve Land
Cover Classification,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Fang, J.[Jie],
Yuan, Y.[Yuan],
Lu, X.Q.[Xiao-Qiang],
Feng, Y.C.[Ya-Chuang],
Robust Space-Frequency Joint Representation for Remote Sensing Image
Scene Classification,
GeoRS(57), No. 10, October 2019, pp. 7492-7502.
IEEE DOI
1910
convolutional neural nets, feature extraction,
geophysical image processing, image classification, space domain
BibRef
Silver, M.[Micha],
Tiwari, A.[Arti],
Karnieli, A.[Arnon],
Identifying Vegetation in Arid Regions Using Object-Based Image
Analysis with RGB-Only Aerial Imagery,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Fang, B.[Bo],
Kou, R.[Rong],
Pan, L.[Li],
Chen, P.F.[Peng-Fei],
Category-Sensitive Domain Adaptation for Land Cover Mapping in Aerial
Scenes,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Ma, A.L.[Ai-Long],
Wan, Y.T.[Yu-Ting],
Zhong, Y.F.[Yan-Fei],
Wang, J.J.[Jun-Jue],
Zhang, L.P.[Liang-Pei],
SceneNet: Remote sensing scene classification deep learning network
using multi-objective neural evolution architecture search,
PandRS(172), 2021, pp. 171-188.
Elsevier DOI
2101
Scene classification, deep neural network, remote sensing,
multi-objective optimization, evolutionary algorithm,
neural architecture search
BibRef
Blanco-Sacristán, J.[Javier],
Panigada, C.[Cinzia],
Tagliabue, G.[Giulia],
Gentili, R.[Rodolfo],
Colombo, R.[Roberto],
Ladrón de Guevara, M.[Mónica],
Maestre, F.T.[Fernando T.],
Rossini, M.[Micol],
Spectral Diversity Successfully Estimates the a-Diversity of
Biocrust-Forming Lichens,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Alonso-Sarria, F.[Francisco],
Valdivieso-Ros, C.[Carmen],
Gomariz-Castillo, F.[Francisco],
Isolation Forests to Evaluate Class Separability and the
Representativeness of Training and Validation Areas in Land Cover
Classification,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Li, X.D.[Xiao-Dong],
Chen, R.[Rui],
Foody, G.M.[Giles M.],
Wang, L.H.[Li-Hui],
Yang, X.H.[Xiao-Hong],
Du, Y.[Yun],
Ling, F.[Feng],
Spatio-Temporal Sub-Pixel Land Cover Mapping of Remote Sensing
Imagery Using Spatial Distribution Information From Same-Class Pixels,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Lei, G.B.[Guang-Bin],
Li, A.N.[Ai-Nong],
Bian, J.H.[Jin-Hu],
Yan, H.[He],
Zhang, L.[Lulu],
Zhang, Z.J.[Zheng-Jian],
Nan, X.[Xi],
OIC-MCE: A Practical Land Cover Mapping Approach for Limited Samples
Based on Multiple Classifier Ensemble and Iterative Classification,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Hou, W.J.[Wen-Juan],
Gao, J.B.[Jiang-Bo],
Spatially Variable Relationships between Karst Landscape Pattern and
Vegetation Activities,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Ma, X.L.[Xuan-Long],
Migliavacca, M.[Mirco],
Wirth, C.[Christian],
Bohn, F.J.[Friedrich J.],
Huth, A.[Andreas],
Richter, R.[Ronny],
Mahecha, M.D.[Miguel D.],
Monitoring Plant Functional Diversity Using the Reflectance and Echo
from Space,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Laamrani, A.[Ahmed],
Joosse, P.[Pamela],
McNairn, H.[Heather],
Berg, A.A.[Aaron A.],
Hagerman, J.[Jennifer],
Powell, K.[Kathryn],
Berry, M.[Mark],
Assessing Soil Cover Levels during the Non-Growing Season Using
Multitemporal Satellite Imagery and Spectral Unmixing Techniques,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Chen, C.P.J.[Chun-Peng James],
Zhang, Z.W.[Zhi-Wu],
GRID: A Python Package for Field Plot Phenotyping Using Aerial Images,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Zhai, R.T.[Rui-Ting],
Zhang, C.R.[Chuan-Rong],
Li, W.D.[Wei-Dong],
Zhang, X.[Xiang],
Li, X.[Xueke],
Evaluation of Driving Forces of Land Use and Land Cover Change in New
England Area by a Mixed Method,
IJGI(9), No. 6, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Kwan, C.[Chiman],
Ayhan, B.[Bulent],
Budavari, B.[Bence],
Lu, Y.[Yan],
Perez, D.[Daniel],
Li, J.[Jiang],
Bernabe, S.[Sergio],
Plaza, A.[Antonio],
Deep Learning for Land Cover Classification Using Only a Few Bands,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Kwan, C.[Chiman],
Gribben, D.[David],
Ayhan, B.[Bulent],
Li, J.[Jiang],
Bernabe, S.[Sergio],
Plaza, A.[Antonio],
An Accurate Vegetation and Non-Vegetation Differentiation Approach
Based on Land Cover Classification,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Chivasa, W.[Walter],
Mutanga, O.[Onisimo],
Biradar, C.[Chandrashekhar],
UAV-Based Multispectral Phenotyping for Disease Resistance to
Accelerate Crop Improvement under Changing Climate Conditions,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Sakuma, A.[Asahi],
Yamano, H.[Hiroya],
Satellite Constellation Reveals Crop Growth Patterns and Improves
Mapping Accuracy of Cropping Practices for Subtropical Small-Scale
Fields in Japan,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Blanco, S.R.[Sergio R.],
Heras, D.B.[Dora B.],
Argüello, F.[Francisco],
Texture Extraction Techniques for the Classification of Vegetation
Species in Hyperspectral Imagery: Bag of Words Approach Based on
Superpixels,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Mboga, N.[Nicholus],
Grippa, T.[Tais],
Georganos, S.[Stefanos],
Vanhuysse, S.[Sabine],
Smets, B.[Benoît],
Dewitte, O.[Olivier],
Wolff, E.[Elčonore],
Lennert, M.[Moritz],
Fully convolutional networks for land cover classification from
historical panchromatic aerial photographs,
PandRS(167), 2020, pp. 385-395.
Elsevier DOI
2008
Fully convolutional networks, Deep learning,
Panchromatic historical aerial imagery, Land cover classification
BibRef
Park, J.[Jinseok],
Jang, S.[Seongju],
Hong, R.[Rokgi],
Suh, K.[Kyo],
Song, I.[Inhong],
Development of Land Cover Classification Model Using AI Based
FusionNet Network,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Samarinas, N.[Nikiforos],
Tziolas, N.[Nikolaos],
Zalidis, G.[George],
Improved Estimations of Nitrate and Sediment Concentrations Based on
SWAT Simulations and Annual Updated Land Cover Products from a Deep
Learning Classification Algorithm,
IJGI(9), No. 10, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Thomas, N.[Nathan],
Neigh, C.S.R.[Christopher S. R.],
Carroll, M.L.[Mark L.],
McCarty, J.L.[Jessica L.],
Bunting, P.[Pete],
Fusion Approach for Remotely-Sensed Mapping of Agriculture (FARMA): A
Scalable Open Source Method for Land Cover Monitoring Using Data
Fusion,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Gudmann, A.[András],
Csikós, N.[Nándor],
Szilassi, P.[Péter],
Mucsi, L.[László],
Improvement in Satellite Image-Based Land Cover Classification with
Landscape Metrics,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Radke, D.[David],
Radke, D.[Daniel],
Radke, J.[John],
Beyond Measurement: Extracting Vegetation Height from High Resolution
Imagery with Deep Learning,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Baudoux, L.[Luc],
Inglada, J.[Jordi],
Mallet, C.[Clément],
Toward a Yearly Country-Scale CORINE Land-Cover Map without Using
Images: A Map Translation Approach,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Minghelli, A.[Audrey],
Chevalier, C.[Cristele],
Descloitres, J.[Jacques],
Berline, L.[Léo],
Blanc, P.[Philippe],
Chami, M.[Malik],
Synergy between Low Earth Orbit (LEO): MODIS and Geostationary Earth
Orbit (GEO): GOES Sensors for Sargassum Monitoring in the Atlantic
Ocean,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Li, X.[Xiao],
Lei, L.[Lin],
Sun, Y.[Yuli],
Li, M.[Ming],
Kuang, G.Y.[Guang-Yao],
Collaborative Attention-Based Heterogeneous Gated Fusion Network for
Land Cover Classification,
GeoRS(59), No. 5, May 2021, pp. 3829-3845.
IEEE DOI
2104
Optical imaging, Feature extraction, Logic gates, Nonlinear optics,
Synthetic aperture radar, Collaboration, Optical sensors,
land cover classification
BibRef
Li, X.[Xiao],
Lei, L.[Lin],
Sun, Y.[Yuli],
Kuang, G.Y.[Gang-Yao],
Dynamic-Hierarchical Attention Distillation With Synergetic Instance
Selection for Land Cover Classification Using Missing Heterogeneity
Images,
GeoRS(60), 2022, pp. 1-16.
IEEE DOI
2112
Training, Optical imaging, Nonhomogeneous media,
Synthetic aperture radar, Optical sensors, Streaming media,
privileged information
BibRef
Ma, D.D.[Dong-Dong],
Rehman, T.U.[Tanzeel U.],
Zhang, L.[Libo],
Maki, H.[Hideki],
Tuinstra, M.R.[Mitchell R.],
Jin, J.[Jian],
Modeling of Diurnal Changing Patterns in Airborne Crop Remote Sensing
Images,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Levering, A.[Alex],
Marcos, D.[Diego],
Tuia, D.[Devis],
On the relation between landscape beauty and land cover: A case study
in the U.K. at Sentinel-2 resolution with interpretable AI,
PandRS(177), 2021, pp. 194-203.
Elsevier DOI
2106
Landscape aesthetics, Deep learning, Interpretable AI,
Corine land cover, Sentinel-2
BibRef
Jozdani, S.[Shahab],
Chen, D.M.[Dong-Mei],
Chen, W.J.[Wen-Jun],
Leblanc, S.G.[Sylvain G.],
Prévost, C.[Christian],
Lovitt, J.[Julie],
He, L.M.[Li-Ming],
Johnson, B.A.[Brian A.],
Leveraging Deep Neural Networks to Map Caribou Lichen in
High-Resolution Satellite Images Based on a Small-Scale, Noisy
UAV-Derived Map,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Bui, Q.T.[Quang-Thanh],
Chou, T.Y.[Tien-Yin],
Hoang, T.V.[Thanh-Van],
Fang, Y.M.[Yao-Min],
Mu, C.Y.[Ching-Yun],
Huang, P.H.[Pi-Hui],
Pham, V.D.[Vu-Dong],
Nguyen, Q.H.[Quoc-Huy],
Anh, D.T.N.[Do Thi Ngoc],
Pham, V.M.[Van-Manh],
Meadows, M.E.[Michael E.],
Gradient Boosting Machine and Object-Based CNN for Land Cover
Classification,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Sainos-Vizuett, M.[Michelle],
Lopez-Nava, I.H.[Irvin Hussein],
Satellite Imagery Classification Using Shallow and Deep Learning
Approaches,
MCPR21(163-172).
Springer DOI
2108
BibRef
Zhang, J.R.[Jian-Rong],
Zhao, H.W.[Hong-Wei],
Li, J.[Jiao],
TRS: Transformers for Remote Sensing Scene Classification,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
pure CNNs -> Convolution + Transformer -> pure Transformers
BibRef
Jozdani, S.[Shahab],
Chen, D.M.[Dong-Mei],
Chen, W.J.[Wen-Jun],
Leblanc, S.G.[Sylvain G.],
Lovitt, J.[Julie],
He, L.M.[Li-Ming],
Fraser, R.H.[Robert H.],
Johnson, B.A.[Brian Alan],
Evaluating Image Normalization via GANs for Environmental Mapping:
A Case Study of Lichen Mapping Using High-Resolution Satellite Imagery,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Huang, A.[Anqi],
Shen, R.[Runping],
Li, Y.Q.[Ye-Qing],
Han, H.M.[Hui-Min],
Di, W.L.[Wen-Li],
Hagan, D.F.T.[Daniel Fiifi Tawia],
A Methodology to Generate Integrated Land Cover Data for Land Surface
Model by Improving Dempster-Shafer Theory,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Jiang, H.[Hong],
Yao, M.L.[Mao-Lin],
Guo, J.[Jia],
Zhang, Z.M.[Zhao-Ming],
Wu, W.T.[Wen-Ting],
Mao, Z.Y.[Zheng-Yuan],
Vegetation Monitoring of Protected Areas in Rugged Mountains Using an
Improved Shadow-Eliminated Vegetation Index (SEVI),
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Li, Y.S.[Yan-Sheng],
Zhou, Y.H.[Yu-Han],
Zhang, Y.J.[Yong-Jun],
Zhong, L.H.[Li-Heng],
Wang, J.[Jian],
Chen, J.D.[Jing-Dong],
DKDFN: Domain Knowledge-Guided deep collaborative fusion network for
multimodal unitemporal remote sensing land cover classification,
PandRS(186), 2022, pp. 170-189.
Elsevier DOI
2203
Land cover classification, Deep collaborative network,
Domain knowledge incorporation, Multimodal unitemporal remote sensing
BibRef
Liu, Z.Y.C.[Zac Yung-Chun],
Chamberlin, A.J.[Andrew J.],
Tallam, K.[Krti],
Jones, I.J.[Isabel J.],
Lamore, L.L.[Lance L.],
Bauer, J.[John],
Bresciani, M.[Mariano],
Wolfe, C.M.[Caitlin M.],
Casagrandi, R.[Renato],
Mari, L.[Lorenzo],
Gatto, M.[Marino],
Diongue, A.K.[Abdou Ka],
Toure, L.[Lamine],
Rohr, J.R.[Jason R.],
Riveau, G.[Gilles],
Jouanard, N.[Nicolas],
Wood, C.L.[Chelsea L.],
Sokolow, S.H.[Susanne H.],
Mandle, L.[Lisa],
Daily, G.[Gretchen],
Lambin, E.F.[Eric F.],
Leo, G.A.D.[Giulio A. De],
Deep Learning Segmentation of Satellite Imagery Identifies Aquatic
Vegetation Associated with Snail Intermediate Hosts of
Schistosomiasis in Senegal, Africa,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
Bilharzia Or Snail Fever. Water-borne parasite.
BibRef
Wang, D.[Di],
Yang, R.H.[Rong-Hao],
Liu, H.[Hanhu],
He, H.Q.[Hai-Qing],
Tan, J.X.[Jun-Xiang],
Li, S.[Shaoda],
Qiao, Y.C.[Yi-Chun],
Tang, K.Q.[Kang-Qi],
Wang, X.[Xiao],
HFENet: Hierarchical Feature Extraction Network for Accurate
Landcover Classification,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Ma, W.L.[Wan-Li],
Karakus, O.[Oktay],
Rosin, P.L.[Paul L.],
AMM-FuseNet: Attention-Based Multi-Modal Image Fusion Network for
Land Cover Mapping,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Schamberger, L.[Léa],
Minghelli, A.[Audrey],
Chami, M.[Malik],
Quantification of Underwater Sargassum Aggregations Based on a
Semi-Analytical Approach Applied to Sentinel-3/OLCI (Copernicus) Data
in the Tropical Atlantic Ocean,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Ye, Y.C.[Yong-Chang],
Zhang, X.Y.[Xiao-Yang],
Shen, Y.[Yu],
Wang, J.M.[Jian-Min],
Crimmins, T.[Theresa],
Scheifinger, H.[Helfried],
An optimal method for validating satellite-derived land surface
phenology using in-situ observations from national phenology networks,
PandRS(194), 2022, pp. 74-90.
Elsevier DOI
2212
Phenology, In-situ observations, PEP725, USA-NPN, VIIRS, LSP validation
BibRef
van den Broeck, W.A.J.[Wouter A. J.],
Goedemé, T.[Toon],
Loopmans, M.[Maarten],
Multiclass Land Cover Mapping from Historical Orthophotos Using
Domain Adaptation and Spatio-Temporal Transfer Learning,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Xing, H.Q.[Hua-Qiao],
Liu, C.[Chang],
Li, R.[Rui],
Wang, H.H.[Hai-Hang],
Zhang, J.H.[Jin-Hua],
Wu, H.Y.[Hua-Yi],
Domain Constraints-Driven Automatic Service Composition for Online
Land Cover Geoprocessing,
IJGI(11), No. 12, 2022, pp. xx-yy.
DOI Link
2301
BibRef
Wu, H.[Hao],
Chen, J.[Jun],
Xing, H.Q.[Hua-Qiao],
Li, S.[Songnian],
Hu, J.[Juju],
Pragmatics Driven Land Cover Service Composition Utilizing
Behavior-intention Model,
ISPRS16(B8: 1319-1325).
DOI Link
1610
BibRef
Hu, K.[Kai],
Zhang, E.[Enwei],
Dai, X.[Xin],
Xia, M.[Min],
Zhou, F.H.[Feng-Hua],
Weng, L.G.[Li-Guo],
Lin, H.F.[Hai-Feng],
MCSGNet: A Encoder-Decoder Architecture Network for Land Cover
Classification,
RS(15), No. 11, 2023, pp. 2810.
DOI Link
2306
BibRef
Pique, G.[Gaétan],
Carrer, D.[Dominique],
Lugato, E.[Emanuele],
Fieuzal, R.[Rémy],
Garisoain, R.[Raphaël],
Ceschia, E.[Eric],
About the Assessment of Cover Crop Albedo Potential Cooling Effect:
Risk of the Darkening Feedback Loop Effects,
RS(15), No. 13, 2023, pp. 3231.
DOI Link
2307
BibRef
Alagialoglou, L.[Leonidas],
Manakos, I.[Ioannis],
Papadopoulou, S.[Sofia],
Chadoulis, R.T.[Rizos-Theodoros],
Kita, A.[Afroditi],
Mapping Underwater Aquatic Vegetation Using Foundation Models With
Air- and Space-Borne Images: The Case of Polyphytos Lake,
RS(15), No. 16, 2023, pp. 4001.
DOI Link
2309
BibRef
Fan, X.S.[Xiang-Suo],
Li, X.Y.[Xu-Yang],
Yan, C.[Chuan],
Fan, J.L.[Jin-Long],
Chen, L.[Lin],
Wang, N.[Nayi],
Converging Channel Attention Mechanisms with Multilayer Perceptron
Parallel Networks for Land Cover Classification,
RS(15), No. 16, 2023, pp. 3924.
DOI Link
2309
BibRef
Chandler, C.J.[Chris J.],
Ávila-Mosqueda, S.V.[Silvia Valery],
Salas-Acosta, E.R.[Evelyn Raquel],
Magańa-Gallegos, E.[Eden],
Mancera, E.E.[Edgar Escalante],
Reali, M.A.G.[Miguel Angel Gómez],
de la Barreda-Bautista, B.[Betsabé],
Boyd, D.S.[Doreen S.],
Metcalfe, S.E.[Sarah E.],
Sjogersten, S.[Sofie],
van Tussenbroek, B.[Brigitta],
Silva, R.[Rodolfo],
Foody, G.M.[Giles M.],
Spectral Characteristics of Beached Sargassum in Response to Drying
and Decay over Time,
RS(15), No. 17, 2023, pp. 4336.
DOI Link
2310
BibRef
Malambo, L.[Lonesome],
Popescu, S.[Sorin],
Image to Image Deep Learning for Enhanced Vegetation Height Modeling
in Texas,
RS(15), No. 22, 2023, pp. 5391.
DOI Link
2311
BibRef
Wang, B.G.[Bao-Guo],
Yao, Y.H.[Yong-Hui],
Mountain Vegetation Classification Method Based on Multi-Channel
Semantic Segmentation Model,
RS(16), No. 2, 2024, pp. 256.
DOI Link
2402
BibRef
Zhao, J.Q.[Jun-Qi],
Du, D.S.[Dong-Sheng],
Chen, L.[Lifu],
Liang, X.J.[Xiu-Juan],
Chen, H.[Haoda],
Jin, Y.C.[Yu-Chen],
HA-Net for Bare Soil Extraction Using Optical Remote Sensing Images,
RS(16), No. 16, 2024, pp. 3088.
DOI Link
2408
BibRef
Knox, D.[David],
Xue, B.[Bing],
Zhang, M.J.[Meng-Jie],
Cuff, J.[Jeromy],
Measuring Ground Cover in Long Term Hill Country Photography using
Weakly Supervised Convolutional Neural Networks,
IVCNZ23(1-6)
IEEE DOI
2403
Training, Photography, Analytical models, Annotations,
Semantic segmentation, Supervised learning, Soil
BibRef
Zheng, C.Y.[Chen-Yu],
Wang, J.J.[Jun-Jue],
Ma, A.[Ailong],
Zhong, Y.F.[Yan-Fei],
AutoLC: Search Lightweight and Top-Performing Architecture for Remote
Sensing Image Land-Cover Classification,
ICPR22(324-330)
IEEE DOI
2212
Training, Gradient methods, Image processing,
Manuals, Search problems, Decoding
BibRef
Aksoy, A.K.[Ahmet Kerem],
Ravanbakhsh, M.[Mahdyar],
Kreuziger, T.[Tristan],
Demir, B.[Begüm],
A Consensual Collaborative Learning Method for Remote Sensing Image
Classification Under Noisy Multi-Labels,
ICIP21(3842-3846)
IEEE DOI
2201
Collecting training samples.
Training, Uncertainty, Image processing, Collaboration,
Collaborative work, Sensors, Noise measurement, Multi-label noise,
remote sensing
BibRef
Ullah, H.[Habib],
Ahmed, T.U.[Tawsin Uddin],
Ullah, M.[Mohib],
Cheikh, F.A.[Faouzi Alaya],
IR-SSL: Improved Regularization Based Semi-Supervised Learning for
Land Cover Classification,
ICIP21(874-878)
IEEE DOI
2201
Satellites, Image processing, Urban planning, Estimation,
Semisupervised learning, Benchmark testing,
feature learning
BibRef
Deneu, B.[Benjamin],
Joly, A.[Alexis],
Bonnet, P.[Pierre],
Servajean, M.[Maximilien],
Munoz, F.[François],
How Do Deep Convolutional SDM Trained on Satellite Images Unravel
Vegetation Ecology?,
MAES20(148-158).
Springer DOI
2103
BibRef
Zhang, Q.,
Zhang, Y.,
Yang, P.,
Meng, Y.,
Zhuo, S.,
Yang, Z.,
The Land Cover Classification Using A Feature Pyramid Networks
Architecture From Satellite Imagery,
ISPRS20(B3:241-246).
DOI Link
2012
BibRef
Zhang, K.,
Yang, H.,
Semi-Supervised Multi-Spectral Land Cover Classification With
Multi-Attention and Adaptive Kernel,
ICIP20(1881-1885)
IEEE DOI
2011
Feature extraction, Kernel, Remote sensing, Training, Generators,
Convolution, Agriculture, Multi-Spectral, Multi-Attention
BibRef
Baghbaderani, R.K.[Razieh Kaviani],
Qu, Y.[Ying],
Qi, H.R.[Hai-Rong],
Stutts, C.[Craig],
Representative-Discriminative Learning for Open-Set Land Cover
Classification of Satellite Imagery,
ECCV20(XXX: 1-17).
Springer DOI
2010
BibRef
Rußwurm, M.,
Wang, S.,
Körner, M.,
Lobell, D.,
Meta-Learning for Few-Shot Land Cover Classification,
EarthVision20(788-796)
IEEE DOI
2008
Task analysis, Adaptation models, Remote sensing, Data models,
Image segmentation, Laser radar, Satellites
BibRef
Artemeva, O.V.,
Zareie, S.,
Elhaei, Y.,
Pozdnyakova, N.A.,
Vasilev, N.D.,
Using Remote Sensing Data to Create Maps of Vegetation and Relief For
Natural Resource Management of a Large Administrative Region,
SMPR19(103-109).
DOI Link
1912
BibRef
Abujayyab, S.K.M.,
Karas, I.R.,
Geospatial Machine Learning Datasets Structuring and Classification
Tool: Case Study for Mapping LULC From Rasat Satellite Images,
GGT19(39-46).
DOI Link
1912
BibRef
Yao, Y.,
Zhao, H.,
Huang, D.,
Tan, Q.,
Remote Sensing Scene Classification Using Multiple Pyramid Pooling,
PIA19(279-284).
DOI Link
1912
BibRef
Rykin, I.,
Shagnieva, A.,
Panidi, E.,
Tsepelev, V.,
Highly Discrete Mapping of The Growing Season Time Frames and Time
Dynamics,
Gi4DM19(357-361).
DOI Link
1912
Based on vegetation index.
BibRef
Requena-Mesa, C.[Christian],
Reichstein, M.[Markus],
Mahecha, M.D.[Miguel D.],
Kraft, B.[Basil],
Denzler, J.[Joachim],
Predicting Landscapes from Environmental Conditions Using Generative
Networks,
GCPR19(203-217).
Springer DOI
1911
More than land cover -- meaningful ecological units from images.
BibRef
Rakhlin, A.,
Davydow, A.,
Nikolenko, S.,
Land Cover Classification from Satellite Imagery with U-Net and
Lovász-Softmax Loss,
DeepGlobe18(257-2574)
IEEE DOI
1812
Image segmentation, Satellites, Training,
Task analysis, Stochastic processes
BibRef
Li, T.,
Comer, M.,
Zerubia, J.,
A Connected-Tube MPP Model for Object Detection with Application to
Materials and Remotely-Sensed Images,
ICIP18(1323-1327)
IEEE DOI
1809
Shape, Mixed Marked Point Process, stochastic modeling,
road and building detection
BibRef
Wolfe, J.,
Jin, X.,
Bahr, T.,
Holzer, N.,
Application of Softmax Regression And Its Validation for Spectral-based
Land Cover Mapping,
Hannover17(455-459).
DOI Link
1805
BibRef
Workman, S.,
Zhai, M.,
Crandall, D.J.[David J.],
Jacobs, N.,
A Unified Model for Near and Remote Sensing,
ICCV17(2707-2716)
IEEE DOI
1802
feature extraction, feedforward neural nets,
geophysical image processing, image resolution, land cover,
Remote sensing
BibRef
Khawaja, H.A.[Hassan A.],
Solution of Pure Scattering Radiation Transport Equation (RTE) Using
Finite Difference Method (FDM),
SCIA17(I: 492-501).
Springer DOI
1706
BibRef
Wirth, E.,
Szabó, G.,
Czinkóczky, A.,
Measure Landscape Diversity With Logical Scout Agents,
ISPRS16(B2: 491-495).
DOI Link
1610
BibRef
Hosni, I.,
Bennaceur Farah, L.,
Naceur, M.S.,
Farah, I.R.,
Estimation Of Physical Parameters Of A Multilayered Multi-scale
Vegetated Surface,
ISPRS16(B1: 453-460).
DOI Link
1610
BibRef
Niederheiser, R.[Robert],
Rutzinger, M.[Martin],
Lamprecht, A.[Andrea],
Steinbauer, K.[Klaus],
Winkler, M.[Manuela],
Pauli, H.[Harald],
Mapping Alpine Vegetation Location Properties By Dense Matching,
ISPRS16(B5: 881-886).
DOI Link
1610
BibRef
Müllerová, J.[Jana],
Bruna, J.[Josef],
Dvorák, P.[Petr],
Bartalo, T.[Tomá],
Vítková, M.[Michaela],
Does The Data Resolution/origin Matter? Satellite, Airborne And UAV
Imagery To Tackle Plant Invasions,
ISPRS16(B7: 903-908).
DOI Link
1610
BibRef
Aswatha, S.M.,
Mukhopadhyay, J.,
Biswas, P.K.,
Spectral slopes for automated classification of land cover in landsat
images,
ICIP16(4354-4358)
IEEE DOI
1610
Earth
BibRef
Jay, S.,
Bendoula, R.,
Hadoux, X.,
Gorretta, N.,
Mapping of Foliar Content Using Radiative Transfer Modeling and VIS-NIR
Hyperspectral Close-Range Remote-Sensing,
GeoHyper15(467-472).
DOI Link
1602
Details based on leaf properties.
BibRef
Santana, T.M.H.C.[Tiago M.H.C.],
Machado, A.M.C.[Alexei M.C.],
de Albuquerque Araújo, A.[Arnaldo],
dos Santos, J.A.[Jefersson A.],
Star: A Contextual Description of Superpixels for Remote Sensing Image
Classification,
CIARP16(300-308).
Springer DOI
1703
BibRef
de Andrade, Jr., E.F.[Edemir Ferreira],
de Albuquerque Araújo, A.[Arnaldo],
dos Santos, J.A.[Jefersson A.],
A Multiclass Approach for Land-Cover Mapping by Using Multiple Data
Sensors,
CIARP15(59-66).
Springer DOI
1511
BibRef
Dhawale, N.M.,
Adamchuk, V.I.,
Prasher, S.O.,
Dutilleul, P.R.L.,
Ferguson, R.B.,
Spatially Constrained Geospatial Data Clustering for Multilayer
Sensor-Based Measurements,
Geospatial14(187-190).
DOI Link
1411
BibRef
Ustuner, M.,
Sanli, F.B.,
Abdikan, S.,
Esetlili, M.T.,
Kurucu, Y.,
Crop Type Classification Using Vegetation Indices of RapidEye Imagery,
Thematic14(195-198).
DOI Link
1404
BibRef
Brocks, S.,
Bareth, G.,
Evaluating the potential of consumer-grade smart cameras for low-cost
stereo-photogrammetric Crop-Surface Monitoring,
Thematic14(43-49).
DOI Link
1404
BibRef
Jia, Y.,
Li, H.T.,
Gu, H.Y.,
Han, Y.S.,
Study on the Technology and Method of Land Cover Classification for
Geographic National Conditions Surveying,
IWIDF13(61-66).
DOI Link
1311
BibRef
Hu, B.,
Li, P.,
A Comparative Study Between Pair-Point Clique and Multi-Point Clique
Markov Random Field Models for Land Cover Classification,
IWIDF13(41-44).
DOI Link
1311
BibRef
Bradbury, G.[Gwyneth],
Mitchell, K.[Kenny],
Weyrich, T.[Tim],
Multi-spectral Material Classification in Landscape Scenes Using
Commodity Hardware,
CAIP13(II:209-216).
Springer DOI
1311
BibRef
Moody, D.I.,
Bauer, D.E.,
Brumby, S.P.,
Chisolm, E.D.,
Warren, M.S.,
Skillman, S.W.,
Keisler, R.,
Land cover classification in fused multisensor multispectral
satellite imagery,
Southwest16(85-88)
IEEE DOI
1605
Earth
BibRef
Moody, D.I.,
Brumby, S.P.,
Rowland, J.C.,
Altmann, G.L.,
Larson, A.E.,
Change detection and classification of land cover in multispectral
satellite imagery using clustering of sparse approximations (CoSA)
over learned feature dictionaries,
AIPR14(1-10)
IEEE DOI
1504
Hebbian learning
BibRef
Warren, M.S.,
Brumby, S.P.,
Skillman, S.W.,
Kelton, T.,
Wohlberg, B.,
Mathis, M.,
Chartrand, R.,
Keisler, R.,
Johnson, M.,
Seeing the Earth in the Cloud:
Processing one petabyte of satellite imagery in one day,
AIPR15(1-12)
IEEE DOI
1605
cloud computing
BibRef
Moody, D.I.,
Wozniak, P.R.,
Brumby, S.P.,
Automated variability selection in time-domain imaging surveys using
sparse representations with learned dictionaries,
AIPR15(1-8)
IEEE DOI
1605
computer vision
BibRef
Moody, D.I.,
Brumby, S.P.,
Rowland, J.C.,
Gangodagamage, C.,
Unsupervised land cover classification in multispectral imagery with
sparse representations on learned dictionaries,
AIPR12(1-10)
IEEE DOI
1307
Hebbian learning
BibRef
Negri, R.G.[Rogério G.],
Casaca, W.C.O.[Wallace C. O.],
Silva, E.A.[Erivaldo A.],
Region-Based Classification of PolSAR Data Through Kernel Methods and
Stochastic Distances,
CIARP17(433-440).
Springer DOI
1802
BibRef
Negri, R.G.[Rogério G.],
Dutra, L.V.[Luciano V.],
Sant'Anna, S.J.S.[Sidnei J.S.],
Stochastic Approaches of Minimum Distance Method for Region Based
Classification,
CIARP12(797-804).
Springer DOI
1209
BibRef
Niroumand Jadidi, M.,
Safdarinezhad, A.R.,
Sahebi, M.R.,
Mokhtarzade, M.,
A Novel Approach To Super Resolution Mapping of Multispectral Imagery
Based On Pixel Swapping Technique,
AnnalsPRS(I-7), No. 2012, pp. 159-164.
DOI Link
1209
BibRef
Mccamley, G.,
Grant, I.,
Jones, S.,
Bellman, C.,
Characterising Vegetated Surfaces Using Modis Multiangular Satellite
Data,
AnnalsPRS(I-7), No. 2012, pp. 13-18.
DOI Link
1209
BibRef
Handique, B.K.,
A Class of Regression-cum-ratio Estimators In Two-phase Sampling For
Utilizing Information From High Resolution Satellite Data,
AnnalsPRS(I-4), No. 2012, pp. 71-76.
DOI Link
1209
BibRef
Büschenfeld, T.,
Ostermann, J.,
Automatic Refinement of Training Data for Classification of Satellite
Imagery,
AnnalsPRS(I-7), No. 2012, pp. 117-122.
DOI Link
1209
BibRef
Hosomura, T.,
Improvement Of Thermal Estimation At Land Cover Boundary By Using
Quantile,
ISPRS12(XXXIX-B8:475-478).
DOI Link
1209
BibRef
Zhai, L.,
Sun, J.,
Sang, H.,
Yang, G.,
Jia, Y.,
Large Area Land Cover Classification With Landsat Etm+ Images Based On
Decision Tree,
ISPRS12(XXXIX-B7:421-426).
DOI Link
1209
BibRef
Nilsen, A.B.,
Bjřrkelo, K.,
National Land Cover And Resource Statistics,
ISPRS12(XXXIX-B4:431-435).
DOI Link
1209
BibRef
Fadaei, H.,
Suzuki, R.,
Sakai, T.,
Torii, K.,
A Proposed New Vegetation Index, The Total Ratio Vegetation Index
(trvi), For Arid And Semi-arid Regions,
ISPRS12(XXXIX-B8:403-407).
DOI Link
1209
BibRef
Bareth, G.,
Waldhoff, G.,
Regionalization of Agricultural Management by Using the Multi-Data
Approach (MDA),
ISPRS12(XXXIX-B8:225-230).
DOI Link
1209
BibRef
Petrou, Z.I.,
Tarantino, C.,
Adamo, M.,
londa, P.,
Petrou, M.,
Estimation Of Vegetation Height Through Satellite Image Texture
Analysis,
ISPRS12(XXXIX-B8:321-326).
DOI Link
1209
BibRef
Peterman, V.,
Mesaric(, M.,
Land Survey From Unmaned Aerial Veichle,
ISPRS12(XXXIX-B1:447-451).
DOI Link
1209
BibRef
Li, W.W.[Wei-Wei],
Du, J.[Jian],
Yi, B.L.[Bao-Lin],
Study on classification for vegetation spectral feature extraction
method based on decision tree algorithm,
IASP11(665-669).
IEEE DOI
1112
BibRef
Sarhan, E.[Ebada],
Khalifa, E.[Eraky],
Nabil, A.M.[Ayman M.],
Post classification using Cellular Automata for Landsat images in
developing countries,
ICIIP11(1-4).
IEEE DOI
1112
BibRef
Fang, Y.M.[Yuan-Min],
Chen, J.[Jie],
Xia, Y.H.[Yong-Hua],
Song, W.W.[Wei-Wei],
Yang, Y.M.[Yong-Ming],
Research on Adaptive Classification Algorithm of Remote Sensing Image,
ISIDF11(1-4).
IEEE DOI
1111
BibRef
Satalino, G.[Giuseppe],
Impedovo, D.[Donato],
Balenzano, A.[Anna],
Mattia, F.[Francesco],
Land cover classification by using multi-temporal COSMO-SkyMed data,
MultiTemp11(17-20).
IEEE DOI
1109
BibRef
Zabala, A.,
Cea, C.,
Pons, X.,
Segmentation and Thematic Classification of Color Orthophotos Over
Non-Compressed And JPEG 2000 Compressed Images,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Mancini, A.[Adriano],
Tassetti, A.N.[Anna Nora],
A Novel Method for Fast Processing of Large Remote Sensed Image,
CIAP13(II:409-418).
Springer DOI
1309
BibRef
Gomah, M.[Mahmoud],
Trinder, J.[John],
Shaker, A.[Ahmed],
Hamed, M.[Mahmoud],
Elsagheer, A.[Ali],
Integrating multiple classifiers with fuzzy majority voting for
improved land cover classification,
PCVIA10(A:7).
PDF File.
1009
BibRef
Xiong, B.[Biao],
Zhang, X.J.[Xiao-Jun],
Jiang, W.[Wanshou],
Semi-supervised Classification Based On Gauss Mixture Model For Remote
Imagery,
VCGVA09(xx-yy).
0910
Virtual Globe; Remote Sensing Image; Thematic Information;
Semi-Supervised Classification; Gauss Mixture Model; EM algorithms
BibRef
Zuo, L.J.[Li-Jun],
Dong, T.T.[Ting-Ting],
Wang, X.[Xiao],
Zhao, X.L.[Xiao-Li],
Yi, L.[Ling],
Liu, B.[Bin],
A new method of MCI extraction with multi-temporal MODIS EVI data,
IASP10(537-543).
IEEE DOI
1004
multiple cropping index.
BibRef
Morimoto, T.[Tetsuro],
Ikeuchi, K.[Katsushi],
Multispectral imaging for material analysis in an outdoor environment
using Normalized Cuts,
CRICV09(1909-1916).
IEEE DOI
0910
Not really crops, but similar result.
BibRef
Fang, L.[Lei],
Jiang, T.[Tao],
Shan, C.Z.[Chun-Zhi],
Li, H.W.[Hai-Wei],
A Per-Pixel Stratified Classification Methodology for Land Cover
Mapping Based on Medium-Resolution Satellite Imagery,
CISP09(1-5).
IEEE DOI
0910
BibRef
Qian, Y.R.[Yu Rong],
Yang, F.[Feng],
Li, J.L.[Jian Long],
Wavelet-Based Feature Extraction for Retrieval of Photosynthetic
Pigment Concentrations from Hyperspectral Reflectance,
CISP09(1-5).
IEEE DOI
0910
BibRef
Zingaretti, P.[Primo],
Frontoni, E.[Emanuele],
Malinverni, E.S.[Eva Savina],
Mancini, A.[Adriano],
A Hybrid Approach to Land Cover Classification from Multi Spectral
Images,
CIAP09(500-508).
Springer DOI
0909
BibRef
Wang, O.[Oliver],
Gunawardane, P.[Prabath],
Scher, S.[Steve],
Davis, J.[James],
Material classification using BRDF slices,
CVPR09(2805-2811).
IEEE DOI
0906
Bidirectional Reflectance Distribution Function
BibRef
López, A.A.[Adrian A.],
Malpica, J.A.[José A.],
High Resolution Satellite Classification with Graph Cut Algorithms,
ISVC08(II: 105-112).
Springer DOI
0812
BibRef
Alonso, M.C.[María C.],
Sanz, M.A.[María A.],
Malpica, J.A.[José A.],
Classification of High Resolution Satellite Images Using Texture from
the Panchromatic Band,
ISVC07(II: 499-508).
Springer DOI
0711
BibRef
Shkvarko, Y.V.[Yuriy V.],
Villalon-Turrubiates, I.E.[Ivan E.],
Remote Sensing Imagery and Signature Fields Reconstruction Via
Aggregation of Robust Regularization with Neural Computing,
ACIVS07(865-876).
Springer DOI
0708
BibRef
Ferreiro-Armán, M.[Marcos],
Bandeira, L.P.C.[Lourenço P. C.],
Martín-Herrero, J.[Julio],
Pina, P.[Pedro],
Classifiers for Vegetation and Forest Mapping with Low Resolution
Multiespectral Imagery,
IbPRIA07(I: 177-184).
Springer DOI
0706
BibRef
Yang, Y.F.[Yeh Fen],
Lohmann, P.[Peter],
Heipke, C.[Christian],
Genetic Algorithms for the Unsupervised Classification of Satellite
Images,
PCV06(xx-yy).
PDF File.
0609
BibRef
Ohkubo, A.[Akito],
Niijima, K.[Koichi],
New Supervised Learning of Neural Networks for satellite image
classification,
ICIP99(I:505-509).
IEEE DOI Land Cover Classification
BibRef
9900
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Land Use, General Problems .