Kelly, R.E.,
McConnell, P.R.M.,
Mildenberger, S.J.,
The Gestalt Photomapping System,
PhEngRS(43), No. 11, November 1977, pp. 1407-1417.
BibRef
7711
Smith, B.J.[Beverly J.],
Perception of Organization in a Random Stimulus,
CVGIP(31), No. 2, August 1985, pp. 242-247.
Elsevier DOI
BibRef
8508
Earlier:
ICPR84(512-514).
Human perception test of organization.
BibRef
Lowe, D.G.,
Perceptual Organization and Visual Recognition,
Boston:
KluwerAcademic Publishers, June 1985.
BibRef
8506
Ph.D.Thesis (CS).
ISBN 0-89838-172-X.
Grouping, Perceptual.
Grouping, Models.
Recognition, Model Based.
See also Recovery of Three-Dimensional Structure from Image Curves, The.
Springer DOI
BibRef
Lowe, D.G.[David G.], and
Binford, T.O.[Thomas O.],
The Perceptual Organization of Visual Images:
Segmentation as a Basis for Recognition,
DARPA83(203-209).
BibRef
8300
And:
Perceptual Organization as a Basis for Visual Recognition,
AAAI-83(255-260).
BibRef
Earlier:
Segmentation and Aggregation: An Approach to Figure-Ground Phenomena,
DARPA82(168-178),
BibRef
RCV87(282-292).
Figure-Ground separation. Bottom up grouping is a
prerequisite for recognition. This breaks into 3 types of grouping:
segmentation, 3D interpretation, descriptions of objects.
BibRef
Lowe, D.G.,
Integrated Treatment of Matching and Measurement Errors for
Robust Model-Based Motion Tracking,
ICCV90(436-440).
IEEE DOI
BibRef
9000
Dickson, W.[Will],
Feature Grouping in a Hierarchical Probabilistic Network,
IVC(9), No. 1, February 1991, pp. 51-57.
Elsevier DOI
BibRef
9102
Earlier:
BMVC90(xx-yy).
PDF File.
9009
BibRef
Mohan, R., and
Nevatia, R.,
Perceptual Organization for Scene Segmentation and Description,
PAMI(14), No. 6, June 1992, pp. 616-635.
IEEE DOI
BibRef
9206
USC Computer Vision
BibRef
Earlier:
Segmentation and Description Based on Perceptual Organization,
CVPR89(333-341).
IEEE DOI
BibRef
And:
Perceptual Organization for Segmentation and Description,
DARPA89(415-424).
Segmentation, Grouping.
Groupings of line features are located by co-curvilinearity and
symmetry to find curves, symmetries and ribbons. These combine to
give 2-D shapes and object surfaces. Combination uses a Hopfield
network.
See also Using Perceptual Organization to Extract 3-D Structures.
BibRef
Mohan, R.,
Perceptual Organization for Computer Vision,
USC_IRISTR-254, August 1989,
BibRef
8908
Ph.D.Thesis (CS).
Thesis with perceptual organization for segmentation and
matching applications.
BibRef
Ahuja, N.[Narendra],
Tuceryan, M.[Mihran],
Extraction of Early Perceptual Structure in Dot Patterns:
Integrating Region, Boundary, and Component Gestalt,
CVGIP(48), No. 3, December 1989, pp. 304-356.
Elsevier DOI
BibRef
8912
Earlier: A2, A1:
Perceptual Segmentation of Nonhomogeneous Dot Patterns,
CVPR83(47-52).
Relaxation. Group dots into the perceptual groups using multiple constraints.
BibRef
Tuceryan, M.,
Jain, A.K.,
Ahuja, N.,
Supervised classification of early perceptual structure in dot patterns,
ICPR92(II:88-91).
IEEE DOI
9208
BibRef
Mjolsness, E.,
Gindi, G., and
Anandan, P.,
Optimization in Model Matching and Perceptual Organization,
NeurComp(1), 1989, pp. 218-229.
BibRef
8900
And:
Optimization in Model Matching and Perceptual Organization:
A First Look,
YaleCS, YaleU/DCS/RR-634, June 1988.
Hopfield network.
BibRef
Sarkar, S.,
Boyer, K.L.,
Perceptual Organization in Computer Vision:
A Review and a Proposal for a Classificatory Structure,
SMC(23), No. 2, 1993, pp. 382-399.
BibRef
9300
Sarkar, S., and
Boyer, K.L.,
Integration, Inference, and Management of Spatial Information
Using Bayesian Networks: Perceptual Organization,
PAMI(15), No. 3, March 1993, pp. 256-274.
IEEE DOI
Bayes Nets.
BibRef
9303
Earlier:
Perceptual Organization Using Bayesian Networks,
CVPR92(251-256).
IEEE DOI Integrate a number of different systems.
BibRef
Sarkar, S.,
Boyer, K.L.,
Using Perceptual Inference Networks To Manage Vision Processes,
CVIU(62), No. 1, July 1995, pp. 27-46.
DOI Link
BibRef
9507
Earlier:
ICPR94(A:808-810).
IEEE DOI
BibRef
Sarkar, S., and
Boyer, K.L.,
Computing Perceptual Organization in Computer Vision,
World Scientific1994. (ISBN: 981-02-1832-X). 232pp.
BibRef
9400
Book
Code, Perceptual Grouping. Code:
HTML Version. Based on Sarkar's thesis. Derive a framework for perceptual organization
at various levels. lower levels feed higher levels.
Does not get to the recognition level.
BibRef
Sarkar, S.,
Boyer, K.L.,
Automated Design of Bayesian Perceptual Inference Networks,
CVPR94(98-103).
IEEE DOI
BibRef
9400
Sarkar, S.,
Boyer, K.L.,
A Computational Structure for Preattentive Perceptual Organization:
Graphical Enumeration and Voting Methods,
SMC(24), 1994, pp. 246-267.
BibRef
9400
Sarkar, S.,
Boyer, K.L.,
Computing Perceptual Organization Using Voting Methods and
Graphical Enumeration,
ICPR92(I:263-267).
IEEE DOI
BibRef
9200
Pun, T.[Thierry],
Electromagnetic Models for Perceptual Grouping,
AMV Strategies921992, pp. 129-149.
BibRef
9200
Saund, E.[Eric],
Putting Knowledge into a Visual Shape Representation,
AI(54), No. 1-2, March 1992, pp. 71-119.
Elsevier DOI
BibRef
9203
Earlier:
Representation and the Dimensions of Shape Deformation,
ICCV90(684-689).
IEEE DOI
BibRef
And:
The Role of Knowledge in Visual Shape Representation,
MIT AI-TR-1092, October 1988.
WWW Link.
BibRef
Chen, L.H.,
A New Approach for Feature Point Classification,
Aggregation, and Description,
PRAI(6), 1992, pp. 849-871.
BibRef
9200
von der Malsburg, C.[Christoph], and
Schneider, W.,
A Neural Cocktail-Party Processor,
BioCyber(54), 1986, pp. 29-40.
BibRef
8600
von der Malsburg, C.[Christoph], and
Buhmann, J.M.,
Sensory Segmentation with Coupled Neural Oscillators,
BioCyber(67), 1993, pp. 233-242.
BibRef
9300
Lebegue, X.,
Aggarwal, J.K.,
Significant Line Segments for an Indoor Mobile Robot,
RA(9), 1993, pp. 801-815.
BibRef
9300
And:
Detecting 3D Parallel Lines for Perceptual Organization,
ECCV92(720-724).
Springer DOI
BibRef
Denasi, S.,
Quaglia, G., and
Rinaudi, D.,
The Use of Perceptual Organization in the Prediction of
Geometric Structures,
PRL(13), No. 7, 1991, pp. 529-539.
BibRef
9100
Shashua, A., and
Ullman, S.,
Structural Saliency: The Detection of Globally Salient Structures
Using a Locally Connected Network,
ICCV88(321-327).
IEEE DOI
BibRef
8800
And: A2, A1:
MIT AI Memo-1061, July 1988.
BibRef
Shashua, A., and
Ullman, S.,
Grouping Contours by Iterated Pairing Network,
Neural Info(3), 1991, pp. 335-341,
BibRef
9100
Borra, S.[Sudhir],
Sarkar, S.[Sudeep],
A Framework for Performance Characterization of
Intermediate Level Grouping Modules,
PAMI(19), No. 11, November 1997, pp. 1306-1312.
IEEE DOI Code and images available:
HTML Version.
9712
Compare (in order of ranking):
Jacobs:
See also Robust and Efficient Detection of Salient Convex Groups. Sarkar-Boyer:
See also Integration, Inference, and Management of Spatial Information Using Bayesian Networks: Perceptual Organization. Etemadi:
See also Low-Level Grouping of Straight Line Segments.
BibRef
Feldman, J.[Jacob],
Perceptual Grouping by Selection of a Logically Minimal Model,
IJCV(55), No. 1, September 2003, pp. 5-25.
DOI Link
0307
BibRef
Feldman, J.[Jacob],
Regularity-Based Perceptual Grouping,
CompIntel(13), No. 4, November 1997, pp. 582-623.
9801
BibRef
Earlier:
Efficient Regularity-Based Grouping,
CVPR97(288-294).
IEEE DOI
9704
Grouping, general.
BibRef
Feldman, J.,
Constructing perceptual categories,
CVPR92(244-250).
IEEE DOI
0403
BibRef
Amir, A.,
Lindenbaum, M.,
A Generic Grouping Algorithm and Its Quantitative Analysis,
PAMI(20), No. 2, February 1998, pp. 168-185.
IEEE DOI
9803
Grouping by graph clustering. Find lines and curves in noisy images.
BibRef
Amir, A.,
Lindenbaum, M.,
Quantitative Analysis of Grouping Processes,
ECCV96(I:369-384).
Springer DOI
BibRef
9600
Amir, A.,
Lindenbaum, M.,
Grouping-Based Nonadditive Verification,
PAMI(20), No. 2, February 1998, pp. 186-192.
IEEE DOI
9803
BibRef
Boyer, K.L.[Kim L.],
Sarkar, S.[Sudeep],
Perceptual Organization in Computer Vision:
Status, Challenges, and Potential,
CVIU(76), No. 1, October 1999, pp. 1-6.
DOI Link Guest Editors' Introduction.
Perceptual Grouping
BibRef
9910
Boyer, K.L.[Kim L.],
Sarkar, S.[Sudeep],
Perceptual Organization for Artificial Vision Systems,
KluwerMarch 2000, ISBN 0-7923-7799-0
WWW Link.
BibRef
0003
Foresti, G.L.,
Regazzoni, C.S.,
A Hierarchical Approach to Feature Extraction and Grouping,
IP(9), No. 6, June 2000, pp. 1056-1074.
IEEE DOI
0006
BibRef
Luo, J.B.[Jie-Bo],
Singhal, A.[Amit],
On Measuring Low-Level Self and Relative Saliency in
Photographic Images,
PRL(22), No. 2, February 2001, pp. 157-169.
Elsevier DOI
0101
BibRef
Earlier:
On Measuring Low-Level Saliency in Photographic Images,
CVPR00(I: 84-89).
IEEE DOI
0005
Seg. by Saliency
BibRef
Wu, T.P.[Tai-Pang],
Yeung, S.K.[Sai-Kit],
Jia, J.Y.[Jia-Ya],
Tang, C.K.[Chi-Keung],
Medioni, G.[Gerard],
A Closed-Form Solution to Tensor Voting: Theory and Applications,
PAMI(34), No. 8, August 2012, pp. 1482-1495.
IEEE DOI
1206
Tensor Voting. Closed form solution. Exact, continuous, efficient algorithm to compute tensor
for structure detection and outlier attenuation.
See also Comments on 'A Closed-Form Solution to Tensor Voting: Theory and Applications'.
BibRef
Johansen, P.[Peter],
Ersbřll, B.K.[Bjarne K.],
Guest Editors' Introduction,
IJCV(42), No. 1-2, April-May 2001, pp. 5-5.
DOI Link
0106
BibRef
And:
JMIV(15), No. 1/2, July 2001, pp. 5-5.
0106
Perceptual grouping.
Papers in both journals.
BibRef
Pauli, J.[Josef],
Sommer, G.[Gerald],
Perceptual organization with image formation compatibilities,
PRL(23), No. 7, May 2002, pp. 803-817.
Elsevier DOI
0203
BibRef
Zweck, J.[John],
Williams, L.R.[Lance R.],
Euclidean Group Invariant Computation of Stochastic Completion Fields
Using Shiftable-Twistable Functions,
JMIV(21), No. 2, September 2004, pp. 135-154.
DOI Link
0409
BibRef
Earlier:
ECCV00(II: 100).
Springer DOI
0003
BibRef
Maeder, A.J.[Anthony J.],
The image importance approach to human vision based image quality
characterization,
PRL(26), No. 3, February 2005, pp. 347-354.
Elsevier DOI
0501
BibRef
Maeder, A.J.[Anthony J.],
Osberger, W.[Wilfried],
Automatic Identification of Perceptually Important Regions in an
Image Using a Model of the Human Visual System,
ICPR98(Vol I: 701-704).
IEEE DOI Features used to find salient regions.
BibRef
9800
Chen, H.T.[Hwann-Tzong],
Liu, T.L.[Tyng-Luh],
Fuh, C.S.[Chiou-Shann],
Tone Reproduction:
A Perspective from Luminance-Driven Perceptual Grouping,
IJCV(65), No. 1-2, November 2005, pp. 73-96.
Springer DOI
0604
BibRef
Earlier:
A1 and A2 only, Add A3:
Chang, T.L.[Tien-Lung],
CVPR05(II: 369-376).
IEEE DOI
0507
BibRef
Feldman, T.[Thomas],
Younes, L.[Laurent],
Homeostatic image perception: An artificial system,
CVIU(102), No. 1, April 2006, pp. 70-80.
Elsevier DOI
0604
Image model, Visual system, Gibbs distribution, Saliency detection
Complements PCA by analyzing interactions.
BibRef
Parvin, B.,
Yang, Q.[Qing],
Han, J.,
Chang, H.,
Rydberg, B.,
Barcellos-Hoff, M.H.,
Iterative Voting for Inference of Structural Saliency and
Characterization of Subcellular Events,
IP(16), No. 3, March 2007, pp. 615-623.
IEEE DOI
0703
See also Tool for the Quantitative Spatial Analysis of Complex Cellular Systems, A.
BibRef
Yang, Q.[Qing],
Parvin, B.,
Barcellos-Hoff, M.H.,
Localization of saliency through iterative voting,
ICPR04(I: 63-66).
IEEE DOI
0409
BibRef
Hu, J.Y.[Jian-Ying],
Mojsilovic, A.[Aleksandra],
High-utility pattern mining: A method for discovery of high-utility
item sets,
PR(40), No. 11, November 2007, pp. 3317-3324.
Elsevier DOI
0707
High-utility item sets, Pattern mining, Partition tree
BibRef
Loss, L.A.[Leandro A.],
Bebis, G.N.[George N.],
Nicolescu, M.[Mircea],
Skurikhin, A.N.[Alexei N.],
An iterative multi-scale tensor voting scheme for perceptual grouping
of natural shapes in cluttered backgrounds,
CVIU(113), No. 1, January 2009, pp. 126-149.
Elsevier DOI
0812
BibRef
Earlier:
An Automatic Framework for Figure-Ground Segmentation in Cluttered
Backgrounds,
BMVC07(xx-yy).
PDF File.
0709
BibRef
Earlier:
Perceptual Grouping Based on Iterative Multi-scale Tensor Voting,
ISVC06(II: 870-881).
Springer DOI
0611
Segmentation, Boundary detection, Grouping, Object detection, Tensor voting
BibRef
Loss, L.A.[Leandro A.],
Bebis, G.N.[George N.],
Parvin, B.[Bahram],
Iterative Tensor Voting for Perceptual Grouping of Ill-Defined
Curvilinear Structures,
MedImg(30), No. 8, August 2011, pp. 1503-1513.
IEEE DOI
1108
BibRef
Earlier:
Tunable tensor voting improves grouping of membrane-bound
macromolecules,
MMBIA09(72-78).
IEEE DOI
0906
BibRef
Guo, C.L.[Chen-Lei],
Zhang, L.M.[Li-Ming],
A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its
Applications in Image and Video Compression,
IP(19), No. 1, January 2010, pp. 185-198.
IEEE DOI
1001
BibRef
Guo, C.L.[Chen-Lei],
Ma, Q.[Qi],
Zhang, L.M.[Li-Ming],
Spatio-temporal Saliency detection using phase spectrum of quaternion
fourier transform,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Liu, Z.[Zhi],
Xue, Y.[Yinzhu],
Yan, H.,
Zhang, Z.Y.[Zhao-Yang],
Efficient saliency detection based on gaussian models,
IET-IPR(5), No. 2, April 2011, pp. 122-131.
DOI Link
1103
BibRef
Li, Y.,
Fu, K.,
Liu, Z.,
Yang, J.,
Efficient Saliency-Model-Guided Visual Co-Saliency Detection,
SPLetters(22), No. 5, May 2015, pp. 588-592.
IEEE DOI
1411
Computational modeling
BibRef
Liu, Z.[Zhi],
Xue, Y.[Yinzhu],
Shen, L.Q.[Li-Quan],
Zhang, Z.Y.[Zhao-Yang],
Nonparametric saliency detection using kernel density estimation,
ICIP10(253-256).
IEEE DOI
1009
BibRef
Song, Y.Z.[Yi-Zhe],
Xiao, B.[Bai],
Hall, P.M.[Peter M.],
Wang, L.,
In Search of Perceptually Salient Groupings,
IP(20), No. 4, April 2011, pp. 935-947.
IEEE DOI
1103
BibRef
Xiao, B.[Bai],
Song, Y.Z.[Yi-Zhe],
Balika, A.[Anupriya],
Hall, P.M.[Peter M.],
Structure Is a Visual Class Invariant,
SSPR08(329-338).
Springer DOI
0812
BibRef
Song, Y.Z.[Yi-Zhe],
Hall, P.M.[Peter M.],
Stable Image Descriptions Using Gestalt Principles,
ISVC08(I: 318-327).
Springer DOI
0812
BibRef
Toet, A.,
Computational versus Psychophysical Bottom-Up Image Saliency:
A Comparative Evaluation Study,
PAMI(33), No. 11, November 2011, pp. 2131-2146.
IEEE DOI
1110
Compare 13 models, plus Multiscale Contrast Conspicuity (MCC) metric, with
Human experiments.
Simple multiscale contrast model and the MCC metric
both yield the largest correlation with human results.
BibRef
Moreno, R.[Rodrigo],
Garcia, M.A.[Miguel Angel],
Puig, D.[Domenec],
Pizarro, L.,
Burgeth, B.,
Weickert, J.,
On Improving the Efficiency of Tensor Voting,
PAMI(33), No. 11, November 2011, pp. 2215-2228.
IEEE DOI
1110
Introduce alternate computational formulations to reduce high computational
cost.
See also Tensor Voting: A Perceptual Organization Approach to Computer Vision and Machine Learning.
See also Edge-preserving color image denoising through tensor voting.
BibRef
Li, H.L.[Hong-Liang],
Ngan, K.N.[King Ngi],
A Co-Saliency Model of Image Pairs,
IP(20), No. 12, December 2011, pp. 3365-3375.
IEEE DOI
1112
combine single image saliency and multi-image saliency maps.
BibRef
Luo, W.[Wang],
Li, H.L.[Hong-Liang],
Liu, G.H.[Guang-Hui],
Ngan, K.N.[King Ngi],
Global salient information maximization for saliency detection,
SP:IC(27), No. 3, March 2012, pp. 238-248.
Elsevier DOI
1203
PCA, Information maximization, Saliency detection
BibRef
Hou, X.D.[Xiao-Di],
Harel, J.[Jonathan],
Koch, C.[Christof],
Image Signature: Highlighting Sparse Salient Regions,
PAMI(34), No. 1, January 2012, pp. 194-201.
IEEE DOI
1112
Compute signature approximates the foreground of an image.
Predict human fixation points.
BibRef
Hou, X.D.[Xiao-Di],
Zhang, L.Q.[Li-Qing],
Saliency Detection: A Spectral Residual Approach,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Fang, Y.M.[Yu-Ming],
Lin, W.S.[Wei-Si],
Lee, B.S.,
Lau, C.T.,
Chen, Z.Z.[Zhen-Zhong],
Lin, C.W.,
Bottom-Up Saliency Detection Model Based on Human Visual Sensitivity
and Amplitude Spectrum,
MultMed(14), No. 1, January 2012, pp. 187-198.
IEEE DOI
1201
BibRef
Fang, Y.M.[Yu-Ming],
Chen, Z.Z.[Zhen-Zhong],
Lin, W.S.[Wei-Si],
Lin, C.W.[Chia-Wen],
Saliency Detection in the Compressed Domain for Adaptive Image
Retargeting,
IP(21), No. 9, September 2012, pp. 3888-3901.
IEEE DOI
1208
BibRef
Fang, Y.M.[Yu-Ming],
Lin, W.S.[Wei-Si],
Chen, Z.Z.[Zhen-Zhong],
Tsai, C.M.[Chia-Ming],
Lin, C.W.[Chia-Wen],
A Video Saliency Detection Model in Compressed Domain,
CirSysVideo(24), No. 1, January 2014, pp. 27-38.
IEEE DOI
1402
data compression
BibRef
Fang, Y.M.[Yu-Ming],
Wang, Z.[Zhou],
Lin, W.S.[Wei-Si],
Fang, Z.J.[Zhi-Jun],
Video Saliency Incorporating Spatiotemporal Cues and Uncertainty
Weighting,
IP(23), No. 9, September 2014, pp. 3910-3921.
IEEE DOI
1410
statistical analysis
BibRef
Dong, L.[Lu],
Lin, W.S.[Wei-Si],
Fang, Y.M.[Yu-Ming],
Wu, S.Q.[Shi-Qian],
Seah, H.S.[Hock Soon],
Saliency detection in computer rendered images based on object-level
contrast,
JVCIR(25), No. 3, 2014, pp. 525-533.
Elsevier DOI
1403
BibRef
Earlier:
Detection of salient objects in computer synthesized images based on
object-level contrast,
VCIP13(1-6)
IEEE DOI
1402
Graphic saliency detection.
feature extraction
BibRef
Fang, Y.M.[Yu-Ming],
Wang, J.[Junle],
Narwaria, M.,
Le Callet, P.,
Lin, W.S.[Wei-Si],
Saliency Detection for Stereoscopic Images,
IP(23), No. 6, June 2014, pp. 2625-2636.
IEEE DOI
1406
BibRef
Earlier:
Saliency detection for stereoscopic images,
VCIP13(1-6)
IEEE DOI
1402
Computational modeling.
Gaussian processes
BibRef
Lang, C.,
Liu, G.,
Yu, J.,
Yan, S.,
Saliency Detection by Multitask Sparsity Pursuit,
IP(21), No. 3, March 2012, pp. 1327-1338.
IEEE DOI
1203
BibRef
Victor, J.D.[Jonathan D.],
Conte, M.M.[Mary M.],
Local image statistics:
Maximum-entropy constructions and perceptual salience,
JOSA-A(29), No. 7, July 2012, pp. 1313-1345.
WWW Link.
1208
BibRef
Emami, M.[Mohsen],
Hoberock, L.L.[Lawrence L.],
Selection of a best metric and evaluation of bottom-up visual
saliency models,
IVC(31), No. 10, 2013, pp. 796-808.
Elsevier DOI
1310
Bottom-up saliency mechanism. Which metric for particular model.
BibRef
Chuang, Y.L.[Yue-Long],
Chen, L.[Ling],
Chen, G.C.[Gen-Cai],
Woodward, J.[John],
Isophote Based Center-Surround Contrast Computation for Image Saliency
Detection,
IEICE(E97-D), No. 1, January 2013, pp. 160-163.
WWW Link.
1402
BibRef
Alsam, A.[Ali],
Sharma, P.[Puneet],
Robust metric for the evaluation of visual saliency algorithms,
JOSA-A(31), No. 3, March 2014, pp. 532-540.
DOI Link
1403
Fourier optics and signal processing
BibRef
Cheng, M.M.[Ming-Ming],
Mitra, N.J.[Niloy J.],
Huang, X.L.[Xiao-Lei],
Hu, S.M.[Shi-Min],
SalientShape: group saliency in image collections,
VC(30), No. 4, April 2014, pp. 443-453.
WWW Link.
1404
BibRef
Tong, N.,
Lu, H.C.[Hu-Chuan],
Zhang, L.[Lihe],
Ruan, X.[Xiang],
Saliency Detection with Multi-Scale Superpixels,
SPLetters(21), No. 9, Sept 2014, pp. 1035-1039.
IEEE DOI
1406
Bayes methods
BibRef
Qin, Y.[Yao],
Feng, M.Y.[Meng-Yang],
Lu, H.C.[Hu-Chuan],
Cottrell, G.W.[Garrison W.],
Hierarchical Cellular Automata for Visual Saliency,
IJCV(126), No. 7, July 2018, pp. 751-770.
Springer DOI
1806
BibRef
Tong, N.[Na],
Lu, H.C.[Hu-Chuan],
Zhang, Y.[Ying],
Ruan, X.[Xiang],
Salient object detection via global and local cues,
PR(48), No. 10, 2015, pp. 3258-3267.
Elsevier DOI
1507
Visual saliency
BibRef
Wu, Y.X.[Yang-Xi],
Zhang, D.B.[Dong-Bo],
Yin, F.[Feng],
Zhang, Y.[Ying],
Salient object detection based on global to local visual search
guidance,
SP:IC(102), 2022, pp. 116618.
Elsevier DOI
2202
Salient object detection, Visual attention prediction, Visual search guidance
BibRef
Wang, Z.[Zheng],
Zhou, Z.[Ziqi],
Lu, H.C.[Hu-Chuan],
Jiang, J.M.[Jian-Min],
Global and local sensitivity guided key salient object
re-augmentation for video saliency detection,
PR(103), 2020, pp. 107275.
Elsevier DOI
2005
Video saliency detection, Ranking saliency, Semantical guidance
BibRef
Zhang, Y.[Ying],
Lu, H.C.[Hu-Chuan],
Zhang, L.[Lihe],
Ruan, X.[Xiang],
Combining motion and appearance cues for anomaly detection,
PR(51), No. 1, 2016, pp. 443-452.
Elsevier DOI
1601
Anomaly detection
BibRef
Zhang, Y.[Ying],
Lu, H.C.[Hu-Chuan],
Zhang, L.[Lihe],
Ruan, X.[Xiang],
Sakai, S.[Shun],
Video anomaly detection based on locality sensitive hashing filters,
PR(59), No. 1, 2016, pp. 302-311.
Elsevier DOI
1609
Anomaly detection
BibRef
Lu, H.C.[Hu-Chuan],
Zhang, X.,
Qi, J.,
Tong, N.,
Ruan, X.[Xiang],
Yang, M.H.[Ming-Hsuan],
Co-Bootstrapping Saliency,
IP(26), No. 1, January 2017, pp. 414-425.
IEEE DOI
1612
feature extraction
BibRef
Lu, H.C.[Hu-Chuan],
Li, X.H.[Xiao-Hui],
Zhang, L.[Lihe],
Ruan, X.[Xiang],
Yang, M.H.[Ming-Hsuan],
Dense and Sparse Reconstruction Error Based Saliency Descriptor,
IP(25), No. 4, April 2016, pp. 1592-1603.
IEEE DOI
1604
BibRef
Earlier: A2, A1, A3, A4, A5:
Saliency Detection via Dense and Sparse Reconstruction,
ICCV13(2976-2983)
IEEE DOI
1403
Bayes methods
BibRef
Zhang, L.[Lihe],
Yang, C.,
Lu, H.C.[Hu-Chuan],
Ruan, X.[Xiang],
Yang, M.H.[Ming-Hsuan],
Ranking Saliency,
PAMI(39), No. 9, September 2017, pp. 1892-1904.
IEEE DOI
1708
Computational modeling, Image color analysis,
Image segmentation, Labeling, Manifolds, Visualization,
Saliency detection, manifold ranking, multi-scale, graph
BibRef
Manipoonchelvi, P.,
Muneeswaran, K.,
Region-based saliency detection,
IET-IPR(8), No. 9, September 2014, pp. 519-527.
DOI Link
1410
image resolution
BibRef
Maggiori, E.,
Lotito, P.,
Manterola, H.L.,
del Fresno, M.,
Comments on 'A Closed-Form Solution to Tensor Voting:
Theory and Applications',
PAMI(36), No. 12, December 2014, pp. 2567-2568.
IEEE DOI
1411
Closed-form solutions
See also Closed-Form Solution to Tensor Voting: Theory and Applications, A.
BibRef
Xia, C.[Chen],
Qi, F.[Fei],
Shi, G.M.[Guang-Ming],
Wang, P.J.[Peng-Jin],
Nonlocal Center-Surround Reconstruction-Based Bottom-Up Saliency
Estimation,
PR(48), No. 4, 2015, pp. 1337-1348.
Elsevier DOI
1502
BibRef
Earlier: A1, A4, A2, A3:
ICIP13(206-210)
IEEE DOI
1402
Saliency
Compressed sensing
BibRef
Zhang, X.J.[Xiu-Jun],
Xu, C.[Chen],
Li, M.[Min],
Teng, R.K.F.[Robert K.F.],
Study of visual saliency detection via nonlocal anisotropic diffusion
equation,
PR(48), No. 4, 2015, pp. 1315-1327.
Elsevier DOI
1502
Saliency detection
BibRef
Filipe, S.,
Itti, L.,
Alexandre, L.A.,
BIK-BUS:
Biologically Motivated 3D Keypoint Based on Bottom-Up Saliency,
IP(24), No. 1, January 2015, pp. 163-175.
IEEE DOI
1502
computational complexity
BibRef
Luo, Y.K.[Yong-Kang],
Wang, P.[Peng],
Zhu, W.J.[Wen-Jun],
Qiao, H.[Hong],
Sparse-Distinctive Saliency Detection,
SPLetters(22), No. 9, September 2015, pp. 1378-1382.
IEEE DOI
1503
feature extraction
BibRef
Sen, D.[Debashis],
Kankanhalli, M.[Mohan],
Salience computation in images based on perceptual distinctness,
SP:IC(32), No. 1, 2015, pp. 129-147.
Elsevier DOI
1503
Perceptual distinctness
BibRef
Sen, D.[Debashis],
Kankanhalli, M.[Mohan],
A bio-inspired center-surround model for salience computation in
images,
JVCIR(30), No. 1, 2015, pp. 277-288.
Elsevier DOI
1507
Visual salience
BibRef
Xu, M.[Min],
Zhang, H.L.[Han-Ling],
Saliency detection with color contrast based on boundary information
and neighbors,
VC(31), No. 3, March 2015, pp. 355-364.
WWW Link.
1503
BibRef
Rigas, I.[Ioannis],
Economou, G.[George],
Fotopoulos, S.[Spiros],
Efficient modeling of visual saliency based on local sparse
representation and the use of hamming distance,
CVIU(134), No. 1, 2015, pp. 33-45.
Elsevier DOI
1504
Visual saliency
BibRef
Maggiori, E.,
Manterola, H.L.,
del Fresno, M.,
Perceptual grouping by tensor voting:
A comparative survey of recent approaches,
IET-CV(9), No. 2, 2015, pp. 259-277.
DOI Link
1506
computer vision
BibRef
Guo, W.Z.[Wen-Zhong],
Sun, X.L.[Xiao-Long],
Niu, Y.Z.[Yu-Zhen],
Multi-scale saliency detection via inter-regional shortest colour
path,
IET-CV(9), No. 2, 2015, pp. 290-299.
DOI Link
1506
image colour analysis
BibRef
Wang, K.[Keze],
Lin, L.[Liang],
Lu, J.B.[Jiang-Bo],
Li, C.,
Shi, K.[Keyang],
PISA: Pixelwise Image Saliency by Aggregating Complementary
Appearance Contrast Measures With Edge-Preserving Coherence,
IP(24), No. 10, October 2015, pp. 3019-3033.
IEEE DOI
1507
BibRef
Earlier: A5, A1, A3, A2, Only:
PISA: Pixelwise Image Saliency by Aggregating Complementary
Appearance Contrast Measures with Spatial Priors,
CVPR13(2115-2122)
IEEE DOI
1309
image processing.
Coherence
BibRef
Xu, L.F.[Lin-Feng],
Zeng, L.Y.[Liao-Yuan],
Duan, H.P.[Hui-Ping],
An effective vector model for global-contrast-based saliency
detection,
JVCIR(30), No. 1, 2015, pp. 64-74.
Elsevier DOI
1507
Visual attention
BibRef
Ma, X.L.[Xiao-Long],
Xie, X.D.[Xu-Dong],
Lam, K.M.[Kin-Man],
Zhong, Y.S.[Yi-Sheng],
Efficient saliency analysis based on wavelet transform and entropy
theory,
JVCIR(30), No. 1, 2015, pp. 201-207.
Elsevier DOI
1507
Saliency detection
BibRef
Zhang, C.Q.[Chang-Qing],
Tao, Z.Q.[Zhi-Qiang],
Wei, X.X.[Xing-Xing],
Cao, X.C.[Xiao-Chun],
A flexible framework of adaptive method selection for image saliency
detection,
PRL(63), No. 1, 2015, pp. 66-70.
Elsevier DOI
1508
Saliency detection
BibRef
Ju, R.[Ran],
Liu, Y.[Yang],
Ren, T.[Tongwei],
Ge, L.[Ling],
Wu, G.S.[Gang-Shan],
Depth-aware salient object detection using anisotropic
center-surround difference,
SP:IC(38), No. 1, 2015, pp. 115-126.
Elsevier DOI
1512
Salient object detection
BibRef
Ju, R.[Ran],
Ge, L.[Ling],
Geng, W.J.[Wen-Jing],
Ren, T.[Tongwei],
Wu, G.S.[Gang-Shan],
Depth saliency based on anisotropic center-surround difference,
ICIP14(1115-1119)
IEEE DOI
1502
Color
BibRef
Vilaplana, V.[Verónica],
Saliency maps on image hierarchies,
SP:IC(38), No. 1, 2015, pp. 84-99.
Elsevier DOI
1512
Region-based saliency map
BibRef
Warnell, G.[Garrett],
David, P.[Philip],
Chellappa, R.[Rama],
Ray Saliency:
Bottom-Up Visual Saliency for a Rotating and Zooming Camera,
IJCV(116), No. 2, January 2016, pp. 174-189.
Springer DOI
1602
Saliency with multiple cameras, requires consistency across views.
Not just merging single view saliency.
BibRef
Zhou, X.,
Liu, Z.,
Sun, G.,
Ye, L.,
Wang, X.,
Improving Saliency Detection Via Multiple Kernel Boosting and
Adaptive Fusion,
SPLetters(23), No. 4, April 2016, pp. 517-521.
IEEE DOI
1604
Adaptation models
BibRef
Dong, Y.,
Pourazad, M.T.,
Nasiopoulos, P.,
Human Visual System-Based Saliency Detection for High Dynamic Range
Content,
MultMed(18), No. 4, April 2016, pp. 549-562.
IEEE DOI
1604
Computational modeling
BibRef
Zhao, T.[Tong],
Li, L.[Lin],
Ding, X.H.[Xing-Hao],
Huang, Y.[Yue],
Zeng, D.[Delu],
Saliency Detection With Spaces of Background-Based Distribution,
SPLetters(23), No. 5, May 2016, pp. 683-687.
IEEE DOI
1604
Bayes methods
BibRef
Ge, C.J.[Chen-Jie],
Fu, K.[Keren],
Liu, F.H.[Fang-Hui],
Bai, L.[Li],
Yang, J.[Jie],
Co-saliency detection via inter and intra saliency propagation,
SP:IC(44), No. 1, 2016, pp. 69-83.
Elsevier DOI
1605
Co-saliency detection
BibRef
Ge, C.J.[Chen-Jie],
Fu, K.[Keren],
Li, Y.J.[Yi-Jun],
Yang, J.[Jie],
Shi, P.F.[Peng-Fei],
Bai, L.[Li],
Co-saliency detection via similarity-based saliency propagation,
ICIP15(1845-1849)
IEEE DOI
1512
Co-saliency detection
BibRef
Chen, D.Y.[Dong-Yue],
Jia, T.[Tong],
Wu, C.D.[Cheng-Dong],
Visual saliency detection: From space to frequency,
SP:IC(44), No. 1, 2016, pp. 57-68.
Elsevier DOI
1605
Saliency detection
BibRef
Qi, W.[Wei],
Han, J.[Jing],
Zhang, Y.[Yi],
Bai, L.F.[Lian-Fa],
Graph-Boolean Map for salient object detection,
SP:IC(49), No. 1, 2016, pp. 9-16.
Elsevier DOI
1609
Saliency detection
BibRef
Tang, H.,
Chen, C.,
Pei, X.,
Visual Saliency Detection via Sparse Residual and Outlier Detection,
SPLetters(23), No. 12, December 2016, pp. 1736-1740.
IEEE DOI
1612
image filtering
BibRef
Qi, W.[Wei],
Han, J.[Jing],
Zhang, Y.[Yi],
Bai, L.[Lianfa],
Saliency detection via Boolean and foreground in a dynamic Bayesian
framework,
VC(33), No. 2, February 2017, pp. 209-220.
WWW Link.
1702
BibRef
Huang, R.,
Feng, W.,
Sun, J.,
Color Feature Reinforcement for Cosaliency Detection Without Single
Saliency Residuals,
SPLetters(24), No. 5, May 2017, pp. 569-573.
IEEE DOI
1704
feature extraction
BibRef
Xiao, Y.[Yun],
Wang, L.M.[Liang-Min],
Jiang, B.[Bo],
Tu, Z.Z.[Zheng-Zheng],
Tang, J.[Jin],
A global and local consistent ranking model for image saliency
computation,
JVCIR(46), No. 1, 2017, pp. 199-207.
Elsevier DOI
1706
Saliency, detection
BibRef
Zhang, L.B.[Li-Bao],
Lv, X.R.[Xin-Ran],
Liang, X.[Xu],
Saliency Analysis via Hyperparameter Sparse Representation and Energy
Distribution Optimization for Remote Sensing Images,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Li, N.Y.[Nian-Yi],
Ye, J.W.[Jin-Wei],
Ji, Y.[Yu],
Ling, H.B.[Hai-Bin],
Yu, J.Y.[Jing-Yi],
Saliency Detection on Light Field,
PAMI(39), No. 8, August 2017, pp. 1605-1616.
IEEE DOI
1707
Cluttered backgrounds, similar foreground/background.
Cameras, Databases, Image color analysis, Object detection,
Robustness, Spatial resolution, Lytro, Saliency detection,
focus stack, light field.
BibRef
Li, N.Y.[Nian-Yi],
Sun, B.[Bilin],
Yu, J.Y.[Jing-Yi],
A weighted sparse coding framework for saliency detection,
CVPR15(5216-5223)
IEEE DOI
1510
BibRef
Dou, H.,
Ming, D.,
Yang, Z.,
Pan, Z.,
Li, Y.,
Tian, J.,
Object-Based Visual Saliency via Laplacian Regularized Kernel
Regression,
MultMed(19), No. 8, August 2017, pp. 1718-1729.
IEEE DOI
1708
Biological system modeling, Computational modeling, Kernel,
Laplace equations, Object detection, Visualization,
Kernel regression,
Laplacian regularized kernel regression (LKR),
salient object detection, visual saliency
BibRef
Chen, J.Z.[Jia-Zhong],
Chen, J.[Jie],
Cao, H.[Hua],
Li, R.[Rong],
Xia, T.[Tao],
Ling, H.[Hefei],
Chen, Y.[Yang],
Saliency detection using suitable variant of local and global
consistency,
IET-CV(11), No. 6, September 2017, pp. 479-487.
DOI Link
1709
BibRef
Wang, Y.Y.[Yi-Yang],
Liu, R.S.[Ri-Sheng],
Song, X.L.[Xiao-Liang],
Su, Z.X.[Zhi-Xun],
A nonlocal L0 model with regression predictor for saliency detection
and extension,
VC(33), No. 11, November 2017, pp. 1467-1482.
WWW Link.
1710
BibRef
Aytekin, C.[Caglar],
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Probabilistic saliency estimation,
PR(74), No. 1, 2018, pp. 359-372.
Elsevier DOI
1711
Saliency
BibRef
Aytekin, C.[Caglar],
Ozan, E.C.[Ezgi Can],
Kiranyaz, S.[Serkan],
Gabbouj, M.[Moncef],
Visual saliency by extended quantum cuts,
ICIP15(1692-1696)
IEEE DOI
1512
Salience map generation.
BibRef
Rabbani, N.[Navid],
Nazari, B.[Behzad],
Sadri, S.[Saeid],
Rikhtehgaran, R.[Reyhaneh],
Efficient Bayesian approach to saliency detection based on Dirichlet
process mixture,
IET-IPR(11), No. 11, November 2017, pp. 1103-1113.
DOI Link
1711
BibRef
Song, R.[Ran],
Liu, Y.H.[Yong-Huai],
Martin, R.R.[Ralph R.],
Echavarria, K.R.[Karina Rodriguez],
Local-to-global mesh saliency,
VC(34), No. 3, March 2018, pp. 323-336.
WWW Link.
1802
BibRef
Song, R.[Ran],
Liu, Y.H.[Yong-Huai],
Zhao, Y.T.[Yi-Tian],
Martin, R.R.[Ralph R.],
Rosin, P.L.[Paul L.],
Conditional random field-based mesh saliency,
ICIP12(637-640).
IEEE DOI
1302
BibRef
Bhattacharya, S.,
Venkatesh, K.S.,
Gupta, S.,
Visual Saliency Detection Using Spatiotemporal Decomposition,
IP(27), No. 4, April 2018, pp. 1665-1675.
IEEE DOI
1802
feature extraction, object detection, object tracking,
video signal processing, blob, detected salient regions,
saliency detection
BibRef
Li, J.X.[Jun-Xia],
Rajan, D.[Deepu],
Yang, J.[Jian],
Locality and context-aware top-down saliency,
IET-IPR(12), No. 3, March 2018, pp. 400-407.
DOI Link
1802
BibRef
Ren, J.R.[Jing-Ru],
Liu, Z.[Zhi],
Zhou, X.F.[Xiao-Fei],
Sun, G.L.[Guang-Ling],
Bai, C.[Cong],
Saliency integration driven by similar images,
JVCIR(50), 2018, pp. 227-236.
Elsevier DOI
1802
Saliency integration, Saliency propagation, Similar image, Saliency model
BibRef
Zhang, M.[Ming],
Pang, Y.[Yu],
Wu, Y.H.[Yun-He],
Du, Y.[Yue],
Sun, H.[Hui],
Zhang, K.[Ke],
Saliency detection via local structure propagation,
JVCIR(52), 2018, pp. 131-142.
Elsevier DOI
1804
Saliency detection, Coarse-to-fine,
Local structure propagation, Color distribution map,
Multi-prior
BibRef
Zhang, M.[Ming],
Wu, Y.H.[Yun-He],
Du, Y.[Yue],
Fang, L.[Lei],
Pang, Y.[Yu],
Saliency detection integrating global and local information,
JVCIR(53), 2018, pp. 215-223.
Elsevier DOI
1805
Feature similarity metric, Global and local information,
Locality-based coding method, Integration mechanism
BibRef
Lin, H.B.[Hong-Bin],
Wu, Z.[Zheng],
Lei, D.[Dong],
Wang, W.[Wei],
Peng, X.U.[Xi-Uping],
Research on Analytical Solution Tensor Voting,
IEICE(E101-D), No. 3, March 2018, pp. 817-820.
WWW Link.
1804
BibRef
Annum, R.[Rabbia],
Riaz, M.M.[M. Mohsin],
Ghafoor, A.[Abdul],
Saliency detection using contrast enhancement and texture smoothing
operations,
SIViP(12), No. 3, March 2018, pp. 505-511.
Springer DOI
1804
Low-contrast, small object.
BibRef
Yan, Y.J.[Yi-Jun],
Ren, J.C.[Jin-Chang],
Sun, G.Y.[Gen-Yun],
Zhao, H.M.[Hui-Min],
Han, J.W.[Jun-Wei],
Li, X.L.[Xue-Long],
Marshall, S.[Stephen],
Zhan, J.[Jin],
Unsupervised image saliency detection with Gestalt-laws guided
optimization and visual attention based refinement,
PR(79), 2018, pp. 65-78.
Elsevier DOI
1804
Background connectivity, Gestalt laws guided optimization,
Image saliency detection, Feature fusion, Human vision perception
BibRef
Bylinskii, Z.[Zoya],
Judd, T.[Tilke],
Oliva, A.[Aude],
Torralba, A.B.[Antonio B.],
Durand, F.[Frédo],
What Do Different Evaluation Metrics Tell Us About Saliency Models?,
PAMI(41), No. 3, March 2019, pp. 740-757.
IEEE DOI
1902
Measurement, Computational modeling, Analytical models,
Visualization, Benchmark testing, Observers, Task analysis,
saliency applications
BibRef
Bylinskii, Z.[Zoya],
Recasens, A.[Adriŕ],
Borji, A.[Ali],
Oliva, A.[Aude],
Torralba, A.B.[Antonio B.],
Durand, F.[Frédo],
Where Should Saliency Models Look Next?,
ECCV16(V: 809-824).
Springer DOI
1611
BibRef
Hu, S.L.[Sheng-Li],
Borji, A.[Ali],
Understanding Perceptual and Conceptual Fluency at a Large Scale,
ECCV18(XVI: 697-712).
Springer DOI
1810
BibRef
Huang, K.,
Zhu, C.,
Li, G.,
Saliency Detection by Adaptive Channel Fusion,
SPLetters(25), No. 7, July 2018, pp. 1059-1063.
IEEE DOI
1807
Fourier transforms, feature extraction,
frequency-domain analysis, object detection, object recognition,
saliency detection
BibRef
El-Laham, Y.,
Elvira, V.,
Bugallo, M.F.,
Robust Covariance Adaptation in Adaptive Importance Sampling,
SPLetters(25), No. 7, July 2018, pp. 1049-1053.
IEEE DOI
1807
covariance matrices, importance sampling,
Monte Carlo methodology, adaptive importance sampling,
weight degeneracy
BibRef
Fidalgo, E.[Eduardo],
Alegre, E.[Enrique],
González-Castro, V.[Victor],
Fernández-Robles, L.[Laura],
Boosting image classification through semantic attention filtering
strategies,
PRL(112), 2018, pp. 176-183.
Elsevier DOI
1809
Saliency map, Bag of words, Mean shift, Support vector machine,
Image classification
BibRef
Azaza, A.[Aymen],
van de Weijer, J.[Joost],
Douik, A.[Ali],
Masana, M.[Marc],
Context proposals for saliency detection,
CVIU(174), 2018, pp. 1-11.
Elsevier DOI
1812
Computational saliency, Object segmentation, Object proposals
BibRef
Jian, M.[Muwei],
Zhang, W.Y.[Wen-Yin],
Yu, H.[Hui],
Cui, C.R.[Chao-Ran],
Nie, X.S.[Xiu-Shan],
Zhang, H.X.[Hua-Xiang],
Yin, Y.L.[Yi-Long],
Saliency detection based on directional patches extraction and
principal local color contrast,
JVCIR(57), 2018, pp. 1-11.
Elsevier DOI
1812
Saliency detection, Wavelet frame transform,
Principal local color contrast, Directional patches
BibRef
Shan, D.J.[Dong-Jing],
Zhang, X.W.[Xiong-Wei],
Zhang, C.[Chao],
Visual saliency based on extended manifold ranking and third-order
optimization refinement,
PRL(116), 2018, pp. 1-7.
Elsevier DOI
1812
saliency detection, manifold ranking, graphical model, image segmentation
BibRef
Rajankar, O.S.[Omprakash S.],
Kolekar, U.D.[Uttam D.],
Talbar, S.N.[Sanjay N.],
Heuristics approach to speeding up saliency detection,
SIViP(13), No. 3, April 2019, pp. 465-473.
Springer DOI
1904
BibRef
Yang, C.L.[Chun-Lei],
Pu, J.X.[Jie-Xin],
Dong, Y.S.[Yong-Sheng],
Xie, G.S.[Guo-Sen],
Si, Y.[Yanna],
Liu, Z.H.[Zhong-Hua],
Scene classification-oriented saliency detection via the modularized
prescription,
VC(35), No. 4, April 2019, pp. 473-488.
Springer DOI
1906
BibRef
Tan, K.[Kai],
Wu, Q.B.[Qing-Bo],
Meng, F.M.[Fan-Man],
Xu, L.F.[Lin-Feng],
Multi Information Fusion Network for Saliency Quality Assessment,
IEICE(E102-D), No. 5, May 2019, pp. 1111-1114.
WWW Link.
1906
Estimating the objective quality of a saliency map.
BibRef
Constantin, M.G.[Mihai Gabriel],
Redi, M.[Miriam],
Zen, G.[Gloria],
Ionescu, B.[Bogdan],
Computational Understanding of Visual Interestingness Beyond Semantics:
Literature Survey and Analysis of Covariates,
Surveys(51), No. 1, February 2019, pp. Article No 25.
DOI Link
1906
visual interestingness
BibRef
Jia, N.[Ning],
Liu, X.H.[Xian-Hui],
Zhao, W.D.[Wei-Dong],
Zhang, H.T.[Hao-Tian],
Zhuo, K.Q.A.[Ke-Qi-Ang],
An adaptive framework for saliency detection,
IJIST(29), No. 3, September 2019, pp. 382-393.
DOI Link
1908
BibRef
Xu, L.J.[Li-Juan],
Ji, Z.H.[Zhi-Hang],
Dempere-Marco, L.[Laura],
Wang, F.[Fan],
Hu, X.P.[Xiao-Peng],
Gestalt-grouping based on path analysis for saliency detection,
SP:IC(78), 2019, pp. 9-20.
Elsevier DOI
1909
Gestalt-grouping, Smoothest path-based distance,
Topological connectedness, Salient region detection
BibRef
Jian, M.[Muwei],
Zhou, Q.[Quan],
Cui, C.R.[Chao-Ran],
Nie, X.S.[Xiu-Shan],
Luo, H.J.[Han-Jiang],
Zhao, J.L.[Jian-Li],
Yin, Y.L.[Yi-Long],
Assessment of feature fusion strategies in visual attention mechanism
for saliency detection,
PRL(127), 2019, pp. 37-47.
Elsevier DOI
1911
Saliency detection, Background cue, Compactness feature, Fusion strategy
BibRef
Piao, Y.,
Li, X.,
Zhang, M.,
Yu, J.,
Lu, H.,
Saliency Detection via Depth-Induced Cellular Automata on Light Field,
IP(29), No. 1, 2020, pp. 1879-1889.
IEEE DOI
1912
Saliency detection, Image color analysis, Automata,
depth-induced cellular automata (DCA) model
BibRef
Zhao, Y.F.[Yu-Fei],
Song, Y.[Yong],
Li, X.[Xu],
Sulaman, M.[Muhammad],
Guo, Z.K.[Zheng-Kun],
Yang, X.[Xin],
Wang, F.N.[Feng-Ning],
Hao, Q.[Qun],
IR saliency detection via a GCF-SB visual attention framework,
JVCIR(66), 2020, pp. 102706.
Elsevier DOI
2003
Saliency detection, IR images, Bayes formula, Visual attention
BibRef
Deng, C.,
Yang, X.,
Nie, F.,
Tao, D.,
Saliency Detection via a Multiple Self-Weighted Graph-Based Manifold
Ranking,
MultMed(22), No. 4, April 2020, pp. 885-896.
IEEE DOI
2004
Saliency detection, Feature extraction, Manifolds,
Image color analysis, Task analysis, Image reconstruction,
self-adaptive weight
BibRef
Zhou, X.F.[Xiao-Fei],
Li, G.Y.[Gong-Yang],
Gong, C.[Chen],
Liu, Z.[Zhi],
Zhang, J.Y.[Ji-Yong],
Attention-guided RGBD saliency detection using appearance information,
IVC(95), 2020, pp. 103888.
Elsevier DOI
2004
RGBD, Saliency, Bottom-up, Top-down, Attention, Appearance
BibRef
Wang, Y.F.[Yong-Fang],
Ye, P.[Peng],
Xia, Y.M.[Yu-Meng],
An, P.[Ping],
A heuristic framework for perceptual saliency prediction,
JVCIR(73), 2020, pp. 102913.
Elsevier DOI
2012
Saliency prediction, Orientation selectivity, Visual acuity,
Visual error sensitivity, Free energy principle
BibRef
Xu, M.,
Yang, L.,
Tao, X.,
Duan, Y.,
Wang, Z.,
Saliency Prediction on Omnidirectional Image With Generative
Adversarial Imitation Learning,
IP(30), 2021, pp. 2087-2102.
IEEE DOI
2101
Head, Predictive models, Visualization, Task analysis, Semantics,
Feature extraction, Omnidirectional images, large-scale dataset,
imitation learning
BibRef
Ren, D.[Dakai],
Wen, X.M.[Xiang-Ming],
Jia, T.[Tao],
Chen, J.Z.[Jia-Zhong],
Li, Z.Y.[Zong-Yi],
Saliency detection via cross-scale deep inference,
JVCIR(75), 2021, pp. 103031.
Elsevier DOI
2103
Cross-scale deep inference, Multi-layer attention,
Image saliency, Deep learning
BibRef
Li, W.P.[Wei-Peng],
Yang, X.G.[Xiao-Gang],
Li, C.X.[Chuan-Xiang],
Lu, R.T.[Rui-Tao],
Xie, X.L.[Xue-Li],
Fast visual saliency based on multi-scale difference of Gaussians
fusion in frequency domain,
IET-IPR(14), No. 16, 19 December 2020, pp. 4039-4048.
DOI Link
2103
BibRef
Wang, Z.Q.[Zi-Qiang],
Liu, Z.[Zhi],
Wei, W.J.[Wei-Jie],
Duan, H.Z.[Hui-Zhan],
SalED: Saliency prediction with a pithy encoder-decoder architecture
sensing local and global information,
IVC(109), 2021, pp. 104149.
Elsevier DOI
2105
Saliency prediction, Fixation prediction,
Convolutional neural networks, Encoder-decoder
BibRef
Zhang, J.[Jing],
Dai, Y.C.[Yu-Chao],
Zhang, T.[Tong],
Harandi, M.[Mehrtash],
Barnes, N.M.[Nick M.],
Hartley, R.I.[Richard I.],
Learning Saliency From Single Noisy Labelling:
A Robust Model Fitting Perspective,
PAMI(43), No. 8, August 2021, pp. 2866-2873.
IEEE DOI
2107
Noise measurement, Labeling, Predictive models, Annotations,
Training, Task analysis, Saliency detection, Salinecy prediction,
robust model fitting
BibRef
Chao, F.Y.[Fang-Yi],
Zhang, L.[Lu],
Hamidouche, W.[Wassim],
Déforges, O.[Olivier],
A Multi-FoV Viewport-Based Visual Saliency Model Using Adaptive
Weighting Losses for 360° Images,
MultMed(23), 2021, pp. 1811-1826.
IEEE DOI
2107
Feature extraction, Adaptation models,
Visualization, Measurement, Predictive models, Videos,
deep learning
BibRef
Wang, F.[Fan],
Peng, G.H.[Guo-Hua],
Saliency detection via coarse-to-fine diffusion-based compactness
with weighted learning affinity matrix,
JVCIR(78), 2021, pp. 103151.
Elsevier DOI
2107
Saliency detection, Diffusion-based compactness,
Multi-view graphs, Weighted learning affinity matrix
BibRef
Peng, P.[Peng],
Yang, K.F.[Kai-Fu],
Luo, F.Y.[Fu-Ya],
Li, Y.J.[Yong-Jie],
Saliency Detection Inspired by Topological Perception Theory,
IJCV(129), No. 8, August 2021, pp. 2352-2374.
Springer DOI
2108
BibRef
Jiang, C.X.[Chun-Xu],
Liu, Y.[Yu],
Sun, J.L.[Jing-Lin],
Guo, J.C.[Ji-Chang],
Lu, W.[Wei],
Illumination-based adaptive saliency detection network through fusion
of multi-source features,
JVCIR(79), 2021, pp. 103192.
Elsevier DOI
2109
Multi-source, Illumination discrimination,
Salient object detection, Deep learning
BibRef
Sasibhooshan, R.[Reshmi],
Kumaraswamy, S.[Suresh],
Sasidharan, S.[Santhoshkumar],
WavNet: Visual saliency detection using Discrete Wavelet
Convolutional Neural Network,
JVCIR(79), 2021, pp. 103236.
Elsevier DOI
2109
Visual saliency detection,
Discrete wavelet convolutional neural network, Edge structural similarity loss
BibRef
Figueroa-Flores, C.[Carola],
Berga, D.[David],
van de Weijer, J.[Joost],
Raducanu, B.[Bogdan],
Saliency for free: Saliency prediction as a side-effect of object
recognition,
PRL(150), 2021, pp. 1-7.
Elsevier DOI
2109
Saliency maps, Unsupervised learning, Object recognition
BibRef
Xia, C.X.[Chen-Xing],
Gao, X.J.[Xiu-Ju],
Fang, X.J.[Xian-Jin],
Li, K.C.[Kuan-Ching],
Su, S.Z.[Shu-Zhi],
Zhang, H.T.[Hai-Tao],
RLP-AGMC: Robust label propagation for saliency detection based on an
adaptive graph with multiview connections,
SP:IC(98), 2021, pp. 116372.
Elsevier DOI
2109
Deep features, Multiview connections, Graph affinity matrix,
Label propagation, Salient object detection
BibRef
Zhou, F.[Fei],
Chen, J.H.[Jun-Hua],
Liu, B.Z.[Bo-Zhi],
Visual Saliency via Selecting and Reweighting Features in
Hierarchical Fusion Network,
SPLetters(28), 2021, pp. 1749-1753.
IEEE DOI
2109
Feature extraction, Visualization, Predictive models,
Computational modeling, Task analysis,
saliency prediction
BibRef
Zeng, H.T.[Hai-Tao],
Song, X.H.[Xin-Hang],
Chen, G.W.[Gong-Wei],
Jiang, S.Q.[Shu-Qiang],
Amorphous Region Context Modeling for Scene Recognition,
MultMed(24), 2022, pp. 141-151.
IEEE DOI
2202
Semantics, Feature extraction, Image segmentation, Convolution,
Context modeling, Saliency detection, Layout, Graph neural network,
semantic segmentation
BibRef
Zabihi, S.[Samad],
Tavakoli, H.R.[Hamed R.],
Borji, A.[Ali],
Mansoori, E.[Eghbal],
A compact deep architecture for real-time saliency prediction,
SP:IC(104), 2022, pp. 116671.
Elsevier DOI
2204
Fast saliency prediction, Deep convolutional neural network,
Transfer learning, Compact architecture, Real-time application
BibRef
Lai, Q.X.[Qiu-Xia],
Zhou, T.F.[Tian-Fei],
Khan, S.[Salman],
Sun, H.Q.[Han-Qiu],
Shen, J.B.[Jian-Bing],
Shao, L.[Ling],
Weakly Supervised Visual Saliency Prediction,
IP(31), 2022, pp. 3111-3124.
IEEE DOI
2205
Visualization, Semantics, Computational modeling,
Biological system modeling, Annotations, Data models, deep learning
BibRef
Wang, F.[Fan],
Peng, G.H.[Guo-Hua],
Graph construction by incorporating local and global affinity graphs
for saliency detection,
SP:IC(105), 2022, pp. 116712.
Elsevier DOI
2205
Saliency detection, Graph construction, Multi-view features,
Joint global affinity matrix, Local affinity graph
BibRef
Liu, Y.[Yi],
Zhang, D.W.[Ding-Wen],
Zhang, Q.[Qiang],
Han, J.G.[Jun-Gong],
Part-Object Relational Visual Saliency,
PAMI(44), No. 7, July 2022, pp. 3688-3704.
IEEE DOI
2206
Object detection, Routing, Feature extraction, Streaming media,
Training, Task analysis, Saliency detection,
part-object relationships
BibRef
Yan, K.[Ke],
Wang, X.Y.[Xiu-Ying],
Kim, J.M.[Jin-Man],
Zuo, W.M.[Wang-Meng],
Feng, D.D.[David Dagan],
Deep Cognitive Gate: Resembling Human Cognition for Saliency
Detection,
PAMI(44), No. 9, September 2022, pp. 4776-4792.
IEEE DOI
2208
Cognition, Saliency detection, Visualization, Feature extraction,
Logic gates, Benchmark testing, Heating systems, Cognition,
object detection
BibRef
Zhang, K.[Kao],
Chen, Z.Z.[Zhen-Zhong],
Li, S.[Songnan],
Liu, S.[Shan],
An efficient saliency prediction model for Unmanned Aerial Vehicle
video,
PandRS(194), 2022, pp. 152-166.
Elsevier DOI
2212
WWW Link. Visual saliency, UAV video analysis, Spatial-temporal features,
Prior information
BibRef
Jerripothula, K.R.[Koteswar Rao],
Mukherjee, P.[Prerana],
Cai, J.F.[Jian-Fei],
Lu, S.J.[Shi-Jian],
Yuan, J.S.[Jun-Song],
AppFuse: An Appearance Fusion Framework for Saliency Cues,
CirSysVideo(32), No. 12, December 2022, pp. 8261-8274.
IEEE DOI
2212
Gaussian processes, Fuses, Location awareness, Reliability,
Computational modeling, Image segmentation, Computer science, co-localization
BibRef
Huang, M.[Mengke],
Li, G.Y.[Gong-Yang],
Liu, Z.[Zhi],
Wu, Y.[Yong],
Gong, C.[Chen],
Zhu, L.C.[Lin-Chao],
Yang, Y.[Yi],
Exploring viewport features for semi-supervised saliency prediction
in omnidirectional images,
IVC(129), 2023, pp. 104590.
Elsevier DOI
2301
Omnidirectional image, Saliency prediction, Semi-supervised learning
BibRef
Lin, H.B.[Hong-Bin],
Guo, D.[Dan],
Wei, J.N.[Jia-Ning],
Guan, B.[Boran],
Chen, Z.[Zeyu],
Peng, X.P.[Xiu-Ping],
Analytical Tensor Voting in ND Space and its Properties,
PAMI(45), No. 5, May 2023, pp. 5404-5416.
IEEE DOI
2304
Tensors, Noise measurement, Estimation,
Aerospace electronics, TV, Robustness, K-sphere,
surface integral
BibRef
Wang, Z.Q.[Zi-Qiang],
Liu, Z.[Zhi],
Li, G.Y.[Gong-Yang],
Wang, Y.[Yang],
Zhang, T.H.[Tian-Hong],
Xu, L.H.[Li-Hua],
Wang, J.J.[Ji-Jun],
Spatio-Temporal Self-Attention Network for Video Saliency Prediction,
MultMed(25), 2023, pp. 1161-1174.
IEEE DOI
2305
Computational modeling,
Visualization, Solid modeling, Task analysis, Semantics,
video saliency prediction
BibRef
Song, R.[Ran],
Zhang, W.[Wei],
Zhao, Y.T.[Yi-Tian],
Liu, Y.H.[Yong-Huai],
Rosin, P.L.[Paul L.],
3D Visual Saliency: An Independent Perceptual Measure or a Derivative
of 2D Image Saliency?,
PAMI(45), No. 11, November 2023, pp. 13083-13099.
IEEE DOI
2310
BibRef
Earlier:
Mesh Saliency: An Independent Perceptual Measure or A Derivative of
Image Saliency?,
CVPR21(8849-8858)
IEEE DOI
2111
Graphics, Deep learning, Correlation coefficient, Codes, Current measurement
BibRef
Kang, M.S.[Min-Soo],
Kang, M.[Minkoo],
Lee, S.W.[Seong-Whan],
Kim, S.[Suhyun],
Mixup Mask Adaptation: Bridging the gap between input saliency and
representations via attention mechanism in feature mixup,
IVC(146), 2024, pp. 105013.
Elsevier DOI
2405
Regularization, Data augmentation, Mixup
BibRef
Peng, B.[Bo],
Lin, T.X.[Tian-Xiang],
Jin, D.C.[Deng-Chao],
Pan, Z.Q.[Zhao-Qing],
Lei, J.J.[Jian-Jun],
Saliency Map-Guided End-to-End Image Coding for Machines,
SPLetters(31), 2024, pp. 1755-1759.
IEEE DOI
2408
Image coding, Task analysis, Object detection, Visualization,
Training, Semantics, Machine vision, Image coding for machines,
mean square error loss
BibRef
Liu, N.[Nian],
Luo, Z.Y.[Zi-Yang],
Zhang, N.[Ni],
Han, J.W.[Jun-Wei],
VST++: Efficient and Stronger Visual Saliency Transformer,
PAMI(46), No. 11, November 2024, pp. 7300-7316.
IEEE DOI
2410
Transformers, Task analysis, Computational modeling, Decoding,
Computer architecture, Multitasking, Feature extraction,
saliency detection
BibRef
Yang, Q.[Qin],
Gao, W.X.[Wen-Xuan],
Li, C.L.[Cheng-Lin],
Wang, H.[Hao],
Dai, W.R.[Wen-Rui],
Zou, J.[Junni],
Xiong, H.K.[Hong-Kai],
Frossard, P.[Pascal],
360Spred: Saliency Prediction for 360-Degree Videos Based on 3D
Separable Graph Convolutional Networks,
CirSysVideo(34), No. 10, October 2024, pp. 9979-9996.
IEEE DOI
2411
Feature extraction, Optical flow, Convolution, Streaming media,
Data mining, Predictive models, Graph convolution, 3D convolution,
360-degree videos
BibRef
Qiu, L.R.[Lin-Run],
Zhang, D.B.[Dong-Bo],
Hu, Y.K.[Ying-Kun],
Research on image saliency detection based on deep neural network,
IET-IPR(18), No. 12, 2024, pp. 3393-3402.
DOI Link
2411
edge detection, feature extraction, image matching, neural nets
BibRef
Yasarla, R.[Rajeev],
Weng, R.L.[Ren-Liang],
Choi, W.[Wongun],
Patel, V.M.[Vishal M.],
Sadeghian, A.[Amir],
3SD: Self-Supervised Saliency Detection With No Labels,
WACV24(312-321)
IEEE DOI
2404
Training, Annotations, Image edge detection, Semantics,
Self-supervised learning, Object detection, Benchmark testing,
Image recognition and understanding
BibRef
Djilali, Y.A.D.[Yasser Abdelaziz Dahou],
McGuinness, K.[Kevin],
O'Connor, N.[Noel],
Learning Saliency From Fixations,
WACV24(382-392)
IEEE DOI
2404
Measurement, Pipelines, Focusing, Computer architecture,
Benchmark testing, Predictive models, Algorithms
BibRef
Daroya, R.[Rangel],
Sun, A.[Aaron],
Maji, S.[Subhransu],
COSE: A Consistency-Sensitivity Metric for Saliency on Image
Classification,
VIPriors23(149-158)
IEEE DOI
2401
BibRef
Wang, S.W.[Shou-Wen],
Wan, Q.[Qian],
Xiang, X.[Xiang],
Zeng, Z.G.[Zhi-Gang],
Saliency Regularization for Self-Training with Partial Annotations,
ICCV23(1611-1620)
IEEE DOI
2401
BibRef
Lin, X.[Xu],
Qing, C.M.[Chun-Mei],
Tan, J.P.[Jun-Peng],
Xu, X.M.[Xiang-Min],
Multi-Scale Transformer Network for Saliency Prediction on 360-Degree
Images,
ICIP23(1700-1704)
IEEE DOI
2312
BibRef
Woerl, A.C.[Ann-Christin],
Disselhoff, J.[Jan],
Wand, M.[Michael],
Initialization Noise in Image Gradients and Saliency Maps,
CVPR23(1766-1775)
IEEE DOI
2309
BibRef
Morrison, K.[Katelyn],
Mehra, A.[Ankita],
Perer, A.[Adam],
Shared Interest ... Sometimes: Understanding the Alignment between Human
Perception, Vision Architectures, and Saliency Map Techniques,
XAI4CV23(3776-3781)
IEEE DOI
2309
BibRef
Kikuchi, A.[Atsushi],
Uchida, K.[Kotaro],
Waga, M.[Masaki],
Suenaga, K.[Kohei],
Borex: Bayesian-optimization-based Refinement of Saliency Map for
Image- and Video-classification Models,
ACCV22(VII:274-290).
Springer DOI
2307
BibRef
Englebert, A.[Alexandre],
Cornu, O.[Olivier],
de Vleeschouwer, C.[Christophe],
Backward Recursive Class Activation Map Refinement for High
Resolution Saliency Map,
ICPR22(2444-2450)
IEEE DOI
2212
Measurement, Location awareness, Deep learning, Backpropagation,
Visualization, Image resolution, Art
BibRef
Tursun, O.[Osman],
Denman, S.[Simon],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
SESS: Saliency Enhancing with Scaling and Sliding,
ECCV22(XII:318-333).
Springer DOI
2211
BibRef
Hussain, T.[Tanveer],
Anwar, A.[Abbas],
Anwar, S.[Saeed],
Petersson, L.[Lars],
Baik, S.W.[Sung Wook],
Pyramidal Attention for Saliency Detection,
FaDE-TCV22(2877-2887)
IEEE DOI
2210
Convolutional codes, Training, Fuses, Predictive models,
Feature extraction, Transformers, Data models
BibRef
Zhang, N.[Ni],
Han, J.W.[Jun-Wei],
Liu, N.[Nian],
Shao, L.[Ling],
Summarize and Search: Learning Consensus-aware Dynamic Convolution
for Co-Saliency Detection,
ICCV21(4147-4156)
IEEE DOI
2203
Codes, Convolution, Fuses, Scalability, Benchmark testing,
Search problems, Low-level and physics-based vision,
Scene analysis and understanding
BibRef
Luo, S.Y.[Shun-Yan],
Barut, E.[Emre],
Jin, F.[Fang],
Statistically Consistent Saliency Estimation,
ICCV21(725-733)
IEEE DOI
2203
Legged locomotion, Deep learning, Analytical models, Upper bound,
Computational modeling, Perturbation methods, Explainable AI,
Visual reasoning and logical representation
BibRef
Linardos, A.[Akis],
Kümmerer, M.[Matthias],
Press, O.[Ori],
Bethge, M.[Matthias],
DeepGaze IIE: Calibrated prediction in and out-of-domain for
state-of-the-art saliency modeling,
ICCV21(12899-12908)
IEEE DOI
2203
Measurement, Protocols, Computational modeling, Transfer learning,
Predictive models,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Jalwana, M.A.A.K.[Mohammad A. A. K.],
Akhtar, N.[Naveed],
Bennamoun, M.[Mohammed],
Mian, A.[Ajmal],
CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency,
CVPR21(16322-16331)
IEEE DOI
2111
Backpropagation, Measurement, Visualization, Image resolution,
Computational modeling, Focusing, Predictive models
BibRef
Petsiuk, V.[Vitali],
Jain, R.[Rajiv],
Manjunatha, V.[Varun],
Morariu, V.I.[Vlad I.],
Mehra, A.[Ashutosh],
Ordonez, V.[Vicente],
Saenko, K.[Kate],
Black-box Explanation of Object Detectors via Saliency Maps,
CVPR21(11438-11447)
IEEE DOI
2111
Software testing, Measurement, Location awareness, Visualization,
Pathology, Error analysis, Computational modeling
BibRef
Ding, G.Q.[Guan-Qun],
Imamoglu, N.[Nevrez],
Caglayan, A.[Ali],
Murakawa, M.[Masahiro],
Nakamura, R.[Ryosuke],
FBNet: FeedBack-Recursive CNN for Saliency Detection,
MVA21(1-5)
DOI Link
2109
Deep learning, Visualization, Benchmark testing,
Feature extraction, Convolutional neural networks, Feeds
BibRef
Zhang, Y.F.[Yi-Feng],
Jiang, M.[Ming],
Zhao, Q.[Qi],
Saliency Prediction with External Knowledge,
WACV21(484-493)
IEEE DOI
2106
Knowledge engineering, Bridges,
Computational modeling, Semantics, Neural networks
BibRef
Hu, F.Y.[Fei-Yan],
McGuinness, K.[Kevin],
FastSal: a Computationally Efficient Network for Visual Saliency
Prediction,
ICPR21(9054-9061)
IEEE DOI
2105
Measurement, Visualization, Computational modeling,
Predictive models, Prediction algorithms,
BibRef
Mbarki, A.,
Naouai, M.,
A Marked Point Process Model For Visual Perceptual Groups Extraction,
VCIP20(511-514)
IEEE DOI
2102
Bayes methods, Organizations, Mathematical model, Kernel,
Feature extraction, Visual perception, Simulated annealing,
marked point process
BibRef
Zhou, H.,
Xie, X.,
Lai, J.,
Chen, Z.,
Yang, L.,
Interactive Two-Stream Decoder for Accurate and Fast Saliency
Detection,
CVPR20(9138-9147)
IEEE DOI
2008
Correlation, Saliency detection, Task analysis, Decoding,
Linear programming, Silicon, Benchmark testing
BibRef
Kapishnikov, A.[Andrei],
Bolukbasi, T.[Tolga],
Viegas, F.[Fernanda],
Terry, M.[Michael],
XRAI: Better Attributions Through Regions,
ICCV19(4947-4956)
IEEE DOI
2004
image representation, image segmentation, neural nets,
object detection, attribution methods, XRAI, saliency methods, Birds
BibRef
Zeng, Y.[Yu],
Zhuge, Y.Z.[Yun-Zhi],
Lu, H.C.[Hu-Chuan],
Zhang, L.[Lihe],
Qian, M.Y.[Ming-Yang],
Yu, Y.Z.[Yi-Zhou],
Multi-Source Weak Supervision for Saliency Detection,
CVPR19(6067-6076).
IEEE DOI
2002
BibRef
Mazumdar, P.,
Battisti, F.,
A Content-Based Approach for Saliency Estimation in 360 Images,
ICIP19(3197-3201)
IEEE DOI
1910
Omni-directional images, saliency, content, global and local features
BibRef
Xu, X.[Xin],
Wang, J.[Jie],
Extended Non-local Feature for Visual Saliency Detection in Low
Contrast Images,
CEFR-LCV18(IV:580-592).
Springer DOI
1905
BibRef
Cheng, H.,
Chao, C.,
Dong, J.,
Wen, H.,
Liu, T.,
Sun, M.,
Cube Padding for Weakly-Supervised Saliency Prediction in 360° Videos,
CVPR18(1420-1429)
IEEE DOI
1812
Videos, Distortion, Heating systems,
Visualization, Predictive models, Computational modeling
BibRef
Wang, C.,
Fan, Y.,
Saliency Detection using Iterative Dynamic Guided Filtering,
ICPR18(3396-3401)
IEEE DOI
1812
Low pass filters, Maximum likelihood detection,
Nonlinear filters, Saliency detection, Image edge detection,
contrast model
BibRef
Zhang, Z.H.[Zi-Heng],
Xu, Y.Y.[Yan-Yu],
Yu, J.Y.[Jing-Yi],
Gao, S.H.[Sheng-Hua],
Saliency Detection in 360° Videos,
ECCV18(VII: 504-520).
Springer DOI
1810
BibRef
Benois-Pineau, J.,
Mitrea, M.,
Extraction of saliency in images and video:
Problems, methods and applications. A survey,
IPTA17(1-6)
IEEE DOI
1804
cognition, feature extraction,
video signal processing, watermarking,
visual saliency
BibRef
Biswas, S.,
Fezza, S.A.,
Larabi, M.C.,
Towards light-compensated saliency prediction for omnidirectional
images,
IPTA17(1-6)
IEEE DOI
1804
distortion, image representation, 2D saliency,
360-degree images, conversion problem, distortion compensation,
omnidirectional images
BibRef
Hwang, I.,
Jeong, D.J.,
Park, J.S.,
Cho, N.I.,
Co-saliency detection via seed propagation over the integrated graph
with a cluster layer,
ICIP17(2040-2044)
IEEE DOI
1803
Feature extraction, Histograms, IP networks, Image color analysis,
Iris, Nonhomogeneous media, Saliency detection, Co-saliency,
seed propagation model
BibRef
Xu, N.,
Guo, Y.,
Kong, X.,
Saliency detection via local single Gaussian model,
ICIP17(2289-2293)
IEEE DOI
1803
Computational modeling, Covariance matrices, Dictionaries,
Image color analysis, Indexes, Reliability, Saliency detection,
saliency map
BibRef
Le Philippe, N.,
Itier, V.,
Puech, W.,
Visual saliency-based confidentiality metric for selective
crypto-compressed JPEG images,
ICIP17(4347-4351)
IEEE DOI
1803
Distortion, Encryption, Image quality, Measurement, Transform coding,
Visualization, JPEG, confidentiality metric, encryption, visual saliency
BibRef
Michaelsen, E.,
Arens, M.,
Hierarchical Grouping Using Gestalt Assessments,
Symmetry17(1702-1709)
IEEE DOI
1802
Aggregates, Feature extraction, Image color analysis,
Image recognition, Reflection
BibRef
Michaelsen, E.,
Arens, M.,
Hierarchical Grouping: The Gestalt Assessments Method,
Symmetry17(1710-1714)
IEEE DOI
1802
Aggregates, Grammar, Heating systems,
Image color analysis, Reflection
BibRef
Zhu, C.B.[Chun-Biao],
Li, G.[Ge],
Guo, X.Q.[Xiao-Qiang],
Wang, W.M.[Wen-Min],
Wang, R.G.[Rong-Gang],
A Multilayer Backpropagation Saliency Detection Algorithm Based on
Depth Mining,
CAIP17(II: 14-23).
Springer DOI
1708
BibRef
Li, M.[Meng],
Liu, X.[Xing],
Tang, L.M.[Li-Ming],
A Phase Field Variational Model with Arctangent Regularization for
Saliency Detection,
SoftBio17(29-35)
IEEE DOI
1609
feature extraction, variational techniques, visual perception,
arctangent regularization, classical Cahn-Hilliard model,
complex image domain, dynamical competition,
energy functional minimization,
highly anisotropic interfacial energy, human visual perception,
phase field variational model, saliency detection,
visual attention feature extraction, Computational modeling,
Feature extraction, Mathematical model,
Visual systems, Visualization
BibRef
Jetley, S.[Saumya],
Murray, N.[Naila],
Vig, E.[Eleonora],
End-to-End Saliency Mapping via Probability Distribution Prediction,
CVPR16(5753-5761)
IEEE DOI
1612
BibRef
Liu, H.,
Tao, S.,
Li, Z.,
Saliency detection via global-object-seed-guided cellular automata,
ICIP16(2772-2776)
IEEE DOI
1610
Automata
BibRef
Zhang, L.,
Sun, Q.,
Chen, J.,
Multi-image saliency analysis via histogram and spectral feature
clustering for satellite images,
ICIP16(2802-2806)
IEEE DOI
1610
Histograms;Image processing;clustering;saliency
BibRef
Martinez-Rodriguez, D.E.[Diana E.],
Ayala-Ramirez, V.[Victor],
Hernandez-Belmonte, U.H.[Uriel H.],
Saliency Detection Based on Heuristic Rules,
MCPR16(94-103).
Springer DOI
1608
BibRef
Xu, F.[Fei],
Xian, M.[Min],
Cheng, H.D.,
Ding, J.R.[Jian-Rui],
Zhang, Y.T.[Ying-Tao],
Unsupervised saliency estimation based on robust hypotheses,
WACV16(1-6)
IEEE DOI
1606
Adaptation models
BibRef
Tasse, F.P.,
Kosinka, J.,
Dodgson, N.,
Cluster-Based Point Set Saliency,
ICCV15(163-171)
IEEE DOI
1602
Computational modeling
BibRef
Li, J.,
Xia, C.,
Song, Y.,
Fang, S.,
Chen, X.,
A Data-Driven Metric for Comprehensive Evaluation of Saliency Models,
ICCV15(190-198)
IEEE DOI
1602
Benchmark testing
BibRef
Zeng, Y.,
Xu, Y.,
Saliency Detection Using Quaternion Sparse Reconstruction,
ACVR15(469-476)
IEEE DOI
1602
Color
BibRef
Schauerte, B.[Boris],
Wortwein, T.[Torsten],
Stiefelhagen, R.[Rainer],
Color decorrelation helps visual saliency detection,
ICIP15(1965-1969)
IEEE DOI
1512
BibRef
Greenberg, S.,
Chung, A.G.,
Chwyl, B.,
Wong, A.,
TIGGER: A Texture-Illumination Guided Global Energy Response Model
for Illumination Robust Object Saliency,
CRV16(296-302)
IEEE DOI
1612
Bayesian estimation
BibRef
Chwyl, B.,
Chung, A.G.,
Li, F.Y.,
Wong, A.,
Clausi, D.A.,
TIGER: A texture-illumination guided energy response model for
illumination robust local saliency,
ICIP15(1970-1974)
IEEE DOI
1512
Bayesian estimation
BibRef
Zhang, H.[Hui],
Zhang, J.F.[Jin-Fang],
Xu, F.J.[Fan-Jiang],
Land use and land cover classification base on image saliency map
cooperated coding,
ICIP15(2616-2620)
IEEE DOI
1512
Bag-of-Words Model
BibRef
Liu, Y.Q.[Ya-Qi],
Cai, Q.A.[Qi-Ang],
Zhu, X.B.[Xiao-Bin],
Cao, J.[Jian],
Li, H.S.[Hai-Sheng],
Saliency detection using two-stage scoring,
ICIP15(4062-4066)
IEEE DOI
1512
Saliency detection, manifold ranking, random walk, two-stage scoring
BibRef
Park, H.S.[Hyun Soo],
Shi, J.B.[Jian-Bo],
Social saliency prediction,
CVPR15(4777-4785)
IEEE DOI
1510
BibRef
Luo, Y.[Yan],
Wong, Y.K.[Yong-Kang],
Zhao, Q.[Qi],
Label Consistent Quadratic Surrogate model for visual saliency
prediction,
CVPR15(5060-5069)
IEEE DOI
1510
BibRef
Qin, Y.[Yao],
Lu, H.C.[Hu-Chuan],
Xu, Y.Q.[Yi-Qun],
Wang, H.[He],
Saliency detection via Cellular Automata,
CVPR15(110-119)
IEEE DOI
1510
BibRef
Le Meur, O.[Olivier],
Liu, Z.[Zhi],
Saliency Aggregation: Does Unity Make Strength?,
ACCV14(IV: 18-32).
Springer DOI
1504
Does aggregation do better then good saliency maps.
BibRef
Zhao, B.[Bin],
Delp, E.J.[Edward J.],
Visual Saliency Models Based on Spectrum Processing,
WACV15(976-981)
IEEE DOI
1503
Computational modeling. Frequency domain analysis.
BibRef
Qi, S.X.[Sheng-Xiang],
Yu, J.G.[Jin-Gang],
Zhao, J.[Ji],
Ma, J.[Jie],
Tian, J.W.[Jin-Wen],
Visual saliency detection using feature activity weighted
decorrelation cues,
ICIP14(1140-1144)
IEEE DOI
1502
Decorrelation
BibRef
Khatoonabadi, S.H.[Sayed Hossein],
Bajic, I.V.[Ivan V.],
Shan, Y.F.[Yu-Feng],
Comparison of visual saliency models for compressed video,
ICIP14(1081-1085)
IEEE DOI
1502
Computational modeling
BibRef
Altamirano-Gómez, G.E.[Gerardo E.],
Bayro-Corrochano, E.[Eduardo],
Conformal Geometric Algebra method for detection of geometric
primitives,
ICPR16(4190-4195)
IEEE DOI
1705
BibRef
Earlier:
Conformal Geometric Method for Voting,
CIARP14(802-809).
Springer DOI
1411
Extension of Hough or tensor voting.
Algebra, Clustering algorithms, Data mining, Feature extraction,
Organizations, Silicon, Tensile stress.
BibRef
Fathalla, R.[Radwa],
Vogiatzis, G.[George],
Detection of multiple meaningful primitive geometric models,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Yan, X.Y.[Xiao-Yun],
Wang, Y.H.[Yue-Huan],
Song, M.M.[Meng-Meng],
Jiang, M.[Man],
Saliency Detection Using Color Spatial Variance Weighted Graph Model,
ACPR13(410-414)
IEEE DOI
1408
computer vision
BibRef
Gupta, S.,
Agrawal, R.,
Layek, R.,
Mukhopadhyay, J.,
Psychovisual saliency in color images,
NCVPRIPG13(1-4)
IEEE DOI
1408
computer vision
BibRef
Wu, J.[Jie],
Zhang, L.Q.[Li-Qing],
Gestalt saliency: Salient region detection based on Gestalt
principles,
ICIP13(181-185)
IEEE DOI
1402
Computer vision
BibRef
Imamoglu, N.[Nevrez],
Fang, Y.M.[Yu-Ming],
Yu, W.W.[Wen-Wei],
Lin, W.S.[Wei-Si],
2D mel-cepstrum based saliency detection,
ICIP13(236-239)
IEEE DOI
1402
Biological system modeling
BibRef
Pan, J.S.[Jin-Shan],
Su, Z.X.[Zhi-Xun],
Bian, M.R.[Mao-Ran],
Liu, R.S.[Ri-Sheng],
Saliency detection based on an edge-preserving filter,
ICIP13(1757-1761)
IEEE DOI
1402
Bayesian framework;Saliency map;edge-preserving filter;image matting
BibRef
Zhou, Q.[Quan],
Chen, J.[Ji],
Ren, S.W.[Shi-Wei],
Zhou, Y.[Yu],
Chen, J.[Jun],
Liu, W.Y.[Wen-Yu],
On contrast combinations for visual saliency detection,
ICIP13(2665-2669)
IEEE DOI
1402
Saliency detection
BibRef
Zhang, L.[Lin],
Gu, Z.Y.[Zhong-Yi],
Li, H.Y.[Hong-Yu],
SDSP: A novel saliency detection method by combining simple priors,
ICIP13(171-175)
IEEE DOI
1402
Accuracy
BibRef
Shtrom, E.[Elizabeth],
Leifman, G.[George],
Tal, A.[Ayellet],
Saliency Detection in Large Point Sets,
ICCV13(3591-3598)
IEEE DOI
1403
Point sets, Saliency, Visual saliency
BibRef
Margolin, R.[Ran],
Tal, A.[Ayellet],
Zelnik-Manor, L.[Lihi],
What Makes a Patch Distinct?,
CVPR13(1139-1146)
IEEE DOI
1309
distinctness, saliency, salient object
BibRef
Mai, L.[Long],
Niu, Y.Z.[Yu-Zhen],
Liu, F.[Feng],
Saliency Aggregation: A Data-Driven Approach,
CVPR13(1131-1138)
IEEE DOI
1309
BibRef
Zhou, Z.[Zhen],
Huang, Y.Z.[Yong-Zhen],
Wang, L.[Liang],
Tan, T.N.[Tie-Niu],
Depth-embedded multiple pooling for image classification,
ICIP13(4335-4339)
IEEE DOI
1402
Depth Estimation, Image Classification, Multiple Pooling
BibRef
Wu, Z.F.[Zi-Feng],
Huang, Y.Z.[Yong-Zhen],
Wang, L.[Liang],
Tan, T.N.[Tie-Niu],
Group encoding of local features in image classification,
ICPR12(1505-1508).
WWW Link.
1302
BibRef
Zhou, Q.[Quan],
Li, N.[Nianyi],
Yang, Y.[Yi],
Chen, P.[Pan],
Liu, W.Y.[Wen-Yu],
Corner-surround Contrast for saliency detection,
ICPR12(1423-1426).
WWW Link.
1302
BibRef
Zhou, Y.[Yue],
Shi, K.[Kun],
Spatiotemporal saliency based on distributed opponent oriented energy,
ICPR12(2021-2024).
WWW Link.
1302
BibRef
Zhang, C.[Chi],
Wang, W.Q.[Wei-Qiang],
Object-level saliency detection based on spatial compactness
assumption,
ICIP13(2475-2479)
IEEE DOI
1402
saliency detection
BibRef
Zhang, H.[Hui],
Wang, W.Q.[Wei-Qiang],
Su, G.P.[Gui-Ping],
Duan, L.J.[Li-Juan],
A simple and effective saliency detection approach,
ICPR12(186-189).
WWW Link.
1302
BibRef
Yeh, H.H.[Hsin-Ho],
Chen, C.S.[Chu-Song],
From rareness to compactness: Contrast-aware image saliency detection,
ICIP12(1077-1080).
IEEE DOI
1302
BibRef
Yang, W.B.[Wei-Bin],
Fang, B.[Bin],
Tang, Y.Y.[Yuan Yan],
Shang, Z.W.[Zhao-Wei],
Zhao, H.J.[Heng-Jun],
Visual saliency estimation using support value transform,
ICIP12(1069-1072).
IEEE DOI
1302
BibRef
Narayanan, M.[Maruthi],
Kimia, B.B.[Benjamin B.],
Bottom-Up Perceptual Organization of Images into Object Part Hypotheses,
ECCV12(I: 257-271).
Springer DOI
1210
BibRef
Sharma, G.[Gaurav],
Jurie, F.[Frederic],
Schmid, C.[Cordelia],
Discriminative spatial saliency for image classification,
CVPR12(3506-3513).
IEEE DOI
1208
Where is the object.
BibRef
Gong, D.[Dian],
Medioni, G.[Gerard],
Probabilistic tensor voting for robust perceptual grouping,
POCV12(1-8).
IEEE DOI
1207
BibRef
Potapova, E.[Ekaterina],
Zillich, M.[Michael],
Vincze, M.[Markus],
Attention-driven segmentation of cluttered 3D scenes,
ICPR12(3610-3613).
WWW Link.
1302
BibRef
Earlier:
Learning What Matters:
Combining Probabilistic Models of 2D and 3D Saliency Cues,
CVS11(132-142).
Springer DOI
1109
BibRef
Schiffner, D.[Daniel],
Kromker, D.[Detlef],
Three Dimensional Saliency Calculation Using Splatting,
ICIG11(835-840).
IEEE DOI
1109
BibRef
Wang, M.[Meng],
Konrad, J.[Janusz],
Ishwar, P.[Prakash],
Jing, K.[Kevin],
Rowley, H.[Henry],
Image saliency: From intrinsic to extrinsic context,
CVPR11(417-424).
IEEE DOI
1106
BibRef
Murray, N.[Naila],
Vanrell, M.[Maria],
Otazu, X.[Xavier],
Parraga, C.A.[C. Alejandro],
Low-Level Spatiochromatic Grouping for Saliency Estimation,
PAMI(35), No. 11, 2013, pp. 2810-2816.
IEEE DOI
1309
BibRef
Saliency estimation using a non-parametric low-level vision model,
CVPR11(433-440).
IEEE DOI
1106
Computational models of vision, color, hierarchical image representation
Saliency by Induction Mechanisms.
Enhance features (corners).
BibRef
Aziz, M.Z.[M. Zaheer],
Knopf, M.[Michael],
Mertsching, B.[Bärbel],
Knowledge-Driven Saliency: Attention to the Unseen,
ACIVS11(34-45).
Springer DOI
1108
BibRef
Vikram, T.N.[Tadmeri Narayan],
Tscherepanow, M.[Marko],
Wrede, B.[Britta],
A Visual Saliency Map Based on Random Sub-window Means,
IbPRIA11(33-40).
Springer DOI
1106
BibRef
Li, X.[Xue],
Yao, H.X.[Hong-Xun],
Sun, X.S.[Xiao-Shuai],
Ji, R.R.[Rong-Rong],
Liu, X.M.[Xian-Ming],
Xu, P.F.[Peng-Fei],
Sparse representation based visual element analysis,
ICIP11(657-660).
IEEE DOI
1201
BibRef
Sun, X.S.[Xiao-Shuai],
Yao, H.X.[Hong-Xun],
Ji, R.R.[Rong-Rong],
Xu, P.F.[Peng-Fei],
Liu, X.M.[Xian-Ming],
Liu, S.H.[Shao-Hui],
Saliency detection based on short-term sparse representation,
ICIP10(1101-1104).
IEEE DOI
1009
BibRef
Zhao, C.R.[Cai-Rong],
Liu, C.C.[Chuan-Cai],
Lai, Z.H.[Zhi-Hui],
Yang, J.Y.[Jing-Yu],
Sparse Embedding Visual Attention Systems Combined with Edge
Information,
ICPR10(3432-3435).
IEEE DOI
1008
BibRef
Huang, R.[Rui],
Sang, N.[Nong],
Liu, L.Y.[Le-Yuan],
Tang, Q.L.[Qi-Ling],
Saliency Based on Multi-scale Ratio of Dissimilarity,
ICPR10(13-16).
IEEE DOI
1008
BibRef
Ngau, C.W.H.[Christopher Wing Hong],
Ang, L.M.[Li-Minn],
Seng, K.P.[Kah Phooi],
Low Memory Implementation of Saliency Map Using Strip-Based Method,
IVIC09(715-726).
Springer DOI
0911
BibRef
Valenti, R.[Roberto],
Sebe, N.[Nicu],
Gevers, T.[Theo],
Image Saliency by Isocentric Curvedness and Color,
ICCV09(2185-2192).
IEEE DOI
PDF File.
0909
BibRef
Earlier:
Isocentric color saliency in images,
ICIP09(993-996).
IEEE DOI
0911
BibRef
Michaelsen, E.[Eckart],
Middelmann, W.[Wolfgang],
Sörgel, U.[Uwe],
Cognitive Vision and Perceptual Grouping by Production Systems with
Blackboard Control: An Example for High-Resolution SAR-Images,
VISAPP06(293-304).
Springer DOI
0711
BibRef
Lombardi, G.[Gabriele],
Casiraghi, E.[Elena],
Campadelli, P.[Paola],
Curvature Estimation and Curve Inference with Tensor Voting:
A New Approach,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Campadelli, P.[Paola],
Lombardi, G.[Gabriele],
Tensor Voting Fields: Direct Votes Computation and New Saliency
Functions,
CIAP07(677-684).
IEEE DOI
0709
BibRef
Syeda-Mahmood, T.[Tanveer],
Wang, F.[Fei],
Unsupervised Clustering using Multi-Resolution Perceptual Grouping,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Liu, Y.[Yang],
Bouganis, C.S.,
Cheung, P.Y.K.,
A Spatiotemporal Saliency Framework,
ICIP06(437-440).
IEEE DOI
0610
BibRef
Govindu, V.M.[Venu Madhav],
Layout, S.[Simhapuri],
A Tensor Decomposition for Geometric Grouping and Segmentation,
CVPR05(I: 1150-1157).
IEEE DOI
0507
Apply method to salient feature grouping and motion segmentation.
BibRef
Arsenio, A.M.[Artur M.],
An Embodied Approach to Perceptual Grouping,
PercOrg04(51).
IEEE DOI
0502
BibRef
Engbers, E.A.[Erik A.],
Lindenbaum, M.[Michael],
Smeulders, A.W.M.[Arnold W.M.],
An Information-Based Measure for Grouping Quality,
ECCV04(Vol III: 392-404).
Springer DOI
0405
BibRef
Massad, A.,
A Perceptual Grouping Approach for Visual Interpolation between Good
Continuation and Minimal Path using Tensor Voting,
BMVC06(II:639).
PDF File.
0609
BibRef
Aziz, M.Z.[Muhammad Zaheer],
Mertsching, B.[Bärbel],
An Attentional Approach for Perceptual Grouping of Spatially
Distributed Patterns,
DAGM07(345-354).
Springer DOI
0709
BibRef
Massad, A.,
Babós, M.,
Mertsching, B.[Bärbel],
Application of the Tensor Voting Technique for Perceptual Grouping to
Grey-Level Images,
DAGM02(306 ff.).
Springer DOI
0303
BibRef
Mahoney, J.V.[James V.],
Fromherz, M.P.J.[Markus P.J.],
Perceptual organization as graph rectification in a constraint-based
scheme for interpreting sloppy stick figures,
PercOrg01(xx-yy).
0106
BibRef
Marques, J.S.[Jorge S.],
Abrantes, A.J.[Arnaldo J.],
A Constrained Clustering Algorithm for Shape Analysis with Multiple
Features,
ICPR00(Vol I: 916-919).
IEEE DOI
0009
BibRef
Ambrosio, G.[Gregorio],
González, J.[Javier],
Extracting and Matching Perceptual Groups for Hierarchical Stereo
Vision,
ICPR00(Vol I: 542-545).
IEEE DOI
0009
BibRef
Marichal, X.[Xavier],
Delmot, T.,
de Vleeschouwer, C.,
Warscotte, V.,
Macq, B.,
Automatic Detection of Interest Areas of an Image or of a
Sequence of Images,
ICIP96(III: 371-374).
IEEE DOI
Saliency. Find salient regions in video.
BibRef
9600
Sara, R.[Radim], and
Bajcsy, R.[Ruzena],
Fish-Scales: Representing Fuzzy Manifolds,
ICCV98(811-817).
IEEE DOI
BibRef
9800
Borra, S.,
Sarkar, S.,
Experimental Performance Evaluation of Feature Grouping Modules,
CVPR97(891-896).
IEEE DOI
9704
BibRef
Serra, J.R.,
Subirana-Vilanova, J.B.,
Perceptual grouping on texture images using non-cartesian networks,
ICPR96(II: 462-466).
IEEE DOI
9608
(Univ. Autonoma Barcelona, E)
BibRef
Subirana, B.[Brian],
Perceptual Organization, Figure Ground, Attention And Saliency,
MIT AI Memo-1218, August 1991.
BibRef
9108
Lawton, D.T.,
McConnell, C.C.,
Perceptual Organization Using Interestingness,
SRMSF87(405-419).
BibRef
8700
Dabis, H.S.,
Palmer, P.L.,
Kittler, J.V.,
An Interest Operator Based on Perceptual Grouping,
SCIA95(315-322).
BibRef
9500
Wang, C.L.,
Prasanna, V.K.,
Chung, Y.,
Parallel Implementations of Perceptual Grouping Tasks on
Distributed Memory Machines,
ARPA96(905-912).
BibRef
9600
Fellenz, W.A.,
Hartmann, G.,
Preattentive Grouping and Attentive Selection for
Early Visual Computation,
ICPR96(IV: 340-345).
IEEE DOI
9608
(Univ. of Paderborn, D)
BibRef
Kang, H.B.,
Walker, E.L.,
Multilevel Grouping:
Combining Bottom-Up and Top-Down Reasoning for Object Recognition,
ICPR94(A:559-562).
IEEE DOI
BibRef
9400
Horaud, R.,
Veilon, F., and
Skordas, T.,
Finding Geometric and Relational Structures in an Image,
ECCV90(374-384).
Springer DOI Group simple features into more comples structures.
BibRef
9000
Subirana-Vilanova, J.B., and
Sung, K.K.[Kah Kay],
Multi-Scale Vector-Ridge-Detection for
Perceptual Organization Without Edges,
ICCV93(57-64).
IEEE DOI
BibRef
9300
And:
MIT AI Memo-1318, December 1992.
WWW Link.
BibRef
Earlier:
Perceptual Organization without Edges,
DARPA92(289-298).
Grouping using regions and using color for grouping.
BibRef
Subirana-Vilanova, J.B.,
The Skeleton Sketch: Finding Salient Frames of Reference,
DARPA90(614-622).
BibRef
9000
Subirana-Vilanova, J.B.,
Curved Inertia Frames and the Skeleton Sketch:
Finding Salient Frames of Reference,
ICCV90(702-708).
IEEE DOI
BibRef
9000
Abella, A.,
Extracting Geometric Shapes from a Set of Points,
DARPA92(573-583).
Grouping applied to points.
BibRef
9200
Ahmad, S.,
VISIT: An Efficient Computational Model of Human Visual Attention,
ICSITR-91-049, Berkeley, CA, 1991,
BibRef
9100
Ph.D.Thesis (UofIll).
BibRef
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Perceptual Grouping, Saliency, Neural Networks, Learning .