Love, P.L.,
Simaan, M.,
Automatic recognition of primitive changes in manufacturing process
signals,
PR(21), No. 4, 1988, pp. 333-342.
Elsevier DOI
0309
BibRef
Saadani, A.,
Gelpi, P.,
Tortelier, P.,
A variable-order Markov-chain-based model for Rayleigh fading and RAKE
receiver,
SPLetters(11), No. 3, March 2004, pp. 356-358.
IEEE Abstract.
0404
BibRef
Li, Y.,
Vucetic, B.,
Tang, Y.,
Zhang, Q.,
Space-Time Trellis Codes With Linear Transformation for Fast Fading
Channels,
SPLetters(11), No. 11, November 2004, pp. 895-898.
IEEE Abstract.
0411
BibRef
Liao, T.W.[T. Warren],
Clustering of time series data: A survey,
PR(38), No. 11, November 2005, pp. 1857-1874.
Elsevier DOI
Award, Pattern Recognition, Honorable Mention.
0509
BibRef
Liao, T.W.[T. Warren],
A clustering procedure for exploratory mining of vector time series,
PR(40), No. 9, September 2007, pp. 2550-2562.
Elsevier DOI
0705
Vector time series; Clustering; Clustering algorithms; Validity index
BibRef
Wu, J.K.,
Liang, Y.,
Wu, Q.,
Chen, G.T.,
Frequency tracking techniques of power systems in coloured noises,
VISP(153), No. 6, December 2006, pp. 795-804.
DOI Link
0702
BibRef
Sarkar, M.[Manish],
Ruggedness measures of medical time series using fuzzy-rough sets and
fractals,
PRL(27), No. 5, 1 April 2006, pp. 447-454.
Elsevier DOI Characterization; Time series; Fuzzy; Rough; Fuzzy-rough;
Hurst exponent and fractal
0604
BibRef
Rajagopalan, V.[Venkatesh],
Ray, A.[Asok],
Samsi, R.[Rohan],
Mayer, J.[Jeffrey],
Pattern identification in dynamical systems via symbolic time series
analysis,
PR(40), No. 11, November 2007, pp. 2897-2907.
Elsevier DOI
0707
Time series patterns.
Pattern classification; Symbolic time series analysis; Markov modeling
BibRef
Yan, K.,
Jiang, J.,
Wang, Y.G.,
Liu, H.T.,
Outage Probability of Selection Cooperation With MRC in Nakagami-m
Fading Channels,
SPLetters(16), No. 12, December 2009, pp. 1031-1034.
IEEE DOI
0909
BibRef
Cami, A.[Aurel],
Wallstrom, G.L.[Garrick L.],
Fowlkes, A.L.[Ashley L.],
Panozzo, C.A.[Cathy A.],
Hogan, W.R.[William R.],
Mining aggregates of over-the-counter products for syndromic
surveillance,
PRL(30), No. 3, 1 February 2009, pp. 255-266.
Elsevier DOI
0804
Biosurveillance; Outbreak detection; Linear regression; Time series aggregation
BibRef
Kowalski, M.[Matthieu],
Torrésani, B.[Bruno],
Sparsity and persistence: mixed norms provide simple signal models with
dependent coefficients,
SIViP(3), No. 3, September 2009, pp. xx-yy.
Springer DOI
0910
BibRef
Jin, X.[Xin],
Gupta, S.[Shalabh],
Mukherjee, K.[Kushal],
Ray, A.[Asok],
Wavelet-based feature extraction using probabilistic finite state
automata for pattern classification,
PR(44), No. 7, July 2011, pp. 1343-1356.
Elsevier DOI
1103
Time series analysis; Symbolic dynamics; Feature extraction; Pattern
classification; Probabilistic finite state automata
BibRef
Yang, C.,
Le Bouquin Jeannes, R.,
Faucon, G.,
Shu, H.,
Extracting Information on Flow Direction in Multivariate Time Series,
SPLetters(18), No. 4, April 2011, pp. 251-254.
IEEE DOI
1103
BibRef
Fidalgo-Merino, R.,
Nunez, M.,
Self-Adaptive Induction of Regression Trees,
PAMI(33), No. 8, August 2011, pp. 1659-1672.
IEEE DOI
1107
Binary regression tree dealing with data stream.
BibRef
Oya, A.,
Navarro-Moreno, J.,
Ruiz-Molina, J.C.,
Widely Linear Simulation of Continuous-Time Complex-Valued Random
Signals,
SPLetters(18), No. 9, September 2011, pp. 513-516.
IEEE DOI
1108
BibRef
Navarro-Moreno, J.,
Fernandez-Alcala, R.M.,
Ruiz-Molina, J.C.,
A Quaternion Widely Linear Series Expansion and Its Applications,
SPLetters(19), No. 12, December 2012, pp. 868-871.
IEEE DOI
1212
BibRef
Jiménez-López, J.D.[José D.],
Navarro-Moreno, J.[Jesús],
Fernández-Alcalá, R.M.[Rosa M.],
Ruiz-Molina, J.C.[Juan C.],
Proper Processing of beta-Quaternion Wide-Sense Markov Signals From
Randomly Lost Observations,
SPLetters(31), 2024, pp. 2060-2064.
IEEE DOI
2408
Quaternions, Estimation, Vectors, Algebra,
Signal processing algorithms, Nonlinear filters, wide-sense Markov signals
BibRef
Sayed-Mouchaweh, M.[Moamar],
Messai, N.[Nadhir],
A clustering-based approach for the identification of a class of
temporally switched linear systems,
PRL(33), No. 2, 15 January 2012, pp. 144-151.
Elsevier DOI
1112
Classification; Clustering; Identification; Hybrid dynamic systems
BibRef
Martin, R.K.,
Using Alpha Shapes to Approximate Signal Strength Based Positioning
Performance,
SPLetters(18), No. 12, December 2011, pp. 741-744.
IEEE DOI
1112
BibRef
Li, R.[Rui],
Tian, T.P.[Tai-Peng],
Sclaroff, S.[Stan],
Divide, Conquer and Coordinate:
Globally Coordinated Switching Linear Dynamical System,
PAMI(34), No. 4, April 2012, pp. 654-669.
IEEE DOI
1203
Representation for high-dimensional time series.
BibRef
Ward, J.P.,
Kirshner, H.,
Unser, M.,
Is Uniqueness Lost for Under-Sampled Continuous-Time Auto-Regressive
Processes?,
SPLetters(19), No. 4, April 2012, pp. 183-186.
IEEE DOI
1203
BibRef
Sugavaneswaran, L.,
Xie, S.,
Umapathy, K.,
Krishnan, S.,
Time-Frequency Analysis via Ramanujan Sums,
SPLetters(19), No. 6, June 2012, pp. 352-355.
IEEE DOI
1202
BibRef
Vallejos, R.O.[Ronny O.],
Testing for the absence of correlation between two spatial or temporal
sequences,
PRL(33), No. 13, 1 October 2012, pp. 1741-1748.
Elsevier DOI
1208
Codispersion coefficient; Time series; Spatial processes; Hypothesis
testing
BibRef
Valério, D.[Duarte],
da Costa, J.S.[José Sá],
Fractional reset control,
SIViP(6), No. 3, September 2012, pp. 495-501.
WWW Link.
1209
BibRef
Chen, D.[Dali],
Chen, Y.Q.[Yang-Quan],
Xue, D.Y.[Ding-Yu],
1-D and 2-D digital fractional-order Savitzky-Golay differentiator,
SIViP(6), No. 3, September 2012, pp. 503-511.
WWW Link.
1209
BibRef
Bhalekar, S.[Sachin],
Dynamical analysis of fractional order Uçar prototype delayed system,
SIViP(6), No. 3, September 2012, pp. 513-519.
WWW Link.
1209
BibRef
Bhalekar, S.[Sachin],
On the Uçar prototype model with incommensurate delays,
SIViP(8), No. 4, May 2014, pp. 635-639.
WWW Link.
1404
BibRef
Bhalekar, S.[Sachin],
Stability analysis of Uçar prototype delayed system,
SIViP(10), No. 4, April 2016, pp. 777-781.
WWW Link.
1604
BibRef
Dulf, E.H.[Eva-Henrietta],
Pop, C.I.[Cristina-Ioana],
Dulf, F.V.[Francisc-Vasile],
Fractional calculus in 13C separation column control,
SIViP(6), No. 3, September 2012, pp. 479-485.
WWW Link.
1209
BibRef
Pop, C.I.[Cristina I.],
Ionescu, C.M.[Clara M.],
de Keyser, R.[Robain],
Dulf, E.H.[Eva H.],
Robustness evaluation of fractional order control for varying time
delay processes,
SIViP(6), No. 3, September 2012, pp. 453-461.
WWW Link.
1209
BibRef
Hosseinnia, S.H.[S. Hassan],
Tejado, I.[Inés],
Vinagre, B.M.[Blas M.],
Sierociuk, D.[Dominik],
Boolean-based fractional order SMC for switching systems:
Application to a DC-DC buck converter,
SIViP(6), No. 3, September 2012, pp. 445-451.
WWW Link.
1209
BibRef
Melchior, P.[Pierre],
Pellet, M.[Mathieu],
Petit, J.[Julien],
Cabelguen, J.M.[Jean-Marie],
Oustaloup, A.[Alain],
Analysis of muscle length effect on an S type motor-unit fractional
multi-model,
SIViP(6), No. 3, September 2012, pp. 421-428.
WWW Link.
1209
BibRef
Bensouici, T.[Tahar],
Charef, A.[Abdelfatah],
Approximate realization of digital fractional forward operator using
digital IIR filter,
SIViP(6), No. 3, September 2012, pp. 411-420.
WWW Link.
1209
BibRef
Maione, G.[Guido],
Thiele's continued fractions in digital implementation of noninteger
differintegrators,
SIViP(6), No. 3, September 2012, pp. 401-410.
WWW Link.
1209
BibRef
Malti, R.[Rachid],
Melchior, P.[Pierre],
Lanusse, P.[Patrick],
Oustaloup, A.[Alain],
Object-oriented CRONE toolbox for fractional differential signal
processing,
SIViP(6), No. 3, September 2012, pp. 393-400.
WWW Link.
1209
BibRef
Adams, J.L.[Jay L.],
Veillette, R.J.[Robert J.],
Hartley, T.T.[Tom T.],
Conjugate-order systems for signal processing:
Stability, causality, boundedness, compactness,
SIViP(6), No. 3, September 2012, pp. 373-380.
WWW Link.
1209
BibRef
Couceiro, M.S.[Micael S.],
Rocha, R.P.[Rui P.],
Ferreira, N.M.F.[N. M. Fonseca],
Machado, J.A.T.[J. A. Tenreiro],
Introducing the fractional-order Darwinian PSO,
SIViP(6), No. 3, September 2012, pp. 343-350.
WWW Link.
1209
BibRef
Ortigueira, M.D.[Manuel D.],
Magin, R.L.[Richard L.],
Trujillo, J.J.[Juan J.],
Velasco, M.P.[M. Pilar],
A real regularised fractional derivative,
SIViP(6), No. 3, September 2012, pp. 351-358.
WWW Link.
1209
BibRef
Trigeassou, J.C.,
Maamri, N.,
Sabatier, J.,
Oustaloup, A.,
Transients of fractional-order integrator and derivatives,
SIViP(6), No. 3, September 2012, pp. 359-372.
WWW Link.
1209
BibRef
Venkitaraman, A.,
Seelamantula, C.S.,
A Technique to Compute Smooth Amplitude, Phase, and Frequency
Modulations From the Analytic Signal,
SPLetters(19), No. 10, October 2012, pp. 623-626.
IEEE DOI
1209
BibRef
Venkitaraman, A.,
Seelamantula, C.S.,
On Computing Amplitude, Phase, and Frequency Modulations Using a
Vector Interpretation of the Analytic Signal,
SPLetters(20), No. 12, 2013, pp. 1187-1190.
IEEE DOI
1311
Eigenvalues and eigenfunctions
BibRef
Venkitaraman, A.,
Seelamantula, C.S.,
Temporal Envelope Fit of Transient Audio Signals,
SPLetters(20), No. 12, 2013, pp. 1191-1194.
IEEE DOI
1311
Closed-form solutions
BibRef
Lee, Y.[Yuni],
Sung, Y.C.[Young-Chul],
Generalized Chernoff Information for Mismatched Bayesian Detection and
Its Application to Energy Detection,
SPLetters(19), No. 11, November 2012, pp. 753-756.
IEEE DOI
1210
BibRef
Diouf, C.,
Telescu, M.,
Cloastre, P.,
Tanguy, N.,
On the Use of Equality Constraints in the Identification of
Volterra-Laguerre Models,
SPLetters(19), No. 12, December 2012, pp. 857-860.
IEEE DOI
1212
BibRef
Sigg, C.D.,
Dikk, T.,
Buhmann, J.M.,
Learning Dictionaries With Bounded Self-Coherence,
SPLetters(19), No. 12, December 2012, pp. 861-864.
IEEE DOI
1212
BibRef
Hou, Y.,
Liu, G.,
Wang, Q.,
Xiang, W.,
Performance Optimization of Digital Spectrum Analyzer With Gaussian
Input Signal,
SPLetters(20), No. 1, January 2013, pp. 31-34.
IEEE DOI
1212
BibRef
Mohammadi, M.[Mokhtar],
Pouyan, A.A.[Ali Akbar],
Khan, N.A.[Nabeel Ali],
A highly adaptive directional time-frequency distribution,
SIViP(10), No. 7, October 2016, pp. 1369-1376.
WWW Link.
1609
BibRef
Wu, G.[Gang],
Yang, J.W.[Ji-Wen],
A representation of time series based on implicit polynomial curve,
PRL(34), No. 4, 1 March 2013, pp. 361-371.
Elsevier DOI
1302
Implicit polynomial curve; Time series; Similarity measure; Dimension
reduction
BibRef
Fang, J.[Jun],
Liu, Y.M.[Yu-Meng],
Li, H.B.[Hong-Bin],
Li, S.Q.[Shao-Qian],
One-Bit Quantizer Design for Multisensor GLRT Fusion,
SPLetters(20), No. 3, March 2013, pp. 257-260.
IEEE DOI
1303
BibRef
Rajashekar, R.,
Hari, K.V.S.,
Hanzo, L.,
Structured dispersion matrices from division algebra codes for
space-time shift keying,
SPLetters(20), No. 4, April 2013, pp. 371-374.
IEEE DOI
1303
BibRef
Rajashekar, R.,
Hari, K.V.S.,
Hanzo, L.,
A Reduced-Complexity Partial-Interference-Cancellation Group Decoder
for STBCs,
SPLetters(20), No. 10, 2013, pp. 929-932.
IEEE DOI
1309
Toeplitz matrices
BibRef
Setlur, P.,
Devroye, N.,
An Information Theoretic Take on Time Reversal for Nonstationary
Channels,
SPLetters(20), No. 4, April 2013, pp. 327-330.
IEEE DOI
1303
BibRef
Li, P.[Po],
Wang, D.C.[De-Chun],
Wang, L.[Lu],
Separation of micro-Doppler signals based on time frequency filter and
Viterbi algorithm,
SIViP(7), No. 3, May 2013, pp. 593-605.
WWW Link.
1305
BibRef
Vemulapalli, P.K.[Pramod K.],
Monga, V.[Vishal],
Brennan, S.N.[Sean N.],
Robust Extrema Features for Time-Series Data Analysis,
PAMI(35), No. 6, June 2013, pp. 1464-1479.
IEEE DOI
1305
BibRef
Hayashi, A.[Akira],
Iwata, K.[Kazunori],
Suematsu, N.[Nobuo],
Marginalized Viterbi algorithm for hierarchical hidden Markov models,
PR(46), No. 12, 2013, pp. 3452-3459.
Elsevier DOI
1308
Time series data
BibRef
Montillet, J.P.,
McClusky, S.,
Yu, K.[Kegen],
Extracting Colored Noise Statistics in Time Series via Negentropy,
SPLetters(20), No. 9, 2013, pp. 857-860.
IEEE DOI
1308
convex programming
BibRef
Diversi, R.[Roberto],
Guidorzi, R.[Roberto],
Optimal filtering of multivariate noisy AR processes,
SIViP(7), No. 5, September 2013, pp. 873-878.
Springer DOI
1309
BibRef
Baydogan, M.G.[Mustafa Gokce],
Runger, G.[George],
Tuv, E.[Eugene],
A Bag-of-Features Framework to Classify Time Series,
PAMI(35), No. 11, 2013, pp. 2796-2802.
IEEE DOI
1309
Supervised learning; codebook; feature extraction
BibRef
Wang, J.,
Li, X.,
Liao, S.S.,
Hua, Z.,
A Hybrid Approach for Automatic Incident Detection,
ITS(14), No. 3, 2013, pp. 1176-1185.
IEEE DOI
1309
Automatic incident detection (AID)
BibRef
Xu, G.L.[Guan-Lei],
Wang, X.T.[Xiao-Tong],
Wang, L.T.[Long-Tao],
Liu, B.[Bo],
Su, S.P.[Shi-Peng],
Xu, X.G.[Xiao-Gang],
Generalized uncertainty principles associated with Hilbert transform,
SIViP(8), No. 2, February 2014, pp. 279-285.
Springer DOI
1402
BibRef
Çelik, V.[Vedat],
Demir, Y.[Yakup],
Chaotic dynamics of the fractional order nonlinear system with time
delay,
SIViP(8), No. 1, January 2014, pp. 65-70.
WWW Link.
1402
BibRef
Tan, V.Y.F.,
Atia, G.K.,
Strong Impossibility Results for Sparse Signal Processing,
SPLetters(21), No. 3, March 2014, pp. 260-264.
IEEE DOI
1403
error statistics
BibRef
Kazemi, K.[Kamran],
Amirian, M.[Mohammadreza],
Dehghani, M.J.[Mohammad Javad],
The S-transform using a new window to improve frequency and time
resolutions,
SIViP(8), No. 3, March 2014, pp. 533-541.
Springer DOI
1403
BibRef
Liu, Z.L.[Zi-Long],
Parampalli, U.,
Guan, Y.L.[Yong Liang],
On Even-Period Binary Z-Complementary Pairs with Large ZCZs,
SPLetters(21), No. 3, March 2014, pp. 284-287.
IEEE DOI
1403
Golay codes
BibRef
Adhikary, A.R.[Avik Ranjan],
Majhi, S.[Sudhan],
Liu, Z.L.[Zi-Long],
Guan, Y.L.[Yong Liang],
New Sets of Even-Length Binary Z-Complementary Pairs With Asymptotic
ZCZ Ratio of 3/4,
SPLetters(25), No. 7, July 2018, pp. 970-973.
IEEE DOI
1807
Golay codes, binary codes, correlation methods, sequences,
ZCZ region, ZCZ width, asymptotic ZCZ ratio,
zero correlation zone (ZCZ)
BibRef
López-Yáñez, I.[Itzamá],
Sheremetov, L.[Leonid],
Yáñez-Márquez, C.[Cornelio],
A novel associative model for time series data mining,
PRL(41), No. 1, 2014, pp. 23-33.
Elsevier DOI
1403
Time series data mining
BibRef
Längkvist, M.[Martin],
Karlsson, L.[Lars],
Loutfi, A.[Amy],
A review of unsupervised feature learning and deep learning for
time-series modeling,
PRL(42), No. 1, 2014, pp. 11-24.
Elsevier DOI
1404
Time-series
BibRef
Górecki, T.[Tomasz],
Using derivatives in a longest common subsequence dissimilarity
measure for time series classification,
PRL(45), No. 1, 2014, pp. 99-105.
Elsevier DOI
1407
Longest common subsequence
BibRef
Boecking, B.[Benedikt],
Chalup, S.K.[Stephan K.],
Seese, D.[Detlef],
Wong, A.S.W.[Aaron S.W.],
Support vector clustering of time series data with alignment kernels,
PRL(45), No. 1, 2014, pp. 129-135.
Elsevier DOI
1407
Support vector clustering
BibRef
Zhao, H.[Hui],
Wang, R.[Ruyan],
Song, D.P.[Dai-Ping],
Wu, D.P.[Da-Peng],
Maximally concentrated sequences in both time and linear canonical
transform domains,
SIViP(8), No. 5, July 2014, pp. 819-829.
Springer DOI
1407
BibRef
Frasca, M.[Marco],
Farina, A.[Alfonso],
Tartaglia-Pascal triangle and Brownian motion in non-euclidean
geometries: application to heat and Black-Scholes equations,
SIViP(8), No. 6, September 2014, pp. 1149-1157.
Springer DOI
1408
Financial models.
BibRef
Liu, X.[Xiang],
Kosakowski, M.,
Max-Log-MAP Soft Demapper with Logarithmic Complexity for M-PAM
Signals,
SPLetters(22), No. 1, January 2015, pp. 50-53.
IEEE DOI
1410
computational complexity
quadrature amplitude modulation.
BibRef
Naraghi-Pour, M.,
Soltanmohammadi, E.,
Tenor: A Measure of Central Tendency for Distributed Networks,
SPLetters(22), No. 1, January 2015, pp. 58-61.
IEEE DOI
1410
Phase of the first non-zero frequency of the
discrete Fourier transform of the pmf.
BibRef
Garcia-Trevino, E.S.,
Barria, J.A.,
Structural Generative Descriptions for Time Series Classification,
Cyber(44), No. 10, October 2014, pp. 1978-1991.
IEEE DOI
1410
data mining
BibRef
Wang, Z.X.[Zhi-Xin],
Chan, C.F.[Cheung-Fat],
Continuous Function Modeling of Head-Related Impulse Response,
SPLetters(22), No. 3, March 2015, pp. 283-287.
IEEE DOI
1410
Azimuth
BibRef
Maymon, S.,
Eldar, Y.C.,
The Viterbi Algorithm for Subset Selection,
SPLetters(22), No. 5, May 2015, pp. 524-528.
IEEE DOI
1411
Dictionaries
BibRef
Gan, M.[Min],
Chen, C.L.P.,
Li, H.X.[Han-Xiong],
Chen, L.[Long],
Gradient Radial Basis Function Based Varying-Coefficient
Autoregressive Model for Nonlinear and Nonstationary Time Series,
SPLetters(22), No. 7, July 2015, pp. 809-812.
IEEE DOI
1412
autoregressive processes
BibRef
Gharehbaghi, A.[Arash],
Ask, P.[Per],
Babic, A.[Ankica],
A pattern recognition framework for detecting dynamic changes on
cyclic time series,
PR(48), No. 3, 2015, pp. 696-708.
Elsevier DOI
1412
Hybrid model
BibRef
Trigano, T.,
Barat, E.,
Dautremer, T.,
Montagu, T.,
Fast Digital Filtering of Spectrometric Data for Pile-up Correction,
SPLetters(22), No. 7, July 2015, pp. 973-977.
IEEE DOI
1412
Detectors
BibRef
Hensman, J.,
Rattray, M.,
Lawrence, N.D.,
Fast Nonparametric Clustering of Structured Time-Series,
PAMI(37), No. 2, February 2015, pp. 383-393.
IEEE DOI
1502
Biological system modeling
BibRef
Xu, Z.,
MacEachern, S.,
Xu, X.,
Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model,
PAMI(37), No. 2, February 2015, pp. 372-382.
IEEE DOI
1502
Analytical models
BibRef
Kumar, M.,
Stoll, N.,
Stoll, R.,
Thurow, K.,
A Stochastic Framework for Robust Fuzzy Filtering and Analysis of
Signals: Part I,
Cyber(46), No. 5, May 2016, pp. 1118-1131.
IEEE DOI
1604
Algorithm design and analysis
BibRef
Kumar, M.,
Stoll, N.,
Stoll, R.,
Thurow, K.,
A Stochastic Framework for Robust Fuzzy Filtering and Analysis of
Signals: Part II,
Cyber(45), No. 3, March 2015, pp. 486-496.
IEEE DOI
1502
Algorithm design and analysis
BibRef
Naha, A.,
Samanta, A.K.,
Routray, A.,
Deb, A.K.,
Determining Autocorrelation Matrix Size and Sampling Frequency for
MUSIC Algorithm,
SPLetters(22), No. 8, August 2015, pp. 1016-1020.
IEEE DOI
1502
correlation methods
BibRef
Pei, S.C.[Soo-Chang],
Chang, K.W.[Kuo-Wei],
Perfect Gaussian Integer Sequences of Arbitrary Length,
SPLetters(22), No. 8, August 2015, pp. 1040-1044.
IEEE DOI
1502
Gaussian processes
BibRef
Markovsky, I.,
Comparison of Adaptive and Model-Free Methods for Dynamic Measurement,
SPLetters(22), No. 8, August 2015, pp. 1094-1097.
IEEE DOI
1502
adaptive signal processing
BibRef
Pei, S.C.[Soo-Chang],
Lu, K.S.[Keng-Shih],
Intrinsic Integer-Periodic Functions for Discrete Periodicity
Detection,
SPLetters(22), No. 8, August 2015, pp. 1108-1112.
IEEE DOI
1502
signal sampling
BibRef
Walker, J.S.[James S.],
Jones, M.W.[Mark W.],
Laramee, R.S.[Robert S.],
Bidder, O.R.[Owen R.],
Williams, H.J.[Hannah J.],
Scott, R.[Rebecca],
Shepard, E.L.C.[Emily L. C.],
Wilson, R.P.[Rory P.],
TimeClassifier: a visual analytic system for the classification of
multi-dimensional time series data,
VC(31), No. 6-8, June 2015, pp. 1067-1078.
Springer DOI
1506
BibRef
Farokhi, F.,
Shames, I.,
Cantoni, M.,
Promoting Truthful Behavior in Participatory-Sensing Mechanisms,
SPLetters(22), No. 10, October 2015, pp. 1538-1542.
IEEE DOI
1506
game theory
BibRef
Konar, A.,
Sidiropoulos, N.D.,
Hidden Convexity in QCQP with Toeplitz-Hermitian Quadratics,
SPLetters(22), No. 10, October 2015, pp. 1623-1627.
IEEE DOI
1506
Hermitian matrices.
Quadratically Constrained Quadratic Programming.
BibRef
Wei, X.Y.[Xiao-Yao],
Dragotti, P.L.[Pier Luigi],
Guaranteed Performance in the FRI Setting,
SPLetters(22), No. 10, October 2015, pp. 1661-1665.
IEEE DOI
1506
noise
Finite Rate of Innovation.
BibRef
Tenneti, S.V.,
Vaidyanathan, P.P.,
Arbitrarily Shaped Periods in Multidimensional Discrete Time
Periodicity,
SPLetters(22), No. 10, October 2015, pp. 1748-1751.
IEEE DOI
1506
mathematical analysis
BibRef
Elvira, V.,
Martino, L.,
Luengo, D.,
Bugallo, M.F.,
Heretical Multiple Importance Sampling,
SPLetters(23), No. 10, October 2016, pp. 1474-1478.
IEEE DOI
1610
importance sampling
BibRef
Mousavi, A.[Ali],
Monsefi, R.[Reza],
Elvira, V.[Víctor],
Hamiltonian Adaptive Importance Sampling,
SPLetters(28), 2021, pp. 713-717.
IEEE DOI
2104
Proposals, Monte Carlo methods, Artificial intelligence,
Signal processing algorithms, Markov processes,
hamiltonies an monte carlo
BibRef
Yang, Y.L.[Yan-Li],
Deng, J.H.[Jia-Hao],
Kang, D.[Dali],
An improved empirical mode decomposition by using dyadic masking
signals,
SIViP(9), No. 6, September 2015, pp. 1259-1263.
Springer DOI
1509
BibRef
Khan, M.[Majid],
Shah, T.[Tariq],
An efficient construction of substitution box with fractional chaotic
system,
SIViP(9), No. 6, September 2015, pp. 1335-1338.
Springer DOI
1509
BibRef
Luo, W.[Wen],
Yu, Z.Y.[Zhao-Yuan],
Xiao, S.J.[Sheng-Jun],
Zhu, A.X.[A-Xing],
Yuan, L.W.[Lin-Wang],
Exploratory Method for Spatio-Temporal Feature Extraction and
Clustering: An Integrated Multi-Scale Framework,
IJGI(4), No. 4, 2015, pp. 1870.
DOI Link
1511
E.g. weather data and El Nino.
BibRef
Biswas, N.,
Ray, P.,
Varshney, P.K.,
Distributed Detection Over Channels with Memory,
SPLetters(22), No. 12, December 2015, pp. 2494-2498.
IEEE DOI
1512
Markov processes
BibRef
Khanduri, P.,
Kailkhura, B.,
Thiagarajan, J.J.,
Varshney, P.K.,
Universal Collaboration Strategies for Signal Detection:
A Sparse Learning Approach,
SPLetters(23), No. 10, October 2016, pp. 1484-1488.
IEEE DOI
1610
compressed sensing
BibRef
Cheng, X.C.[Xian-Cheng],
Geng, B.C.[Bao-Cheng],
Khanduri, P.[Prashant],
Chen, B.X.[Bai-Xiao],
Varshney, P.K.[Pramod K.],
Joint Collaboration and Compression Design for Random Signal
Detection in Wireless Sensor Networks,
SPLetters(28), 2021, pp. 1630-1634.
IEEE DOI
2109
Sensors, Collaboration, Wireless sensor networks, Sparse matrices,
Signal detection, Optimization, Estimation,
generalized deflection coefficient
BibRef
Ren, H.R.[Huo-Rong],
Ren, A.[An],
Li, Z.W.[Zhi-Wu],
A new strategy for the suppression of cross-terms in pseudo
Wigner-Ville distribution,
SIViP(10), No. 1, January 2016, pp. 139-144.
Springer DOI
1601
BibRef
Rostaghi, M.,
Azami, H.,
Dispersion Entropy: A Measure for Time-Series Analysis,
SPLetters(23), No. 5, May 2016, pp. 610-614.
IEEE DOI
1604
Bandwidth
BibRef
Mohammadi, H.,
Steele, C.,
Chau, T.,
Post-Segmentation Swallowing Accelerometry Signal Trimming and False
Positive Reduction,
SPLetters(23), No. 9, September 2016, pp. 1221-1225.
IEEE DOI
1609
accelerometers
BibRef
Yuan, W.J.[Wei-Jie],
Wu, N.[Nan],
Wang, H.[Hua],
Kuang, J.M.[Jing-Ming],
Variational Inference-Based Frequency-Domain Equalization for
Faster-Than-Nyquist Signaling in Doubly Selective Channels,
SPLetters(23), No. 9, September 2016, pp. 1270-1274.
IEEE DOI
1609
computational complexity
BibRef
Pirondini, E.,
Vybornova, A.,
Coscia, M.,
van de Ville, D.,
A Spectral Method for Generating Surrogate Graph Signals,
SPLetters(23), No. 9, September 2016, pp. 1275-1278.
IEEE DOI
1609
Fourier transforms
BibRef
Shah, S.F.A.[S. Faisal A.],
Wang, L.[Lei],
Li, C.D.[Chuan-Dong],
Zhang, Z.H.[Zhu-Hong],
Low-Complexity Design of Noninteger Fractionally Spaced Adaptive
Equalizers for Coherent Optical Receivers,
SPLetters(23), No. 9, September 2016, pp. 1289-1293.
IEEE DOI
1609
adaptive equalisers
BibRef
Sarkar, S.[Soumalya],
Chattopdhyay, P.[Pritthi],
Ray, A.[Asok],
Symbolization of dynamic data-driven systems for signal representation,
SIViP(10), No. 8, November 2016, pp. 1535-1542.
Springer DOI
1610
BibRef
Ferrand, P.,
Mi-Xing Oscillators for Phase Noise Reduction,
SPLetters(23), No. 11, November 2016, pp. 1597-1601.
IEEE DOI
1609
circuit noise
BibRef
de Fréin, R.,
Rickard, S.T.,
Power-Weighted Divergences for Relative Attenuation and Delay
Estimation,
SPLetters(23), No. 11, November 2016, pp. 1612-1616.
IEEE DOI
1609
approximation theory
BibRef
Bayram, S.,
Dulek, B.,
Gezici, S.,
Joint Detection and Decoding in the Presence of Prior Information
With Uncertainty,
SPLetters(23), No. 11, November 2016, pp. 1602-1606.
IEEE DOI
1609
decoding
BibRef
Asadi, N.,
Mirzaei, A.,
Haghshenas, E.,
Creating Discriminative Models for Time Series Classification and
Clustering by HMM Ensembles,
Cyber(46), No. 12, December 2016, pp. 2899-2910.
IEEE DOI
1612
Biological system modeling
BibRef
Johard, L.[Leonard],
Ruffaldi, E.[Emanuele],
Self-organizing trajectories,
PRL(84), No. 1, 2016, pp. 177-184.
Elsevier DOI
1612
Shape averaging
BibRef
Adhikary, A.R.[Avik Ranjan],
Liu, Z.L.[Zi-Long],
Guan, Y.L.[Yong Liang],
Majhi, S.[Sudhan],
Budishin, S.Z.[Srdjan Z.],
Optimal Binary Periodic Almost-Complementary Pairs,
SPLetters(23), No. 12, December 2016, pp. 1816-1820.
IEEE DOI
1612
binary sequences
BibRef
Valsesia, D.[Diego],
Magli, E.[Enrico],
Binary Adaptive Embeddings From Order Statistics of Random
Projections,
SPLetters(24), No. 1, January 2017, pp. 111-115.
IEEE DOI
1702
signal processing
BibRef
Oloo, F.[Francis],
Wallentin, G.[Gudrun],
An Adaptive Agent-Based Model of Homing Pigeons:
A Genetic Algorithm Approach,
IJGI(6), No. 1, 2017, pp. xx-yy.
DOI Link
1702
Simulate flight routes of homing pigeons.
BibRef
Su, B.[Bing],
Ding, X.Q.[Xiao-Qing],
Liu, C.S.[Chang-Song],
Wang, H.[Hao],
Wu, Y.[Ying],
Discriminative Transformation for Multi-Dimensional Temporal
Sequences,
IP(26), No. 7, July 2017, pp. 3579-3593.
IEEE DOI
1706
Adaptation models, Character recognition, Data models,
Hidden Markov models, Training, Transforms,
Max-min inter-sequence distance analysis,
BibRef
Su, B.[Bing],
Ding, X.Q.[Xiao-Qing],
Wang, H.[Hao],
Wu, Y.[Ying],
Discriminative Dimensionality Reduction for Multi-Dimensional
Sequences,
PAMI(40), No. 1, January 2018, pp. 77-91.
IEEE DOI
1712
Analytical models, Computational modeling, Data models,
Hidden Markov models, Sequences,
sequence classification
BibRef
Kasasbeh, H.,
Viswanathan, R.,
Cao, L.,
Noise Correlation Effect on Detection:
Signals in Equicorrelated or Autoregressive(1) Gaussian,
SPLetters(24), No. 7, July 2017, pp. 1078-1082.
IEEE DOI
1706
Correlation, Covariance matrices, Eigenvalues and eigenfunctions,
Gaussian noise, Sensors, Signal design, Signal to noise ratio,
Autoregressive, Gaussian noise, correlation, multiple sensors,
signal, detection
BibRef
Audibert, L.[Lorenzo],
Haddar, H.[Houssem],
The Generalized Linear Sampling Method for Limited Aperture
Measurements,
SIIMS(10), No. 2, 2017, pp. 845-870.
DOI Link
1708
BibRef
Al Sarray, B.[Basad],
Chrétien, S.[Stéphane],
Clarkson, P.[Paul],
Cottez, G.[Guillaume],
Enhancing Prony's method by nuclear norm penalization and extension to
missing data,
SIViP(11), No. 6, September 2017, pp. 1089-1096.
Springer DOI
1708
modelling signals using a finite sum of exponential terms.
Weather models
BibRef
Dumitrescu, B.[Bogdan],
Designing Incoherent Frames With Only Matrix Vector Multiplications,
SPLetters(24), No. 9, September 2017, pp. 1265-1269.
IEEE DOI
1708
least squares approximations, minimax techniques,
atom-by-atom optimization strategy,
incoherent frames,
min-max problem, mutual coherence, shifted power method,
signal processing,
Eigenvalues and eigenfunctions, Optimization,
power method, weighted least squares.
BibRef
Tuncel, K.S.[Kerem Sinan],
Baydogan, M.G.[Mustafa Gokce],
Autoregressive forests for multivariate time series modeling,
PR(73), No. 1, 2018, pp. 202-215.
Elsevier DOI
1709
Multivariate time series
BibRef
Dadkhahi, H.,
Duarte, M.F.,
Marlin, B.M.,
Out-of-Sample Extension for Dimensionality Reduction of Noisy Time
Series,
IP(26), No. 11, November 2017, pp. 5435-5446.
IEEE DOI
1709
Data models, Manifolds, Noise measurement,
Principal component analysis, Sensors, Time series analysis,
Training, dimensionality reduction,
out-of-sample extension.
BibRef
Darsena, D.,
Gelli, G.,
Iudice, I.,
Verde, F.,
Second-Order Statistics of One-Sided CPM Signals,
SPLetters(24), No. 10, October 2017, pp. 1512-1516.
IEEE DOI
1710
CPM: continuous phase modulation, correlation methods,
higher order statistics, signal representation,
BibRef
Mikalsen, K.Ø.[Karl Øyvind],
Bianchi, F.M.[Filippo Maria],
Soguero-Ruiz, C.[Cristina],
Jenssen, R.[Robert],
Time series cluster kernel for learning similarities between
multivariate time series with missing data,
PR(76), No. 1, 2018, pp. 569-581.
Elsevier DOI
1801
Multivariate time series
BibRef
Bianchi, F.M.[Filippo Maria],
Livi, L.[Lorenzo],
Mikalsen, K.Ø.[Karl Øyvind],
Kampffmeyer, M.[Michael],
Jenssen, R.[Robert],
Learning representations of multivariate time series with missing
data,
PR(96), 2019, pp. 106973.
Elsevier DOI
1909
Representation learning, Multivariate time series,
Autoencoders, Recurrent neural networks, Kernel methods
BibRef
Zhu, Z.,
Karnik, S.,
Davenport, M.A.,
Romberg, J.,
Wakin, M.B.,
The Eigenvalue Distribution of Discrete Periodic Time-Frequency
Limiting Operators,
SPLetters(25), No. 1, January 2018, pp. 95-99.
IEEE DOI
1801
bandlimited signals, discrete Fourier transforms,
eigenvalues and eigenfunctions, matrix algebra,
time-frequency analysis
BibRef
Gong, Z.,
Li, C.,
Jiang, F.,
AUV-Aided Joint Localization and Time Synchronization for Underwater
Acoustic Sensor Networks,
SPLetters(25), No. 4, April 2018, pp. 477-481.
IEEE DOI
1804
autonomous underwater vehicles, error analysis,
mobile communication, nonlinear equations, sensor placement,
underwater sensor networks
BibRef
de Carvalho Pagliosa, L.[Lucas],
Fernandes de Mello, R.[Rodrigo],
Semi-supervised time series classification on positive and unlabeled
problems using cross-recurrence quantification analysis,
PR(80), 2018, pp. 53-63.
Elsevier DOI
1805
Time series, Semi-supervised classification,
Positive and unlabeled, Self-training, Phase space,
Cross-recurrence quantification analysis
BibRef
Li, C.P.,
Chang, K.J.,
Chang, H.H.,
Chen, Y.M.,
Perfect Sequences of Odd Prime Length,
SPLetters(25), No. 7, July 2018, pp. 966-969.
IEEE DOI
1807
correlation methods, cyclic codes, sequential codes, cyclic group,
degree-(K + 1) PS, distinct nonzero elements,
periodic autocorrelation function (PACF)
BibRef
Jing, Y.,
Liang, J.,
Zhou, D.,
So, H.C.,
Spectrally Constrained Unimodular Sequence Design Without Spectral
Level Mask,
SPLetters(25), No. 7, July 2018, pp. 1004-1008.
IEEE DOI
1807
optimisation, sequences, spectral analysis, acceleration scheme,
algorithm convergence speed, auxiliary variables,
spectral level
BibRef
Miao, Y.,
Sun, H.,
Qi, J.,
Synchro-Compensating Chirplet Transform,
SPLetters(25), No. 9, September 2018, pp. 1413-1417.
IEEE DOI
1809
demodulation, signal processing, time-frequency analysis,
transforms, energy compensation, time-frequency transform,
time-frequency representation (TFR)
BibRef
Gómez-Chova, L.[Luis],
Santos-Rodríguez, R.[Raúl],
Camps-Valls, G.[Gustau],
Signal-to-noise ratio in reproducing kernel Hilbert spaces,
PRL(112), 2018, pp. 75-82.
Elsevier DOI
1809
Kernel methods, Noise model, Signal-to-noise ratio, SNR,
Heteroscedastic, Feature extraction, Signal classification, Causal inference
BibRef
de Souza, D.B.[D. Baptista],
Kuhn, E.V.,
Seara, R.,
A Time-Varying Autoregressive Model for Characterizing Nonstationary
Processes,
SPLetters(26), No. 1, January 2019, pp. 134-138.
IEEE DOI
1901
autoregressive processes, covariance matrices, random processes,
signal processing, vectors, time-varying autoregressive model,
time-varying autoregressive (TVAR) model
BibRef
Jiang, G.X.[Gao-Xia],
Wang, W.J.[Wen-Jian],
Zhang, W.K.[Wen-Kai],
A novel distance measure for time series:
Maximum shifting correlation distance,
PRL(117), 2019, pp. 58-65.
Elsevier DOI
1901
Time series, Distance measure, Second distance, Clustering, Classification
BibRef
Gong, Z.,
Chen, H.,
Yuan, B.,
Yao, X.,
Multiobjective Learning in the Model Space for Time Series
Classification,
Cyber(49), No. 3, March 2019, pp. 918-932.
IEEE DOI
1902
Time series analysis, Hidden Markov models, Kernel, Data models,
Time measurement, Heuristic algorithms, Echo state network (ESN),
time series classification
BibRef
Marandi, M.K.[Mostafa Khalili],
Rave, W.[Wolfgang],
Fettweis, G.[Gerhard],
Beam Selection Based on Sequential Competition,
SPLetters(26), No. 3, March 2019, pp. 455-459.
IEEE DOI
1903
error statistics, statistical testing, genie knowledge,
beam selection, SNR operating point, sequential test adaptively,
generalized likelihood ratio test
BibRef
Cheng, Y.[Yao],
Haardt, M.[Martin],
Enhanced Direct Fitting Algorithms for PARAFAC2 With Algebraic
Ingredients,
SPLetters(26), No. 4, April 2019, pp. 533-537.
IEEE DOI
1903
geometry, matrix algebra, matrix decomposition, numerical analysis,
search problems, statistical analysis, tensors,
direct fitting algorithm
BibRef
Shmaliy, Y.S.[Yuriy S.],
Zhao, S.[Shunyi],
Ahn, C.K.[Choon Ki],
Optimal and Unbiased Filtering With Colored Process Noise Using State
Differencing,
SPLetters(26), No. 4, April 2019, pp. 548-551.
IEEE DOI
1903
Mathematical model, Signal processing algorithms, Kalman filters,
Noise measurement, Standards, Real-time systems,
unbiased FIR filter
BibRef
Alrashdi, A.M.[Ayed M.],
Ben Atitallah, I.[Ismail],
Al-Naffouri, T.Y.[Tareq Y.],
Precise Performance Analysis of the Box-Elastic Net Under Matrix
Uncertainties,
SPLetters(26), No. 5, May 2019, pp. 655-659.
IEEE DOI
1905
Gaussian distribution, Gaussian noise, matrix algebra,
mean square error methods, signal processing,
box-constraint
BibRef
Ramírez-Espinosa, P.,
Morales-Jimenez, D.,
Cortés, J.A.,
Paris, J.F.,
Martos-Naya, E.,
New Approximation to Distribution of Positive RVs Applied to Gaussian
Quadratic Forms,
SPLetters(26), No. 6, June 2019, pp. 923-927.
IEEE DOI
1906
Probability density function, Convergence, Random variables,
Signal processing, Distribution functions, Closed-form solutions,
statistical distributions
BibRef
Mozerov, M.G.,
Yang, F.,
van de Weijer, J.,
Sparse Data Interpolation Using the Geodesic Distance Affinity Space,
SPLetters(26), No. 6, June 2019, pp. 943-947.
IEEE DOI
1906
Interpolation, Signal processing algorithms,
Image edge detection, Optical imaging, Kernel, Pipelines,
adaptive filter
BibRef
Roa, N.B.[Nathalie Barbosa],
Travé-Massuyès, L.[Louise],
Grisales-Palacio, V.H.[Victor H.],
DyClee: Dynamic clustering for tracking evolving environments,
PR(94), 2019, pp. 162-186.
Elsevier DOI
1906
Dynamic clustering, Data mining, On-line learning, Time-series,
Data streams, Multi-density clustering
BibRef
Zhang, Q.[Qin],
Wu, J.[Jia],
Zhang, P.[Peng],
Long, G.D.[Guo-Dong],
Zhang, C.Q.[Cheng-Qi],
Salient Subsequence Learning for Time Series Clustering,
PAMI(41), No. 9, Sep. 2019, pp. 2193-2207.
IEEE DOI
1908
Time series analysis, Feature extraction, Spectral analysis,
Analytical models, Labeling, Robustness, Data models, Time series,
clustering
BibRef
Zeng, F.X.[Fan-Xin],
He, X.P.[Xi-Ping],
Xuan, G.X.[Gui-Xin],
Zhang, Z.Y.[Zhen-Yu],
Peng, Y.N.[Yan-Ni],
Yan, L.[Li],
Perfect Gaussian Integer Sequences Embedding Pre-Given Gaussian
Integers,
SPLetters(26), No. 8, August 2019, pp. 1122-1126.
IEEE DOI
1908
Gaussian processes, sequences, pre-given Gaussian integer,
perfect GI sequences, PGIS design, arbitrary pre-given GI,
perfect Gaussian integer sequences
BibRef
Tian, N.[Nili],
Wang, X.L.[Xiao-Ling],
Ling, B.W.K.[Bingo Wing-Kuen],
Sakalli, M.[Mustafa],
Properties of approximated empirical mode decomposition and optimal
design of its system kernel matrix for signal decomposition,
SIViP(13), No. 6, September 2019, pp. 1173-1181.
Springer DOI
1908
BibRef
Zhang, Z.H.[Zhi-Hong],
Zhang, G.Z.[Gen-Zhou],
Zhang, Z.H.[Zhong-Hao],
Chen, G.[Guo],
Zeng, Y.B.[Yang-Bin],
Wang, B.Z.[Bei-Zhan],
Hancock, E.R.[Edwin R.],
Structural network inference from time-series data using a generative
model and transfer entropy,
PRL(125), 2019, pp. 357-363.
Elsevier DOI
1909
Transfer entropy, Supergraph, Time series, Network inference,
Expectation maximization algorithm
BibRef
ur Rehman, N.[Naveed],
Khan, B.[Bushra],
Naveed, K.[Khuram],
Data-Driven Multivariate Signal Denoising Using Mahalanobis Distance,
SPLetters(26), No. 9, September 2019, pp. 1408-1412.
IEEE DOI
1909
Noise reduction, Covariance matrices, Correlation,
Signal processing algorithms, Gaussian noise,
multivariate empirical mode decomposition
BibRef
Mello, C.E.[Carlos E.],
Carvalho, A.S.T.[André S.T.],
Lyra, A.[Adria],
Pedreira, C.E.[Carlos E.],
Time series classification via divergence measures between
probability density functions,
PRL(125), 2019, pp. 42-48.
Elsevier DOI
1909
Time series classification, Kernel methods,
Time delay embedding, Kernel density estimation
BibRef
Baptista de Souza, D.[Douglas],
Chanussot, J.[Jocelyn],
Favre, A.C.[Anne-Catherine],
Borgnat, P.[Pierre],
An Improved Stationarity Test Based on Surrogates,
SPLetters(26), No. 10, October 2019, pp. 1431-1435.
IEEE DOI
1909
Time-frequency analysis, Testing, Feature extraction,
Reactive power, Probability density function, Guidelines,
surrogates
BibRef
Saatci, E.[Esra],
Saatci, E.[Ertugrul],
Period Determination in Cyclo-Stationary Signals by Autocorrelation
and Ramanujan Subspaces,
SPLetters(27), 2020, pp. 266-270.
IEEE DOI
2002
Period determination, cyclo-stationary signals,
time-varying cyclic autocorrelation, Ramanujan sums
BibRef
Siyou Fotso, V.S.[Vanel Steve],
Mephu Nguifo, E.[Engelbert],
Vaslin, P.[Philippe],
Frobenius correlation based u-shapelets discovery for time series
clustering,
PR(103), 2020, pp. 107301.
Elsevier DOI
2005
Clustering, UShapelet, Correlation, Time series
BibRef
Mahjoub, C.[Chahira],
Bellanger, J.J.[Jean-Jacques],
Kachouri, A.[Abdennaceur],
Jeannès, R.L.[Régine Le_Bouquin],
On the performance of temporal Granger causality measurements on time
series: a comparative study,
SIViP(14), No. 5, July 2020, pp. 945-953.
Springer DOI
2006
BibRef
Bayram, I.[Ilker],
An Exploratory Method for Smooth/Transient Decomposition,
SPLetters(27), 2020, pp. 890-894.
IEEE DOI
2006
Constrained filtering, gaussian process, signal decomposition,
empirical mode decomposition, vital signs monitoring, radar
BibRef
Carmona-Poyato, Á.[Ángel],
Fernández-García, N.L.[Nicolás Luis],
Madrid-Cuevas, F.J.[Francisco José],
Durán-Rosal, A.M.[Antonio Manuel],
A new approach for optimal time-series segmentation,
PRL(135), 2020, pp. 153-159.
Elsevier DOI
2006
Data representation, Data compression,
Optimal time series segmentation, Time series size reduction
BibRef
Carmona-Poyato, Á.[Ángel],
Fernández-Garcia, N.L.[Nicolás Luis],
Madrid-Cuevas, F.J.[Francisco José],
Durán-Rosal, A.M.[Antonio Manuel],
A new approach for optimal offline time-series segmentation with
error bound guarantee,
PR(115), 2021, pp. 107917.
Elsevier DOI
2104
Data representation, Optimal time series segmentation,
Error bound guarantee, -norm
BibRef
Shin, D.,
Cho, H.,
Yang, I.,
Power-Law Processor Over Segmentation for Variable Length Transients
Detection,
SPLetters(27), 2020, pp. 1065-1069.
IEEE DOI
2007
Detectors, Transient analysis, Signal to noise ratio,
Frequency-domain analysis, Time-domain analysis, segmentation
BibRef
Clarkson, I.V.L.,
Sirianunpiboon, S.,
Howard, S.D.,
Frequency Estimation in Coherent, Periodic Pulse Trains,
SPLetters(27), 2020, pp. 1415-1419.
IEEE DOI
2009
Frequency estimation, Shape, Signal to noise ratio, Coherence,
Frequency modulation, Estimation, Transmitters, Doppler radar,
radar measurements
BibRef
Zhou, Y.,
Ding, F.,
Modeling Nonlinear Processes Using the Radial Basis Function-Based
State-Dependent Autoregressive Models,
SPLetters(27), 2020, pp. 1600-1604.
IEEE DOI
2009
Signal processing algorithms, Parameter estimation,
Technological innovation, Mathematical model,
data saturation
BibRef
Türkmen, A.C.[Ali Caner],
Çapan, G.[Gökhan],
Cemgil, A.T.[Ali Taylan],
Clustering Event Streams With Low Rank Hawkes Processes,
SPLetters(27), 2020, pp. 1575-1579.
IEEE DOI
2009
e.g. neural spikes.
Clustering algorithms, Numerical stability,
Machine learning algorithms, Signal processing algorithms, clustering
BibRef
Wang, W.H.[Wei-Han],
MAGAN: A masked autoencoder generative adversarial network for
processing missing IoT sequence data,
PRL(138), 2020, pp. 211-216.
Elsevier DOI
2010
Missing data, Time series data, Sensor data, GAN, Deep learning
BibRef
Lim, H.K.[Hyun-Ki],
Choi, H.[Heeseung],
Choi, Y.[Yeji],
Kim, I.J.[Ig-Jae],
Memetic algorithm for multivariate time-series segmentation,
PRL(138), 2020, pp. 60-67.
Elsevier DOI
2010
Time series segmentation, Multivariate data, Memetic algorithm
BibRef
Dimitrov, M.,
Baitcheva, T.,
Nikolov, N.,
On the Generation of Long Binary Sequences With Record-Breaking PSL
Values,
SPLetters(27), 2020, pp. 1904-1908.
IEEE DOI
2011
Signal processing algorithms, Complexity theory,
Heuristic algorithms, Correlation, Radar, Optimization, Art,
peak sidelobe level (PSL)
BibRef
Okhrin, Y.,
Schmid, W.,
Semeniuk, I.,
New Approaches for Monitoring Image Data,
IP(30), 2021, pp. 921-933.
IEEE DOI
2012
Control charts, Process control, Monitoring, Feature extraction,
Image analysis, Digital images, Time series analysis,
statistical process control
BibRef
Lin, X.,
Huang, Y.,
Ma, W.K.,
Robust Downlink Transmit Optimization Under Quantized Channel
Feedback via the Strong Duality for QCQP,
SPLetters(28), 2021, pp. 1-5.
IEEE DOI
2101
Array signal processing, Channel estimation,
Signal to noise ratio, Interference, Optimization, Downlink,
the strong duality of QCQP
BibRef
Chi, K.,
Shen, J.,
Li, Y.,
Li, Y.,
Wang, S.,
Multi-Function Radar Signal Sorting Based on Complex Network,
SPLetters(28), 2021, pp. 91-95.
IEEE DOI
2101
Radar, Sorting, Complex networks, Clustering algorithms,
Task analysis, Radar detection, Time series analysis,
signal sorting
BibRef
Prasanna, D.,
Sriram, C.,
Murthy, C.R.,
On the Identifiability of Sparse Vectors From Modulo Compressed
Sensing Measurements,
SPLetters(28), 2021, pp. 131-134.
IEEE DOI
2101
Dynamic range, Optimization, Signal processing algorithms, Indexes,
Heuristic algorithms, Compressed sensing, Sparse matrices,
modulo compressed sensing
BibRef
Li, Q.Z.[Qing-Zhe],
Zhao, L.[Liang],
Lee, Y.C.[Yi-Ching],
Sassan, A.[Avesta],
Lin, J.[Jessica],
CPM: A general feature dependency pattern mining framework for
contrast multivariate time series,
PR(112), 2021, pp. 107711.
Elsevier DOI
2102
Contrast pattern, Feature dependency, Controlled experiment,
Driving behavior, Multivariate time series
BibRef
Cao, Z.,
Dai, J.,
Xu, W.,
Chang, C.,
Fast Variational Bayesian Inference for Temporally Correlated Sparse
Signal Recovery,
SPLetters(28), 2021, pp. 214-218.
IEEE DOI
2102
Bayes methods, Correlation, Signal processing algorithms,
Sparse matrices, Biomedical measurement, Time measurement,
variational Bayesian inference (VBI)
BibRef
Moreno-Muñoz, P.[Pablo],
Ramírez, D.[David],
Artés-Rodríguez, A.[Antonio],
Change-point detection in hierarchical circadian models,
PR(113), 2021, pp. 107820.
Elsevier DOI
2103
Change-point detection, Circadian models, Heterogeneous data,
Latent variable models, Non-stationary periodic covariance functions
BibRef
Song, Q.,
Ma, X.,
High-Resolution Time Delay Estimation Algorithms Through
Cross-Correlation Post-Processing,
SPLetters(28), 2021, pp. 479-483.
IEEE DOI
2103
Delay effects, Signal processing algorithms, Estimation,
Deconvolution, Signal to noise ratio, Correlation,
weighted L1 norm minimizing
BibRef
Li, H.L.[Hai-Lin],
Liu, Z.C.[Ze-Chen],
Multivariate time series clustering based on complex network,
PR(115), 2021, pp. 107919.
Elsevier DOI
2104
Multivariate time series, Data mining, Clustering analysis, Complex network
BibRef
Gu, X.B.[Xiao-Bo],
Li, J.Z.[Jian-Zhong],
Zhou, G.X.[Guo-Xu],
Xie, S.L.[Sheng-Li],
Improved Clock Parameters Tracking and Ranging Method Based on
Two-Way Timing Stamps Exchange Mechanism,
SPLetters(28), 2021, pp. 598-602.
IEEE DOI
2104
Clocks, Timing, Mathematical model, Propagation delay, Estimation,
Wireless sensor networks, Signal processing algorithms,
wireless sensor network
BibRef
Wang, W.Y.[Wen-Yuan],
Dogancay, K.[Kutluyil],
Convergence Issues in Sequential Partial-Update LMS for
Cyclostationary White Gaussian Input Signals,
SPLetters(28), 2021, pp. 967-971.
IEEE DOI
2106
Convergence, Signal processing algorithms,
Field programmable gate arrays, Computational complexity,
convergence difficulty
BibRef
Li, X.Q.[Xian-Qing],
Duan, Z.S.[Zhan-Sheng],
Joint Cramér-Rao Lower Bound for Nonlinear Parametric Systems With
Cross-Correlated Noises,
SPLetters(28), 2021, pp. 977-981.
IEEE DOI
2106
Noise measurement, Gaussian noise, Additives, Nonlinear systems,
Time measurement, Parameter estimation, Estimation, JCRLB, JSPE,
gaussian noises
BibRef
Lim, Y.C.[Yong Ching],
Saramäki, T.[Tapio],
Diniz, P.S.R.[Paulo S. R.],
Liu, Q.L.[Qing-Lai],
A Method for Scaling Window Sidelobe Magnitude,
SPLetters(28), 2021, pp. 1056-1059.
IEEE DOI
2106
Frequency response, Iterative methods, Chebyshev approximation,
Frequency conversion, Signal processing algorithms, Prototypes,
main lobe sidelobe tradeoff
BibRef
Lim, Y.C.[Yong Ching],
Saramäki, T.[Tapio],
Diniz, P.S.R.[Paulo S. R.],
Liu, Q.L.[Qing-Lai],
Fast Convergence Method for Scaling Window Sidelobe Magnitude,
SPLetters(28), 2021, pp. 2078-2081.
IEEE DOI
2112
Signal processing algorithms, Convergence, Shape,
Chebyshev approximation, Signal processing, Laboratories, Indexes,
main lobe sidelobe tradeoff
BibRef
Lim, Y.C.[Yong Ching],
Wu, Z.Y.[Zhi-You],
Liu, Q.L.[Qing-Lai],
Diniz, P.S.R.[Paulo S. R.],
Saramäki, T.[Tapio],
An Efficient Method With Guaranteed Convergence for Window Sidelobe
Magnitude Reduction,
SPLetters(31), 2024, pp. 1516-1519.
IEEE DOI
2406
Convergence, Signal processing algorithms,
Chebyshev approximation, Array signal processing, Polynomials,
window
BibRef
Görgülü, B.[Berk],
Baydogan, M.G.[Mustafa Gökçe],
Randomized trees for time series representation and similarity,
PR(120), 2021, pp. 108097.
Elsevier DOI
2109
Time series, Representation learning, Random trees, Classification
BibRef
Masiliunas, D.[Dainius],
Tsendbazar, N.E.[Nandin-Erdene],
Herold, M.[Martin],
Verbesselt, J.[Jan],
BFAST Lite: A Lightweight Break Detection Method for Time Series
Analysis,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
Time series change detection.
BibRef
Fang, D.[Dianwu],
Wang, L.[Lizhen],
Wang, J.[Jialong],
Wang, M.[Meijiao],
High Influencing Pattern Discovery over Time Series Data,
IJGI(10), No. 10, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Zhang, Y.[Ye],
Hou, Y.[Yi],
OuYang, K.W.[Ke-Wei],
Zhou, S.L.[Shi-Lin],
Multi-scale signed recurrence plot based time series classification
using inception architectural networks,
PR(123), 2022, pp. 108385.
Elsevier DOI
2112
Time series classification, Multi-scale, Signed,
Recurrence plots, Inception network
BibRef
Guijo-Rubio, D.[David],
Durán-Rosal, A.M.[Antonio Manuel],
Gutiérrez, P.A.[Pedro Antonio],
Troncoso, A.[Alicia],
Hervás-Martínez, C.[César],
Time-Series Clustering Based on the Characterization of Segment
Typologies,
Cyber(51), No. 11, November 2021, pp. 5409-5422.
IEEE DOI
2112
Time series analysis, Hidden Markov models,
Clustering algorithms, Time measurement,
time-series clustering
BibRef
Yan, W.H.[Wen-He],
Dong, M.[Ming],
Li, S.F.[Shi-Feng],
Yang, C.Z.[Chao-Zhong],
Yuan, J.B.[Jiang-Bin],
Hu, Z.P.[Zhao-Peng],
Hua, Y.[Yu],
An eLoran Signal Cycle Identification Method Based on Joint
Time-Frequency Domain,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Mukherjee, S.[Saptarshi],
Dowling, K.[Karen],
Dong, Y.C.[Yi-Cong],
Li, K.[Kexin],
Conway, A.[Adam],
Rakheja, S.[Shaloo],
Voss, L.[Lars],
A Prony-Based Curve-Fitting Method for Characterization of RF Pulses
From Optoelectronic Devices,
SPLetters(29), 2022, pp. 364-368.
IEEE DOI
2202
Fitting, Semiconductor device measurement, Radio frequency,
Pulse measurements, Time measurement, Optoelectronic devices,
signal analysis
BibRef
Wu, X.J.[Xiao-Jing],
Identification of Co-Clusters with Coherent Trends in Geo-Referenced
Time Series,
IJGI(11), No. 2, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Ma, Q.L.[Qian-Li],
Li, S.[Sen],
Cottrell, G.W.[Garrison W.],
Adversarial Joint-Learning Recurrent Neural Network for Incomplete
Time Series Classification,
PAMI(44), No. 4, April 2022, pp. 1765-1776.
IEEE DOI
2203
Time series analysis, Recurrent neural networks, Data models,
Training, Analytical models, Sensors, exploding error
BibRef
Péalat, C.[Clément],
Bouleux, G.[Guillaume],
Cheutet, V.[Vincent],
Improved time series clustering based on new geometric frameworks,
PR(124), 2022, pp. 108423.
Elsevier DOI
2203
Clustering, Time series, Delayed coordinate embedding,
Embedding, Stiefel manifold, UMAP, HDBSCAN
BibRef
Peng, K.[Kun],
Shang, P.J.[Peng-Jian],
Characterizing ordinal network of time series based on
complexity-entropy curve,
PR(124), 2022, pp. 108464.
Elsevier DOI
2203
Ordinal network, Signal processing, Symbolic patterns,
Tsallis -entropy, Novelty detection
BibRef
Wickstrøm, K.[Kristoffer],
Kampffmeyer, M.[Michael],
Mikalsen, K.Ø.[Karl Øyvind],
Jenssen, R.[Robert],
Mixing up contrastive learning: Self-supervised representation
learning for time series,
PRL(155), 2022, pp. 54-61.
Elsevier DOI
2203
Time series, Self-supervised learning, Contrastive learning,
Mixup, Transfer learning
BibRef
Velasco-Forero, S.[Santiago],
Pagès, R.,
Angulo, J.[Jesus],
Learnable Empirical Mode Decomposition based on Mathematical
Morphology,
SIIMS(15), No. 1, 2022, pp. 23-44.
DOI Link
2204
BibRef
Combettes, P.L.[Patrick L.],
Woodstock, Z.C.[Zev C.],
A Variational Inequality Model for the Construction of Signals from
Inconsistent Nonlinear Equations,
SIIMS(15), No. 1, 2022, pp. 84-109.
DOI Link
2204
BibRef
He, Z.[Zihao],
He, H.Y.[Hong-Yu],
Liu, X.L.[Xiao-Li],
Wen, J.M.[Jin-Ming],
An Improved Sufficient Condition for Sparse Signal Recovery With
Minimization of L1-L2,
SPLetters(29), 2022, pp. 907-911.
IEEE DOI
2205
Coherence, Upper bound, Minimization, Matching pursuit algorithms,
Information science, Noise measurement, Wireless communication,
L_1-L_2-minimization
BibRef
Abanda, A.,
Mori, U.,
Lozano, J.A.[Jose A.],
Time series classifier recommendation by a meta-learning approach,
PR(128), 2022, pp. 108671.
Elsevier DOI
2205
Time series classification, Meta-learning, Landmarkers,
Hierarchical inference, Meta-targets
BibRef
Abdu-Aguye, M.G.[Mubarak G.],
Gomaa, W.[Walid],
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Investigating strategies towards adversarially robust time series
classification,
PRL(156), 2022, pp. 104-111.
Elsevier DOI
2205
Time series, Adversarial, Shapelets
BibRef
Fu, Z.J.[Zhao-Ji],
Wang, C.[Can],
Wei, G.D.[Guo-Dong],
Zhang, W.R.[Wen-Rui],
Du, S.[Shaofu],
Hong, S.[Shenda],
HITS: Binarizing physiological time series with deep hashing neural
network,
PRL(156), 2022, pp. 23-28.
Elsevier DOI
2205
Deep neural network, Physiological time series, Deep hashing
BibRef
Fatima, G.[Ghania],
Arora, A.[Aakash],
Babu, P.[Prabhu],
Stoica, P.[Petre],
Learning Sparse Graphs via Majorization-Minimization for Smooth Node
Signals,
SPLetters(29), 2022, pp. 1022-1026.
IEEE DOI
2205
Signal processing algorithms, Convergence, Laplace equations,
Sparse matrices, Signal processing, Numerical simulation,
smooth signals
BibRef
Xu, H.[Huan],
Ding, F.[Feng],
Champagne, B.[Benoit],
Joint Parameter and Time-Delay Estimation for a Class of Nonlinear
Time-Series Models,
SPLetters(29), 2022, pp. 947-951.
IEEE DOI
2205
Estimation, Signal processing algorithms, Mathematical models,
Technological innovation, Stochastic processes, redundant rule
BibRef
Wang, Y.H.[Yung-Hung],
Cheng, S.H.[Shao-Ho],
Boundary Effects for EMD-Based Algorithms,
SPLetters(29), 2022, pp. 1032-1036.
IEEE DOI
2205
Empirical mode decomposition.
Signal processing algorithms, Mathematical models, Indexes,
Sufficient conditions, Splines (mathematics), Real-time systems, error
BibRef
Liu, X.Q.[Xiao-Qian],
Chi, E.C.[Eric C.],
Revisiting convexity-preserving signal recovery with the linearly
involved GMC penalty,
PRL(156), 2022, pp. 60-66.
Elsevier DOI
2205
Convexity-preserving nonconvex strategy, Generalized minimax concave penalty,
Saddle-point problem
BibRef
Li, J.[Jimei],
Ding, F.[Feng],
Fitting Nonlinear Signal Models Using the Increasing-Data Criterion,
SPLetters(29), 2022, pp. 1302-1306.
IEEE DOI
2206
Signal processing algorithms, Estimation, Parameter estimation,
Approximation algorithms, Stability criteria,
hierarchical identification
BibRef
Wang, H.[Heshan],
Liu, Y.X.[Yu-Xi],
Wang, D.S.[Dong-Shu],
Luo, Y.[Yong],
Tong, C.D.[Chu-Dong],
Lv, Z.M.[Zhao-Min],
Discriminative and regularized echo state network for time series
classification,
PR(130), 2022, pp. 108811.
Elsevier DOI
2206
Echo state network, Recurrent neural networks,
Discriminative feature extraction, Outlier-robust weights
BibRef
Liu, J.[Jixue],
Li, J.[Jiuyong],
Liu, L.[Lin],
FastOPM: A practical method for partial match of time series,
PR(130), 2022, pp. 108808.
Elsevier DOI
2206
Time series, Query processing, Global optimization, Partial match
BibRef
Jiang, L.[Lei],
Zhang, H.[Haijian],
Yu, L.[Lei],
Hua, G.[Guang],
A Data-Driven High-Resolution Time-Frequency Distribution,
SPLetters(29), 2022, pp. 1512-1516.
IEEE DOI
2208
Kernel, Convolution, Signal resolution, Feature extraction,
Signal to noise ratio, Training, Time-frequency analysis,
high-resolution time-frequency distribution
BibRef
Ferrari, A.[André],
Richard, C.[Cédric],
Bourrier, A.[Anthony],
Bouchikhi, I.[Ikram],
Online change-point detection with kernels,
PR(133), 2023, pp. 109022.
Elsevier DOI
2210
Non-parametric change-point detection, Reproducing kernel Hilbert space,
Convergence analysis
BibRef
Yao, Y.Y.[Yue-Yue],
Ma, J.H.[Jiang-Hong],
Ye, Y.M.[Yun-Ming],
Regularizing autoencoders with wavelet transform for sequence anomaly
detection,
PR(134), 2023, pp. 109084.
Elsevier DOI
2212
Sequence anomaly detection, Autoencoder,
Discrete wavelet transform, Frequency domain regularization,
Sample-adaptive regularization weight
BibRef
Romero-Medrano, L.[Lorena],
Artés-Rodríguez, A.[Antonio],
Multi-Source Change-Point Detection over Local Observation Models,
PR(134), 2023, pp. 109116.
Elsevier DOI
2212
E.g. changes in medical data.
Change-point detection, Multi-source data, Heterogeneous data,
Latent variable models
BibRef
Thakur, D.[Dipanwita],
Biswas, S.[Suparna],
Online Change Point Detection in Application With Transition-Aware
Activity Recognition,
HMS(52), No. 6, December 2022, pp. 1176-1185.
IEEE DOI
2212
Sensors, Feature extraction, Smart phones, Activity recognition,
Monitoring, Accelerometers, Hidden Markov models,
transition-aware activity recognition
BibRef
El-Jaroudi, A.[Amro],
Loughlin, P.[Patrick],
Identifying Resonant Poles by Visual Inspection of Pole-Zero Plots,
SPLetters(29), 2022, pp. 2363-2366.
IEEE DOI
2212
Linear systems, Damping, Resonant frequency, Visualization,
Inspection, Frequency response, Discrete-time systems, Resonance,
z-transform
BibRef
Babu, P.[Prabhu],
Stoica, P.[Petre],
Multiple Hypothesis Testing-Based Cepstrum Thresholding for
Nonparametric Spectral Estimation,
SPLetters(29), 2022, pp. 2367-2371.
IEEE DOI
2212
Testing, Cepstrum, Estimation, Standards, Spectral analysis,
Smoothing methods, Random variables,
multiple hypothesis testing
BibRef
Yildiz, A.Y.[A. Yarkin],
Koç, E.[Emirhan],
Koç, A.[Aykut],
Multivariate Time Series Imputation With Transformers,
SPLetters(29), 2022, pp. 2517-2521.
IEEE DOI
2301
Transformers, Time series analysis, Training, Decoding, Data models,
Medical services, Computational modeling, Deep learning,
unsupervised learning
BibRef
Roques, A.[Axel],
Zhao, A.[Anne],
Association Rules Discovery of Deviant Events in Multivariate Time
Series: An Analysis and Implementation of the SAX-ARM Algorithm,
IPOL(12), 2022, pp. 604-624.
DOI Link
2301
Code, Time Series. Tims Series analysis.
BibRef
Xie, L.J.[Lie-Jun],
Improved RIC Bounds in Terms of delta _2s for Hard Thresholding-Based
Algorithms,
SPLetters(30), 2023, pp. 21-25.
IEEE DOI
2302
Signal processing algorithms, Sensors, Indexes,
Partitioning algorithms, Linear systems, Iterative algorithms,
sparse recovery algorithm
BibRef
Herrmann, M.[Matthieu],
Webb, G.I.[Geoffrey I.],
Amercing:
An intuitive and effective constraint for dynamic time warping,
PR(137), 2023, pp. 109333.
Elsevier DOI
2302
Time series, Dynamic time warping, Elastic distance
BibRef
Zhang, N.[Nan],
Sun, S.L.[Shi-Liang],
Multiview Unsupervised Shapelet Learning for Multivariate Time Series
Clustering,
PAMI(45), No. 4, April 2023, pp. 4981-4996.
IEEE DOI
2303
Time series analysis, Adaptation models, Task analysis,
Learning systems, Sun, Representation learning, Correlation,
adaptive neighbor
BibRef
Umatani, R.[Ryohei],
Imai, T.[Takashi],
Kawamoto, K.[Kaoru],
Kunimasa, S.[Shutaro],
Time series clustering with an EM algorithm for mixtures of linear
Gaussian state space models,
PR(138), 2023, pp. 109375.
Elsevier DOI
2303
Time series clustering, Model-based clustering,
State space model, EM algorithm, Mixture model
BibRef
Huang, P.H.[Po-Hsun],
Hsiao, T.C.[Tzu-Chien],
Intrinsic Entropy: A Novel Adaptive Method for Measuring the
Instantaneous Complexity of Time Series,
SPLetters(30), 2023, pp. 160-164.
IEEE DOI
2303
Entropy, Complexity theory, White noise, Standards,
Time series analysis, Time measurement, Size measurement, signal regularity
BibRef
Maunu, T.[Tyler],
Lerman, G.[Gilad],
Depth Descent Synchronization in SO(D),
IJCV(131), No. 1, January 2023, pp. 968-986.
Springer DOI
2303
BibRef
Xu, H.[Han],
Li, Z.Q.[Zi-Qi],
Guan, A.[Anqi],
Xu, M.H.[Ming-Hua],
Wang, B.[Bang],
Opinion-Climate-Based Hegselmann-Krause dynamics,
PRL(167), 2023, pp. 9-17.
Elsevier DOI
2303
Opinion dynamics, Hegselmann-Krause model,
Opinion pattern recognition, Spiral of silence, Cyber-physical-social services
BibRef
Huska, M.[Martin],
Cicone, A.[Antonio],
Kang, S.H.[Sung Ha],
Morigi, S.[Serena],
A Two-stage Signal Decomposition into Jump, Oscillation and Trend
using ADMM,
IPOL(13), 2023, pp. 153-166.
DOI Link
2306
BibRef
Wang, Y.J.[Yu-Jing],
Yang, Y.M.[Ya-Ming],
Li, Z.[Zhuo],
Bai, J.G.[Jian-Gang],
Zhang, M.L.[Ming-Liang],
Li, X.T.[Xiang-Tai],
Yu, J.[Jing],
Zhang, C.[Ce],
Huang, G.[Gao],
Tong, Y.H.[Yun-Hai],
Convolution-Enhanced Evolving Attention Networks,
PAMI(45), No. 7, July 2023, pp. 8176-8192.
IEEE DOI
2306
Transformers, Task analysis, Convolution, Neural networks,
Machine translation, Time series analysis, time series
BibRef
Dulek, B.[Berkan],
Isik, S.[Selin],
Sequence Detection with Dependent Observations under Parameter
Uncertainty,
SPLetters(30), 2023, pp. 603-607.
IEEE DOI
2306
Sensors, Measurement, Markov processes, Sensor fusion,
Signal processing algorithms, Random variables,
temporal and spatial dependence
BibRef
Xiang, X.W.[Xiao-Wei],
Liu, Y.[Yang],
Fang, G.[Gaoyun],
Liu, J.[Jing],
Zhao, M.Y.[Meng-Yang],
Two-Stage Alignments Framework for Unsupervised Domain Adaptation on
Time Series Data,
SPLetters(30), 2023, pp. 698-702.
IEEE DOI
2307
Feature extraction, Training, Task analysis, MIMICs,
Time series analysis, Data mining, Adaptation models,
time series
BibRef
Zhang, H.W.[Hong-Wei],
Wang, H.Y.[Hai-Yan],
Liang, X.M.[Xuan-Ming],
Yan, Y.S.[Yong-Sheng],
Shen, X.H.[Xiao-Hong],
Weighted Undirected Similarity Network Construction and Application
for Nonlinear Time Series Detection,
SPLetters(30), 2023, pp. 728-732.
IEEE DOI
2307
Time series analysis, Covariance matrices, White noise,
Signal to noise ratio, Matrix converters, Sea measurements, Oceans,
weighted undirected similarity network
BibRef
Yang, Y.[Yang],
Cheng, Y.Q.[Yong-Qiang],
Wu, H.[Hao],
Yang, Z.[Zheng],
Wang, H.Q.[Hong-Qiang],
Parametric Instantaneous Frequency Estimation via PWSR with Adaptive
QFM Dictionary,
SPLetters(30), 2023, pp. 738-742.
IEEE DOI
2307
Estimation, Frequency modulation, Dictionaries, Vibrations, Adaptation models,
Frequency estimation, Trajectory, time-frequency distribution
BibRef
Dhake, H.[Harshal],
Kashyap, Y.[Yashwant],
Kosmopoulos, P.[Panagiotis],
Algorithms for Hyperparameter Tuning of LSTMs for Time Series
Forecasting,
RS(15), No. 8, 2023, pp. 2076.
DOI Link
2305
BibRef
Li, B.[Bing],
Cui, W.[Wei],
Zhang, L.[Le],
Zhu, C.[Ce],
Wang, W.[Wei],
Tsang, I.W.[Ivor W.],
Zhou, J.T.Y.[Joey Tian-Yi],
DifFormer: Multi-Resolutional Differencing Transformer With Dynamic
Ranging for Time Series Analysis,
PAMI(45), No. 11, November 2023, pp. 13586-13598.
IEEE DOI
2310
BibRef
Xu, C.[Chen],
Xie, Y.[Yao],
Conformal Prediction for Time Series,
PAMI(45), No. 10, October 2023, pp. 11575-11587.
IEEE DOI
2310
BibRef
El Amouri, H.[Hussein],
Lampert, T.[Thomas],
Gançarski, P.[Pierre],
Mallet, C.[Clément],
Constrained DTW preserving shapelets for explainable time-series
clustering,
PR(143), 2023, pp. 109804.
Elsevier DOI
2310
Dynamic Time Warping.
Shapelets, Semi-supervised learning, Constrained clustering,
Time-series, Representation learning
BibRef
Giannoulis, M.[Michail],
Harris, A.[Andrew],
Barra, V.[Vincent],
DITAN: A deep-learning domain agnostic framework for detection and
interpretation of temporally-based multivariate ANomalies,
PR(143), 2023, pp. 109814.
Elsevier DOI
2310
Multivariate time series, Anomaly detection, Neural networks,
Generic normality feature learning, Predictability modeling
BibRef
Li, W.[Wei],
He, R.[Ruliang],
Liang, B.B.[Bin-Bin],
Yang, F.[Fan],
Han, S.C.[Song-Chen],
Similarity Measure of Time Series With Different Sampling Frequencies
Based on Context Density Consistency and Dynamic Time Warping,
SPLetters(30), 2023, pp. 1417-1421.
IEEE DOI
2310
BibRef
Zhan, F.[Fei],
Zhou, X.F.[Xiao-Feng],
Li, S.[Shuai],
Jia, D.[Dongni],
Song, H.[Hong],
Learning Latent ODEs With Graph RNN for Multi-Channel Time Series
Forecasting,
SPLetters(30), 2023, pp. 1432-1436.
IEEE DOI
2310
BibRef
Ping, X.J.[Xiao-Jing],
Luan, X.L.[Xiao-Li],
Zhao, S.[Shunyi],
Ding, F.[Feng],
Liu, F.[Fei],
Parameters-Transfer Identification for Dynamic Systems and Recursive
Form,
SPLetters(30), 2023, pp. 1302-1306.
IEEE DOI
2310
BibRef
Sim, S.[Sunghyun],
Kim, D.[Dohee],
Bae, H.[Hyerim],
Correlation Recurrent Units: A Novel Neural Architecture for
Improving the Predictive Performance of Time-Series Data,
PAMI(45), No. 12, December 2023, pp. 14266-14283.
IEEE DOI
2311
BibRef
Eldele, E.[Emadeldeen],
Ragab, M.[Mohamed],
Chen, Z.H.[Zheng-Hua],
Wu, M.[Min],
Kwoh, C.K.[Chee-Keong],
Li, X.L.[Xiao-Li],
Guan, C.T.[Cun-Tai],
Self-Supervised Contrastive Representation Learning for
Semi-Supervised Time-Series Classification,
PAMI(45), No. 12, December 2023, pp. 15604-15618.
IEEE DOI
2311
BibRef
Mbouopda, M.F.[Michael Franklin],
Mephu-Nguifo, E.[Engelbert],
Scalable and accurate subsequence transform for time series
classification,
PR(147), 2024, pp. 110121.
Elsevier DOI
2312
Time series, Classification, Shapelet, Scalability, Interpretability
BibRef
Wang, Z.[Zheng],
Ran, H.W.[Hao-Wei],
Ren, J.C.[Jin-Chang],
Sun, M.J.[Mei-Jun],
PWDformer: Deformable transformer for long-term series forecasting,
PR(147), 2024, pp. 110118.
Elsevier DOI
2312
Long-term forecasting, Time series forecasting, Deep learning, Transformer
BibRef
Sun, C.X.[Chen-Xi],
Li, H.Y.[Hong-Yan],
Song, M.[Moxian],
Cai, D.[Derun],
Zhang, B.F.[Bao-Feng],
Hong, S.[Shenda],
Time pattern reconstruction for classification of irregularly sampled
time series,
PR(147), 2024, pp. 110075.
Elsevier DOI
2312
Classification of irregularly sampled time series,
Time pattern, Deep learning, Healthcare and medical application
BibRef
Cao, Z.X.[Zhen-Xiang],
Seeuws, N.[Nick],
de Vos, M.[Maarten],
Bertrand, A.[Alexander],
A Novel Loss for Change Point Detection Models With Time-Invariant
Representations,
SPLetters(30), 2023, pp. 1737-1741.
IEEE DOI
2312
BibRef
Yu, H.Q.[Hong-Qing],
Wang, Z.[Ziyi],
Qiao, H.[Heng],
On Variational Block Sparse Recovery With Unknown Partition and
L_0-Norm Constraint,
SPLetters(31), 2024, pp. 96-100.
IEEE DOI
2401
BibRef
Rupniewski, M.W.[Marek W.],
Reconstruction of Recurring Pulses From Distribution of Short
Sequences of Samples,
SPLetters(31), 2024, pp. 396-400.
IEEE DOI
2402
Probability distribution, Streams, Signal processing algorithms,
Estimation, Approximation algorithms, Shape,
nonuniform sampling
BibRef
Li, C.J.Y.[Carol Jing-Yi],
Rademacher, R.[Richard],
Boland, D.[David],
Jin, C.T.[Craig T.],
Spooner, C.M.[Chad M.],
Leong, P.H.W.[Philip H.W.],
S^3CA: A Sparse Strip Spectral Correlation Analyzer,
SPLetters(31), 2024, pp. 646-650.
IEEE DOI
2403
Correlation, Strips, Time-frequency analysis,
Fast Fourier transforms, Signal processing algorithms,
spectral correlation density
BibRef
Paim, A.M.[Aldo M.],
Enembreck, F.[Fabrício],
Adaptive regularized ensemble for evolving data stream classification,
PRL(180), 2024, pp. 55-61.
Elsevier DOI
2404
Data stream mining, Regularized ensemble, Ensemble learning,
Concept drift, Random subspaces
BibRef
Younis, R.[Raneen],
Hakmeh, A.[Abdul],
Ahmadi, Z.[Zahra],
MTS2Graph: Interpretable multivariate time series classification with
temporal evolving graphs,
PR(152), 2024, pp. 110486.
Elsevier DOI Code:
WWW Link.
2405
Multivariate time series, Interpretability, Neural networks, Classification
BibRef
Li, Z.[Zhen],
Gao, Z.Q.[Zhao-Qi],
Sun, F.Y.[Feng-Yuan],
Gao, J.H.[Jing-Huai],
Zhang, W.[Wei],
Instantaneous Frequency Extraction for Nonstationary Signals via a
Squeezing Operator with a Fixed-Point Iteration Method,
RS(16), No. 8, 2024, pp. 1412.
DOI Link
2405
BibRef
Choi, G.[Guebin],
Oh, H.S.[Hee-Seok],
Decomposition via elastic-band transform,
PRL(182), 2024, pp. 76-82.
Elsevier DOI
2405
Decomposition, Elastic-band transform, Multiscale method
BibRef
Pang, J.[Jie],
Gao, B.[Bo],
Wang, N.[Ning],
Asymptotic Spectral Distribution of a Second-Order Progressive
Scattering Channel,
SPLetters(31), 2024, pp. 1404-1408.
IEEE DOI
2405
Eigenvalues and eigenfunctions, Scattering, Vectors,
Transmission line matrix methods, Mathematical models,
probability density function
BibRef
Velásquez-Sanmartín, F.[Francisco],
Insausti, X.[Xabier],
Zárraga-Rodríguez, M.[Marta],
Gutiérrez-Gutiérrez, J.[Jesús],
A Mathematical Model for the Analysis of Jet Engine Fuel Consumption
During Aircraft Climb and Descent,
ITS(25), No. 5, May 2024, pp. 3605-3614.
IEEE DOI
2405
Aircraft, Fuels, Aircraft propulsion, Mathematical models,
Atmospheric modeling, Aircraft manufacture, Air traffic control,
pollutant gas emissions
BibRef
Štumpf, M.[Martin],
Nordebo, S.[Sven],
Physical Bounds on the Time-Domain Response of a Linear
Time-Invariant System,
SPLetters(31), 2024, pp. 1324-1328.
IEEE DOI
2405
Time-domain analysis, Laplace equations, Integral equations, Impedance,
Voltage, Power transmission lines, Frequency response, physical bounds
BibRef
Said, K.A.[Karim A.],
Beex, A.A.,
Liu, L.J.[Ling-Jia],
Maximally Concentrated Sequences After Half-Sample Shifts,
SPLetters(31), 2024, pp. 1354-1358.
IEEE DOI
2405
Indexes, Delays, Tail, Interpolation, Eigenvalues and eigenfunctions,
Upper bound, Frequency-domain analysis, Band-limit, index-limit
BibRef
Peng, X.P.[Xiu-Ping],
Wu, C.Y.[Cong-Ying],
Lin, H.B.[Hong-Bin],
Multiple SNC-ZCZ Sequence Sets With Optimal Correlations Based on Zak
Transforms,
SPLetters(31), 2024, pp. 1464-1468.
IEEE DOI
2406
Spectrally-null-constrained.
zero correlation zone.
Vectors, Transforms, Indexes, Interference, Task analysis,
Sparse approximation, Radar signal processing,
finite Zak transform (FZT)
BibRef
Chen, J.Q.[Jun-Qi],
Tan, X.[Xu],
Rahardja, S.[Sylwan],
Yang, J.W.[Jia-Wei],
Rahardja, S.[Susanto],
Joint Selective State Space Model and Detrending for Robust Time
Series Anomaly Detection,
SPLetters(31), 2024, pp. 2050-2054.
IEEE DOI
2408
Market research, Time series analysis, Data models,
Context modeling, Kernel, Information filters, Training,
time series detrending
BibRef
Lee, D.[Daesoo],
Malacarne, S.[Sara],
Aune, E.[Erlend],
Explainable time series anomaly detection using masked latent
generative modeling,
PR(156), 2024, pp. 110826.
Elsevier DOI Code:
WWW Link.
2408
Time series anomaly detection (TSAD), TimeVQVAE-AD, TimeVQVAE,
Masked generative modeling, Explainable AI (XAI), Explainable anomaly detection
BibRef
Ripani, B.[Barbara],
Modenini, A.[Andrea],
Montorsi, G.[Guido],
Digital PLLs for Phase Noise Channels:
A Concept Based on the Tikhonov Distribution,
SPLetters(31), 2024, pp. 2040-2044.
IEEE DOI
2408
Phase locked loops, Kalman filters, Gaussian distribution, Vectors,
Filtering, Channel estimation, Steady-state, sum product algorithm
BibRef
Freire-Obregón, D.[David],
Lorenzo-Navarro, J.[Javier],
Santana, O.J.[Oliverio J.],
Hernández-Sosa, D.[Daniel],
Castrillón-Santana, M.[Modesto],
A Large-scale Analysis of Athletes' Cumulative Race Time in Running
Events,
CIAP23(I:282-292).
Springer DOI
2312
BibRef
Lv, S.[Suhuan],
Wang, Z.L.[Zhuo-Lin],
Ye, O.[Ou],
Liu, Y.[Ying],
Abnormal Signal Detection Method Based on Bimodal Fusion,
ICIVC22(895-900)
IEEE DOI
2301
Costs, Fuses, Simulation, Frequency-domain analysis, Interference,
Feature extraction, Autonomous aerial vehicles,
bimodal fusion
BibRef
Han, J.H.[Jia-Heng],
Li, H.G.[Hong-Gai],
Cui, J.S.[Jin-Shi],
Lan, Q.[Qili],
Wang, L.[Li],
Psychology-Inspired Interaction Process Analysis based on Time Series,
ICPR22(1004-1011)
IEEE DOI
2212
Correlation, Microscopy, Time series analysis, Semantics, Psychology,
Machine learning, Feature extraction
BibRef
Oba, D.[Daisuke],
Matsuo, S.[Shinnosuke],
Iwana, B.K.[Brian Kenji],
Dynamic Data Augmentation with Gating Networks for Time Series
Recognition,
ICPR22(3034-3040)
IEEE DOI
2212
Histograms, Analytical models, Time series analysis,
Neural networks, Radar, Machine learning
BibRef
Himeur, Y.[Yassine],
Alsalemi, A.[Abdullah],
Bensaali, F.[Faycal],
Amira, A.[Abbes],
Appliance identification using a histogram post-processing of 2D
local binary patterns for smart grid applications,
ICPR21(5744-5751)
IEEE DOI
2105
Performance evaluation, Histograms, Home appliances,
Feature extraction, Real-time systems, Encoding, Eigenvalues and eigenfunctions
BibRef
Pealat, C.[Clément],
Bouleux, G.[Guillaume],
Cheutet, V.[Vincent],
Improved Time-Series Clustering with UMAP dimension reduction method,
ICPR21(5658-5665)
IEEE DOI
2105
Geometry, Dimensionality reduction, Manifolds, Databases,
Time series analysis, Clustering algorithms, Finance
BibRef
Schreiber, J.[Jens],
Sick, B.[Bernhard],
Emerging Relation Network and Task Embedding for Multi-Task
Regression Problems,
ICPR21(2663-2670)
IEEE DOI
2105
Time series analysis,Natural language processing, Task analysis,
Power generation
BibRef
Wang, J.J.[Jian-Jia],
Wu, H.[Hui],
Hancock, E.R.[Edwin R.],
Thermal Characterisation of Unweighted and Weighted Networks,
ICPR21(1641-1648)
IEEE DOI
2105
Heating systems, Thermodynamics, Temperature, Fluctuations,
Statistical analysis, Time series analysis, Sociology
BibRef
Garg, Y.[Yash],
Candan, K.S.[K. Selçuk],
SDMA: Saliency-Driven Mutual Cross Attention for Multi-Variate Time
Series,
ICPR21(7242-7249)
IEEE DOI
2105
Time series analysis, Gesture recognition, Data models,
Multiaccess communication, Noise measurement, Optimization
BibRef
Forest, F.[Florent],
Mourer, A.[Alex],
Lebbah, M.[Mustapha],
Azzag, H.[Hanane],
Lacaille, J.[Jéróme],
An Invariance-guided Stability Criterion for Time Series Clustering
Validation,
ICPR21(9296-9303)
IEEE DOI
2105
Measurement, Adaptation models, Perturbation methods,
Time series analysis, Stability criteria, Diversity reception,
Clustering algorithms
BibRef
Akodad, S.,
Bombrun, L.,
Berthoumieu, Y.,
Germain, C.,
Cluster Kernel For Learning Similarities Between Symmetric Positive
Definite Matrix Time Series,
ICIP20(3304-3308)
IEEE DOI
2011
Time series analysis, Kernel, Covariance matrices, Training,
Symmetric matrices, Earth, Brain modeling,
remote sensing.
BibRef
Xie, Z.C.[Ze-Cheng],
Huang, Y.X.[Yao-Xiong],
Zhu, Y.Z.[Yuan-Zhi],
Jin, L.W.[Lian-Wen],
Liu, Y.L.[Yu-Liang],
Xie, L.[Lele],
Aggregation Cross-Entropy for Sequence Recognition,
CVPR19(6531-6540).
IEEE DOI
2002
Code:
WWW Link.
BibRef
Tanisaro, P.,
Heidemann, G.,
A very concise feature representation for time series classification
understanding,
MVA19(1-6)
DOI Link
1911
data analysis, feature extraction, pattern classification,
random forests, recurrent neural nets, time series, Feature extraction
BibRef
Boubrahimi, S.F.,
Ma, R.,
Aydin, B.,
Hamdi, S.M.,
Angryk, R.,
Scalable kNN Search Approximation for Time Series Data,
ICPR18(970-975)
IEEE DOI
1812
Univariate Time Series classification,
Scalable Nearest Neighbor Search, Density-Based Clustering
BibRef
Han, Y.,
Zhang, S.,
Geng, Z.,
Multi-Frequency Decomposition with Fully Convolutional Neural Network
for Time Series Classification,
ICPR18(284-289)
IEEE DOI
1812
Feature extraction, Time series analysis, Convolution,
Neural networks, Discrete Fourier transforms, Kernel,
Multi-Frequency decomposition
BibRef
Zhao, R.,
Schalk, G.,
Ji, Q.,
Temporal Pattern Localization using Mixed Integer Linear Programming,
ICPR18(1361-1365)
IEEE DOI
1812
Time series analysis, Hidden Markov models, Data collection,
Optimization, Probabilistic logic,
Pattern recognition
BibRef
Caglar, I.[Ibrahim],
Hancock, E.R.[Edwin R.],
Graph Time Series Analysis Using Transfer Entropy,
SSSPR18(217-226).
Springer DOI
1810
BibRef
González-Vanegas, W.[Wilson],
Alvarez-Meza, A.[Andrés],
Orozco-Gutierrez, Á.[Álvaro],
Sparse Hilbert Embedding-Based Statistical Inference of Stochastic
Ecological Systems,
CIARP17(255-262).
Springer DOI
1802
BibRef
Chirikjian, G.S.[Gregory S.],
Signal Classification in Quotient Spaces via Globally Optimal
Variational Calculus,
Diff-CVML17(735-743)
IEEE DOI
1709
Pattern recognition
BibRef
Zhao, R.[Rui],
Schalk, G.[Gerwin],
Ji, Q.[Qiang],
Robust signal identification for dynamic pattern classification,
ICPR16(3910-3915)
IEEE DOI
1705
Computational modeling, Data models, Hidden Markov models,
Motion segmentation, Robustness, Testing, Time, series, analysis
BibRef
Dupont, M.,
Marteau, P.F.,
Ghouaiel, N.,
Detecting low-quality reference time series in stream recognition,
ICPR16(2556-2561)
IEEE DOI
1705
Big Data, Measurement, Pattern recognition, Sensors, Testing,
Time series analysis, Training
BibRef
Ye, C.,
Wilson, R.C.,
Hancock, E.R.[Edwin R.],
Analyzing graph time series using a generative model,
ICPR16(3338-3343)
IEEE DOI
1705
Analytical models, Complexity theory, Computational modeling,
Data models, Entropy, Probabilistic logic, Probability, distribution
BibRef
Ridi, A.,
Gisler, C.,
Hennebert, J.,
Aggregation procedure of Gaussian Mixture Models for additive
features,
ICPR16(2544-2549)
IEEE DOI
1705
Additives, Biological system modeling, Computational modeling,
Covariance matrices, Hidden Markov models, Time series analysis, Training
BibRef
Kulczycki, P.[Piotr],
Charytanowicz, M.[Malgorzata],
Kowalski, P.A.[Piotr A.],
Lukasik, S.[Szymon],
Atypical (Rare) Elements Detection:
A Conditional Nonparametric Approach,
CompIMAGE16(56-64).
Springer DOI
1704
BibRef
Saidane, Y.[Yosra],
Ben Jebara, S.[Sofia],
EMG signal analysis for comprehension of genders differences behavior
during pre-motor activity,
ISIVC16(325-330)
IEEE DOI
1704
Correlation
BibRef
Lo Presti, L.[Liliana],
La Cascia, M.[Marco],
A Novel Time Series Kernel for Sequences Generated by LTI Systems,
ACCV16(III: 433-451).
Springer DOI
1704
BibRef
Guo, L.,
Liew, A.W.C.,
Online-Offline Extreme Learning Machine with Concept Drift Tracking
for Time Series Data,
DICTA16(1-6)
IEEE DOI
1701
Data models
BibRef
Seversky, L.M.[Lee M.],
Davis, S.[Shelby],
Berger, M.[Matthew],
On Time-Series Topological Data Analysis: New Data and Opportunities,
DIFF-CV16(1014-1022)
IEEE DOI
1612
BibRef
Bascol, K.[Kevin],
Emonet, R.[Rémi],
Fromont, E.[Elisa],
Odobez, J.M.[Jean-Marc],
Unsupervised Interpretable Pattern Discovery in Time Series Using
Autoencoders,
SSSPR16(427-438).
Springer DOI
1611
BibRef
Vuksanovic, B.,
Pota, H.,
Resonant modes analysis in power systems algorithms and Matlab GUI,
ICIVC16(129-134)
IEEE DOI
1610
graphical user interfaces
BibRef
Ogryczak, W.[Wlodzimierz],
Hurkala, J.[Jaroslaw],
Determining OWA Operator Weights by Maximum Deviation Minimization,
PReMI15(335-344).
Springer DOI
1511
OWA: ordered weighted averaging
BibRef
Turner, L.D.[Liam D.],
Allen, S.M.[Stuart M.],
Whitaker, R.M.[Roger M.],
Push or Delay? Decomposing Smartphone Notification Response Behaviour,
HBUI15(69-83).
Springer DOI
1511
BibRef
Acuña, D.[Diego],
Allende-Cid, H.[Héctor],
Allende, H.[Héctor],
The Effect of Innovation Assumptions on Asymmetric GARCH Models for
Volatility Forecasting,
CIARP15(527-534).
Springer DOI
1511
BibRef
Abughali, I.K.A.[Ibrahim K. A.],
Minz, S.[Sonajharia],
Binarizing Change for Fast Trend Similarity Based Clustering of Time
Series Data,
PReMI15(257-267).
Springer DOI
1511
BibRef
Rodriguez, F.[Fernanda],
di Martino, M.[Matías],
Kosut, J.P.[Juan Pablo],
Santomauro, F.[Fernando],
Lecumberry, F.[Federico],
Fernández, A.[Alicia],
Optimal and Linear F-Measure Classifiers Applied to Non-technical
Losses Detection,
CIARP15(83-91).
Springer DOI
1511
power supply companies.
BibRef
Martínez-Vargas, J.D.,
Castro-Hoyos, C.,
Espinosa-Oviedo, J.J.,
Álvarez-Mesa, A.M.,
Castellanos-Dominguez, G.,
Single-Channel Separation Between Stationary and Non-stationary Signals
Using Relevant Information,
IbPRIA15(452-459).
Springer DOI
1506
BibRef
Atto, A.M.[Abdourrahmane M.],
Fillatre, L.[Lionel],
Antonini, M.[Marc],
Nikiforov, I.[Igor],
Simulation of image time series from dynamical fractional brownian
fields,
ICIP14(6086-6090)
IEEE DOI
1502
BibRef
Cabrai, R.[Ricardo],
Costeira, J.P.[Joao P.],
Bernardino, A.[Alexandre],
de la Torre, F.[Fernando],
Optimal no-intersection multi-label binary localization for time
series using totally unimodular linear programming,
ICIP14(3127-3130)
IEEE DOI
1502
Computer vision
BibRef
Damoulas, T.[Theodoros],
He, J.[Jin],
Bernstein, R.[Rich],
Gomes, C.P.[Carla P.],
Arora, A.[Anish],
String Kernels for Complex Time-Series:
Counting Targets from Sensed Movement,
ICPR14(4429-4434)
IEEE DOI
1412
Approximation methods
BibRef
Bargi, A.[Ava],
Xu, R.Y.D.[Richard Yi Da],
Piccardi, M.[Massimo],
An Infinite Adaptive Online Learning Model for Segmentation and
Classification of Streaming Data,
ICPR14(3440-3445)
IEEE DOI
1412
Accuracy
BibRef
Martinez-Vargas, J.D.,
Castro-Hoyos, C.,
Alvarez-Meza, A.M.,
Acosta-Medina, C.D.,
Castellanos-Domínguez, C.G.[Cesar German],
Recursive Separation of Stationary Components by Subspace Projection
and Stochastic Constraints,
ICPR14(3469-3474)
IEEE DOI
1412
Discriminate between stationary and non-stationary signals.
BibRef
Conti, J.C.[Jose C.],
Farial, F.A.[Fabio A.],
Almeida, J.[Jurandy],
Alberton, B.[Bruna],
Morellato, L.P.C.[Leonor P.C.],
Camolesi, L.[Luiz],
da Silva Torres, R.[Ricardo],
Evaluation of Time Series Distance Functions in the Task of Detecting
Remote Phenology Patterns,
ICPR14(3126-3131)
IEEE DOI
1412
Accuracy
BibRef
de Sousa, C.A.R.[Celso A.R.],
Souza, V.M.A.[Vinicius M.A.],
Batista, G.E.A.P.A.[Gustavo E.A.P.A.],
Time Series Transductive Classification on Imbalanced Data Sets:
An Experimental Study,
ICPR14(3780-3785)
IEEE DOI
1412
Algorithm design and analysis
BibRef
Souza, V.M.A.[Vinicius M.A.],
Silva, D.F.[Diego F.],
Batista, G.E.A.P.A.[Gustavo E.A.P.A.],
Extracting Texture Features for Time Series Classification,
ICPR14(1425-1430)
IEEE DOI
1412
Accuracy
BibRef
Fusco, F.[Francesco],
Eck, B.[Bradley],
McKenna, S.[Sean],
Bad Data Analysis with Sparse Sensors for Leak Localisation in Water
Distribution Networks,
ICPR14(3642-3647)
IEEE DOI
1412
Clustering algorithms
BibRef
Chen, B.[Bei],
Sinn, M.[Mathieu],
Ploennigs, J.[Joern],
Schumann, A.[Anika],
Statistical Anomaly Detection in Mean and Variation of Energy
Consumption,
ICPR14(3570-3575)
IEEE DOI
1412
Buildings
BibRef
Ring, M.[Matthias],
Lohmueller, C.[Clemens],
Rauh, M.[Manfred],
Eskofier, B.M.[Bjoern M.],
A Two-Stage Regression Using Bioimpedance and Temperature for
Hydration Assessment During Sports,
ICPR14(4519-4524)
IEEE DOI
1412
Bioimpedance
BibRef
Dosiek, L.,
Extracting Electrical Network Frequency From Digital Recordings Using
Frequency Demodulation,
SPLetters(22), No. 6, June 2015, pp. 691-695.
IEEE DOI
1411
Digital recording
BibRef
Kiefel, M.[Martin],
Schuler, C.[Christian],
Hennig, P.[Philipp],
Probabilistic Progress Bars,
GCPR14(331-341).
Springer DOI
1411
BibRef
Siedhoff, D.[Dominic],
Fichtenberger, H.[Hendrik],
Libuschewski, P.[Pascal],
Weichert, F.[Frank],
Sohler, C.[Christian],
Müller, H.[Heinrich],
Signal/Background Classification of Time Series for Biological Virus
Detection,
GCPR14(388-398).
Springer DOI
1411
BibRef
Reittu, H.[Hannu],
Bazsó, F.[Fülöp],
Weiss, R.[Robert],
Regular Decomposition of Multivariate Time Series and Other Matrices,
SSSPR14(424-433).
Springer DOI
1408
BibRef
Fojtu, Š.[Šimon],
Zimmermann, K.[Karel],
Pajdla, T.[Tomáš],
Hlavác, V.[Václav],
Domain Adaptation for Sequential Detection,
SCIA13(215-224).
Springer DOI
1311
BibRef
Iglesias Martínez, M.E.[Miguel Enrique],
Hernández Montero, F.E.[Fidel Ernesto],
Detection of Periodic Signals in Noise Based on Higher-Order Statistics
Joined to Convolution Process and Spectral Analysis,
CIARP13(I:488-495).
Springer DOI
1311
BibRef
Dang, T.N.[Tuan Nhon],
Wilkinson, L.[Leland],
TimeExplorer: Similarity Search Time Series by Their Signatures,
ISVC13(I:280-289).
Springer DOI
1310
BibRef
Bergel, I.,
Leshem, A.,
The Performance of Zero Forcing DSL Systems,
SPLetters(20), No. 5, May 2013, pp. 527-530.
IEEE DOI
1304
BibRef
Fusco, F.[Francesco],
Wurst, M.[Michael],
Yoon, J.[Ji_Won],
Mining residential household information from low-resolution smart
meter data,
ICPR12(3545-3548).
WWW Link.
1302
BibRef
Yoon, J.W.[Ji Won],
Fusco, F.[Francesco],
Wurst, M.[Michael],
Bayesian separation of wind power generation signals,
ICPR12(2660-2663).
WWW Link.
1302
BibRef
Liu, R.Q.[Ruo-Qian],
Xu, S.[Shen],
Fang, C.[Chen],
Liu, Y.W.[Yung-Wen],
Murphey, Y.L.[Yi L.],
Kochhar, D.S.[Dev S.],
Statistical modeling and signal selection in multivariate time series
pattern classification,
ICPR12(2853-2856).
WWW Link.
1302
BibRef
Suematsu, N.[Nobuo],
Hayashi, A.[Akira],
Time series alignment with Gaussian processes,
ICPR12(2355-2358).
WWW Link.
1302
BibRef
Guerra-Filho, G.[Gutemberg],
String Features: Geodesic Sweeping Detection and Quasi-invariant
Time-Series Description,
AVSS12(392-397).
IEEE DOI
1211
BibRef
Cardona-Morales, O.[Oscar],
Castellanos-Dominguez, G.[German],
Order Tracking by Square-Root Cubature Kalman Filter with Constraints,
MCPR16(104-114).
Springer DOI
1608
BibRef
Sierra-Alonso, E.F.[Edgar F.],
Cardona-Morales, O.[Oscar],
Acosta-Medina, C.D.[Carlos D.],
Castellanos-Dominguez, G.[German],
Spectral Correlation Measure for Selecting Intrinsic Mode Functions,
CIARP14(231-238).
Springer DOI
1411
BibRef
Cárdenas-Peña, D.[David],
Martínez-Vargas, J.D.[Juan David],
Castellanos-Domínguez, C.G.[Cesar Germán],
Extraction of Stationary Spectral Components Using Stochastic
Variability,
CIARP12(765-772).
Springer DOI
1209
BibRef
Sepulveda-Cano, L.M.[Lina Maria],
Acosta-Medina, C.D.[Carlos Daniel],
Castellanos-Dominguez, C.G.[Cesar Germán],
Finite Rank Series Modeling for Discrimination of Non-stationary
Signals,
CIARP12(691-698).
Springer DOI
1209
BibRef
Moya-Sánchez, E.U.[E. Ulises],
Bayro-Corrochano, E.[Eduardo],
Quaternionic Analytic Signal Using Atomic Functions,
CIARP12(699-706).
Springer DOI
1209
BibRef
Jovic, A.[Alan],
Brkic, K.[Karla],
Bogunovic, N.[Nikola],
Decision Tree Ensembles in Biomedical Time-series Classification,
DAGM12(408-417).
Springer DOI
1209
BibRef
Huerta, R.[Ramón],
Vembu, S.[Shankar],
Muezzinoglu, M.K.[Mehmet K.],
Vergara, A.[Alexander],
Dynamical SVM for Time Series Classification,
DAGM12(216-225).
Springer DOI
1209
BibRef
Sabre, R.[Rachid],
Evolutionary Spectrum for Random Field and Missing Observations,
ICISP12(209-216).
Springer DOI
1208
BibRef
Zhou, M.[Ming],
Yang, H.B.[Hua-Bing],
Zhu, J.L.[Jing-Li],
Shi, J.T.[Jun-Tao],
Low SNR signal time-frequency analyzing method,
IASP11(21-25).
IEEE DOI
1112
BibRef
Zhang, R.[Rui],
Yin, Y.S.[Yong-Sheng],
Yang, J.[Jun],
Gao, M.L.[Ming-Lun],
Dual-ADC based digital calibration of timing skew for a
time-interleaved ADC,
IASP11(42-45).
IEEE DOI
1112
BibRef
Zhu, W.J.[Wei-Jie],
Wu, W.[Wei],
Design of wide-band array with frequency invariant beam pattern by
using adaptive synthesis method,
IASP11(688-693).
IEEE DOI
1112
BibRef
Shen, C.J.[Chuan-Jun],
Wang, Y.M.[Yue-Min],
Zhou, F.J.[Fang-Jun],
Sun, F.R.[Feng-Rui],
Guided wave signal recognition by matching pursuit based on
evolutionary programming algorithm,
IASP11(519-523).
IEEE DOI
1112
BibRef
Hernández, S.[Sergio],
Sallis, P.[Philip],
Sentiment-Preserving Reduction for Social Media Analysis,
CIARP11(409-416).
Springer DOI
1111
BibRef
Song, K.H.[Kyu-Ha],
Lee, D.W.[Dong-Weon],
Han, J.W.[Jin-Woo],
Park, B.K.[Byung-Koo],
Pulse Repetition Interval Modulation Recognition Using Symbolization,
DICTA10(540-545).
IEEE DOI
1012
BibRef
Zhang, D.Y.[Dong-Yu],
Zuo, W.M.[Wang-Meng],
Zhang, D.[David],
Zhang, H.Z.[Hong-Zhi],
Time Series Classification Using Support Vector Machine with Gaussian
Elastic Metric Kernel,
ICPR10(29-32).
IEEE DOI
1008
BibRef
Panagiotakis, C.[Costas],
Simultaneous Segmentation and Modelling of Signals Based on an
Equipartition Principle,
ICPR10(85-88).
IEEE DOI
1008
BibRef
Daud, H.[Hanita],
Sagayan, V.[Vijanth],
Yahya, N.[Noorhana],
Najwati, W.[Wan],
Modeling of Electromagnetic Waves Using Statistical and Numerical
Techniques,
IVIC09(686-695).
Springer DOI
0911
BibRef
Li, Q.A.[Qi-Ang],
Zhang, F.C.[Fa-Chao],
Zhang, R.F.[Rui-Feng],
System Design of DPF Data Recorder and Data Analysis,
CISP09(1-4).
IEEE DOI
0910
BibRef
Dong, L.F.[Li-Fang],
Yue, H.[Han],
Yang, Y.J.[Yu-Jie],
Xiao, H.[Hong],
Wang, S.A.[Shu-Ai],
Emission Signal Analysis Based on Conventional and Modified Wavelet
Cross-Correlation,
CISP09(1-4).
IEEE DOI
0910
BibRef
Zheng, S.L.[Shi-Ling],
Xue, B.D.[Bin-Dang],
Jiang, Z.G.[Zhi-Guo],
Combined Nonlinear Iterative Algorithms for Retrieving the Complex Wave
Field,
CISP09(1-4).
IEEE DOI
0910
BibRef
Chandrakala, S.,
Sekhar, C.C.[C. Chandra],
Classification of Multi-variate Varying Length Time Series Using
Descriptive Statistical Features,
PReMI09(13-18).
Springer DOI
0912
BibRef
Xiang, K.[Kui],
Chen, J.[Jing],
Characterize System Dynamic of Pseudo Periodic Time Series with
Evolution Networks,
CISP09(1-5).
IEEE DOI
0910
BibRef
Zhu, L.L.[Li-Li],
Zhao, Y.[Ye],
Weak Signal Detection in Noisy Chaotic Time Series Using ORBFNN,
CISP09(1-4).
IEEE DOI
0910
BibRef
Xu, H.[Hua],
Zhang, D.M.[Dong-Mei],
Sun, G.F.[Gao-Fei],
The Assistant Timing Method for Fractionary Spaced Equalizer for Fading
Channel,
CISP09(1-4).
IEEE DOI
0910
BibRef
Luo, S.[Sheng'en],
Luo, L.Y.[Lai-Yuan],
Detection of an Unknown Frequency Hopping Signal Based on Image
Features,
CISP09(1-4).
IEEE DOI
0910
BibRef
Yali, Q.[Qin],
Lin, W.Y.[Wen-Yao],
Zhou, S.L.[Shou-Li],
Hu, H.R.[Hai-Rong],
Detection of Chirp Signal by Combination of Kurtosis Detection and
Filtering in Fractional Fourier Domain,
CISP09(1-6).
IEEE DOI
0910
BibRef
Xu, H.H.[Han-Hui],
Xu, C.G.[Chun-Guang],
Zhou, S.Y.[Shi-Yuan],
Hu, Y.[Yong],
Time-Frequency Analysis for Nonlinear Lamb Wave Signal,
CISP09(1-6).
IEEE DOI
0910
BibRef
Hautamaki, V.[Ville],
Nykanen, P.[Pekka],
Franti, P.[Pasi],
Time-series clustering by approximate prototypes,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Venkataramana, K.B.[Kini B.],
Sekhar, C.C.[C. Chandra],
Large margin AR model for time series classification,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Batyrshin, I.[Ildar],
Solovyev, V.[Valery],
Positive and Negative Local Trend Association Patterns in Analysis of
Associations between Time Series,
MCPR14(92-101).
Springer DOI
1407
BibRef
Earlier: A1, Only:
Up and Down Trend Associations in Analysis of Time Series Shape
Association Patterns,
MCPR12(246-254).
Springer DOI
1208
BibRef
Batyrshin, I.[Ildar],
Sheremetov, L.[Leonid],
Time Series Pattern Recognition Based on MAP Transform and Local Trend
Associations,
CIARP06(910-919).
Springer DOI
0611
MAP: Moving Approximation Transform.
BibRef
Sankur, B.,
Kahya, Y.P.,
Guler, E.C.,
Engin, T.,
Feature extraction and classification of nonstationary signals based on
the multiresolution signal decomposition,
ICPR94(B:592-595).
IEEE DOI
9410
BibRef
Chapter on New Unsorted Entries, and Other Miscellaneous Papers continues in
Time Series Warping, Time Warping .