Pekkarinen, A.,
A method for the segmentation of very high spatial resolution images of
forested landscapes,
JRS(23), No. 14, July 2002, pp. 2817-2836.
0208
BibRef
Pekkarinen, A.[Anssi],
Image segment-based spectral features in the estimation of timber
volume,
RSE(82), No. 2-3, October 2002, pp. 349-359.
HTML Version.
0210
BibRef
Norjamäki, I.,
Tokola, T.,
Comparison of Atmospheric Correction Methods in Mapping Timber Volume
with Multitemporal Landsat Images in Kainuu, Finland,
PhEngRS(73), No. 2, February 2007, pp. 155-164.
WWW Link.
0704
The estimation of forest characteristics from an atmospherically corrected
Landsat EMT+ mosaic.
BibRef
Li, H.[Hui],
Mausel, P.[Paul],
Brondizio, E.[Eduardo],
Deardorff, D.[David],
A framework for creating and validating a non-linear spectrum-biomass
model to estimate the secondary succession biomass in moist tropical
forests,
PandRS(65), No. 2, March 2010, pp. 241-254.
Elsevier DOI
1003
Remote sensing; Amazonian forest; Landsat; Modeling; SWIR
BibRef
Eckert, S.,
Improved Forest Biomass and Carbon Estimations Using Texture Measures
from WorldView-2 Satellite Data,
RS(4), No. 4, April 2012, pp. 810-829.
DOI Link
1202
BibRef
Anderson, L.,
Biome-Scale Forest Properties in Amazonia Based on Field and Satellite
Observations,
RS(4), No. 5, May 2012, pp. 1245-1271.
DOI Link
1205
BibRef
Muinonen, E.,
Parikka, H.,
Pokharel, Y.,
Shrestha, S.,
Eerikäinen, K.,
Utilizing a Multi-Source Forest Inventory Technique, MODIS Data and
Landsat TM Images in the Production of Forest Cover and Volume Maps for
the Terai Physiographic Zone in Nepal,
RS(4), No. 12, December 2012, pp. 3920-3947.
DOI Link
1211
BibRef
Ghasemi, N.,
Sahebi, M.R.,
Mohammadzadeh, A.,
Biomass Estimation of a Temperate Deciduous Forest Using Wavelet
Analysis,
GeoRS(51), No. 2, February 2013, pp. 765-776.
IEEE DOI
1302
BibRef
Casady, G.,
van Leeuwen, W.,
Reed, B.,
Estimating Winter Annual Biomass in the Sonoran and Mojave Deserts with
Satellite- and Ground-Based Observations,
RS(5), No. 2, February 2013, pp. 909-926.
DOI Link
1303
BibRef
Ahmed, R.[Razi],
Siqueira, P.[Paul],
Hensley, S.[Scott],
Bergen, K.[Kathleen],
Uncertainty of Forest Biomass Estimates in North Temperate Forests
Due to Allometry: Implications for Remote Sensing,
RS(5), No. 6, 2013, pp. 3007-3036.
DOI Link
1307
BibRef
Jung, J.[Jaehoon],
Kim, S.[Sangpil],
Hong, S.C.[Sung-Chul],
Kim, K.M.[Kyoung-Min],
Kim, E.[Eunsook],
Im, J.H.[Jung-Ho],
Heo, J.[Joon],
Effects of national forest inventory plot location error on forest
carbon stock estimation using k-nearest neighbor algorithm,
PandRS(81), No. 1, July 2013, pp. 82-92.
Elsevier DOI
1306
Forest carbon stock; National forest inventory; k-Nearest
neighbor; Uncertainty; Plot location error
BibRef
Sow, M.[Momadou],
Mbow, C.[Cheikh],
Hély, C.[Christelle],
Fensholt, R.[Rasmus],
Sambou, B.[Bienvenu],
Estimation of Herbaceous Fuel Moisture Content Using Vegetation Indices
and Land Surface Temperature from MODIS Data,
RS(5), No. 6, 2013, pp. 2617-2638.
DOI Link
1307
BibRef
Suchenwirth, L.[Leonhard],
Förster, M.[Michael],
Lang, F.[Friederike],
Kleinschmit, B.[Birgit],
Estimation and Mapping of Carbon Stocks in Riparian Forests by using a
Machine Learning Approach with Multiple Geodata,
PFG(2013), No. 4, 2013, pp. 333-349.
DOI Link
1309
BibRef
Chávez, R.O.[Roberto O.],
Clevers, J.G.P.W.[Jan G. P. W.],
Herold, M.[Martin],
Acevedo, E.[Edmundo],
Ortiz, M.[Mauricio],
Assessing Water Stress of Desert Tamarugo Trees Using in situ Data
and Very High Spatial Resolution Remote Sensing,
RS(5), No. 10, 2013, pp. 5064-5088.
DOI Link
1311
BibRef
Yu, Q.Z.[Quan-Zhou],
Wang, S.Q.[Shao-Qiang],
Mickler, R.A.[Robert A.],
Huang, K.[Kun],
Zhou, L.[Lei],
Yan, H.M.[Hui-Min],
Chen, D.C.[Die-Cong],
Han, S.J.[Shi-Jie],
Narrowband Bio-Indicator Monitoring of Temperate Forest Carbon Fluxes
in Northeastern China,
RS(6), No. 9, 2014, pp. 8986-9013.
DOI Link
1410
BibRef
And:
Correction:
RS(7), No. 1, 2015, pp. 684-685.
DOI Link
1502
BibRef
Minh, D.H.T.[Dinh Ho Tong],
Tebaldini, S.,
Rocca, F.,
Toan, T.L.[Thuy Le],
Villard, L.,
Dubois-Fernandez, P.C.,
Capabilities of BIOMASS Tomography for Investigating Tropical Forests,
GeoRS(53), No. 2, February 2015, pp. 965-975.
IEEE DOI
1411
geometry
BibRef
Barbosa, J.M.[Jomar Magalhăes],
Melendez-Pastor, I.[Ignacio],
Navarro-Pedreńo, J.[Jose],
Bitencourt, M.D.[Marisa Dantas],
Remotely sensed biomass over steep slopes: An evaluation among
successional stands of the Atlantic Forest, Brazil,
PandRS(88), No. 1, 2014, pp. 91-100.
Elsevier DOI
1402
Aboveground biomass
BibRef
Mustafa, Y.T.,
Tolpekin, V.A.,
Stein, A.,
Improvement of Spatio-temporal Growth Estimates in Heterogeneous
Forests Using Gaussian Bayesian Networks,
GeoRS(52), No. 8, August 2014, pp. 4980-4991.
IEEE DOI
1403
Data models
BibRef
Persson, H.J.[Henrik J.],
Estimation of Boreal Forest Attributes from Very High Resolution
Pléiades Data,
RS(8), No. 9, 2016, pp. 736.
DOI Link
1610
BibRef
Calvert, K.[Kirby],
Mabee, W.[Warren],
Spatial Analysis of Biomass Resources within a Socio-Ecologically
Heterogeneous Region: Identifying Opportunities for a Mixed Feedstock
Stream,
IJGI(3), No. 1, 2014, pp. 209-232.
DOI Link
1404
BibRef
Frazier, R.J.[Ryan J.],
Coops, N.C.[Nicholas C.],
Wulder, M.A.[Michael A.],
Kennedy, R.[Robert],
Characterization of aboveground biomass in an unmanaged boreal forest
using Landsat temporal segmentation metrics,
PandRS(92), No. 1, 2014, pp. 137-146.
Elsevier DOI
1407
Landsat
BibRef
Gómez, C.[Cristina],
White, J.C.[Joanne C.],
Wulder, M.A.[Michael A.],
Alejandro, P.[Pablo],
Historical forest biomass dynamics modelled with Landsat spectral
trajectories,
PandRS(93), No. 1, 2014, pp. 14-28.
Elsevier DOI
1407
Remote sensing
BibRef
Cartus, O.[Oliver],
Kellndorfer, J.[Josef],
Walker, W.[Wayne],
Franco, C.[Carol],
Bishop, J.[Jesse],
Santos, L.[Lucio],
Fuentes, J.M.M.[José María Michel],
A National, Detailed Map of Forest Aboveground Carbon Stocks in
Mexico,
RS(6), No. 6, 2014, pp. 5559-5588.
DOI Link
1407
BibRef
Vicharnakorn, P.[Phutchard],
Shrestha, R.P.[Rajendra P.],
Nagai, M.[Masahiko],
Salam, A.P.[Abdul P.],
Kiratiprayoon, S.[Somboon],
Carbon Stock Assessment Using Remote Sensing and Forest Inventory
Data in Savannakhet, Lao PDR,
RS(6), No. 6, 2014, pp. 5452-5479.
DOI Link
1407
BibRef
Kelsey, K.C.[Katharine C.],
Neff, J.C.[Jason C.],
Estimates of Aboveground Biomass from Texture Analysis of Landsat
Imagery,
RS(6), No. 7, 2014, pp. 6407-6422.
DOI Link
1408
BibRef
Windisch, K.[Katrin],
Bronner, G.[Günther],
Mansberger, R.[Reinfried],
Koukal, T.[Tatjana],
Derivation of Dominant Height and Yield Class of Forest Stands by Means
of Airborne Remote Sensing Methods,
PFG(2014), No. 5, 2014, pp. 325-338.
DOI Link
1411
BibRef
Motohka, T.,
Yoshida, T.,
Shibata, H.,
Tadono, T.,
Shimada, M.,
Mapping Aboveground Biomass in Northern Japanese Forests Using the
ALOS PRISM Digital Surface Model,
GeoRS(53), No. 4, April 2015, pp. 1683-1691.
IEEE DOI
1502
digital elevation models
BibRef
Tanaka, S.[Shinya],
Takahashi, T.[Tomoaki],
Nishizono, T.[Tomohiro],
Kitahara, F.[Fumiaki],
Saito, H.[Hideki],
Iehara, T.[Toshiro],
Kodani, E.[Eiji],
Awaya, Y.[Yoshio],
Stand Volume Estimation Using the k-NN Technique Combined with Forest
Inventory Data, Satellite Image Data and Additional Feature Variables,
RS(7), No. 1, 2014, pp. 378-394.
DOI Link
1502
BibRef
Zhu, X.L.[Xiao-Lin],
Liu, D.S.[De-Sheng],
Improving Forest Aboveground Biomass Estimation Using Seasonal
Landsat NDVI Time-Series,
PandRS(102), No. 1, 2015, pp. 222-231.
Elsevier DOI
1503
Aboveground biomass
See also Accurate Mapping of Forest Types Using Dense Seasonal Landsat Time-Series.
BibRef
Dube, T.[Timothy],
Mutanga, O.[Onisimo],
Evaluating the utility of the medium-spatial resolution Landsat 8
multispectral sensor in quantifying aboveground biomass in uMgeni
catchment, South Africa,
PandRS(101), No. 1, 2015, pp. 36-46.
Elsevier DOI
1503
Biomass estimation
BibRef
Sousa, A.M.O.[Adélia M.O.],
Gonçalves, A.C.[Ana Cristina],
Mesquita, P.[Paulo],
Marques da Silva, J.R.[José R.],
Biomass estimation with high resolution satellite images:
A case study of Quercus rotundifolia,
PandRS(101), No. 1, 2015, pp. 69-79.
Elsevier DOI
1503
Quercus rotundifolia
BibRef
Shoshany, M.[Maxim],
Karnibad, L.[Lev],
Remote Sensing of Shrubland Drying in the South-East Mediterranean,
1995-2010: Water-Use-Efficiency-Based Mapping of Biomass Change,
RS(7), No. 3, 2015, pp. 2283-2301.
DOI Link
1504
BibRef
Zandler, H.[Harald],
Brenning, A.[Alexander],
Samimi, C.[Cyrus],
Potential of Space-Borne Hyperspectral Data for Biomass
Quantification in an Arid Environment: Advantages and Limitations,
RS(7), No. 4, 2015, pp. 4565-4580.
DOI Link
1505
BibRef
Markku, Ĺ.[Ĺkerblom],
Raumonen, P.[Pasi],
Kaasalainen, M.[Mikko],
Casella, E.[Eric],
Analysis of Geometric Primitives in Quantitative Structure Models of
Tree Stems,
RS(7), No. 4, 2015, pp. 4581-4603.
DOI Link
1505
BibRef
Singh, M.[Minerva],
Evans, D.[Damian],
Friess, D.A.[Daniel A.],
Tan, B.S.[Boun Suy],
Nin, C.S.[Chan Samean],
Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using
Canopy Textures Derived from Google Earth,
RS(7), No. 5, 2015, pp. 5057-5076.
DOI Link
1506
BibRef
Chi, H.[Hong],
Sun, G.Q.[Guo-Qing],
Huang, J.L.[Jin-Liang],
Guo, Z.F.[Zhi-Feng],
Ni, W.J.[Wen-Jian],
Fu, A.[Anmin],
National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and
MODIS Imagery in China,
RS(7), No. 5, 2015, pp. 5534-5564.
DOI Link
1506
BibRef
Chi, H.[Hong],
Sun, G.Q.[Guo-Qing],
Huang, J.L.[Jin-Liang],
Li, R.D.[Ren-Dong],
Ren, X.Y.[Xian-You],
Ni, W.J.[Wen-Jian],
Fu, A.[Anmin],
Estimation of Forest Aboveground Biomass in Changbai Mountain Region
Using ICESat/GLAS and Landsat/TM Data,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Karlson, M.[Martin],
Ostwald, M.[Madelene],
Reese, H.[Heather],
Sanou, J.[Josias],
Tankoano, B.[Boalidioa],
Mattsson, E.[Eskil],
Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian
Woodlands Using Landsat 8 and Random Forest,
RS(7), No. 8, 2015, pp. 10017.
DOI Link
1509
BibRef
Dandois, J.P.[Jonathan P.],
Olano, M.[Marc],
Ellis, E.C.[Erle C.],
Optimal Altitude, Overlap, and Weather Conditions for Computer Vision
UAV Estimates of Forest Structure,
RS(7), No. 10, 2015, pp. 13895.
DOI Link
1511
BibRef
Dandois, J.P.[Jonathan P.],
Baker, M.[Matthew],
Olano, M.[Marc],
Parker, G.G.[Geoffrey G.],
Ellis, E.C.[Erle C.],
What is the Point? Evaluating the Structure, Color, and Semantic
Traits of Computer Vision Point Clouds of Vegetation,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Ding, X.K.[Xiao-Kang],
Kong, J.[Jianlei],
Yan, L.[Lei],
Liu, J.H.[Jin-Hao],
Yu, Z.[Zheng],
A novel stumpage detection method for forest harvesting based on
multi-sensor fusion,
SIViP(9), No. 8, November 2015, pp. 1843-1850.
Springer DOI
1511
BibRef
Blasch, G.[Gerald],
Spengler, D.[Daniel],
Itzerott, S.[Sibylle],
Wessolek, G.[Gerd],
Organic Matter Modeling at the Landscape Scale Based on Multitemporal
Soil Pattern Analysis Using RapidEye Data,
RS(7), No. 9, 2015, pp. 11125.
DOI Link
1511
BibRef
Nink, S.[Sascha],
Hill, J.[Joachim],
Buddenbaum, H.[Henning],
Stoffels, J.[Johannes],
Sachtleber, T.[Thomas],
Langshausen, J.[Joachim],
Assessing the Suitability of Future Multi- and Hyperspectral
Satellite Systems for Mapping the Spatial Distribution of Norway
Spruce Timber Volume,
RS(7), No. 9, 2015, pp. 12009.
DOI Link
1511
BibRef
Rodríguez-Cuenca, B.[Borja],
García-Cortés, S.[Silverio],
Ordóńez, C.[Celestino],
Alonso, M.C.[Maria C.],
Automatic Detection and Classification of Pole-Like Objects in Urban
Point Cloud Data Using an Anomaly Detection Algorithm,
RS(7), No. 10, 2015, pp. 12680.
DOI Link
1511
BibRef
Sun, H.[Hua],
Qie, G.P.[Guang-Ping],
Wang, G.X.[Guang-Xing],
Tan, Y.F.[Yi-Fan],
Li, J.P.[Ji-Ping],
Peng, Y.[Yougui],
Ma, Z.G.[Zhong-Gang],
Luo, C.Q.[Chao-Qin],
Increasing the Accuracy of Mapping Urban Forest Carbon Density by
Combining Spatial Modeling and Spectral Unmixing Analysis,
RS(7), No. 11, 2015, pp. 15114.
DOI Link
1512
BibRef
Sibanda, M.[Mbulisi],
Mutanga, O.[Onisimo],
Rouget, M.[Mathieu],
Examining the potential of Sentinel-2 MSI spectral resolution in
quantifying above ground biomass across different fertilizer
treatments,
PandRS(110), No. 1, 2015, pp. 55-65.
Elsevier DOI
1601
Field spectroscopy
BibRef
Surový, P.[Peter],
Yoshimoto, A.[Atsushi],
Panagiotidis, D.[Dimitrios],
Accuracy of Reconstruction of the Tree Stem Surface Using Terrestrial
Close-Range Photogrammetry,
RS(8), No. 2, 2016, pp. 123.
DOI Link
1603
BibRef
Meng, S.[Shili],
Pang, Y.[Yong],
Zhang, Z.J.[Zhong-Jun],
Jia, W.[Wen],
Li, Z.Y.[Zeng-Yuan],
Mapping Aboveground Biomass using Texture Indices from Aerial Photos
in a Temperate Forest of Northeastern China,
RS(8), No. 3, 2016, pp. 230.
DOI Link
1604
BibRef
Xi, X.H.[Xiao-Huan],
Han, T.T.[Ting-Ting],
Wang, C.[Cheng],
Luo, S.Z.[She-Zhou],
Xia, S.B.[Shao-Bo],
Pan, F.F.[Fei-Fei],
Forest above Ground Biomass Inversion by Fusing GLAS with Optical
Remote Sensing Data,
IJGI(5), No. 4, 2016, pp. 45.
DOI Link
1604
BibRef
López-Serrano, P.M.[Pablito M.],
Corral-Rivas, J.J.[José J.],
Díaz-Varela, R.A.[Ramón A.],
Álvarez-González, J.G.[Juan G.],
López-Sánchez, C.A.[Carlos A.],
Evaluation of Radiometric and Atmospheric Correction Algorithms for
Aboveground Forest Biomass Estimation Using Landsat 5 TM Data,
RS(8), No. 5, 2016, pp. 369.
DOI Link
1606
BibRef
Garroutte, E.L.[Erica L.],
Hansen, A.J.[Andrew J.],
Lawrence, R.L.[Rick L.],
Using NDVI and EVI to Map Spatiotemporal Variation in the Biomass and
Quality of Forage for Migratory Elk in the Greater Yellowstone
Ecosystem,
RS(8), No. 5, 2016, pp. 404.
DOI Link
1606
BibRef
Zhao, P.P.[Pan-Pan],
Lu, D.S.[Deng-Sheng],
Wang, G.X.[Guang-Xing],
Wu, C.P.[Chu-Ping],
Huang, Y.J.[Yu-Jie],
Yu, S.Q.[Shu-Quan],
Examining Spectral Reflectance Saturation in Landsat Imagery and
Corresponding Solutions to Improve Forest Aboveground Biomass
Estimation,
RS(8), No. 6, 2016, pp. 469.
DOI Link
1608
BibRef
Schumacher, P.[Paul],
Mislimshoeva, B.[Bunafsha],
Brenning, A.[Alexander],
Zandler, H.[Harald],
Brandt, M.[Martin],
Samimi, C.[Cyrus],
Koellner, T.[Thomas],
Do Red Edge and Texture Attributes from High-Resolution Satellite
Data Improve Wood Volume Estimation in a Semi-Arid Mountainous
Region?,
RS(8), No. 7, 2016, pp. 540.
DOI Link
1608
BibRef
Yan, E.[Enping],
Lin, H.[Hui],
Wang, G.X.[Guang-Xing],
Sun, H.[Hua],
Multi-Resolution Mapping and Accuracy Assessment of Forest Carbon
Density by Combining Image and Plot Data from a Nested and Clustering
Sampling Design,
RS(8), No. 7, 2016, pp. 571.
DOI Link
1608
BibRef
Yang, Y.[Yan],
Saatchi, S.S.[Sassan S.],
Xu, L.[Liang],
Yu, Y.F.[Yi-Fan],
Lefsky, M.A.[Michael A.],
White, L.[Lee],
Knyazikhin, Y.[Yuri],
Myneni, R.B.[Ranga B.],
Abiotic Controls on Macroscale Variations of Humid Tropical Forest
Height,
RS(8), No. 6, 2016, pp. 494.
DOI Link
1608
BibRef
Yan, M.[Min],
Tian, X.[Xin],
Li, Z.Y.[Zeng-Yuan],
Chen, E.[Erxue],
Wang, X.F.[Xu-Feng],
Han, Z.T.[Zong-Tao],
Sun, H.[Hong],
Simulation of Forest Carbon Fluxes Using Model Incorporation and Data
Assimilation,
RS(8), No. 7, 2016, pp. 567.
DOI Link
1608
BibRef
Su, Y.[Yong],
Zhang, W.F.[Wang-Fei],
Liu, B.J.[Bing-Jie],
Tian, X.[Xin],
Chen, S.X.[Shu-Xin],
Wang, H.[Haiyi],
Mao, Y.W.[Ying-Wu],
Forest Carbon Flux Simulation Using Multi-Source Data and
Incorporation of Remotely Sensed Model with Process-Based Model,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Tran, C.[Chinh],
Yanagida, J.[John],
Can Hawaii Meet Its Renewable Fuel Target? Case Study of
Banagrass-Based Cellulosic Ethanol,
IJGI(5), No. 8, 2016, pp. 146.
DOI Link
1609
BibRef
Messinger, M.[Max],
Asner, G.P.[Gregory P.],
Silman, M.[Miles],
Rapid Assessments of Amazon Forest Structure and Biomass Using Small
Unmanned Aerial Systems,
RS(8), No. 8, 2016, pp. 615.
DOI Link
1609
BibRef
Molinier, M.[Matthieu],
López-Sánchez, C.A.[Carlos A.],
Toivanen, T.[Timo],
Korpela, I.[Ilkka],
Corral-Rivas, J.J.[José J.],
Tergujeff, R.[Renne],
Häme, T.[Tuomas],
Relasphone: Mobile and Participative In Situ Forest Biomass
Measurements Supporting Satellite Image Mapping,
RS(8), No. 10, 2016, pp. 869.
DOI Link
1609
BibRef
Adab, H.[Hamed],
Kanniah, K.D.[Kasturi Devi],
Beringer, J.[Jason],
Estimating and Up-Scaling Fuel Moisture and Leaf Dry Matter Content
of a Temperate Humid Forest Using Multi Resolution Remote Sensing
Data,
RS(8), No. 11, 2016, pp. 961.
DOI Link
1612
BibRef
Wang, Q.A.[Qi-Ang],
Pang, Y.[Yong],
Li, Z.Y.[Zeng-Yuan],
Sun, G.Q.[Guo-Qing],
Chen, E.[Erxue],
Ni-Meister, W.[Wenge],
The Potential of Forest Biomass Inversion Based on Vegetation Indices
Using Multi-Angle CHRIS/PROBA Data,
RS(8), No. 11, 2016, pp. 891.
DOI Link
1612
BibRef
Kachamba, D.J.[Daud Jones],
Řrka, H.O.[Hans Ole],
Gobakken, T.[Terje],
Eid, T.[Tron],
Mwase, W.[Weston],
Biomass Estimation Using 3D Data from Unmanned Aerial Vehicle Imagery
in a Tropical Woodland,
RS(8), No. 11, 2016, pp. 968.
DOI Link
1612
BibRef
Gonçalves, F.[Fabio],
Treuhaft, R.[Robert],
Law, B.[Beverly],
Almeida, A.[André],
Walker, W.[Wayne],
Baccini, A.[Alessandro],
dos Santos, J.R.[Joăo Roberto],
Graça, P.[Paulo],
Estimating Aboveground Biomass in Tropical Forests: Field Methods and
Error Analysis for the Calibration of Remote Sensing Observations,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Gwenzi, D.[David],
Helmer, E.H.[Eileen H.],
Zhu, X.L.[Xiao-Lin],
Lefsky, M.A.[Michael A.],
Marcano-Vega, H.[Humfredo],
Predictions of Tropical Forest Biomass and Biomass Growth Based on
Stand Height or Canopy Area Are Improved by Landsat-Scale Phenology
across Puerto Rico and the U.S. Virgin Islands,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Balenovic, I.[Ivan],
Milas, A.S.[Anita Simic],
Marjanovic, H.[Hrvoje],
A Comparison of Stand-Level Volume Estimates from Image-Based Canopy
Height Models of Different Spatial Resolutions,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Zhu, J.[Jia],
Huang, Z.H.[Zhi-Hong],
Sun, H.[Hua],
Wang, G.X.[Guang-Xing],
Mapping Forest Ecosystem Biomass Density for Xiangjiang River Basin
by Combining Plot and Remote Sensing Data and Comparing Spatial
Extrapolation Methods,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Pargal, S.[Sourabh],
Fararoda, R.[Rakesh],
Rajashekar, G.[Gopalakrishnan],
Balachandran, N.[Natesan],
Réjou-Méchain, M.[Maxime],
Barbier, N.[Nicolas],
Jha, C.S.[Chandra Shekhar],
Pélissier, R.[Raphaël],
Dadhwal, V.K.[Vinay Kumar],
Couteron, P.[Pierre],
Inverting Aboveground Biomass-Canopy Texture Relationships in a
Landscape of Forest Mosaic in the Western Ghats of India Using Very
High Resolution Cartosat Imagery,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Bernasconi, L.[Luca],
Chirici, G.[Gherardo],
Marchetti, M.[Marco],
Biomass Estimation of Xerophytic Forests Using Visible Aerial
Imagery: Contrasting Single-Tree and Area-Based Approaches,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Liu, K.[Kaili],
Wang, J.[Jindi],
Zeng, W.S.[Wei-Sheng],
Song, J.L.[Jin-Ling],
Comparison and Evaluation of Three Methods for Estimating Forest
above Ground Biomass Using TM and GLAS Data,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
de Rivera, Ó.R.[Óscar Rodríguez],
López-Quílez, A.[Antonio],
Development and Comparison of Species Distribution Models for Forest
Inventories,
IJGI(6), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Kachamba, D.J.[Daud Jones],
Řrka, H.O.[Hans Ole],
Nćsset, E.[Erik],
Eid, T.[Tron],
Gobakken, T.[Terje],
Influence of Plot Size on Efficiency of Biomass Estimates in
Inventories of Dry Tropical Forests Assisted by Photogrammetric Data
from an Unmanned Aircraft System,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Pacheco-Labrador, J.[Javier],
El-Madany, T.S.[Tarek S.],
Martín, M.P.[M. Pilar],
Migliavacca, M.[Mirco],
Rossini, M.[Micol],
Carrara, A.[Arnaud],
Zarco-Tejada, P.J.[Pablo J.],
Spatio-Temporal Relationships between Optical Information and Carbon
Fluxes in a Mediterranean Tree-Grass Ecosystem,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Adhikari, H.[Hari],
Heiskanen, J.[Janne],
Siljander, M.[Mika],
Maeda, E.[Eduardo],
Heikinheimo, V.[Vuokko],
Pellikka, P.K.E.[Petri K. E.],
Determinants of Aboveground Biomass across an Afromontane Landscape
Mosaic in Kenya,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Liu, J.,
Hyyppä, J.,
Yu, X.,
Jaakkola, A.,
Kukko, A.,
Kaartinen, H.,
Zhu, L.,
Liang, X.,
Wang, Y.,
Hyyppä, H.,
A Novel GNSS Technique for Predicting Boreal Forest Attributes at Low
Cost,
GeoRS(55), No. 9, September 2017, pp. 4855-4867.
IEEE DOI
1709
satellite navigation, vegetation mapping,
2-D remote sensing techniques, GNSS devices,
GNSS-derived prediction accuracies, above-ground biomass,
basal area, breast height, computational method,
tree height, Biomass, Crowdsourcing, Data collection,
mobile mapping, radio, propagation, losses
BibRef
Kim, G.[Ghiseok],
Hong, S.J.[Suk-Ju],
Lee, A.Y.[Ah-Yeong],
Lee, Y.E.[Ye-Eun],
Im, S.J.[Sang-Jun],
Moisture Content Measurement of Broadleaf Litters Using Near-Infrared
Spectroscopy Technique,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Hogland, J.[John],
Anderson, N.[Nathaniel],
Chung, W.[Woodam],
New Geospatial Approaches for Efficiently Mapping Forest Biomass
Logistics at High Resolution over Large Areas,
IJGI(7), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Pandit, S.[Santa],
Tsuyuki, S.[Satoshi],
Dube, T.[Timothy],
Estimating Above-Ground Biomass in Sub-Tropical Buffer Zone Community
Forests, Nepal, Using Sentinel 2 Data,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Pandit, S.[Santa],
Tsuyuki, S.[Satoshi],
Dube, T.[Timothy],
Landscape-Scale Aboveground Biomass Estimation in Buffer Zone
Community Forests of Central Nepal: Coupling In Situ Measurements
with Landsat 8 Satellite Data,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Knapp, N.[Nikolai],
Huth, A.[Andreas],
Kugler, F.[Florian],
Papathanassiou, K.[Konstantinos],
Condit, R.[Richard],
Hubbell, S.P.[Stephen P.],
Fischer, R.[Rico],
Model-Assisted Estimation of Tropical Forest Biomass Change:
A Comparison of Approaches,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Le, A.V.[Anh V.],
Paull, D.J.[David J.],
Griffin, A.L.[Amy L.],
Exploring the Inclusion of Small Regenerating Trees to Improve
Above-Ground Forest Biomass Estimation Using Geospatial Data,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Nguyen, T.H.[Trung H.],
Jones, S.[Simon],
Soto-Berelov, M.[Mariela],
Haywood, A.[Andrew],
Hislop, S.[Samuel],
A Comparison of Imputation Approaches for Estimating Forest Biomass
Using Landsat Time-Series and Inventory Data,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
See also Using Landsat Spectral Indices in Time-Series to Assess Wildfire Disturbance and Recovery.
BibRef
Lin, J.Y.[Jia-Yuan],
Wang, M.M.[Mei-Mei],
Ma, M.G.[Ming-Guo],
Lin, Y.[Yi],
Aboveground Tree Biomass Estimation of Sparse Subalpine Coniferous
Forest with UAV Oblique Photography,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Saarela, S.[Svetlana],
Holm, S.[Sören],
Healey, S.P.[Sean P.],
Andersen, H.E.[Hans-Erik],
Petersson, H.[Hans],
Prentius, W.[Wilmer],
Patterson, P.L.[Paul L.],
Nćsset, E.[Erik],
Gregoire, T.G.[Timothy G.],
Stĺhl, G.[Göran],
Generalized Hierarchical Model-Based Estimation for Aboveground
Biomass Assessment Using GEDI and Landsat Data,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Junttila, V.[Virpi],
Kauranne, T.[Tuomo],
Distribution Statistics Preserving Post-Processing Method With Plot
Level Uncertainty Analysis for Remotely Sensed Data-Based Forest
Inventory Predictions,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Jayathunga, S.[Sadeepa],
Owari, T.[Toshiaki],
Tsuyuki, S.[Satoshi],
Digital Aerial Photogrammetry for Uneven-Aged Forest Management:
Assessing the Potential to Reconstruct Canopy Structure and Estimate
Living Biomass,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Boisvenue, C.[Céline],
White, J.C.[Joanne C.],
Information Needs of Next-Generation Forest Carbon Models:
Opportunities for Remote Sensing Science,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Ou, G.L.[Guang-Long],
Li, C.[Chao],
Lv, Y.Y.[Yan-Yu],
Wei, A.[Anchao],
Xiong, H.X.[He-Xian],
Xu, H.[Hui],
Wang, G.X.[Guang-Xing],
Improving Aboveground Biomass Estimation of Pinus densata Forests in
Yunnan Using Landsat 8 Imagery by Incorporating Age Dummy Variable
and Method Comparison,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Durante, P.[Pilar],
Martín-Alcón, S.[Santiago],
Gil-Tena, A.[Assu],
Algeet, N.[Nur],
Tomé, J.L.[José Luis],
Recuero, L.[Laura],
Palacios-Orueta, A.[Alicia],
Oyonarte, C.[Cecilio],
Improving Aboveground Forest Biomass Maps:
From High-Resolution to National Scale,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Ni, W.J.[Wen-Jian],
Dong, J.C.[Jia-Chen],
Sun, G.Q.[Guo-Qing],
Zhang, Z.Y.[Zhi-Yu],
Pang, Y.[Yong],
Tian, X.[Xin],
Li, Z.Y.[Zeng-Yuan],
Chen, E.[Erxue],
Synthesis of Leaf-on and Leaf-off Unmanned Aerial Vehicle (UAV)
Stereo Imagery for the Inventory of Aboveground Biomass of Deciduous
Forests,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Domingo, D.[Darío],
Řrka, H.O.[Hans Ole],
Nćsset, E.[Erik],
Kachamba, D.[Daud],
Gobakken, T.[Terje],
Effects of UAV Image Resolution, Camera Type, and Image Overlap on
Accuracy of Biomass Predictions in a Tropical Woodland,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Ibrahim, S.[Sa'ad],
Balzter, H.[Heiko],
Tansey, K.[Kevin],
Mathieu, R.[Renaud],
Tsutsumida, N.[Narumasa],
Impact of Soil Reflectance Variation Correction on Woody Cover
Estimation in Kruger National Park Using MODIS Data,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Yu, X.H.[Xiao-Hui],
Ge, H.L.[Hong-Li],
Lu, D.S.[Deng-Sheng],
Zhang, M.Z.[Mao-Zhen],
Lai, Z.X.[Zhou-Xiang],
Yao, R.[Rentu],
Comparative Study on Variable Selection Approaches in Establishment
of Remote Sensing Model for Forest Biomass Estimation,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Narine, L.L.[Lana L.],
Popescu, S.C.[Sorin C.],
Malambo, L.[Lonesome],
Synergy of ICESat-2 and Landsat for Mapping Forest Aboveground
Biomass with Deep Learning,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Malambo, L.[Lonesome],
Popescu, S.C.[Sorin C.],
PhotonLabeler: An Inter-Disciplinary Platform for Visual
Interpretation and Labeling of ICESat-2 Geolocated Photon Data,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Adame-Campos, R.L.[Rita Libertad],
Ghilardi, A.[Adrian],
Gao, Y.[Yan],
Paneque-Gálvez, J.[Jaime],
Mas, J.F.[Jean-François],
Variables Selection for Aboveground Biomass Estimations Using
Satellite Data: A Comparison between Relative Importance Approach and
Stepwise Akaike's Information Criterion,
IJGI(8), No. 6, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Esteban, J.[Jessica],
McRoberts, R.E.[Ronald E.],
Fernández-Landa, A.[Alfredo],
Tomé, J.L.[José Luis],
Nćsset, E.[Erik],
Estimating Forest Volume and Biomass and Their Changes Using Random
Forests and Remotely Sensed Data,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Fu, Y.Y.[Yuan-Yuan],
He, H.S.[Hong S.],
Hawbaker, T.J.[Todd J.],
Henne, P.D.[Paul D.],
Zhu, Z.L.[Zhi-Liang],
Larsen, D.R.[David R.],
Evaluating k-Nearest Neighbor (kNN) Imputation Models for
Species-Level Aboveground Forest Biomass Mapping in Northeast China,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Li, G.Y.[Gui-Ying],
Xie, Z.L.[Zhu-Li],
Jiang, X.D.[Xian-Die],
Lu, D.S.[Deng-Sheng],
Chen, E.[Erxue],
Integration of ZiYuan-3 Multispectral and Stereo Data for Modeling
Aboveground Biomass of Larch Plantations in North China,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Peng, D.L.[Dai-Liang],
Zhang, H.[Helin],
Liu, L.Y.[Liang-Yun],
Huang, W.J.[Wen-Jiang],
Huete, A.R.[Alfredo R.],
Zhang, X.Y.[Xiao-Yang],
Wang, F.M.[Fu-Min],
Yu, L.[Le],
Xie, Q.Y.[Qiao-Yun],
Wang, C.[Cheng],
Luo, S.Z.[She-Zhou],
Li, C.J.[Cun-Jun],
Zhang, B.[Bing],
Estimating the Aboveground Biomass for Planted Forests Based on Stand
Age and Environmental Variables,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Carvajal-Ramírez, F.[Fernando],
Serrano, J.M.P.R.[Joăo Manuel Pereira Ramalho],
Agüera-Vega, F.[Francisco],
Martínez-Carricondo, P.[Patricio],
A Comparative Analysis of Phytovolume Estimation Methods Based on
UAV-Photogrammetry and Multispectral Imagery in a Mediterranean
Forest,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Yan, E.[Enping],
Zhao, Y.L.[Yun-Lin],
Lin, H.[Hui],
Wang, G.X.[Guang-Xing],
Mo, D.K.[Deng-Kui],
Improving the Estimation of Forest Carbon Density in Mountainous
Regions Using Topographic Correction and Landsat 8 Images,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Ou, G.L.[Guang-Long],
Lv, Y.Y.[Yan-Yu],
Xu, H.[Hui],
Wang, G.X.[Guang-Xing],
Improving Forest Aboveground Biomass Estimation of Pinus densata
Forest in Yunnan of Southwest China by Spatial Regression using
Landsat 8 Images,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Zhang, Y.Z.[Yu-Zhen],
Liang, S.L.[Shun-Lin],
Yang, L.[Lu],
A Review of Regional and Global Gridded Forest Biomass Datasets,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Zhang, Y.Z.[Yu-Zhen],
Liang, S.L.[Shun-Lin],
Fusion of Multiple Gridded Biomass Datasets for Generating a Global
Forest Aboveground Biomass Map,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Piedelobo, L.[Laura],
Taramelli, A.[Andrea],
Schiavon, E.[Emma],
Valentini, E.[Emiliana],
Molina, J.L.[José-Luis],
Xuan, A.N.[Alessandra Nguyen],
González-Aguilera, D.[Diego],
Assessment of Green Infrastructure in Riparian Zones Using Copernicus
Programme,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Nguyen, T.H.[Trung H.],
Jones, S.[Simon],
Soto-Berelov, M.[Mariela],
Haywood, A.[Andrew],
Hislop, S.[Samuel],
Landsat Time-Series for Estimating Forest Aboveground Biomass and Its
Dynamics across Space and Time: A Review,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Zhang, Q.[Qi],
Xu, L.H.[Li-Hua],
Zhang, M.Z.[Mao-Zhen],
Wang, Z.[Zhi],
Gu, Z.F.[Zhang-Feng],
Wu, Y.Q.[Ya-Qi],
Shi, Y.J.[Yi-Jun],
Lu, Z.W.[Zhang-Wei],
Uncertainty Analysis of Remote Sensing Pretreatment for Biomass
Estimation on Landsat OLI and Landsat ETM+,
IJGI(9), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Bascietto, M.[Marco],
Sperandio, G.[Giulio],
Bajocco, S.[Sofia],
Efficient Estimation of Biomass from Residual Agroforestry,
IJGI(9), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Hu, Y.[Yang],
Xu, X.L.[Xue-Lei],
Wu, F.Y.[Fa-Yun],
Sun, Z.Q.[Zhong-Qiu],
Xia, H.M.[Hao-Ming],
Meng, Q.M.[Qing-Min],
Huang, W.L.[Wen-Li],
Zhou, H.[Hua],
Gao, J.P.[Jin-Ping],
Li, W.T.[Wei-Tao],
Peng, D.L.[Dao-Li],
Xiao, X.M.[Xiang-Ming],
Estimating Forest Stock Volume in Hunan Province, China, by
Integrating In Situ Plot Data, Sentinel-2 Images, and Linear and
Machine Learning Regression Models,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Jurjevic, L.[Luka],
Gaparovic, M.[Mateo],
Milas, A.S.[Anita Simic],
Balenovic, I.[Ivan],
Impact of UAS Image Orientation on Accuracy of Forest Inventory
Attributes,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Li, X.Y.[Xin-Yu],
Liu, Z.H.[Zhao-Hua],
Lin, H.[Hui],
Wang, G.X.[Guang-Xing],
Sun, H.[Hua],
Long, J.P.[Jiang-Ping],
Zhang, M.[Meng],
Estimating the Growing Stem Volume of Chinese Pine and Larch
Plantations based on Fused Optical Data Using an Improved Variable
Screening Method and Stacking Algorithm,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Poley, L.G.[Lucy G.],
McDermid, G.J.[Gregory J.],
A Systematic Review of the Factors Influencing the Estimation of
Vegetation Aboveground Biomass Using Unmanned Aerial Systems,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Pham, T.D.[Tien Dat],
Yokoya, N.[Naoto],
Xia, J.[Junshi],
Ha, N.T.[Nam Thang],
Le, N.N.[Nga Nhu],
Nguyen, T.T.T.[Thi Thu Trang],
Dao, T.H.[Thi Huong],
Vu, T.T.P.[Thuy Thi Phuong],
Pham, T.D.[Tien Duc],
Takeuchi, W.[Wataru],
Comparison of Machine Learning Methods for Estimating Mangrove
Above-Ground Biomass Using Multiple Source Remote Sensing Data in the
Red River Delta Biosphere Reserve, Vietnam,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Iizuka, K.[Kotaro],
Hayakawa, Y.S.[Yuichi S.],
Ogura, T.[Takuro],
Nakata, Y.[Yasutaka],
Kosugi, Y.[Yoshiko],
Yonehara, T.[Taichiro],
Integration of Multi-Sensor Data to Estimate Plot-Level Stem Volume
Using Machine Learning Algorithms-Case Study of Evergreen Conifer
Planted Forests in Japan,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Narine, L.L.[Lana L.],
Popescu, S.C.[Sorin C.],
Malambo, L.[Lonesome],
Using ICESat-2 to Estimate and Map Forest Aboveground Biomass:
A First Example,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Issa, S.[Salem],
Dahy, B.[Basam],
Ksiksi, T.[Taoufik],
Saleous, N.[Nazmi],
A Review of Terrestrial Carbon Assessment Methods Using Geo-Spatial
Technologies with Emphasis on Arid Lands,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Poley, L.G.[Lucy G.],
Laskin, D.N.[David N.],
McDermid, G.J.[Gregory J.],
Quantifying Aboveground Biomass of Shrubs Using Spectral and
Structural Metrics Derived from UAS Imagery,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Rodríguez-Veiga, P.[Pedro],
Carreiras, J.[Joao],
Smallman, T.L.[Thomas Luke],
Exbrayat, J.F.[Jean-François],
Ndambiri, J.[Jamleck],
Mutwiri, F.[Faith],
Nyasaka, D.[Divinah],
Quegan, S.[Shaun],
Williams, M.[Mathew],
Balzter, H.[Heiko],
Carbon Stocks and Fluxes in Kenyan Forests and Wooded Grasslands
Derived from Earth Observation and Model-Data Fusion,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Gao, Y.K.[Yu-Kun],
Lu, D.S.[Deng-Sheng],
Li, G.Y.[Gui-Ying],
Wang, G.X.[Guang-Xing],
Chen, Q.[Qi],
Liu, L.J.[Li-Juan],
Li, D.Q.[Deng-Qiu],
Comparative Analysis of Modeling Algorithms for Forest Aboveground
Biomass Estimation in a Subtropical Region,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Banerjee, B.P.[Bikram Pratap],
Spangenberg, G.[German],
Kant, S.[Surya],
Fusion of Spectral and Structural Information from Aerial Images for
Improved Biomass Estimation,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Gargiulo, J.[Juan],
Clark, C.[Cameron],
Lyons, N.[Nicolas],
de Veyrac, G.[Gaspard],
Beale, P.[Peter],
Garcia, S.[Sergio],
Spatial and Temporal Pasture Biomass Estimation Integrating
Electronic Plate Meter, Planet CubeSats and Sentinel-2 Satellite Data,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Taddese, H.[Habitamu],
Asrat, Z.[Zerihun],
Burud, I.[Ingunn],
Gobakken, T.[Terje],
Řrka, H.O.[Hans Ole],
Dick, Ř.B.[Řystein B.],
Nćsset, E.[Erik],
Use of Remotely Sensed Data to Enhance Estimation of Aboveground
Biomass for the Dry Afromontane Forest in South-Central Ethiopia,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Hawrylo, P.[Pawel],
Francini, S.[Saverio],
Chirici, G.[Gherardo],
Giannetti, F.[Francesca],
Parkitna, K.[Karolina],
Krok, G.[Grzegorz],
Mitelsztedt, K.[Krzysztof],
Lisanczuk, M.[Marek],
Sterenczak, K.[Krzysztof],
Ciesielski, M.[Mariusz],
Wezyk, P.[Piotr],
Socha, J.[Jaroslaw],
The Use of Remotely Sensed Data and Polish NFI Plots for Prediction
of Growing Stock Volume Using Different Predictive Methods,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Zhang, Y.Z.[Yu-Zhen],
Ma, J.[Jun],
Liang, S.L.[Shun-Lin],
Li, X.S.[Xi-Sheng],
Li, M.Y.[Man-Yao],
An Evaluation of Eight Machine Learning Regression Algorithms for
Forest Aboveground Biomass Estimation from Multiple Satellite Data
Products,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Menlove, J.[James],
Healey, S.P.[Sean P.],
A Comprehensive Forest Biomass Dataset for the USA Allows Customized
Validation of Remotely Sensed Biomass Estimates,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Zhao, X.[Xuan],
Liu, J.J.[Jian-Jun],
Hao, H.[Hongke],
Yang, Y.Z.[Yan-Zheng],
Quantifying the Spatial Heterogeneity and Driving Factors of
Aboveground Forest Biomass in the Urban Area of Xi'an, China,
IJGI(9), No. 12, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Kumar, P.[Praveen],
Krishna, A.P.[Akhouri P.],
Rasmussen, T.M.[Thorkild M.],
Pal, M.K.[Mahendra K.],
Rapid Evaluation and Validation Method of Above Ground Forest Biomass
Estimation Using Optical Remote Sensing in Tundi Reserved Forest
Area, India,
IJGI(10), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Naik, P.[Parth],
Dalponte, M.[Michele],
Bruzzone, L.[Lorenzo],
Prediction of Forest Aboveground Biomass Using Multitemporal
Multispectral Remote Sensing Data,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Park, J.H.[Jin Han],
Gan, J.[Jianbang],
Park, C.[Chan],
Discrepancies between Global Forest Net Primary Productivity
Estimates Derived from MODIS and Forest Inventory Data and Underlying
Factors,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Lin, M.Z.[Mei-Zhi],
Ling, Q.P.[Qing-Ping],
Pei, H.Q.[Hui-Qing],
Song, Y.[Yanni],
Qiu, Z.X.[Zi-Xuan],
Wang, C.[Cai],
Liu, T.D.[Tie-Dong],
Gong, W.F.[Wen-Feng],
Remote Sensing of Tropical Rainforest Biomass Changes in Hainan
Island, China from 2003 to 2018,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Dorado-Roda, I.[Iván],
Pascual, A.[Adrián],
Godinho, S.[Sergio],
Silva, C.A.[Carlos A.],
Botequim, B.[Brigite],
Rodríguez-Gonzálvez, P.[Pablo],
González-Ferreiro, E.[Eduardo],
Guerra-Hernández, J.[Juan],
Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground
Biomass Estimates in Mediterranean Forests,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Li, X.Y.[Xin-Yu],
Lin, H.[Hui],
Long, J.P.[Jiang-Ping],
Xu, X.D.[Xiao-Dong],
Mapping the Growing Stem Volume of the Coniferous Plantations in
North China Using Multispectral Data from Integrated GF-2 and
Sentinel-2 Images and an Optimized Feature Variable Selection Method,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Hashemi-Beni, L.[Leila],
Kurkalova, L.A.[Lyubov A.],
Mulrooney, T.J.[Timothy J.],
Azubike, C.S.[Chinazor S.],
Combining Multiple Geospatial Data for Estimating Aboveground Biomass
in North Carolina Forests,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Chang, Z.B.[Zhong-Bing],
Hobeichi, S.[Sanaa],
Wang, Y.P.[Ying-Ping],
Tang, X.L.[Xu-Li],
Abramowitz, G.[Gab],
Chen, Y.[Yang],
Cao, N.N.[Nan-Nan],
Yu, M.X.[Meng-Xiao],
Huang, H.B.[Hua-Bing],
Zhou, G.Y.[Guo-Yi],
Wang, G.X.[Gen-Xu],
Ma, K.P.[Ke-Ping],
Du, S.[Sheng],
Li, S.G.[Sheng-Gong],
Han, S.J.[Shi-Jie],
Ma, Y.X.[You-Xin],
Wigneron, J.P.[Jean-Pierre],
Fan, L.[Lei],
Saatchi, S.S.[Sassan S.],
Yan, J.H.[Jun-Hua],
New Forest Aboveground Biomass Maps of China Integrating Multiple
Datasets,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Lv, G.T.[Guan-Ting],
Cui, G.S.[Gui-Shan],
Wang, X.Y.[Xiao-Yi],
Yu, H.[Hangnan],
Huang, X.[Xiao],
Zhu, W.H.[Wei-Hong],
Lin, Z.[Zhehao],
Signatures of Wetland Impact: Spatial Distribution of Forest
Aboveground Biomass in Tumen River Basin,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Hernández-Stefanoni, J.L.[José Luis],
Castillo-Santiago, M.Á.[Miguel Ángel],
Andres-Mauricio, J.[Juan],
Portillo-Quintero, C.A.[Carlos A.],
Tun-Dzul, F.[Fernando],
Dupuy, J.M.[Juan Manuel],
Carbon Stocks, Species Diversity and Their Spatial Relationships in
the Yucatán Peninsula, Mexico,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Tang, R.[Rong],
Zhao, Y.T.[Yu-Ting],
Lin, H.[Huilong],
Spatio-Temporal Variation Characteristics of Aboveground Biomass in
the Headwater of the Yellow River Based on Machine Learning,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Gara, T.W.[Tawanda W.],
Rahimzadeh-Bajgiran, P.[Parinaz],
Darvishzadeh, R.[Roshanak],
Forest Leaf Mass per Area (LMA) through the Eye of Optical Remote
Sensing: A Review and Future Outlook,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Li, X.Y.[Xin-Yu],
Long, J.P.[Jiang-Ping],
Zhang, M.[Meng],
Liu, Z.H.[Zhao-Hua],
Lin, H.[Hui],
Coniferous Plantations Growing Stock Volume Estimation Using Advanced
Remote Sensing Algorithms and Various Fused Data,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Li, X.Y.[Xin-Yu],
Zhang, M.[Meng],
Long, J.P.[Jiang-Ping],
Lin, H.[Hui],
A Novel Method for Estimating Spatial Distribution of Forest
Above-Ground Biomass Based on Multispectral Fusion Data and Ensemble
Learning Algorithm,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Gregory, J.[Joe],
Berthoud, L.[Lucy],
Tryfonas, T.[Theo],
Prezzavento, A.[Antonio],
Faure, L.[Ludovic],
Investigating the Flexibility of the MBSE Approach to the Biomass
Mission,
SMCS(51), No. 11, November 2021, pp. 6946-6961.
IEEE DOI
2110
Biomass, Biological system modeling, Unified modeling language,
Space vehicles, Object oriented modeling, Biomass,
systems engineering
BibRef
Xu, X.D.[Xiao-Dong],
Lin, H.[Hui],
Liu, Z.H.[Zhao-Hua],
Ye, Z.L.[Zi-Lin],
Li, X.Y.[Xin-Yu],
Long, J.P.[Jiang-Ping],
A Combined Strategy of Improved Variable Selection and Ensemble
Algorithm to Map the Growing Stem Volume of Planted Coniferous Forest,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Rees, W.G.[W. Gareth],
Tomaney, J.[Jack],
Tutubalina, O.[Olga],
Zharko, V.[Vasily],
Bartalev, S.[Sergey],
Estimation of Boreal Forest Growing Stock Volume in Russia from
Sentinel-2 MSI and Land Cover Classification,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Wang, Z.C.[Zhi-Chao],
Shen, Y.J.[Yan-Jun],
Zhang, X.Y.[Xiao-Yuan],
Zhao, Y.[Yao],
Schmullius, C.[Christiane],
Processing Point Clouds Using Simulated Physical Processes as
Replacements of Conventional Mathematically Based Procedures: A
Theoretical Virtual Measurement for Stem Volume,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Georgopoulos, N.[Nikos],
Gitas, I.Z.[Ioannis Z.],
Stefanidou, A.[Alexandra],
Korhonen, L.[Lauri],
Stavrakoudis, D.[Dimitris],
Estimation of Individual Tree Stem Biomass in an Uneven-Aged
Structured Coniferous Forest Using Multispectral LiDAR Data,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Shi, Y.L.[Yong-Lei],
Wang, Z.H.[Zhi-Hui],
Liu, L.[Liangyun],
Li, C.[Chunyi],
Peng, D.[Dailiang],
Xiao, P.Q.[Pei-Qing],
Improving Estimation of Woody Aboveground Biomass of Sparse Mixed
Forest over Dryland Ecosystem by Combining Landsat-8, GaoFen-2, and
UAV Imagery,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Qian, C.H.[Chun-Hua],
Qiang, H.Q.[He-Qun],
Wang, F.[Feng],
Li, M.Y.[Ming-Yang],
Estimation of Forest Aboveground Biomass in Karst Areas Using
Multi-Source Remote Sensing Data and the K-DBN Algorithm,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Han, H.S.[Hao-Shuang],
Wan, R.R.[Rong-Rong],
Li, B.[Bing],
Estimating Forest Aboveground Biomass Using Gaofen-1 Images,
Sentinel-1 Images, and Machine Learning Algorithms: A Case Study of
the Dabie Mountain Region, China,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Zhao, Y.X.[Yu-Xin],
Mao, D.H.[De-Hua],
Zhang, D.Y.[Dong-You],
Wang, Z.M.[Zong-Ming],
Du, B.J.[Bao-Jia],
Yan, H.Q.[Heng-Qi],
Qiu, Z.Q.[Zhi-Qiang],
Feng, K.D.[Kai-Dong],
Wang, J.F.[Jing-Fa],
Jia, M.M.[Ming-Ming],
Mapping Phragmites australis Aboveground Biomass in the Momoge
Wetland Ramsar Site Based on Sentinel-1/2 Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Liu, Z.H.[Zhi-Hui],
Michel, O.O.[Opelele Omeno],
Wu, G.M.[Guo-Ming],
Mao, Y.[Yu],
Hu, Y.F.[Yi-Fan],
Fan, W.[Wenyi],
The Potential of Fully Polarized ALOS-2 Data for Estimating Forest
Above-Ground Biomass,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Lei, L.T.[Ling-Ting],
Chai, G.Q.[Guo-Qi],
Wang, Y.T.[Yue-Ting],
Jia, X.[Xiang],
Yin, T.[Tian],
Zhang, X.L.[Xiao-Li],
Estimating Individual Tree Above-Ground Biomass of Chinese Fir
Plantation: Exploring the Combination of Multi-Dimensional Features
from UAV Oblique Photos,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wang, X.Y.[Xin-Yu],
Li, R.H.[Run-Hao],
Ding, H.[Hu],
Fu, Y.C.[Ying-Chun],
Fine-Scale Improved Carbon Bookkeeping Model Using Landsat Time
Series for Subtropical Forest, Southern China,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wang, X.Y.[Xiao-Yi],
Liu, C.X.[Cai-Xia],
Lv, G.[Guanting],
Xu, J.F.[Jin-Feng],
Cui, G.[Guishan],
Integrating Multi-Source Remote Sensing to Assess Forest Aboveground
Biomass in the Khingan Mountains of North-Eastern China Using
Machine-Learning Algorithms,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Sun, Z.B.[Zhi-Bin],
Qian, W.Q.[Wen-Qi],
Huang, Q.F.[Qing-Feng],
Lv, H.Y.[Hai-Yan],
Yu, D.[Dagui],
Ou, Q.X.[Qiang-Xin],
Lu, H.M.[Hao-Miao],
Tang, X.H.[Xue-Hai],
Use Remote Sensing and Machine Learning to Study the Changes of
Broad-Leaved Forest Biomass and Their Climate Driving Forces in
Nature Reserves of Northern Subtropics,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Ehlers, D.[Dekker],
Wang, C.[Chao],
Coulston, J.[John],
Zhang, Y.L.[Yu-Long],
Pavelsky, T.[Tamlin],
Frankenberg, E.[Elizabeth],
Woodcock, C.[Curtis],
Song, C.H.[Cong-He],
Mapping Forest Aboveground Biomass Using Multisource Remotely Sensed
Data,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Stratoulias, D.[Dimitris],
Nuthammachot, N.[Narissara],
Suepa, T.[Tanita],
Phoungthong, K.[Khamphe],
Assessing the Spectral Information of Sentinel-1 and Sentinel-2
Satellites for Above-Ground Biomass Retrieval of a Tropical Forest,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Namoi, N.[Nictor],
Jang, C.H.[Chun-Hwa],
Robins, Z.[Zachary],
Lin, C.H.[Cheng-Hsien],
Lim, S.H.[Soo-Hyun],
Voigt, T.[Thomas],
Lee, D.[DoKyoung],
Aerial Imagery Can Detect Nitrogen Fertilizer Effects on Biomass and
Stand Health of Miscanthus X giganteus,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Chen, M.J.[Ming-Jie],
Qiu, X.C.[Xin-Cai],
Zeng, W.S.[Wei-Sheng],
Peng, D.[Daoli],
Combining Sample Plot Stratification and Machine Learning Algorithms
to Improve Forest Aboveground Carbon Density Estimation in Northeast
China Using Airborne LiDAR Data,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Warwick-Champion, E.[Elizabeth],
Davies, K.P.[Kevin P.],
Barber, P.[Paul],
Hardy, N.[Naviin],
Bruce, E.[Eleanor],
Characterising the Aboveground Carbon Content of Saltmarsh in Jervis
Bay, NSW, Using ArborCam and PlanetScope,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Swayze, N.C.[Neal C.],
Tinkham, W.T.[Wade T.],
Creasy, M.B.[Matthew B.],
Vogeler, J.C.[Jody C.],
Hoffman, C.M.[Chad M.],
Hudak, A.T.[Andrew T.],
Influence of UAS Flight Altitude and Speed on Aboveground Biomass
Prediction,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Riquelme, L.[Linda],
Duncan, D.H.[David H.],
Rumpff, L.[Libby],
Vesk, P.A.[Peter Anton],
Using Remote Sensing to Estimate Understorey Biomass in Semi-Arid
Woodlands of South-Eastern Australia,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Kong, L.Q.[Ling-Qiao],
Lu, F.[Fei],
Rao, E.[Enming],
Ouyang, Z.Y.[Zhi-Yun],
Carbon Sink under Different Carbon Density Levels of Forest and
Shrub, a Case in Dongting Lake Basin, China,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Yang, B.X.[Bo-Xiang],
Zhang, Y.L.[Ya-Li],
Mao, X.P.[Xu-Peng],
Lv, Y.Y.[Ying-Ying],
Shi, F.[Fang],
Li, M.S.[Ming-Shi],
Mapping Spatiotemporal Changes in Forest Type and Aboveground Biomass
from Landsat Long-Term Time-Series Analysis: A Case Study from
Yaoluoping National Nature Reserve, Anhui Province of Eastern China,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Chen, L.[Lin],
Ren, C.Y.[Chun-Ying],
Bao, G.D.[Guang-Dao],
Zhang, B.[Bai],
Wang, Z.M.[Zong-Ming],
Liu, M.Y.[Ming-Yue],
Man, W.D.[Wei-Dong],
Liu, J.F.[Jia-Fu],
Improved Object-Based Estimation of Forest Aboveground Biomass by
Integrating LiDAR Data from GEDI and ICESat-2 with Multi-Sensor
Images in a Heterogeneous Mountainous Region,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Chen, L.[Lin],
Ren, C.Y.[Chun-Ying],
Zhang, B.[Bai],
Wang, Z.M.[Zong-Ming],
Man, W.D.[Wei-Dong],
Liu, M.Y.[Ming-Yue],
Improved Object-Based Mapping of Aboveground Biomass Using Geographic
Stratification with GEDI Data and Multi-Sensor Imagery,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Yu, Y.[Ying],
Pan, Y.[Yan],
Yang, X.G.[Xi-Guang],
Fan, W.Y.[Wen-Yi],
Spatial Scale Effect and Correction of Forest Aboveground Biomass
Estimation Using Remote Sensing,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Yu, S.C.[Shi-Chuan],
Ye, Q.P.[Quan-Ping],
Zhao, Q.X.[Qing-Xia],
Li, Z.[Zhen],
Zhang, M.[Mei],
Zhu, H.[Hailan],
Zhao, Z.[Zhong],
Effects of Driving Factors on Forest Aboveground Biomass (AGB) in
China's Loess Plateau by Using Spatial Regression Models,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Vázquez-Alonso, M.[Mariana],
Lentz, D.L.[David L.],
Dunning, N.P.[Nicholas P.],
Carr, C.[Christopher],
Hernández, A.A.[Armando Anaya],
Reese-Taylor, K.[Kathryn],
Lidar-Based Aboveground Biomass Estimations for the Maya
Archaeological Site of Yaxnohcah, Campeche, Mexico,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhang, F.[Fanyi],
Tian, X.[Xin],
Zhang, H.B.[Hai-Bo],
Jiang, M.[Mi],
Estimation of Aboveground Carbon Density of Forests Using Deep
Learning and Multisource Remote Sensing,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Lamulamu, A.[Augustin],
Ploton, P.[Pierre],
Birigazzi, L.[Luca],
Xu, L.[Liang],
Saatchi, S.[Sassan],
Lubamba, J.P.K.[Jean-Paul Kibambe],
Assessing the Predictive Power of Democratic Republic of Congo's
National Spaceborne Biomass Map over Independent Test Samples,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Tamiminia, H.[Haifa],
Salehi, B.[Bahram],
Mahdianpari, M.[Masoud],
Beier, C.M.[Colin M.],
Johnson, L.[Lucas],
Mapping Two Decades of New York State Forest Aboveground Biomass
Change Using Remote Sensing,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Shu, Q.T.[Qing-Tai],
Xi, L.[Lei],
Wang, K.[Keren],
Xie, F.[Fuming],
Pang, Y.[Yong],
Song, H.[Hanyue],
Optimization of Samples for Remote Sensing Estimation of Forest
Aboveground Biomass at the Regional Scale,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Tang, J.[Jing],
Liu, Y.[Ying],
Li, L.[Lu],
Liu, Y.F.[Yan-Feng],
Wu, Y.[Yong],
Xu, H.[Hui],
Ou, G.L.[Guang-Long],
Enhancing Aboveground Biomass Estimation for Three Pinus Forests in
Yunnan, SW China, Using Landsat 8,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Wang, M.[Man],
Im, J.[Jungho],
Zhao, Y.H.[Ying-Hui],
Zhen, Z.[Zhen],
Multi-Platform LiDAR for Non-Destructive Individual Aboveground
Biomass Estimation for Changbai Larch (Larix olgensis Henry) Using a
Hierarchical Bayesian Approach,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Turton, A.E.[Amber E.],
Augustin, N.H.[Nicole H.],
Mitchard, E.T.A.[Edward T. A.],
Improving Estimates and Change Detection of Forest Above-Ground
Biomass Using Statistical Methods,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Tang, Z.[Zhi],
Xia, X.[Xiaosheng],
Huang, Y.H.[Yong-Hua],
Lu, Y.[Yan],
Guo, Z.Y.[Zhong-Yang],
Estimation of National Forest Aboveground Biomass from Multi-Source
Remotely Sensed Dataset with Machine Learning Algorithms in China,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Chen, H.F.[Hua-Fang],
Qin, Z.H.[Zhi-Hao],
Zhai, D.L.[De-Li],
Ou, G.L.[Guang-Long],
Li, X.[Xiong],
Zhao, G.J.[Gao-Juan],
Fan, J.L.[Jin-Long],
Zhao, C.L.[Chun-Liang],
Xu, H.[Hui],
Mapping Forest Aboveground Biomass with MODIS and Fengyun-3C VIRR
Imageries in Yunnan Province, Southwest China Using Linear
Regression, K-Nearest Neighbor and Random Forest,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Cui, L.[Lei],
Sun, M.[Mei],
Jiao, Z.[Ziti],
Park, J.M.[Jong-Min],
Agca, M.[Muge],
Zhang, H.[Hu],
He, L.[Long],
Dai, Y.Q.[Yi-Qun],
Dong, Y.D.[Ya-Dong],
Zhang, X.N.[Xiao-Ning],
Lian, Y.[Yi],
Chen, L.[Lei],
Zhao, K.[Kaiguang],
Effectiveness of the Reconstructed MODIS Typical-Angle Reflectances
on Forest Biomass Estimation,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Jiang, F.[Fugen],
Sun, H.[Hua],
Chen, E.[Erxue],
Wang, T.H.[Tian-Hong],
Cao, Y.L.[Ya-Ling],
Liu, Q.W.[Qing-Wang],
Above-Ground Biomass Estimation for Coniferous Forests in Northern
China Using Regression Kriging and Landsat 9 Images,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Illarionova, S.[Svetlana],
Shadrin, D.[Dmitrii],
Tregubova, P.[Polina],
Ignatiev, V.[Vladimir],
Efimov, A.[Albert],
Oseledets, I.[Ivan],
Burnaev, E.[Evgeny],
A Survey of Computer Vision Techniques for Forest Characterization
and Carbon Monitoring Tasks,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Mauro, F.[Francisco],
Monleon, V.J.[Vicente J.],
Gray, A.N.[Andrew N.],
Kuegler, O.[Olaf],
Temesgen, H.[Hailemariam],
Hudak, A.T.[Andrew T.],
Fekety, P.A.[Patrick A.],
Yang, Z.Q.[Zhi-Qiang],
Comparison of Model-Assisted Endogenous Poststratification Methods
for Estimation of Above-Ground Biomass Change in Oregon, USA,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Li, H.M.[Hui-Mian],
Zhang, G.L.[Gui-Lian],
Zhong, Q.C.[Qi-Cheng],
Xing, L.[Luqi],
Du, H.Q.[Hua-Qiang],
Prediction of Urban Forest Aboveground Carbon Using Machine Learning
Based on Landsat 8 and Sentinel-2: A Case Study of Shanghai, China,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Lin, H.[Hui],
Zhao, W.[Wanguo],
Long, J.P.[Jiang-Ping],
Liu, Z.H.[Zhao-Hua],
Yang, P.S.[Pei-Song],
Zhang, T.C.[Ting-Chen],
Ye, Z.[Zilin],
Wang, Q.Y.[Qing-Yang],
Matinfar, H.R.[Hamid Reza],
Mapping Forest Growing Stem Volume Using Novel Feature Evaluation
Criteria Based on Spectral Saturation in Planted Chinese Fir Forest,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Li, L.[Lu],
Zhou, B.Q.[Bo-Qi],
Liu, Y.F.[Yan-Feng],
Wu, Y.[Yong],
Tang, J.[Jing],
Xu, W.H.[Wei-Heng],
Wang, L.G.[Lei-Guang],
Ou, G.L.[Guang-Long],
Reduction in Uncertainty in Forest Aboveground Biomass Estimation
Using Sentinel-2 Images: A Case Study of Pinus densata Forests in
Shangri-La City, China,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Jiao, Y.[Yue],
Wang, D.C.[Da-Cheng],
Yao, X.J.[Xiao-Jing],
Wang, S.D.[Shu-Dong],
Chi, T.[Tianhe],
Meng, Y.[Yu],
Forest Emissions Reduction Assessment Using Optical Satellite Imagery
and Space LiDAR Fusion for Carbon Stock Estimation,
RS(15), No. 5, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Zhang, Y.Z.[Yu-Zhen],
Liu, J.J.[Jing-Jing],
Li, W.H.[Wen-Hao],
Liang, S.L.[Shun-Lin],
A Proposed Ensemble Feature Selection Method for Estimating Forest
Aboveground Biomass from Multiple Satellite Data,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Chinembiri, T.S.[Tsikai Solomon],
Mutanga, O.[Onisimo],
Dube, T.[Timothy],
Carbon Stock Prediction in Managed Forest Ecosystems Using Bayesian
and Frequentist Geostatistical Techniques and New Generation Remote
Sensing Metrics,
RS(15), No. 6, 2023, pp. 1649.
DOI Link
2304
BibRef
Menéndez-Miguélez, M.[María],
Madrigal, G.[Guillermo],
Sixto, H.[Hortensia],
Oliveira, N.[Nerea],
Calama, R.[Rafael],
Terrestrial Laser Scanning for Non-Destructive Estimation of
Aboveground Biomass in Short-Rotation Poplar Coppices,
RS(15), No. 7, 2023, pp. 1942.
DOI Link
2304
BibRef
Pei, H.Q.[Hui-Qing],
Owari, T.[Toshiaki],
Tsuyuki, S.[Satoshi],
Hiroshima, T.[Takuya],
Identifying Spatial Variation of Carbon Stock in a Warm Temperate
Forest in Central Japan Using Sentinel-2 and Digital Elevation Model
Data,
RS(15), No. 8, 2023, pp. 1997.
DOI Link
2305
BibRef
Zhang, T.[Tian],
Sun, H.[Hao],
Xu, Z.[Zhenheng],
Xu, H.Y.[Huan-Yu],
Wu, D.[Dan],
Wu, L.[Ling],
Comparison of Three Active Microwave Models of Forest Growing Stock
Volume Based on the Idea of the Water Cloud Model,
RS(15), No. 11, 2023, pp. 2848.
DOI Link
2306
BibRef
Fang, G.S.[Geng-Sheng],
He, X.B.[Xia-Bing],
Weng, Y.H.[Yu-Hui],
Fang, L.[Luming],
Texture Features Derived from Sentinel-2 Vegetation Indices for
Estimating and Mapping Forest Growing Stock Volume,
RS(15), No. 11, 2023, pp. 2821.
DOI Link
2306
BibRef
Guo, L.J.[Li-Jie],
Wu, Y.J.[Yan-Jie],
Deng, L.[Lei],
Hou, P.[Peng],
Zhai, J.[Jun],
Chen, Y.[Yan],
A Feature-Level Point Cloud Fusion Method for Timber Volume of Forest
Stands Estimation,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Pereira, E.A.V.[Edward A. Velasco],
Martínez, M.A.V.[María A. Varo],
Gómez, F.J.R.[Francisco J. Ruiz],
Navarro-Cerrillo, R.M.[Rafael M.],
Temporal Changes in Mediterranean Pine Forest Biomass Using Synergy
Models of ALOS PALSAR-Sentinel 1-Landsat 8 Sensors,
RS(15), No. 13, 2023, pp. 3430.
DOI Link
2307
BibRef
Mukhopadhyay, R.[Ritwika],
Nćsset, E.[Erik],
Gobakken, T.[Terje],
Mienna, I.M.[Ida Marielle],
Bielza, J.C.[Jaime Candelas],
Austrheim, G.[Gunnar],
Persson, H.J.[Henrik Jan],
Řrka, H.O.[Hans Ole],
Roald, B.E.[Bjřrn-Eirik],
Bollandsĺs, O.M.[Ole Martin],
Mapping and Estimating Aboveground Biomass in an Alpine Treeline
Ecotone under Model-Based Inference,
RS(15), No. 14, 2023, pp. 3508.
DOI Link
2307
BibRef
Bazrafkan, A.[Aliasghar],
Delavarpour, N.[Nadia],
Oduor, P.G.[Peter G.],
Bandillo, N.[Nonoy],
Flores, P.[Paulo],
An Overview of Using Unmanned Aerial System Mounted Sensors to
Measure Plant Above-Ground Biomass,
RS(15), No. 14, 2023, pp. 3543.
DOI Link
2307
BibRef
Ge, S.J.[Shao-Jia],
Tomppo, E.[Erkki],
Rauste, Y.[Yrjö],
McRoberts, R.E.[Ronald E.],
Praks, J.[Jaan],
Gu, H.[Hong],
Su, W.M.[Wei-Min],
Antropov, O.[Oleg],
Sentinel-1 Time Series for Predicting Growing Stock Volume of Boreal
Forest: Multitemporal Analysis and Feature Selection,
RS(15), No. 14, 2023, pp. 3489.
DOI Link
2307
BibRef
Huang, T.B.[Tian-Bao],
Ou, G.L.[Guang-Long],
Wu, Y.[Yong],
Zhang, X.L.[Xiao-Li],
Liu, Z.[Zihao],
Xu, H.[Hui],
Xu, X.W.[Xiong-Wei],
Wang, Z.H.[Zheng-Hui],
Xu, C.[Can],
Estimating the Aboveground Biomass of Various Forest Types with High
Heterogeneity at the Provincial Scale Based on Multi-Source Data,
RS(15), No. 14, 2023, pp. 3550.
DOI Link
2307
BibRef
de Paula-Sousa-Júnior, V.[Vicente],
Sparacino, J.[Javier],
de Espindola, G.M.[Giovana Mira],
Sousa-de Assis, R.J.[Raimundo Jucier],
Carbon Biomass Estimation Using Vegetation Indices in
Agriculture-Pasture Mosaics in the Brazilian Caatinga Dry Tropical
Forest,
IJGI(12), No. 9, 2023, pp. 354.
DOI Link
2310
BibRef
You, L.[Lei],
Chang, X.[Xiaosa],
Sun, Y.F.[Yi-Fan],
Pang, Y.[Yong],
Feng, Y.[Yan],
Song, X.Y.[Xin-Yu],
Volume Estimation of Stem Segments Based on a Tetrahedron Model Using
Terrestrial Laser Scanning Data,
RS(15), No. 20, 2023, pp. 5060.
DOI Link
2310
BibRef
Villegas, M.H.S.[Mike H. Salazar],
Qasim, M.[Mohammad],
Csaplovics, E.[Elmar],
González-Martinez, R.[Roy],
Rodriguez-Buritica, S.[Susana],
Abril, L.N.R.[Lisette N. Ramos],
Villegas, B.S.[Billy Salazar],
Examining the Potential of Sentinel Imagery and Ensemble Algorithms
for Estimating Aboveground Biomass in a Tropical Dry Forest,
RS(15), No. 21, 2023, pp. 5086.
DOI Link
2311
BibRef
Chen, L.[Li],
Lin, H.[Hui],
Long, J.P.[Jiang-Ping],
Liu, Z.H.[Zhao-Hua],
Yang, P.S.[Pei-Song],
Zhang, T.[Tingchen],
Evaluating the Transferability of Spectral Variables and Prediction
Models for Mapping Forest Aboveground Biomass Using Transfer Learning
Methods,
RS(15), No. 22, 2023, pp. 5358.
DOI Link
2311
BibRef
Amitrano, D.[Donato],
Giacco, G.[Giovanni],
Marrone, S.[Stefano],
Pascarella, A.E.[Antonio Elia],
Rigiroli, M.[Mattia],
Sansone, C.[Carlo],
Forest Aboveground Biomass Estimation Using Machine Learning
Ensembles: Active Learning Strategies for Model Transfer and Field
Sampling Reduction,
RS(15), No. 21, 2023, pp. 5138.
DOI Link
2311
BibRef
Chen, Z.[Zhao],
Sun, Z.B.[Zhi-Bin],
Zhang, H.[Huaiqing],
Zhang, H.[Huacong],
Qiu, H.Q.[Han-Qing],
Aboveground Forest Biomass Estimation Using Tent Mapping Atom Search
Optimized Backpropagation Neural Network with Landsat 8 and
Sentinel-1A Data,
RS(15), No. 24, 2023, pp. 5653.
DOI Link
2401
BibRef
Muumbe, T.P.[Tasiyiwa Priscilla],
Singh, J.[Jenia],
Baade, J.[Jussi],
Raumonen, P.[Pasi],
Coetsee, C.[Corli],
Thau, C.[Christian],
Schmullius, C.[Christiane],
Individual Tree-Scale Aboveground Biomass Estimation of Woody
Vegetation in a Semi-Arid Savanna Using 3D Data,
RS(16), No. 2, 2024, pp. 399.
DOI Link
2402
BibRef
Chiesi, M.[Marta],
Fibbi, L.[Luca],
Vanucci, S.[Silvana],
Maselli, F.[Fabio],
Use of Remote Sensing and Biogeochemical Modeling to Simulate the
Impact of Climatic and Anthropogenic Factors on Forest Carbon Fluxes,
RS(16), No. 2, 2024, pp. 232.
DOI Link
2402
BibRef
Wang, B.[Bo],
Chen, Y.[Yao],
Yan, Z.J.[Zhi-Jun],
Liu, W.W.[Wei-Wei],
Integrating Remote Sensing Data and CNN-LSTM-Attention Techniques for
Improved Forest Stock Volume Estimation: A Comprehensive Analysis of
Baishanzu Forest Park, China,
RS(16), No. 2, 2024, pp. 324.
DOI Link
2402
BibRef
Qian, T.[Tana],
Ooba, M.[Makoto],
Fujii, M.[Minoru],
Matsui, T.[Takanori],
Haga, C.[Chihiro],
Namba, A.[Akiko],
Nakamura, S.[Shogo],
Estimation of Forest Residual Biomass for Bioelectricity Utilization
towards Carbon Neutrality Based on Sentinel-2A Multi-Temporal Images:
A Case Study of Aizu Region of Fukushima, Japan,
RS(16), No. 4, 2024, pp. 706.
DOI Link
2402
BibRef
Chen, N.[Na],
Tsendbazar, N.E.[Nandin-Erdene],
Suarez, D.R.[Daniela Requena],
Silva-Junior, C.H.L.[Celso H.L.],
Verbesselt, J.[Jan],
Herold, M.[Martin],
Revealing the spatial variation in biomass uptake rates of Brazil's
secondary forests,
PandRS(208), 2024, pp. 233-244.
Elsevier DOI
2402
AGB recovery, Forest age, GWR, Remote sensing, Secondary forests,
Surrounding tree cover
BibRef
Bauer, L.[Luise],
Huth, A.[Andreas],
Bogdanowski, A.[André],
Müller, M.[Michael],
Fischer, R.[Rico],
Edge Effects in Amazon Forests: Integrating Remote Sensing and
Modelling to Assess Changes in Biomass and Productivity,
RS(16), No. 3, 2024, pp. 501.
DOI Link
2402
BibRef
Suwanlee, S.R.[Savittri Ratanopad],
Pinasu, D.[Dusadee],
Som-Ard, J.[Jaturong],
Borgogno-Mondino, E.[Enrico],
Sarvia, F.[Filippo],
Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the
Combined Time Series of Sentinel Data with Machine Learning
Algorithms,
RS(16), No. 5, 2024, pp. 750.
DOI Link
2403
BibRef
Nie, Y.H.[Yong-Hui],
Hu, Y.F.[Yi-Fan],
Sa, R.[Rula],
Fan, W.[Wenyi],
Inversion of Forest above Ground Biomass in Mountainous Region Based
on PolSAR Data after Terrain Correction: A Case Study from Saihanba,
China,
RS(16), No. 5, 2024, pp. 846.
DOI Link
2403
BibRef
Li, Y.Q.[Yuan-Qi],
Hu, R.H.[Rong-Hai],
Xing, Y.Z.[Yu-Zhen],
Pang, Z.[Zhe],
Chen, Z.[Zhi],
Niu, H.S.[Hai-Shan],
Comparison of Three Approaches for Estimating Understory Biomass in
Yanshan Mountains,
RS(16), No. 6, 2024, pp. 1060.
DOI Link
2403
BibRef
Tian, X.[Xin],
Li, J.[Jiejie],
Zhang, F.[Fanyi],
Zhang, H.B.[Hai-Bo],
Jiang, M.[Mi],
Forest Aboveground Biomass Estimation Using Multisource Remote
Sensing Data and Deep Learning Algorithms: A Case Study over Hangzhou
Area in China,
RS(16), No. 6, 2024, pp. 1074.
DOI Link
2403
BibRef
Ali, M.[Moonis],
Lohani, B.[Bharat],
Hollaus, M.[Markus],
Pfeifer, N.[Norbert],
Benchmarking Geometry-Based Leaf-Filtering Algorithms for Tree Volume
Estimation Using Terrestrial LiDAR Scanners,
RS(16), No. 6, 2024, pp. 1021.
DOI Link
2403
BibRef
Pilikos, G.[Georgios],
Clarizia, M.P.[Maria Paola],
Floury, N.[Nicolas],
Biomass Estimation with GNSS Reflectometry Using a Deep Learning
Retrieval Model,
RS(16), No. 7, 2024, pp. 1125.
DOI Link
2404
BibRef
Liu, J.J.[Jing-Jing],
Zhang, Y.Z.[Yu-Zhen],
A Multi-Scale Forest Above-Ground Biomass Mapping Approach: Employing
a Step-by-Step Spatial Downscaling Method with Bias-Corrected
Ensemble Machine Learning,
RS(16), No. 7, 2024, pp. 1228.
DOI Link
2404
BibRef
Zhao, X.[Xuedi],
Hu, W.[Wenmin],
Han, J.[Jiang],
Wei, W.[Wei],
Xu, J.X.[Jia-Xing],
Urban Above-Ground Biomass Estimation Using GEDI Laser Data and
Optical Remote Sensing Images,
RS(16), No. 7, 2024, pp. 1229.
DOI Link
2404
BibRef
Wu, Y.[Yong],
Ou, G.L.[Guang-Long],
Lu, T.F.[Teng-Fei],
Huang, T.B.[Tian-Bao],
Zhang, X.L.[Xiao-Li],
Liu, Z.[Zihao],
Yu, Z.B.[Zhi-Bo],
Guo, B.B.[Bin-Bing],
Wang, E.[Er],
Feng, Z.H.[Zi-Hang],
Luo, H.B.[Hong-Bin],
Lu, C.[Chi],
Wang, L.G.[Lei-Guang],
Xu, W.[Weiheng],
Improving Aboveground Biomass Estimation in Lowland Tropical Forests
across Aspect and Age Stratification: A Case Study in Xishuangbanna,
RS(16), No. 7, 2024, pp. 1276.
DOI Link
2404
BibRef
Wu, Y.[Yong],
Ou, G.L.[Guang-Long],
Huang, T.[Tianbao],
Zhang, X.L.[Xiao-Li],
Liu, C.X.[Chun-Xiao],
Liu, Z.[Zhi],
Yu, Z.B.[Zhi-Bo],
Luo, H.B.[Hong-Bin],
Lu, C.[Chi],
Shi, K.[Kaize],
Wang, L.G.[Lei-Guang],
Xu, W.[Weiheng],
Climate Interprets Saturation Value Variations Better Than Soil and
Topography in Estimating Oak Forest Aboveground Biomass Using Landsat
8 OLI Imagery,
RS(16), No. 8, 2024, pp. 1338.
DOI Link
2405
BibRef
Chen, X.Y.[Xin-Yang],
Yang, K.M.[Ke-Ming],
Ma, J.[Jun],
Jiang, K.[Kegui],
Gu, X.[Xinru],
Peng, L.[Lishun],
Aboveground Biomass Inversion Based on Object-Oriented Classification
and Pearson-mRMR-Machine Learning Model,
RS(16), No. 9, 2024, pp. 1537.
DOI Link
2405
BibRef
Wu, Z.J.[Zhen-Jiang],
Yao, F.M.[Feng-Mei],
Zhang, J.H.[Jia-Hua],
Liu, H.Y.[Hao-Yu],
Estimating Forest Aboveground Biomass Using a Combination of
Geographical Random Forest and Empirical Bayesian Kriging Models,
RS(16), No. 11, 2024, pp. 1859.
DOI Link
2406
BibRef
Sa, R.[Rula],
Nie, Y.H.[Yong-Hui],
Chumachenko, S.[Sergey],
Fan, W.[Wenyi],
Biomass Estimation and Saturation Value Determination Based on
Multi-Source Remote Sensing Data,
RS(16), No. 12, 2024, pp. 2250.
DOI Link
2406
BibRef
Li, X.X.[Xiao-Xue],
Wu, J.[Juan],
Lu, S.F.[Shun-Fa],
Li, D.Q.[Deng-Qiu],
Lu, D.S.[Deng-Sheng],
Integration of Handheld and Airborne Lidar Data for Dicranopteris
Dichotoma Biomass Estimation in a Subtropical Region of Fujian
Province, China,
RS(16), No. 12, 2024, pp. 2088.
DOI Link
2406
BibRef
Wang, Y.C.[Ying-Chen],
Wang, H.T.[Hong-Tao],
Wang, C.[Cheng],
Zhang, S.T.[Shu-Ting],
Wang, R.X.[Rong-Xi],
Wang, S.H.[Shao-Hui],
Duan, J.J.[Jing-Jing],
Co-Kriging-Guided Interpolation for Mapping Forest Aboveground
Biomass by Integrating Global Ecosystem Dynamics Investigation and
Sentinel-2 Data,
RS(16), No. 16, 2024, pp. 2913.
DOI Link
2408
BibRef
Zhang, L.J.[Lin-Jing],
Yin, X.R.[Xin-Ran],
Wang, Y.[Yaru],
Chen, J.[Jing],
Aboveground Biomass Mapping in SemiArid Forests by Integrating
Airborne LiDAR with Sentinel-1 and Sentinel-2 Time-Series Data,
RS(16), No. 17, 2024, pp. 3241.
DOI Link
2409
BibRef
Leditznig, T.[Thomas],
Klug, H.[Hermann],
Estimating Carbon Stock in Unmanaged Forests Using Field Data and
Remote Sensing,
RS(16), No. 21, 2024, pp. 3926.
DOI Link
2411
BibRef
Guo, W.H.[Wen-Hua],
Liu, Z.H.[Zhi-Hua],
Xu, W.[Wenru],
Wang, W.J.[Wen J.],
Shafron, E.[Ethan],
Lv, Q.S.[Qiu-Shuang],
Li, K.[Kaili],
Zhou, S.[Siyu],
Guan, R.[Ruhong],
Yang, J.[Jian],
Spatial and Temporal Patterns of Forest Biomass Carbon Sink in China
from 1990 to 2021,
RS(16), No. 20, 2024, pp. 3811.
DOI Link
2411
BibRef
Sun, X.Y.[Xiao-Yu],
Li, G.Y.[Gui-Ying],
Wu, Q.Q.[Qin-Quan],
Ruan, J.Y.[Jing-Yi],
Li, D.Q.[Deng-Qiu],
Lu, D.S.[Deng-Sheng],
Mapping Forest Carbon Stock Distribution in a Subtropical Region with
the Integration of Airborne Lidar and Sentinel-2 Data,
RS(16), No. 20, 2024, pp. 3847.
DOI Link
2411
BibRef
Omoniyi, T.O.[Temitope Olaoluwa],
Sims, A.[Allan],
Enhancing the Precision of Forest Growing Stock Volume in the
Estonian National Forest Inventory with Different Predictive
Techniques and Remote Sensing Data,
RS(16), No. 20, 2024, pp. 3794.
DOI Link
2411
BibRef
David, H.C.[Hassan C.],
Vibrans, A.C.[Alexander C.],
Martins-Neto, R.P.[Rorai P.],
Corte, A.P.D.[Ana Paula Dalla],
Netto, S.P.[Sylvio Péllico],
Incorporating Forest Mapping-Related Uncertainty into the Error
Propagation of Wall-to-Wall Biomass Maps:
A General Approach for Large and Small Areas,
RS(16), No. 22, 2024, pp. 4295.
DOI Link
2412
BibRef
Wu, N.[Nan],
Zhang, C.[Chao],
Zhuo, W.[Wei],
Shi, R.[Runhe],
Zhu, F.Q.[Feng-Quan],
Liu, S.C.[Shi-Chang],
Assessment of the Impact of Coastal Wetland Saltmarsh Vegetation
Types on Aboveground Biomass Inversion,
RS(16), No. 24, 2024, pp. 4762.
DOI Link
2501
BibRef
Kilbride, J.B.[John B.],
Kennedy, R.E.[Robert E.],
A Large-Scale Inter-Comparison and Evaluation of Spatial Feature
Engineering Strategies for Forest Aboveground Biomass Estimation
Using Landsat Satellite Imagery,
RS(16), No. 23, 2024, pp. 4586.
DOI Link
2501
BibRef
Wang, E.[Er],
Huang, T.[Tianbao],
Liu, Z.[Zhi],
Bao, L.[Lei],
Guo, B.[Binbing],
Yu, Z.B.[Zhi-Bo],
Feng, Z.H.[Zi-Hang],
Luo, H.B.[Hong-Bin],
Ou, G.L.[Guang-Long],
Improving Forest Above-Ground Biomass Estimation Accuracy Using
Multi-Source Remote Sensing and Optimized Least Absolute Shrinkage
and Selection Operator Variable Selection Method,
RS(16), No. 23, 2024, pp. 4497.
DOI Link
2501
BibRef
Eto, S.,
Masuda, H.,
Hiraoka, Y.,
Matsushita, M.,
Takahashi, M.,
Precise Calculation of Cross Sections and Volume for Tree Stem Using
Point Clouds,
ISPRS20(B2:205-210).
DOI Link
2012
BibRef
Zahriban Heasari, M.,
Fallah, A.,
Shataee, S.,
Kalbi, S.,
Persson, H.,
Estimating The Forest Stand Volume and Basal Area Using Pleiades
Spectral and Auxiliary Data,
SMPR19(1131-1136).
DOI Link
1912
BibRef
Jiang, S.,
Yao, W.,
Heurich, M.,
Dead Wood Detection Based On Semantic Segmentation of VHR Aerial CIR
Imagery Using Optimized Fcn-densenet,
PIA19(127-133).
DOI Link
1912
BibRef
Torabzadeh, H.,
Moradi, M.,
Fatehi, P.,
Estimating Aboveground Biomass in Zagros Forest, Iran, Using Sentinel-2
Data,
SMPR19(1059-1063).
DOI Link
1912
BibRef
Tavasoli, N.,
Arefi, H.,
Samiei-Esfahany, S.,
Ronoud, Q.,
Modelling The Amount of Carbon Stock Using Remote Sensing in Urban
Forest and Its Relationship With Land Use Change,
SMPR19(1051-1058).
DOI Link
1912
BibRef
Alboabidallah, A.,
Martin, J.,
Lavender, S.,
Abbott, V.,
Using Landsat-8 and Sentinel-1 data for Above Ground Biomass
assessment in the Tamar valley and Dartmoor,
MultiTemp17(1-7)
IEEE DOI
1712
vegetation mapping, ANOVA analysis, Dartmoor, Landsat-8 Data,
Local Heights range analysis, NDVI multi-temporal range,
Sentinel-1
BibRef
Li, Y.,
Zhang, H.,
Yang, T.D.[Ting-Dong],
Ma, Z.Y.[Zai-Yang],
Visual simulation of interactive process of stand growth, structure
and thinning,
ICIVC17(746-755)
IEEE DOI
1708
Analytical models, C# languages, Computational modeling, Semantics,
Syntactics, Visualization, interactive thinning, removed trees,
stand growth, stand structure, visual, simulation
BibRef
Mokro, M.,
Tabacák, M.,
Lieskovský, M.,
Fabrika, M.,
Unmanned Aerial Vehicle Use For Wood Chips Pile Volume Estimation,
ISPRS16(B1: 953-956).
DOI Link
1610
BibRef
Akca, D.[Devrim],
Stylianidis, E.[Efstratios],
Smagas, K.[Konstantinos],
Hofer, M.[Martin],
Poli, D.[Daniela],
Gruen, A.[Armin],
Martin, V.S.[Victor Sanchez],
Altan, O.[Orhan],
Walli, A.[Andreas],
Jimeno, E.[Elisa],
Garcia, A.[Alejandro],
Volumetric Forest Change Detection Through Vhr Satellite Imagery,
ISPRS16(B8: 1213-1220).
DOI Link
1610
BibRef
Safari, A.,
Sohrabi, H.,
Ability of Landsat-8 OLI Derived Texture Metrics In Estimating
Aboveground Carbon Stocks Of Coppice Oak Forests,
ISPRS16(B8: 751-754).
DOI Link
1610
BibRef
Kim, K.M.,
Estimation Of Stand Height And Forest Volume Using High Resolution
Stereo Photography And Forest Type Map,
ISPRS16(B8: 695-698).
DOI Link
1610
BibRef
Patias, P.[Petros],
Stournara, P.[Panagiota],
Estimating Wood Volume For Pinus Brutia Trees In Forest Stands From
Quickbird-2 Imagery,
ISPRS16(B7: 329-334).
DOI Link
1610
BibRef
Xing, Y.Q.[Yan-Qiu],
Qiu, S.[Sai],
Ding, J.H.[Jian-Hua],
Tian, J.[Jing],
Estimation Of Regional Forest Aboveground Biomass Combining Icesat-glas
Waveforms And Hj-1a/hsi Hyperspectral Imageries,
ISPRS16(B7: 731-737).
DOI Link
1610
BibRef
Karpina, M.,
Jarzabek-Rychard, M.,
Tymków, P.,
Borkowski, A.,
UAV-based Automatic Tree Growth Measurement For Biomass Estimation,
ISPRS16(B8: 685-688).
DOI Link
1610
BibRef
de Keersmaecker, W.,
Lhermitte, S.,
Tits, L.,
Honnay, O.,
Coppin, P.,
Somers, B.,
Towards the large-scale assessment of vegetation biomass production
stability,
MultiTemp15(1-4)
IEEE DOI
1511
Monte Carlo methods
BibRef
Berveglieri, A.,
Oliveira, R.O.,
Tommaselli, A.M.G.,
A feasibility study on the measurement of tree trunks in forests using
multi-scale vertical images,
CloseRange14(87-92).
DOI Link
1411
BibRef
Mizoguchi, T.,
Kobayashi, Y.,
Interactive Trunk Extraction from Forest Point Cloud,
CloseRange14(433-436).
DOI Link
1411
BibRef
Steensen, T.,
Müller, S.,
Jandewerth, M.,
Büscher, O.,
Mapping Biomass Availability to Decrease the Dependency on Fossil Fuels,
Thematic14(165-171).
DOI Link
1404
BibRef
Boesch, R.,
Model Based Automatic Segmentation of Tree Stems from Single Scan Data,
SSG13(49-53).
DOI Link
1402
BibRef
Müller, S.,
Büscher, O.,
Jandewerth, M.,
Estimation of Biomass Potential Based on Classification and Height
Information,
Hannover13(263-268).
DOI Link
1308
BibRef
Amarsaikhan, D.,
Saandar, M.,
Battsengel, V.,
Amarjargal, S.,
Forest Resources Study In Mongolia Using Advanced Spatial Technologies,
ISPRS12(XXXIX-B7:257-262).
DOI Link
1209
BibRef
Sohrabi, H.,
Estimating Mixed Broadleaves Forest Stand Volume Using DSM Extracted
From Digital Aerial Images,
ISPRS12(XXXIX-B8:437-440).
DOI Link
1209
BibRef
Uramoto, Y.,
Zhu, L.,
Tachibana, K.,
Shimamura, H.,
Ogaya, N.,
Development Of Photogrammetry System For Grasping Forest Resources
Information,
ISPRS12(XXXIX-B8:447-450).
DOI Link
1209
BibRef
Sah, B.P.,
Hämäläinen, J.M.,
Sah, A.K.,
Honji, K.,
Foli, E.G.,
Awudi, C.,
The Use Of Satellite Imagery To Guide Field Plot Sampling Scheme For
Biomass Estimation In Ghanaian Forest,
AnnalsPRS(I-4), No. 2012, pp. 221-226.
DOI Link
1209
BibRef
Perry, E.M.,
Fitzgerald, G.J.,
Poole, N.,
Craig, S.,
Whitlock, A.,
NDVI from Active Optical Sensors As A Measure Of Canopy Cover And
Biomass,
ISPRS12(XXXIX-B8:317-319).
DOI Link
1209
BibRef
Forsman, M.,
Börlin, N.,
Holmgren, J.,
Estimation Of Tree Stem Attributes Using Terrestrial Photogrammetry,
ISPRS12(XXXIX-B5:261-265).
DOI Link
1209
BibRef
Kamiya, T.,
Koizumi, H.,
Wang, J.,
Itaya, A.,
Forest Resource Management System By Standing Tree Volume Estimation
Using Aerial Stereo Photos,
ISPRS12(XXXIX-B8:413-417).
DOI Link
1209
BibRef
Vock, D.,
Gumhold, S.,
Spehr, M.,
Westfield, P.,
Maas, H.G.,
GPU-based Volumetric Reconstruction Of Trees From Multiple Images,
CloseRange10(xx-yy).
PDF File.
1006
See also Automatic Feature Matching Between Digital Images And 2d Representations Of A 3d Laser Scanner Point Cloud.
BibRef
Rosette, J.,
North, P.,
Suárez, J.,
A Method of Directly Estimating Stemwood Volume from GLAS Waveform
Parameters,
Laser07(344).
PDF File.
0709
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Canopy Height Measurement .