Badhwar, G.D.,
Austin, W.W.,
Carnes, J.G.,
A semi-automatic technique for multitemporal classification of a given
crop within a landsat scene,
PR(15), No. 3, 1982, pp. 217-230.
Elsevier DOI
0309
BibRef
Davis, L.S.[Larry S.],
Wang, C.Y.[Cheng-Ye],
Xie, H.C.[Hu-Chen],
An Experiment in Multispectral, Multitemporal Crop Classification
Using Relaxation Techniques,
CVGIP(23), No. 2, August 1983, pp. 227-235.
Elsevier DOI
BibRef
8308
Sun, W.X.[Wan-Xiao],
Heidt, V.,
Gong, P.[Peng],
Xu, G.[Gang],
Information fusion for rural land-use classification with
high-resolution satellite imagery,
GeoRS(41), No. 4, April 2003, pp. 883-890.
IEEE Abstract.
0307
BibRef
Aplin, P.[Paul],
Atkinson, P.M.[Peter M.],
Predicting Missing Field Boundaries to Increase Per-Field
Classification Accuracy,
PhEngRS(70), No. 1, January 2004, pp. 141-150.
WWW Link.
0403
Missing field boundaries were predicted by comparing the within-field
modal land-cover proportion and local variance to increase the
accuracy of per-field classification.
See also Super-resolution target identification from remotely sensed images using a Hopfield neural network.
BibRef
Somers, B.[Ben],
Delalieux, S.[Stephanie],
Verstraeten, W.W.[Willem W.],
Coppin, P.[Pol],
A Conceptual Framework for the Simultaneous Extraction of Sub-pixel
Spatial Extent and Spectral Characteristics of Crops,
PhEngRS(75), No. 1, January 2009, pp. 57-68.
WWW Link.
0902
BibRef
Lucas, R.[Richard],
Rowlands, A.[Aled],
Brown, A.[Alan],
Keyworth, S.[Steve],
Bunting, P.[Peter],
Rule-based classification of multi-temporal satellite imagery for
habitat and agricultural land cover mapping,
PandRS(62), No. 3, August 2007, pp. 165-185.
Elsevier DOI
0709
Time-series imagery; Landsat; Segmentation; Decision rules; Fuzzy membership
BibRef
Johnson, D.M.[David M.],
A Comparison of Coincident Landsat-5 TM and Resourcesat-1 AWiFS Imagery
for Classifying Croplands,
PhEngRS(74), No. 11, November 2008, pp. 1413-1424.
WWW Link.
0804
Testing the suitability of AWiFS imagery with TM as a benchmark for
deriving row crop focused cover type maps over highly cultivated
regions of the central U.S.
BibRef
Leite, P.B.C.[Paula Beatriz Cerqueira],
Feitosa, R.Q.[Raul Queiroz],
Formaggio, A.R.[Antonio Roberto],
da Costa, G.A.O.P.[Gilson Alexandre Ostwald Pedro],
Pakzad, K.[Kian],
Sanches, I.D.[Ieda Del'Arco],
Hidden Markov Models for crop recognition in remote sensing image
sequences,
PRL(31), No. 1, January 2010, pp. 19-26.
Elsevier DOI
1011
Hidden Markov Models; Crop recognition; Remote sensing
BibRef
Zheng, L.Y.[Li-Ying],
Shi, D.M.[Da-Ming],
Zhang, J.T.[Jing-Tao],
Segmentation of green vegetation of crop canopy images based on mean
shift and Fisher linear discriminant,
PRL(31), No. 9, 1 July 2010, pp. 920-925.
Elsevier DOI
1004
Mean shift; Fisher linear discriminant; Point-line distance; Crop
image; Segmentation
BibRef
Potgieter, A.B.,
Apan, A.,
Hammer, G.,
Dunn, P.,
Early-season crop area estimates for winter crops in NE Australia using
MODIS satellite imagery,
PandRS(65), No. 4, July 2010, pp. 380-387.
Elsevier DOI
1003
Early-season; Crop area estimates; Simple metric; Multi-temporal; Shire-scale
BibRef
Knoth, C.[Christian],
Nüst, D.[Daniel],
Reproducibility and Practical Adoption of GEOBIA with Open-Source
Software in Docker Containers,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
Replacing proprietary software with open source.
BibRef
Biliouris, D.,
van der Zande, D.,
Verstraeten, W.,
Stuckens, J.,
Muys, B.,
Dutré, P.,
Coppin, P.,
RPV Model Parameters Based on Hyperspectral Bidirectional Reflectance
Measurements of Fagus sylvatica L. Leaves.,
RS(1), No. 2, June 2009, pp. 92-106.
DOI Link
1203
BibRef
Hunt, E.,
Hively, W.,
Fujikawa, S.,
Linden, D.,
Daughtry, C.,
McCarty, G.,
Acquisition of NIR-Green-Blue Digital Photographs from Unmanned
Aircraft for Crop Monitoring,
RS(2), No. 1, January 2010, pp. 290-305.
DOI Link
1203
Award, Remote Sensing. 2014.
See:
DOI Link
BibRef
Panda, S.,
Ames, D.,
Panigrahi, S.,
Application of Vegetation Indices for Agricultural Crop Yield
Prediction Using Neural Network Techniques,
RS(2), No. 3, March 2010, pp. 673-696.
DOI Link
1203
BibRef
Martinez, B.,
Cassiraga, E.,
Camacho, F.,
Garcia-Haro, J.,
Geostatistics for Mapping Leaf Area Index over a Cropland Landscape:
Efficiency Sampling Assessment,
RS(2), No. 11, November 2010, pp. 2584-2606.
DOI Link
1203
BibRef
Fletcher, R.S.,
Everitt, J.H.,
Elder, H.,
Evaluating Airborne Multispectral Digital Video to Differentiate Giant
Salvinia from Other Features in Northeast Texas,
RS(2), No. 10, October 2010, pp. 2413-2423.
DOI Link
1203
BibRef
Wu, J.D.[Jin-Dong],
Bauer, M.E.[Marvin E.],
Evaluating the Effects of Shadow Detection on QuickBird Image
Classification and Spectroradiometric Restoration,
RS(5), No. 9, 2013, pp. 4450-4469.
DOI Link
1310
Shadow Detection.
BibRef
Knox, N.M.[Nichola M.],
Skidmore, A.K.[Andrew K.],
Prins, H.H.T.[Herbert H.T.],
Heitkönig, I.M.A.[Ignas M.A.],
Slotow, R.[Rob],
van der Waal, C.[Cornelis],
de Boer, W.F.[William F.],
Remote sensing of forage nutrients:
Combining ecological and spectral absorption feature data,
PandRS(72), No. 1, August 2012, pp. 27-35.
Elsevier DOI
1209
Landscape; Modelling; Monitoring; Ecology; Resources; Hyperspectral
BibRef
Holland, J.[Jennie],
Aplin, P.[Paul],
Super-resolution image analysis as a means of monitoring bracken
(Pteridium aquilinum) distributions,
PandRS(75), No. 1, January 2013, pp. 48-63.
Elsevier DOI
1301
Bracken; Super-resolution; Classification; Monitoring; Vegetation;
Scale
BibRef
Zhao, Y.,
Pu, R.,
Bell, S.S.,
Meyer, C.,
Baggett, L.P.,
Geng, X.,
Hyperion Image Optimization in Coastal Waters,
GeoRS(51), No. 2, February 2013, pp. 1025-1036.
IEEE DOI
1302
Costal vegetation of Florida.
BibRef
Turker, M.[Mustafa],
Kok, E.H.[Emre Hamit],
Field-based sub-boundary extraction from remote sensing imagery using
perceptual grouping,
PandRS(79), No. 1, May 2013, pp. 106-121.
Elsevier DOI
1305
BibRef
Earlier:
Developing an integrated system for the extraction of sub-fields within
agricultural parcels from remote sensing images,
OBIA06(xx-yy).
PDF File.
0607
Field-based; Boundary detection; Perceptual-grouping; Agriculture; SPOT
imagery
BibRef
Ozdarici, A.,
Turker, M.,
Field-based classification of agricultural crops using multi-scale
images,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Ordonez, C.,
Rodriguez-Perez, J.R.,
Moreira, J.J.,
Sanz, E.,
Using Hyperspectral Spectrometry and Functional Models to Characterize
Vine-Leaf Composition,
GeoRS(51), No. 5, May 2013, pp. 2610-2618.
IEEE DOI
1305
BibRef
Rembold, F.[Felix],
Atzberger, C.[Clement],
Savin, I.[Igor],
Rojas, O.[Oscar],
Using Low Resolution Satellite Imagery for Yield Prediction and Yield
Anomaly Detection,
RS(5), No. 4, April 2013, pp. 1704-1733.
DOI Link
1305
BibRef
And:
Correction:
RS(5), No. 11, 2013, pp. 5572-5573.
DOI Link
1312
BibRef
Kamble, B.,
Kilic, A.,
Hubbard, K.,
Estimating Crop Coefficients Using Remote Sensing-Based Vegetation
Index,
RS(5), No. 4, April 2013, pp. 1588-1602.
DOI Link
1305
BibRef
Mishra, V.[Vikalp],
Cruise, J.F.[James F.],
Mecikalski, J.R.[John R.],
Hain, C.R.[Christopher R.],
Anderson, M.C.[Martha C.],
A Remote-Sensing Driven Tool for Estimating Crop Stress and Yields,
RS(5), No. 7, 2013, pp. 3331-3356.
DOI Link
1308
BibRef
Peng, D.L.[Dai-Liang],
Jiang, Z.Y.[Zhang-Yan],
Huete, A.R.[Alfredo R.],
Ponce-Campos, G.E.[Guillermo E.],
Nguyen, U.[Uyen],
Luvall, J.C.[Jeffrey C.],
Response of Spectral Reflectances and Vegetation Indices on Varying
Juniper Cone Densities,
RS(5), No. 10, 2013, pp. 5330-5345.
DOI Link
1311
BibRef
Roelofsen, H.D.[Hans D.],
van Bodegom, P.M.[Peter M.],
Kooistra, L.[Lammert],
Witte, J.P.M.[Jan-Philip M.],
Trait Estimation in Herbaceous Plant Assemblages from in situ Canopy
Spectra,
RS(5), No. 12, 2013, pp. 6323-6345.
DOI Link
1402
BibRef
Beamish, D.[David],
Peat Mapping Associations of Airborne Radiometric Survey Data,
RS(6), No. 1, 2014, pp. 521-539.
DOI Link
1402
BibRef
Wilson, J.H.[Jeffrey H.],
Zhang, C.H.[Chun-Hua],
Kovacs, J.M.[John M.],
Separating Crop Species in Northeastern Ontario Using Hyperspectral
Data,
RS(6), No. 2, 2014, pp. 925-945.
DOI Link
1403
BibRef
Li, P.[Peng],
Feng, Z.M.[Zhi-Ming],
Jiang, L.[Luguang],
Liao, C.[Chenhua],
Zhang, J.H.[Jing-Hua],
A Review of Swidden Agriculture in Southeast Asia,
RS(6), No. 2, 2014, pp. 1654-1683.
DOI Link
1403
BibRef
Chen, J.[Jun],
Cui, T.W.[Ting-Wei],
Qiu, Z.F.[Zhong-Feng],
Lin, C.S.[Chang-Song],
A simple two-band semi-analytical model for retrieval of specific
absorption coefficients in coastal waters,
PandRS(91), No. 1, 2014, pp. 85-97.
Elsevier DOI
1404
Remote sensing
BibRef
Jiang, Z.W.[Zhi-Wei],
Chen, Z.X.[Zhong-Xin],
Chen, J.[Jin],
Ren, J.Q.[Jian-Qiang],
Li, Z.N.[Zong-Nan],
Sun, L.[Liang],
The Estimation of Regional Crop Yield Using Ensemble-Based
Four-Dimensional Variational Data Assimilation,
RS(6), No. 4, 2014, pp. 2664-2681.
DOI Link
1405
BibRef
Lewis, S.M.[Sarah M.],
Kelly, M.[Maggi],
Mapping the Potential for Biofuel Production on Marginal Lands:
Differences in Definitions, Data and Models across Scales,
IJGI(3), No. 2, 2014, pp. 430-459.
DOI Link
1405
BibRef
Peña, J.M.[José M.],
Gutiérrez, P.A.[Pedro A.],
Hervás-Martínez, C.[César],
Six, J.[Johan],
Plant, R.E.[Richard E.],
López-Granados, F.[Francisca],
Object-Based Image Classification of Summer Crops with Machine
Learning Methods,
RS(6), No. 6, 2014, pp. 5019-5041.
DOI Link
1407
BibRef
Zhang, M.[Miao],
Wu, B.F.[Bing-Fang],
Yu, M.Z.[Ming-Zhao],
Zou, W.T.[Wen-Tao],
Zheng, Y.[Yang],
Crop Condition Assessment with Adjusted NDVI Using the Uncropped
Arable Land Ratio,
RS(6), No. 6, 2014, pp. 5774-5794.
DOI Link
1407
BibRef
Prilepova, O.[Olga],
Hart, Q.[Quinn],
Merz, J.[Justin],
Parker, N.[Nathan],
Bandaru, V.[Varaprasad],
Jenkins, B.[Bryan],
Design of a GIS-Based Web Application for Simulating Biofuel
Feedstock Yields,
IJGI(3), No. 3, 2014, pp. 929-941.
DOI Link
1407
BibRef
Leroux, L.[Louise],
Jolivot, A.[Audrey],
Bégué, A.[Agnès],
Lo Seen, D.[Danny],
Zoungrana, B.[Bernardin],
How Reliable is the MODIS Land Cover Product for Crop Mapping
Sub-Saharan Agricultural Landscapes?,
RS(6), No. 9, 2014, pp. 8541-8564.
DOI Link
1410
BibRef
Cai, W.W.[Wen-Wen],
Yuan, W.P.[Wen-Ping],
Liang, S.L.[Shun-Lin],
Liu, S.G.[Shu-Guang],
Dong, W.J.[Wen-Jie],
Chen, Y.[Yang],
Liu, D.[Dan],
Zhang, H.C.[Hai-Cheng],
Large Differences in Terrestrial Vegetation Production Derived from
Satellite-Based Light Use Efficiency Models,
RS(6), No. 9, 2014, pp. 8945-8965.
DOI Link
1410
BibRef
Hoberg, T.[Thorsten],
Rottensteiner, F.[Franz],
Feitosa, R.Q.[Raul Queiroz],
Heipke, C.[Christian],
Conditional Random Fields for Multitemporal and Multiscale
Classification of Optical Satellite Imagery,
GeoRS(53), No. 2, February 2015, pp. 659-673.
IEEE DOI
1411
BibRef
Earlier: A1, A2, A4, Only:
Context Models for CRF-Based Classification of Multitemporal Remote
Sensing Data,
AnnalsPRS(I-7), No. 2012, pp. 129-134.
DOI Link
1209
BibRef
Earlier: A1, A2, A4, Only:
Classification of multitemporal remote sensing data of different
resolution using Conditional Random Fields,
CVRSE11(235-242).
IEEE DOI
1201
artificial satellites
BibRef
Hoberg, T.,
Müller, S.,
Multitemporal Crop Type Classification using Conditional Random Fields
and RapidEye Data,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Albert, L.[Lena],
Rottensteiner, F.[Franz],
Heipke, C.[Christian],
A higher order conditional random field model for simultaneous
classification of land cover and land use,
PandRS(130), No. 1, 2017, pp. 63-80.
Elsevier DOI
1708
BibRef
Earlier:
Contextual Land Use Classification:
How Detailed Can The Class Structure Be?,
ISPRS16(B4: 11-18).
DOI Link
1610
BibRef
Earlier:
A two-layer Conditional Random Field model for simultaneous
classification of land cover and land use,
PCV14(17-24).
DOI Link
1404
Contextual, classification.
See also Sequential Gaussian Mixture Models for Two-Level Conditional Random Fields.
BibRef
Kouadio, L.[Louis],
Newlands, N.K.[Nathaniel K.],
Davidson, A.[Andrew],
Zhang, Y.[Yinsuo],
Chipanshi, A.[Aston],
Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop
Yield Forecasting at the Ecodistrict Scale,
RS(6), No. 10, 2014, pp. 10193-10214.
DOI Link
1411
BibRef
Mattiuzzi, M.[Matteo],
Bussink, C.[Coen],
Bauer, T.[Thomas],
Analysing Phenological Characteristics Extracted from Landsat NDVI Time
Series to Identify Suitable Image Acquisition Dates for Cannabis
Mapping in Afghanistan,
PFG(2014), No. 5, 2014, pp. 383-392.
DOI Link
1411
BibRef
Li, X.X.[Xiao-Xiao],
Shao, G.F.[Guo-Fan],
Object-Based Land-Cover Mapping with High Resolution Aerial
Photography at a County Scale in Midwestern USA,
RS(6), No. 11, 2014, pp. 11372-11390.
DOI Link
1412
BibRef
Doktor, D.[Daniel],
Lausch, A.[Angela],
Spengler, D.[Daniel],
Thurner, M.[Martin],
Extraction of Plant Physiological Status from Hyperspectral
Signatures Using Machine Learning Methods,
RS(6), No. 12, 2014, pp. 12247-12274.
DOI Link
1412
BibRef
Marshall, M.[Michael],
Thenkabail, P.[Prasad],
Developing in situ Non-Destructive Estimates of Crop Biomass to
Address Issues of Scale in Remote Sensing,
RS(7), No. 1, 2015, pp. 808-835.
DOI Link
1502
BibRef
Bareth, G.[Georg],
Aasen, H.[Helge],
Bendig, J.[Juliane],
Gnyp, M.L.[Martin Leon],
Bolten, A.[Andreas],
Jung, A.[András],
Michels, R.[René],
Soukkamäki, J.[Jussi],
Low-weight and UAV-based Hyperspectral Full-frame Cameras for
Monitoring Crops:
Spectral Comparison with Portable Spectroradiometer Measurements,
PFG(2015), No. 1, 2015, pp. 69-79.
DOI Link
1503
BibRef
Pôças, I.[Isabel],
Paço, T.A.[Teresa A.],
Paredes, P.[Paula],
Cunha, M.[Mário],
Pereira, L.S.[Luís S.],
Estimation of Actual Crop Coefficients Using Remotely Sensed
Vegetation Indices and Soil Water Balance Modelled Data,
RS(7), No. 3, 2015, pp. 2373-2400.
DOI Link
1504
BibRef
Miao, R.H.[Rong-Hui],
Tang, J.L.[Jing-Lei],
Chen, X.Q.[Xiao-Qian],
Classification of farmland images based on color features,
JVCIR(29), No. 1, 2015, pp. 138-146.
Elsevier DOI
1504
Color features
BibRef
Hao, P.Y.[Peng-Yu],
Zhan, Y.L.[Yu-Lin],
Wang, L.[Li],
Niu, Z.[Zheng],
Shakir, M.[Muhammad],
Feature Selection of Time Series MODIS Data for Early Crop
Classification Using Random Forest: A Case Study in Kansas, USA,
RS(7), No. 5, 2015, pp. 5347-5369.
DOI Link
1506
BibRef
Ozdarici-Ok, A.[Asli],
Ok, A.O.[Ali Ozgun],
Schindler, K.[Konrad],
Mapping of Agricultural Crops from Single High-Resolution
Multispectral Images:
Data-Driven Smoothing vs. Parcel-Based Smoothing,
RS(7), No. 5, 2015, pp. 5611-5638.
DOI Link
1506
BibRef
Lanaras, C.,
Bioucas-Dias, J.,
Baltsavias, E.,
Schindler, K.[Konrad],
Super-Resolution of Multispectral Multiresolution Images from a
Single Sensor,
EarthVision17(1505-1513)
IEEE DOI
1709
Estimation, MODIS, Monitoring, Remote sensing, Signal resolution,
Spatial, resolution
BibRef
Schmedtmann, J.[Jonas],
Campagnolo, M.L.[Manuel L.],
Reliable Crop Identification with Satellite Imagery in the Context of
Common Agriculture Policy Subsidy Control,
RS(7), No. 7, 2015, pp. 9325.
DOI Link
1506
BibRef
Waldner, F.[François],
Lambert, M.J.[Marie-Julie],
Li, W.J.[Wen-Juan],
Weiss, M.[Marie],
Demarez, V.[Valérie],
Morin, D.[David],
Marais-Sicre, C.[Claire],
Hagolle, O.[Olivier],
Baret, F.[Frédéric],
Defourny, P.[Pierre],
Land Cover and Crop Type Classification along the Season Based on
Biophysical Variables Retrieved from Multi-Sensor High-Resolution
Time Series,
RS(7), No. 8, 2015, pp. 10400.
DOI Link
1509
BibRef
Hamada, Y.[Yuki],
Ssegane, H.[Herbert],
Negri, M.C.[Maria Cristina],
Mapping Intra-Field Yield Variation Using High Resolution Satellite
Imagery to Integrate Bioenergy and Environmental Stewardship in an
Agricultural Watershed,
RS(7), No. 8, 2015, pp. 9753.
DOI Link
1509
BibRef
Kou, X.K.[Xiao-Kang],
Chai, L.[Linna],
Jiang, L.M.[Ling-Mei],
Zhao, S.J.[Shao-Jie],
Yan, S.[Shuang],
Modeling of the Permittivity of Holly Leaves in Frozen Environments,
GeoRS(53), No. 11, November 2015, pp. 6048-6057.
IEEE DOI
1509
vegetation
BibRef
Marshall, M.[Michael],
Thenkabail, P.[Prasad],
Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS,
GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in
crop biomass estimation,
PandRS(108), No. 1, 2015, pp. 205-218.
Elsevier DOI
1511
Earth observation
BibRef
Villa, P.[Paolo],
Stroppiana, D.[Daniela],
Fontanelli, G.[Giacomo],
Azar, R.[Ramin],
Brivio, P.A.[Pietro Alessandro],
In-Season Mapping of Crop Type with Optical and X-Band SAR Data: A
Classification Tree Approach Using Synoptic Seasonal Features,
RS(7), No. 10, 2015, pp. 12859.
DOI Link
1511
BibRef
Liu, X.L.[Xiao-Long],
Bo, Y.C.[Yan-Chen],
Zhang, J.[Jian],
He, Y.Q.[Ya-Qian],
Classification of C3 and C4 Vegetation Types Using MODIS and ETM+
Blended High Spatio-Temporal Resolution Data,
RS(7), No. 11, 2015, pp. 15244.
DOI Link
1512
BibRef
Wu, M.Q.[Ming-Quan],
Zhang, X.Y.[Xiao-Yang],
Huang, W.J.[Wen-Jiang],
Niu, Z.[Zheng],
Wang, C.Y.[Chang-Yao],
Li, W.[Wang],
Hao, P.Y.[Peng-Yu],
Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and
MODIS Data for Crop Monitoring,
RS(7), No. 12, 2015, pp. 15826.
DOI Link
1601
BibRef
Heim, R.H.J.[René Hans-Jürgen],
Jürgens, N.[Norbert],
Große-Stoltenberg, A.[André],
Oldeland, J.[Jens],
The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice
Plants (Aizoaceae),
RS(7), No. 12, 2015, pp. 15862.
DOI Link
1601
BibRef
Meroni, M.,
Fasbender, D.,
Balaghi, R.,
Dali, M.,
Haffani, M.,
Haythem, I.,
Hooker, J.,
Lahlou, M.,
Lopez-Lozano, R.,
Mahyou, H.,
Ben Moussa, M.,
Sghaier, N.,
Wafa, T.,
Leo, O.,
Evaluating NDVI Data Continuity Between SPOT-VEGETATION and PROBA-V
Missions for Operational Yield Forecasting in North African Countries,
GeoRS(54), No. 2, February 2016, pp. 795-804.
IEEE DOI
1601
Agriculture
BibRef
Li, J.Z.[Jing-Zhong],
Liu, Y.M.[Yong-Mei],
Mo, C.H.[Chong-Hui],
Wang, L.[Lei],
Pang, G.[Guowei],
Cao, M.M.[Ming-Ming],
IKONOS Image-Based Extraction of the Distribution Area of Stellera
chamaejasme L. in Qilian County of Qinghai Province, China,
RS(8), No. 2, 2016, pp. 148.
DOI Link
1603
A flower.
BibRef
Danielson, P.[Patrick],
Yang, L.M.[Li-Min],
Jin, S.[Suming],
Homer, C.[Collin],
Napton, D.[Darrell],
An Assessment of the Cultivated Cropland Class of NLCD 2006 Using a
Multi-Source and Multi-Criteria Approach,
RS(8), No. 2, 2016, pp. 101.
DOI Link
1603
BibRef
Zhang, X.Y.[Xiao-Yang],
Zhang, Q.Y.[Qing-Yuan],
Monitoring interannual variation in global crop yield using long-term
AVHRR and MODIS observations,
PandRS(114), No. 1, 2016, pp. 191-205.
Elsevier DOI
1604
Global crop yield
BibRef
Lambert, M.J.[Marie-Julie],
Waldner, F.[François],
Defourny, P.[Pierre],
Cropland Mapping over Sahelian and Sudanian Agrosystems: A
Knowledge-Based Approach Using PROBA-V Time Series at 100-m,
RS(8), No. 3, 2016, pp. 232.
DOI Link
1604
BibRef
Zhang, J.[Jian],
Yang, C.H.[Cheng-Hai],
Song, H.B.[Huai-Bo],
Hoffmann, W.C.[Wesley Clint],
Zhang, D.Y.[Dong-Yan],
Zhang, G.Z.[Guo-Zhong],
Evaluation of an Airborne Remote Sensing Platform Consisting of Two
Consumer-Grade Cameras for Crop Identification,
RS(8), No. 3, 2016, pp. 257.
DOI Link
1604
BibRef
Zhang, J.[Jian],
Yang, C.H.[Cheng-Hai],
Zhao, B.Q.[Bi-Quan],
Song, H.B.[Huai-Bo],
Hoffmann, W.C.[Wesley Clint],
Shi, Y.Y.[Ye-Yin],
Zhang, D.Y.[Dong-Yan],
Zhang, G.Z.[Guo-Zhong],
Crop Classification and LAI Estimation Using Original and
Resolution-Reduced Images from Two Consumer-Grade Cameras,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Bareth, G.[Georg],
Bendig, J.[Juliane],
Tilly, N.[Nora],
Hoffmeister, D.[Dirk],
Aasen, H.[Helge],
Bolten, A.[Andreas],
A Comparison of UAV- and TLS-derived Plant Height for Crop Monitoring:
Using Polygon Grids for the Analysis of Crop Surface Models (CSMs),
PFG(2016), No. 2, 2016, pp. 85-94.
DOI Link
1606
BibRef
Inglada, J.[Jordi],
Vincent, A.[Arthur],
Arias, M.[Marcela],
Marais-Sicre, C.[Claire],
Improved Early Crop Type Identification By Joint Use of High Temporal
Resolution SAR And Optical Image Time Series,
RS(8), No. 5, 2016, pp. 362.
DOI Link
1606
BibRef
Uhl, F.[Florian],
Bartsch, I.[Inka],
Oppelt, N.[Natascha],
Submerged Kelp Detection with Hyperspectral Data,
RS(8), No. 6, 2016, pp. 487.
DOI Link
1608
BibRef
Hu, Q.,
Wu, W.,
Song, Q.,
Yu, Q.,
Lu, M.,
Yang, P.,
Tang, H.,
Long, Y.,
Extending the Pairwise Separability Index for Multicrop
Identification Using Time-Series MODIS Images,
GeoRS(54), No. 11, November 2016, pp. 6349-6361.
IEEE DOI
1610
Agriculture
BibRef
Bose, P.[Pritam],
Kasabov, N.K.[Nikola K.],
Bruzzone, L.[Lorenzo],
Hartono, R.N.[Reggio N.],
Spiking Neural Networks for Crop Yield Estimation Based on
Spatiotemporal Analysis of Image Time Series,
GeoRS(54), No. 11, November 2016, pp. 6563-6573.
IEEE DOI
1610
Agriculture
BibRef
Alemu, W.G.[Woubet G.],
Henebry, G.M.[Geoffrey M.],
Characterizing Cropland Phenology in Major Grain Production Areas of
Russia, Ukraine, and Kazakhstan by the Synergistic Use of Passive
Microwave and Visible to Near Infrared Data,
RS(8), No. 12, 2016, pp. 1016.
DOI Link
1612
BibRef
Alemu, W.G.[Woubet G.],
Henebry, G.M.[Geoffrey M.],
Comparing Passive Microwave with Visible-To-Near-Infrared
Phenometrics in Croplands of Northern Eurasia,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Alemu, W.G.[Woubet G.],
Henebry, G.M.[Geoffrey M.],
Land Surface Phenology and Seasonality Using Cool Earthlight in
Croplands of Eastern Africa and the Linkages to Crop Production,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Xue, Z.H.[Zhao-Hui],
Du, P.J.[Pei-Jun],
Li, J.[Jun],
Su, H.J.[Hong-Jun],
Sparse graph regularization for robust crop mapping using
hyperspectral remotely sensed imagery with very few in situ data,
PandRS(124), No. 1, 2017, pp. 1-15.
Elsevier DOI
1702
Hyperspectral remote sensing
BibRef
Silva, J.[Joel],
Bacao, F.[Fernando],
Caetano, M.[Mario],
Specific Land Cover Class Mapping by Semi-Supervised Weighted Support
Vector Machines,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Iqbal, F.[Faheem],
Lucieer, A.[Arko],
Barry, K.[Karen],
Wells, R.[Reuben],
Poppy Crop Height and Capsule Volume Estimation from a Single UAS
Flight,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Danner, M.[Martin],
Berger, K.[Katja],
Wocher, M.[Matthias],
Mauser, W.[Wolfram],
Hank, T.[Tobias],
Retrieval of Biophysical Crop Variables from Multi-Angular Canopy
Spectroscopy,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Herrmann, I.[Ittai],
Berger, K.[Katja],
Remote and Proximal Assessment of Plant Traits,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Verrelst, J.[Jochem],
Sabater, N.[Neus],
Rivera, J.P.[Juan Pablo],
Muñoz-Marí, J.[Jordi],
Vicent, J.[Jorge],
Camps-Valls, G.[Gustau],
Moreno, J.[José],
Emulation of Leaf, Canopy and Atmosphere Radiative Transfer Models
for Fast Global Sensitivity Analysis,
RS(8), No. 8, 2016, pp. 673.
DOI Link
1609
BibRef
Song, Q.[Qian],
Hu, Q.[Qiong],
Zhou, Q.B.[Qing-Bo],
Hovis, C.[Ciara],
Xiang, M.T.[Ming-Tao],
Tang, H.J.[Hua-Jun],
Wu, W.B.[Wen-Bin],
In-Season Crop Mapping with GF-1/WFV Data by Combining Object-Based
Image Analysis and Random Forest,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Carl, C.[Christin],
Landgraf, D.[Dirk],
van der Maaten-Theunissen, M.[Marieke],
Biber, P.[Peter],
Pretzsch, H.[Hans],
Robinia pseudoacacia L. Flower Analyzed by Using An Unmanned Aerial
Vehicle (UAV),
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Yang, Y.P.[Ying-Pin],
Huang, Q.T.[Qi-Ting],
Wu, W.[Wei],
Luo, J.C.[Jian-Cheng],
Gao, L.J.[Li-Jing],
Dong, W.[Wen],
Wu, T.J.[Tian-Jun],
Hu, X.D.[Xiao-Dong],
Geo-Parcel Based Crop Identification by Integrating High
Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Leduc, M.B.[Marie-Bé],
Knudby, A.J.[Anders J.],
Mapping Wild Leek through the Forest Canopy Using a UAV,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Hunt, E.R.[E. Raymond],
Li, L.[Li],
Friedman, J.M.[Jennifer M.],
Gaiser, P.W.[Peter W.],
Twarog, E.[Elizabeth],
Cosh, M.H.[Michael H.],
Incorporation of Stem Water Content into Vegetation Optical Depth for
Crops and Woodlands,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Pascucci, S.[Simone],
Carfora, M.F.[Maria Francesca],
Palombo, A.[Angelo],
Pignatti, S.[Stefano],
Casa, R.[Raffaele],
Pepe, M.[Monica],
Castaldi, F.[Fabio],
A Comparison between Standard and Functional Clustering
Methodologies: Application to Agricultural Fields for Yield Pattern
Assessment,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Xu, W.[Wei],
Wang, Q.[Qili],
Chen, R.[Runyu],
Spatio-temporal prediction of crop disease severity for agricultural
emergency management based on recurrent neural networks,
GeoInfo(22), No. 2, April 2018, pp. 363-381.
WWW Link.
1805
BibRef
Moeckel, T.[Thomas],
Dayananda, S.[Supriya],
Nidamanuri, R.R.[Rama Rao],
Nautiyal, S.I.[Sun-Il],
Hanumaiah, N.[Nagaraju],
Buerkert, A.[Andreas],
Wachendorf, M.[Michael],
Estimation of Vegetable Crop Parameter by Multi-temporal UAV-Borne
Images,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Zhou, G.H.[Guan-Hua],
Ma, Z.Q.[Zhong-Qi],
Sathyendranath, S.[Shubha],
Platt, T.[Trevor],
Jiang, C.[Cheng],
Sun, K.[Kang],
Canopy Reflectance Modeling of Aquatic Vegetation for Algorithm
Development: Global Sensitivity Analysis,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Torbick, N.[Nathan],
Huang, X.D.[Xiao-Dong],
Ziniti, B.[Beth],
Johnson, D.[David],
Masek, J.[Jeff],
Reba, M.[Michele],
Fusion of Moderate Resolution Earth Observations for Operational Crop
Type Mapping,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Rotta, L.H.S.[Luiz Henrique S.],
Mishra, D.R.[Deepak R.],
Watanabe, F.S.Y.[Fernanda S.Y.],
Rodrigues, T.W.P.[Thanan W.P],
Alcântara, E.H.[Enner H.],
Imai, N.N.[Nilton N.],
Analyzing the feasibility of a space-borne sensor (SPOT-6) to
estimate the height of submerged aquatic vegetation (SAV) in inland
waters,
PandRS(144), 2018, pp. 341-356.
Elsevier DOI
1809
Radiative transfer models, Reflectance, Attenuation,
Water column correction, Bottom albedo, Hydroacoustic data,
Reservoir management
BibRef
Liu, L.L.[Ling-Ling],
Zhang, X.Y.[Xiao-Yang],
Yu, Y.Y.[Yun-Yue],
Gao, F.[Feng],
Yang, Z.W.[Zheng-Wei],
Real-Time Monitoring of Crop Phenology in the Midwestern United
States Using VIIRS Observations,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Petersen, L.K.[Lillian Kay],
Real-Time Prediction of Crop Yields From MODIS Relative Vegetation
Health: A Continent-Wide Analysis of Africa,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Liu, X.Y.[Xiang-Yu],
Tian, Y.C.[Yi-Chen],
Yuan, C.[Chao],
Zhang, F.F.[Fei-Fei],
Yang, G.[Guang],
Opium Poppy Detection Using Deep Learning,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Aneece, I.[Itiya],
Thenkabail, P.[Prasad],
Accuracies Achieved in Classifying Five Leading World Crop Types and
their Growth Stages Using Optimal Earth Observing-1 Hyperion
Hyperspectral Narrowbands on Google Earth Engine,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Berger, K.[Katja],
Atzberger, C.[Clement],
Danner, M.[Martin],
Wocher, M.[Matthias],
Mauser, W.[Wolfram],
Hank, T.[Tobias],
Model-Based Optimization of Spectral Sampling for the Retrieval of
Crop Variables with the PROSAIL Model,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Tao, J.B.[Jian-Bin],
Wu, W.B.[Wen-Bin],
Xu, M.[Meng],
Using the Bayesian Network to Map Large-Scale Cropping Intensity by
Fusing Multi-Source Data,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Malambo, L.[Lonesome],
Popescu, S.C.[Sorin C.],
Horne, D.W.,
Pugh, N.A.,
Rooney, W.L.,
Automated detection and measurement of individual sorghum panicles
using density-based clustering of terrestrial lidar data,
PandRS(149), 2019, pp. 1-13.
Elsevier DOI
1903
BibRef
Malambo, L.[Lonesome],
Popescu, S.C.[Sorin C.],
Ku, N.W.[Nian-Wei],
Rooney, W.[William],
Zhou, T.[Tan],
Moore, S.[Samuel],
A Deep Learning Semantic Segmentation-Based Approach for Field-Level
Sorghum Panicle Counting,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Liu, P.[Ping],
Chen, X.[Xi],
Intercropping Classification From GF-1 and GF-2 Satellite Imagery
Using a Rotation Forest Based on an SVM,
IJGI(8), No. 2, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Wang, L.M.[Li-Min],
Dong, Q.H.[Qing-Han],
Yang, L.B.[Ling-Bo],
Gao, J.M.[Jian-Meng],
Liu, J.[Jia],
Crop Classification Based on a Novel Feature Filtering and
Enhancement Method,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Chauhan, S.[Sugandh],
Darvishzadeh, R.[Roshanak],
Boschetti, M.[Mirco],
Pepe, M.[Monica],
Nelson, A.[Andrew],
Remote sensing-based crop lodging assessment:
Current status and perspectives,
PandRS(151), 2019, pp. 124-140.
Elsevier DOI
1904
Crop lodging, Remote sensing, Airborne, Satellite, Risk mapping,
Lodging detection
BibRef
Kim, N.[Nari],
Ha, K.J.[Kyung-Ja],
Park, N.W.[No-Wook],
Cho, J.[Jaeil],
Hong, S.[Sungwook],
Lee, Y.W.[Yang-Won],
A Comparison Between Major Artificial Intelligence Models for Crop
Yield Prediction: Case Study of the Midwestern United States,
2006-2015,
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Chen, Y.[Yang],
Lee, W.S.[Won Suk],
Gan, H.[Hao],
Peres, N.[Natalia],
Fraisse, C.[Clyde],
Zhang, Y.C.[Yan-Chao],
He, Y.[Yong],
Strawberry Yield Prediction Based on a Deep Neural Network Using
High-Resolution Aerial Orthoimages,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Siddiqui, M.D.[Muhammad Danish],
Zaidi, A.Z.[Arjumand Z.],
Abdullah, M.[Muhammad],
Performance Evaluation of Newly Proposed Seaweed Enhancing Index
(SEI),
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Huang, Q.[Qing],
Qiu, F.[Feng],
Fan, W.L.[Wei-Liang],
Liu, Y.[Yibo],
Zhang, Q.[Qian],
Evaluation of Different Methods for Estimating the Fraction of Sunlit
Leaves and Its Contribution for Photochemical Reflectance Index
Utilization in a Coniferous Forest,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
LUE: Light Use Efficiency. Simulate gross productivity.
BibRef
Dayananda, S.[Supriya],
Astor, T.[Thomas],
Wijesingha, J.[Jayan],
Thimappa, S.C.[Subbarayappa Chickadibburahalli],
Chowdappa, H.D.[Hanumanthappa Dimba],
Mudalagiriyappa,
Nidamanuri, R.R.[Rama Rao],
Nautiyal, S.I.[Sun-Il],
Wachendorf, M.[Michael],
Multi-Temporal Monsoon Crop Biomass Estimation Using Hyperspectral
Imaging,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Easterday, K.[Kelly],
Kislik, C.[Chippie],
Dawson, T.E.[Todd E.],
Hogan, S.[Sean],
Kelly, M.[Maggi],
Remotely Sensed Water Limitation in Vegetation: Insights from an
Experiment with Unmanned Aerial Vehicles (UAVs),
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Liu, L.C.[Li-Cong],
Cao, R.[Ruyin],
Shen, M.G.[Miao-Gen],
Chen, J.[Jin],
Wang, J.M.[Jian-Min],
Zhang, X.Y.[Xiao-Yang],
How Does Scale Effect Influence Spring Vegetation Phenology Estimated
from Satellite-Derived Vegetation Indexes?,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Nguyen, V.C.[Van Cuong],
Jeong, S.[Seungtaek],
Ko, J.H.[Jong-Han],
Ng, C.T.[Chi Tim],
Yeom, J.[Jongmin],
Mathematical Integration of Remotely-Sensed Information into a Crop
Modelling Process for Mapping Crop Productivity,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Qian, Y.L.[Yong-Lan],
Yang, Z.W.[Zheng-Wei],
Di, L.P.[Li-Ping],
Rahman, M.S.[Md. Shahinoor],
Tan, Z.Y.[Zhen-Yu],
Xue, L.[Lei],
Gao, F.[Feng],
Yu, E.G.[Eugene Genong],
Zhang, X.Y.[Xiao-Yang],
Crop Growth Condition Assessment at County Scale Based on
Heat-Aligned Growth Stages,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Dong, Y.D.[Ya-Dong],
Jiao, Z.[Ziti],
Cui, L.[Lei],
Zhang, H.[Hu],
Zhang, X.N.[Xiao-Ning],
Yin, S.Y.[Si-Yang],
Ding, A.X.[An-Xin],
Chang, Y.X.[Ya-Xuan],
Xie, R.[Rui],
Guo, J.[Jing],
Assessment of the Hotspot Effect for the PROSAIL Model With POLDER
Hotspot Observations Based on the Hotspot-Enhanced Kernel-Driven BRDF
Model,
GeoRS(57), No. 10, October 2019, pp. 8048-8064.
IEEE DOI
1910
Hotspot effect is a typical angular reflectance signature of
vegetation canopies.
geophysical techniques, reflectivity, remote sensing,
terrain mapping, vegetation, vegetation mapping, hotspot effect, PROSAIL model
BibRef
Abdelbaki, A.[Asmaa],
Schlerf, M.[Martin],
Verhoef, W.[Wout],
Udelhoven, T.[Thomas],
Introduction of Variable Correlation for the Improved Retrieval of
Crop Traits Using Canopy Reflectance Model Inversion,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Johansen, K.,
Morton, M.J.L.,
Malbeteau, Y.,
Aragon, B.,
Al-Mashharawi, S.,
Ziliani, M.,
Angel, Y.,
Fiene, G.,
Negrao, S.,
Mousa, M.A.A.,
Tester, M.A.,
McCabe, M.F.,
Predicting Biomass and Yield At Harvest of Salt-stressed Tomato Plants
Using UAV Imagery,
UAV-g19(407-411).
DOI Link
1912
BibRef
Lobell, D.B.[David B.],
di Tommaso, S.[Stefania],
You, C.[Calum],
Djima, I.Y.[Ismael Yacoubou],
Burke, M.[Marshall],
Kilic, T.[Talip],
Sight for Sorghums: Comparisons of Satellite- and Ground-Based
Sorghum Yield Estimates in Mali,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
ten Harkel, J.[Jelle],
Bartholomeus, H.[Harm],
Kooistra, L.[Lammert],
Biomass and Crop Height Estimation of Different Crops Using UAV-Based
Lidar,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Yin, L.[Leikun],
You, N.S.[Nan-Shan],
Zhang, G.[Geli],
Huang, J.X.[Jian-Xi],
Dong, J.[Jinwei],
Optimizing Feature Selection of Individual Crop Types for Improved
Crop Mapping,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Momm, H.G.[Henrique G.],
El Kadiri, R.[Racha],
Porter, W.[Wesley],
Crop-Type Classification for Long-Term Modeling:
An Integrated Remote Sensing and Machine Learning Approach,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Mohammed, I.[Issamaldin],
Marshall, M.[Michael],
de Bie, K.[Kees],
Estes, L.[Lyndon],
Nelson, A.[Andy],
A blended census and multiscale remote sensing approach to
probabilistic cropland mapping in complex landscapes,
PandRS(161), 2020, pp. 233-245.
Elsevier DOI
2002
Agricultural production, Landscape stratification, GAMs, NDVI,
Proba-V, Landsat
BibRef
Garcia-Millan, V.E.[Virginia E.],
Rankine, C.[Cassidy],
Sanchez-Azofeifa, G.A.[G. Arturo],
Crop Loss Evaluation Using Digital Surface Models from Unmanned
Aerial Vehicles Data,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Sukhova, E.[Ekaterina],
Sukhov, V.[Vladimir],
Relation of Photochemical Reflectance Indices Based on Different
Wavelengths to the Parameters of Light Reactions in Photosystems I
and II in Pea Plants,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Böhler, J.E.[Jonas E.],
Schaepman, M.E.[Michael E.],
Kneubühler, M.[Mathias],
Crop Separability from Individual and Combined Airborne Imaging
Spectroscopy and UAV Multispectral Data,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Ma, X.[Xu],
Wang, T.J.[Tie-Jun],
Lu, L.[Lei],
A Refined Four-Stream Radiative Transfer Model for Row-Planted Crops,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Guan, Z.[Zhen],
Abd-Elrahman, A.[Amr],
Fan, Z.[Zhen],
Whitaker, V.M.[Vance M.],
Wilkinson, B.[Benjamin],
Modeling strawberry biomass and leaf area using object-based analysis
of high-resolution images,
PandRS(163), 2020, pp. 171-186.
Elsevier DOI
2005
BibRef
And:
Corrigendum:
PandRS(167), 2020, pp. 189.
Elsevier DOI
2008
Precision agriculture, Phenotyping, close-range Remote Sensing,
Biomass modeling, Leaf area modeling, Smoothness metric,
Object-based image analysis
BibRef
Chen, Y.[Yang],
McVicar, T.R.[Tim R.],
Donohue, R.J.[Randall J.],
Garg, N.[Nikhil],
Waldner, F.[François],
Ota, N.[Noboru],
Li, L.T.[Ling-Tao],
Lawes, R.[Roger],
To Blend or Not to Blend? A Framework for Nationwide Landsat-MODIS
Data Selection for Crop Yield Prediction,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Wellington, M.J.[Michael J.],
Kuhnert, P.[Petra],
Renzullo, L.J.[Luigi J.],
Lawes, R.[Roger],
Modelling Within-Season Variation in Light Use Efficiency Enhances
Productivity Estimates for Cropland,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Dhillon, M.S.[Maninder Singh],
Dahms, T.[Thorsten],
Kuebert-Flock, C.[Carina],
Borg, E.[Erik],
Conrad, C.[Christopher],
Ullmann, T.[Tobias],
Modelling Crop Biomass from Synthetic Remote Sensing Time Series:
Example for the DEMMIN Test Site, Germany,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Karst, I.G.[Isabel G.],
Mank, I.[Isabel],
Traoré, I.[Issouf],
Sorgho, R.[Raissa],
Stückemann, K.J.[Kim-Jana],
Simboro, S.[Séraphin],
Sié, A.[Ali],
Franke, J.[Jonas],
Sauerborn, R.[Rainer],
Estimating Yields of Household Fields in Rural Subsistence Farming
Systems to Study Food Security in Burkina Faso,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Alvar-Beltrán, J.[Jorge],
Fabbri, C.[Carolina],
Verdi, L.[Leonardo],
Truschi, S.[Stefania],
Marta, A.D.[Anna Dalla],
Orlandini, S.[Simone],
Testing Proximal Optical Sensors on Quinoa Growth and Development,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Zhao, H.Q.[Heng-Qian],
Yang, C.H.[Cheng-Hai],
Guo, W.[Wei],
Zhang, L.[Lifu],
Zhang, D.Y.[Dong-Yan],
Automatic Estimation of Crop Disease Severity Levels Based on
Vegetation Index Normalization,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
And:
Correction:
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Beeson, P.C.[Peter C.],
Daughtry, C.S.T.[Craig S.T.],
Wallander, S.A.[Steven A.],
Estimates of Conservation Tillage Practices Using Landsat Archive,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
Evaluation of tillage practice.
BibRef
Melkas, T.[Timo],
Riekki, K.[Kirsi],
Sorsa, J.A.[Juha-Antti],
Automated Method for Delineating Harvested Stands Based on Harvester
Location Data,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Sánchez-Virosta, Á.[Álvaro],
Sánchez-Gómez, D.[David],
Thermography as a Tool to Assess Inter-Cultivar Variability in Garlic
Performance along Variations of Soil Water Availability,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Halubok, M.[Maryia],
Yang, Z.L.[Zong-Liang],
Estimating Crop and Grass Productivity over the United States Using
Satellite Solar-Induced Chlorophyll Fluorescence, Precipitation and
Soil Moisture Data,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Qiu, T.[Tong],
Song, C.H.[Cong-He],
Li, J.X.[Jun-Xiang],
Deriving Annual Double-Season Cropland Phenology Using Landsat
Imagery,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Messina, G.[Gaetano],
Peña, J.M.[Jose M.],
Vizzari, M.[Marco],
Modica, G.[Giuseppe],
A Comparison of UAV and Satellites Multispectral Imagery in
Monitoring Onion Crop. An Application in the 'Cipolla Rossa di
Tropea' (Italy),
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Masjedi, A.[Ali],
Crawford, M.M.[Melba M.],
Carpenter, N.R.[Neal R.],
Tuinstra, M.R.[Mitchell R.],
Multi-Temporal Predictive Modelling of Sorghum Biomass Using
UAV-Based Hyperspectral and LiDAR Data,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Pinto, J.[José],
Powell, S.[Scott],
Peterson, R.[Robert],
Rosalen, D.[David],
Fernandes, O.[Odair],
Detection of Defoliation Injury in Peanut with Hyperspectral Proximal
Remote Sensing,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Trépos, R.[Ronan],
Champolivier, L.[Luc],
Dejoux, J.F.[Jean-François],
Bitar, A. .A.[Ahmad Al],
Casadebaig, P.[Pierre],
Debaeke, P.[Philippe],
Forecasting Sunflower Grain Yield by Assimilating Leaf Area Index
into a Crop Model,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Ma, Z.[Zhe],
Liu, Z.[Zhe],
Zhao, Y.Y.[Yuan-Yuan],
Zhang, L.[Lin],
Liu, D.[Diyou],
Ren, T.W.[Tian-Wei],
Zhang, X.D.[Xiao-Dong],
Li, S.M.[Shao-Ming],
An Unsupervised Crop Classification Method Based on Principal
Components Isometric Binning,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Nevavuori, P.[Petteri],
Narra, N.[Nathaniel],
Linna, P.[Petri],
Lipping, T.[Tarmo],
Crop Yield Prediction Using Multitemporal UAV Data and
Spatio-Temporal Deep Learning Models,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Wang, R.R.[Rui-Rui],
Shi, W.[Wei],
Dong, P.L.[Pin-Liang],
Mapping Dragon Fruit Croplands from Space Using Remote Sensing of
Artificial Light at Night,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Chamorro Martinez, J.A.[Jorge Andres],
Feitosa, R.Q.[Raul Queiroz],
Happ, P.N.[Patrick Nigri],
Bermudez, J.D.,
Towards Lifelong Crop Recognition Using Fully Convolutional Recurrent
Networks and SAR Image Sequences,
ISPRS21(B2-2021: 923-929).
DOI Link
2201
BibRef
Chamorro Martinez, J.A.[Jorge Andres],
Cué La Rosa, L.E.[Laura Elena],
Feitosa, R.Q.[Raul Queiroz],
Sanches, I.D.[Ieda Del'Arco],
Happ, P.N.[Patrick Nigri],
Fully convolutional recurrent networks for multidate crop recognition
from multitemporal image sequences,
PandRS(171), 2021, pp. 188-201.
Elsevier DOI
2012
Convolutional recurrent networks,
Fully convolutional networks, Recurrent networks, Remote sensing
BibRef
Vuorinne, I.[Ilja],
Heiskanen, J.[Janne],
Pellikka, P.K.E.[Petri K. E.],
Assessing Leaf Biomass of Agave sisalana Using Sentinel-2 Vegetation
Indices,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Chang, A.[Anjin],
Jung, J.H.[Jin-Ha],
Yeom, J.[Junho],
Landivar, J.[Juan],
3D Characterization of Sorghum Panicles Using a 3D Point Cloud
Derived from UAV Imagery,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Zheng, C.[Caiwang],
Abd-Elrahman, A.[Amr],
Whitaker, V.[Vance],
Remote Sensing and Machine Learning in Crop Phenotyping and
Management, with an Emphasis on Applications in Strawberry Farming,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Sagan, V.[Vasit],
Maimaitijiang, M.[Maitiniyazi],
Bhadra, S.[Sourav],
Maimaitiyiming, M.[Matthew],
Brown, D.R.[Davis R.],
Sidike, P.[Paheding],
Fritschi, F.B.[Felix B.],
Field-scale crop yield prediction using multi-temporal WorldView-3
and PlanetScope satellite data and deep learning,
PandRS(174), 2021, pp. 265-281.
Elsevier DOI
2103
PlanetScope, WorldView-3, Deep learning,
Convolutionneural network, ResNet, Artificial intelligence, Food security
BibRef
Jaafar, H.[Hadi],
Mourad, R.[Roya],
GYMEE: A Global Field-Scale Crop Yield and ET Mapper in Google Earth
Engine Based on Landsat, Weather, and Soil Data,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Adams, T.[Tyler],
Bruton, R.[Richard],
Ruiz, H.[Henry],
Barrios-Perez, I.[Ilse],
Selvaraj, M.G.[Michael G.],
Hays, D.B.[Dirk B.],
Prediction of Aboveground Biomass of Three Cassava (Manihot
esculenta) Genotypes Using a Terrestrial Laser Scanner,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Abd-Elrahman, A.[Amr],
Wu, F.[Feng],
Agehara, S.[Shinsuke],
Britt, K.[Katie],
Improving Strawberry Yield Prediction by Integrating Ground-Based
Canopy Images in Modeling Approaches,
IJGI(10), No. 4, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Varela, S.[Sebastian],
Pederson, T.[Taylor],
Bernacchi, C.J.[Carl J.],
Leakey, A.D.B.[Andrew D. B.],
Understanding Growth Dynamics and Yield Prediction of Sorghum Using
High Temporal Resolution UAV Imagery Time Series and Machine Learning,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Kwak, G.H.[Geun-Ho],
Park, C.W.[Chan-Won],
Lee, K.D.[Kyung-Do],
Na, S.I.[Sang-Il],
Ahn, H.Y.[Ho-Yong],
Park, N.W.[No-Wook],
Potential of Hybrid CNN-RF Model for Early Crop Mapping with Limited
Input Data,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Abdelbaki, A.[Asmaa],
Schlerf, M.[Martin],
Retzlaff, R.[Rebecca],
Machwitz, M.[Miriam],
Verrelst, J.[Jochem],
Udelhoven, T.[Thomas],
Comparison of Crop Trait Retrieval Strategies Using UAV-Based VNIR
Hyperspectral Imaging,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Janoušek, J.[Jirí],
Jambor, V.[Václav],
Marcon, P.[Petr],
Dohnal, P.[Premysl],
Synková, H.[Hana],
Fiala, P.[Pavel],
Using UAV-Based Photogrammetry to Obtain Correlation between the
Vegetation Indices and Chemical Analysis of Agricultural Crops,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Zhu, X.F.[Xiu-Fang],
Guo, R.[Rui],
Liu, T.T.[Ting-Ting],
Xu, K.[Kun],
Crop Yield Prediction Based on Agrometeorological Indexes and Remote
Sensing Data,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Chancia, R.[Robert],
van Aardt, J.[Jan],
Pethybridge, S.[Sarah],
Cross, D.[Daniel],
Henderson, J.[John],
Predicting Table Beet Root Yield with Multispectral UAS Imagery,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Saif, M.S.[Mohammad S.],
Chancia, R.[Robert],
Pethybridge, S.[Sarah],
Murphy, S.P.[Sean P.],
Hassanzadeh, A.[Amirhossein],
van Aardt, J.[Jan],
Forecasting Table Beet Root Yield Using Spectral and Textural
Features from Hyperspectral UAS Imagery,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Quemada, C.[Carlos],
Pérez-Escudero, J.M.[José M.],
Gonzalo, R.[Ramón],
Ederra, I.[Iñigo],
Santesteban, L.G.[Luis G.],
Torres, N.[Nazareth],
Iriarte, J.C.[Juan Carlos],
Remote Sensing for Plant Water Content Monitoring: A Review,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Wang, C.S.[Chun-Shan],
Wang, Q.[Qian],
Wu, H.[Huarui],
Zhao, C.J.[Chun-Jiang],
Teng, G.[Guifa],
Li, J.X.[Jiu-Xi],
Low-Altitude Remote Sensing Opium Poppy Image Detection Based on
Modified YOLOv3,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Evans, F.H.[Fiona H.],
Shen, J.X.[Jian-Xiu],
Spatially Weighted Estimation of Broadacre Crop Growth Improves
Gap-Filling of Landsat NDVI,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Lawal, A.F.[Afolarin Fahd],
Kerner, H.[Hannah],
Becker-Reshef, I.[Inbal],
Meyer, S.[Seth],
Mapping the Location and Extent of 2019 Prevent Planting Acres in
South Dakota Using Remote Sensing Techniques,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
Prevented planting due to weather.
BibRef
Li, G.[Guang],
Han, W.T.[Wen-Ting],
Huang, S.J.[Shen-Jin],
Ma, W.T.[Wei-Tong],
Ma, Q.[Qian],
Cui, X.[Xin],
Extraction of Sunflower Lodging Information Based on UAV
Multi-Spectral Remote Sensing and Deep Learning,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Fang, P.[Peng],
Yan, N.[Nana],
Wei, P.P.[Pan-Pan],
Zhao, Y.F.[Yi-Fan],
Zhang, X.[Xiwang],
Aboveground Biomass Mapping of Crops Supported by Improved CASA Model
and Sentinel-2 Multispectral Imagery,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
KC, K.[Kushal],
Zhao, K.[Kaiguang],
Romanko, M.[Matthew],
Khanal, S.[Sami],
Assessment of the Spatial and Temporal Patterns of Cover Crops Using
Remote Sensing,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Padial-Iglesias, M.[Mario],
Serra, P.[Pere],
Ninyerola, M.[Miquel],
Pons, X.[Xavier],
A Framework of Filtering Rules over Ground Truth Samples to Achieve
Higher Accuracy in Land Cover Maps,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Huang, S.J.[Shen-Jin],
Han, W.T.[Wen-Ting],
Chen, H.P.[Hai-Peng],
Li, G.[Guang],
Tang, J.D.[Jian-Dong],
Recognizing Zucchinis Intercropped with Sunflowers in UAV Visible
Images Using an Improved Method Based on OCRNet,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Zhao, H.W.[Hong-Wei],
Duan, S.[Sibo],
Liu, J.[Jia],
Sun, L.[Liang],
Reymondin, L.[Louis],
Evaluation of Five Deep Learning Models for Crop Type Mapping Using
Sentinel-2 Time Series Images with Missing Information,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Liu, Y.D.[Ya-Dong],
Kim, J.[Junhwan],
Fleisher, D.H.[David H.],
Kim, K.S.[Kwang-Soo],
Analogy-Based Crop Yield Forecasts Based on Temporal Similarity of
Leaf Area Index,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Diao, C.Y.[Chun-Yuan],
Yang, Z.J.[Zi-Jun],
Gao, F.[Feng],
Zhang, X.Y.[Xiao-Yang],
Yang, Z.W.[Zheng-Wei],
Hybrid phenology matching model for robust crop phenological
retrieval,
PandRS(181), 2021, pp. 308-326.
Elsevier DOI
2110
Phenology, Remote sensing, Agriculture, Crop progress, Planting date
BibRef
Teodoro, P.E.[Paulo Eduardo],
Ribeiro Teodoro, L.P.[Larissa Pereira],
Rojo Baio, F.H.[Fábio Henrique],
da Silva Junior, C.A.[Carlos Antonio],
dos Santos, R.G.[Regimar Garcia],
Marques Ramos, A.P.[Ana Paula],
Faita Pinheiro, M.M.[Mayara Maezano],
Osco, L.P.[Lucas Prado],
Gonçalves, W.N.[Wesley Nunes],
Carneiro, A.M.[Alexsandro Monteiro],
Junior, J.M.[José Marcato],
Pistori, H.[Hemerson],
Shiratsuchi, L.S.[Luciano Shozo],
Predicting Days to Maturity, Plant Height, and Grain Yield in
Soybean: A Machine and Deep Learning Approach Using Multispectral
Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Fan, J.L.[Jin-Long],
Defourny, P.[Pierre],
Zhang, X.Y.[Xiao-Yu],
Dong, Q.H.[Qing-Han],
Wang, L.M.[Li-Min],
Qin, Z.H.[Zhi-Hao],
de Vroey, M.[Mathilde],
Zhao, C.L.[Chun-Liang],
Crop Mapping with Combined Use of European and Chinese Satellite Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Quinton, F.[Félix],
Landrieu, L.[Loic],
Crop Rotation Modeling for Deep Learning-Based Parcel Classification
from Satellite Time Series,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Johnson, D.M.[David M.],
Rosales, A.[Arthur],
Mueller, R.[Richard],
Reynolds, C.[Curt],
Frantz, R.[Ronald],
Anyamba, A.[Assaf],
Pak, E.[Ed],
Tucker, C.[Compton],
USA Crop Yield Estimation with MODIS NDVI: Are Remotely Sensed Models
Better than Simple Trend Analyses?,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Aneece, I.[Itiya],
Thenkabail, P.S.[Prasad S.],
Classifying Crop Types Using Two Generations of Hyperspectral Sensors
(Hyperion and DESIS) with Machine Learning on the Cloud,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Chen, X.[Xin],
Zhang, G.L.[Guo-Liang],
Jin, Y.L.[Yu-Ling],
Mao, S.C.[Si-Cheng],
Laakso, K.[Kati],
Sanchez-Azofeifa, A.[Arturo],
Jiang, L.[Li],
Zhou, Y.[Yi],
Zhao, H.[Haile],
Yu, L.[Le],
Jiang, R.[Rui],
Pan, Z.H.[Zhi-Hua],
An, P.[Pingli],
Evaluating the Farmland Use Intensity and Its Patterns in a Farming:
Pastoral Ecotone of Northern China,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Worrall, G.[George],
Rangarajan, A.[Anand],
Judge, J.[Jasmeet],
Domain-Guided Machine Learning for Remotely Sensed In-Season Crop
Growth Estimation,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Azzari, G.[George],
Jain, S.[Shruti],
Jeffries, G.[Graham],
Kilic, T.[Talip],
Murray, S.[Siobhan],
Understanding the Requirements for Surveys to Support Satellite-Based
Crop Type Mapping: Evidence from Sub-Saharan Africa,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Haufler, A.F.[Alex F.],
Booske, J.H.[John H.],
Hagness, S.C.[Susan C.],
Microwave Sensing for Estimating Cranberry Crop Yield:
A Pilot Study Using Simulated Canopies and Field Measurement Testbeds,
GeoRS(60), 2022, pp. 1-11.
IEEE DOI
2112
Microwave theory and techniques, Agriculture, Machine learning,
Sensors, Permittivity, Yield estimation, Soil moisture,
microwave sensing
BibRef
Yu, Y.[Ying],
Yang, X.G.[Xi-Guang],
Fan, W.Y.[Wen-Yi],
Remote Sensing Inversion of Leaf Maximum Carboxylation Rate Based on
a Mechanistic Photosynthetic Model,
GeoRS(60), 2022, pp. 1-12.
IEEE DOI
2112
Mathematical model, Forestry, Vegetation mapping, Nitrogen, Indexes,
Biological system modeling, Vegetation,
photochemical reflectance index (PRI)
BibRef
Shi, Y.[Yue],
Han, L.X.[Liang-Xiu],
Huang, W.J.[Wen-Jiang],
Chang, S.[Sheng],
Dong, Y.Y.[Ying-Ying],
Dancey, D.[Darren],
Han, L.H.[Liang-Hao],
A Biologically Interpretable Two-Stage Deep Neural Network (BIT-DNN)
for Vegetation Recognition From Hyperspectral Imagery,
GeoRS(60), 2022, pp. 1-20.
IEEE DOI
2112
Feature extraction, Biological system modeling, Deep learning,
Vegetation mapping, Data models, Biology, Neural networks,
interpretability
BibRef
Hu, X.[Xin],
Wang, X.Y.[Xin-Yu],
Zhong, Y.F.[Yan-Fei],
Zhang, L.P.[Liang-Pei],
S3ANet: Spectral-spatial-scale attention network for end-to-end
precise crop classification based on UAV-borne H2 imagery,
PandRS(183), 2022, pp. 147-163.
Elsevier DOI
2201
Precise crop classification, Spectral attention,
Spatial attention, Scale attention, WHU-Hi dataset
BibRef
Santos, A.F.[Adão F.],
Lacerda, L.N.[Lorena N.],
Rossi, C.[Chiara],
de A. Moreno, L.[Leticia],
Oliveira, M.F.[Mailson F.],
Pilon, C.[Cristiane],
Silva, R.P.[Rouverson P.],
Vellidis, G.[George],
Using UAV and Multispectral Images to Estimate Peanut Maturity
Variability on Irrigated and Rainfed Fields Applying Linear Models
and Artificial Neural Networks,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Li, M.Y.[Meng-Yao],
Zhang, R.[Rui],
Luo, H.X.[Hong-Xia],
Gu, S.W.[Song-Wei],
Qin, Z.L.[Zi-Li],
Crop Mapping in the Sanjiang Plain Using an Improved Object-Oriented
Method Based on Google Earth Engine and Combined Growth Period
Attributes,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Li, K.Y.[Kai-Yun],
Sampaio de Lima, R.[Raul],
Burnside, N.G.[Niall G.],
Vahtmäe, E.[Ele],
Kutser, T.[Tiit],
Sepp, K.[Karli],
Pinheiro, V.H.C.[Victor Henrique Cabral],
Yang, M.D.[Ming-Der],
Vain, A.[Ants],
Sepp, K.[Kalev],
Toward Automated Machine Learning-Based Hyperspectral Image Analysis
in Crop Yield and Biomass Estimation,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Bojanowski, J.S.[Jedrzej S.],
Sikora, S.[Sylwia],
Musial, J.P.[Jan P.],
Wozniak, E.[Edyta],
Dabrowska-Zielinska, K.[Katarzyna],
Slesinski, P.[Przemyslaw],
Milewski, T.[Tomasz],
Laczynski, A.[Artur],
Integration of Sentinel-3 and MODIS Vegetation Indices with ERA-5
Agro-Meteorological Indicators for Operational Crop Yield Forecasting,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Wang, Q.[Qian],
Wang, C.S.[Chun-Shan],
Wu, H.R.[Hua-Rui],
Zhao, C.J.[Chun-Jiang],
Teng, G.F.[Gui-Fa],
Yu, Y.J.[Ya-Jie],
Zhu, H.[Huaji],
A Two-Stage Low-Altitude Remote Sensing Papaver Somniferum Image
Detection System Based on YOLOv5s+DenseNet121,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
opium poppy detection.
BibRef
Timmer, B.[Brian],
Reshitnyk, L.Y.[Luba Y.],
Hessing-Lewis, M.[Margot],
Juanes, F.[Francis],
Costa, M.[Maycira],
Comparing the Use of Red-Edge and Near-Infrared Wavelength Ranges for
Detecting Submerged Kelp Canopy,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Chen, J.[Jianqu],
Li, X.[Xunmeng],
Wang, K.[Kai],
Zhang, S.[Shouyu],
Li, J.[Jun],
Estimation of Seaweed Biomass Based on Multispectral UAV in the
Intertidal Zone of Gouqi Island,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Muruganantham, P.[Priyanga],
Wibowo, S.[Santoso],
Grandhi, S.[Srimannarayana],
Samrat, N.H.[Nahidul Hoque],
Islam, N.[Nahina],
A Systematic Literature Review on Crop Yield Prediction with Deep
Learning and Remote Sensing,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Pascual-Venteo, A.B.[Ana B.],
Portalés, E.[Enrique],
Berger, K.[Katja],
Tagliabue, G.[Giulia],
Garcia, J.L.[Jose L.],
Pérez-Suay, A.[Adrián],
Rivera-Caicedo, J.P.[Juan Pablo],
Verrelst, J.[Jochem],
Prototyping Crop Traits Retrieval Models for CHIME:
Dimensionality Reduction Strategies Applied to PRISMA Data,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Yao, J.X.[Jin-Xi],
Wu, J.[Ji],
Xiao, C.Z.[Cheng-Zhi],
Zhang, Z.[Zhi],
Li, J.Z.[Jian-Zhong],
The Classification Method Study of Crops Remote Sensing with Deep
Learning, Machine Learning, and Google Earth Engine,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
He, S.[Shan],
Peng, P.[Peng],
Chen, Y.Y.[Yi-Yun],
Wang, X.[Xiaomi],
Multi-Crop Classification Using Feature Selection-Coupled Machine
Learning Classifiers Based on Spectral, Textural and Environmental
Features,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Tian, S.[Shuang],
Lu, Q.K.[Qi-Kai],
Wei, L.F.[Li-Fei],
Multiscale Superpixel-Based Fine Classification of Crops in the
UAV-Manned Hyperspectral Imagery,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
And:
Correction:
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Abdelbaki, A.[Asmaa],
Udelhoven, T.[Thomas],
A Review of Hybrid Approaches for Quantitative Assessment of Crop
Traits Using Optical Remote Sensing: Research Trends and Future
Directions,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Revenga, J.C.[Jaime C.],
Trepekli, K.[Katerina],
Oehmcke, S.[Stefan],
Jensen, R.[Rasmus],
Li, L.[Lei],
Igel, C.[Christian],
Gieseke, F.C.[Fabian Cristian],
Friborg, T.[Thomas],
Above-Ground Biomass Prediction for Croplands at a Sub-Meter
Resolution Using UAV-LiDAR and Machine Learning Methods,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Sosa-Herrera, J.A.[Jesús A.],
Alvarez-Jarquin, N.[Nohemi],
Cid-Garcia, N.M.[Nestor M.],
López-Araujo, D.J.[Daniela J.],
Vallejo-Pérez, M.R.[Moisés R.],
Automated Health Estimation of Capsicum annuum L. Crops by Means of
Deep Learning and RGB Aerial Images,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Änäkkälä, M.[Mikael],
Lajunen, A.[Antti],
Hakojärvi, M.[Mikko],
Alakukku, L.[Laura],
Evaluation of the Influence of Field Conditions on Aerial
Multispectral Images and Vegetation Indices,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Wei, S.C.[Si-Cheng],
Yang, Y.T.[Yue-Ting],
Li, K.W.[Kai-Wei],
Guo, Y.[Ying],
Zhang, J.[Jiquan],
Three-Dimensional Vulnerability Assessment of Peanut (Arachis
hypogaea) Based on Comprehensive Drought Index and Vulnerability
Surface: A Case Study of Shandong Province, China,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Bahrami, H.[Hazhir],
McNairn, H.[Heather],
Mahdianpari, M.[Masoud],
Homayouni, S.[Saeid],
A Meta-Analysis of Remote Sensing Technologies and Methodologies for
Crop Characterization,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhao, L.C.[Long-Cai],
Li, Q.Z.[Qiang-Zi],
Chang, Q.R.[Qing-Rui],
Shang, J.L.[Jia-Li],
Du, X.[Xin],
Liu, J.G.[Jian-Gui],
Dong, T.F.[Tai-Feng],
In-season crop type identification using optimal feature knowledge
graph,
PandRS(194), 2022, pp. 250-266.
Elsevier DOI
2212
Crop type, Automatic identification,
Optimal identification feature, Knowledge graph, Remote sensing
BibRef
Dokoohaki, H.[Hamze],
Rai, T.[Teerath],
Kivi, M.[Marissa],
Lewis, P.[Philip],
Gómez-Dans, J.L.[Jose L.],
Yin, F.[Feng],
Linking Remote Sensing with APSIM through Emulation and Bayesian
Optimization to Improve Yield Prediction,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, Y.X.[Yu-Xian],
Fang, Y.[Yuan],
Zhong, W.L.[Wen-Long],
Zhuo, R.M.[Rong-Ming],
Peng, J.H.[Jun-Huan],
Xu, L.L.[Lin-Lin],
A Spatial-Temporal Depth-Wise Residual Network for Crop Sub-Pixel
Mapping from MODIS Images,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhou, W.[Wu],
Zhao, L.[Li],
Hu, Y.M.[Yue-Ming],
Liu, Z.H.[Zhen-Hua],
Wang, L.[Lu],
Ye, C.[Changdong],
Mao, X.Y.[Xiao-Yun],
Xie, X.[Xia],
Cultivated Land Quality Evaluated Using the RNN Algorithm Based on
Multisource Data,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhao, H.[Hailan],
Meng, J.[Jihua],
Shi, T.T.[Ting-Ting],
Zhang, X.B.[Xiao-Bo],
Wang, Y.[Yanan],
Luo, X.J.[Xiang-Jiang],
Lin, Z.X.[Zhen-Xin],
You, X.Y.[Xin-Yan],
Validating the Crop Identification Capability of the Spectral
Variance at Key Stages (SVKS) Computed via an Object Self-Reference
Combined Algorithm,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhang, Z.Y.[Zhuo-Yao],
Liu, X.N.[Xiang-Nan],
Zhu, L.H.[Li-Hong],
Li, J.J.[Jun-Ji],
Zhang, Y.[Yue],
Remote Sensing Extraction Method of Illicium verum Based on
Functional Characteristics of Vegetation Canopy,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
Star anise
BibRef
Wu, Y.C.[Yong-Chuang],
Wu, Y.L.[Yan-Lan],
Wang, B.[Biao],
Yang, H.[Hui],
A Remote Sensing Method for Crop Mapping Based on Multiscale
Neighborhood Feature Extraction,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zhang, W.T.[Wei-Tao],
Zheng, S.D.[Sheng-Di],
Li, Y.B.[Yi-Bang],
Guo, J.[Jiao],
Wang, H.[Hui],
A Full Tensor Decomposition Network for Crop Classification with
Polarization Extension,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Jiang, D.P.[Da-Peng],
Du, J.[Jia],
Song, K.[Kaishan],
Zhao, B.[Boyu],
Zhang, Y.W.[Yi-Wei],
Zhang, W.J.[Wei-Jian],
Classification of Conservation Tillage Using Enhanced Spatial and
Temporal Adaptive Reflectance Fusion Model,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zhang, W.[Wangle],
Wang, J.W.[Ji-Wen],
Lin, H.[Hate],
Cong, M.[Ming],
Wan, Y.[Yue],
Zhang, J.X.[Jing-Xiong],
Fusing Multiple Land Cover Products Based on Locally Estimated
Map-Reference Cover Type Transition Probabilities,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Wei, M.F.[Meng-Fan],
Wang, H.Y.[Hong-Yan],
Zhang, Y.[Yuan],
Li, Q.Z.[Qiang-Zi],
Du, X.[Xin],
Shi, G.W.[Guan-Wei],
Ren, Y.T.[Yi-Ting],
Investigating the Potential of Crop Discrimination in Early Growing
Stage of Change Analysis in Remote Sensing Crop Profiles,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Weilandt, F.[Frank],
Behling, R.[Robert],
Goncalves, R.[Romulo],
Madadi, A.[Arash],
Richter, L.[Lorenz],
Sanona, T.[Tiago],
Spengler, D.[Daniel],
Welsch, J.[Jona],
Early Crop Classification via Multi-Modal Satellite Data Fusion and
Temporal Attention,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Wu, Y.C.[Yong-Chuang],
Wu, P.H.[Peng-Hai],
Wu, Y.[Yanlan],
Yang, H.[Hui],
Wang, B.[Biao],
Remote Sensing Crop Recognition by Coupling Phenological Features and
Off-Center Bayesian Deep Learning,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Rußwurm, M.[Marc],
Courty, N.[Nicolas],
Emonet, R.[Rémi],
Lefèvre, S.[Sébastien],
Tuia, D.[Devis],
Tavenard, R.[Romain],
End-to-end learned early classification of time series for in-season
crop type mapping,
PandRS(196), 2023, pp. 445-456.
Elsevier DOI
2302
Deep learning, Satellite time series, Early classification,
Crop type mapping, In-season crop type mapping
BibRef
Shao, S.[Shuai],
Takeuchi, W.[Wataru],
Bio-Geophysical Suitability Mapping for Chinese Cabbage of East Asia
from 2001 to 2020,
RS(15), No. 5, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Xiang, J.J.[Jian-Jian],
Liu, J.[Jia],
Chen, D.[Du],
Xiong, Q.[Qi],
Deng, C.[Chongjiu],
CTFuseNet: A Multi-Scale CNN-Transformer Feature Fused Network for
Crop Type Segmentation on UAV Remote Sensing Imagery,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Lyle, G.[Greg],
Clarke, K.[Kenneth],
Kilpatrick, A.[Adam],
Summers, D.M.[David McCulloch],
Ostendorf, B.[Bertram],
A Spatial and Temporal Evaluation of Broad-Scale Yield Predictions
Created from Yield Mapping Technology and Landsat Satellite Imagery
in the Australian Mediterranean Dryland Cropping Region,
IJGI(12), No. 2, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Kümmerer, R.[Robin],
Noack, P.O.[Patrick Ole],
Bauer, B.[Bernhard],
Using High-Resolution UAV Imaging to Measure Canopy Height of Diverse
Cover Crops and Predict Biomass,
RS(15), No. 6, 2023, pp. 1520.
DOI Link
2304
BibRef
Shao, C.Y.[Cong-Ying],
Shuai, Y.M.[Yan-Min],
Wu, H.[Hao],
Deng, X.L.[Xiao-Lian],
Zhang, X.C.[Xue-Cong],
Xu, A.G.[Ai-Gong],
Development of a Spectral Index for the Detection of Yellow-Flowering
Vegetation,
RS(15), No. 7, 2023, pp. 1725.
DOI Link
2304
BibRef
Karaca, C.[Cihan],
Thompson, R.B.[Rodney B.],
Peña-Fleitas, M.T.[M. Teresa],
Gallardo, M.[Marisa],
Padilla, F.M.[Francisco M.],
Evaluation of Absolute Measurements and Normalized Indices of
Proximal Optical Sensors as Estimators of Yield in Muskmelon and
Sweet Pepper,
RS(15), No. 8, 2023, pp. 2174.
DOI Link
2305
BibRef
Wang, X.[Xiaohu],
Fang, S.F.[Shi-Feng],
Yang, Y.C.[Yi-Chen],
Du, J.Q.[Jia-Qiang],
Wu, H.[Hua],
A New Method for Crop Type Mapping at the Regional Scale Using
Multi-Source and Multi-Temporal Sentinel Imagery,
RS(15), No. 9, 2023, pp. xx-yy.
DOI Link
2305
BibRef
Bazrafkan, A.[Aliasghar],
Navasca, H.[Harry],
Kim, J.H.[Jeong-Hwa],
Morales, M.[Mario],
Johnson, J.P.[Josephine Princy],
Delavarpour, N.[Nadia],
Fareed, N.[Nadeem],
Bandillo, N.[Nonoy],
Flores, P.[Paulo],
Predicting Dry Pea Maturity Using Machine Learning and Advanced
Sensor Fusion with Unmanned Aerial Systems (UASs),
RS(15), No. 11, 2023, pp. 2758.
DOI Link
2306
BibRef
Yu, F.[Feng],
Zhang, Q.[Qian],
Xiao, J.[Jun],
Ma, Y.T.[Yun-Tao],
Wang, M.[Ming],
Luan, R.P.[Ru-Peng],
Liu, X.[Xin],
Ping, Y.[Yang],
Nie, Y.[Ying],
Tao, Z.Y.[Zhen-Yu],
Zhang, H.[Hui],
Progress in the Application of CNN-Based Image Classification and
Recognition in Whole Crop Growth Cycles,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Borrmann, P.[Peter],
Brandt, P.[Patric],
Gerighausen, H.[Heike],
MISPEL: A Multi-Crop Spectral Library for Statistical Crop Trait
Retrieval and Agricultural Monitoring,
RS(15), No. 14, 2023, pp. 3664.
DOI Link
2307
BibRef
Liu, Y.[Yin],
Diao, C.Y.[Chun-Yuan],
Yang, Z.J.[Zi-Jun],
CropSow: An integrative remotely sensed crop modeling framework for
field-level crop planting date estimation,
PandRS(202), 2023, pp. 334-355.
Elsevier DOI
2308
Planting date, Remote sensing, Crop growth model, Phenology
BibRef
Lee, K.[Kangbeen],
Han, X.Z.[Xiong-Zhe],
A Study on Leveraging Unmanned Aerial Vehicle Collaborative Driving
and Aerial Photography Systems to Improve the Accuracy of Crop
Phenotyping,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Kuang, X.F.[Xiao-Fei],
Guo, J.[Jiao],
Bai, J.Y.[Jing-Yuan],
Geng, H.S.[Hong-Suo],
Wang, H.[Hui],
Crop-Planting Area Prediction from Multi-Source Gaofen Satellite
Images Using a Novel Deep Learning Model: A Case Study of Yangling
District,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Dimov, D.[Dimo],
Noack, P.[Patrick],
Exploring the Potential of Multi-Temporal Crop Canopy Models and
Vegetation Indices from Pleiades Imagery for Yield Estimation,
RS(15), No. 16, 2023, pp. 3990.
DOI Link
2309
BibRef
Dlamini, L.[Luleka],
Crespo, O.[Olivier],
van Dam, J.[Jos],
Kooistra, L.[Lammert],
A Global Systematic Review of Improving Crop Model Estimations by
Assimilating Remote Sensing Data: Implications for Small-Scale
Agricultural Systems,
RS(15), No. 16, 2023, pp. 4066.
DOI Link
2309
BibRef
Ma, Y.C.[Yu-Chi],
Yang, Z.W.[Zheng-Wei],
Huang, Q.Y.[Qun-Ying],
Zhang, Z.[Zhou],
Improving the Transferability of Deep Learning Models for Crop Yield
Prediction: A Partial Domain Adaptation Approach,
RS(15), No. 18, 2023, pp. 4562.
DOI Link
2310
BibRef
Rembold, F.[Felix],
Meroni, M.[Michele],
Otieno, V.[Viola],
Kipkogei, O.[Oliver],
Mwangi, K.[Kenneth],
de Sousa-Afonso, J.M.[João Maria],
Ihadua, I.M.T.J.[Isidro Metódio Tuleni Johannes],
José, A.E.A.[Amílcar Ernesto A.],
Zoungrana, L.E.[Louis Evence],
Taieb, A.H.[Amjed Hadj],
Urbano, F.[Ferdinando],
Dimou, M.[Maria],
Kerdiles, H.[Hervé],
Vojnovic, P.[Petar],
Zampieri, M.[Matteo],
Toreti, A.[Andrea],
New Functionalities and Regional/National Use Cases of the Anomaly
Hotspots of Agricultural Production (ASAP) Platform,
RS(15), No. 17, 2023, pp. 4284.
DOI Link
2310
to provide timely warnings of production.
BibRef
Liu, N.F.[Nan-Feng],
Wagner-Hokanson, E.[Erin],
Hansen, N.[Nicole],
Townsend, P.A.[Philip A.],
Multi-year hyperspectral remote sensing of a comprehensive set of
crop foliar nutrients in cranberries,
PandRS(205), 2023, pp. 135-146.
Elsevier DOI
2311
Foliar nutrients, Hyperspectral remote sensing,
Machine learning, Physical basis
BibRef
Meng, J.[Jihua],
You, X.Y.[Xin-Yan],
Zhang, X.B.[Xiao-Bo],
Shi, T.T.[Ting-Ting],
Zhang, L.[Lei],
Chen, X.F.[Xing-Feng],
Zhao, H.[Hailan],
Xu, M.[Meng],
Remote Sensing Application in Chinese Medicinal Plant Identification
and Acreage Estimation: A Review,
RS(15), No. 23, 2023, pp. 5580.
DOI Link
2312
BibRef
Wang, X.M.[Xiao-Mi],
Liu, J.H.[Jiu-Hong],
Peng, P.[Peng],
Chen, Y.Y.[Yi-Yun],
He, S.[Shan],
Yang, K.[Kang],
Automatic Crop Classification Based on Optimized Spectral and
Textural Indexes Considering Spatial Heterogeneity,
RS(15), No. 23, 2023, pp. 5550.
DOI Link
2312
BibRef
Ishaq, R.A.F.[Rana Ahmad Faraz],
Zhou, G.H.[Guan-Hua],
Tian, C.[Chen],
Tan, Y.M.[Yu-Min],
Jing, G.[Guifei],
Jiang, H.Z.[Hong-Zhi],
ur-Rehman, O.[Obaid],
A Systematic Review of Radiative Transfer Models for Crop Yield
Prediction and Crop Traits Retrieval,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Zhan, W.F.[Wen-Fang],
Luo, F.[Feng],
Luo, H.[Heng],
Li, J.L.[Jun-Li],
Wu, Y.[Yongchuang],
Yin, Z.X.[Zhi-Xiang],
Wu, Y.[Yanlan],
Wu, P.[Penghai],
Time-Series-Based Spatiotemporal Fusion Network for Improving Crop
Type Mapping,
RS(16), No. 2, 2024, pp. 235.
DOI Link
2402
BibRef
Chen, M.N.[Meng-Na],
Zhang, R.[Rong],
Jia, M.M.[Ming-Ming],
Cheng, L.[Lina],
Zhao, C.P.[Chuan-Peng],
Li, H.Y.[Hui-Ying],
Wang, Z.M.[Zong-Ming],
Accurate and Rapid Extraction of Aquatic Vegetation in the China Side
of the Amur River Basin Based on Landsat Imagery,
RS(16), No. 4, 2024, pp. 654.
DOI Link
2402
BibRef
Lv, Y.[Yan],
Feng, W.[Wei],
Wang, S.[Shuo],
Wang, S.Y.[Shi-Yu],
Guo, L.[Liang],
Dauphin, G.[Gabriel],
An Ensemble-Based Framework for Sophisticated Crop Classification
Exploiting Google Earth Engine,
RS(16), No. 5, 2024, pp. 917.
DOI Link
2403
BibRef
Yu, F.[Feng],
Wang, M.[Ming],
Xiao, J.[Jun],
Zhang, Q.[Qian],
Zhang, J.M.[Jin-Meng],
Liu, X.[Xin],
Ping, Y.[Yang],
Luan, R.P.[Ru-Peng],
Advancements in Utilizing Image-Analysis Technology for Crop-Yield
Estimation,
RS(16), No. 6, 2024, pp. 1003.
DOI Link
2403
BibRef
Mohammadi, S.[Sina],
Belgiu, M.[Mariana],
Stein, A.[Alfred],
Few-Shot Learning for Crop Mapping from Satellite Image Time Series,
RS(16), No. 6, 2024, pp. 1026.
DOI Link
2403
BibRef
Dai, J.[Jie],
König, M.[Marcel],
Jamalinia, E.[Elahe],
Hondula, K.L.[Kelly L.],
Vaughn, N.R.[Nicholas R.],
Heckler, J.[Joseph],
Asner, G.P.[Gregory P.],
Canopy-Level Spectral Variation and Classification of Diverse Crop
Species with Fine Spatial Resolution Imaging Spectroscopy,
RS(16), No. 8, 2024, pp. 1447.
DOI Link
2405
BibRef
Sun, J.L.[Jia-Lin],
Yan, S.[Shuai],
Alexandridis, T.[Thomas],
Yao, X.C.[Xiao-Chuang],
Zhou, H.[Han],
Gao, B.[Bingbo],
Huang, J.X.[Jian-Xi],
Yang, J.Y.[Jian-Yu],
Li, Y.[Ying],
Enhancing Crop Mapping through Automated Sample Generation Based on
Segment Anything Model with Medium-Resolution Satellite Imagery,
RS(16), No. 9, 2024, pp. 1505.
DOI Link
2405
BibRef
Qiao, D.[Dan],
Yang, J.T.[Jun-Tao],
Bai, B.[Bo],
Li, G.W.[Guo-Wei],
Wang, J.G.[Jian-Guo],
Li, Z.H.[Zhen-Hai],
Liu, J.C.[Jin-Cheng],
Liu, J.Y.[Jia-Yin],
Non-Destructive Monitoring of Peanut Leaf Area Index by Combing UAV
Spectral and Textural Characteristics,
RS(16), No. 12, 2024, pp. 2182.
DOI Link
2406
BibRef
Gong, J.L.[Jia-Long],
Zhong, X.[Xing],
Zhu, R.F.[Rui-Fei],
Xu, Z.X.[Zhao-Xin],
Wang, D.[Dong],
Yin, J.[Jian],
An Angle Effect Correction Method for High-Resolution Satellite
Side-View Imaging Data to Improve Crop Monitoring Accuracy,
RS(16), No. 12, 2024, pp. 2172.
DOI Link
2406
Cubesat, oblique.
BibRef
Lu, J.[Jun],
He, T.[Tao],
Song, D.X.[Dan-Xia],
Wang, C.Q.[Cai-Qun],
Using Geostationary Satellite Observations to Improve the Monitoring
of Vegetation Phenology,
RS(16), No. 12, 2024, pp. 2173.
DOI Link
2406
BibRef
Breunig, F.M.[Fábio Marcelo],
Dalagnol, R.[Ricardo],
Galvão, L.S.[Lênio Soares],
da Conceição-Bispo, P.[Polyanna],
Liu, Q.[Qing],
Berra, E.F.[Elias Fernando],
Gaida, W.[William],
Liesenberg, V.[Veraldo],
Sampaio, T.V.M.[Tony Vinicius Moreira],
Monitoring Cover Crop Biomass in Southern Brazil Using Combined
PlanetScope and Sentinel-1 SAR Data,
RS(16), No. 15, 2024, pp. 2686.
DOI Link
2408
BibRef
Yang, Z.J.[Zi-Jun],
Diao, C.Y.[Chun-Yuan],
Gao, F.[Feng],
Li, B.[Bo],
EMET: An emergence-based thermal phenological framework for near
real-time crop type mapping,
PandRS(215), 2024, pp. 271-291.
Elsevier DOI
2408
Crop mapping, Crop phenology, Near real-time, Deep learning, Agriculture
BibRef
Angarano, S.[Simone],
Martini, M.[Mauro],
Navone, A.[Alessandro],
Chiaberge, M.[Marcello],
Domain Generalization for Crop Segmentation with Standardized
Ensemble Knowledge Distillation,
AgriVision24(5450-5459)
IEEE DOI
2410
Training, Precision agriculture, Adaptation models, Service robots,
Semantic segmentation, Crops, Spraying, Domain Generalization,
Agriculture
BibRef
Chen, H.L.[Hui-Ling],
He, G.J.[Guo-Jin],
Peng, X.[Xueli],
Wang, G.Z.[Gui-Zhou],
Yin, R.[Ranyu],
A Multi-Scale Feature Fusion Deep Learning Network for the Extraction
of Cropland Based on Landsat Data,
RS(16), No. 21, 2024, pp. 4071.
DOI Link
2411
BibRef
Gharakhanlou, N.M.[Navid Mahdizadeh],
Perez, L.[Liliana],
Coallier, N.[Nico],
Mapping Crop Types for Beekeepers Using Sentinel-2 Satellite Image
Time Series: Five Essential Crops in the Pollination Services,
RS(16), No. 22, 2024, pp. 4225.
DOI Link
2412
BibRef
Zhang, X.Y.[Xin-Yu],
Cai, Z.W.[Zhi-Wen],
Hu, Q.[Qiong],
Yang, J.Y.[Jing-Ya],
Wei, H.D.[Hao-Dong],
You, L.Z.[Liang-Zhi],
Xu, B.D.[Bao-Dong],
Improving crop type mapping by integrating LSTM with temporal random
masking and pixel-set spatial information,
PandRS(218), 2024, pp. 87-101.
Elsevier DOI
2412
Crop type mapping, Temporal random masking,
Spatial information aggregation, Satellite image time series
BibRef
Joshi, A.[Abhasha],
Pradhan, B.[Biswajeet],
Chakraborty, S.[Subrata],
Varatharajoo, R.[Renuganth],
Gite, S.[Shilpa],
Alamri, A.[Abdullah],
Deep-Transfer-Learning Strategies for Crop Yield Prediction Using
Climate Records and Satellite Image Time-Series Data,
RS(16), No. 24, 2024, pp. 4804.
DOI Link
2501
BibRef
Nau, A.W.[Amy W.],
Lucieer, V.[Vanessa],
Schimel, A.C.G.[Alexandre C. G.],
Kunnath, H.[Haris],
Ladroit, Y.[Yoann],
Martin, T.[Tara],
Advanced Detection and Classification of Kelp Habitats Using
Multibeam Echosounder Water Column Point Cloud Data,
RS(17), No. 3, 2025, pp. 449.
DOI Link
2502
BibRef
González-Ramírez, A.[Andrea],
Atzberger, C.[Clement],
Torres-Roman, D.[Deni],
López, J.[Josué],
Representation Learning of Multi-Spectral Earth Observation Time
Series and Evaluation for Crop Type Classification,
RS(17), No. 3, 2025, pp. 378.
DOI Link
2502
BibRef
Zhang, J.J.[Jia-Jin],
Zhao, L.F.[Li-Fang],
Yang, H.[Hua],
A Dual-Branch U-Net for Staple Crop Classification in Complex Scenes,
RS(17), No. 4, 2025, pp. 726.
DOI Link
2502
BibRef
Wang, L.Q.[Li-Qiong],
Yang, J.Y.[Jin-Yu],
Zhang, Y.[Yanfu],
Wang, F.Y.[Fang-Yi],
Zheng, F.[Feng],
Depth-Aware Concealed Crop Detection in Dense Agricultural Scenes,
CVPR24(17201-17211)
IEEE DOI Code:
WWW Link.
2410
Charge coupled devices, Visualization, Crops, Object detection,
Predictive models, Logic gates
BibRef
Mohan, A.[Akshatha],
Peeples, J.[Joshua],
Lacunarity Pooling Layers for Plant Image Classification using
Texture Analysis,
AgriVision24(5384-5392)
IEEE DOI
2410
Adaptation models, Accuracy, Computational modeling,
Computer architecture, Feature extraction, Image Classification
BibRef
Zawish, M.[Muhammad],
Albert, P.[Paul],
Esposito, F.[Flavio],
Davy, S.[Steven],
Abraham, L.[Lizy],
Energy-Efficient Uncertainty-Aware Biomass Composition Prediction at
the Edge,
AgriVision24(5357-5365)
IEEE DOI
2410
Deep learning, Accuracy, Uncertainty, Image edge detection,
Filtering algorithms, Predictive models, Prediction algorithms,
uncertainty modeling
BibRef
Lin, F.D.[Fu-Dong],
Crawford, S.[Summer],
Guillot, K.[Kaleb],
Zhang, Y.[Yihe],
Chen, Y.[Yan],
Yuan, X.[Xu],
Chen, L.[Li],
Williams, S.[Shelby],
Minvielle, R.[Robert],
Xiao, X.M.[Xiang-Ming],
Gholson, D.[Drew],
Ashwell, N.[Nicolas],
Setiyono, T.[Tri],
Tubana, B.[Brenda],
Peng, L.[Lu],
Bayoumi, M.[Magdy],
Tzeng, N.F.[Nian-Feng],
MMST-ViT: Climate Change-aware Crop Yield Prediction via Multi-Modal
Spatial-Temporal Vision Transformer,
ICCV23(5751-5761)
IEEE DOI Code:
WWW Link.
2401
BibRef
Casado-García, Á.[Ángela],
Heras, J.[Jónathan],
Martínez-Goñi, X.S.[Xabier Simon],
Miranda-Apodaca, J.[Jon],
Pérez-López, U.[Usue],
Estimation of Crop Production by Fusing Images and Crop Features,
CVPPA23(525-530)
IEEE DOI
2401
BibRef
Baghdasaryan, L.[Liana],
Melikbekyan, R.[Razmik],
Dolmajain, A.[Arthur],
Hobbs, J.[Jennifer],
Deep density estimation based on multi-spectral remote sensing data
for in-field crop yield forecasting,
WiCV22(2013-2022)
IEEE DOI
2210
Deep learning, Satellites, Government, Estimation, Crops
BibRef
dos Santos Oliveira, W.C.[Walysson Carlos],
Junior, G.B.[Geraldo Braz],
Junior, D.L.G.[Daniel Lima Gomes],
de Paiva, A.C.[Anselmo Cardoso],
Sousa de Almeida, J.D.[Joao Dallyson],
A Two-Stage U-Net to Estimate the Cultivated Area of Plantations,
CIAP22(I:346-357).
Springer DOI
2205
BibRef
Santillan, J.R.,
Gesta, J.L.E.,
Evaluation of Machine Learning Classifiers for Mapping Falcata
Plantations in Sentinel-2 Image,
ISPRS21(B3-2021: 103-108).
DOI Link
2201
A succluent plant, sword like leaves.
BibRef
Narin, O.G.,
Sekertekin, A.,
Saygin, A.,
Balik Sanli, F.,
Gullu, M.,
Yield Estimation of Sunflower Plant With Cnn and Ann Using Sentinel-2,
SmartCityApp21(385-389).
DOI Link
2201
BibRef
Wang, Z.Q.[Zi-Qiao],
Zhang, H.Y.[Hong-Yan],
He, W.[Wei],
Zhang, L.P.[Liang-Pei],
Phenology Alignment Network: A Novel Framework for Cross-Regional
Time Series Crop Classification,
AgriVision21(2934-2943)
IEEE DOI
2109
Training, Adaptation models,
Time series analysis, Feature extraction, Agriculture
BibRef
Tseng, G.[Gabriel],
Kerner, H.[Hannah],
Nakalembe, C.[Catherine],
Becker-Reshef, I.[Inbal],
Learning to predict crop type from heterogeneous sparse labels using
meta-learning,
EarthVision21(1111-1120)
IEEE DOI
2109
Training, Geography, Satellites,
Machine learning, Agriculture
BibRef
Herrero-Huerta, M.,
Rahmani, S.R.,
Rainey, K.M.,
Deep Phenotyping Considering Tile Drainage from UAS-Based Multispectral
Imagery By Convolutional Neural Networks,
ISPRS20(B3:417-421).
DOI Link
2012
drainage lines affect plant characteristics.
BibRef
Rußwurm, M.,
Pelletier, C.,
Zollner, M.,
Lefèvre, S.,
Körner, M.,
BreizhCrops: A Time Series Dataset for Crop Type Mapping,
ISPRS20(B2:1545-1551).
DOI Link
2012
BibRef
Handique, B.K.,
Goswami, C.,
Gupta, C.,
Pandit, S.,
Gogoi, S.,
Jadi, R.,
Jena, P.,
Borah, G.,
Raju, P.L.N.,
Hierarchical Classification for Assessment of Horticultural Crops In
Mixed Cropping Pattern Using UAV-borne Multi-spectral Sensor,
ISPRS20(B3:67-74).
DOI Link
2012
BibRef
Choros, T.,
Oberski, T.,
Kogut, T.,
UAV Imaging At RGB for Crop Condition Monitoring,
ISPRS20(B3:1521-1525).
DOI Link
2012
BibRef
Ruiz, L.A.,
Almonacid-Caballer, J.,
Crespo-Peremarch, P.,
Recio, J.A.,
Pardo-Pascual, J.E.,
Sánchez-García, E.,
Automated Classification of Crop Types and Condition In A Mediterranean
Area Using A Fine-tuned Convolutional Neural Network,
ISPRS20(B3:1061-1068).
DOI Link
2012
BibRef
Sagan, V.,
Maimaitijiang, M.,
Sidike, P.,
Maimaitiyiming, M.,
Erkbol, H.,
Hartling, S.,
Peterson, K.T.,
Peterson, J.,
Burken, J.,
Fritschi, F.,
UAV/satellite Multiscale Data Fusion for Crop Monitoring and Early
Stress Detection,
IWIDF19(715-722).
DOI Link
1912
BibRef
Sibanda, M.,
Mutanga, O.,
Magwaza, L.S.,
Dube, T.,
Magwaza, S.T.,
Odindo, A.O.,
Mditshwa, A.,
Mafongoya, P.L.,
Discrimination of Tomato Plants (solanum Lycopersicum) Grown Under
Anaerobic Baffled Reactor Effluent, Nitrified Urine Concentrate And
Commercial Hydroponic Fertilizer Regimes Using Multi-source Satellite,
SMPR19(1023-1029).
DOI Link
1912
BibRef
Ahmed, I.,
Eramian, M.,
Ovsyannikov, I.,
van der Kamp, W.,
Nielsen, K.,
Duddu, H.S.,
Rumali, A.,
Shirtliffe, S.,
Bett, K.,
Automatic Detection and Segmentation of Lentil Crop Breeding Plots
From Multi-Spectral Images Captured by UAV-Mounted Camera,
WACV19(1673-1681)
IEEE DOI
1904
autonomous aerial vehicles, biology computing, crops,
Gaussian processes, image segmentation, object detection,
Data mining
BibRef
Rajapaksa, S.,
Eramian, M.,
Duddu, H.,
Wang, M.,
Shirtliffe, S.,
Ryu, S.,
Josuttes, A.,
Zhang, T.,
Vail, S.,
Pozniak, C.,
Parkin, I.,
Classification of Crop Lodging with Gray Level Co-occurrence Matrix,
WACV18(251-258)
IEEE DOI
1806
Gabor filters, agriculture, crops, image texture,
support vector machines, GLCM features,
Training
BibRef
Rußwurm, M.,
Körner, M.,
Temporal Vegetation Modelling Using Long Short-Term Memory Networks
for Crop Identification from Medium-Resolution Multi-spectral
Satellite Images,
EarthVision17(1496-1504)
IEEE DOI
1709
Agriculture, Earth, Logic gates, Recurrent neural networks,
Remote sensing, Satellites, Vegetation, mapping
BibRef
Olsen, S.I.[Søren I.],
Nielsen, J.[Jon],
Rasmussen, J.[Jesper],
Thistle Detection,
SCIA17(II: 413-425).
Springer DOI
1706
green thistles in yellow mature cereals.
BibRef
Brocks, S.,
Bareth, G.,
Evaluating Dense 3d Reconstruction Software Packages For Oblique
Monitoring Of Crop Canopy Surface,
ISPRS16(B5: 785-789).
DOI Link
1610
BibRef
Siricharoen, P.[Punnarai],
Scotney, B.[Bryan],
Morrow, P.[Philip],
Parr, G.[Gerard],
A Lightweight Mobile System for Crop Disease Diagnosis,
ICIAR16(783-791).
Springer DOI
1608
BibRef
Gibson, D.[David],
Burghardt, T.[Tilo],
Campbell, N.[Neill],
Canagarajah, N.[Nishan],
Towards automating visual in-field monitoring of crop health,
ICIP15(3906-3910)
IEEE DOI
1512
ecological informatics
BibRef
Dvorák, P.,
Müllerová, J.,
Bartaloš, T.,
Bruna, J.,
Unmanned Aerial Vehicles for Alien Plant Species Detection and
Monitoring,
UAV-g15(83-90).
DOI Link
1512
BibRef
Nogueira, K.[Keiller],
dos Santos, J.A.[Jefersson A.],
Fornazari, T.,
Freire Silva, T.S.,
Morellato, L.P.,
Torres, R.D.S.,
Towards vegetation species discrimination by using data-driven
descriptors,
PRRS16(1-6)
IEEE DOI
1704
feature extraction
BibRef
Grenzdörffer, G.J.,
Crop height determination with UAS point clouds,
LandImaging14(135-140).
DOI Link
1411
BibRef
Jia, Y.,
Yu, F.,
Research on Estimation Crop Planting Area by Integrating the Optical
and Microwave Remote Sensing Data,
IWIDF13(55-60).
DOI Link
1311
BibRef
Costa, G.B.P.[Gabriel B. P.],
Ponti, M.[Moacir],
Green Coverage Detection on Sub-orbital Plantation Images Using Anomaly
Detection,
CIARP13(II:92-99).
Springer DOI
1311
BibRef
Upadhyay, P.,
Ghosh, S.K.,
Kumar, A.,
High Resolution Temporal Normalized Difference Vegetation Indices for
Specific Crop Identification,
Hannover13(351-355).
DOI Link
1308
BibRef
Maliki, A.A.,
Owens, G.,
Bruce, D.,
Capabilities of Remote Sensing Hyperspectral Images for The Detection
Of Lead Contamination: A Review,
AnnalsPRS(I-7), No. 2012, pp. 55-60.
DOI Link
1209
BibRef
Lechner, A.M.,
Fletcher, A.T.,
Johansen, K.,
Erskine, P.D.,
Characterising Upland Swamps Using Object-based Classification Methods
And Hyper-spatial Resolution Imagery Derived From An Unmanned Aerial
Vehicle,
AnnalsPRS(I-4), No. 2012, pp. 101-106.
DOI Link
1209
BibRef
Strecha, C.,
Fletcher, A.T.,
Lechner, A.M.,
Erskine, P.D.,
Fua, P.,
Developing Species Specific Vegetation Maps Using Multi-spectral
Hyperspatial Imagery From Unmanned Aerial Vehicles,
AnnalsPRS(I-3), No. 2012, pp. 311-316.
DOI Link
1209
BibRef
Wang, W.C.,
Lo, N.J.,
Chang, W.I.,
Huang, K.Y.,
Modeling Spatial Distribution Of A Rare And Endangered Plant Species
(brainea insignis) In Central Taiwan,
ISPRS12(XXXIX-B7:241-246).
DOI Link
1209
BibRef
Nunez-Casillas, L.,
Micand, F.,
Somers, B.,
Brito, P.,
Arbelo, M.,
Plant Species Monitoring In The Canary Islands Using Worldview-2
Imagery,
ISPRS12(XXXIX-B8:301-304).
DOI Link
1209
BibRef
Musande, V.,
Kumar, A.,
Kale, K.,
Roy, P.S.,
Temporal Indices Data For Specific Crop Discrimination Using Fuzzy
Based Noise Classifier,
ISPRS12(XXXIX-B8:289-294).
DOI Link
1209
BibRef
da Silva, W.L.,
Goncalves, R.R.V.,
Siqueira, A.S.,
Zullo, J.,
Gomes Neto, F.A.M.,
Feature extraction for NDVI AVHRR/NOAA time series classification,
MultiTemp11(233-236).
IEEE DOI
1109
Crop forecasts.
BibRef
Vancutsem, C.,
Pekel, J.F.,
Kayitakire, F.,
Dynamic mapping of cropland areas in Sub-Saharan Africa using MODIS
time series,
MultiTemp11(25-28).
IEEE DOI
1109
BibRef
Ok, A.O.[A. Ozdarici],
Akyurek, Z.,
Clinton, N.,
Automatic Training Site Selection of Agricultural Crop Classification:
A Case Study on Karacabey Plain, Turkey,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Chmiel, J.,
Fijakowska, A.,
Thematic Accuracy Assessment for Object Based Classification in
Agriculture Areas: Comparative Analysis of Selected Approaches,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Jones, G.,
Gee, C.,
Villette, S.,
Truchetet, F.,
Validation of a virtual agronomic image modelling,
IPTA10(517-520).
IEEE DOI
1007
Detailed crop analysis.
BibRef
Helmholz, P.,
Rottensteiner, F.,
Automatic Verification of Agricultural Areas using IKONOS Satellite
Images,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Helmholz, P.,
Gerke, M.,
Heipke, C.,
Automatic Discrimination of Farmland Types Using IKONOS Imagery,
PIA07(81).
PDF File.
0711
BibRef
Carvalho, F.A.,
Lacerda, M.P.C.,
Monitoring Environmental Impact of Land Use:
Evaluating an Agricultural Area of Distrito Federal, Brazil,
IfromI06(xx-yy).
PDF File.
0607
BibRef
Fisette, T.,
Chenier, R.,
Maloley, M.,
Gasser, P.,
Huffman, T.,
White, L.,
Ogston, R.,
Elgarawany, A.,
Methodology for a Canadian agricultural land cover classification,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Gross Primary Production, Net Primary Production, GPP, NPP .