22.1.4.7 Classification for Crops, Analysis of Production, Specific Crops, Specific Plants

Chapter Contents (Back)
Classification. Crop Classification. Crop Yield. Remote Sensing. Agricultural. See also Classification for Urban Area Land Cover, Remote Sensing. See also Rice Crop Analysis, Production, Detection, Health, Change. See also Wheat Crop Analysis, Production, Detection, Health, Change.

Haralick, R.M.[Robert M.], Caspall, F., and Simonett, D.S.,
Using Radar Imagery for Crop Discrimination: A Statistical and Conditional Probability Study,
RSE(1), 1970, pp. 131-142. BibRef 7000

Badhwar, G.D., Austin, W.W., Carnes, J.G.,
A semi-automatic technique for multitemporal classification of a given crop within a landsat scene,
PR(15), No. 3, 1982, pp. 217-230.
Elsevier DOI 0309
BibRef

Davis, L.S.[Larry S.], Wang, C.Y.[Cheng-Ye], Xie, H.C.[Hu-Chen],
An Experiment in Multispectral, Multitemporal Crop Classification Using Relaxation Techniques,
CVGIP(23), No. 2, August 1983, pp. 227-235.
Elsevier DOI BibRef 8308

Macleod, R.D., Congalton, R.G.,
Quantitative Comparison of Change-Detection Algorithms for Monitoring Eelgrass from Remotely-Sensed Data,
PhEngRS(64), No. 3, March 1998, pp. 207-216. 9803
BibRef

Sun, W.X.[Wan-Xiao], Heidt, V., Gong, P.[Peng], Xu, G.[Gang],
Information fusion for rural land-use classification with high-resolution satellite imagery,
GeoRS(41), No. 4, April 2003, pp. 883-890.
IEEE Abstract. 0307
BibRef

Aplin, P.[Paul], Atkinson, P.M.[Peter M.],
Predicting Missing Field Boundaries to Increase Per-Field Classification Accuracy,
PhEngRS(70), No. 1, January 2004, pp. 141-150.
WWW Link. 0403
Missing field boundaries were predicted by comparing the within-field modal land-cover proportion and local variance to increase the accuracy of per-field classification. See also Super-resolution target identification from remotely sensed images using a Hopfield neural network. BibRef

Pearlstine, L.[Leonard], Portier, K.M.[Kenneth M.], Smith, S.E.[Scot E.],
Textural Discrimination of an Invasive Plant, Schinus terebinthifolius, from Low Altitude Aerial Digital Imagery,
PhEngRS(71), No. 3, March 2005, pp. 289-298.
WWW Link. 0509
Texture features derived from first and second order statistics and edge components in high-resolution digital color infrared images were tested for their ability to discriminate Schinus terebinthifolius in multiple linear logistic regressions. BibRef

Lathrop, R.G.[Richard G.], Montesano, P.[Paul], Haag, S.[Scott],
A Multi-scale Segmentation Approach to Mapping Seagrass Habitats Using Airborne Digital Camera Imagery,
PhEngRS(72), No. 6, June 2006, pp. 665-676.
WWW Link. 0610
BibRef

Somers, B.[Ben], Delalieux, S.[Stephanie], Verstraeten, W.W.[Willem W.], Coppin, P.[Pol],
A Conceptual Framework for the Simultaneous Extraction of Sub-pixel Spatial Extent and Spectral Characteristics of Crops,
PhEngRS(75), No. 1, January 2009, pp. 57-68.
WWW Link. 0902
BibRef

Lucas, R.[Richard], Rowlands, A.[Aled], Brown, A.[Alan], Keyworth, S.[Steve], Bunting, P.[Peter],
Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping,
PandRS(62), No. 3, August 2007, pp. 165-185.
Elsevier DOI 0709
Time-series imagery; Landsat; Segmentation; Decision rules; Fuzzy membership BibRef

Johnson, D.M.[David M.],
A Comparison of Coincident Landsat-5 TM and Resourcesat-1 AWiFS Imagery for Classifying Croplands,
PhEngRS(74), No. 11, November 2008, pp. 1413-1424.
WWW Link. 0804
Testing the suitability of AWiFS imagery with TM as a benchmark for deriving row crop focused cover type maps over highly cultivated regions of the central U.S. BibRef

Leite, P.B.C.[Paula Beatriz Cerqueira], Feitosa, R.Q.[Raul Queiroz], Formaggio, A.R.[Antonio Roberto], da Costa, G.A.O.P.[Gilson Alexandre Ostwald Pedro], Pakzad, K.[Kian], Sanches, I.D.[Ieda Del'Arco],
Hidden Markov Models for crop recognition in remote sensing image sequences,
PRL(31), No. 1, January 2010, pp. 19-26.
Elsevier DOI 1011
Hidden Markov Models; Crop recognition; Remote sensing BibRef

Velpuri, N.M., Thenkabail, P.S., Gumma, M.K., Biradar, C., Dheeravath, V., Noojipady, P., Yuanjie, L.,
Influence of Resolution in Irrigated Area Mapping and Area Estimation,
PhEngRS(75), No. 12, December 2009, pp. 1383-1396.
WWW Link. 1001
A comparison of irrigated areas derived from four different spatial resolutions is performed to ascertain the influence of resolution on irrigated area mapping and area estimation. BibRef

Zheng, L.Y.[Li-Ying], Shi, D.M.[Da-Ming], Zhang, J.T.[Jing-Tao],
Segmentation of green vegetation of crop canopy images based on mean shift and Fisher linear discriminant,
PRL(31), No. 9, 1 July 2010, pp. 920-925.
Elsevier DOI 1004
Mean shift; Fisher linear discriminant; Point-line distance; Crop image; Segmentation BibRef

Potgieter, A.B., Apan, A., Hammer, G., Dunn, P.,
Early-season crop area estimates for winter crops in NE Australia using MODIS satellite imagery,
PandRS(65), No. 4, July 2010, pp. 380-387.
Elsevier DOI 1003
Early-season; Crop area estimates; Simple metric; Multi-temporal; Shire-scale BibRef

Yang, D., Yang, Y., Yang, C., Zhao, J., Sun, Z.,
Detection of seagrass in optical shallow water with quickbird in the Xincun Bay, Hainan province, China,
IET-IPR(5), No. 5, 2011, pp. 363-368.
DOI Link 1108
BibRef

Burgin, M., Clewley, D., Lucas, R.M., Moghaddam, M.,
A Generalized Radar Backscattering Model Based on Wave Theory for Multilayer Multispecies Vegetation,
GeoRS(49), No. 12, December 2011, pp. 4832-4845.
IEEE DOI 1201
BibRef

Clewley, D.[Daniel], Bunting, P.[Peter], Shepherd, J.[James], Gillingham, S.[Sam], Flood, N.[Neil], Dymond, J.[John], Lucas, R.[Richard], Armston, J.[John], Moghaddam, M.[Mahta],
A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables,
RS(6), No. 7, 2014, pp. 6111-6135.
DOI Link 1408
BibRef

Knoth, C.[Christian], Nüst, D.[Daniel],
Reproducibility and Practical Adoption of GEOBIA with Open-Source Software in Docker Containers,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
Replacing proprietary software with open source. BibRef

Biliouris, D., van der Zande, D., Verstraeten, W., Stuckens, J., Muys, B., Dutré, P., Coppin, P.,
RPV Model Parameters Based on Hyperspectral Bidirectional Reflectance Measurements of Fagus sylvatica L. Leaves.,
RS(1), No. 2, June 2009, pp. 92-106.
DOI Link 1203
BibRef

Lyons, M., Phinn, S.R., Roelfsema, C.M.,
Integrating Quickbird Multi-Spectral Satellite and Field Data: Mapping Bathymetry, Seagrass Cover, Seagrass Species and Change in Moreton Bay, Australia in 2004 and 2007,
RS(3), No. 1, January 2011, pp. 42-64.
DOI Link 1203
BibRef

Laurila, H., Karjalainen, M., Kleemola, J., Hyyppä, J.,
Cereal Yield Modeling in Finland Using Optical and Radar Remote Sensing,
RS(2), No. 9, September 2010, pp. 2185-2239.
DOI Link 1203
BibRef

Hunt, E., Hively, W., Fujikawa, S., Linden, D., Daughtry, C., McCarty, G.,
Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring,
RS(2), No. 1, January 2010, pp. 290-305.
DOI Link 1203
Award, Remote Sensing. 2014. See:
DOI Link BibRef

Serbin, G., Hunt, E., Daughtry, C., McCarty, G., Doraiswamy, P.,
An Improved ASTER Index for Remote Sensing of Crop Residue,
RS(1), No. 4, December 2009, pp. 971-991.
DOI Link 1203
BibRef

Panda, S., Ames, D., Panigrahi, S.,
Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques,
RS(2), No. 3, March 2010, pp. 673-696.
DOI Link 1203
BibRef

Conrad, C., Fritsch, S., Zeidler, J., Rücker, G., Dech, S.,
Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data,
RS(2), No. 4, April 2010, pp. 1035-1056.
DOI Link 1203
BibRef

Martinez, B., Cassiraga, E., Camacho, F., Garcia-Haro, J.,
Geostatistics for Mapping Leaf Area Index over a Cropland Landscape: Efficiency Sampling Assessment,
RS(2), No. 11, November 2010, pp. 2584-2606.
DOI Link 1203
BibRef

Fletcher, R.S., Everitt, J.H., Elder, H.,
Evaluating Airborne Multispectral Digital Video to Differentiate Giant Salvinia from Other Features in Northeast Texas,
RS(2), No. 10, October 2010, pp. 2413-2423.
DOI Link 1203
BibRef

Jones, D., Pike, S., Thomas, M., Murphy, D.,
Object-Based Image Analysis for Detection of Japanese Knotweed s.l. taxa (Polygonaceae) in Wales (UK),
RS(3), No. 2, February 2011, pp. 319-342.
DOI Link 1203
BibRef

Borzuchowski, J., Schulz, K.,
Retrieval of Leaf Area Index (LAI) and Soil Water Content (WC) Using Hyperspectral Remote Sensing under Controlled Glass House Conditions for Spring Barley and Sugar Beet,
RS(2), No. 7, July 2010, pp. 1702-1721.
DOI Link 1203
BibRef

Wu, J.D.[Jin-Dong], Bauer, M.E.[Marvin E.],
Evaluating the Effects of Shadow Detection on QuickBird Image Classification and Spectroradiometric Restoration,
RS(5), No. 9, 2013, pp. 4450-4469.
DOI Link 1310
Shadow Detection. BibRef

Knox, N.M.[Nichola M.], Skidmore, A.K.[Andrew K.], Prins, H.H.T.[Herbert H.T.], Heitkönig, I.M.A.[Ignas M.A.], Slotow, R.[Rob], van der Waal, C.[Cornelis], de Boer, W.F.[William F.],
Remote sensing of forage nutrients: Combining ecological and spectral absorption feature data,
PandRS(72), No. 1, August 2012, pp. 27-35.
Elsevier DOI 1209
Landscape; Modelling; Monitoring; Ecology; Resources; Hyperspectral BibRef

Gusso, A., Ducati, J.,
Algorithm for Soybean Classification Using Medium Resolution Satellite Images,
RS(4), No. 10, October 2012, pp. 3127-3142.
DOI Link 1210
BibRef

Bernardes, T., Moreira, M., Adami, M., Giarolla, A., Rudorff, B.,
Monitoring Biennial Bearing Effect on Coffee Yield Using MODIS Remote Sensing Imagery,
RS(4), No. 9, September 2012, pp. 2492-2509.
DOI Link 1210
BibRef

Holland, J.[Jennie], Aplin, P.[Paul],
Super-resolution image analysis as a means of monitoring bracken (Pteridium aquilinum) distributions,
PandRS(75), No. 1, January 2013, pp. 48-63.
Elsevier DOI 1301
Bracken; Super-resolution; Classification; Monitoring; Vegetation; Scale BibRef

Zhao, Y., Pu, R., Bell, S.S., Meyer, C., Baggett, L.P., Geng, X.,
Hyperion Image Optimization in Coastal Waters,
GeoRS(51), No. 2, February 2013, pp. 1025-1036.
IEEE DOI 1302
Costal vegetation of Florida. BibRef

Mirik, M., Ansley, R., Steddom, K., Jones, D., Rush, C., Michels, G., Elliott, N.,
Remote Distinction of A Noxious Weed (Musk Thistle: CarduusNutans) Using Airborne Hyperspectral Imagery and the Support Vector Machine Classifier,
RS(5), No. 2, February 2013, pp. 612-630.
DOI Link 1303
BibRef

Tehrani, N., d'Sa, E., Osburn, C., Bianchi, T., Schaeffer, B.,
Chromophoric Dissolved Organic Matter and Dissolved Organic Carbon from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS) and MERIS Sensors: Case Study for the Northern Gulf of Mexico,
RS(5), No. 3, March 2013, pp. 1439-1464.
DOI Link 1304
BibRef

Atzberger, C., Rembold, F.,
Mapping the Spatial Distribution of Winter Crops at Sub-Pixel Level Using AVHRR NDVI Time Series and Neural Nets,
RS(5), No. 3, March 2013, pp. 1335-1354.
DOI Link 1304
BibRef

Turker, M.[Mustafa], Kok, E.H.[Emre Hamit],
Field-based sub-boundary extraction from remote sensing imagery using perceptual grouping,
PandRS(79), No. 1, May 2013, pp. 106-121.
Elsevier DOI 1305
BibRef
Earlier:
Developing an integrated system for the extraction of sub-fields within agricultural parcels from remote sensing images,
OBIA06(xx-yy).
PDF File. 0607
Field-based; Boundary detection; Perceptual-grouping; Agriculture; SPOT imagery BibRef

Ozdarici, A., Turker, M.,
Field-based classification of agricultural crops using multi-scale images,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Bandaru, V.[Varaprasad], West, T.O.[Tristram O.], Ricciuto, D.M.[Daniel M.], Izaurralde, R.C.[R. César],
Estimating crop net primary production using national inventory data and MODIS-derived parameters,
PandRS(80), No. 1, June 2013, pp. 61-71.
Elsevier DOI 1305
Agriculture; Carbon flux; Crop production; Geospatial scaling; Phenology; Satellite remote sensing BibRef

Ordonez, C., Rodriguez-Perez, J.R., Moreira, J.J., Sanz, E.,
Using Hyperspectral Spectrometry and Functional Models to Characterize Vine-Leaf Composition,
GeoRS(51), No. 5, May 2013, pp. 2610-2618.
IEEE DOI 1305
BibRef

Rembold, F.[Felix], Atzberger, C.[Clement], Savin, I.[Igor], Rojas, O.[Oscar],
Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection,
RS(5), No. 4, April 2013, pp. 1704-1733.
DOI Link 1305
BibRef
And: Correction: RS(5), No. 11, 2013, pp. 5572-5573.
DOI Link 1312
BibRef

Kamble, B., Kilic, A., Hubbard, K.,
Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index,
RS(5), No. 4, April 2013, pp. 1588-1602.
DOI Link 1305
BibRef

Taylor, S.L.[Sarah L.], Hill, R.A.[Ross A.], Edwards, C.[Colin],
Characterising invasive non-native Rhododendron ponticum spectra signatures with spectroradiometry in the laboratory and field: Potential for remote mapping,
PandRS(81), No. 1, July 2013, pp. 70-81.
Elsevier DOI 1306
Hyperspectral remote sensing; Invasive species; Logistic regression; Species discrimination; Leaf plasticity BibRef

Pu, R.L.[Rui-Liang], Bell, S.[Susan],
A protocol for improving mapping and assessing of seagrass abundance along the West Central Coast of Florida using Landsat TM and EO-1 ALI/Hyperion images,
PandRS(83), No. 1, 2013, pp. 116-129.
Elsevier DOI 1308
Image optimization BibRef

Mishra, V.[Vikalp], Cruise, J.F.[James F.], Mecikalski, J.R.[John R.], Hain, C.R.[Christopher R.], Anderson, M.C.[Martha C.],
A Remote-Sensing Driven Tool for Estimating Crop Stress and Yields,
RS(5), No. 7, 2013, pp. 3331-3356.
DOI Link 1308
BibRef

Honkavaara, E.[Eija], Saari, H.[Heikki], Kaivosoja, J.[Jere], Pölönen, I.[Ilkka], Hakala, T.[Teemu], Litkey, P.[Paula], Mäkynen, J.[Jussi], Pesonen, L.[Liisa],
Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture,
RS(5), No. 10, 2013, pp. 5006-5039.
DOI Link 1311
BibRef

Honkavaara, E., Kaivosoja, J., Mäkynen, J., Pellikka, I., Pesonen, L., Saari, H., Salo, H., Hakala, T., Marklelin, L., Rosnell, T.,
Hyperspectral Reflectance Signatures and Point Clouds for Precision Agriculture by light Weight UAV Imaging System,
AnnalsPRS(I-7), No. 2012, pp. 353-358.
HTML Version. 1209
BibRef

Borfecchia, F.[Flavio], Micheli, C.[Carla], Carli, F.[Filippo], de Martis, S.C.[Selvaggia Cognetti], Gnisci, V.[Valentina], Piermattei, V.[Viviana], Belmonte, A.[Alessandro], De Cecco, L.[Luigi], Martini, S.[Sandro], Marcelli, M.[Marco],
Mapping Spatial Patterns of Posidonia oceanica Meadows by Means of Daedalus ATM Airborne Sensor in the Coastal Area of Civitavecchia (Central Tyrrhenian Sea, Italy),
RS(5), No. 10, 2013, pp. 4877-4899.
DOI Link 1311
BibRef

Ogashawara, I.[Igor], Mishra, D.R.[Deepak R.], Mishra, S.[Sachidananda], Curtarelli, M.P.[Marcelo P.], Stech, J.L.[José L.],
A Performance Review of Reflectance Based Algorithms for Predicting Phycocyanin Concentrations in Inland Waters,
RS(5), No. 10, 2013, pp. 4774-4798.
DOI Link 1311
BibRef

Peng, D.L.[Dai-Liang], Jiang, Z.Y.[Zhang-Yan], Huete, A.R.[Alfredo R.], Ponce-Campos, G.E.[Guillermo E.], Nguyen, U.[Uyen], Luvall, J.C.[Jeffrey C.],
Response of Spectral Reflectances and Vegetation Indices on Varying Juniper Cone Densities,
RS(5), No. 10, 2013, pp. 5330-5345.
DOI Link 1311
BibRef

Xin, Q.C.[Qin-Chuan], Gong, P.[Peng], Yu, C.Q.[Chao-Qing], Yu, L.[Le], Broich, M.[Mark], Suyker, A.E.[Andrew E.], Myneni, R.B.[Ranga B.],
A Production Efficiency Model-Based Method for Satellite Estimates of Corn and Soybean Yields in the Midwestern US,
RS(5), No. 11, 2013, pp. 5926-5943.
DOI Link 1312
BibRef

Xian, G.[George], Homer, C.[Collin], Meyer, D.[Debbie], Granneman, B.[Brian],
An approach for characterizing the distribution of shrubland ecosystem components as continuous fields as part of NLCD,
PandRS(86), No. 1, 2013, pp. 136-149.
Elsevier DOI 1312
Shurbland BibRef

Roelofsen, H.D.[Hans D.], van Bodegom, P.M.[Peter M.], Kooistra, L.[Lammert], Witte, J.P.M.[Jan-Philip M.],
Trait Estimation in Herbaceous Plant Assemblages from in situ Canopy Spectra,
RS(5), No. 12, 2013, pp. 6323-6345.
DOI Link 1402
BibRef

Yang, C.H.[Cheng-Hai], Everitt, J.H., Du, Q.[Qian], Luo, B.[Bin], Chanussot, J.,
Using High-Resolution Airborne and Satellite Imagery to Assess Crop Growth and Yield Variability for Precision Agriculture,
PIEEE(100), No. 3, March 2013, pp. 582-592.
IEEE DOI 1303
BibRef

Beamish, D.[David],
Peat Mapping Associations of Airborne Radiometric Survey Data,
RS(6), No. 1, 2014, pp. 521-539.
DOI Link 1402
BibRef

Verrelst, J., Rivera, J.P., Leonenko, G., Alonso, L., Moreno, J.,
Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions,
GeoRS(52), No. 1, January 2014, pp. 257-269.
IEEE DOI 1402
remote sensing BibRef

Verrelst, J.[Jochem], Rivera, J.P.[Juan Pablo], Veroustraete, F.[Frank], Muńoz-Marí, J.[Jordi], Clevers, J.G.P.W.[Jan G.P.W.], Camps-Valls, G.[Gustau], Moreno, J.[José],
Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods: A comparison,
PandRS(108), No. 1, 2015, pp. 260-272.
Elsevier DOI 1511
Biophysical variables BibRef

Cole, B.[Beth], McMorrow, J.[Julia], Evans, M.[Martin],
Empirical Modelling of Vegetation Abundance from Airborne Hyperspectral Data for Upland Peatland Restoration Monitoring,
RS(6), No. 1, 2014, pp. 716-739.
DOI Link 1402
BibRef

Wilson, J.H.[Jeffrey H.], Zhang, C.H.[Chun-Hua], Kovacs, J.M.[John M.],
Separating Crop Species in Northeastern Ontario Using Hyperspectral Data,
RS(6), No. 2, 2014, pp. 925-945.
DOI Link 1403
BibRef

Allbed, A.[Amal], Kumar, L.[Lalit], Sinha, P.[Priyakant],
Mapping and Modelling Spatial Variation in Soil Salinity in the Al Hassa Oasis Based on Remote Sensing Indicators and Regression Techniques,
RS(6), No. 2, 2014, pp. 1137-1157.
DOI Link 1403
BibRef

Li, P.[Peng], Feng, Z.M.[Zhi-Ming], Jiang, L.[Luguang], Liao, C.[Chenhua], Zhang, J.H.[Jing-Hua],
A Review of Swidden Agriculture in Southeast Asia,
RS(6), No. 2, 2014, pp. 1654-1683.
DOI Link 1403
BibRef

Yi, Q.X.[Qiu-Xiang], Jiapaer, G.[Guli], Chen, J.M.[Jing-Ming], Bao, A.M.[An-Ming], Wang, F.M.[Fu-Min],
Different units of measurement of carotenoids estimation in cotton using hyperspectral indices and partial least square regression,
PandRS(91), No. 1, 2014, pp. 72-84.
Elsevier DOI 1404
Carotenoids BibRef

Wang, J.B.[Jun-Bang], Dong, J.W.[Jing-Wei], Liu, J.Y.[Ji-Yuan], Huang, M.[Mei], Li, G.C.[Gui-Cai], Running, S.W.[Steven W.], Smith, W.K.[W. Kolby], Harris, W.[Warwick], Saigusa, N.[Nobuko], Kondo, H.[Hiroaki], Liu, Y.F.[Yun-Fen], Hirano, T.[Takashi], Xiao, X.M.[Xiang-Ming],
Comparison of Gross Primary Productivity Derived from GIMMS NDVI3g, GIMMS, and MODIS in Southeast Asia,
RS(6), No. 3, 2014, pp. 2108-2133.
DOI Link 1404
BibRef

Chen, J.[Jun], Cui, T.W.[Ting-Wei], Qiu, Z.F.[Zhong-Feng], Lin, C.S.[Chang-Song],
A simple two-band semi-analytical model for retrieval of specific absorption coefficients in coastal waters,
PandRS(91), No. 1, 2014, pp. 85-97.
Elsevier DOI 1404
Remote sensing BibRef

Jiang, Z.W.[Zhi-Wei], Chen, Z.X.[Zhong-Xin], Chen, J.[Jin], Ren, J.Q.[Jian-Qiang], Li, Z.N.[Zong-Nan], Sun, L.[Liang],
The Estimation of Regional Crop Yield Using Ensemble-Based Four-Dimensional Variational Data Assimilation,
RS(6), No. 4, 2014, pp. 2664-2681.
DOI Link 1405
BibRef

Peng, X.T.[Xiao-Ting], Shi, T.Z.[Tie-Zhu], Song, A.H.[Ai-Hong], Chen, Y.Y.[Yi-Yun], Gao, W.X.[Wen-Xiu],
Estimating Soil Organic Carbon Using VIS/NIR Spectroscopy with SVMR and SPA Methods,
RS(6), No. 4, 2014, pp. 2699-2717.
DOI Link 1405
BibRef

Schwieder, M.[Marcel], Leităo, P.J.[Pedro J.], Suess, S.[Stefan], Senf, C.[Cornelius], Hostert, P.[Patrick],
Estimating Fractional Shrub Cover Using Simulated EnMAP Data: A Comparison of Three Machine Learning Regression Techniques,
RS(6), No. 4, 2014, pp. 3427-3445.
DOI Link 1405
BibRef

Suess, S.[Stefan], van der Linden, S.[Sebastian], Okujeni, A.[Akpona], Leităo, P.J.[Pedro J.], Schwieder, M.[Marcel], Hostert, P.[Patrick],
Using Class Probabilities to Map Gradual Transitions in Shrub Vegetation from Simulated EnMAP Data,
RS(7), No. 8, 2015, pp. 10668.
DOI Link 1509
BibRef

Lewis, S.M.[Sarah M.], Kelly, M.[Maggi],
Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales,
IJGI(3), No. 2, 2014, pp. 430-459.
DOI Link 1405
BibRef

Peńa, J.M.[José M.], Gutiérrez, P.A.[Pedro A.], Hervás-Martínez, C.[César], Six, J.[Johan], Plant, R.E.[Richard E.], López-Granados, F.[Francisca],
Object-Based Image Classification of Summer Crops with Machine Learning Methods,
RS(6), No. 6, 2014, pp. 5019-5041.
DOI Link 1407
BibRef

Zhang, M.[Miao], Wu, B.F.[Bing-Fang], Yu, M.Z.[Ming-Zhao], Zou, W.[Wentao], Zheng, Y.[Yang],
Crop Condition Assessment with Adjusted NDVI Using the Uncropped Arable Land Ratio,
RS(6), No. 6, 2014, pp. 5774-5794.
DOI Link 1407
BibRef

Torrion, J.A.[Jessica A.], Maas, S.J.[Stephan J.], Guo, W.[Wenxuan], Bordovsky, J.P.[James P.], Cranmer, A.M.[Andy M.],
A Three-Dimensional Index for Characterizing Crop Water Stress,
RS(6), No. 5, 2014, pp. 4025-4042.
DOI Link 1407
BibRef

Sicre, C.M.[Claire Marais], Baup, F.[Frédéric], Fieuzal, R.[Rémy],
Determination of the crop row orientations from Formosat-2 multi-temporal and panchromatic images,
PandRS(94), No. 1, 2014, pp. 127-142.
Elsevier DOI 1407
Crop monitoring BibRef

Prilepova, O.[Olga], Hart, Q.[Quinn], Merz, J.[Justin], Parker, N.[Nathan], Bandaru, V.[Varaprasad], Jenkins, B.[Bryan],
Design of a GIS-Based Web Application for Simulating Biofuel Feedstock Yields,
IJGI(3), No. 3, 2014, pp. 929-941.
DOI Link 1407
BibRef

Kim, J., Grunwald, S., Rivero, R.G.,
Soil Phosphorus and Nitrogen Predictions Across Spatial Escalating Scales in an Aquatic Ecosystem Using Remote Sensing Images,
GeoRS(52), No. 10, October 2014, pp. 6724-6737.
IEEE DOI 1407
Biological system modeling BibRef

Vanselow, K.A.[Kim André], Samimi, C.[Cyrus],
Predictive Mapping of Dwarf Shrub Vegetation in an Arid High Mountain Ecosystem Using Remote Sensing and Random Forests,
RS(6), No. 7, 2014, pp. 6709-6726.
DOI Link 1408
BibRef

Leroux, L.[Louise], Jolivot, A.[Audrey], Bégué, A.[Agnčs], Seen, D.L.[Danny Lo], Zoungrana, B.[Bernardin],
How Reliable is the MODIS Land Cover Product for Crop Mapping Sub-Saharan Agricultural Landscapes?,
RS(6), No. 9, 2014, pp. 8541-8564.
DOI Link 1410
BibRef

Cai, W.W.[Wen-Wen], Yuan, W.P.[Wen-Ping], Liang, S.L.[Shun-Lin], Liu, S.G.[Shu-Guang], Dong, W.J.[Wen-Jie], Chen, Y.[Yang], Liu, D.[Dan], Zhang, H.C.[Hai-Cheng],
Large Differences in Terrestrial Vegetation Production Derived from Satellite-Based Light Use Efficiency Models,
RS(6), No. 9, 2014, pp. 8945-8965.
DOI Link 1410
BibRef

Hoberg, T.[Thorsten], Rottensteiner, F.[Franz], Feitosa, R.Q.[Raul Queiroz], Heipke, C.[Christian],
Conditional Random Fields for Multitemporal and Multiscale Classification of Optical Satellite Imagery,
GeoRS(53), No. 2, February 2015, pp. 659-673.
IEEE DOI 1411
BibRef
Earlier: A1, A2, A4, Only:
Context Models for CRF-Based Classification of Multitemporal Remote Sensing Data,
AnnalsPRS(I-7), No. 2012, pp. 129-134.
HTML Version. 1209
BibRef
Earlier: A1, A2, A4, Only:
Classification of multitemporal remote sensing data of different resolution using Conditional Random Fields,
CVRSE11(235-242).
IEEE DOI 1201
artificial satellites BibRef

Hoberg, T., Müller, S.,
Multitemporal Crop Type Classification using Conditional Random Fields and RapidEye Data,
HighRes11(xx-yy).
PDF File. 1106
BibRef

Albert, L., Rottensteiner, F.[Franz], Heipke, C.[Christian],
Contextual Land Use Classification: How Detailed Can The Class Structure Be?,
ISPRS16(B4: 11-18).
DOI Link 1610
BibRef
Earlier:
A two-layer Conditional Random Field model for simultaneous classification of land cover and land use,
PCV14(17-24).
DOI Link 1404
See also Sequential Gaussian Mixture Models for Two-Level Conditional Random Fields. BibRef

Kouadio, L.[Louis], Newlands, N.K.[Nathaniel K.], Davidson, A.[Andrew], Zhang, Y.[Yinsuo], Chipanshi, A.[Aston],
Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale,
RS(6), No. 10, 2014, pp. 10193-10214.
DOI Link 1411
BibRef

Mattiuzzi, M.[Matteo], Bussink, C.[Coen], Bauer, T.[Thomas],
Analysing Phenological Characteristics Extracted from Landsat NDVI Time Series to Identify Suitable Image Acquisition Dates for Cannabis Mapping in Afghanistan,
PFG(2014), No. 5, 2014, pp. 383-392.
DOI Link 1411
BibRef

Yang, H.[Hao], Li, Z.[Zengyuan], Chen, E.[Erxue], Zhao, C.J.[Chun-Jiang], Yang, G.[Guijun], Casa, R.[Raffaele], Pignatti, S.[Stefano], Feng, Q.[Qi],
Temporal Polarimetric Behavior of Oilseed Rape (Brassica napus L.) at C-Band for Early Season Sowing Date Monitoring,
RS(6), No. 11, 2014, pp. 10375-10394.
DOI Link 1412
BibRef

Hogrefe, K.R.[Kyle R.], Ward, D.H.[David H.], Donnelly, T.F.[Tyrone F], Dau, N.[Niels],
Establishing a Baseline for Regional Scale Monitoring of Eelgrass (Zostera marina) Habitat on the Lower Alaska Peninsula,
RS(6), No. 12, 2014, pp. 12447-12477.
DOI Link 1412
BibRef

Hung, C.[Calvin], Xu, Z.[Zhe], Sukkarieh, S.[Salah],
Feature Learning Based Approach for Weed Classification Using High Resolution Aerial Images from a Digital Camera Mounted on a UAV,
RS(6), No. 12, 2014, pp. 12037-12054.
DOI Link 1412
BibRef

Li, X.X.[Xiao-Xiao], Shao, G.F.[Guo-Fan],
Object-Based Land-Cover Mapping with High Resolution Aerial Photography at a County Scale in Midwestern USA,
RS(6), No. 11, 2014, pp. 11372-11390.
DOI Link 1412
BibRef

Doktor, D.[Daniel], Lausch, A.[Angela], Spengler, D.[Daniel], Thurner, M.[Martin],
Extraction of Plant Physiological Status from Hyperspectral Signatures Using Machine Learning Methods,
RS(6), No. 12, 2014, pp. 12247-12274.
DOI Link 1412
BibRef

Marshall, M.[Michael], Thenkabail, P.[Prasad],
Developing in situ Non-Destructive Estimates of Crop Biomass to Address Issues of Scale in Remote Sensing,
RS(7), No. 1, 2015, pp. 808-835.
DOI Link 1502
BibRef

Fan, X.W.[Xing-Wang], Liu, Y.B.[Yuan-Bo], Tao, J.M.[Jin-Mei], Weng, Y.L.[Yong-Ling],
Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression,
RS(7), No. 1, 2015, pp. 488-511.
DOI Link 1502
BibRef

Wagle, P.[Pradeep], Xiao, X.[Xiangming], Suyker, A.E.[Andrew E.],
Estimation and analysis of gross primary production of soybean under various management practices and drought conditions,
PandRS(99), No. 1, 2015, pp. 70-83.
Elsevier DOI 1502
Gross primary production BibRef

Lex, S.[Sylvia], Asam, S.[Sarah], Löw, F.[Fabian], Conrad, C.[Christopher],
Comparison of two Statistical Methods for the Derivation of the Fraction of Absorbed Photosynthetic Active Radiation for Cotton,
PFG(2015), No. 1, 2015, pp. 55-67.
DOI Link 1503
BibRef

Lehmann, J.R.K.[Jan Rudolf Karl], Große-Stoltenberg, A.[André], Römer, M.[Meike], Oldeland, J.[Jens],
Field Spectroscopy in the VNIR-SWIR Region to Discriminate between Mediterranean Native Plants and Exotic-Invasive Shrubs Based on Leaf Tannin Content,
RS(7), No. 2, 2015, pp. 1225-1241.
DOI Link 1503
BibRef

Bareth, G.[Georg], Aasen, H.[Helge], Bendig, J.[Juliane], Gnyp, M.L.[Martin Leon], Bolten, A.[Andreas], Jung, A.[András], Michels, R.[René], Soukkamäki, J.[Jussi],
Low-weight and UAV-based Hyperspectral Full-frame Cameras for Monitoring Crops: Spectral Comparison with Portable Spectroradiometer Measurements,
PFG(2015), No. 1, 2015, pp. 69-79.
DOI Link 1503
BibRef

Pôças, I.[Isabel], Paço, T.A.[Teresa A.], Paredes, P.[Paula], Cunha, M.[Mário], Pereira, L.S.[Luís S.],
Estimation of Actual Crop Coefficients Using Remotely Sensed Vegetation Indices and Soil Water Balance Modelled Data,
RS(7), No. 3, 2015, pp. 2373-2400.
DOI Link 1504
BibRef

Miao, R.H.[Rong-Hui], Tang, J.L.[Jing-Lei], Chen, X.Q.[Xiao-Qian],
Classification of farmland images based on color features,
JVCIR(29), No. 1, 2015, pp. 138-146.
Elsevier DOI 1504
Color features BibRef

Hao, P.Y.[Peng-Yu], Zhan, Y.L.[Yu-Lin], Wang, L.[Li], Niu, Z.[Zheng], Shakir, M.[Muhammad],
Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA,
RS(7), No. 5, 2015, pp. 5347-5369.
DOI Link 1506
BibRef

Ozdarici-Ok, A.[Asli], Ok, A.O.[Ali Ozgun], Schindler, K.[Konrad],
Mapping of Agricultural Crops from Single High-Resolution Multispectral Images: Data-Driven Smoothing vs. Parcel-Based Smoothing,
RS(7), No. 5, 2015, pp. 5611-5638.
DOI Link 1506
BibRef

Muharam, F.M.[Farrah Melissa], Maas, S.J.[Stephen J.], Bronson, K.F.[Kevin F.], Delahunty, T.[Tina],
Estimating Cotton Nitrogen Nutrition Status Using Leaf Greenness and Ground Cover Information,
RS(7), No. 6, 2015, pp. 7007.
DOI Link 1507
BibRef

Bannari, A.[Abderrazak], Staenz, K.[Karl], Champagne, C.[Catherine], Khurshid, K.S.[K. Shahid],
Spatial Variability Mapping of Crop Residue Using Hyperion (EO-1) Hyperspectral Data,
RS(7), No. 6, 2015, pp. 8107.
DOI Link 1507
BibRef

Schmedtmann, J.[Jonas], Campagnolo, M.L.[Manuel L.],
Reliable Crop Identification with Satellite Imagery in the Context of Common Agriculture Policy Subsidy Control,
RS(7), No. 7, 2015, pp. 9325.
DOI Link 1506
BibRef

Waldner, F.[François], Lambert, M.J.[Marie-Julie], Li, W.J.[Wen-Juan], Weiss, M.[Marie], Demarez, V.[Valérie], Morin, D.[David], Marais-Sicre, C.[Claire], Hagolle, O.[Olivier], Baret, F.[Frédéric], Defourny, P.[Pierre],
Land Cover and Crop Type Classification along the Season Based on Biophysical Variables Retrieved from Multi-Sensor High-Resolution Time Series,
RS(7), No. 8, 2015, pp. 10400.
DOI Link 1509
BibRef

Hamada, Y.[Yuki], Ssegane, H.[Herbert], Negri, M.C.[Maria Cristina],
Mapping Intra-Field Yield Variation Using High Resolution Satellite Imagery to Integrate Bioenergy and Environmental Stewardship in an Agricultural Watershed,
RS(7), No. 8, 2015, pp. 9753.
DOI Link 1509
BibRef

Kou, X.K.[Xiao-Kang], Chai, L.[Linna], Jiang, L.M.[Ling-Mei], Zhao, S.J.[Shao-Jie], Yan, S.[Shuang],
Modeling of the Permittivity of Holly Leaves in Frozen Environments,
GeoRS(53), No. 11, November 2015, pp. 6048-6057.
IEEE DOI 1509
vegetation BibRef

Marshall, M.[Michael], Thenkabail, P.[Prasad],
Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation,
PandRS(108), No. 1, 2015, pp. 205-218.
Elsevier DOI 1511
Earth observation BibRef

Villa, P.[Paolo], Stroppiana, D.[Daniela], Fontanelli, G.[Giacomo], Azar, R.[Ramin], Brivio, P.A.[Pietro Alessandro],
In-Season Mapping of Crop Type with Optical and X-Band SAR Data: A Classification Tree Approach Using Synoptic Seasonal Features,
RS(7), No. 10, 2015, pp. 12859.
DOI Link 1511
BibRef

Liu, X.L.[Xiao-Long], Bo, Y.C.[Yan-Chen], Zhang, J.[Jian], He, Y.Q.[Ya-Qian],
Classification of C3 and C4 Vegetation Types Using MODIS and ETM+ Blended High Spatio-Temporal Resolution Data,
RS(7), No. 11, 2015, pp. 15244.
DOI Link 1512
BibRef

Wu, M.Q.[Ming-Quan], Zhang, X.Y.[Xiao-Yang], Huang, W.J.[Wen-Jiang], Niu, Z.[Zheng], Wang, C.Y.[Chang-Yao], Li, W.[Wang], Hao, P.Y.[Peng-Yu],
Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring,
RS(7), No. 12, 2015, pp. 15826.
DOI Link 1601
BibRef

Heim, R.H.J.[René Hans-Jürgen], Jürgens, N.[Norbert], Große-Stoltenberg, A.[André], Oldeland, J.[Jens],
The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice Plants (Aizoaceae),
RS(7), No. 12, 2015, pp. 15862.
DOI Link 1601
BibRef

Meroni, M., Fasbender, D., Balaghi, R., Dali, M., Haffani, M., Haythem, I., Hooker, J., Lahlou, M., Lopez-Lozano, R., Mahyou, H., Ben Moussa, M., Sghaier, N., Wafa, T., Leo, O.,
Evaluating NDVI Data Continuity Between SPOT-VEGETATION and PROBA-V Missions for Operational Yield Forecasting in North African Countries,
GeoRS(54), No. 2, February 2016, pp. 795-804.
IEEE DOI 1601
Agriculture BibRef

Li, J.Z.[Jing-Zhong], Liu, Y.M.[Yong-Mei], Mo, C.H.[Chong-Hui], Wang, L.[Lei], Pang, G.[Guowei], Cao, M.[Mingming],
IKONOS Image-Based Extraction of the Distribution Area of Stellera chamaejasme L. in Qilian County of Qinghai Province, China,
RS(8), No. 2, 2016, pp. 148.
DOI Link 1603
A flower. BibRef

Danielson, P.[Patrick], Yang, L.M.[Li-Min], Jin, S.[Suming], Homer, C.[Collin], Napton, D.[Darrell],
An Assessment of the Cultivated Cropland Class of NLCD 2006 Using a Multi-Source and Multi-Criteria Approach,
RS(8), No. 2, 2016, pp. 101.
DOI Link 1603
BibRef

Zhang, X.Y.[Xiao-Yang], Zhang, Q.Y.[Qing-Yuan],
Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations,
PandRS(114), No. 1, 2016, pp. 191-205.
Elsevier DOI 1604
Global crop yield BibRef

Lambert, M.J.[Marie-Julie], Waldner, F.[François], Defourny, P.[Pierre],
Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m,
RS(8), No. 3, 2016, pp. 232.
DOI Link 1604
BibRef

Zhang, J.[Jian], Yang, C.[Chenghai], Song, H.[Huaibo], Hoffmann, W.C.[Wesley Clint], Zhang, D.[Dongyan], Zhang, G.[Guozhong],
Evaluation of an Airborne Remote Sensing Platform Consisting of Two Consumer-Grade Cameras for Crop Identification,
RS(8), No. 3, 2016, pp. 257.
DOI Link 1604
BibRef

Große-Stoltenberg, A.[André], Hellmann, C.[Christine], Werner, C.[Christiane], Oldeland, J.[Jens], Thiele, J.[Jan],
Evaluation of Continuous VNIR-SWIR Spectra versus Narrowband Hyperspectral Indices to Discriminate the Invasive Acacia longifolia within a Mediterranean Dune Ecosystem,
RS(8), No. 4, 2016, pp. 334.
DOI Link 1604
BibRef

Larrańaga, A.[Arantzazu], Álvarez-Mozos, J.[Jesús],
On the Added Value of Quad-Pol Data in a Multi-Temporal Crop Classification Framework Based on RADARSAT-2 Imagery,
RS(8), No. 4, 2016, pp. 335.
DOI Link 1604
BibRef

Fang, S.H.[Sheng-Hui], Tang, W.C.[Wen-Chao], Peng, Y.[Yi], Gong, Y.[Yan], Dai, C.[Can], Chai, R.[Ruhui], Liu, K.[Kan],
Remote Estimation of Vegetation Fraction and Flower Fraction in Oilseed Rape with Unmanned Aerial Vehicle Data,
RS(8), No. 5, 2016, pp. 416.
DOI Link 1606
BibRef

Bareth, G.[Georg], Bendig, J.[Juliane], Tilly, N.[Nora], Hoffmeister, D.[Dirk], Aasen, H.[Helge], Bolten, A.[Andreas],
A Comparison of UAV- and TLS-derived Plant Height for Crop Monitoring: Using Polygon Grids for the Analysis of Crop Surface Models (CSMs),
PFG(2016), No. 2, 2016, pp. 85-94.
DOI Link 1606
BibRef

Inglada, J.[Jordi], Vincent, A.[Arthur], Arias, M.[Marcela], Marais-Sicre, C.[Claire],
Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series,
RS(8), No. 5, 2016, pp. 362.
DOI Link 1606
BibRef

Uhl, F.[Florian], Bartsch, I.[Inka], Oppelt, N.[Natascha],
Submerged Kelp Detection with Hyperspectral Data,
RS(8), No. 6, 2016, pp. 487.
DOI Link 1608
BibRef

Prema, P., Murugan, D.,
A Novel Angular Texture Pattern (ATP) Extraction Method for Crop and Weed Discrimination Using Curvelet Transformation,
ELCVIA(15), No. 1, 2016, pp. 27-59.
DOI Link 1608
BibRef

Dunkin, L.[Lauren], Reif, M.[Molly], Altman, S.[Safra], Swannack, T.[Todd],
A Spatially Explicit, Multi-Criteria Decision Support Model for Loggerhead Sea Turtle Nesting Habitat Suitability: A Remote Sensing-Based Approach,
RS(8), No. 7, 2016, pp. 573.
DOI Link 1608
BibRef

Quemada, M.[Miguel], Daughtry, C.S.T.[Craig S. T.],
Spectral Indices to Improve Crop Residue Cover Estimation under Varying Moisture Conditions,
RS(8), No. 8, 2016, pp. 660.
DOI Link 1609
BibRef

Suarez, L.A., Apan, A., Werth, J.,
Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield,
PandRS(120), No. 1, 2016, pp. 65-76.
Elsevier DOI 1610
Cotton BibRef

Hu, Q., Wu, W., Song, Q., Yu, Q., Lu, M., Yang, P., Tang, H., Long, Y.,
Extending the Pairwise Separability Index for Multicrop Identification Using Time-Series MODIS Images,
GeoRS(54), No. 11, November 2016, pp. 6349-6361.
IEEE DOI 1610
Agriculture BibRef

Bose, P.[Pritam], Kasabov, N.K.[Nikola K.], Bruzzone, L.[Lorenzo], Hartono, R.N.[Reggio N.],
Spiking Neural Networks for Crop Yield Estimation Based on Spatiotemporal Analysis of Image Time Series,
GeoRS(54), No. 11, November 2016, pp. 6563-6573.
IEEE DOI 1610
Agriculture BibRef

Peerbhay, K.[Kabir], Mutanga, O.[Onisimo], Lottering, R.[Romano], Bangamwabo, V.[Victor], Ismail, R.[Riyad],
Detecting bugweed (Solanum mauritianum) abundance in plantation forestry using multisource remote sensing,
PandRS(121), No. 1, 2016, pp. 167-176.
Elsevier DOI 1609
Remote sensing BibRef

Alemu, W.G.[Woubet G.], Henebry, G.M.[Geoffrey M.],
Characterizing Cropland Phenology in Major Grain Production Areas of Russia, Ukraine, and Kazakhstan by the Synergistic Use of Passive Microwave and Visible to Near Infrared Data,
RS(8), No. 12, 2016, pp. 1016.
DOI Link 1612
BibRef

Xue, Z.H.[Zhao-Hui], Du, P.J.[Pei-Jun], Li, J.[Jun], Su, H.J.[Hong-Jun],
Sparse graph regularization for robust crop mapping using hyperspectral remotely sensed imagery with very few in situ data,
PandRS(124), No. 1, 2017, pp. 1-15.
Elsevier DOI 1702
Hyperspectral remote sensing BibRef

Bajwa, S.G.[Sreekala G.], Rupe, J.C.[John C.], Mason, J.[Johnny],
Soybean Disease Monitoring with Leaf Reflectance,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703
BibRef

Silva, J.[Joel], Bacao, F.[Fernando], Caetano, M.[Mario],
Specific Land Cover Class Mapping by Semi-Supervised Weighted Support Vector Machines,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703
BibRef

Han, J.H.[Jia-Hui], Wei, C.W.[Chuan-Wen], Chen, Y.L.[Yao-Liang], Liu, W.W.[Wei-Wei], Song, P.L.[Pei-Lin], Zhang, D.D.[Dong-Dong], Wang, A.[Anqi], Song, X.D.[Xiao-Dong], Wang, X.Z.[Xiu-Zhen], Huang, J.F.[Jing-Feng],
Mapping Above-Ground Biomass of Winter Oilseed Rape Using High Spatial Resolution Satellite Data at Parcel Scale under Waterlogging Conditions,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Gilabert, M.A.[María Amparo], Sánchez-Ruiz, S.[Sergio], Moreno, Á.[Álvaro],
Annual Gross Primary Production from Vegetation Indices: A Theoretically Sound Approach,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Yuan, H.H.[Huan-Huan], Yang, G.J.[Gui-Jun], Li, C.C.[Chang-Chun], Wang, Y.J.[Yan-Jie], Liu, J.G.[Jian-Gang], Yu, H.Y.[Hai-Yang], Feng, H.[Haikuan], Xu, B.[Bo], Zhao, X.Q.[Xiao-Qing], Yang, X.D.[Xiao-Dong],
Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link 1705
BibRef

Sun, S.P.[Shang-Peng], Li, C.Y.[Chang-Ying], Paterson, A.H.[Andrew H.],
In-Field High-Throughput Phenotyping of Cotton Plant Height Using LiDAR,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link 1705
BibRef

Wei, C.W.[Chuan-Wen], Huang, J.F.[Jing-Feng], Mansaray, L.R.[Lamin R.], Li, Z.[Zhenhai], Liu, W.W.[Wei-Wei], Han, J.[Jiahui],
Estimation and Mapping of Winter Oilseed Rape LAI from High Spatial Resolution Satellite Data Based on a Hybrid Method,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Zhang, R.[Rui], Zhou, Y.[Yi], Luo, H.X.[Hong-Xia], Wang, F.[Futao], Wang, S.X.[Shi-Xin],
Estimation and Analysis of Spatiotemporal Dynamics of the Net Primary Productivity Integrating Efficiency Model with Process Model in Karst Area,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link 1706
regional net primary productivity. BibRef


Olsen, S.I.[Sřren I.], Nielsen, J.[Jon], Rasmussen, J.[Jesper],
Thistle Detection,
SCIA17(II: 413-425).
Springer DOI 1706
green thistles in yellow mature cereals. BibRef

Brocks, S., Bareth, G.,
Evaluating Dense 3d Reconstruction Software Packages For Oblique Monitoring Of Crop Canopy Surface,
ISPRS16(B5: 785-789).
DOI Link 1610
BibRef

Lukas, V., Novák, J., Neudert, L., Svobodova, I., Rodriguez-Moreno, F., Edrees, M., Kren, J.,
The Combination Of UAV Survey And Landsat Imagery For Monitoring Of Crop Vigor In Precision Agriculture,
ISPRS16(B8: 953-957).
DOI Link 1610
BibRef

Lussem, U., Hütt, C., Waldhoff, G.,
Combined Analysis Of Sentinel-1 And Rapideye Data For Improved Crop Type Classification: An Early Season Approach For Rapeseed And Cereals,
ISPRS16(B8: 959-963).
DOI Link 1610
BibRef

Bendini, H., Sanches, I.D., Körting, T.S., Fonseca, L.M.G., Luiz, A.J.B., Formaggio, A.R.,
Using Landsat 8 Image Time Series For Crop Mapping In A Region Of Cerrado, Brazil,
ISPRS16(B8: 845-850).
DOI Link 1610
BibRef

Wang, Y.J.[Yan-Jie], Liao, Q.H.[Qin-Hong], Yang, G.J.[Gui-Jun], Feng, H.[Haikuan], Yang, X.D.[Xiao-Dong], Yue, J.[Jibo],
Comparing Broad-band And Red Edge-based Spectral Vegetation Indices To Estimate Nitrogen Concentration Of Crops Using Casi Data,
ISPRS16(B7: 137-143).
DOI Link 1610
BibRef

Siricharoen, P.[Punnarai], Scotney, B.[Bryan], Morrow, P.[Philip], Parr, G.[Gerard],
A Lightweight Mobile System for Crop Disease Diagnosis,
ICIAR16(783-791).
Springer DOI 1608
BibRef

Gibson, D.[David], Burghardt, T.[Tilo], Campbell, N.[Neill], Canagarajah, N.[Nishan],
Towards automating visual in-field monitoring of crop health,
ICIP15(3906-3910)
IEEE DOI 1512
ecological informatics BibRef

Dvorák, P., Müllerová, J., Bartaloš, T., Bruna, J.,
Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring,
UAV-g15(83-90).
DOI Link 1512
BibRef

Nogueira, K.[Keiller], Dalla Mura, M., Chanussot, J.[Jocelyn], Schwartz, W.R., dos Santos, J.A.[Jefersson A.],
Learning to Semantically Segment High-Resolution Remote Sensing Images,
ICPR16(3566-3571)
IEEE DOI 1705
Context, Feature extraction, Image segmentation, Machine learning, Remote sensing, Semantics, Visualization, Deep Learning, Feature Learning, High-resolution Images, Land-cover Mapping, Pixel-wise Classification, Remote Sensing, Semantic, Segmentation BibRef

Luo, B.[Bin], Chanussot, J.[Jocelyn],
Geometrical features for the classification of very high resolution multispectral remote-sensing images,
ICIP10(1045-1048).
IEEE DOI 1009
BibRef

Nogueira, K.[Keiller], dos Santos, J.A.[Jefersson A.], Fornazari, T., Freire Silva, T.S., Morellato, L.P., Torres, R.D.S.,
Towards vegetation species discrimination by using data-driven descriptors,
PRRS16(1-6)
IEEE DOI 1704
feature extraction BibRef

Nogueira, K.[Keiller], Schwartz, W.R.[William Robson], dos Santos, J.A.[Jefersson A.],
Coffee Crop Recognition Using Multi-scale Convolutional Neural Networks,
CIARP15(67-74).
Springer DOI 1511
BibRef

Abuleil, A.M.[Ammar M.], Taylor, G.W.[Graham W.], Moussa, M.[Medhat],
An Integrated System for Mapping Red Clover Ground Cover Using Unmanned Aerial Vehicles: A Case Study in Precision Agriculture,
CRV15(277-284)
IEEE DOI 1507
Accuracy BibRef

Grenzdörffer, G.J.,
Crop height determination with UAS point clouds,
LandImaging14(135-140).
DOI Link 1411
BibRef

Torres, M.[Mercedes], Qiu, G.P.[Guo-Ping],
Habitat classification using random forest based image annotation,
ICIP13(1491-1495)
IEEE DOI 1402
Image classification BibRef

Jia, Y., Yu, F.,
Research on Estimation Crop Planting Area by Integrating the Optical and Microwave Remote Sensing Data,
IWIDF13(55-60).
HTML Version. 1311
BibRef

Costa, G.B.P.[Gabriel B. P.], Ponti, M.[Moacir],
Green Coverage Detection on Sub-orbital Plantation Images Using Anomaly Detection,
CIARP13(II:92-99).
Springer DOI 1311
BibRef

Upadhyay, P., Ghosh, S.K., Kumar, A.,
High Resolution Temporal Normalized Difference Vegetation Indices for Specific Crop Identification,
Hannover13(351-355).
DOI Link 1308
BibRef

Maliki, A.A., Owens, G., Bruce, D.,
Capabilities of Remote Sensing Hyperspectral Images for The Detection Of Lead Contamination: A Review,
AnnalsPRS(I-7), No. 2012, pp. 55-60.
HTML Version. 1209
BibRef

Lechner, A.M., Fletcher, A.T., Johansen, K., Erskine, P.D.,
Characterising Upland Swamps Using Object-based Classification Methods And Hyper-spatial Resolution Imagery Derived From An Unmanned Aerial Vehicle,
AnnalsPRS(I-4), No. 2012, pp. 101-106.
HTML Version. 1209
BibRef

Strecha, C., Fletcher, A.T., Lechner, A.M., Erskine, P.D., Fua, P.,
Developing Species Specific Vegetation Maps Using Multi-spectral Hyperspatial Imagery From Unmanned Aerial Vehicles,
AnnalsPRS(I-3), No. 2012, pp. 311-316.
HTML Version. 1209
BibRef

Wang, W.C., Lo, N.J., Chang, W.I., Huang, K.Y.,
Modeling Spatial Distribution Of A Rare And Endangered Plant Species (brainea insignis) In Central Taiwan,
ISPRS12(XXXIX-B7:241-246).
DOI Link 1209
BibRef

Bian, M., Skidmore, A.K., Schlerf, M., Liu, Y., Wang, T.,
Estimating Biochemical Parameters Of Tea (camellia Sinensis (l.)) Using Hyperspectral Techniques,
ISPRS12(XXXIX-B8:237-241).
DOI Link 1209
BibRef

Mcnairn, H., Shang, J., Jiao, X., Deschamps, B.,
Establishing Crop Productivity Using Radarsat-2,
ISPRS12(XXXIX-B8:283-287).
DOI Link 1209
BibRef

Nunez-Casillas, L., Micand, F., Somers, B., Brito, P., Arbelo, M.,
Plant Species Monitoring In The Canary Islands Using Worldview-2 Imagery,
ISPRS12(XXXIX-B8:301-304).
DOI Link 1209
BibRef

Gusso, A., Ducati, J.R.,
Soybean Crop Area Estimation And Mapping In Mato Grosso State, Brazil,
AnnalsPRS(I-7), No. 2012, pp. 215-219.
HTML Version. 1209
BibRef

Musande, V., Kumar, A., Kale, K., Roy, P.S.,
Temporal Indices Data For Specific Crop Discrimination Using Fuzzy Based Noise Classifier,
ISPRS12(XXXIX-B8:289-294).
DOI Link 1209
BibRef

da Silva, W.L., Goncalves, R.R.V., Siqueira, A.S., Zullo, J., Gomes Neto, F.A.M.,
Feature extraction for NDVI AVHRR/NOAA time series classification,
MultiTemp11(233-236).
IEEE DOI 1109
Crop forecasts. BibRef

Vancutsem, C., Pekel, J.F., Kayitakire, F.,
Dynamic mapping of cropland areas in Sub-Saharan Africa using MODIS time series,
MultiTemp11(25-28).
IEEE DOI 1109
BibRef

Ok, A.O.[A. Ozdarici], Akyurek, Z., Clinton, N.,
Automatic Training Site Selection of Agricultural Crop Classification: A Case Study on Karacabey Plain, Turkey,
HighRes11(xx-yy).
PDF File. 1106
BibRef

Chmiel, J., Fijakowska, A.,
Thematic Accuracy Assessment for Object Based Classification in Agriculture Areas: Comparative Analysis of Selected Approaches,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Jones, G., Gee, C., Villette, S., Truchetet, F.,
Validation of a virtual agronomic image modelling,
IPTA10(517-520).
IEEE DOI 1007
Detailed crop analysis. BibRef

Farzaneh, A.[Ali],
Cadastral mapping of Agricultural lands and Natural Resources by using image and non-image data,
CGC10(10).
PDF File. 1006
BibRef

Helmholz, P., Rottensteiner, F.,
Automatic Verification of Agricultural Areas using IKONOS Satellite Images,
HighRes09(xx-yy).
PDF File. 0906
BibRef

Helmholz, P., Gerke, M., Heipke, C.,
Automatic Discrimination of Farmland Types Using IKONOS Imagery,
PIA07(81).
PDF File. 0711
BibRef

Carvalho, F.A., Lacerda, M.P.C.,
Monitoring Environmental Impact of Land Use: Evaluating an Agricultural Area of Distrito Federal, Brazil,
IfromI06(xx-yy).
PDF File. 0607
BibRef

Alves, H.M.R., Vieira, T.G.C., Souza, V.C.O., Bertoldo, M.A., Lacerda, M.P.C., Andrade, H., Bernardes, N.,
Monitoring the Relationships between Environment and Coffee Production in Agroecosytems of the State of Minas Gerais in Brazil,
IfromI06(xx-yy).
PDF File. 0607
BibRef

Fisette, T., Chenier, R., Maloley, M., Gasser, P., Huffman, T., White, L., Ogston, R., Elgarawany, A.,
Methodology for a Canadian agricultural land cover classification,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Chapter on Cartography, Aerial Images, Remote Sensing, Buildings, Roads, Terrain, ATR continues in
Rice Crop Analysis, Production, Detection, Health, Change .


Last update:Jun 24, 2017 at 21:08:28