Highnam, R.[Ralph],
Brady, M.[Michael],
Mammographic Image Analysis,
KluwerFebruary 1999, ISBN 0-7923-5620-9.
WWW Link.
BibRef
9902
MiniMammographic Database,
1995
WWW Link.
Dataset, Mammography.
DDSM: Digital Database for Screening Mammography,
2000, USF.
HTML Version.
Dataset, Mammography.
Bowyer, K.W.,
Astley, S., (Eds.)
Special Issue: State of the Art in Digital Mammographic Image Analysis,
PRAI(7), No. 6, December 1993, pp. 1309-1503.
Full issue.
BibRef
9312
Kobatake, H.,
Yoshinaga, Y.,
Detection of spicules on mammogram based on skeleton analysis,
MedImg(15), No. 3, June 1996, pp. 235-245.
IEEE Top Reference.
0203
BibRef
Rangayyan, R.M.,
Elfaramawy, N.M.,
Desautels, J.E.L.,
Alim, O.A.,
Measures of Acutance and Shape for Classification of Breast-Tumors,
MedImg(16), No. 6, December 1997, pp. 799-810.
IEEE Top Reference.
9803
BibRef
Ma, F.[Fei],
Bajger, M.[Mariusz],
Slavotinek, J.P.[John P.],
Bottema, M.J.[Murk J.],
Two graph theory based methods for identifying the pectoral muscle in
mammograms,
PR(40), No. 9, September 2007, pp. 2592-2602.
Elsevier DOI
0705
Adaptive pyramid; Minimum spanning tree; Segmentation; Pectoral muscle;
Computer-aided diagnosis
BibRef
Ma, F.[Fei],
Bajger, M.[Mariusz],
Bottema, M.J.[Murk J.],
Automatic Mass Segmentation Based on Adaptive Pyramid and Sublevel Set
Analysis,
DICTA09(236-241).
IEEE DOI
0912
BibRef
Bajger, M.[Mariusz],
Ma, F.[Fei],
Williams, S.[Simon],
Bottema, M.J.[Murk J.],
Mammographic Mass Detection with Statistical Region Merging,
DICTA10(27-32).
IEEE DOI
1012
BibRef
Ma, F.[Fei],
Yu, L.,
Bajger, M.[Mariusz],
Bottema, M.J.[Murk J.],
Mammogram Mass Classification with Temporal Features and Multiple
Kernel Learning,
DICTA15(1-7)
IEEE DOI
1603
Gaussian processes
BibRef
Bajger, M.[Mariusz],
Ma, F.[Fei],
Bottema, M.J.[Murk J.],
Automatic Tuning of MST Segmentation of Mammograms for Registration and
Mass Detection Algorithms,
DICTA09(400-407).
IEEE DOI
0912
BibRef
Liu, S.[Sheng],
Babbs, C.F.,
Delp, E.J.,
Multiresolution detection of spiculated lesions in digital mammograms,
IP(10), No. 6, June 2001, pp. 874-884.
IEEE DOI
0106
BibRef
Earlier:
Normal mammogram analysis and recognition,
ICIP98(I: 727-731).
IEEE DOI
9810
BibRef
Liu, S., and
Delp, E.J.,
Multiresolution Detection of Stellate Lesions in Mammograms,
ICIP97(II: 109-112).
IEEE DOI
BibRef
9700
Kobatake, H.,
Murakami, M.,
Takeo, H.,
Nawano, S.,
Computerized detection of malignant tumors on digital mammograms,
MedImg(18), No. 5, May 1999, pp. 369-378.
IEEE Top Reference.
0110
BibRef
Kobatake, H.,
Yoshinaga, Y.,
Murakami, M.,
Automatic detection of malignant tumors on mammogram,
ICIP94(I: 407-410).
IEEE DOI
9411
BibRef
Zhen, L.[Lei],
Chan, A.K.,
An artificial intelligent algorithm for tumor detection in screening
mammogram,
MedImg(20), No. 7, July 2001, pp. 559-567.
IEEE Top Reference.
0110
BibRef
Sajda, P.,
Spence, C.D.[Clay Douglas],
Pearson, J.,
Learning contextual relationships in mammograms using a hierarchical
pyramid neural network,
MedImg(21), No. 3, March 2002, pp. 239-250.
IEEE Top Reference.
0205
BibRef
Spence, C.D.[Clay Douglas],
Parra, L.C.[Lucas C.],
Sajda, P.,
Detection, Synthesis and Compression in Mammographic Image Analysis
with a Hierarchical Image Probability Model,
MMBIA01(xx-yy).
0110
BibRef
Earlier:
Hierarchical Image Probability (HIP) Models,
ICIP00(Vol III: 320-323).
IEEE DOI
0008
BibRef
Scholz, B.,
Towards virtual electrical breast biopsy:
Space-frequency music for trans-admittance data,
MedImg(21), No. 6, June 2002, pp. 588-595.
IEEE Top Reference.
0208
BibRef
Kerner, T.E.,
Paulsen, K.D.,
Hartov, A.,
Soho, S.K.,
Poplack, S.P.,
Electrical impedance spectroscopy of the breast:
Clinical imaging results in 26 subjects,
MedImg(21), No. 6, June 2002, pp. 638-645.
IEEE Top Reference.
0208
BibRef
Bagui, S.C.[Subhash C.],
Bagui, S.[Sikha],
Pal, K.[Kuhu],
Pal, N.R.[Nikhil R.],
Breast cancer detection using rank nearest neighbor classification
rules,
PR(36), No. 1, January 2003, pp. 25-34.
Elsevier DOI
0210
BibRef
Duchesnay, E.[Edouard],
Montois, J.J.[Jean-Jacques],
Jacquelet, Y.[Yann],
Cooperative agents society organized as an irregular pyramid:
A mammography segmentation application,
PRL(24), No. 14, October 2003, pp. 2435-2445.
Elsevier DOI
0307
BibRef
Richard, F.J.P.[Frédéric J.P.],
A comparative study of markovian and variational image-matching
techniques in application to mammograms,
PRL(26), No. 12, September 2005, pp. 1819-1829.
Elsevier DOI
0508
BibRef
Sheshadri, H.S.,
Kandaswamy, A.,
Detection of Breast Cancer Tumor Based on
Morphological Watershed Algorithm,
GVIP(05), No. V5, 2005, pp. 17-21
HTML Version.
BibRef
0500
Wirth, M.A.,
Nikitenko, D.,
Lyon, J.,
Segmentation of the Breast Region in Mammograms Using a
Rule-Based Fuzzy Reasoning Algorithm,
GVIP(05), No. V2, January 2005, pp. 45-54
HTML Version.
BibRef
0501
Wirth, M.A.[Michael A.],
Nikitenko, D.[Dennis],
Suppression of Stripe Artifacts in Mammograms Using Weighted Median
Filtering,
ICIAR05(966-973).
Springer DOI
0509
BibRef
Wirth, M.A.,
Stapinski, A.,
Segmentation of the breast region in mammograms using snakes,
CRV04(385-392).
IEEE DOI
0408
BibRef
Thangavel, K.,
Karnan, M.,
Pethalakshmi, A.,
Performance Analysis of Rough Reduct Algorithms in Mammogram,
GVIP(05), No. V8, 2005, pp. 13-21.
HTML Version.
BibRef
0500
Guo, H.[Hong],
Nandi, A.K.[Asoke K.],
Breast cancer diagnosis using genetic programming generated feature,
PR(39), No. 5, May 2006, pp. 980-987.
Elsevier DOI
0604
Feature extraction; Genetic programming; Fisher discriminant analysis;
Pattern recognition
See also Feature generation using genetic programming with application to fault classification.
BibRef
Adiga, U.,
Malladi, R.,
Fernandez-Gonzalez, R.,
Ortiz de Solorzano, C.,
High-Throughput Analysis of Multispectral Images of Breast Cancer
Tissue,
IP(15), No. 8, August 2006, pp. 2259-2268.
IEEE DOI
0606
BibRef
Hassanien, A.E.[Aboul Ella],
Fuzzy rough sets hybrid scheme for breast cancer detection,
IVC(25), No. 2, February 2007, pp. 172-183.
Elsevier DOI
0701
Rough sets; Fuzzy image processing; Mammograms; Classification;
Feature extraction; Rule and reduct generation; Similarity measure;
Gray-level co-occurrence matrices
BibRef
Castella, C.[Cyril],
Abbey, C.K.[Craig K.],
Eckstein, M.P.[Miguel P.],
Verdun, F.R.[Francis R.],
Kinkel, K.[Karen],
Bochud, F.O.[François O.],
Human linear template with mammographic backgrounds estimated with a
genetic algorithm,
JOSA-A(24), No. 12, December 2007, pp. B1-B12.
WWW Link.
0801
BibRef
Perconti, P.[Philip],
Loew, M.H.[Murray H.],
Salience measure for assessing scale-based features in mammograms,
JOSA-A(24), No. 12, December 2007, pp. B81-B90.
WWW Link.
0801
BibRef
Raundahl, J.,
Loog, M.,
Pettersen, P.,
Tanko, L.B.,
Nielsen, M.,
Automated Effect-Specific Mammographic Pattern Measures,
MedImg(27), No. 8, August 2008, pp. 1054-1060.
IEEE DOI
0808
BibRef
Egorov, V.,
Sarvazyan, A.P.,
Mechanical Imaging of the Breast,
MedImg(27), No. 9, September 2008, pp. 1275-1287.
IEEE DOI
0809
See also Prostate Mechanical Imaging: 3-D Image Composition and Feature Calculations.
BibRef
Kao, T.J.,
Boverman, G.,
Kim, B.S.,
Isaacson, D.,
Saulnier, G.J.,
Newell, J.C.,
Choi, M.H.,
Moore, R.H.,
Kopans, D.B.,
Regional Admittivity Spectra With Tomosynthesis Images for Breast
Cancer Detection: Preliminary Patient Study,
MedImg(27), No. 12, December 2008, pp. 1762-1768.
IEEE DOI
0812
BibRef
Verma, B.[Brijesh],
McLeod, P.[Peter],
Klevansky, A.[Alan],
A novel soft cluster neural network for the classification of
suspicious areas in digital mammograms,
PR(42), No. 9, September 2009, pp. 1845-1852.
Elsevier DOI
0905
Pattern classification; Neural networks; Clustering algorithms
BibRef
Cao, M.,
Liang, Y.,
Shen, C.,
Miller, K.D.,
Stantz, K.M.,
Developing DCE-CT to Quantify Intra-Tumor Heterogeneity in Breast
Tumors With Differing Angiogenic Phenotype,
MedImg(28), No. 6, June 2009, pp. 861-871.
IEEE DOI
0906
See comment:
and Response
BibRef
Cao, M.,
Liang, Y.,
Stantz, K.M.,
Response to Letter Regarding Article: 'Developing DCE-CT to Quantify
Intra-Tumor Heterogeneity in Breast Tumors With Differing Angiogenic
Phenotype',
MedImg(29), No. 4, April 2010, pp. 1089-1092.
IEEE DOI
1003
See also Comment on Developing DCE-CT to Quantify Intra-Tumor Heterogeneity in Breast Tumors With Differing Angiogenic Phenotype.
BibRef
Abramyuk, A.,
Wolf, G.,
Hietschold, V.,
Haberland, U.,
van den Hoff, J.,
Abolmaali, N.,
Comment on 'Developing DCE-CT to Quantify Intra-Tumor Heterogeneity in
Breast Tumors With Differing Angiogenic Phenotype',
MedImg(29), No. 4, April 2010, pp. 1088-1089.
IEEE DOI
1003
See also Developing DCE-CT to Quantify Intra-Tumor Heterogeneity in Breast Tumors With Differing Angiogenic Phenotype.
BibRef
Masmoudi, H.,
Hewitt, S.M.,
Petrick, N.,
Myers, K.J.,
Gavrielides, M.A.,
Automated Quantitative Assessment of HER-2/neu Immunohistochemical
Expression in Breast Cancer,
MedImg(28), No. 6, June 2009, pp. 916-925.
IEEE DOI
0906
BibRef
Tsui, P.H.,
Liao, Y.Y.,
Chang, C.C.,
Kuo, W.H.,
Chang, K.J.,
Yeh, C.K.,
Classification of Benign and Malignant Breast Tumors by 2-D Analysis
Based on Contour Description and Scatterer Characterization,
MedImg(29), No. 2, February 2010, pp. 513-522.
IEEE DOI
1002
BibRef
Fang, X.[Xi],
Yan, P.K.[Ping-Kun],
Multi-Organ Segmentation Over Partially Labeled Datasets With
Multi-Scale Feature Abstraction,
MedImg(39), No. 11, November 2020, pp. 3619-3629.
IEEE DOI
2011
Image segmentation, Feature extraction, Semantics, Training,
Biomedical imaging, Annotations, Fuses, Medical image segmentation,
multiple datasets
BibRef
Yang, M.J.[Mei-Juan],
Yuan, Y.[Yuan],
Li, X.L.[Xue-Long],
Yan, P.K.[Ping-Kun],
Medical Image Segmentation Using Descriptive Image Features,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Mahr, D.M.,
Bhargava, R.,
Insana, M.F.,
Three-Dimensional In Silico Breast Phantoms for Multimodal Image
Simulations,
MedImg(31), No. 3, March 2012, pp. 689-697.
IEEE DOI
1203
BibRef
Goenezen, S.,
Dord, J.F.,
Sink, Z.,
Barbone, P.E.,
Jiang, J.,
Hall, T.J.,
Oberai, A.A.,
Linear and Nonlinear Elastic Modulus Imaging:
An Application to Breast Cancer Diagnosis,
MedImg(31), No. 8, August 2012, pp. 1628-1637.
IEEE DOI
1208
BibRef
Ashraf, A.B.,
Gavenonis, S.C.,
Daye, D.,
Mies, C.,
Rosen, M.A.,
Kontos, D.,
A Multichannel Markov Random Field Framework for Tumor Segmentation
With an Application to Classification of Gene Expression-Based Breast
Cancer Recurrence Risk,
MedImg(32), No. 4, April 2013, pp. 637-648.
IEEE DOI
1304
BibRef
Akbar, S.[Shazia],
McKenna, S.J.[Stephen J.],
Amaral, T.[Telmo],
Jordan, L.[Lee],
Thompson, A.[Alastair],
Spin-context Segmentation of Breast Tissue Microarray Images,
BMVA(2013), No. 1, 2013, pp. 4, 1-11.
PDF File.
1304
BibRef
Sanchez, E.[Eider],
Toro, C.[Carlos],
Artetxe, A.[Arkaitz],
Graña, M.[Manuel],
Sanin, C.[Cesar],
Szczerbicki, E.[Edward],
Carrasco, E.[Eduardo],
Guijarro, F.[Frank],
Bridging challenges of clinical decision support systems with a
semantic approach. A case study on breast cancer,
PRL(34), No. 14, 2013, pp. 1758-1768.
Elsevier DOI
1308
Clinical decision support system
BibRef
Zhang, Y.G.[Yun-Gang],
Zhang, B.L.[Bai-Ling],
Coenen, F.[Frans],
Lu, W.J.[Wen-Jin],
Breast cancer diagnosis from biopsy images with highly reliable random
subspace classifier ensembles,
MVA(24), No. 7, October 2013, pp. 1405-1420.
WWW Link.
1309
BibRef
Filipczuk, P.,
Fevens, T.,
Krzyzak, A.,
Monczak, R.,
Computer-Aided Breast Cancer Diagnosis Based on the Analysis of
Cytological Images of Fine Needle Biopsies,
MedImg(32), No. 12, 2013, pp. 2169-2178.
IEEE DOI
1312
Biomedical imaging
BibRef
Jeon, S.[Seokhee],
Haptically Assisting Breast Tumor Detection by Augmenting Abnormal Lump,
IEICE(E97-D), No. 2, February 2013, pp. 361-365.
WWW Link.
1402
BibRef
Han, S.[Seokmin],
Kang, D.G.[Dong-Goo],
Tissue Cancellation in Dual Energy Mammography Using a Calibration
Phantom Customized for Direct Mapping,
MedImg(33), No. 1, January 2014, pp. 74-84.
IEEE DOI
1402
Poisson distribution
BibRef
Kiarashi, N.,
Lo, J.Y.,
Lin, Y.,
Ikejimba, L.C.,
Ghate, S.V.,
Nolte, L.W.,
Dobbins, J.T.,
Segars, W.P.,
Samei, E.,
Development and Application of a Suite of 4-D Virtual Breast Phantoms
for Optimization and Evaluation of Breast Imaging Systems,
MedImg(33), No. 7, July 2014, pp. 1401-1409.
IEEE DOI
1407
Breast
BibRef
Sonntag, D.[Daniel],
Weber, M.[Markus],
Cavallaro, A.[Alexander],
Hammon, M.[Matthias],
Integrating Digital Pens in Breast Imaging for Instant Knowledge
Acquisition,
AIMag(35), No. 1, Spring 2014, pp. 26.
DOI Link
1408
Writing notes on the images.
BibRef
Krylov, V.A.[Vladimir A.],
Nelson, J.D.B.[James D.B.],
Stochastic Extraction of Elongated Curvilinear Structures With
Applications,
IP(23), No. 12, December 2014, pp. 5360-5373.
IEEE DOI
1402
Radon transforms
BibRef
Krylov, V.A.[Vladimir A.],
Taylor, S.[Stuart],
Nelson, J.D.B.[James D.B.],
Stochastic Extraction of Elongated Curvilinear Structures in
Mammographic Images,
ICIAR13(475-484).
Springer DOI
1307
BibRef
Shahjalal, N.A.[Nashid Alam],
Islam, M.J.[Mohammed J.],
Pectoral Muscle Elimination on Mammogram Using K-Means Clustering
Approach,
IJCVSP(4), No. 1, 2014, pp. 1.
WWW Link.
1412
BibRef
Casti, P.,
Mencattini, A.,
Salmeri, M.,
Rangayyan, R.M.,
Analysis of Structural Similarity in Mammograms for Detection of
Bilateral Asymmetry,
MedImg(34), No. 2, February 2015, pp. 662-671.
IEEE DOI
1502
Accuracy
BibRef
Halter, R.J.,
Hartov, A.,
Poplack, S.P.,
diFlorio-Alexander, R.,
Wells, W.A.,
Rosenkranz, K.M.,
Barth, R.J.,
Kaufman, P.A.,
Paulsen, K.D.,
Real-Time Electrical Impedance Variations in Women With and Without
Breast Cancer,
MedImg(34), No. 1, January 2015, pp. 38-48.
IEEE DOI
1502
bioelectric potentials
BibRef
Azghani, M.,
Kosmas, P.,
Marvasti, F.,
Microwave Medical Imaging Based on Sparsity and an Iterative Method
With Adaptive Thresholding,
MedImg(34), No. 2, February 2015, pp. 357-365.
IEEE DOI
1502
Breast
BibRef
Chen, F.Y.[Fei-Yu],
Bakic, P.R.,
Maidment, A.D.A.,
Jensen, S.T.,
Shi, X.[Xiquan],
Pokrajac, D.D.,
Description and Characterization of a Novel Method for Partial Volume
Simulation in Software Breast Phantoms,
MedImg(34), No. 10, October 2015, pp. 2146-2161.
IEEE DOI
1511
Monte Carlo methods
BibRef
Barufaldi, B.[Bruno],
Abbey, C.K.[Craig K.],
Lago, M.A.[Miguel A.],
Vent, T.L.[Trevor L.],
Acciavatti, R.J.[Raymond J.],
Bakic, P.R.[Predrag R.],
Maidment, A.D.A.[Andrew D. A.],
Computational Breast Anatomy Simulation Using Multi-Scale Perlin
Noise,
MedImg(40), No. 12, December 2021, pp. 3436-3445.
IEEE DOI
2112
Breast, Phantoms, Imaging phantoms, Ligaments, Noise measurement,
Computational modeling, Clinical trials, Perlin noise,
digital breast tomosynthesis
BibRef
Zhong, X.,
Li, J.,
Ertl, S.M.,
Hassemer, C.,
Fiedler, L.,
A System-Theoretic Approach to Modeling and Analysis of Mammography
Testing Process,
SMCS(46), No. 1, January 2016, pp. 126-138.
IEEE DOI
1601
Analytical models
BibRef
Ye, F.H.[Fang-Hao],
Ji, Z.[Zhong],
Ding, W.Z.[Wen-Zheng],
Lou, C.G.[Cun-Guang],
Yang, S.H.[Si-Hua],
Xing, D.[Da],
Ultrashort Microwave-Pumped Real-Time Thermoacoustic Breast Tumor
Imaging System,
MedImg(35), No. 3, March 2016, pp. 839-844.
IEEE DOI
1603
Breast
BibRef
Wu, L.H.[Ling-Hua],
Cheng, Z.W.[Zhong-Wen],
Ma, Y.Z.[Yuan-Zheng],
Li, Y.J.[Yu-Jing],
Ren, M.Y.[Ming-Yang],
Xing, D.[Da],
Qin, H.[Huan],
A Handheld Microwave Thermoacoustic Imaging System With an Impedance
Matching Microwave-Sono Probe for Breast Tumor Screening,
MedImg(41), No. 5, May 2022, pp. 1080-1086.
IEEE DOI
2205
Microwave imaging, Imaging, Acoustics, Microwave antenna arrays,
Probes, Microwave antennas, Couplings, Thermoacoustic imaging,
handheld
BibRef
Porter, E.,
Bahrami, H.,
Santorelli, A.,
Gosselin, B.,
Rusch, L.A.,
Popovic, M.,
A Wearable Microwave Antenna Array for Time-Domain Breast Tumor
Screening,
MedImg(35), No. 6, June 2016, pp. 1501-1509.
IEEE DOI
1606
Antenna arrays
BibRef
Quellec, G.,
Lamard, M.,
Cozic, M.,
Coatrieux, G.,
Cazuguel, G.,
Multiple-Instance Learning for Anomaly Detection in Digital
Mammography,
MedImg(35), No. 7, July 2016, pp. 1604-1614.
IEEE DOI
1608
cancer
BibRef
Elmoufidi, A.[Abdelali],
El Fahssi, K.[Khalid],
Jai-andaloussi, S.[Said],
Sekkaki, A.[Abderrahim],
Gwenole, Q.[Quellec],
Lamard, M.[Mathieu],
Anomaly classification in digital mammography based on
multiple-instance learning,
IET-IPR(12), No. 3, March 2018, pp. 320-328.
DOI Link
1802
BibRef
Tan, M.,
Zheng, B.,
Leader, J.K.,
Gur, D.,
Association Between Changes in Mammographic Image Features and Risk
for Near-Term Breast Cancer Development,
MedImg(35), No. 7, July 2016, pp. 1719-1728.
IEEE DOI
1608
cancer
BibRef
Alaa, A.M.,
Moon, K.H.,
Hsu, W.,
van der Schaar, M.,
ConfidentCare: A Clinical Decision Support System for Personalized
Breast Cancer Screening,
MultMed(18), No. 10, October 2016, pp. 1942-1955.
IEEE DOI
1610
cancer
BibRef
Abreu, P.H.[Pedro Henriques],
Santos, M.S.[Miriam Seoane],
Abreu, M.H.[Miguel Henriques],
Andrade, B.[Bruno],
Silva, D.C.[Daniel Castro],
Predicting Breast Cancer Recurrence Using Machine Learning Techniques:
A Systematic Review,
Surveys(49), No. 3, December 2016, pp. Article No 52.
DOI Link
1612
Background: Recurrence is an important cornerstone in breast cancer
behavior, intrinsically related to mortality. In spite of its
relevance, it is rarely recorded in the majority of breast cancer
datasets, which makes research in its prediction more difficult.
Objectives: To evaluate the performance of machine learning techniques
applied to the prediction of breast cancer recurrence.
BibRef
Gandomkar, Z.,
Tay, K.,
Ryder, W.,
Brennan, P.C.,
Mello-Thoms, C.,
iCAP: An Individualized Model Combining Gaze Parameters and
Image-Based Features to Predict Radiologists Decisions While Reading
Mammograms,
MedImg(36), No. 5, May 2017, pp. 1066-1075.
IEEE DOI
1705
Breast, Cancer, Feature extraction, Gaze tracking, Lesions,
Mammography, Solid modeling, Breast, Computer-assisted perception, Mammography
BibRef
Wang, J.,
Ding, H.,
Bidgoli, F.A.,
Zhou, B.,
Iribarren, C.,
Molloi, S.,
Baldi, P.,
Detecting Cardiovascular Disease from Mammograms With Deep Learning,
MedImg(36), No. 5, May 2017, pp. 1172-1181.
IEEE DOI
1705
Arteries, Breast, Calcium, Diseases, Machine learning, Mammography,
Neural networks, Breast arterial calcification (BAC),
coronary artery disease, deep learning, mammography
BibRef
Abdel-Nasser, M.[Mohamed],
Moreno, A.[Antonio],
Rashwan, H.A.[Hatem A.],
Puig, D.[Domenec],
Analyzing the evolution of breast tumors through flow fields and
strain tensors,
PRL(93), No. 1, 2017, pp. 162-171.
Elsevier DOI
1706
Breast, cancer
BibRef
Aghdam, H.H.[Hamed Habibi],
Puig, D.[Domenec],
Solanas, A.[Agusti],
Adaptive Probabilistic Thresholding Method for Accurate Breast Region
Segmentation in Mammograms,
ICPR14(3357-3362)
IEEE DOI
1412
Accuracy
BibRef
Pertuz, S.[Said],
Julia, C.[Carme],
Puig, D.[Domenec],
A Novel Mammography Image Representation Framework with Application
to Image Registration,
ICPR14(3292-3297)
IEEE DOI
1412
Breast
BibRef
Zheng, Y.S.[Yu-Shan],
Jiang, Z.G.[Zhi-Guo],
Xie, F.Y.[Feng-Ying],
Zhang, H.P.[Hao-Peng],
Ma, Y.B.[Yi-Bing],
Shi, H.Q.[Hua-Qiang],
Zhao, Y.[Yu],
Feature extraction from histopathological images based on
nucleus-guided convolutional neural network for breast lesion
classification,
PR(71), No. 1, 2017, pp. 14-25.
Elsevier DOI
1707
Feature, extraction
BibRef
Nguyen, L.,
Tosun, A.B.,
Fine, J.L.,
Lee, A.V.,
Taylor, D.L.,
Chennubhotla, S.C.,
Spatial Statistics for Segmenting Histological Structures in H-E
Stained Tissue Images,
MedImg(36), No. 7, July 2017, pp. 1522-1532.
IEEE DOI
1707
Breast tissue, Ducts, Image color analysis, Image segmentation,
Sociology, Tumors, Histopathological image analysis,
evaluation metrics, graph partitioning, image segmentation, image, statistics
BibRef
Pani, S.,
Saifuddin, S.C.,
Ferreira, F.I.M.,
Henthorn, N.,
Seller, P.,
Sellin, P.J.,
Stratmann, P.,
Veale, M.C.,
Wilson, M.D.,
Cernik, R.J.,
High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose
Contrast-Enhanced Digital Mammography,
MedImg(36), No. 9, September 2017, pp. 1784-1795.
IEEE DOI
1709
biological organs,
dense breasts, image registration,
motion artifacts, Lesions, spectroscopy
BibRef
Duraisamy, S.[Saraswathi],
Emperumal, S.[Srinivasan],
Computer-aided mammogram diagnosis system using deep learning
convolutional fully complex-valued relaxation neural network classifier,
IET-CV(11), No. 8, December 2017, pp. 656-662.
DOI Link
1712
BibRef
Lavoie, B.R.,
Bourqui, J.,
Fear, E.C.,
Okoniewski, M.,
Metrics for Assessing the Similarity of Microwave Breast Imaging
Scans of Healthy Volunteers,
MedImg(37), No. 8, August 2018, pp. 1788-1798.
IEEE DOI
1808
Antenna measurements, Radar imaging, Breast, Microwave imaging,
Phantoms, Microwaves, radar, medical imaging
BibRef
Lajili, R.[Rihab],
Kalti, K.[Karim],
Touil, A.[Asma],
Solaiman, B.[Basel],
Ben Amara, N.E.[Najoua Essoukri],
Two-step evidential fusion approach for accurate breast region
segmentation in mammograms,
IET-IPR(12), No. 11, November 2018, pp. 1972-1982.
DOI Link
1810
BibRef
Das, A.,
Nair, M.S.,
Peter, S.D.,
Sparse Representation Over Learned Dictionaries on the Riemannian
Manifold for Automated Grading of Nuclear Pleomorphism in Breast
Cancer,
IP(28), No. 3, March 2019, pp. 1248-1260.
IEEE DOI
1812
biological tissues, cancer, cellular biophysics,
covariance analysis, Hilbert spaces, image classification,
bregman divergences
BibRef
O'Loughlin, D.,
Oliveira, B.L.,
Santorelli, A.,
Porter, E.,
Glavin, M.,
Jones, E.,
Popovic, M.,
O'Halloran, M.,
Sensitivity and Specificity Estimation Using Patient-Specific
Microwave Imaging in Diverse Experimental Breast Phantoms,
MedImg(38), No. 1, January 2019, pp. 303-311.
IEEE DOI
1901
Breast, Dielectrics, Image reconstruction, Permittivity,
Microwave imaging, Estimation, Microwave, breast,
image quality assessment
BibRef
Liu, J.,
Xu, B.,
Zheng, C.,
Gong, Y.,
Garibaldi, J.,
Soria, D.,
Green, A.,
Ellis, I.O.,
Zou, W.,
Qiu, G.,
An End-to-End Deep Learning Histochemical Scoring System for Breast
Cancer TMA,
MedImg(38), No. 2, February 2019, pp. 617-628.
IEEE DOI
1902
Tumors, Biological tissues, Breast cancer, Solid modeling,
Biomarkers, Image segmentation, Image color analysis, H-Score,
breast cancer
BibRef
Rahman, M.A.[Mohammad Akhlaqur],
Jha, R.K.[Rajib Kumar],
Gupta, A.K.[Abhishek Kumar],
Gabor phase response based scheme for accurate pectoral muscle boundary
detection,
IET-IPR(13), No. 5, 18 April 2019, pp. 771-778.
DOI Link
1904
BibRef
Lin, H.,
Chen, H.,
Graham, S.,
Dou, Q.,
Rajpoot, N.,
Heng, P.,
Fast ScanNet: Fast and Dense Analysis of Multi-Gigapixel Whole-Slide
Images for Cancer Metastasis Detection,
MedImg(38), No. 8, August 2019, pp. 1948-1958.
IEEE DOI
1908
Breast cancer, Image segmentation, Metastasis, Tumors, Task analysis,
Image analysis, Histopathology image analysis,
metastasis detection
BibRef
Khan, S.[Sana_Ullah],
Islam, N.[Naveed],
Jan, Z.[Zahoor],
Ud Din, I.[Ikram],
Rodrigues, J.J.P.C.[Joel J. P. C],
A novel deep learning based framework for the detection and
classification of breast cancer using transfer learning,
PRL(125), 2019, pp. 1-6.
Elsevier DOI
1909
Deep learning, Smart pattern recognition, Transfer learning, Breast cancer
BibRef
Manessi, F.[Franco],
Rozza, A.[Alessandro],
Manzo, M.[Mario],
Dynamic graph convolutional networks,
PR(97), 2020, pp. 107000.
Elsevier DOI
1910
BibRef
Rozza, A.[Alessandro],
Manzo, M.[Mario],
Petrosino, A.[Alfredo],
A Novel Graph-Based Fisher Kernel Method for Semi-supervised Learning,
ICPR14(3786-3791)
IEEE DOI
1412
Breast cancer
BibRef
Manzo, M.[Mario],
Pellino, S.[Simone],
Petrosino, A.[Alfredo],
Rozza, A.[Alessandro],
A Novel Graph Embedding Framework for Object Recognition,
NORDIA14(341-352).
Springer DOI
1504
BibRef
Fang, Y.[Yan],
Zhao, J.[Jing],
Hu, L.[Lingzhi],
Ying, X.P.[Xiao-Ping],
Pan, Y.F.[Yan-Fang],
Wang, X.P.[Xiao-Ping],
Image classification toward breast cancer using deeply-learned
quality features,
JVCIR(64), 2019, pp. 102609.
Elsevier DOI
1911
Image classification, CNN, Quality score
BibRef
Yu, X.[Xiang],
Zeng, N.Y.[Nian-Yin],
Liu, S.[Shuai],
Zhang, Y.D.[Yu-Dong],
Utilization of DenseNet201 for diagnosis of breast abnormality,
MVA(30), No. 7-8, October 2019, pp. 1135-1144.
WWW Link.
1911
BibRef
Wang, X.S.[Xu-Sheng],
Chen, X.[Xing],
Cao, C.J.[Cong-Jun],
Hierarchically engineering quality-related perceptual features for
understanding breast cancer,
JVCIR(64), 2019, pp. 102644.
Elsevier DOI
1911
Breast cancer, Deep learning, Quality-related,
Weakly-supervised, Ranking algorithm
BibRef
Qaiser, T.,
Rajpoot, N.M.,
Learning Where to See:
A Novel Attention Model for Automated Immunohistochemical Scoring,
MedImg(38), No. 11, November 2019, pp. 2620-2631.
IEEE DOI
1911
Predictive models, Task analysis, Tumors, Computational modeling,
Pathology, Breast, Training, Deep reinforcement learning,
breast cancer
BibRef
Eltrass, A.S.[Ahmed S.],
Salama, M.S.[Mohamed S.],
Fully automated scheme for computer-aided detection and breast cancer
diagnosis using digitised mammograms,
IET-IPR(14), No. 3, 28 February 2020, pp. 495-505.
DOI Link
2002
BibRef
Shaikh, T.A.[Tawseef Ayoub],
Ali, R.[Rashid],
Beg, M.M.S.[M. M. Sufyan],
Transfer learning privileged information fuels CAD diagnosis
of breast cancer,
MVA(31), No. 1, January 2020, pp. Article: 9
WWW Link.
2003
BibRef
Saha, M.[Monjoy],
Arun, I.[Indu],
Ahmed, R.[Rosina],
Chatterjee, S.[Sanjoy],
Chakraborty, C.[Chandan],
HscoreNet: A Deep network for estrogen and progesterone scoring using
breast IHC images,
PR(102), 2020, pp. 107200.
Elsevier DOI
2003
Breast, Estrogen, Progesterone, Encoder, Decoder
BibRef
Oloumi, D.,
Winter, R.S.C.,
Kordzadeh, A.,
Boulanger, P.,
Rambabu, K.,
Microwave Imaging of Breast Tumor Using Time-Domain UWB Circular-SAR
Technique,
MedImg(39), No. 4, April 2020, pp. 934-943.
IEEE DOI
2004
UWB-SAR, CSAR, microwave imaging, breast tumour
BibRef
Wu, N.,
Phang, J.,
Park, J.,
Shen, Y.,
Huang, Z.,
Zorin, M.,
Jastrzebski, S.,
Févry, T.,
Katsnelson, J.,
Kim, E.,
Wolfson, S.,
Parikh, U.,
Gaddam, S.,
Lin, L.L.Y.,
Ho, K.,
Weinstein, J.D.,
Reig, B.,
Gao, Y.,
Toth, H.,
Pysarenko, K.,
Lewin, A.,
Lee, J.,
Airola, K.,
Mema, E.,
Chung, S.,
Hwang, E.,
Samreen, N.,
Kim, S.G.,
Heacock, L.,
Moy, L.,
Cho, K.,
Geras, K.J.,
Deep Neural Networks Improve Radiologists' Performance in Breast
Cancer Screening,
MedImg(39), No. 4, April 2020, pp. 1184-1194.
IEEE DOI
2004
Breast cancer, Task analysis, Biomedical imaging,
Predictive models, Training, Deep learning,
mammography
BibRef
Heidari, M.,
Mirniaharikandehei, S.,
Liu, W.,
Hollingsworth, A.B.,
Liu, H.,
Zheng, B.,
Development and Assessment of a New Global Mammographic Image Feature
Analysis Scheme to Predict Likelihood of Malignant Cases,
MedImg(39), No. 4, April 2020, pp. 1235-1244.
IEEE DOI
2004
Lesions, Mammography, Image segmentation, Breast cancer,
Feature extraction, Computer-aided diagnosis scheme,
global mammographic image feature analysis
BibRef
Abdar, M.[Moloud],
Zomorodi-Moghadam, M.[Mariam],
Zhou, X.[Xujuan],
Gururajan, R.[Raj],
Tao, X.H.[Xiao-Hui],
Barua, P.D.[Prabal D.],
Gururajan, R.[Rashmi],
A new nested ensemble technique for automated diagnosis of breast
cancer,
PRL(132), 2020, pp. 123-131.
Elsevier DOI
2005
Data mining and machine learning, Breast cancer,
Nested ensemble technique, BayesNet classifier, Naïve Bayes classifier
BibRef
Sha, Z.J.[Zi-Jun],
Hu, L.[Lin],
Rouyendegh, B.D.[Babak Daneshvar],
Deep learning and optimization algorithms for automatic breast cancer
detection,
IJIST(30), No. 2, 2020, pp. 495-506.
DOI Link
2005
breast cancer, convolutional neural networks,
feature extraction, feature selection,
image segmentation
BibRef
Kumari, V.[Vineeta],
Ahmed, A.[Aijaz],
Kanumuri, T.[Tirupathiraju],
Shakher, C.[Chandra],
Sheoran, G.[Gyanendra],
Early detection of cancerous tissues in human breast utilizing near
field microwave holography,
IJIST(30), No. 2, 2020, pp. 391-400.
DOI Link
2005
3D phantom, breast cancer, dielectric measurement, holography, tumor detection
BibRef
Celik, Y.[Yusuf],
Talo, M.[Muhammed],
Yildirim, O.[Ozal],
Karabatak, M.[Murat],
Acharya, U.R.[U Rajendra],
Automated invasive ductal carcinoma detection based using deep
transfer learning with whole-slide images,
PRL(133), 2020, pp. 232-239.
Elsevier DOI
2005
Invasive ductal carcinoma, Whole slide images, Deep learning, Transfer learning
BibRef
Shu, X.,
Zhang, L.,
Wang, Z.,
Lv, Q.,
Yi, Z.,
Deep Neural Networks With Region-Based Pooling Structures for
Mammographic Image Classification,
MedImg(39), No. 6, June 2020, pp. 2246-2255.
IEEE DOI
2006
Mammographic image, breast cancer, deep neural networks
BibRef
Xu, B.,
Liu, J.,
Hou, X.,
Liu, B.,
Garibaldi, J.,
Ellis, I.O.,
Green, A.,
Shen, L.,
Qiu, G.,
Attention by Selection: A Deep Selective Attention Approach to Breast
Cancer Classification,
MedImg(39), No. 6, June 2020, pp. 1930-1941.
IEEE DOI
2006
Histopathological image, reinforcement learning,
breast cancer classification, deep learning
BibRef
Sharma, S.[Shallu],
Mehra, R.[Rajesh],
Effect of layer-wise fine-tuning in magnification-dependent
classification of breast cancer histopathological image,
VC(36), No. 9, September 2020, pp. 1755-1769.
WWW Link.
2008
BibRef
Gour, M.[Mahesh],
Jain, S.[Sweta],
Kumar, T. .S.I.[T. Sun-Il],
Residual learning based CNN for breast cancer histopathological image
classification,
IJIST(30), No. 3, 2020, pp. 621-635.
DOI Link
2008
breast cancer, convolutional neural network, data augmentation,
deep features, histopathological image, residual learning
BibRef
Yadavendra,
Chand, S.[Satish],
A comparative study of breast cancer tumor classification by classical
machine learning methods and deep learning method,
MVA(31), No. 6, August 2020, pp. Article46.
WWW Link.
2008
BibRef
Saxena, S.[Shweta],
Shukla, S.[Sanyam],
Gyanchandani, M.[Manasi],
Pre-trained convolutional neural networks as feature extractors for
diagnosis of breast cancer using histopathology,
IJIST(30), No. 3, 2020, pp. 577-591.
DOI Link
2008
breast cancer, computer-aided diagnosis, histopathology,
pre-trained convolutional neural network
BibRef
Zheng, L.[Lili],
Wang, G.X.[Guo-Xiang],
Zhang, F.L.[Feng-Lei],
Zhao, Q.X.[Qing-Xue],
Dai, C.L.[Chun-Lai],
Yousefi, N.[Nasser],
Breast cancer diagnosis based on a new improved Elman neural network
optimized by meta-heuristics,
IJIST(30), No. 3, 2020, pp. 513-526.
DOI Link
2008
breast cancer, collective animal behavior (CAB) algorithm,
computer-aided diagnosis, discrete wavelet transform, Elman neural network
BibRef
Ali, M.J.[Muhammad Junaid],
Raza, B.[Basit],
Shahid, A.R.[Ahmad Raza],
Mahmood, F.[Fahad],
Yousuf, M.A.[Muhammad Adil],
Dar, A.H.[Amir Hanif],
Iqbal, U.[Uzair],
Enhancing breast pectoral muscle segmentation performance by using
skip connections in fully convolutional network,
IJIST(30), No. 4, 2020, pp. 1108-1118.
DOI Link
2011
digital mammography, pectoral muscle segmentation
BibRef
Salama, W.M.[Wessam M.],
Elbagoury, A.M.[Azza M.],
Aly, M.H.[Moustafa H.],
Novel breast cancer classification framework based on deep learning,
IET-IPR(14), No. 13, November 2020, pp. 3254-3259.
DOI Link
2012
BibRef
Procz, S.,
Roque, G.,
Avila, C.,
Racedo, J.,
Rueda, R.,
Santos, I.,
Fiederle, M.,
Investigation of CdTe, GaAs, Se and Si as Sensor Materials for
Mammography,
MedImg(39), No. 12, December 2020, pp. 3766-3778.
IEEE DOI
2012
Detectors, II-VI semiconductor materials, Cadmium compounds,
Photonics, Silicon, Phantoms, CdTe,
X-ray attenuation efficiency
BibRef
Shivhare, E.[Ekta],
Saxena, V.N.[Vineeta Nigam],
Breast cancer diagnosis from mammographic images using optimized
feature selection and neural network architecture,
IJIST(31), No. 1, 2021, pp. 253-269.
DOI Link
2102
breast cancer diagnosis, hybrid optimization, neural network,
optimal feature selection, region growing segmentation
BibRef
Silva, R.D.C.[Rodrigo Dalvit C.],
Jenkyn, T.R.[Thomas R.],
Classification of Mammogram Abnormalities Using Legendre Moments,
IJIG(21), No. 1 2021, pp. 2150010.
DOI Link
2102
BibRef
Häggmark, I.,
Shaker, K.,
Hertz, H.M.,
In Silico Phase-Contrast X-Ray Imaging of Anthropomorphic Voxel-Based
Phantoms,
MedImg(40), No. 2, February 2021, pp. 539-548.
IEEE DOI
2102
Phantoms, X-ray imaging, Breast, Numerical models, Task analysis,
Photonics, In silico imaging, mammography, phase contrast,
x-ray
BibRef
Jouirou, A.[Amira],
Baâzaoui, A.[Abir],
Barhoumi, W.[Walid],
Multi-view content-based mammogram retrieval using dynamic similarity
and locality sensitive hashing,
PR(112), 2021, pp. 107786.
Elsevier DOI
2102
Multi-view information fusion, Multidimensional indexing,
Locality sensitive hashing, Dynamic similarity
BibRef
Fang, H.[Hong],
Fan, H.Y.[Hong-Yu],
Lin, S.[Shan],
Qing, Z.[Zhang],
Sheykhahmad, F.R.[Fatima Rashid],
Automatic breast cancer detection based on optimized neural network
using whale optimization algorithm,
IJIST(31), No. 1, 2021, pp. 425-438.
DOI Link
2102
breast cancer, computer-aided diagnosis, image segmentation,
neural networks, whale optimization algorithm
BibRef
Hossain, M.M.[Md Murad],
Saharkhiz, N.[Niloufar],
Konofagou, E.E.[Elisa E.],
Feasibility of Harmonic Motion Imaging Using a Single Transducer: In
Vivo Imaging of Breast Cancer in a Mouse Model and Human Subjects,
MedImg(40), No. 5, May 2021, pp. 1390-1404.
IEEE DOI
2105
Harmonic analysis, Imaging, Transducers, Tracking,
Mechanical factors, Acoustics, Ultrasonic imaging,
high-frequency ARF
BibRef
Melekoodappattu, J.G.[Jayesh George],
Subbian, P.S.[Perumal Sankar],
Queen, M.P.F.[M. P. Flower],
Detection and classification of breast cancer from digital mammograms
using hybrid extreme learning machine classifier,
IJIST(31), No. 2, 2021, pp. 909-920.
DOI Link
2105
accuracy, CAD, classification, ELM, FOA, GSO, mammogram, optimization
BibRef
Chakravarthy, S.R.S.[S R Sannasi],
Rajaguru, H.[Harikumar],
A novel improved crow-search algorithm to classify the severity in
digital mammograms,
IJIST(31), No. 2, 2021, pp. 921-954.
DOI Link
2105
breast cancer, classification,
crow-search algorithm and chaotic maps, mammogram images,
wavelet
BibRef
Sharma, S.[Shallu],
Mehra, R.[Rajesh],
Kumar, S.[Sumit],
Optimised CNN in conjunction with efficient pooling strategy for the
multi-classification of breast cancer,
IET-IPR(15), No. 4, 2021, pp. 936-946.
DOI Link
2106
BibRef
Sowmyayani, S.,
Murugan, V.,
Multi-Type Classification Comparison of Mammogram Abnormalities,
IJIG(21), No. 3, July 2021, pp. 2150027.
DOI Link
2107
BibRef
Wang, C.[Churan],
Li, J.[Jing],
Zhang, F.[Fandong],
Sun, X.W.[Xin-Wei],
Dong, H.[Hao],
Yu, Y.Z.[Yi-Zhou],
Wang, Y.Z.[Yi-Zhou],
Bilateral Asymmetry Guided Counterfactual Generating Network for
Mammogram Classification,
IP(30), 2021, pp. 7980-7994.
IEEE DOI
2109
Lesions, Mammography, Data models, Generative adversarial networks,
Estimation, Computer science, Breast cancer, Domain Knowledge,
Mammogram Classification
BibRef
Tardy, M.[Mickael],
Mateus, D.[Diana],
Looking for Abnormalities in Mammograms With Self- and Weakly
Supervised Reconstruction,
MedImg(40), No. 10, October 2021, pp. 2711-2722.
IEEE DOI
2110
Task analysis, Mammography, Annotations, Training,
Image segmentation, Image resolution, Image reconstruction, weakly supervised
BibRef
Chakravarthy, S.R.S.[S. R. Sannasi],
Rajaguru, H.[Harikumar],
Deep-features with Bayesian optimized classifiers for the breast
cancer diagnosis,
IJIST(31), No. 4, 2021, pp. 1861-1881.
DOI Link
2112
breast cancer, deep features, mammogram, optimizable algorithms,
transfer learning
BibRef
Üncü, Y.A.[Yigit Ali],
Sevim, G.[Gençay],
Mercan, T.[Tanju],
Vural, V.[Veli],
Durmaz, E.[Emel],
Canpolat, M.[Murat],
Differentiation of tumoral and non-tumoral breast lesions using back
reflection diffuse optical tomography: A pilot clinical study,
IJIST(31), No. 4, 2021, pp. 2023-2031.
DOI Link
2112
breast lumps, non-tumoral,
reflection diffuse optical tomography, tumoral
BibRef
Gupta, I.[Isha],
Gupta, S.[Sheifali],
Singh, S.[Swati],
Different CNN-based Architectures for Detection of Invasive Ductal
Carcinoma in Breast Using Histopathology Images,
IJIG(21), No. 5 2021, pp. 2140003.
DOI Link
2201
BibRef
Sevim, G.[Gençay],
Üncü, Y.A.[Yigit Ali],
Mercan, T.[Tanju],
Canpolat, M.[Murat],
Image reconstruction for diffuse optical tomography using
bi-conjugate gradient and transpose-free quasi minimal residual
algorithms and comparison of them,
IJIST(31), No. 4, 2021, pp. 1894-1905.
DOI Link
2112
bi-conjugate gradient, diffuse optical tomography,
image reconstruction, reconstruction techniques,
transpose free quasi minimal residual
BibRef
Üncü, Y.A.[Yigit Ali],
Sevim, G.[Gençay],
Canpolat, M.[Murat],
Approaches to Preclinical Studies with Heterogeneous Breast Phantom
Using Reconstruction and Three-Dimensional Image Processing
Algorithms for Diffuse Optical Imaging,
IJIST(32), No. 1, 2022, pp. 343-353.
DOI Link
2201
3D image processing, bi-cubic interpolation,
diffuse optical imaging, Gaussian filtering,
transpose-free quasi-minimal residual
BibRef
Wang, Y.[Yan],
Wang, Z.Z.[Zi-Zhou],
Feng, Y.Q.[Yang-Qin],
Zhang, L.[Lei],
WDCCNet: Weighted Double-Classifier Constraint Neural Network for
Mammographic Image Classification,
MedImg(41), No. 3, March 2022, pp. 559-570.
IEEE DOI
2203
Feature extraction, Breast cancer, Convolutional neural networks,
Uncertainty, Neural networks, Deep learning, Lesions, Angular space,
softmax loss
BibRef
Wimmer, M.[Maria],
Sluiter, G.[Gert],
Major, D.[David],
Lenis, D.[Dimitrios],
Berg, A.[Astrid],
Neubauer, T.[Theresa],
Bühler, K.[Katja],
Multi-Task Fusion for Improving Mammography Screening Data
Classification,
MedImg(41), No. 4, April 2022, pp. 937-950.
IEEE DOI
2204
Cancer, Feature extraction, Lesions, Task analysis, Breast,
Predictive models, Standards, Mammography, DDSM, CBIS-DDSM, model fusion
BibRef
Massimi, L.[Lorenzo],
Suaris, T.[Tamara],
Hagen, C.K.[Charlotte K.],
Endrizzi, M.[Marco],
Munro, P.R.T.[Peter R. T.],
Havariyoun, G.[Glafkos],
Hawker, P.M.S.[P. M. Sam],
Smit, B.[Bennie],
Astolfo, A.[Alberto],
Larkin, O.J.[Oliver J.],
Waltham, R.M.[Richard M.],
Shah, Z.[Zoheb],
Duffy, S.W.[Stephen W.],
Nelan, R.L.[Rachel L.],
Peel, A.[Anthony],
Jones, J.L.[J. Louise],
Haig, I.G.[Ian G.],
Bate, D.[David],
Olivo, A.[Alessandro],
Volumetric High-Resolution X-Ray Phase-Contrast Virtual Histology of
Breast Specimens With a Compact Laboratory System,
MedImg(41), No. 5, May 2022, pp. 1188-1195.
IEEE DOI
2205
Histopathology, Spatial resolution, Imaging, Image edge detection,
X-ray imaging, Surgery, Computed tomography,
X-ray phase contrast
BibRef
Kashyap, R.[Ramgopal],
Dilated residual grooming kernel model for breast cancer detection,
PRL(159), 2022, pp. 157-164.
Elsevier DOI
2206
BibRef
Rajput, G.[Gunjan],
Agrawal, S.[Shashank],
Biyani, K.[Kunika],
Vishvakarma, S.K.[Santosh Kumar],
Early breast cancer diagnosis using cogent activation function-based
deep learning implementation on screened mammograms,
IJIST(32), No. 4, 2022, pp. 1101-1118.
DOI Link
2207
breast cancer classification, convolutional neural network,
deep learning, detection, Mias dataset
BibRef
Song, J.Q.[Jing-Qi],
Zheng, Y.J.[Yuan-Jie],
Wang, J.[Jing],
Ullah, M.Z.[Muhammad Zakir],
Li, X.C.[Xue-Cheng],
Zou, Z.X.[Zhen-Xing],
Ding, G.[Guocheng],
Multi-feature deep information bottleneck network for breast cancer
classification in contrast enhanced spectral mammography,
PR(131), 2022, pp. 108858.
Elsevier DOI
2208
Contrast enhanced spectral mammography, Classification,
Deep learning, Multi-feature, Information bottleneck
BibRef
Dadsetan, S.[Saba],
Arefan, D.[Dooman],
Berg, W.A.[Wendie A.],
Zuley, M.L.[Margarita L.],
Sumkin, J.H.[Jules H.],
Wu, S.[Shandong],
Deep learning of longitudinal mammogram examinations for breast
cancer risk prediction,
PR(132), 2022, pp. 108919.
Elsevier DOI
2209
Breast cancer, Risk prediction, Deep learning,
Digital mammogram, Longitudinal data
BibRef
Gargouri, N.[Norhène],
Mokni, R.[Raouia],
Damak, A.[Alima],
Sellami, D.[Dorra],
Abid, R.[Riadh],
An automatic breast computer-aided diagnosis scheme based on a
weighted fusion of relevant features and a deep CNN classifier,
IET-IPR(16), No. 12, 2022, pp. 3394-3406.
DOI Link
2209
BibRef
Saadi, H.[Hayet],
Merouani, H.F.[Hayet Farida],
Melouah, A.[Ahlem],
Guessoum, Z.[Zahia],
Lemnadjlia, S.[Saida],
Boukabach, N.[Nacereddine],
Multi-agents system for breast tumour detection in mammography by deep
learning pre-processing and watershed segmentation,
IJCVR(12), No. 5, 2022, pp. 632-661.
DOI Link
2211
BibRef
Sharma, M.[Mukta],
Mandloi, A.[Ayush],
Bhattacharya, M.[Mahua],
A novel DeepML framework for multi-classification of breast cancer
based on transfer learning,
IJIST(32), No. 6, 2022, pp. 1963-1977.
DOI Link
2212
biomedical application, breast cancer cells, deep learning,
machine learning, multi-classification
BibRef
Ganesan, K.[Kanimozhi],
Pichai, S.[Shanmugavadivu],
Kavitha, M.S.[Muthu Subash],
Takahashi, M.[Masayoshi],
Data imputation in deep neural network to enhance breast cancer
detection,
IJIST(32), No. 6, 2022, pp. 2094-2106.
DOI Link
2212
Breast cancer detection, classification, data imputation,
encoding, machine learning, multilayer networks
BibRef
Yang, X.[Xiao],
Xi, X.M.[Xiao-Ming],
Wang, K.[Kesong],
Sun, L.Y.[Liang-Yun],
Meng, L.Z.[Ling-Zhao],
Nie, X.S.[Xiu-Shan],
Qiao, L.[Lishan],
Yin, Y.L.[Yi-Long],
Triple-attention interaction network for breast tumor classification
based on multi-modality images,
PR(139), 2023, pp. 109526.
Elsevier DOI
2304
Breast tumor classification, Multi-modality fusion,
Triple inter-modality interaction, Intra-modality interaction
BibRef
Sujatha, R.[Radhakrishnan],
Chatterjee, J.M.[Jyotir Moy],
Angelopoulou, A.[Anastassia],
Kapetanios, E.[Epaminondas],
Srinivasu, P.N.[Parvathaneni Naga],
Hemanth, D.J.[Duraisamy Jude],
A transfer learning-based system for grading breast invasive ductal
carcinoma,
IET-IPR(17), No. 7, 2023, pp. 1979-1990.
DOI Link
2305
DenseNet121, DenseNet201, InceptionReNetV2,
invasive ductal carcinoma (IDC), transfer learning (TL), VGG19
BibRef
Gupta, V.[Vedika],
Gaur, H.[Harshit],
Vashishtha, S.[Srishti],
Das, U.[Uttirna],
Singh, V.K.[Vivek Kumar],
Hemanth, D.J.[D. Jude],
A fuzzy rule-based system with decision tree for breast cancer
detection,
IET-IPR(17), No. 7, 2023, pp. 2083-2096.
DOI Link
2305
convolutional neural nets, decision trees, edge detection,
fuzzy control, fuzzy neural nets, fuzzy systems, neural nets
BibRef
Kelkar, V.A.[Varun A.],
Gotsis, D.S.[Dimitrios S.],
Brooks, F.J.[Frank J.],
KC, P.[Prabhat],
Myers, K.J.[Kyle J.],
Zeng, R.[Rongping],
Anastasio, M.A.[Mark A.],
Assessing the Ability of Generative Adversarial Networks to Learn
Canonical Medical Image Statistics,
MedImg(42), No. 6, June 2023, pp. 1799-1808.
IEEE DOI
2306
Biomedical imaging, Generative adversarial networks,
Stochastic processes, Data models, Training, Task analysis, Breast,
objective image quality assessment
BibRef
Luo, J.M.[Jia-Ming],
Tang, Y.Z.[Yong-Zhe],
Wang, J.[Jie],
Lu, H.T.[Hong-Tao],
USMLP: U-shaped Sparse-MLP network for mass segmentation in
mammograms,
IVC(137), 2023, pp. 104761.
Elsevier DOI
2309
Breast mass segmentation, Multi-layer perceptron, U-Net
BibRef
Swetha, V.,
Vadivu, G.,
Classifications of benign and malignant mammogram images using
Gabor-modified CNN architecture,
IJIST(33), No. 5, 2023, pp. 1682-1695.
DOI Link
2310
breast cancer, CNN, Gabor, Kirsch's edge detector, mammogram
BibRef
Thawkar, S.[Shankar],
Katta, V.[Vijay],
Parashar, A.R.[Ajay Raj],
Singh, L.K.[Law Kumar],
Khanna, M.[Munish],
Breast cancer: A hybrid method for feature selection and
classification in digital mammography,
IJIST(33), No. 5, 2023, pp. 1696-1712.
DOI Link
2310
adaptive neuro-fuzzy inference system,
artificial neural network, breast cancer, classification,
mammography
BibRef
Kiliçarslan, G.[Gülhan],
Koç, C.[Canan],
Özyurt, F.[Fatih],
Gül, Y.[Yeliz],
Breast lesion classification using features fusion and selection of
ensemble ResNet method,
IJIST(33), No. 5, 2023, pp. 1779-1795.
DOI Link
2310
breast lesion, classification, computer-aided diagnosis,
fused ResNet, SVM, ultrasound image
BibRef
Grover, P.[Priyanka],
Singh, H.S.[Hari Shankar],
Sahu, S.K.[Sanjay Kumar],
Design and analysis of a super compact UWB antenna for accurate
detection of breast tumors using monostatic radar-based microwave
imaging technique,
IJIST(33), No. 6, 2023, pp. 2100-2117.
DOI Link
2311
breast tumor, microwave imaging, monostatic,
specific absorption rate, UWB antenna
BibRef
Zhang, J.[Jie],
Zhang, Z.C.[Zhi-Chao],
Liu, H.[Hua],
Xu, S.Q.[Shi-Qiang],
SaTransformer: Semantic-aware transformer for breast cancer
classification and segmentation,
IET-IPR(17), No. 13, 2023, pp. 3789-3800.
DOI Link
2311
biomedical imaging, cancer,
convolutional neural nets, diseases, image classification, image segmentation
BibRef
Li, Y.H.[Yong-Hao],
Shen, Y.Q.[Yi-Qing],
Zhang, J.D.[Jia-Dong],
Song, S.J.[Shu-Jie],
Li, Z.H.[Zhen-Hui],
Ke, J.[Jing],
Shen, D.G.[Ding-Gang],
A Hierarchical Graph V-Net With Semi-Supervised Pre-Training for
Histological Image Based Breast Cancer Classification,
MedImg(42), No. 12, December 2023, pp. 3907-3918.
IEEE DOI Code:
WWW Link.
2312
BibRef
Guo, W.[Wei],
Li, X.M.[Xiao-Min],
Gong, Z.X.[Zhao-Xuan],
Zhang, G.D.[Guo-Dong],
Jiang, X.[Xiran],
Multiloss strategy for breast cancer subtype classification using
digital breast tomosynthesis,
IJIST(34), No. 1, 2024, pp. e22978.
DOI Link
2401
breast cancer subtype classification,
decomposed attention block, digital breast tomosynthesis, multiloss strategy
BibRef
Rautela, K.[Kamakshi],
Kumar, D.[Dinesh],
Kumar, V.[Vijay],
Improved GAN for image resolution enhancement using ViT for breast
cancer detection,
IJIST(34), No. 2, 2024, pp. e22998.
DOI Link
2402
breast cancer, digital mammography, feature extraction, GAN, transformer
BibRef
Munshi, R.M.[Raafat M.],
Cascone, L.[Lucia],
Alturki, N.[Nazik],
Saidani, O.[Oumaima],
Alshardan, A.[Amal],
Umer, M.[Muhammad],
A novel approach for breast cancer detection using optimized ensemble
learning framework and XAI,
IVC(142), 2024, pp. 104910.
Elsevier DOI
2402
Breast cancer detection, Image processing, Healthcare,
Transfer learning, Ensemble learning, Deep convoluted features
BibRef
Shukla, P.K.[Praveen Kumar],
Behera, A.R.[Aditya Ranjan],
A framework for breast cancer prediction and classification using deep
learning,
IJCVR(14), No. 2, 2024, pp. 154-169.
DOI Link
2403
BibRef
Liang, Y.[Yinhao],
Tang, W.J.[Wen-Jie],
Wang, T.[Ting],
Ng, W.W.Y.[Wing W. Y.],
Chen, S.[Siyi],
Jiang, K.[Kuiming],
Wei, X.H.[Xin-Hua],
Jiang, X.[Xinqing],
Guo, Y.[Yuan],
HRadNet: A Hierarchical Radiomics-Based Network for Multicenter
Breast Cancer Molecular Subtypes Prediction,
MedImg(43), No. 3, March 2024, pp. 1225-1236.
IEEE DOI
2403
Breast cancer, Biomedical imaging, Radiomics, Metadata, Training,
Medical diagnostic imaging, Magnetic resonance imaging,
multilayer features
BibRef
Yi, S.[Sanli],
Chen, Z.Y.[Zi-Yan],
She, F.[Furong],
Wang, T.W.[Tian-Wei],
Yang, X.[Xuelian],
Chen, D.[Dong],
Luo, X.M.[Xiao-Mao],
IDC-Net: Breast cancer classification network based on BI-RADS 4,
PR(150), 2024, pp. 110323.
Elsevier DOI
2403
Breast imaging reporting and data system(BI-RADS),
Subcategories 4a-4c, Breast ultrasound images, CNN, CapsNet, IDC-Net
BibRef
Chakraborty, D.[Debapriya],
Palit, S.[Sarbani],
Bhattacharya, U.[Ujjwal],
Deep Classification of Mammographic Breast Density: DCBARNet,
IVCNZ23(1-6)
IEEE DOI
2403
Learning systems, Imaging, Breast, Network architecture,
Prediction algorithms, Classification algorithms,
attention mechanism
BibRef
Patel, V.[Vivek],
Chaurasia, V.[Vijayshri],
Efficient breast cancer diagnosis using multi-level progressive
feature aggregation based deep transfer learning system,
IJIST(34), No. 3, 2024, pp. e23050.
DOI Link
2404
breast cancer classification, computer aided diagnosis, deep transfer learning,
feature aggregation, feature fusion, spatial domain learning
BibRef
Lopez, E.[Eleonora],
Betello, F.[Filippo],
Carmignani, F.[Federico],
Grassucci, E.[Eleonora],
Comminiello, D.[Danilo],
Attention-map augmentation for hypercomplex breast cancer
classification,
PRL(182), 2024, pp. 140-146.
Elsevier DOI Code:
WWW Link.
2405
Attention mechanism, Attention maps,
Hypercomplex neural networks, Breast cancer screening, Histopathological images
BibRef
Carrasco, K.[Karen],
Tomala, L.[Lenin],
Meza, E.R.[Eileen Ramirez],
Bolanos, D.M.[Doris Meza],
Montalvan, W.R.[Washington Ramirez],
Computational Techniques in PET/CT Image Processing for Breast
Cancer: A Systematic Mapping Review,
Surveys(56), No. 8, April 2024, pp. 197.
DOI Link
2405
Survey, Breast Cancer. PET/CT, breast cancer, preprocessing, segmentation,
feature extraction, classification, datasets
BibRef
Berghouse, M.[Marc],
Bebis, G.[George],
Tavakkoli, A.[Alireza],
Exploring the influence of attention for whole-image mammogram
classification,
IVC(147), 2024, pp. 105062.
Elsevier DOI
2406
Mammogram classification, Attention deep, Learning
BibRef
Kumar, M.[Mohan],
Khatri, S.I.K.[Sun-Il Kumar],
Mohammadian, M.[Masoud],
Collation of performance parameters on various machine learning
algorithms for breast cancer discernment,
IJCVR(14), No. 4, 2024, pp. 355-374.
DOI Link
2407
BibRef
Yu, X.H.[Xiao-Hui],
Tian, J.[Jingjun],
Chen, Z.P.[Zhi-Peng],
Meng, Y.Z.[Yi-Zhen],
Zhang, J.[Jun],
Predictive breast cancer diagnosis using ensemble fuzzy model,
IVC(148), 2024, pp. 105146.
Elsevier DOI
2407
Breast cancer diagnosis, Ensemble, Deep learning, Fuzzy logic,
Inception V3, Medical imaging
BibRef
Wang, K.[Kang],
Zheng, F.[Feiyang],
Cheng, L.[Lan],
Dai, H.N.[Hong-Ning],
Dou, Q.[Qi],
Qin, J.[Jing],
Breast Cancer Classification From Digital Pathology Images via
Connectivity-Aware Graph Transformer,
MedImg(43), No. 8, August 2024, pp. 2854-2865.
IEEE DOI Code:
WWW Link.
2408
BibRef
Liu, Y.[Yang],
Zhu, Y.Q.[Yi-Qi],
Gu, Z.[Zhehao],
Pan, J.S.[Jin-Shan],
Li, J.C.[Jun-Cheng],
Fan, M.[Ming],
Li, L.H.[Li-Hua],
Zeng, T.Y.[Tie-Yong],
Enhanced dual contrast representation learning with cell separation
and merging for breast cancer diagnosis,
CVIU(247), 2024, pp. 104065.
Elsevier DOI
2408
Cell separation and merging, Contrast representation learning,
Breast cancer diagnosis, Deep learning, Image classification, Sam
BibRef
Han, B.[Bowen],
Sun, L.[Luhao],
Li, C.[Chao],
Yu, Z.Y.[Zhi-Yong],
Jiang, W.Z.[Wen-Zong],
Liu, W.F.[Wei-Feng],
Tao, D.P.[Da-Peng],
Liu, B.[Baodi],
Deep Location Soft-Embedding-Based Network With Regional Scoring for
Mammogram Classification,
MedImg(43), No. 9, September 2024, pp. 3137-3148.
IEEE DOI
2409
Feature extraction, Lesions, Mammography, Solid modeling, Image segmentation,
Convolutional neural networks, Training, feature reweighting
BibRef
Jiang, S.[Siyao],
Wu, H.[Huisi],
Chen, J.Y.[Jun-Yang],
Zhang, Q.[Qin],
Qin, J.[Jing],
PH-Net: Semi-Supervised Breast Lesion Segmentation via Patch-Wise
Hardness,
CVPR24(11418-11427)
IEEE DOI Code:
WWW Link.
2410
Training, Image segmentation, Adaptation models,
Ultrasonic imaging, Shape, Perturbation methods, Contrastive learning
BibRef
Cardoso, M.[Miguel],
Santiago, C.[Carlos],
Nascimento, J.C.[Jacinto C.],
Using Counterfactual Information for Breast Classification Diagnosis,
DEF-AI-MIA24(4996-5002)
IEEE DOI
2410
Training, Visualization, Accuracy, Refining, Machine learning,
Radiology, Entropy
BibRef
Hasan, Y.[Yumnah],
Khan, T.[Talhat],
de Bulnes, D.R.F.[Darian Reyes Fernández],
Albarracín, J.F.H.[Juan F. H.],
Ryan, C.[Conor],
A Comparative Analysis of Implicit Augmentation Techniques for Breast
Cancer Diagnosis Using Multiple Views,
EnhanceMedIm24(2345-2354)
IEEE DOI
2410
Wavelet transforms, Training, Image analysis, Training data,
Feature extraction, Data augmentation, Delta-sigma modulation,
1D CNN
BibRef
Araújo, D.J.,
Verdelho, M.R.,
Bissoto, A.,
Nascimento, J.C.,
Santiago, C.,
Barata, C.,
Key Patches Are All You Need: A Multiple Instance Learning Framework
For Robust Medical Diagnosis,
DEF-AI-MIA24(5231-5240)
IEEE DOI Code:
WWW Link.
2410
Image analysis, Pipelines, MIMICs, Focusing, Breast cancer,
Mirrors
BibRef
Nguyen, T.H.[Thanh-Huy],
Kha, Q.H.[Quang Hien],
Truong, T.N.T.[Thai Ngoc Toan],
Lam, B.T.[Ba Thinh],
Ngo, B.H.[Ba Hung],
Dinh, Q.V.[Quang Vinh],
Le, N.Q.K.[Nguyen Quoc Khanh],
Towards Robust Natural-Looking Mammography Lesion Synthesis on
Ipsilateral Dual-Views Breast Cancer Analysis,
CVAMD23(2556-2565)
IEEE DOI
2401
BibRef
Moroz-Dubenco, C.[Cristiana],
Diosan, L.[Laura],
Andreica, A.[Anca],
Towards an Unsupervised Growcut Algorithm for Mammography Segmentation,
CVS23(102-111).
Springer DOI
2312
BibRef
Zhang, K.[Kunkun],
Wang, B.[Bin],
Classification Task Assisted Segmentation Network for Breast Tumor
Segmentation in Ultrasound Images,
ICIP23(3294-3298)
IEEE DOI
2312
BibRef
Oh, Y.T.[Young-Tack],
Ko, E.[Eunsook],
Park, H.[Hyunjin],
Semi-supervised Breast Lesion Segmentation Using Local Cross Triplet
Loss for Ultrafast Dynamic Contrast-enhanced Mri,
ACCV22(VI:203-217).
Springer DOI
2307
BibRef
Godishala, A.K.[Aruna Kranthi],
Yassin, H.[Hayati],
Veena, R.,
Lai, D.T.C.[Daphne Teck Ching],
Breast Cancer Tumor Image Classification Using Deep Learning Image
Data Generator,
ICIVC22(418-423)
IEEE DOI
2301
Deep learning, Support vector machines, Costs, Uncertainty,
Detectors, Breast cancer, Generators, deep learning techniques, image detector
BibRef
Wang, L.C.[Li-Chun],
Hai, Z.[Zerui],
Lu, Y.[Ya],
Wang, K.[Kunkun],
Wang, Q.[Qian],
Zhou, X.L.[Xiao-Ling],
Zhang, Z.X.[Zhao-Xia],
Microwave Breast Imaging Based on Deep Learning,
ICIVC22(749-755)
IEEE DOI
2301
Image coding, Neural networks, Phantoms, Breast,
Microwave theory and techniques, Real-time systems,
electromagnetic inverse scattering
BibRef
Lou, J.X.[Jian-Xun],
Lin, H.[Hanhe],
Marshall, D.[David],
White, R.[Richard],
Yang, Y.[Young],
Shelmerdine, S.[Susan],
Liu, H.T.[Han-Tao],
Predicting Radiologist Attention During Mammogram Reading with Deep
and Shallow High-Resolution Encoding,
ICIP22(961-965)
IEEE DOI
2211
Training, Performance evaluation, Visualization, Image coding,
Graphical models, Image representation, Predictive models, deep learning
BibRef
Gong, R.L.[Rong-Lin],
Ying, S.H.[Shi-Hui],
Shi, J.[Jun],
Task-Driven Self-Supervised BI-Channel Networks Learning for
Diagnosis of Breast Cancers with Mammography,
ICIP22(551-555)
IEEE DOI
2211
Knowledge engineering, Image analysis, Design automation,
Gray-scale, Breast cancer, Mammography, Classification algorithms,
Mammography
BibRef
Mandache, D.,
Guillaume, E.B.à.L.[E. Benoit à La],
Badachi, Y.,
Olivo-Marin, J.C.,
Meas-Yedid, V.,
The Lifecycle of a Neural Network in the Wild: A Multiple Instance
Learning Study on Cancer Detection from Breast Biopsies Imaged with
Novel Technique,
ICIP22(3601-3605)
IEEE DOI
2211
Training, Solid modeling, Adaptation models,
Biomedical optical imaging, Annotations,
cancer
BibRef
Abdelli, A.[Adel],
Saouli, R.[Rachida],
Djemal, K.[Khalifa],
Youkana, I.[Imane],
Combined Datasets For Breast Cancer Grading Based On Multi-CNN
Architectures,
IPTA20(1-7)
IEEE DOI
2206
Solid modeling, Neural networks, Tools, Breast cancer,
Convolutional neural networks, Task analysis,
histological magnification factors
BibRef
Silva, W.[Wilson],
Carvalho, M.[Maria],
Mavioso, C.[Carlos],
Cardoso, M.J.[Maria J.],
Cardoso, J.S.[Jaime S.],
Deep Aesthetic Assessment and Retrieval of Breast Cancer Treatment
Outcomes,
IbPRIA22(108-118).
Springer DOI
2205
BibRef
Oliveira, H.P.[Helder P.],
Cardoso, J.S.[Jaime S.],
Magalhaes, A.[Andre],
Cardoso, M.J.[Maria J.],
Simultaneous detection of prominent points on breast cancer
conservative treatment images,
ICIP12(2841-2844).
IEEE DOI
1302
BibRef
Derbel, N.[Nouha],
Tmar, H.[Hedi],
Mahfoudhi, A.[Adel],
A Multi-View DCNN Based Method for Breast Cancer Screening,
DICTA21(1-6)
IEEE DOI
2201
Limiting, Databases, Digital images, Transfer learning,
Neural networks, Predictive models, Delta-sigma modulation, DDSM
BibRef
Villareal, R.J.T.[Rosiel Jazmine T.],
Abu, P.A.R.[Patricia Angela R.],
Patch-Based Convolutional Neural Networks for TCGA-BRCA Breast Cancer
Classification,
ISVC21(II:29-40).
Springer DOI
2112
BibRef
Rakhlin, A.,
Tiulpin, A.,
Shvets, A.A.,
Kalinin, A.A.,
Iglovikov, V.I.,
Nikolenko, S.,
Breast Tumor Cellularity Assessment Using Deep Neural Networks,
VRMI19(371-380)
IEEE DOI
2004
Image segmentation, Feature extraction, Decoding, Tumors,
Breast cancer, Estimation, Deep Neural Networks, Cellularity,
Diagnostic
BibRef
Cao, Z.,
Yang, Z.,
Zhuo, X.,
Lin, R.,
Wu, S.,
Huang, L.,
Han, M.,
Zhang, Y.,
Ma, J.,
DeepLIMa: Deep Learning Based Lesion Identification in Mammograms,
VRMI19(362-370)
IEEE DOI
2004
Mammography, Breast, Lesions, Machine learning, Task analysis,
Neural networks, Mammography, Lesion detection,
Deep learning
BibRef
Lee, H.,
Kim, S.T.,
Ro, Y.M.,
Building a Breast-Sentence Dataset:
Its Usefulness for Computer-Aided Diagnosis,
VRMI19(440-449)
IEEE DOI
2004
cancer, learning (artificial intelligence), mammography,
medical image processing, natural language processing,
Visual pointing
BibRef
Saini, M.[Manisha],
Susan, S.[Seba],
Data Augmentation of Minority Class with Transfer Learning for
Classification of Imbalanced Breast Cancer Dataset Using Inception-V3,
IbPRIA19(I:409-420).
Springer DOI
1910
BibRef
Oliveira, H.S.[Hugo S.],
Teixeira, J.F.[João F.],
Oliveira, H.P.[Hélder P.],
Lightweight Deep Learning Pipeline for Detection, Segmentation and
Classification of Breast Cancer Anomalies,
CIAP19(II:707-715).
Springer DOI
1909
BibRef
Liu, X.F.[Xiao-Feng],
Zou, Y.[Yang],
Song, Y.H.[Yu-Hang],
Yang, C.[Chao],
You, J.[Jane],
Kumar, B.V.K.V.[B. V. K. Vijaya],
Ordinal Regression with Neuron Stick-Breaking for Medical Diagnosis,
BioIm18(VI:335-344).
Springer DOI
1905
BibRef
Domingues, I.,
Abreu, P.H.,
Santos, J.,
Bi-Rads Classification of Breast Cancer: A New Pre-Processing
Pipeline for Deep Models Training,
ICIP18(1378-1382)
IEEE DOI
1809
Training, Machine learning, Databases, Breast cancer,
Mammography, Image pre-processing, Deep learning,
BI-RADS classification
BibRef
Weiss, N.[Nick],
Kost, H.[Henning],
Homeyer, A.[André],
Towards Interactive Breast Tumor Classification Using Transfer Learning,
ICIAR18(727-736).
Springer DOI
1807
BibRef
Liu, K.C.[Ke-Chun],
Mokhtari, M.[Mojgan],
Li, B.B.[Bei-Bin],
Nofallah, S.[Shima],
May, C.[Caitlin],
Chang, O.[Oliver],
Knezevich, S.[Stevan],
Elmore, J.[Joann],
Shapiro, L.G.[Linda G.],
Learning Melanocytic Proliferation Segmentation in Histopathology
Images from Imperfect Annotations,
CVMI21(3761-3770)
IEEE DOI
2109
Image segmentation, Visualization, Annotations,
Biopsy, Pipelines, Melanoma
BibRef
Mehta, S.,
Mercan, E.,
Bartlett, J.,
Weaver, D.,
Elmore, J.,
Shapiro, L.G.,
Learning to Segment Breast Biopsy Whole Slide Images,
WACV18(663-672)
IEEE DOI
1806
biological tissues, decoding, feature extraction,
image classification, image resolution, image segmentation,
Semantics
BibRef
Lin, H.,
Chen, H.,
Dou, Q.,
Wang, L.,
Qin, J.,
Heng, P.A.,
ScanNet: A Fast and Dense Scanning Framework for Metastastic Breast
Cancer Detection from Whole-Slide Image,
WACV18(539-546)
IEEE DOI
1806
cancer, computerised tomography, feature extraction, gynaecology,
image classification, medical image processing, tumours,
Training
BibRef
Nahid, A.A.,
Kong, Y.,
Local and Global Feature Utilization for Breast Image Classification
by Convolutional Neural Network,
DICTA17(1-6)
IEEE DOI
1804
biological organs, convolution, feature extraction,
image classification, medical image processing, neural nets,
Kernel
BibRef
Dong, Y.,
Shen, X.J.,
Wang, L.J.,
Wornyo, D.,
Zha, Z.J.,
Diversity-induced weighted classifier ensemble learning,
ICIP17(1232-1236)
IEEE DOI
1803
Breast cancer, Diversity reception, Heart, Minimization, Sonar,
Stability criteria, Training, classifier diversity,
weighted classifier
BibRef
Yi, C.Q.[Cong-Qin],
Zhou, R.Y.[Ru-Yan],
Hu, K.N.[Ke-Ning],
Fuzzy Support Vector Machine for breast cancer gene classification,
ICIVC17(676-679)
IEEE DOI
1708
Programming, Support vector machines, FSVM, SVM, classification, gene
BibRef
Shrivastava, A.,
Chaudhary, A.,
Kulshreshtha, D.,
Singh, V.P.[V. Prakash],
Srivastava, R.,
Automated digital mammogram segmentation using Dispersed Region
Growing and Sliding Window Algorithm,
ICIVC17(366-370)
IEEE DOI
1708
Classification algorithms, Image analysis, Image segmentation,
Labeling, Mammography, CAD,
Dispersed Region Growing Algorithm (DRGA),
Sliding Window Algorithm (SWA), image segmentation, mammography
BibRef
Bayramoglu, N.,
Kannala, J.,
Heikkilä, J.,
Deep learning for magnification independent breast cancer
histopathology image classification,
ICPR16(2440-2445)
IEEE DOI
1705
Breast cancer, Databases, Microscopy, Pathology, Training, Training, data
BibRef
Alcântara, R.[Rafaela],
Junior, P.F.[Perfilino Ferreira],
Ramos, A.[Aline],
Tsallis Entropy Extraction for Mammographic Region Classification,
CIARP16(451-458).
Springer DOI
1703
BibRef
Dhahbi, S.[Sami],
Barhoumi, W.[Walid],
Zagrouba, E.[Ezzeddine],
Content-Based Mammogram Retrieval Using Mixed Kernel PCA and Curvelet
Transform,
ACIVS16(582-590).
Springer DOI
1611
BibRef
Král, P.,
Lenc, L.,
LBP features for breast cancer detection,
ICIP16(2643-2647)
IEEE DOI
1610
Breast cancer
BibRef
Verma, R.,
Kumar, N.,
Sethi, A.,
Gann, P.H.,
Detecting multiple sub-types of breast cancer in a single patient,
ICIP16(2648-2652)
IEEE DOI
1610
Breast cancer
BibRef
Fiallos, C.B.,
Pérez, M.G.,
Conci, A.,
Andaluz, V.H.,
Automatic detection of injuries in mammograms using image analysis
techniques,
WSSIP15(245-248)
IEEE DOI
1603
cancer
BibRef
Khan, N.[Nabeel],
Wang, K.[Kaier],
Chan, A.[Ariane],
Highnam, R.[Ralph],
Automatic BI-RADS Classification of Mammograms,
PSIVT15(475-487).
Springer DOI
1602
BibRef
Rodriguez, J.C.[Juan Cruz],
González, G.[Germán],
Fresno, C.[Cristobal],
Fernández, E.A.[Elmer A.],
Integrative Functional Analysis Improves Information Retrieval in
Breast Cancer,
CIARP15(43-50).
Springer DOI
1511
BibRef
Galdran, A.[Adrian],
Picón, A.[Artzai],
Garrote, E.[Estibaliz],
Pardo, D.[David],
Pectoral Muscle Segmentation in Mammograms Based on Cartoon-Texture
Decomposition,
IbPRIA15(587-594).
Springer DOI
1506
BibRef
Oliver, A.[Arnau],
Llado, X.[Xavier],
Torrent, A.[Albert],
Marti, J.[Joan],
One-shot segmentation of breast, pectoral muscle, and background in
digitised mammograms,
ICIP14(912-916)
IEEE DOI
1502
Breast
BibRef
Gharsalli, L.,
Duchene, B.,
Mohammad-Djafari, A.,
Ayasso, H.,
A gradient-like variational Bayesian approach: Application to
microwave imaging for breast tumor detection,
ICIP14(1708-1712)
IEEE DOI
1502
Approximation methods
BibRef
Ayasso, H.,
Duchene, B.,
Mohammad-Djafari, A.,
A variational Bayesian approach for frequency diverse non-linear
microwave imaging,
ICIP12(2069-2072).
IEEE DOI
1302
BibRef
Nguyen, P.[Phuoc],
Tran, D.[Dat],
Huang, X.[Xu],
Ma, W.L.[Wan-Li],
A Novel Sphere-Based Maximum Margin Classification Method,
ICPR14(620-624)
IEEE DOI
1412
Breast cancer
BibRef
Moftah, H.,
Ibrahim, M.,
Hassanien, A.E.,
Schaefer, G.,
Mammary Gland Tumor Detection in Cats Using Ant Colony Optimisation,
ACPR13(942-945)
IEEE DOI
1408
ant colony optimisation
BibRef
Deshpande, D.S.,
Rajurkar, A.M.,
Manthalkar, R.M.,
Medical image analysis an attempt for mammogram classification using
texture based association rule mining,
NCVPRIPG13(1-5)
IEEE DOI
1408
cancer
BibRef
Mustra, M.[Mario],
Peros, G.,
Zovko-Cihlar, B.,
Comparison of segmentation accuracy for different LUTs applied to
digital mammograms,
WSSIP15(113-116)
IEEE DOI
1603
biological tissues
BibRef
Mustra, M.[Mario],
Grgic, M.[Mislav],
Delac, K.,
Efficient presentation of DICOM mammography images using Matlab,
WSSIP08(13-16).
IEEE DOI
0806
Code, Mammography.
BibRef
Les, T.[Tomasz],
Markiewicz, T.[Tomasz],
Osowski, S.[Stanislaw],
Cichowicz, M.[Marzena],
Kozlowski, W.[Wojciech],
Automatic Evaluation System of FISH Images in Breast Cancer,
ICISP14(332-339).
Springer DOI
1406
BibRef
Chen, Z.L.[Zhi-Li],
Wang, L.P.[Li-Ping],
Denton, E.[Erika],
A Multiscale Blob Representation of Mammographic Parenchymal Patterns
and Mammographic Risk Assessment,
CAIP13(II:346-353).
Springer DOI
1311
BibRef
Mourainst, D.C.[Daniel Cardoso],
Lópezinst, M.A.G.[Miguel Angel Guevara],
Cunhainst, P.[Pedro],
Benchmarking Datasets for Breast Cancer Computer-Aided Diagnosis (CADx),
CIARP13(I:326-333).
Springer DOI
1311
BibRef
He, W.[Wenda],
Zwiggelaar, R.[Reyer],
Breast Parenchymal Pattern Analysis in Digital Mammography:
Associations between Tabár and Birads Tissue Compositions,
CAIP13(II:386-393).
Springer DOI
1311
BibRef
Arias, J.A.[José Anibal],
Rodríguez, V.[Verónica],
Miranda, R.[Rosebet],
Meaningful Features for Computerized Detection of Breast Cancer,
CIARP13(II:198-205).
Springer DOI
1311
BibRef
Selwyna, P.G.C.[P. Georgia Chris],
Loganathan, P.R.[Priyadarshini Ravandhu],
Begam, K.H.[K. Haseena],
Development of electrochemical biosensor for breast cancer detection
using gold nanoparticle doped CA 15-3 antibody and antigen interaction,
ICSIPR13(75-81).
IEEE DOI
1304
BibRef
Kim, D.H.[Dae Hoe],
Choi, J.Y.[Jae Young],
Ro, Y.M.[Yong Man],
Region based stellate features for classification of mammographic
spiculated lesions in computer-aided detection,
ICIP12(2821-2824).
IEEE DOI
1302
BibRef
Kumar, M.S.[M. Sathish],
Dinesh, E.,
Mohan Raj, T.,
Involuntary diagnosis of intraductal breast images using gaussian
mixture model,
IMVIP12(113-116).
IEEE DOI
1302
BibRef
Krawczyk, B.[Bartosz],
Jelen, l.[lukasz],
Krzyzak, A.[Adam],
Fevens, T.[Thomas],
Oversampling Methods for Classification of Imbalanced Breast Cancer
Malignancy Data,
ICCVG12(483-490).
Springer DOI
1210
BibRef
Lewis, S.H.[Samual H.],
Dong, A.[Aijuan],
Detection of breast tumor candidates using marker-controlled watershed
segmentation and morphological analysis,
Southwest12(1-4).
IEEE DOI
1205
BibRef
Sardar, S.[Santu],
Mishra, A.K.[Amit K.],
An improved algorithm For UWB based imaging of breast tumors,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Abdaheer, M.S.,
Khan, E.[Ekram],
An automatic and simple breast tumor classification using area matching,
ICIIP11(1-5).
IEEE DOI
1112
BibRef
Chaudhury, A.R.[Amrita Ray],
Iyer, R.[Ranjani],
Iychettira, K.K.[Kaveri K.],
Sreedevi, A.,
Diagnosis of Invasive Ductal Carcinoma using image processing
techniques,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Vani, G.,
Savitha, R.,
Sundararajan, N.,
Classification of abnormalities in digitized mammograms using Extreme
Learning Machine,
ICARCV10(2114-2117).
IEEE DOI
1109
BibRef
Wang, J.Y.[Jing-Yan],
Li, Y.P.[Yong-Ping],
Zhang, Y.[Ying],
Xie, H.[Honglan],
Wang, C.[Chao],
Bag-of-Features Based Classification of Breast Parenchymal Tissue in
the Mammogram via Jointly Selecting and Weighting Visual Words,
ICIG11(622-627).
IEEE DOI
1109
BibRef
Vállez, N.[Noelia],
Bueno, G.[Gloria],
Déniz-Suárez, O.[Oscar],
Seone, J.A.[José A.],
Dorado, J.[Julián],
Pazos, A.[Alejandro],
A Tree Classifier for Automatic Breast Tissue Classification Based on
BIRADS Categories,
IbPRIA11(580-587).
Springer DOI
1106
BibRef
Yousef, W.A.[Waleed A.],
Mustafa, W.A.[Waleed A.],
Ali, A.A.[Ali A.],
Abdelrazek, N.A.[Naglaa A.],
Farrag, A.M.[Ahmed M.],
On detecting abnormalities in digital mammography,
AIPR10(1-7).
IEEE DOI
1010
BibRef
Elshinawyz, M.Y.[Mona Y.],
Badawyy, A.H.A.[Abdel-Hameed A.],
Abdelmageedyy, W.W.[Wael W.],
Chouikhaz, M.F.[Mohamed F.],
Comparing one-class and two-class SVM classifiers for normal mammogram
detection,
AIPR10(1-7).
IEEE DOI
1010
BibRef
Flores-Tapia, D.[Daniel],
Pistorius, S.[Stephen],
A real time Breast Microwave Radar imaging reconstruction technique
using simt based interpolation,
ICIP10(1389-1392).
IEEE DOI
1009
BibRef
Diez, Y.[Yago],
Oliver, A.[Arnau],
Llado, X.[Xavier],
Marti, R.[Robert],
Comparison of registration methods using mamographic images,
ICIP10(4421-4424).
IEEE DOI
1009
BibRef
Harirchi, F.[Farshad],
Radparvar, P.[Parham],
Abrishami Moghaddam, H.[Hamid],
Dehghan, F.[Faramarz],
Giti, M.[Masoumeh],
Two-Level Algorithm for MCs Detection in Mammograms Using
Diverse-Adaboost-SVM,
ICPR10(269-272).
IEEE DOI
1008
BibRef
Boucher, A.,
Cloppet, F.,
Vincent, N.,
Jouve, P.,
Visual Perception Driven Registration of Mammograms,
ICPR10(2374-2377).
IEEE DOI
1008
BibRef
Veillard, A.[Antoine],
Lomenie, N.[Nicolas],
Racoceanu, D.[Daniel],
An Exploration Scheme for Large Images:
Application to Breast Cancer Grading,
ICPR10(3472-3475).
IEEE DOI
1008
BibRef
Alolfe, M.A.[Mohammed A.],
Mohamed, W.A.[Wael A.],
Youssef, A.B.M.[Abou-Bakr M.],
Mohamed, A.S.[Ahmed S.],
Kadah, Y.M.[Yasser M.],
Computer aided diagnosis in digital mammography using combined support
vector machine and linear discriminant analyasis classification,
ICIP09(2609-2612).
IEEE DOI
0911
BibRef
Boujelben, A.[Atef],
Chaabani, A.C.[Ali Cherif],
Tmar, H.[Hedi],
Abid, M.[Mohamed],
Feature Extraction from Contours Shape for Tumor Analyzing in
Mammographic Images,
DICTA09(395-399).
IEEE DOI
0912
BibRef
Byrd, K.,
Zeng, J.C.[Jian-Chao],
Chouikha, M.,
Performance assessment of mammography image segmentation algorithms,
AIPR05(152-157).
IEEE DOI
0510
BibRef
Ross, S.,
Ejofodomi, O.,
Jendoubi, A.,
Chouikha, M.,
Lo, B.,
Wang, P.,
Zeng, J.C.[Jian-Chao],
A mammography database and view system for the African American
patients,
AIPR04(139-144).
IEEE DOI
0410
BibRef
Khademi, A.[April],
Sahba, F.[Farhang],
Venetsanopoulos, A.[Anastasios],
Krishnan, S.[Sridhar],
Region, Lesion and Border-Based Multiresolution Analysis of Mammogram
Lesions,
ICIAR09(802-813).
Springer DOI
0907
BibRef
Philip, R.C.[Rohit C.],
Rodriguez, J.J.[Jeffrey J.],
Gillies, R.J.[Robert J.],
Seed pruning using a multi-resolution approach for automated
segmentation of breast cancer tissue,
ICIP08(1436-1439).
IEEE DOI
0810
BibRef
Jin, Y.W.[Yuan-Wei],
Jiang, Y.[Yi],
Moura, J.M.F.[Jose M.F.],
Time Reversal Beamforming for Microwave Breast Cancer Detection,
ICIP07(V: 13-16).
IEEE DOI
0709
BibRef
Sánchez-Ferrero, G.V.[Gonzalo V.],
Arribas, J.I.[Juan Ignacio],
A Statistical-Genetic Algorithm to Select the Most Significant Features
in Mammograms,
CAIP07(189-196).
Springer DOI
0708
BibRef
Foggia, P.[Pasquale],
Percannella, G.[Gennaro],
Sansone, C.[Carlo],
Vento, M.[Mario],
A Graph-Based Clustering Method and Its Applications,
BVAI07(277-287).
Springer DOI
0710
BibRef
Foggia, P.,
Guerriero, M.,
Percannella, G.,
Sansone, C.,
Tufano, F.,
Vento, M.,
A Graph-Based Method for Detecting and Classifying Clusters in
Mammographic Images,
SSPR06(484-493).
Springer DOI
0608
BibRef
Ribeiro da Silva, V.[Valdeci],
Cardoso de Paiva, A.[Anselmo],
Corrêa Silva, A.[Aristófanes],
Muniz de Oliveira, A.C.[Alexandre Cesar],
Semivariogram Applied for Classification of Benign and Malignant
Tissues in Mammography,
ICIAR06(II: 570-579).
Springer DOI
0610
BibRef
Roller, D.[Dieter],
Lampasona, C.[Constanza],
A Method for Interpreting Pixel Grey Levels in Digital Mammography,
ICIAR06(II: 580-588).
Springer DOI
0610
BibRef
Ketsetzis, G.[Georgios],
Brady, M.[Michael],
Optimizing the selection of Flip Angle acquisitions for T1 measurement
in Breast,
MMBIA06(97).
IEEE DOI
0609
BibRef
Lee, S.[Sarah],
Stathaki, T.[Tania],
Mammogram Analysis Using Two-Dimensional Autoregressive Models:
Sufficient or Not?,
CIAP05(900-906).
Springer DOI
0509
BibRef
Vitulano, S.[Sergio],
Casanova, A.[Andrea],
The Role of Entropy: Mammogram Analysis,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Bornefalk, H.[Hans],
Use of Quadrature Filters for Detection of Stellate Lesions in
Mammograms,
SCIA05(649-658).
Springer DOI
0506
BibRef
Mohammed, S.,
Yang, L.[Lei],
Fiaidhi, J.,
A dynamic fuzzy classifier for detecting abnormalities in mammograms,
CRV04(172-179).
IEEE DOI
0408
BibRef
Christoyianni, I.,
Dermatas, E.,
Kokkinakis, G.,
Automatic Detection of Abnormal Tissue in Mammography,
ICIP01(II: 877-880).
IEEE DOI
0108
BibRef
McGarry, G.,
Deriche, M.,
Mammographic Image Segmentation Using a Tissue-mixture Model and Markov
Random Fields,
ICIP00(Vol III: 416-419).
IEEE DOI
0008
BibRef
Banerjee, A.,
Chellappa, R.,
Tumor Detection in Digital Mammograms,
ICIP00(Vol III: 432-435).
IEEE DOI
0008
BibRef
Sari-Sarraf, H., and
Gleason, S.S.,
A Novel Approach to Computer-Aided Diagnosis of Mammographic Images,
WACV96(230-235).
IEEE DOI
9609
BibRef
Morrison, S.[Steven],
Linnett, L.M.[Laurie M.],
A Model Based Approach to Object Detection in Digital Mammography,
ICIP99(II:182-186).
IEEE DOI
BibRef
9900
Jiang, H.[Hao],
Tiu, W.[Wilson],
Yamamoto, S.[Shinji],
Iisaku, S.I.[Shun-Ichi],
Detection of Spicules in Mammograms,
ICIP97(III: 520-523).
IEEE DOI
BibRef
9700
And:
Automatic recognition of spicules in mammograms,
CIAP97(II: 396-403).
Springer DOI
9709
BibRef
Marroquin, E.M.,
Vos, C.,
Santamaria, E.,
Jove, X.,
Socoro, J.C.,
Nonlinear image analysis for fuzzy classification of breast cancer,
ICIP96(II: 943-946).
IEEE DOI
9610
BibRef
Cheng, H.D.,
Chen, C.H.,
Freimanis, R.I.,
A neural network for breast cancer detection using fuzzy entropy
approach,
ICIP95(III: 141-144).
IEEE DOI
9510
BibRef
Hutt, J.W.,
Astley, S.M.,
Boggis, C.R.M.,
Computer Aided Detection of Abnormalities in Mammograms,
BMVC94(xx-yy).
PDF File.
9409
BibRef
Dengler, J.,
Guckes, M.,
Estimating a global shape model for objects with badly defined
boundaries,
ICPR92(II:381-384).
IEEE DOI
9208
mammography application
BibRef
Biwas, S.[Soma],
Zhao, F.[Fei],
Li, X.X.[Xiao-Xing],
Mullick, R.[Rakesh],
Vaidya, V.[Vivek],
Lesion Detection in Breast Ultrasound Images Using Tissue Transition
Analysis,
ICPR14(1185-1188)
IEEE DOI
1412
Breast
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Breast Cancer Cell Analysis, Pathology, Nuclei Detection .