20.7.1 Breast Cancer, Mammograms, Analysis, Mammography

Chapter Contents (Back)
Mammograms. Breast Cancer. Medical, Applications. See also Mammography, Microcalcifications, Detection, Analysis. See also Mammography, Texture Based Techniques, Wavelets.

Highnam, R.[Ralph], Brady, M.[Michael],
Mammographic Image Analysis,
KluwerFebruary 1999, ISBN 0-7923-5620-9.
WWW Link. BibRef 9902

MiniMammographic Database,
1995
WWW Link. Dataset, Mammography.

DDSM: Digital Database for Screening Mammography,
2000, USF.
HTML Version. Dataset, Mammography.

Bowyer, K.W., Astley, S., (Eds.)
Special Issue: State of the Art in Digital Mammographic Image Analysis,
PRAI(7), No. 6, December 1993, pp. 1309-1503. Full issue. BibRef 9312

te Brake, G.M., Karssemeijer, N.,
Single and multiscale detection of masses in digital mammograms,
MedImg(18), No. 7, July 1999, pp. 628-639.
IEEE Top Reference. 0110
BibRef

Karssemeijer, N., te Brake, G.M.,
Detection of stellate distortions in mammograms,
MedImg(15), No. 5, October 1996, pp. 611-619.
IEEE Top Reference. 0203
BibRef

Hupse, R., Karssemeijer, N.,
Use of Normal Tissue Context in Computer-Aided Detection of Masses in Mammograms,
MedImg(28), No. 12, December 2009, pp. 2033-2041.
IEEE DOI 0912
BibRef

Timp, S., Varela, C., Karssemeijer, N.,
Temporal Change Analysis for Characterization of Mass Lesions in Mammography,
MedImg(26), No. 7, July 2007, pp. 945-953.
IEEE DOI 0707
BibRef

Kobatake, H., Yoshinaga, Y.,
Detection of spicules on mammogram based on skeleton analysis,
MedImg(15), No. 3, June 1996, pp. 235-245.
IEEE Top Reference. 0203
BibRef

Rangayyan, R.M., Elfaramawy, N.M., Desautels, J.E.L., Alim, O.A.,
Measures of Acutance and Shape for Classification of Breast-Tumors,
MedImg(16), No. 6, December 1997, pp. 799-810.
IEEE Top Reference. 9803
BibRef

Polakowski, W.E., Cournoyer, D.A., Rogers, S.K., Desimio, M.P., Ruck, D.W., Hoffmeister, J.W., Raines, R.A.,
Computer-Aided Breast-Cancer Detection and Diagnosis of Masses Using Difference of Gaussians and Derivative-Based Feature Saliency,
MedImg(16), No. 6, December 1997, pp. 811-819.
IEEE Top Reference. 9803
BibRef

Ma, F.[Fei], Bajger, M.[Mariusz], Slavotinek, J.P.[John P.], Bottema, M.J.[Murk J.],
Two graph theory based methods for identifying the pectoral muscle in mammograms,
PR(40), No. 9, September 2007, pp. 2592-2602.
Elsevier DOI 0705
Adaptive pyramid; Minimum spanning tree; Segmentation; Pectoral muscle; Computer-aided diagnosis BibRef

Ma, F.[Fei], Bajger, M.[Mariusz], Bottema, M.J.[Murk J.],
Automatic Mass Segmentation Based on Adaptive Pyramid and Sublevel Set Analysis,
DICTA09(236-241).
IEEE DOI 0912
BibRef

Bajger, M.[Mariusz], Ma, F.[Fei], Williams, S.[Simon], Bottema, M.J.[Murk J.],
Mammographic Mass Detection with Statistical Region Merging,
DICTA10(27-32).
IEEE DOI 1012
BibRef

Ma, F.[Fei], Yu, L., Bajger, M.[Mariusz], Bottema, M.J.[Murk J.],
Mammogram Mass Classification with Temporal Features and Multiple Kernel Learning,
DICTA15(1-7)
IEEE DOI 1603
Gaussian processes BibRef

Bajger, M.[Mariusz], Ma, F.[Fei], Bottema, M.J.[Murk J.],
Automatic Tuning of MST Segmentation of Mammograms for Registration and Mass Detection Algorithms,
DICTA09(400-407).
IEEE DOI 0912
BibRef

Constantinidis, A.S., Fairhurst, M.C., Rahman, A.F.R.,
A new multi-expert decision combination algorithm and its application to the detection of circumscribed masses in digital mammograms,
PR(34), No. 8, August 2001, pp. 1527-1537.
Elsevier DOI 0105
BibRef

Liu, S.[Sheng], Babbs, C.F., Delp, E.J.,
Multiresolution detection of spiculated lesions in digital mammograms,
IP(10), No. 6, June 2001, pp. 874-884.
IEEE DOI 0106
BibRef
Earlier:
Normal mammogram analysis and recognition,
ICIP98(I: 727-731).
IEEE DOI 9810
BibRef

Liu, S., and Delp, E.J.,
Multiresolution Detection of Stellate Lesions in Mammograms,
ICIP97(II: 109-112).
IEEE DOI BibRef 9700

Kobatake, H., Murakami, M., Takeo, H., Nawano, S.,
Computerized detection of malignant tumors on digital mammograms,
MedImg(18), No. 5, May 1999, pp. 369-378.
IEEE Top Reference. 0110
BibRef

Kobatake, H., Yoshinaga, Y., Murakami, M.,
Automatic detection of malignant tumors on mammogram,
ICIP94(I: 407-410).
IEEE DOI 9411
BibRef

Zhen, L.[Lei], Chan, A.K.,
An artificial intelligent algorithm for tumor detection in screening mammogram,
MedImg(20), No. 7, July 2001, pp. 559-567.
IEEE Top Reference. 0110
BibRef

Sahiner, B., Petrick, N., Chan, H.P.[Heang-Ping], Hadjiiski, L.M., Paramagul, C., Helvie, M.A., Gurcan, M.N.,
Computer-aided characterization of mammographic masses: Accuracy of mass segmentation and its effects on characterization,
MedImg(20), No. 12, December 2001, pp. 1275-1284.
IEEE Top Reference. 0201
BibRef

Hadjiiski, L.M., Sahiner, B., Chan, H.P.[Heang-Ping], Petrick, N., Helvie, M.A.,
Classification of malignant and benign masses based on hybrid ART2LDA approach,
MedImg(18), No. 12, December 1999, pp. 1178-1187.
IEEE Top Reference. 0110
BibRef

Hatanaka, Y., Hara, T., Fujita, H., Kasai, S., Endo, T.[Tokiko], Iwase, T.,
Development of an automated method for detecting mammographic masses with a partial loss of region,
MedImg(20), No. 12, December 2001, pp. 1209-1214.
IEEE Top Reference. 0201
BibRef

Sajda, P., Spence, C.D.[Clay Douglas], Pearson, J.,
Learning contextual relationships in mammograms using a hierarchical pyramid neural network,
MedImg(21), No. 3, March 2002, pp. 239-250.
IEEE Top Reference. 0205
BibRef

Spence, C.D.[Clay Douglas], Parra, L.C.[Lucas C.], Sajda, P.,
Detection, Synthesis and Compression in Mammographic Image Analysis with a Hierarchical Image Probability Model,
MMBIA01(xx-yy). 0110
BibRef
Earlier:
Hierarchical Image Probability (HIP) Models,
ICIP00(Vol III: 320-323).
IEEE DOI 0008
BibRef

Scholz, B.,
Towards virtual electrical breast biopsy: Space-frequency music for trans-admittance data,
MedImg(21), No. 6, June 2002, pp. 588-595.
IEEE Top Reference. 0208
BibRef

Kerner, T.E., Paulsen, K.D., Hartov, A., Soho, S.K., Poplack, S.P.,
Electrical impedance spectroscopy of the breast: Clinical imaging results in 26 subjects,
MedImg(21), No. 6, June 2002, pp. 638-645.
IEEE Top Reference. 0208
BibRef

Bagui, S.C.[Subhash C.], Bagui, S.[Sikha], Pal, K.[Kuhu], Pal, N.R.[Nikhil R.],
Breast cancer detection using rank nearest neighbor classification rules,
PR(36), No. 1, January 2003, pp. 25-34.
WWW Link. 0210
BibRef

Duchesnay, E.[Edouard], Montois, J.J.[Jean-Jacques], Jacquelet, Y.[Yann],
Cooperative agents society organized as an irregular pyramid: A mammography segmentation application,
PRL(24), No. 14, October 2003, pp. 2435-2445.
Elsevier DOI 0307
BibRef

Richard, F.J.P.[Frédéric J.P.],
A comparative study of markovian and variational image-matching techniques in application to mammograms,
PRL(26), No. 12, September 2005, pp. 1819-1829.
WWW Link. 0508
BibRef

Sheshadri, H.S., Kandaswamy, A.,
Detection of Breast Cancer Tumor Based on Morphological Watershed Algorithm,
GVIP(05), No. V5, 2005, pp. 17-21
HTML Version. BibRef 0500

Wirth, M.A., Nikitenko, D., Lyon, J.,
Segmentation of the Breast Region in Mammograms Using a Rule-Based Fuzzy Reasoning Algorithm,
GVIP(05), No. V2, January 2005, pp. 45-54
HTML Version. BibRef 0501

Wirth, M.A.[Michael A.], Nikitenko, D.[Dennis],
Suppression of Stripe Artifacts in Mammograms Using Weighted Median Filtering,
ICIAR05(966-973).
Springer DOI 0509
BibRef

Wirth, M.A., Stapinski, A.,
Segmentation of the breast region in mammograms using snakes,
CRV04(385-392).
IEEE DOI 0408
BibRef

Thangavel, K., Karnan, M., Pethalakshmi, A.,
Performance Analysis of Rough Reduct Algorithms in Mammogram,
GVIP(05), No. V8, 2005, pp. 13-21.
HTML Version. BibRef 0500

Guo, H.[Hong], Nandi, A.K.[Asoke K.],
Breast cancer diagnosis using genetic programming generated feature,
PR(39), No. 5, May 2006, pp. 980-987.
WWW Link. 0604
Feature extraction; Genetic programming; Fisher discriminant analysis; Pattern recognition See also Feature generation using genetic programming with application to fault classification. BibRef

Dominguez, A.R.[Alfonso Rojas], Nandi, A.K.[Asoke K.],
Toward breast cancer diagnosis based on automated segmentation of masses in mammograms,
PR(42), No. 6, June 2009, pp. 1138-1148.
Elsevier DOI 0902
Breast cancer; Breast masses; Mammography; Image analysis BibRef

Adiga, U., Malladi, R., Fernandez-Gonzalez, R., Ortiz de Solorzano, C.,
High-Throughput Analysis of Multispectral Images of Breast Cancer Tissue,
IP(15), No. 8, August 2006, pp. 2259-2268.
IEEE DOI 0606
BibRef

Hassanien, A.E.[Aboul Ella],
Fuzzy rough sets hybrid scheme for breast cancer detection,
IVC(25), No. 2, February 2007, pp. 172-183.
WWW Link. 0701
Rough sets; Fuzzy image processing; Mammograms; Classification; Feature extraction; Rule and reduct generation; Similarity measure; Gray-level co-occurrence matrices BibRef

Eltonsy, N.H., Tourassi, G.D., Elmaghraby, A.S.,
A Concentric Morphology Model for the Detection of Masses in Mammography,
MedImg(26), No. 6, June 2007, pp. 880-889.
IEEE DOI 0706
BibRef

Cao, A.[Aize], Song, Q.[Qing], Yang, X.L.[Xu-Lei],
Robust information clustering incorporating spatial information for breast mass detection in digitized mammograms,
CVIU(109), No. 1, January 2008, pp. 86-96.
WWW Link. 0801
Robust information clustering; Minimax optimization of mutual information; Spatial information BibRef

Cao, A.[Aize], Song, Q.[Qing], Yang, X.L.[Xu-Lei], Wang, L.[Lei],
Breast mass segmentation based on information theory,
ICPR04(III: 758-761).
IEEE DOI 0409
BibRef

Castella, C.[Cyril], Abbey, C.K.[Craig K.], Eckstein, M.P.[Miguel P.], Verdun, F.R.[Francis R.], Kinkel, K.[Karen], Bochud, F.O.[François O.],
Human linear template with mammographic backgrounds estimated with a genetic algorithm,
JOSA-A(24), No. 12, December 2007, pp. B1-B12.
WWW Link. 0801
BibRef

Castella, C.[Cyril], Eckstein, M.P.[Miguel P.], Abbey, C.K.[Craig K.], Kinkel, K.[Karen], Verdun, F.R.[Francis R.], Saunders, R.S., Samei, E., Bochud, F.O.[François O.],
Mass detection on mammograms: Influence of signal shape uncertainty on human and model observers,
JOSA-A(26), No. 2, February 2009, pp. 425-436.
WWW Link. 0902
BibRef

Perconti, P.[Philip], Loew, M.H.[Murray H.],
Salience measure for assessing scale-based features in mammograms,
JOSA-A(24), No. 12, December 2007, pp. B81-B90.
WWW Link. 0801
BibRef

Raundahl, J., Loog, M., Pettersen, P., Tanko, L.B., Nielsen, M.,
Automated Effect-Specific Mammographic Pattern Measures,
MedImg(27), No. 8, August 2008, pp. 1054-1060.
IEEE DOI 0808
BibRef

Egorov, V., Sarvazyan, A.P.,
Mechanical Imaging of the Breast,
MedImg(27), No. 9, September 2008, pp. 1275-1287.
IEEE DOI 0809
See also Prostate Mechanical Imaging: 3-D Image Composition and Feature Calculations. BibRef

Kao, T.J., Boverman, G., Kim, B.S., Isaacson, D., Saulnier, G.J., Newell, J.C., Choi, M.H., Moore, R.H., Kopans, D.B.,
Regional Admittivity Spectra With Tomosynthesis Images for Breast Cancer Detection: Preliminary Patient Study,
MedImg(27), No. 12, December 2008, pp. 1762-1768.
IEEE DOI 0812
BibRef

Verma, B.[Brijesh], McLeod, P.[Peter], Klevansky, A.[Alan],
A novel soft cluster neural network for the classification of suspicious areas in digital mammograms,
PR(42), No. 9, September 2009, pp. 1845-1852.
Elsevier DOI 0905
Pattern classification; Neural networks; Clustering algorithms BibRef

Cao, M., Liang, Y., Shen, C., Miller, K.D., Stantz, K.M.,
Developing DCE-CT to Quantify Intra-Tumor Heterogeneity in Breast Tumors With Differing Angiogenic Phenotype,
MedImg(28), No. 6, June 2009, pp. 861-871.
IEEE DOI 0906
See comment: and Response BibRef

Cao, M., Liang, Y., Stantz, K.M.,
Response to Letter Regarding Article: 'Developing DCE-CT to Quantify Intra-Tumor Heterogeneity in Breast Tumors With Differing Angiogenic Phenotype',
MedImg(29), No. 4, April 2010, pp. 1089-1092.
IEEE DOI 1003
See also Comment on Developing DCE-CT to Quantify Intra-Tumor Heterogeneity in Breast Tumors With Differing Angiogenic Phenotype. BibRef

Abramyuk, A., Wolf, G., Hietschold, V., Haberland, U., van den Hoff, J., Abolmaali, N.,
Comment on 'Developing DCE-CT to Quantify Intra-Tumor Heterogeneity in Breast Tumors With Differing Angiogenic Phenotype',
MedImg(29), No. 4, April 2010, pp. 1088-1089.
IEEE DOI 1003
See also Developing DCE-CT to Quantify Intra-Tumor Heterogeneity in Breast Tumors With Differing Angiogenic Phenotype. BibRef

Masmoudi, H., Hewitt, S.M., Petrick, N., Myers, K.J., Gavrielides, M.A.,
Automated Quantitative Assessment of HER-2/neu Immunohistochemical Expression in Breast Cancer,
MedImg(28), No. 6, June 2009, pp. 916-925.
IEEE DOI 0906
BibRef

Tsui, P.H., Liao, Y.Y., Chang, C.C., Kuo, W.H., Chang, K.J., Yeh, C.K.,
Classification of Benign and Malignant Breast Tumors by 2-D Analysis Based on Contour Description and Scatterer Characterization,
MedImg(29), No. 2, February 2010, pp. 513-522.
IEEE DOI 1002
BibRef

de Oliveira Martins, L.[Leonardo], Junior, G.B.[Geraldo Braz], Corrêa Silva, A.[Aristófanes], Cardoso de Paiva, A.[Anselmo], Gattass, M.[Marcelo],
Detection of Masses in Digital Mammograms using K-Means and Support Vector Machine,
ELCVIA(8), No. 2, July 2009, pp. xx-yy.
WWW Link. 1002
BibRef

Neto, O.P.S., Carvalho, O., Sampaio, W., Corrêa Silva, A.[Aristófanes], Cardoso de Paiva, A.[Anselmo],
Automatic segmentation of masses in digital mammograms using particle swarm optimization and graph clustering,
WSSIP15(109-112)
IEEE DOI 1603
evolutionary computation BibRef

Muralidhar, G.S., Bovik, A.C., Giese, J.D., Sampat, M.P., Whitman, G.J., Haygood, T.M., Stephens, T.W., Markey, M.K.,
Snakules: A Model-Based Active Contour Algorithm for the Annotation of Spicules on Mammography,
MedImg(29), No. 10, October 2010, pp. 1768-1780.
IEEE DOI 1011
BibRef

Muralidhar, G.S.[Gautam S.], Markey, M.K.[Mia K.], Bovik, A.C.[Alan C.],
Snakules for automatic classification of candidate spiculated mass locations on mammography,
Southwest10(197-200).
IEEE DOI 1005
BibRef
Earlier: A1, A3, A2:
Snakules: Snakes that seek spicules on mammography,
ICIP10(4373-4376).
IEEE DOI 1009
BibRef

Sampat, M.P., Wang, Z.[Zhou], Markey, M.K., Whitman, G.J., Stephens, T.W., Bovik, A.C.,
Measuring Intra- and Inter-Observer Agreement in Identifying and Localizing Structures in Medical Images,
ICIP06(81-84).
IEEE DOI 0610
BibRef

Jahanbin, R.[Rana], Sampat, M.P.[Mehul P.], Muralidhar, G.S.[Gautam S.], Whitman, G.J.[Gary J.], Bovik, A.C.[Alan C.], Markey, M.K.[Mia K.],
Automated Region of Interest Detection of Spiculated Masses on Digital Mammograms,
Southwest08(129-132).
IEEE DOI 0803
BibRef

Muralidhar, G.S.[Gautam S.], Bovik, A.C.[Alan C.], Markey, M.K.[Mia K.],
A Steerable, Multiscale Singularity Index,
SPLetters(20), No. 1, January 2013, pp. 7-10.
IEEE DOI 1212
BibRef
And:
A new singularity index,
ICIP12(1873-1876).
IEEE DOI 1302
BibRef

Sampat, M.P., Markey, M.K., Bovik, A.C.,
Measurement and Detection of Spiculated Lesions,
Southwest06(105-109).
IEEE DOI 0603
BibRef

Wang, Y.[Ying], Tao, D.C.[Da-Cheng], Gao, X.[Xinbo], Li, X.L.[Xue-Long], Wang, B.[Bin],
Mammographic mass segmentation: Embedding multiple features in vector-valued level set in ambiguous regions,
PR(44), No. 9, September 2011, pp. 1903-1915.
Elsevier DOI 1106
Mass segmentation; Computer-aided diagnose; Vector-valued level set; Relaxed shape constraint; Mammograms See also Relay Level Set Method for Automatic Image Segmentation, A. BibRef

Yang, M.J.[Mei-Juan], Yuan, Y.[Yuan], Li, X.L.[Xue-Long], Yan, P.K.[Ping-Kun],
Medical Image Segmentation Using Descriptive Image Features,
BMVC11(xx-yy).
HTML Version. 1110
BibRef

Beck, A.H.[Andrew H.], Sangoi, A.R.[Ankur R.], Leung, S.[Samuel], Marinelli, R.J.[Robert J.], Nielsen, T.O.[Torsten O.], van de Vijver, M.J.[Marc J.], West, R.B.[Robert B.], van de Rijn, M.[Matt], Koller, D.[Daphne],
Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival,
Sci. Transl. Med.(3), Issue 108, 9 November 2011, pp. 108ra113
DOI Link BibRef 1111

Mahr, D.M., Bhargava, R., Insana, M.F.,
Three-Dimensional In Silico Breast Phantoms for Multimodal Image Simulations,
MedImg(31), No. 3, March 2012, pp. 689-697.
IEEE DOI 1203
BibRef

Goenezen, S., Dord, J.F., Sink, Z., Barbone, P.E., Jiang, J., Hall, T.J., Oberai, A.A.,
Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis,
MedImg(31), No. 8, August 2012, pp. 1628-1637.
IEEE DOI 1208
BibRef

Ashraf, A.B., Gavenonis, S.C., Daye, D., Mies, C., Rosen, M.A., Kontos, D.,
A Multichannel Markov Random Field Framework for Tumor Segmentation With an Application to Classification of Gene Expression-Based Breast Cancer Recurrence Risk,
MedImg(32), No. 4, April 2013, pp. 637-648.
IEEE DOI 1304
BibRef

Akbar, S.[Shazia], McKenna, S.J.[Stephen J.], Amaral, T.[Telmo], Jordan, L.[Lee], Thompson, A.[Alastair],
Spin-context Segmentation of Breast Tissue Microarray Images,
BMVA(2013), No. 1, 2013, pp. 4, 1-11.
PDF File. 1304
BibRef

Sanchez, E.[Eider], Toro, C.[Carlos], Artetxe, A.[Arkaitz], Graña, M.[Manuel], Sanin, C.[Cesar], Szczerbicki, E.[Edward], Carrasco, E.[Eduardo], Guijarro, F.[Frank],
Bridging challenges of clinical decision support systems with a semantic approach. A case study on breast cancer,
PRL(34), No. 14, 2013, pp. 1758-1768.
Elsevier DOI 1308
Clinical decision support system BibRef

Zhang, Y.G.[Yun-Gang], Zhang, B.L.[Bai-Ling], Coenen, F.[Frans], Lu, W.J.[Wen-Jin],
Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles,
MVA(24), No. 7, October 2013, pp. 1405-1420.
WWW Link. 1309
BibRef

Filipczuk, P., Fevens, T., Krzyzak, A., Monczak, R.,
Computer-Aided Breast Cancer Diagnosis Based on the Analysis of Cytological Images of Fine Needle Biopsies,
MedImg(32), No. 12, 2013, pp. 2169-2178.
IEEE DOI 1312
Biomedical imaging BibRef

Jeon, S.[Seokhee],
Haptically Assisting Breast Tumor Detection by Augmenting Abnormal Lump,
IEICE(E97-D), No. 2, February 2013, pp. 361-365.
WWW Link. 1402
BibRef

Han, S.[Seokmin], Kang, D.G.[Dong-Goo],
Tissue Cancellation in Dual Energy Mammography Using a Calibration Phantom Customized for Direct Mapping,
MedImg(33), No. 1, January 2014, pp. 74-84.
IEEE DOI 1402
Poisson distribution BibRef

Palma, G.[Giovanni], Bloch, I.[Isabelle], Muller, S.[Serge],
Detection of masses and architectural distortions in digital breast tomosynthesis images using fuzzy and a contrario approaches,
PR(47), No. 7, 2014, pp. 2467-2480.
Elsevier DOI 1404
Digital breast tomosynthesis BibRef

Kiarashi, N., Lo, J.Y., Lin, Y., Ikejimba, L.C., Ghate, S.V., Nolte, L.W., Dobbins, J.T., Segars, W.P., Samei, E.,
Development and Application of a Suite of 4-D Virtual Breast Phantoms for Optimization and Evaluation of Breast Imaging Systems,
MedImg(33), No. 7, July 2014, pp. 1401-1409.
IEEE DOI 1407
Breast BibRef

Sonntag, D.[Daniel], Weber, M.[Markus], Cavallaro, A.[Alexander], Hammon, M.[Matthias],
Integrating Digital Pens in Breast Imaging for Instant Knowledge Acquisition,
AIMag(35), No. 1, Spring 2014, pp. 26.
DOI Link 1408
Writing notes on the images. BibRef

Krylov, V.A.[Vladimir A.], Nelson, J.D.B.[James D.B.],
Stochastic Extraction of Elongated Curvilinear Structures With Applications,
IP(23), No. 12, December 2014, pp. 5360-5373.
IEEE DOI 1402
Radon transforms BibRef

Krylov, V.A.[Vladimir A.], Taylor, S.[Stuart], Nelson, J.D.B.[James D.B.],
Stochastic Extraction of Elongated Curvilinear Structures in Mammographic Images,
ICIAR13(475-484).
Springer DOI 1307
BibRef

Shahjalal, N.A.[Nashid Alam], Islam, M.J.[Mohammed J.],
Pectoral Muscle Elimination on Mammogram Using K-Means Clustering Approach,
IJCVSP(4), No. 1, 2014, pp. 1.
WWW Link. 1412
BibRef

Casti, P., Mencattini, A., Salmeri, M., Rangayyan, R.M.,
Analysis of Structural Similarity in Mammograms for Detection of Bilateral Asymmetry,
MedImg(34), No. 2, February 2015, pp. 662-671.
IEEE DOI 1502
Accuracy BibRef

Halter, R.J., Hartov, A., Poplack, S.P., diFlorio-Alexander, R., Wells, W.A., Rosenkranz, K.M., Barth, R.J., Kaufman, P.A., Paulsen, K.D.,
Real-Time Electrical Impedance Variations in Women With and Without Breast Cancer,
MedImg(34), No. 1, January 2015, pp. 38-48.
IEEE DOI 1502
bioelectric potentials BibRef

Azghani, M., Kosmas, P., Marvasti, F.,
Microwave Medical Imaging Based on Sparsity and an Iterative Method With Adaptive Thresholding,
MedImg(34), No. 2, February 2015, pp. 357-365.
IEEE DOI 1502
Breast BibRef

Chen, F.Y.[Fei-Yu], Bakic, P.R., Maidment, A.D.A., Jensen, S.T., Shi, X.[Xiquan], Pokrajac, D.D.,
Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms,
MedImg(34), No. 10, October 2015, pp. 2146-2161.
IEEE DOI 1511
Monte Carlo methods BibRef

Zhong, X., Li, J., Ertl, S.M., Hassemer, C., Fiedler, L.,
A System-Theoretic Approach to Modeling and Analysis of Mammography Testing Process,
SMCS(46), No. 1, January 2016, pp. 126-138.
IEEE DOI 1601
Analytical models BibRef

Ye, F., Ji, Z., Ding, W., Lou, C., Yang, S., Xing, D.,
Ultrashort Microwave-Pumped Real-Time Thermoacoustic Breast Tumor Imaging System,
MedImg(35), No. 3, March 2016, pp. 839-844.
IEEE DOI 1603
Breast BibRef

McIntosh, C., Purdie, T.G.,
Contextual Atlas Regression Forests: Multiple-Atlas-Based Automated Dose Prediction in Radiation Therapy,
MedImg(35), No. 4, April 2016, pp. 1000-1012.
IEEE DOI 1604
Breast BibRef

Porter, E., Bahrami, H., Santorelli, A., Gosselin, B., Rusch, L.A., Popovic, M.,
A Wearable Microwave Antenna Array for Time-Domain Breast Tumor Screening,
MedImg(35), No. 6, June 2016, pp. 1501-1509.
IEEE DOI 1606
Antenna arrays BibRef

Quellec, G., Lamard, M., Cozic, M., Coatrieux, G., Cazuguel, G.,
Multiple-Instance Learning for Anomaly Detection in Digital Mammography,
MedImg(35), No. 7, July 2016, pp. 1604-1614.
IEEE DOI 1608
cancer BibRef

Tan, M., Zheng, B., Leader, J.K., Gur, D.,
Association Between Changes in Mammographic Image Features and Risk for Near-Term Breast Cancer Development,
MedImg(35), No. 7, July 2016, pp. 1719-1728.
IEEE DOI 1608
cancer BibRef

Alaa, A.M., Moon, K.H., Hsu, W., van der Schaar, M.,
ConfidentCare: A Clinical Decision Support System for Personalized Breast Cancer Screening,
MultMed(18), No. 10, October 2016, pp. 1942-1955.
IEEE DOI 1610
cancer BibRef

Abreu, P.H.[Pedro Henriques], Santos, M.S.[Miriam Seoane], Abreu, M.H.[Miguel Henriques], Andrade, B.[Bruno], Silva, D.C.[Daniel Castro],
Predicting Breast Cancer Recurrence Using Machine Learning Techniques: A Systematic Review,
Surveys(49), No. 3, December 2016, pp. Article No 52.
DOI Link 1612
Background: Recurrence is an important cornerstone in breast cancer behavior, intrinsically related to mortality. In spite of its relevance, it is rarely recorded in the majority of breast cancer datasets, which makes research in its prediction more difficult. Objectives: To evaluate the performance of machine learning techniques applied to the prediction of breast cancer recurrence. BibRef

Gandomkar, Z., Tay, K., Ryder, W., Brennan, P.C., Mello-Thoms, C.,
iCAP: An Individualized Model Combining Gaze Parameters and Image-Based Features to Predict Radiologists Decisions While Reading Mammograms,
MedImg(36), No. 5, May 2017, pp. 1066-1075.
IEEE DOI 1705
Breast, Cancer, Feature extraction, Gaze tracking, Lesions, Mammography, Solid modeling, Breast, Computer-assisted perception, Mammography BibRef

Wang, J., Ding, H., Bidgoli, F.A., Zhou, B., Iribarren, C., Molloi, S., Baldi, P.,
Detecting Cardiovascular Disease from Mammograms With Deep Learning,
MedImg(36), No. 5, May 2017, pp. 1172-1181.
IEEE DOI 1705
Arteries, Breast, Calcium, Diseases, Machine learning, Mammography, Neural networks, Breast arterial calcification (BAC), coronary artery disease, deep learning, mammography BibRef

Abdel-Nasser, M.[Mohamed], Moreno, A.[Antonio], Rashwan, H.A.[Hatem A.], Puig, D.[Domenec],
Analyzing the evolution of breast tumors through flow fields and strain tensors,
PRL(93), No. 1, 2017, pp. 162-171.
Elsevier DOI 1706
Breast, cancer BibRef

Aghdam, H.H.[Hamed Habibi], Puig, D.[Domenec], Solanas, A.[Agusti],
Adaptive Probabilistic Thresholding Method for Accurate Breast Region Segmentation in Mammograms,
ICPR14(3357-3362)
IEEE DOI 1412
Accuracy BibRef

Pertuz, S.[Said], Julia, C.[Carme], Puig, D.[Domenec],
A Novel Mammography Image Representation Framework with Application to Image Registration,
ICPR14(3292-3297)
IEEE DOI 1412
Breast BibRef

Zheng, Y.S.[Yu-Shan], Jiang, Z.G.[Zhi-Guo], Xie, F.Y.[Feng-Ying], Zhang, H.P.[Hao-Peng], Ma, Y.B.[Yi-Bing], Shi, H.Q.[Hua-Qiang], Zhao, Y.[Yu],
Feature extraction from histopathological images based on nucleus-guided convolutional neural network for breast lesion classification,
PR(71), No. 1, 2017, pp. 14-25.
Elsevier DOI 1707
Feature, extraction BibRef

Nguyen, L., Tosun, A.B., Fine, J.L., Lee, A.V., Taylor, D.L., Chennubhotla, S.C.,
Spatial Statistics for Segmenting Histological Structures in H-E Stained Tissue Images,
MedImg(36), No. 7, July 2017, pp. 1522-1532.
IEEE DOI 1707
Breast tissue, Ducts, Image color analysis, Image segmentation, Sociology, Tumors, Histopathological image analysis, evaluation metrics, graph partitioning, image segmentation, image, statistics BibRef

Tsochatzidis, L.[Lazaros], Zagoris, K.[Konstantinos], Arikidis, N.[Nikolaos], Karahaliou, A.[Anna], Costaridou, L.[Lena], Pratikakis, I.E.[Ioannis E.],
Computer-aided diagnosis of mammographic masses based on a supervised content-based image retrieval approach,
PR(71), No. 1, 2017, pp. 106-117.
Elsevier DOI 1707
Mammography BibRef

Pani, S., Saifuddin, S.C., Ferreira, F.I.M., Henthorn, N., Seller, P., Sellin, P.J., Stratmann, P., Veale, M.C., Wilson, M.D., Cernik, R.J.,
High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose Contrast-Enhanced Digital Mammography,
MedImg(36), No. 9, September 2017, pp. 1784-1795.
IEEE DOI 1709
biological organs, dense breasts, image registration, motion artifacts, Lesions, spectroscopy BibRef


Yi, C.Q.[Cong-Qin], Zhou, R.Y.[Ru-Yan], Hu, K.N.[Ke-Ning],
Fuzzy Support Vector Machine for breast cancer gene classification,
ICIVC17(676-679)
IEEE DOI 1708
Programming, Support vector machines, FSVM, SVM, classification, gene BibRef

Shrivastava, A., Chaudhary, A., Kulshreshtha, D., Singh, V.P.[V. Prakash], Srivastava, R.,
Automated digital mammogram segmentation using Dispersed Region Growing and Sliding Window Algorithm,
ICIVC17(366-370)
IEEE DOI 1708
Classification algorithms, Image analysis, Image segmentation, Labeling, Mammography, CAD, Dispersed Region Growing Algorithm (DRGA), Sliding Window Algorithm (SWA), image segmentation, mammography BibRef

Bayramoglu, N., Kannala, J., Heikkilä, J.,
Deep learning for magnification independent breast cancer histopathology image classification,
ICPR16(2440-2445)
IEEE DOI 1705
Breast cancer, Databases, Microscopy, Pathology, Training, Training, data BibRef

Alcântara, R.[Rafaela], Junior, P.F.[Perfilino Ferreira], Ramos, A.[Aline],
Tsallis Entropy Extraction for Mammographic Region Classification,
CIARP16(451-458).
Springer DOI 1703
BibRef

Dhahbi, S.[Sami], Barhoumi, W.[Walid], Zagrouba, E.[Ezzeddine],
Content-Based Mammogram Retrieval Using Mixed Kernel PCA and Curvelet Transform,
ACIVS16(582-590).
Springer DOI 1611
BibRef

Král, P., Lenc, L.,
LBP features for breast cancer detection,
ICIP16(2643-2647)
IEEE DOI 1610
Breast cancer BibRef

Verma, R., Kumar, N., Sethi, A., Gann, P.H.,
Detecting multiple sub-types of breast cancer in a single patient,
ICIP16(2648-2652)
IEEE DOI 1610
Breast cancer BibRef

Goubalan, S.R.T.J., Goussard, Y., Maaref, H.,
Unsupervised malignant mammographic breast mass segmentation algorithm based on pickard Markov random field,
ICIP16(2653-2657)
IEEE DOI 1610
Breast BibRef

Fiallos, C.B., Pérez, M.G., Conci, A., Andaluz, V.H.,
Automatic detection of injuries in mammograms using image analysis techniques,
WSSIP15(245-248)
IEEE DOI 1603
cancer BibRef

Khan, N.[Nabeel], Wang, K.[Kaier], Chan, A.[Ariane], Highnam, R.[Ralph],
Automatic BI-RADS Classification of Mammograms,
PSIVT15(475-487).
Springer DOI 1602
BibRef

Dhungel, N.[Neeraj], Carneiro, G.[Gustavo], Bradley, A.P.[Andrew P.],
Automated Mass Detection in Mammograms Using Cascaded Deep Learning and Random Forests,
DICTA15(1-8)
IEEE DOI 1603
BibRef
And:
Deep structured learning for mass segmentation from mammograms,
ICIP15(2950-2954)
IEEE DOI 1512
belief networks. Mammograms; mass segmentation; structured inference; structured learning BibRef

Guo, M.[Miao], Dong, M.[Mev], Wang, Z.[Zhaobev], Ma, Y.[Yide], Guo, Y.[Ya'nan],
A new method for mammographic mass segmentation based on parametric active contour model,
ICWAPR15(27-33)
IEEE DOI 1511
cancer BibRef

Rodriguez, J.C.[Juan Cruz], González, G.[Germán], Fresno, C.[Cristobal], Fernández, E.A.[Elmer A.],
Integrative Functional Analysis Improves Information Retrieval in Breast Cancer,
CIARP15(43-50).
Springer DOI 1511
BibRef

Galdran, A.[Adrian], Picón, A.[Artzai], Garrote, E.[Estibaliz], Pardo, D.[David],
Pectoral Muscle Segmentation in Mammograms Based on Cartoon-Texture Decomposition,
IbPRIA15(587-594).
Springer DOI 1506
BibRef

Rodríguez-López, V.[Verónica], Cruz-Barbosa, R.[Raúl],
Improving Bayesian Networks Breast Mass Diagnosis by Using Clinical Data,
MCPR15(292-301).
Springer DOI 1506
BibRef

Oliver, A.[Arnau], Llado, X.[Xavier], Torrent, A.[Albert], Marti, J.[Joan],
One-shot segmentation of breast, pectoral muscle, and background in digitised mammograms,
ICIP14(912-916)
IEEE DOI 1502
Breast BibRef

Gharsalli, L., Duchene, B., Mohammad-Djafari, A., Ayasso, H.,
A gradient-like variational Bayesian approach: Application to microwave imaging for breast tumor detection,
ICIP14(1708-1712)
IEEE DOI 1502
Approximation methods BibRef

Ayasso, H., Duchene, B., Mohammad-Djafari, A.,
A variational Bayesian approach for frequency diverse non-linear microwave imaging,
ICIP12(2069-2072).
IEEE DOI 1302
BibRef

Manzo, M.[Mario], Pellino, S.[Simone], Petrosino, A.[Alfredo], Rozza, A.[Alessandro],
A Novel Graph Embedding Framework for Object Recognition,
NORDIA14(341-352).
Springer DOI 1504
BibRef

Rozza, A.[Alessandro], Manzo, M.[Mario], Petrosino, A.[Alfredo],
A Novel Graph-Based Fisher Kernel Method for Semi-supervised Learning,
ICPR14(3786-3791)
IEEE DOI 1412
Breast cancer BibRef

Nguyen, P.[Phuoc], Tran, D.[Dat], Huang, X.[Xu], Ma, W.L.[Wan-Li],
A Novel Sphere-Based Maximum Margin Classification Method,
ICPR14(620-624)
IEEE DOI 1412
Breast cancer BibRef

Jiang, M.[Menglin], Zhang, S.T.[Shao-Ting], Metaxas, D.N.[Dimitris N.],
Detection of Mammographic Masses by Content-Based Image Retrieval,
MLMI14(33-41).
Springer DOI 1410
BibRef

Moftah, H., Ibrahim, M., Hassanien, A.E., Schaefer, G.,
Mammary Gland Tumor Detection in Cats Using Ant Colony Optimisation,
ACPR13(942-945)
IEEE DOI 1408
ant colony optimisation BibRef

Deshpande, D.S., Rajurkar, A.M., Manthalkar, R.M.,
Medical image analysis an attempt for mammogram classification using texture based association rule mining,
NCVPRIPG13(1-5)
IEEE DOI 1408
cancer BibRef

Mustra, M.[Mario], Peros, G., Zovko-Cihlar, B.,
Comparison of segmentation accuracy for different LUTs applied to digital mammograms,
WSSIP15(113-116)
IEEE DOI 1603
biological tissues BibRef

Mustra, M.[Mario], Grgic, M.[Mislav], Delac, K.,
Efficient presentation of DICOM mammography images using Matlab,
WSSIP08(13-16).
IEEE DOI 0806
Code, Mammography. BibRef

Les, T.[Tomasz], Markiewicz, T.[Tomasz], Osowski, S.[Stanislaw], Cichowicz, M.[Marzena], Kozlowski, W.[Wojciech],
Automatic Evaluation System of FISH Images in Breast Cancer,
ICISP14(332-339).
Springer DOI 1406
BibRef

Chen, Z.L.[Zhi-Li], Wang, L.P.[Li-Ping], Denton, E.[Erika],
A Multiscale Blob Representation of Mammographic Parenchymal Patterns and Mammographic Risk Assessment,
CAIP13(II:346-353).
Springer DOI 1311
BibRef

Mourainst, D.C.[Daniel Cardoso], Lópezinst, M.A.G.[Miguel Angel Guevara], Cunhainst, P.[Pedro],
Benchmarking Datasets for Breast Cancer Computer-Aided Diagnosis (CADx),
CIARP13(I:326-333).
Springer DOI 1311
BibRef

He, W.[Wenda], Zwiggelaar, R.[Reyer],
Breast Parenchymal Pattern Analysis in Digital Mammography: Associations between Tabár and Birads Tissue Compositions,
CAIP13(II:386-393).
Springer DOI 1311
BibRef

Arias, J.A.[José Anibal], Rodríguez, V.[Verónica], Miranda, R.[Rosebet],
Meaningful Features for Computerized Detection of Breast Cancer,
CIARP13(II:198-205).
Springer DOI 1311
BibRef

Molinara, M.[Mario], Marrocco, C.[Claudio],
A Boosting-Based Approach to Refine the Segmentation of Masses in Mammography,
CIAP13(II:572-580).
Springer DOI 1309
BibRef

Selwyna, P.G.C.[P. Georgia Chris], Loganathan, P.R.[Priyadarshini Ravandhu], Begam, K.H.[K. Haseena],
Development of electrochemical biosensor for breast cancer detection using gold nanoparticle doped CA 15-3 antibody and antigen interaction,
ICSIPR13(75-81).
IEEE DOI 1304
BibRef

Kim, D.H.[Dae Hoe], Choi, J.Y.[Jae Young], Ro, Y.M.[Yong Man],
A novel mammographic mass detection approach to combining suprevised and unsuprevised detection algorithms,
ICIP12(2857-2860).
IEEE DOI 1302
BibRef

Kim, D.H.[Dae Hoe], Choi, J.Y.[Jae Young], Ro, Y.M.[Yong Man],
Region based stellate features for classification of mammographic spiculated lesions in computer-aided detection,
ICIP12(2821-2824).
IEEE DOI 1302
BibRef

Oliveira, H.P.[Helder P.], Cardoso, J.S.[Jaime S.], Magalhaes, A.[Andre], Cardoso, M.J.[Maria J.],
Simultaneous detection of prominent points on breast cancer conservative treatment images,
ICIP12(2841-2844).
IEEE DOI 1302
BibRef

Kumar, M.S.[M. Sathish], Dinesh, E., Mohan Raj, T.,
Involuntary diagnosis of intraductal breast images using gaussian mixture model,
IMVIP12(113-116).
IEEE DOI 1302
BibRef

Krawczyk, B.[Bartosz], Jelen, l.[lukasz], Krzyzak, A.[Adam], Fevens, T.[Thomas],
Oversampling Methods for Classification of Imbalanced Breast Cancer Malignancy Data,
ICCVG12(483-490).
Springer DOI 1210
BibRef

Hussain, M.[Muhammad], Khan, S.[Salabat], Muhammad, G.[Ghulam], Bebis, G.N.[George N.],
Mass Detection in Digital Mammograms Using Optimized Gabor Filter Bank,
ISVC12(II: 82-91).
Springer DOI 1209
BibRef

Lewis, S.H.[Samual H.], Dong, A.[Aijuan],
Detection of breast tumor candidates using marker-controlled watershed segmentation and morphological analysis,
Southwest12(1-4).
IEEE DOI 1205
BibRef

Sardar, S.[Santu], Mishra, A.K.[Amit K.],
An improved algorithm For UWB based imaging of breast tumors,
ICIIP11(1-6).
IEEE DOI 1112
BibRef

Abdaheer, M.S., Khan, E.[Ekram],
An automatic and simple breast tumor classification using area matching,
ICIIP11(1-5).
IEEE DOI 1112
BibRef

Chaudhury, A.R.[Amrita Ray], Iyer, R.[Ranjani], Iychettira, K.K.[Kaveri K.], Sreedevi, A.,
Diagnosis of Invasive Ductal Carcinoma using image processing techniques,
ICIIP11(1-6).
IEEE DOI 1112
BibRef

Vani, G., Savitha, R., Sundararajan, N.,
Classification of abnormalities in digitized mammograms using Extreme Learning Machine,
ICARCV10(2114-2117).
IEEE DOI 1109
BibRef

Wang, J.Y.[Jing-Yan], Li, Y.P.[Yong-Ping], Zhang, Y.[Ying], Xie, H.[Honglan], Wang, C.[Chao],
Bag-of-Features Based Classification of Breast Parenchymal Tissue in the Mammogram via Jointly Selecting and Weighting Visual Words,
ICIG11(622-627).
IEEE DOI 1109
BibRef

Vállez, N.[Noelia], Bueno, G.[Gloria], Déniz-Suárez, O.[Oscar], Seone, J.A.[José A.], Dorado, J.[Julián], Pazos, A.[Alejandro],
A Tree Classifier for Automatic Breast Tissue Classification Based on BIRADS Categories,
IbPRIA11(580-587).
Springer DOI 1106
BibRef

Yousef, W.A.[Waleed A.], Mustafa, W.A.[Waleed A.], Ali, A.A.[Ali A.], Abdelrazek, N.A.[Naglaa A.], Farrag, A.M.[Ahmed M.],
On detecting abnormalities in digital mammography,
AIPR10(1-7).
IEEE DOI 1010
BibRef

Elshinawyz, M.Y.[Mona Y.], Badawyy, A.H.A.[Abdel-Hameed A.], Abdelmageedyy, W.W.[Wael W.], Chouikhaz, M.F.[Mohamed F.],
Comparing one-class and two-class SVM classifiers for normal mammogram detection,
AIPR10(1-7).
IEEE DOI 1010
BibRef

Flores-Tapia, D.[Daniel], Pistorius, S.[Stephen],
A real time Breast Microwave Radar imaging reconstruction technique using simt based interpolation,
ICIP10(1389-1392).
IEEE DOI 1009
BibRef

Sahba, F.[Farhang], Venetsanopoulos, A.[Anastasios],
Mean shift based algorithm for mammographic breast mass detection,
ICIP10(3629-3632).
IEEE DOI 1009
BibRef

Oliver, A.[Arnau], Lladó, X.[Xavier], Martí, J.[Joan], Martí, R.[Robert], Freixenet, J.[Jordi],
False Positive Reduction in Breast Mass Detection Using Two-Dimensional PCA,
IbPRIA07(II: 154-161).
Springer DOI 0706
BibRef

Diez, Y.[Yago], Oliver, A.[Arnau], Llado, X.[Xavier], Marti, R.[Robert],
Comparison of registration methods using mamographic images,
ICIP10(4421-4424).
IEEE DOI 1009
BibRef

Harirchi, F.[Farshad], Radparvar, P.[Parham], Abrishami Moghaddam, H.[Hamid], Dehghan, F.[Faramarz], Giti, M.[Masoumeh],
Two-Level Algorithm for MCs Detection in Mammograms Using Diverse-Adaboost-SVM,
ICPR10(269-272).
IEEE DOI 1008
BibRef

Boucher, A., Cloppet, F., Vincent, N., Jouve, P.,
Visual Perception Driven Registration of Mammograms,
ICPR10(2374-2377).
IEEE DOI 1008
BibRef

Veillard, A.[Antoine], Lomenie, N.[Nicolas], Racoceanu, D.[Daniel],
An Exploration Scheme for Large Images: Application to Breast Cancer Grading,
ICPR10(3472-3475).
IEEE DOI 1008
BibRef

Cheikhouhou, I.[Imene], Djemal, K.[Khalifa], Maaref, H.[Hichem],
Mass Description for Breast Cancer Recognition,
ICISP10(576-584).
Springer DOI 1006
BibRef

Alolfe, M.A.[Mohammed A.], Mohamed, W.A.[Wael A.], Youssef, A.B.M.[Abou-Bakr M.], Mohamed, A.S.[Ahmed S.], Kadah, Y.M.[Yasser M.],
Computer aided diagnosis in digital mammography using combined support vector machine and linear discriminant analyasis classification,
ICIP09(2609-2612).
IEEE DOI 0911
BibRef

Boujelben, A.[Atef], Chaabani, A.C.[Ali Cherif], Tmar, H.[Hedi], Abid, M.[Mohamed],
Feature Extraction from Contours Shape for Tumor Analyzing in Mammographic Images,
DICTA09(395-399).
IEEE DOI 0912
BibRef

Byrd, K., Zeng, J.C.[Jian-Chao], Chouikha, M.,
Performance assessment of mammography image segmentation algorithms,
AIPR05(152-157).
IEEE DOI 0510
BibRef

Ross, S., Ejofodomi, O., Jendoubi, A., Chouikha, M., Lo, B., Wang, P., Zeng, J.C.[Jian-Chao],
A mammography database and view system for the African American patients,
AIPR04(139-144).
IEEE DOI 0410
BibRef

Khademi, A.[April], Sahba, F.[Farhang], Venetsanopoulos, A.[Anastasios], Krishnan, S.[Sridhar],
Region, Lesion and Border-Based Multiresolution Analysis of Mammogram Lesions,
ICIAR09(802-813).
Springer DOI 0907
BibRef

Cheikhrouhou, I., Djemal, K., Sellami, D., Maaref, H., Derbel, N.,
New mass description in mammographies,
IPTA08(1-5).
IEEE DOI 0811
BibRef

Philip, R.C.[Rohit C.], Rodriguez, J.J.[Jeffrey J.], Gillies, R.J.[Robert J.],
Seed pruning using a multi-resolution approach for automated segmentation of breast cancer tissue,
ICIP08(1436-1439).
IEEE DOI 0810
BibRef

Mencattini, A.[Arianna], Rabottino, G.[Giulia], Salmeri, M.[Marcello], Lojacono, R.[Roberto], Colini, E.[Emanuele],
Breast Mass Segmentation in Mammographic Images by an Effective Region Growing Algorithm,
ACIVS08(xx-yy).
Springer DOI 0810
BibRef

Jin, Y.W.[Yuan-Wei], Jiang, Y.[Yi], Moura, J.M.F.[Jose M.F.],
Time Reversal Beamforming for Microwave Breast Cancer Detection,
ICIP07(V: 13-16).
IEEE DOI 0709
BibRef

Wang, Y.[Ying], Gao, X.B.[Xin-Bo], Li, J.[Jie],
A Feature Analysis Approach to Mass Detection in Mammography Based on RF-SVM,
ICIP07(V: 9-12).
IEEE DOI 0709
BibRef

Sampaio, W.B., Diniz, E.M., Silva, A.C., de Paiva, A.C.,
Detection of Masses in Mammograms Using Cellular Neural Networks, Hidden Markov Models and Ripley's K Function,
WSSIP09(1-3).
IEEE DOI 0906
See also second-order analysis of stationary point processes, The. BibRef

de Oliveira Martins, L.[Leonardo], Junior, G.B.[Geraldo Braz], da Silva, E.C.[Erick Corrêa], Silva, A.C.[Aristófanes Corrêa], Cardoso de Paiva, A.[Anselmo],
Classification of Breast Tissues in Mammogram Images Using Ripley's K Function and Support Vector Machine,
ICIAR07(899-910).
Springer DOI 0708
See also second-order analysis of stationary point processes, The. BibRef

Moayedi, F.[Fatemeh], Azimifar, Z.[Zohreh], Boostani, R.[Reza], Katebi, S.[Serajodin],
Contourlet-Based Mammography Mass Classification,
ICIAR07(923-934).
Springer DOI 0708
BibRef

Sánchez-Ferrero, G.V.[Gonzalo V.], Arribas, J.I.[Juan Ignacio],
A Statistical-Genetic Algorithm to Select the Most Significant Features in Mammograms,
CAIP07(189-196).
Springer DOI 0708
BibRef

Foggia, P.[Pasquale], Percannella, G.[Gennaro], Sansone, C.[Carlo], Vento, M.[Mario],
A Graph-Based Clustering Method and Its Applications,
BVAI07(277-287).
Springer DOI 0710
BibRef

Foggia, P., Guerriero, M., Percannella, G., Sansone, C., Tufano, F., Vento, M.,
A Graph-Based Method for Detecting and Classifying Clusters in Mammographic Images,
SSPR06(484-493).
Springer DOI 0608
BibRef

Ribeiro da Silva, V.[Valdeci], Cardoso de Paiva, A.[Anselmo], Corrêa Silva, A.[Aristófanes], Muniz de Oliveira, A.C.[Alexandre Cesar],
Semivariogram Applied for Classification of Benign and Malignant Tissues in Mammography,
ICIAR06(II: 570-579).
Springer DOI 0610
BibRef

Roller, D.[Dieter], Lampasona, C.[Constanza],
A Method for Interpreting Pixel Grey Levels in Digital Mammography,
ICIAR06(II: 580-588).
Springer DOI 0610
BibRef

Oliver, A.[Arnau], Marti, J.[Joan], Marti, R.[Robert], Bosch, A.[Anna], Freixenet, J.[Jordi],
A new approach to the classification of mammographic masses and normal breast tissue,
ICPR06(IV: 707-710).
IEEE DOI 0609
BibRef

Ketsetzis, G.[Georgios], Brady, M.[Michael],
Optimizing the selection of Flip Angle acquisitions for T1 measurement in Breast,
MMBIA06(97).
IEEE DOI 0609
BibRef

Lee, S.[Sarah], Stathaki, T.[Tania],
Mammogram Analysis Using Two-Dimensional Autoregressive Models: Sufficient or Not?,
CIAP05(900-906).
Springer DOI 0509
BibRef

Vitulano, S.[Sergio], Casanova, A.[Andrea],
The Role of Entropy: Mammogram Analysis,
ICIAR08(xx-yy).
Springer DOI 0806
BibRef

Bornefalk, H.[Hans],
Use of Quadrature Filters for Detection of Stellate Lesions in Mammograms,
SCIA05(649-658).
Springer DOI 0506
BibRef

Mohammed, S., Yang, L.[Lei], Fiaidhi, J.,
A dynamic fuzzy classifier for detecting abnormalities in mammograms,
CRV04(172-179).
IEEE DOI 0408
BibRef

Christoyianni, I., Dermatas, E., Kokkinakis, G.,
Automatic Detection of Abnormal Tissue in Mammography,
ICIP01(II: 877-880).
IEEE DOI 0108
BibRef

McGarry, G., Deriche, M.,
Mammographic Image Segmentation Using a Tissue-mixture Model and Markov Random Fields,
ICIP00(Vol III: 416-419).
IEEE DOI 0008
BibRef

Banerjee, A., Chellappa, R.,
Tumor Detection in Digital Mammograms,
ICIP00(Vol III: 432-435).
IEEE DOI 0008
BibRef

Sari-Sarraf, H., and Gleason, S.S.,
A Novel Approach to Computer-Aided Diagnosis of Mammographic Images,
WACV96(230-235).
IEEE DOI 9609
BibRef

Morrison, S.[Steven], Linnett, L.M.[Laurie M.],
A Model Based Approach to Object Detection in Digital Mammography,
ICIP99(II:182-186).
IEEE DOI BibRef 9900

Jiang, H.[Hao], Tiu, W.[Wilson], Yamamoto, S.[Shinji], Iisaku, S.I.[Shun-Ichi],
Detection of Spicules in Mammograms,
ICIP97(III: 520-523).
IEEE DOI BibRef 9700
And:
Automatic recognition of spicules in mammograms,
CIAP97(II: 396-403).
Springer DOI 9709
BibRef

Marroquin, E.M., Vos, C., Santamaria, E., Jove, X., Socoro, J.C.,
Nonlinear image analysis for fuzzy classification of breast cancer,
ICIP96(II: 943-946).
IEEE DOI 9610
BibRef

Cheng, H.D., Chen, C.H., Freimanis, R.I.,
A neural network for breast cancer detection using fuzzy entropy approach,
ICIP95(III: 141-144).
IEEE DOI 9510
BibRef

Hutt, J.W., Astley, S.M., Boggis, C.R.M.,
Computer Aided Detection of Abnormalities in Mammograms,
BMVC94(xx-yy).
PDF File. 9409
BibRef

Dengler, J., Guckes, M.,
Estimating a global shape model for objects with badly defined boundaries,
ICPR92(II:381-384).
IEEE DOI 9208
mammography application BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Breast Cancer Cell Analysis, Pathology, Nuclei Detection .


Last update:Sep 22, 2017 at 21:00:01