Swedish Trafic Signs,
Online2010
WWW Link.
Dataset, Traffic Signs.
BibRef
1000
Challenging Unreal and Real Environments for Traffic Sign Detection and Recognition,
Online2017
CURE-TSD and CURE-TSR
WWW Link.
WWW Link.
Dataset, Traffic Signs.
Dataset, CURE-TSR.
Dataset, CURE-TSD. Real-world and synthesized video sequences with challenging
conditions. In total, there are 5,733 video sequences and around 1.72
million frames.
BibRef
1700
Kehtarnavaz, N.,
Griswold, N.C.,
Kang, D.S.,
Stop-Sign Recognition Based on Color-Shape Processing,
MVA(6), 1993, pp. 206-208.
BibRef
9300
Ritter, W.,
Stein, F., and
Janssen, R.,
Traffic sign recognition using colour information,
MathMod(22), No. 4-7, August-October 1995, 149-161.
Elsevier DOI
BibRef
9508
Piccioli, G.,
de Micheli, E.,
Parodi, P.,
Campani, M.,
Robust Method for Road Sign Detection and Recognition,
IVC(14), No. 3, April 1996, pp. 209-223.
Elsevier DOI
9607
BibRef
Piccioli, G.,
de Micheli, E.,
Campani, M.,
A Robust Method for Road Sign Detection and Recognition,
ECCV94(A:493-500).
Springer DOI
BibRef
9400
de la Escalera, A., and
Moreno, L.,
Road traffic sign detection and classification,
IndEle(44), 1997, pp. 848-859.
BibRef
9700
de la Escalera, A.,
Armingol, J.M.,
Mata, M.,
Traffic sign recognition and analysis for intelligent vehicles,
IVC(21), No. 3, March 2003, pp. 247-258.
Elsevier DOI
0301
BibRef
Collado, J.M.,
Hilario, C.,
de la Escalera, A.,
Armingol, J.M.,
Model based vehicle detection for intelligent vehicles,
IVS04(572-577).
IEEE DOI
0411
BibRef
Miura, J.,
Kanda, T.,
Nakatani, S., and
Shirai, Y.,
An Active Vision System for On-line Traffic Sign Recognition,
IEICE(E85-D), No. 11, 2002, pp. 1784-1792.
PDF File.
BibRef
0200
Miura, J.,
Kanda, T., and
Shirai, Y.,
An Active Vision System for Real-Time Traffic Sign Recogntition,
ITS00(52-57), Dearborn, MI, Oct. 2000.
PDF File.
BibRef
0010
Paclik, P.[Pavel],
Novoviová, J.,
Pudil, P.,
Somol, P.,
Road Sign Classification using Laplace Kernel Classifier,
PRL(21), No. 13-14, December 2000, pp. 1165-1173.
PDF File.
0011
BibRef
Earlier:
SCIA99(275-282).
PDF File.
BibRef
Hsu, S.H.[Shih-Hung],
Huang, C.L.[Chung-Lin],
Road sign detection and recognition using matching pursuit method,
IVC(19), No. 3, February 2001, pp. 119-129.
Elsevier DOI
0103
BibRef
Earlier: A2, A1:
Road Sign Interpretation Using Matching Pursuit Method,
ICPR00(Vol I: 329-333).
IEEE DOI
0009
BibRef
Laumeyer, R.A.[Robert Anthony],
Retterath, J.E.[James Eugene],
System for automatically generating database
of objects of interest by analysis of images
recorded by moving vehicle,
US_Patent6,363,161, March 26, 2002.
WWW Link.
BibRef
0203
Laumeyer, R.A.[Robert Anthony],
Retterath, J.E.[James Eugene],
Method and apparatus for identifying objects
depicted in a videostream,
US_Patent6,266,442, July 24, 2001.
WWW Link.
BibRef
0107
And:
US_Patent6,625,315, Sep 23, 2003
WWW Link.
BibRef
And:
US_Patent7,092,548, Aug 15, 2006
WWW Link.
BibRef
Laumeyer, R.A.[Robert Anthony],
Retterath, J.E.[James Eugene],
Method and apparatus for rapidly determining
whether a digitized image frame contains an
object of interest,
US_Patent6,449,384, September 10, 2002.
WWW Link.
BibRef
0209
Laumeyer, R.A.[Robert Anthony],
Retterath, J.E.[James Eugene],
Method and apparatus for generating a
database of road sign images and positions,
US_Patent6,453,056, September 17, 2002.
WWW Link.
BibRef
0209
Fang, C.Y.,
Fuh, C.S.,
Yen, P.S.,
Cherng, S.,
Chen, S.W.,
An automatic road sign recognition system based on a computational
model of human recognition processing,
CVIU(96), No. 2, November 2004, pp. 237-268.
Elsevier DOI
0410
BibRef
Earlier: A1, A2, A5, A3, Only:
A road sign recognition system based on dynamic visual model,
CVPR03(I: 750-755).
IEEE DOI
0307
Extract spatial and temporal information from video.
Neural network for perception.
BibRef
Fang, C.Y.,
Fuh, C.S., and
Chen, S.W.,
Detection and tracking of road signs,
PRIA(11), 2001, pp. 304-308.
BibRef
0100
de la Escalera, A.,
Armingol, J.M.,
Pastor, J.M.,
Rodriguez, F.J.,
Visual sign information extraction and identification by deformable
models for intelligent vehicles,
ITS(5), No. 2, June 2004, pp. 57-68.
IEEE Abstract.
0501
BibRef
Wu, J.P.[Jian-Ping],
Tsai, Y.C.J.[Yi-Chang James],
Real-time Speed Limit Sign Recognition Based on Locally Adaptive
Thresholding and Depth-First-Search,
PhEngRS(71), No. 4, April 2005, pp. 405-414.
Recognizing speed limit signs from video and
extract the values, support real-time road inventory
data collection operations.
WWW Link.
0509
BibRef
Gao, X.W.,
Podladchikova, L.N.,
Shaposhnikov, D.G.,
Hong, K.,
Shevtsova, N.,
Recognition of traffic signs based on their colour and shape features
extracted using human vision models,
JVCIR(17), No. 4, August 2006, pp. 675-685.
Elsevier DOI
0711
Transformation invariant recognition; Traffic signs recognition;
Feature extraction
BibRef
Paclik, P.[Pavel],
Novovicova, J.[Jana],
Duin, R.P.W.[Robert P.W.],
Building Road-Sign Classifiers Using a Trainable Similarity Measure,
ITS(7), No. 3, September 2006, pp. 309-321.
IEEE DOI
0609
BibRef
Earlier:
A Trainable Similarity Measure for Image Classification,
ICPR06(III: 391-394).
IEEE DOI
0609
See also Dissimilarity-based classification of spectra: computational issues.
BibRef
Paclik, P.[Pavel],
Verzakov, S.,
Duin, R.P.W.,
Multi-class extensions of the GLDB feature extraction algorithm for
spectral data,
ICPR04(IV: 629-632).
IEEE DOI
0409
Generalized Local Discriminant Bases
See also Best-bases feature extraction algorithms for classification of hyperspectral data.
BibRef
Koncar, A.[Alan],
Janßen, H.[Holger],
Halgamuge, S.[Saman],
Gabor wavelet similarity maps for optimising hierarchical road sign
classifiers,
PRL(28), No. 2, 15 January 2007, pp. 260-267.
Elsevier DOI
0611
Gabor wavelets; Jets; Euclidean distance; Normalised scalar product;
Hierarchical classifier; Gabor similarity maps
BibRef
Maldonado-Bascon, S.,
Lafuente-Arroyo, S.,
Gil-Jimenez, P.,
Gomez-Moreno, H.,
Lopez-Ferreras, F.,
Road-Sign Detection and Recognition Based on Support Vector Machines,
ITS(8), No. 2, April 2007, pp. 264-278.
IEEE DOI
0706
BibRef
Maldonado-Bascón, S.[Saturnino],
Acevedo-Rodríguez, J.[Javier],
Lafuente-Arroyo, S.[Sergio],
Fernndez-Caballero, A.,
Lopez-Ferreras, F.,
An optimization on pictogram identification for the road-sign
recognition task using SVMs,
CVIU(114), No. 3, March 2010, pp. 373-383.
Elsevier DOI
1003
Road sign; Automatic traffic sign detection and recognition system
(TSDRS); Classification; Support vector machines (SVMs)
BibRef
Gómez-Moreno, H.[Hilario],
Maldonado-Bascón, S.[Saturnino],
Gil-Jiménez, P.[Pedro],
Lafuente-Arroyo, S.[Sergio],
Goal Evaluation of Segmentation Algorithms for Traffic Sign Recognition,
ITS(11), No. 4, December 2010, pp. 917-930.
IEEE DOI
1101
BibRef
Gil-Jiménez, P.[Pedro],
Maldonado-Bascón, S.[Saturnino],
Gómez-Moreno, H.[Hilario],
Lafuente-Arroyo, S.[Sergio],
Acevedo-Rodríguez, J.[Javier],
Algebraic-Distance Minimization of Lines and Ellipses for Traffic Sign
Shape Localization,
IbPRIA07(II: 540-547).
Springer DOI
0706
BibRef
Liu, Y.S.[Yi-Sheng],
Duh, D.J.[Der-Jyh],
Chen, S.Y.[Shu-Yuan],
Liu, R.S.[Ru-Sheng],
Hsieh, J.W.[Jun-Wei],
Scale and skew-invariant road sign recognition,
IJIST(17), No. 1, 2007, pp. 28-39.
DOI Link
0707
BibRef
Barnes, N.M.,
Zelinsky, A.,
Fletcher, L.S.,
Real-Time Speed Sign Detection Using the Radial Symmetry Detector,
ITS(9), No. 2, June 2008, pp. 322-332.
IEEE DOI
0806
BibRef
Earlier: A1, A2, Only:
Real-time radial symmetry for speed sign detection,
IVS04(566-571).
IEEE DOI
0411
BibRef
Ishida, H.[Hiroyuki],
Takahashi, T.[Tomokazu],
Ide, I.[Ichiro],
Mekada, Y.[Yoshito],
Murase, H.[Hiroshi],
Generation of Training Data by Degradation Models for Traffic Sign
Symbol Recognition,
IEICE(E90-D), No. 8, August 2007, pp. 1134-1141.
DOI Link
0708
BibRef
Earlier:
Identification of degraded traffic sign symbols by a generative
learning method,
ICPR06(I: 531-534).
IEEE DOI
0609
BibRef
Gao, X.H.[Xiao-Hong],
Hong, K.[Kunbin],
Passmore, P.[Peter],
Podladchikova, L.N.[Lubov N.],
Shaposhnikov, D.G.[Dmitry G.],
Colour Vision Model-Based Approach for Segmentation of Traffic Signs,
JIVP(2008), No. 2008, pp. xx-yy.
DOI Link
0804
BibRef
Baro, X.,
Escalera, S.,
Vitria, J.,
Pujol, O.,
Radeva, P.I.,
Traffic Sign Recognition Using Evolutionary Adaboost Detection and
Forest-ECOC Classification,
ITS(10), No. 1, March 2009, pp. 113-126.
IEEE DOI
0903
BibRef
Escalera, S.[Sergio],
Pujol, O.[Oriol],
Radeva, P.I.[Petia I.],
Traffic sign recognition system with beta-correction,
MVA(21), No. 2, February 2010, pp. xx-yy.
Springer DOI
1002
All the usual problems, multi-object, occlusion, illumination, etc.
Based on Error Correcting Output Codes (ECOC). Ensemble of binary classifiers.
BibRef
Escalera, S.,
Baró, X.,
Pujol, O.,
Vitriŕ, J.,
Radeva, P.I.,
Traffic-Sign Recognition Systems,
SpringerNew-York, 2011.
ISBN: 978-1-4471-2244-9
WWW Link.
Buy this book: Traffic-Sign Recognition Systems (SpringerBriefs in Computer Science)
1111
BibRef
Prieto, M.S.[Miguel S.],
Allen, A.R.[Alastair R.],
Using self-organising maps in the detection and recognition of road
signs,
IVC(27), No. 6, 4 May 2009, pp. 673-683.
Elsevier DOI
0904
Road sign detection; Road sign recognition; Self-organising map
BibRef
Tsai, L.W.[Luo-Wei],
Hsieh, J.W.[Jun-Wei],
Chuang, C.H.,
Tseng, Y.J.[Yun-Jung],
Fan, K.C.[Kuo-Chin],
Lee, C.C.,
Road sign detection using eigen colour,
IET-CV(2), No. 3, September 2008, pp. 164-177.
DOI Link
0905
BibRef
Tsai, L.W.[Luo-Wei],
Tseng, Y.J.[Yun-Jung],
Hsieh, J.W.[Jun-Wei],
Fan, K.C.[Kuo-Chin],
Li, J.J.[Jiun-Jie],
Road Sign Detection Using Eigen Color,
ACCV07(I: 169-179).
Springer DOI
0711
BibRef
Ruta, A.[Andrzej],
Li, Y.M.[Yong-Min],
Liu, X.H.[Xiao-Hui],
Real-time traffic sign recognition from video by class-specific
discriminative features,
PR(43), No. 1, January 2010, pp. 416-430,.
Elsevier DOI
0909
BibRef
Earlier:
Towards Real-Time Traffic Sign Recognition by Class-Specific
Discriminative Features,
BMVC07(xx-yy).
PDF File.
0709
Traffic sign recognition; Computer vision-based driver assistance;
Discriminative local regions; Colour Distance Transform; Forward
feature selection
BibRef
Ruta, A.[Andrzej],
Li, Y.M.[Yong-Min],
Liu, X.H.[Xiao-Hui],
Robust Class Similarity Measure for Traffic Sign Recognition,
ITS(11), No. 4, December 2010, pp. 846-855.
IEEE DOI
1101
BibRef
Ruta, A.[Andrzej],
Li, Y.M.[Yong-Min],
Porikli, F.M.[Fatih M.],
Watanabe, S.[Shintaro],
Kage, H.[Hiroshi],
Sumi, K.[Kazuhiko],
A New Approach for In-Vehicle Camera Traffic Sign Detection and
Recognition,
MVA09(509-).
PDF File.
0905
BibRef
Ruta, A.[Andrzej],
Porikli, F.M.[Fatih M.],
Watanabe, S.[Shintaro],
Li, Y.M.[Yong-Min],
In-vehicle camera traffic sign detection and recognition,
MVA(22), No. 2, March 2011, pp. 359-375.
WWW Link.
1103
BibRef
Ruta, A.[Andrzej],
Li, Y.M.[Yong-Min],
Learning pairwise image similarities for multi-classification using
Kernel Regression Trees,
PR(45), No. 4, April 2012, pp. 1396-1408.
Elsevier DOI
1112
Visual similarity; Learning from example pairs; Object recognition;
Kernel Regression Trees
BibRef
Khan, J.F.,
Bhuiyan, S.M.A.,
Adhami, R.R.,
Image Segmentation and Shape Analysis for Road-Sign Detection,
ITS(12), No. 1, March 2011, pp. 83-96.
IEEE DOI
1103
BibRef
Fleyeh, H.[Hasan],
Bin Mumtaz, A.H.R.M.[Al-Hasanat R. M.],
Adaptive Shadow and Highlight Invariant Colour Segmentation
for Traffic Sign Recognition Based on Kohonen SOM,
IJIS(20), No. 1, 2011.
DOI Link
1103
Pre publication info, check exact issue, page reference.
BibRef
Fleyeh, H.[Hasan],
Traffic sign recognition by fuzzy sets,
IVS08(xx-yy).
BibRef
0800
Fleyeh, H.[Hasan],
Dougherty, M.,
Traffic sign classification using invariant features
and Support Vector Machines,
IVS08(xx-yy).
BibRef
0800
Earlier:
SVM Based Traffic Sign Classification Using Legendre Moments,
IICAI07(xx-yy).
BibRef
Earlier:
Road and traffic sign detection and recognition,
EWGT05(xx-yy).
Poznan, Poland, 13-16 September, 2005.
BibRef
Fleyeh, H.[Hasan],
Gilani, S.,
Dougherty, M.,
Road Sign Detection and Recognition Using A Fuzzy ARTMAP:
A Case Study Swedish Speed-Limit Signs,
AI Soft Computing06(xx-yy).
Palma de Mallorca, Spain, 28-30 August, 2006.
BibRef
0608
Fleyeh, H.[Hasan], and
Davami, E.[Erfan],
Eigen-Based Traffic Sign Recognition,
IET-ITS(5), No. 3, 2011, pp. 190-196.
WWW Link.
BibRef
1100
Fleyeh, H.,
Biswas, R., and
Bhuiyan, N.,
An Adaptive Approach to Detect Warning Traffic Signs Using SOM
and Windowed Hough Transform,
SIPA11(xx-yy), June 22-24, 2011, Crete.
BibRef
1106
Fleyeh, H.[Hasan],
Dougherty, M.,
Aenugula, D.,
Baddam, S.,
Invariant Road Sign Recognition with Fuzzy ARTMAP and Zernike Moments,
IVS07(xx-yy).
BibRef
0700
Fleyeh, H.[Hasan],
Shi, M.,
Wu, H.,
A Robust Model for Traffic Signs Recognition
Based on Support Vector Machines,
CISP08(xx-yy).
BibRef
0800
And:
Support vector machines for traffic signs recognition,
IJCNN08(xx-yy).
BibRef
Fleyeh, H.[Hasan],
Zhao, P.,
A Contour-based Separation of Vertically Attached Traffic Signs,
IECON08(xx-yy).
Orlando, FL, 2008
BibRef
0800
Fleyeh, H.[Hasan],
Shadow and Highlight Invariant Colour Segmentation Algorithm for
Traffic Signs,
CIS06(xx-yy).
Bangkok, Thailand, June, 2006.
BibRef
0606
Earlier:
Traffic Signs Color Detection and Segmentation in Poor Light Conditions,
MVA05(xx-yy).
BibRef
And:
Road and Traffic Sign Color Detection and Segmentation:
A Fuzzy Approach,
MVA05(xx-yy)
BibRef
And:
A Novel Fuzzy Approach For Shape Determination of Traffic Signs,
IICAI05(xx-yy).
BibRef
Earlier:
Color detection and segmentation for road and traffic signs,
CIS04(xx-yy).
Singapore, December, 2004.
BibRef
Gonzalez, Á.,
Garrido, M.A.,
Fernandez Llorca, D.,
Gavilan, M.,
Fernandez, J.P.,
Alcantarilla, P.F.,
Parra, I.,
Herranz, F.,
Bergasa, L.M.,
Sotelo, M.A.,
Revenga de Toro, P.,
Automatic Traffic Signs and Panels Inspection System Using Computer
Vision,
ITS(12), No. 2, June 2011, pp. 485-499.
IEEE DOI
1101
BibRef
Larsson, F.[Fredrik],
Felsberg, M.[Michael],
Forssen, P.E.[Per-Erik],
Correlating fourier descriptors of local patches for road sign
recognition,
IET-CV(5), No. 4, 2011, pp. 244-254.
DOI Link
1107
BibRef
Earlier: A1, A2, Only:
Using Fourier Descriptors and Spatial Models for Traffic Sign
Recognition,
SCIA11(238-249).
Springer DOI
1105
BibRef
Meuter, M.,
Nunn, C.,
Gormer, S.M.,
Muller-Schneiders, S.,
Kummert, A.,
A Decision Fusion and Reasoning Module for a Traffic Sign Recognition
System,
ITS(12), No. 4, December 2011, pp. 1126-1134.
IEEE DOI
1112
BibRef
Xu, S.,
Robust traffic sign shape recognition using geometric matching,
IET-ITS(3), No. 1, 2009, pp. 10-18.
DOI Link
1204
BibRef
McLoughlin, S.,
Deegan, C.,
Mulvihill, C.,
Fitzgerald, C.,
Markham, C.,
Mobile mapping for the automated analysis of road signage and
delineation,
IET-ITS(2), No. 1, 2008, pp. 61-73.
DOI Link
1204
BibRef
Murray, S.,
Haughey, S.,
Brogan, M.,
Fitzgerald, C.,
McLoughlin, S.,
Deegan, C.,
Mobile mapping system for the automated detection and analysis of road
delineation,
IET-ITS(5), No. 4, 2011, pp. 221-230.
DOI Link
1204
BibRef
Gu, Y.[Yanlei],
Panahpour Tehrani, M.[Mehrdad],
Yendo, T.[Tomohiro],
Fujii, T.[Toshiaki],
Tanimoto, M.[Masayuki],
Traffic Sign Recognition with Invariance to Lighting in Dual-Focal
Active Camera System,
IEICE(E95-D), No. 7, July 2012, pp. 1775-1790.
WWW Link.
1208
BibRef
Zhang, K.[Ka],
Sheng, Y.[Yehua],
Li, J.,
Automatic detection of road traffic signs from natural scene images
based on pixel vector and central projected shape feature,
IET-ITS(6), No. 2, 2012, pp. 282-291.
DOI Link
1209
BibRef
Zhang, K.[Ka],
Sheng, Y.[Yehua],
Wang, P.[Peifang],
Luo, L.[Lin],
Ye, C.[Chun],
Gong, Z.J.[Zhi-Jun],
Automatic Recognition of Traffic Signs in Natural Scene Image Based on
Central Projection Transformation,
ISPRS08(B3b: 627 ff).
PDF File.
0807
BibRef
Cavegn, S.[Stefan],
Nebiker, S.[Stephan],
Automated 3D Road Sign Mapping with Stereovision-based Mobile Mapping
exploiting Depth Information from Dense Stereo Matching,
PFG(2012), No. 5, 2012, pp. 631-645.
WWW Link.
1211
BibRef
Earlier:
Automated 3d Road Sign Mapping With Stereovision-based Mobile Mapping
Exploiting Disparity Information From Dense Stereo Matching,
ISPRS12(XXXIX-B4:61-66).
DOI Link
1209
BibRef
Nebiker, S.,
Cavegn, S.,
Eugster, H.,
Laemmer, K.,
Markram, J.,
Wagner, R.,
Fusion of Airborne and Terrestrial Image-based 3D Modelling for Road
Infrastructure Management: Vision and First Experiments,
ISPRS12(XXXIX-B4:79-84).
DOI Link
1209
BibRef
Lu, K.,
Ding, Z.,
Ge, S.,
Sparse-Representation-Based Graph Embedding for Traffic Sign
Recognition,
ITS(13), No. 4, December 2012, pp. 1515-1524.
IEEE DOI
1212
BibRef
Zaklouta, F.,
Stanciulescu, B.,
Real-Time Traffic-Sign Recognition Using Tree Classifiers,
ITS(13), No. 4, December 2012, pp. 1507-1514.
IEEE DOI
1212
BibRef
Greenhalgh, J.,
Mirmehdi, M.,
Real-Time Detection and Recognition of Road Traffic Signs,
ITS(13), No. 4, December 2012, pp. 1498-1506.
IEEE DOI
1212
BibRef
Greenhalgh, J.,
Mirmehdi, M.,
Recognizing Text-Based Traffic Signs,
ITS(16), No. 3, June 2015, pp. 1360-1369.
IEEE DOI
1506
Cameras
BibRef
Mogelmose, A.,
Trivedi, M.M.,
Moeslund, T.B.,
Vision-Based Traffic Sign Detection and Analysis for Intelligent Driver
Assistance Systems: Perspectives and Survey,
ITS(13), No. 4, December 2012, pp. 1484-1497.
IEEE DOI
1212
BibRef
Philipsen, M.P.,
Jensen, M.B.,
Trivedi, M.M.,
Mogelmose, A.[Andreas],
Moeslund, T.B.[Thomas B.],
Ongoing work on traffic lights: Detection and evaluation,
AVSS15(1-6)
IEEE DOI
1511
image sensors
BibRef
Mogelmose, A.[Andreas],
Trivedi, M.M.[Mohan M.],
Moeslund, T.B.[Thomas B.],
Learning to detect traffic signs: Comparative evaluation of synthetic
and real-world datasets,
ICPR12(3452-3455).
WWW Link.
1302
BibRef
Stallkamp, J.,
Schlipsing, M.,
Salmen, J.,
Igel, C.,
Introduction to the Special Issue on Machine Learning for Traffic Sign
Recognition,
ITS(13), No. 4, December 2012, pp. 1481-1483.
IEEE DOI
1212
BibRef
Pei, D.L.[De-Li],
Sun, F.C.[Fu-Chun],
Liu, H.P.[Hua-Ping],
Supervised Low-Rank Matrix Recovery for Traffic Sign Recognition in
Image Sequences,
SPLetters(20), No. 3, March 2013, pp. 241-244.
IEEE DOI
1303
BibRef
Soheilian, B.[Bahman],
Paparoditis, N.[Nicolas],
Vallet, B.[Bruno],
Detection and 3D reconstruction of traffic signs from multiple view
color images,
PandRS(77), No. 1, March 2013, pp. 1-20.
Elsevier DOI
1303
Traffic sign; Color segmentation; Geometric shape estimation; Template
matching; Constrained multi-view reconstruction
BibRef
Yan, W.Y.[Wai Yeung],
Shaker, A.,
Easa, S.,
Potential Accuracy of Traffic Signs' Positions Extracted
From Google Street View,
ITS(14), No. 2, 2013, pp. 1011-1016.
IEEE DOI
1307
traffic engineering computing; ground control points;
traffic sign position
BibRef
Munoz-Organero, M.,
Magana, V.C.,
Validating the Impact on Reducing Fuel Consumption by Using an
EcoDriving Assistant Based on Traffic Sign Detection and
Optimal Deceleration Patterns,
ITS(14), No. 2, 2013, pp. 1023-1028.
IEEE DOI
1307
Fuel optimal control
BibRef
Boumediene, M.[Mohammed],
Cudel, C.[Christophe],
Basset, M.[Michel],
Ouamri, A.[Abdelaziz],
Triangular traffic signs detection based on RSLD algorithm,
MVA(24), No. 8, November 2013, pp. 1721-1732.
Springer DOI
1310
BibRef
Zhang, Q.S.[Qie-Shi],
Kamata, S.I.[Sei-Ichiro],
Improved Color Barycenter Model and Its Separation for Road Sign
Detection,
IEICE(E96-D), No. 12, December 2013, pp. 2839-2849.
WWW Link.
1312
BibRef
Earlier:
Automatic road sign detection method based on Color Barycenters Hexagon
model,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Souani, C.[Chokri],
Faiedh, H.[Hassene],
Besbes, K.[Kamel],
Efficient algorithm for automatic road sign recognition and its
hardware implementation,
RealTimeIP(9), No. 1, March 2014, pp. 79-93.
WWW Link.
1403
BibRef
Timofte, R.[Radu],
Zimmermann, K.[Karel],
Van Gool, L.J.[Luc J.],
Multi-view traffic sign detection, recognition, and 3D localisation,
MVA(25), No. 3, April 2014, pp. 633-647.
WWW Link.
1404
BibRef
Earlier:
WACV09(1-8).
IEEE DOI
0912
BibRef
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
Multi-view manhole detection, recognition, and 3D localisation,
CVRSE11(188-195).
IEEE DOI
1201
BibRef
egvic, S.[Sinia],
Brkic, K.[Karla],
Kalafatic, Z.[Zoran],
Pinz, A.[Axel],
Exploiting temporal and spatial constraints in traffic sign detection
from a moving vehicle,
MVA(25), No. 3, April 2014, pp. 649-665.
WWW Link.
1404
BibRef
Brkic, K.[Karla],
Pinz, A.[Axel],
Kalafatic, Z.[Zoran],
egvic, S.[Sinia],
Towards Space-Time Semantics in Two Frames,
ARTEMIS12(III: 121-130).
Springer DOI
1210
BibRef
Brkic, K.[Karla],
Pinz, A.[Axel],
egvic, S.[Sinia],
Kalafatic, Z.[Zoran],
Histogram-Based Description of Local Space-Time Appearance,
SCIA11(206-217).
Springer DOI
1105
BibRef
Brkic, K.,
Segvic, S.,
Kalafatic, Z.,
Sikiric, I.,
Pinz, A.,
Generative modeling of spatio-temporal traffic sign trajectories,
UCVP10(25-31).
IEEE DOI
1006
BibRef
Overett, G.[Gary],
Tychsen-Smith, L.[Lachlan],
Petersson, L.[Lars],
Pettersson, N.[Niklas],
Andersson, L.[Lars],
Creating robust high-throughput traffic sign detectors using
centre-surround HOG statistics,
MVA(25), No. 3, April 2014, pp. 713-726.
Springer DOI
1404
BibRef
Wang, G.Y.[Gang-Yi],
Ren, G.H.[Guang-Hui],
Jiang, L.H.[Li-Hui],
Quan, T.F.[Tai-Fan],
Hole-based traffic sign detection method for traffic signs with red rim,
VC(30), No. 5, May 2014, pp. 539-551.
WWW Link.
1404
BibRef
Hazelhoff, L.[Lykele],
Creusen, I.M.[Ivo M.],
de With, P.H.N.[Peter H.N.],
Exploiting street-level panoramic images for large-scale automated
surveying of traffic signs,
MVA(25), No. 7, October 2014, pp. 1893-1911.
WWW Link.
1410
BibRef
Earlier:
System for semi-automated surveying of street-lighting poles from
street-level panoramic images,
WACV14(129-136)
IEEE DOI
1406
Detectors
BibRef
Xu, D.[Dan],
Xu, W.[Wei],
Tang, Z.M.[Zhen-Min],
Liu, F.[Fan],
Exploiting Visual Saliency and Bag-of-Words for Road Sign Recognition,
IEICE(E97-D), No. 9, September 2014, pp. 2473-2482.
WWW Link.
1410
BibRef
Yuan, X.[Xue],
Hao, X.L.[Xiao-Li],
Chen, H.J.[Hou-Jin],
Wei, X.[Xueye],
Robust Traffic Sign Recognition Based on Color Global and Local
Oriented Edge Magnitude Patterns,
ITS(15), No. 4, August 2014, pp. 1466-1477.
IEEE DOI
1410
affine transforms
BibRef
Yuan, X.[Xue],
Guo, J.,
Hao, X.L.[Xiao-Li],
Chen, H.J.[Hou-Jin],
Traffic Sign Detection via Graph-Based Ranking and Segmentation
Algorithms,
SMCS(45), No. 12, December 2015, pp. 1509-1521.
IEEE DOI
1512
Image color analysis
BibRef
Lee, D.J.[Dong-Jin],
Yoon, H.[Hosub],
Chung, M.A.[Myung-Ae],
Kim, J.[Jaehong],
Robust Sign Recognition System at Subway Stations
Using Verification Knowledge,
ERRI(36), No. 5, October 2014, pp. 696-703.
DOI Link
1410
For pedestrians in subway stations.
BibRef
Jin, J.Q.[Jun-Qi],
Fu, K.[Kun],
Zhang, C.S.[Chang-Shui],
Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural
Networks,
ITS(15), No. 5, October 2014, pp. 1991-2000.
IEEE DOI
1410
gradient methods
BibRef
Liu, C.S.[Chun-Sheng],
Chang, F.L.[Fa-Liang],
Chen, Z.X.[Zhen-Xue],
Rapid Multiclass Traffic Sign Detection in High-Resolution Images,
ITS(15), No. 6, December 2014, pp. 2394-2403.
IEEE DOI
1412
image colour analysis
BibRef
Boumediene, M.,
Lauffenburger, J.P.,
Daniel, J.,
Cudel, C.,
Ouamri, A.,
Multi-ROI Association and Tracking With Belief Functions:
Application to Traffic Sign Recognition,
ITS(15), No. 6, December 2014, pp. 2470-2479.
IEEE DOI
1412
Kalman filters
BibRef
Salti, S.[Samuele],
Petrelli, A.[Alioscia],
Tombari, F.[Federico],
Fioraio, N.[Nicola],
di Stefano, L.[Luigi],
Traffic sign detection via interest region extraction,
PR(48), No. 4, 2015, pp. 1039-1049.
Elsevier DOI
1502
Mobile mapping
BibRef
Mogelmose, A.,
Liu, D.,
Trivedi, M.M.,
Detection of U.S. Traffic Signs,
ITS(16), No. 6, December 2015, pp. 3116-3125.
IEEE DOI
1512
Advanced driver assistance systems
BibRef
Wen, C.,
Li, J.,
Luo, H.,
Yu, Y.,
Cai, Z.,
Wang, H.,
Wang, C.,
Spatial-Related Traffic Sign Inspection for Inventory Purposes Using
Mobile Laser Scanning Data,
ITS(17), No. 1, January 2016, pp. 27-37.
IEEE DOI
1601
Feature extraction
BibRef
You, C.,
Wen, C.,
Wang, C.,
Li, J.,
Habib, A.,
Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization
Using Mobile Laser Scanning Data,
ITS(20), No. 7, July 2019, pp. 2550-2565.
IEEE DOI
1907
Semantics, Trajectory,
Machine learning, Shape, Autonomous vehicles, Estimation,
geo-localization
BibRef
Liu, C.,
Chang, F.,
Chen, Z.,
Liu, D.,
Fast Traffic Sign Recognition via High-Contrast Region Extraction and
Extended Sparse Representation,
ITS(17), No. 1, January 2016, pp. 79-92.
IEEE DOI
1601
Accuracy
BibRef
Yu, Y.T.[Yong-Tao],
Li, J.[Jonathan],
Wen, C.L.[Cheng-Lu],
Guan, H.Y.[Hai-Yan],
Luo, H.[Huan],
Wang, C.[Cheng],
Bag-of-visual-phrases and hierarchical deep models for traffic sign
detection and recognition in mobile laser scanning data,
PandRS(113), No. 1, 2016, pp. 106-123.
Elsevier DOI
1602
Bag-of-visual-phrases
BibRef
Huang, P.D.[Peng-Di],
Cheng, M.[Ming],
Chen, Y.P.[Yi-Ping],
Luo, H.[Huan],
Wang, C.[Cheng],
Li, J.[Jonathan],
Traffic Sign Occlusion Detection Using Mobile Laser Scanning Point
Clouds,
ITS(18), No. 9, September 2017, pp. 2364-2376.
IEEE DOI
1709
object detection, optical scanners, road traffic,
stereo image processing, traffic engineering computing,
3D point clouds, RIEGL VMX-450 system,
See also Marked Point Process for Automated Tree Detection from Mobile Laser Scanning Point Cloud Data, A.
See also Automated Detection of Three-Dimensional Cars in Mobile Laser Scanning Point Clouds Using DBM-Hough-Forests.
BibRef
Guan, H.Y.[Hai-Yan],
Yu, Y.T.[Yong-Tao],
Li, D.L.[Di-Long],
Li, J.[Jonathan],
Automatic Traffic Sign Detection and Recognition Using Mobile Lidar
Data with Digital Images,
ISPRS20(B3:599-603).
DOI Link
2012
BibRef
Soilán, M.[Mario],
Riveiro, B.[Belén],
Martínez-Sánchez, J.[Joaquín],
Arias, P.[Pedro],
Traffic sign detection in MLS acquired point clouds for geometric and
image-based semantic inventory,
PandRS(114), No. 1, 2016, pp. 92-101.
Elsevier DOI
1604
Mobile mapping
BibRef
Tan, M.,
Wang, B.,
Wu, Z.,
Wang, J.,
Pan, G.,
Weakly Supervised Metric Learning for Traffic Sign Recognition in a
LIDAR-Equipped Vehicle,
ITS(17), No. 5, May 2016, pp. 1415-1427.
IEEE DOI
1605
Image recognition
BibRef
Liu, C.,
Chang, F.,
Liu, C.,
Occlusion-robust traffic sign detection via cascaded colour cubic
feature,
IET-ITS(10), No. 5, 2016, pp. 354-360.
DOI Link
1608
computer vision
BibRef
Hu, Z.,
Li, N.,
Vision-based position computation from in-vehicle video log images
for road sign inventory,
IET-ITS(10), No. 6, 2016, pp. 414-420.
DOI Link
1608
approximation theory
BibRef
Yang, Y.,
Luo, H.,
Xu, H.,
Wu, F.,
Towards Real-Time Traffic Sign Detection and Classification,
ITS(17), No. 7, July 2016, pp. 2022-2031.
IEEE DOI
1608
feature extraction
BibRef
Hou, Y.L.,
Hao, X.,
Chen, H.,
A Cognitively Motivated Method for Classification of Occluded Traffic
Signs,
SMCS(47), No. 2, February 2017, pp. 255-262.
IEEE DOI
1702
cognition
BibRef
Huang, Z.,
Yu, Y.,
Gu, J.,
Liu, H.,
An Efficient Method for Traffic Sign Recognition Based on Extreme
Learning Machine,
Cyber(47), No. 4, April 2017, pp. 920-933.
IEEE DOI
1704
Computational efficiency
BibRef
Lu, X.,
Wang, Y.,
Zhou, X.,
Zhang, Z.,
Ling, Z.,
Traffic Sign Recognition via Multi-Modal Tree-Structure Embedded
Multi-Task Learning,
ITS(18), No. 4, April 2017, pp. 960-972.
IEEE DOI
1704
Benchmark testing
BibRef
Aghdam, H.H.[Hamed Habibi],
Heravi, E.J.[Elnaz Jahani],
Puig, D.[Domenec],
A Practical and Highly Optimized Convolutional Neural Network for
Classifying Traffic Signs in Real-Time,
IJCV(122), No. 2, April 2017, pp. 246-269.
Springer DOI
1704
BibRef
Earlier:
Fusing Convolutional Neural Networks with a Restoration Network for
Increasing Accuracy and Stability,
CVRoads16(I: 178-191).
Springer DOI
1611
BibRef
Zeng, Y.,
Xu, X.,
Shen, D.,
Fang, Y.,
Xiao, Z.,
Traffic Sign Recognition Using Kernel Extreme Learning Machines With
Deep Perceptual Features,
ITS(18), No. 6, June 2017, pp. 1647-1653.
IEEE DOI
1706
Color, Computational efficiency, Feature extraction,
Image color analysis, Kernel, Neural networks, Training,
Traffic sign recognition, color space,
convolutional neural network, extreme learning machine, kernel, lab
Comments:
See also Comments on Traffic Sign Recognition Using Kernel Extreme Learning Machines With Deep Perceptual Features.
BibRef
Zeng, Y.,
Reply to 'Comments on Traffic Sign Recognition Using Kernel Extreme
Learning Machines With Deep Perceptual Features',
ITS(20), No. 10, October 2019, pp. 3762-3764.
IEEE DOI
1910
Kernel, Training, Complexity theory, Computational efficiency,
Computational modeling, Convolutional neural networks,
deep learning
BibRef
Jain, S.,
Singhal, M.,
Shukla, S.,
Comments on 'Traffic Sign Recognition Using Kernel Extreme Learning
Machines With Deep Perceptual Features',
ITS(20), No. 10, October 2019, pp. 3759-3761.
IEEE DOI
1910
Mathematical model, Kernel, Training, Computational modeling,
Computational complexity, Feature extraction,
kernel matrix
See also Traffic Sign Recognition Using Kernel Extreme Learning Machines With Deep Perceptual Features.
See also Reply to Comments on Traffic Sign Recognition Using Kernel Extreme Learning Machines With Deep Perceptual Features.
BibRef
Yuan, Y.,
Xiong, Z.,
Wang, Q.,
An Incremental Framework for Video-Based Traffic Sign Detection,
Tracking, and Recognition,
ITS(18), No. 7, July 2017, pp. 1918-1929.
IEEE DOI
1706
Color, Detectors, Image color analysis, Machine learning, Shape,
Target tracking, ITS, Machine learning, detection,
incremental learning, recognition, tracking, traffic, sign
BibRef
Yuan, Y.,
Xiong, Z.,
Wang, Q.,
VSSA-NET: Vertical Spatial Sequence Attention Network for Traffic
Sign Detection,
IP(28), No. 7, July 2019, pp. 3423-3434.
IEEE DOI
1906
feature extraction, image classification,
learning (artificial intelligence), object detection,
sequence attention model
BibRef
Rehman, Y.[Yawar],
Riaz, I.[Irfan],
Fan, X.[Xue],
Shin, H.[Hyunchul],
D-patches: effective traffic sign detection with occlusion handling,
IET-CV(11), No. 5, August 2017, pp. 368-377.
DOI Link
1707
Type: Article
BibRef
Gudigar, A.[Anjan],
Chokkadi, S.[Shreesha],
Raghavendra, U.,
Acharya, U.R.[U. Rajendra],
Local texture patterns for traffic sign recognition using higher
order spectra,
PRL(94), No. 1, 2017, pp. 202-210.
Elsevier DOI
1708
Entropy
BibRef
Saadna, Y.[Yassmina],
Behloul, A.[Ali],
An overview of traffic sign detection and classification methods,
MultInfoRetr(6), No. 3, September 2017, pp. 193-210.
Springer DOI
1708
Survey, Traffic Signs.
BibRef
Tsai, C.Y.[Chi-Yi],
Liao, H.C.[Hsien-Chen],
Hsu, K.J.[Kuang-Jui],
Real-time embedded implementation of robust speed-limit sign
recognition using a novel centroid-to-contour description method,
IET-CV(11), No. 6, September 2017, pp. 407-414.
DOI Link
1709
BibRef
Zhu, Z.,
Lu, J.,
Martin, R.R.,
Hu, S.,
An Optimization Approach for Localization Refinement of Candidate
Traffic Signs,
ITS(18), No. 11, November 2017, pp. 3006-3016.
IEEE DOI
1711
Benchmark testing, Detectors, Feature extraction,
Image color analysis, Image segmentation, Shape, Standards,
Traffic sign localization, graph cut, optimization
BibRef
Wang, D.,
Hou, X.,
Xu, J.,
Yue, S.,
Liu, C.L.,
Traffic Sign Detection Using a Cascade Method With Fast Feature
Extraction and Saliency Test,
ITS(18), No. 12, December 2017, pp. 3290-3302.
IEEE DOI
1712
Color, Detectors, Feature extraction, Image color analysis, Shape,
Support vector machines, Traffic sign detection, cascade system,
saliency test
BibRef
Zhu, Y.,
Liao, M.,
Yang, M.,
Liu, W.,
Cascaded Segmentation-Detection Networks for Text-Based Traffic Sign
Detection,
ITS(19), No. 1, January 2018, pp. 209-219.
IEEE DOI
1801
Assistive technology, Character recognition, Detectors,
Machine learning, Text recognition, Text detection,
textboxes
BibRef
Zhang, J.,
Hui, L.,
Lu, J.,
Zhu, Y.,
Attention-based Neural Network for Traffic Sign Detection,
ICPR18(1839-1844)
IEEE DOI
1812
Object detection, Feature extraction, Task analysis, Training,
Adaptation models, Convolutional neural networks
BibRef
Temel, D.,
Al Regib, G.,
Traffic Signs in the Wild: Highlights from the IEEE Video and Image
Processing Cup 2017 Student Competition,
SPMag(35), No. 2, March 2018, pp. 154-161.
IEEE DOI
1804
[SP Competitions]
BibRef
Luo, H.,
Yang, Y.,
Tong, B.,
Wu, F.,
Fan, B.,
Traffic Sign Recognition Using a Multi-Task Convolutional Neural
Network,
ITS(19), No. 4, April 2018, pp. 1100-1111.
IEEE DOI
1804
Cameras, Computational efficiency, Feature extraction,
Image color analysis, Image recognition, Neural networks,
traffic sign classification
BibRef
Dai, H.M.[Hui-Ming],
Zhang, X.[Xin],
Yang, D.C.[Da-Cheng],
Road traffic sign recognition algorithm based on computer vision,
IJCVR(8), No. 1, 2018, pp. 85-93.
DOI Link
1804
BibRef
Lee, H.S.,
Kim, K.,
Simultaneous Traffic Sign Detection and Boundary Estimation Using
Convolutional Neural Network,
ITS(19), No. 5, May 2018, pp. 1652-1663.
IEEE DOI
1805
Estimation, Feature extraction, Image color analysis,
Object detection, Robustness, Shape, traffic sign boundary estimation
BibRef
Li, F.S.[Fa-Shuai],
Oude Elberink, S.[Sander],
Vosselman, G.[George],
Pole-Like Road Furniture Detection and Decomposition in Mobile Laser
Scanning Data Based on Spatial Relations,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Oude Elberink, S.[Sander],
Khoshelham, K.[Kourosh],
Automatic Extraction of Railroad Centerlines from Mobile Laser
Scanning Data,
RS(7), No. 5, 2015, pp. 5565-5583.
DOI Link
1506
BibRef
Li, F.[Fashuai],
Lehtomäki, M.[Matti],
Oude Elberink, S.[Sander],
Vosselman, G.[George],
Kukko, A.[Antero],
Puttonen, E.[Eetu],
Chen, Y.W.[Yu-Wei],
Hyyppä, J.[Juha],
Semantic segmentation of road furniture in mobile laser scanning data,
PandRS(154), 2019, pp. 98-113.
Elsevier DOI
1907
Pole-like road furniture, Interpretation, Decomposition,
Machine learning classifiers, Mobile laser scanning
BibRef
Li, F.[Fashuai],
Zhou, Z.[Zhize],
Xiao, J.H.[Jian-Hua],
Chen, R.Z.[Rui-Zhi],
Lehtomäki, M.[Matti],
Oude Elberink, S.[Sander],
Vosselman, G.[George],
Hyyppä, J.[Juha],
Chen, Y.W.[Yu-Wei],
Kukko, A.[Antero],
Instance-Aware Semantic Segmentation of Road Furniture in Mobile
Laser Scanning Data,
ITS(23), No. 10, October 2022, pp. 17516-17529.
IEEE DOI
2210
Roads, Point cloud compression, Semantics, Machine learning,
Feature extraction, Shape,
pole-like road furniture
BibRef
Maanpää, J.[Jyri],
Melekhov, I.[Iaroslav],
Taher, J.[Josef],
Manninen, P.[Petri],
Hyyppä, J.[Juha],
Leveraging Road Area Semantic Segmentation with Auxiliary Steering Task,
CIAP22(I:727-738).
Springer DOI
2205
BibRef
Hmida, R.[Rihab],
Ben Abdelali, A.[Abdessalem],
Mtibaa, A.[Abdellatif],
Hardware implementation and validation of a traffic road sign detection
and identification system,
RealTimeIP(15), No. 1, June 2018, pp. 13-30.
Springer DOI
1806
BibRef
Natarajan, S.[Sudha],
Annamraju, A.K.[Abhishek Kumar],
Baradkar, C.S.[Chaitree Sham],
Traffic sign recognition using weighted multi-convolutional neural
network,
IET-ITS(12), No. 10, December 2018, pp. 1396-1405.
DOI Link
1812
BibRef
Rehman, Y.[Yawar],
Khan, J.A.[Jameel Ahmed],
Shin, H.[Hyunchul],
Efficient coarser-to-fine holistic traffic sign detection for occlusion
handling,
IET-IPR(12), No. 12, December 2018, pp. 2229-2237.
DOI Link
1812
BibRef
Khalid, S.[Sara],
Muhammad, N.[Nazeer],
Sharif, M.[Muhammad],
Automatic measurement of the traffic sign with digital segmentation and
recognition,
IET-ITS(13), No. 2, February 2019, pp. 269-279.
DOI Link
1902
BibRef
Li, Y.[You],
Wang, W.X.[Wei-Xi],
Tang, S.J.[Sheng-Jun],
Li, D.L.[Da-Lin],
Wang, Y.K.[Yan-Kun],
Yuan, Z.L.[Zhi-Lu],
Guo, R.Z.[Ren-Zhong],
Li, X.M.[Xiao-Ming],
Xiu, W.Q.[Wen-Qun],
Localization and Extraction of Road Poles in Urban Areas from Mobile
Laser Scanning Data,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Li, J.,
Wang, Z.,
Real-Time Traffic Sign Recognition Based on Efficient CNNs in the
Wild,
ITS(20), No. 3, March 2019, pp. 975-984.
IEEE DOI
1903
Task analysis, Image color analysis, Databases, Shape, Detectors,
Real-time systems, Proposals, Traffic sign recognition,
efficient CNN
BibRef
Guo, D.,
Zhu, L.,
Lu, Y.,
Yu, H.,
Wang, S.,
Small Object Sensitive Segmentation of Urban Street Scene With
Spatial Adjacency Between Object Classes,
IP(28), No. 6, June 2019, pp. 2643-2653.
IEEE DOI
1905
image classification, image segmentation,
learning (artificial intelligence), object detection,
urban street scene
BibRef
Javanmardi, M.[Mohammadreza],
Song, Z.Q.[Zi-Qi],
Qi, X.J.[Xiao-Jun],
Automated traffic sign and light pole detection in mobile LiDAR
scanning data,
IET-ITS(13), No. 5, May 2019, pp. 803-815.
DOI Link
1906
BibRef
Luo, X.P.[Xiao-Ping],
Zhu, J.H.[Jin-Hao],
Yu, Q.Y.[Qing-Ying],
Efficient convNets for fast traffic sign recognition,
IET-ITS(13), No. 6, June 2019, pp. 1011-1015.
DOI Link
1906
BibRef
Zhang, S.X.[Shan-Xin],
Wang, C.[Cheng],
Lin, L.[Lili],
Wen, C.L.[Cheng-Lu],
Yang, C.H.[Chen-Hui],
Zhang, Z.[Zhemin],
Li, J.[Jonathan],
Automated Visual Recognizability Evaluation of Traffic Sign Based on
3D LiDAR Point Clouds,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Zhang, S.X.[Shan-Xin],
Wang, C.[Cheng],
Cheng, M.,
Li, J.[Jonathan],
Automated Visibility Field Evaluation of Traffic Sign Based On 3d Lidar
Point Clouds,
Laser19(1185-1190).
DOI Link
1912
BibRef
Li, C.,
Chen, Z.,
Wu, Q.M.J.,
Liu, C.,
Deep Saliency With Channel-Wise Hierarchical Feature Responses for
Traffic Sign Detection,
ITS(20), No. 7, July 2019, pp. 2497-2509.
IEEE DOI
1907
Feature extraction, Visualization, Image color analysis,
Convolutional neural networks, Saliency detection, Kernel, Shape,
traffic sign detection
BibRef
Zhang, Y.,
Yang, J.,
Zhang, H.,
Hwang, J.,
Bundle Adjustment for Monocular Visual Odometry Based on Detected
Traffic Sign Features,
ICIP19(4350-4354)
IEEE DOI
1910
traffic sign, bundle adjustment, visual odometry, pose estimation, optimization
BibRef
Farhat, W.[Wajdi],
Faiedh, H.[Hassene],
Souani, C.[Chokri],
Besbes, K.[Kamel],
Real-time embedded system for traffic sign recognition based on
ZedBoard,
RealTimeIP(16), No. 5, October 2019, pp. 1813-1823.
Springer DOI
1911
BibRef
Cui, Z.C.[Zhi-Chao],
Liu, Y.H.[Yue-Hu],
Ren, F.[Fuji],
Homography-based traffic sign localisation and pose estimation from
image sequence,
IET-IPR(13), No. 14, 12 December 2019, pp. 2829-2839.
DOI Link
1912
BibRef
Ellahyani, A.[Ayoub],
El Ansari, M.[Mohamed],
Lahmyed, R.[Redouan],
Tremeau, A.[Alain],
Traffic sign recognition method for intelligent vehicles,
JOSA-A(35), No. 11, November 2018, pp. 1907-1914.
DOI Link
1912
Feature extraction, Neural networks,
Stochastic gradient descent, Stochastic processes, Visibility, Wavelets
BibRef
Li, Y.[You],
Wang, W.[Weixi],
Li, X.M.[Xiao-Ming],
Xie, L.F.[Lin-Fu],
Wang, Y.K.[Yan-Kun],
Guo, R.Z.[Ren-Zhong],
Xiu, W.Q.[Wen-Qun],
Tang, S.J.[Sheng-Jun],
Pole-Like Street Furniture Segmentation and Classification in Mobile
LiDAR Data by Integrating Multiple Shape-Descriptor Constraints,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Tian, Y.[Yan],
Gelernter, J.[Judith],
Wang, X.[Xun],
Li, J.Y.[Jian-Yuan],
Yu, Y.Z.[Yi-Zhou],
Traffic Sign Detection Using a Multi-Scale Recurrent Attention
Network,
ITS(20), No. 12, December 2019, pp. 4466-4475.
IEEE DOI
2001
Feature extraction, Convolution, Object detection, Task analysis,
Image color analysis, Image edge detection,
deep learning
BibRef
Balado, J.[Jesús],
González, E.[Elena],
Arias, P.[Pedro],
Castro, D.[David],
Novel Approach to Automatic Traffic Sign Inventory Based on Mobile
Mapping System Data and Deep Learning,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Kamal, U.,
Tonmoy, T.I.,
Das, S.,
Hasan, M.K.,
Automatic Traffic Sign Detection and Recognition Using SegU-Net and a
Modified Tversky Loss Function With L1-Constraint,
ITS(21), No. 4, April 2020, pp. 1467-1479.
IEEE DOI
2004
Image segmentation, Image color analysis, Task analysis, Training,
Benchmark testing, Shape, Deep learning, Traffic sign detection,
L1 constraint
BibRef
Tabernik, D.,
Skocaj, D.,
Deep Learning for Large-Scale Traffic-Sign Detection and Recognition,
ITS(21), No. 4, April 2020, pp. 1427-1440.
IEEE DOI
2004
Deep learning, Benchmark testing, Task analysis, Proposals,
Detectors, Manuals, Inventory management, Deep learning,
traffic-sign inventory management
BibRef
Hechri, A.[Ahmed],
Mtibaa, A.[Abdellatif],
Two-stage traffic sign detection and recognition based on SVM and
convolutional neural networks,
IET-IPR(14), No. 5, 17 April 2020, pp. 939-946.
DOI Link
2004
BibRef
He, Z.L.[Zhen-Li],
Nan, F.T.[Feng-Tao],
Li, X.F.[Xin-Fa],
Lee, S.J.[Shin-Jye],
Yang, Y.[Yun],
Traffic sign recognition by combining global and local features based
on semi-supervised classification,
IET-ITS(14), No. 5, May 2020, pp. 323-330.
DOI Link
2005
BibRef
Zhou, S.C.[Shi-Chao],
Deng, C.W.[Chen-Wei],
Piao, Z.Q.[Zheng-Quan],
Zhao, B.J.[Bao-Jun],
Few-shot traffic sign recognition with clustering inductive bias and
random neural network,
PR(100), 2020, pp. 107160.
Elsevier DOI
2005
Traffic sign recognition, Few-shot learning, Clustering, Randomization,
BibRef
Wang, H.F.[Hua-Feng],
Yuan, R.S.[Ri-Sheng],
Pan, H.X.[Hai-Xia],
Liu, W.Q.[Wan-Quan],
Xing, Z.Q.[Zhi-Qiang],
Huang, J.[Jian],
Speed sign recognition in complex scenarios based on deep cascade
networks,
IET-ITS(14), No. 6, June 2020, pp. 628-636.
DOI Link
2005
BibRef
Temel, D.,
Chen, M.,
AlRegib, G.,
Traffic Sign Detection Under Challenging Conditions: A Deeper Look
into Performance Variations and Spectral Characteristics,
ITS(21), No. 9, September 2020, pp. 3663-3673.
IEEE DOI
2008
Video sequences, Lenses, Image color analysis,
Detection algorithms, Cameras,
machine learning
BibRef
Gámez Serna, C.,
Ruichek, Y.[Yassine],
Traffic Signs Detection and Classification for European Urban
Environments,
ITS(21), No. 10, October 2020, pp. 4388-4399.
IEEE DOI
2010
Image color analysis, Shape, Benchmark testing, Feature extraction,
Task analysis, Roads, Europe, Convolutional neural networks,
traffic signs in urban environments
BibRef
Du, L.[Luyao],
Ji, J.[Jun],
Pei, Z.H.[Zhong-Hui],
Zheng, H.J.[Hong-Jiang],
Fu, S.Z.[Shuai-Zhi],
Kong, H.Y.[Hai-Yang],
Chen, W.[Wei],
Improved detection method for traffic signs in real scenes applied in
intelligent and connected vehicles,
IET-ITS(14), No. 12, December 2020, pp. 1555-1564.
DOI Link
2011
BibRef
Liu, Z.W.[Zhan-Wen],
Shen, C.[Chao],
Fan, X.[Xing],
Zeng, G.[Gaowen],
Zhao, X.M.[Xiang-Mo],
Scale-aware limited deformable convolutional neural networks for
traffic sign detection and classification,
IET-ITS(14), No. 12, December 2020, pp. 1712-1722.
DOI Link
2011
BibRef
Lei, Y.J.[Yin-Jie],
Peng, D.[Duo],
Zhang, P.P.[Ping-Ping],
Ke, Q.U.[Qi-Uhong],
Li, H.F.[Hai-Feng],
Hierarchical Paired Channel Fusion Network for Street Scene Change
Detection,
IP(30), 2021, pp. 55-67.
IEEE DOI
2011
Feature extraction, Task analysis, Fuses, Semantics,
Convolutional neural networks, Visualization, Surveillance,
reverse spatial attention
BibRef
Liu, H.[Hui],
Lin, C.[Ciyun],
Wu, D.[Dayong],
Gong, B.[Bowen],
Slice-Based Instance and Semantic Segmentation for Low-Channel
Roadside LiDAR Data,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Orellana, F.[Felipe],
Blasco, J.M.D.[Jose Manuel Delgado],
Foumelis, M.[Michael],
d'Aranno, P.J.V.[Peppe J.V.],
Marsella, M.A.[Maria A.],
di Mascio, P.[Paola],
DInSAR for Road Infrastructure Monitoring: Case Study Highway Network
of Rome Metropolitan (Italy),
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Almutairy, F.,
Alshaabi, T.,
Nelson, J.,
Wshah, S.,
ARTS: Automotive Repository of Traffic Signs for the United States,
ITS(22), No. 1, January 2021, pp. 457-465.
IEEE DOI
2012
Europe, Roads, Automotive engineering, Object detection,
Subspace constraints, Deep learning, Advanced driver-assistance,
object detection
BibRef
Tu, J.,
Yao, J.,
Li, L.,
Zhao, W.,
Xiang, B.,
Extraction of Street Pole-Like Objects Based on Plane Filtering From
Mobile LiDAR Data,
GeoRS(59), No. 1, January 2021, pp. 749-768.
IEEE DOI
2012
Feature extraction, Data mining, Roads,
Laser radar, Shape, Clustering algorithms, 3-D point cloud,
pole-like objects
BibRef
Yazdan, R.,
Varshosaz, M.,
Improving traffic sign recognition results in urban areas by
overcoming the impact of scale and rotation,
PandRS(171), 2021, pp. 18-35.
Elsevier DOI
2012
Sign recognition, Perspective effects, Traffic signs
BibRef
Huang, Y.,
Ma, P.,
Ji, Z.,
He, L.,
Part-Based Modeling of Pole-Like Objects Using
Divergence-Incorporated 3-D Clustering of Mobile Laser Scanning Point
Clouds,
GeoRS(59), No. 3, March 2021, pp. 2611-2626.
IEEE DOI
2103
Feature extraction, Shape, Urban areas,
Solid modeling, Vegetation, Data mining, Adaptive growing,
pole-like objects (PLOs)
BibRef
Mao, Z.[Zhu],
Zhang, F.[Fan],
Huang, X.F.[Xian-Feng],
Jia, X.Y.[Xiang-Yang],
Gong, Y.P.[Yi-Ping],
Zou, Q.[Qin],
Deep Neural Networks for Road Sign Detection and Embedded Modeling
Using Oblique Aerial Images,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Aslansefat, K.[Koorosh],
Kabir, S.[Sohag],
Abdullatif, A.[Amr],
Vasudevan, V.[Vinod],
Papadopoulos, Y.[Yiannis],
Toward Improving Confidence in Autonomous Vehicle Software: A Study
on Traffic Sign Recognition Systems,
Computer(54), No. 8, August 2021, pp. 66-76.
IEEE DOI
2108
Software, Safety, Software measurement, Autonomous vehicles
BibRef
Kong, G.[Gefei],
Fan, H.C.[Hong-Chao],
Enhanced Facade Parsing for Street-Level Images Using Convolutional
Neural Networks,
GeoRS(59), No. 12, December 2021, pp. 10519-10531.
IEEE DOI
2112
Grammar, Pipelines, Buildings, Image segmentation, Semantics, Shape,
Object detection, Data set, deep learning, façade parsing,
semantic segmentation
BibRef
Cortés, A.[Andoni],
Rodríguez, C.[Clemente],
Vélez, G.[Gorka],
Barandiarán, J.[Javier],
Nieto, M.[Marcos],
Analysis of Classifier Training on Synthetic Data for Cross-Domain
Datasets,
ITS(23), No. 1, January 2022, pp. 190-199.
IEEE DOI
2201
Training, Data models, Machine learning, Pipelines, Detectors,
Vehicles, Synthetic datasets, deep learning, traffic sign recognition
BibRef
Wang, Z.S.[Zheng-Shuai],
Wang, J.Q.[Jian-Qiang],
Li, Y.[Yali],
Wang, S.J.[Sheng-Jin],
Traffic Sign Recognition With Lightweight Two-Stage Model in Complex
Scenes,
ITS(23), No. 2, February 2022, pp. 1121-1131.
IEEE DOI
2202
Detectors, Task analysis, Feature extraction, Benchmark testing,
Color, Interference, Indexes, Intelligent transportation system,
refinement
BibRef
Akallouch, M.[Mohammed],
Boujemaa, K.S.[Kaoutar Sefrioui],
Bouhoute, A.[Afaf],
Fardousse, K.[Khalid],
Berrada, I.[Ismail],
ASAYAR: A Dataset for Arabic-Latin Scene Text Localization in Highway
Traffic Panels,
ITS(23), No. 4, April 2022, pp. 3026-3036.
IEEE DOI
2204
Artificial intelligence, Text recognition, Annotations, Roads,
Vehicles, Meteorology, Scene text extraction, Arabic script,
highway traffic signs
BibRef
Vaidya, B.[Bhaumik],
Paunwala, C.[Chirag],
Hardware Efficient Modified CNN Architecture for Traffic Sign Detection
and Recognition,
IJIG(22), No. 2, April 2022, pp. 2250017.
DOI Link
2205
BibRef
Bravi, L.[Luca],
Kubin, L.[Luca],
Caprasecca, S.[Stefano],
de Andrade, D.C.[Douglas Coimbra],
Simoncini, M.[Matteo],
Taccari, L.[Leonardo],
Sambo, F.[Francesco],
Detection of Stop Sign Violations From Dashcam Data,
ITS(23), No. 6, June 2022, pp. 5411-5420.
IEEE DOI
2206
Videos, Feature extraction, Global Positioning System, Detectors,
Pipelines, Vehicles, Benchmark testing, Stop sign violations, GPS
BibRef
Ahmed, S.[Sabbir],
Kamal, U.[Uday],
Hasan, M.K.[Md. Kamrul],
DFR-TSD: A Deep Learning Based Framework for Robust Traffic Sign
Detection Under Challenging Weather Conditions,
ITS(23), No. 6, June 2022, pp. 5150-5162.
IEEE DOI
2206
Training, Benchmark testing, Task analysis, Lenses,
Image color analysis, Videos, Rain, Traffic sign detection,
modular approach
BibRef
Yang, B.S.[Bi-Sheng],
Fang, L.[Lina],
Li, J.[Jonathan],
Semi-Automated Extraction and Delineation of 3D Roads of Street Scene
from Mobile Laser Scanning Point Clouds,
PandRS(79), No. 1, May 2013, pp. 80-93.
Elsevier DOI
1305
Mobile laser scanning; Curb detection; 3D road extraction; Scanning
lines; Moving windows filtering
See also Semiautomated Extraction of Street Light Poles From Mobile LiDAR Point-Clouds.
BibRef
Yang, B.S.[Bi-Sheng],
Dong, Z.[Zhen],
Liu, Y.[Yuan],
Liang, F.[Fuxun],
Wang, Y.J.[Yong-Jun],
Computing multiple aggregation levels and contextual features for
road facilities recognition using mobile laser scanning data,
PandRS(126), No. 1, 2017, pp. 180-194.
Elsevier DOI
1704
BibRef
Earlier:
Corrigendum:
PandRS(151), 2019, pp. 14.
Elsevier DOI
1904
Point clouds processing
BibRef
Zhou, Y.Z.[Yu-Zhou],
Han, X.[Xu],
Peng, M.J.[Ming-Jun],
Li, H.T.[Hai-Ting],
Yang, B.[Bo],
Dong, Z.[Zhen],
Yang, B.S.[Bi-Sheng],
Street-view imagery guided street furniture inventory from mobile
laser scanning point clouds,
PandRS(189), 2022, pp. 63-77.
Elsevier DOI
2206
Street-view imagery, Mobile laser scanning, Point clouds,
Street furniture, Instance segmentation, Neural network
BibRef
Saito, Y.[Yuichi],
Yoshimi, R.[Ryoma],
Kume, S.[Shinichi],
Shen, X.[Xun],
Yamasaki, A.[Akito],
Matsumi, R.[Ryosuke],
Ito, T.[Takuma],
Kinoshita, T.[Toshiki],
Inoue, S.[Shintaro],
Shimizu, T.[Tsukasa],
Nagai, M.[Masao],
Inoue, H.[Hideo],
Raksincharoensak, P.[Pongsathorn],
Effectiveness of a Driver Assistance System With Deceleration Control
and Brake Hold Functions in Stop Sign Intersection Scenarios,
ITS(23), No. 7, July 2022, pp. 8747-8758.
IEEE DOI
2207
Vehicles, Senior citizens, Brakes, Roads, Accidents, Task analysis,
Hazards, Safety, potential hazard, driver assistance system,
driver behavior
BibRef
Yao, Y.B.[Ying-Biao],
Han, L.[Li],
Du, C.J.[Chen-Jie],
Xu, X.[Xin],
Jiang, X.[Xianyang],
Traffic sign detection algorithm based on improved YOLOv4-Tiny,
SP:IC(107), 2022, pp. 116783.
Elsevier DOI
2208
Traffic sign detection, YOLOv4-tiny, Small object,
Adaptive feature pyramid network, Receptive field block
BibRef
Kherraki, A.[Amine],
Maqbool, M.[Muaz],
El Ouazzani, R.[Rajae],
Robust Traffic Signs Classification using Deep Convolutional Neural
Network,
ISCV22(1-6)
IEEE DOI
2208
Roads, Computational modeling, Neural networks,
Feature extraction, Real-time systems,
Belgium Traffic Sign Dataset.
BibRef
Bagi, R.[Randheer],
Dutta, T.[Tanima],
Nigam, N.[Nitika],
Verma, D.[Deepali],
Gupta, H.P.[Hari Prabhat],
Met-MLTS: Leveraging Smartphones for End-to-End Spotting of
Multilingual Oriented Scene Texts and Traffic Signs in Adverse
Meteorological Conditions,
ITS(23), No. 8, August 2022, pp. 12801-12810.
IEEE DOI
2208
Text recognition, Image edge detection, Semantics,
Feature extraction, Vehicles, Convolution, Roads, Text spotting,
noisy images
BibRef
Yu, J.[Jing],
Ye, X.J.[Xiao-Jun],
Tu, Q.[Qiang],
Traffic Sign Detection and Recognition in Multiimages Using a Fusion
Model With YOLO and VGG Network,
ITS(23), No. 9, September 2022, pp. 16632-16642.
IEEE DOI
2209
Image recognition, Feature extraction, Image color analysis, Shape,
Deep learning, Support vector machines, Roads,
VGG19
BibRef
Min, W.D.[Wei-Dong],
Liu, R.K.[Rui-Kang],
He, D.J.[Dao-Jing],
Han, Q.[Qing],
Wei, Q.T.[Qing-Ting],
Wang, Q.[Qi],
Traffic Sign Recognition Based on Semantic Scene Understanding and
Structural Traffic Sign Location,
ITS(23), No. 9, September 2022, pp. 15794-15807.
IEEE DOI
2209
Feature extraction, Semantics, Image color analysis, Shape, Roads,
Image segmentation, Task analysis, Traffic sign recognition,
structural traffic sign location
BibRef
Chen, W.Z.[Wen-Zhe],
Childs, J.[Joshua],
Ray, S.[Saraf],
Lee, B.S.[Byung Suk],
Xia, T.[Tian],
RFID Technology Study for Traffic Signage Inventory Management
Application,
ITS(23), No. 10, October 2022, pp. 17809-17818.
IEEE DOI
2210
Antennas, RFID tags, Databases, Inventory management, Transportation,
Roads, Real-time systems, Radio-frequency identification (RFID),
handheld RFID reader
BibRef
Sharma, V.[Vipul],
Dhiman, P.[Pankaj],
Rout, R.K.[Ranjeet Kumar],
Improved traffic sign recognition algorithm based on YOLOv4-tiny,
JVCIR(91), 2023, pp. 103774.
Elsevier DOI
2303
Traffic sign, YOLO, Attention networks, Octave convolutions, Computer vision
BibRef
Batool, A.[Aisha],
Nisar, M.W.[Muhammad Wasif],
Khan, M.A.[Muhammad Attique],
Shah, J.H.[Jamal Hussain],
Tariq, U.[Usman],
Damaevicius, R.[Robertas],
Traffic sign recognition using proposed lightweight twig-net with
linear discriminant classifier for biometric application,
IVC(135), 2023, pp. 104711.
Elsevier DOI
2306
Traffic sign, Classification, Machine learning,
Autonomous vehicles, Computer vision
BibRef
Xu, J.[Jian],
Huang, Y.C.[Yu-Chun],
Ying, D.[Dakan],
Traffic Sign Detection and Recognition Using Multi-Frame Embedding of
Video-Log Images,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Mishra, A.[Ashutosh],
Kumar, A.[Aman],
Mandloi, S.[Shubham],
Anand, K.[Khushboo],
Zakkam, J.[John],
Sowmya, S.[Seeram],
Thakur, A.[Avinash],
Evaluating and Bench-marking Object Detection Models for Traffic Sign
and Traffic Light Datasets,
ACCVWS22(345-359).
Springer DOI
2307
BibRef
Wang, Y.[Yue],
Liu, M.J.[Min-Jie],
Ren, Y.L.[Yan-Li],
Zhang, X.P.[Xin-Peng],
Feng, G.R.[Guo-Rui],
Traffic sign attack via pinpoint region probability estimation
network,
PR(146), 2024, pp. 110035.
Elsevier DOI
2311
Adversarial examples, Traffic sign attack, AI security,
Neural networks, Probability estimation
BibRef
Gray, N.[Nicholas],
Moraes, M.[Megan],
Bian, J.[Jiang],
Wang, A.[Alex],
Tian, A.[Allen],
Wilson, K.[Kurt],
Huang, Y.[Yan],
Xiong, H.[Haoyi],
Guo, Z.[Zhishan],
GLARE: A Dataset for Traffic Sign Detection in Sun Glare,
ITS(24), No. 11, November 2023, pp. 12323-12330.
IEEE DOI Code:
WWW Link.
2311
BibRef
Cao, W.P.[Wei-Peng],
Wu, Y.H.[Yu-Hao],
Chakraborty, C.[Chinmay],
Li, D.[Dachuan],
Zhao, L.[Liang],
Ghosh, S.K.[Soumya Kanti],
Sustainable and Transferable Traffic Sign Recognition for Intelligent
Transportation Systems,
ITS(24), No. 12, December 2023, pp. 15784-15794.
IEEE DOI
2312
BibRef
Wang, J.F.[Jun-Fan],
Chen, Y.[Yi],
Ji, X.Y.[Xiao-Yue],
Dong, Z.K.[Zhe-Kang],
Gao, M.Y.[Ming-Yu],
Lai, C.S.[Chun Sing],
Vehicle-Mounted Adaptive Traffic Sign Detector for Small-Sized Signs
in Multiple Working Conditions,
ITS(25), No. 1, January 2024, pp. 710-724.
IEEE DOI
2402
Feature extraction, Detectors, Optimization, Object detection,
Adaptive systems, Image color analysis, Filtering,
traffic sign detection
BibRef
Guo, Y.F.[Yun-Fei],
Feng, W.[Wei],
Yin, F.[Fei],
Liu, C.L.[Cheng-Lin],
SignParser: An End-to-End Framework for Traffic Sign Understanding,
IJCV(132), No. 3, March 2024, pp. 805-821.
Springer DOI
2402
BibRef
Li, Y.Q.[Yong-Qiang],
Wu, J.[Jiale],
Liu, H.Y.[Hui-Yun],
Ren, J.Z.[Jing-Zhi],
Xu, Z.H.[Zhi-Hua],
Zhang, J.[Jian],
Wang, Z.Y.[Zhi-Yao],
Classification of Typical Static Objects in Road Scenes Based on
LO-Net,
RS(16), No. 4, 2024, pp. 663.
DOI Link
2402
BibRef
Qian, Y.J.[Yue Jing],
Wang, B.[Bo],
TSDet: A new method for traffic sign detection based on YOLOv5-SwinT,
IET-IPR(18), No. 4, 2024, pp. 875-885.
DOI Link
2403
computer vision, image recognition, object detection
BibRef
He, L.W.[Le-Wei],
Lan, F.[Fucai],
Zhou, C.Z.[Chuan-Zhe],
Ye, Y.G.[Yao-Guang],
Zhang, W.C.[Wen-Cong],
Chen, B.Z.[Bing-Zhi],
Pan, J.[Jiahui],
A feature-enhanced hybrid attention network for traffic sign
recognition in real scenes,
IET-IPR(18), No. 8, 2024, pp. 2064-2077.
DOI Link
2406
deep learning, object detection, traffic sign recognition
BibRef
Li, Z.[Zhishan],
Chen, H.X.[Hong-Xu],
Biggio, B.[Battista],
He, Y.F.[Yi-Fan],
Cai, H.R.[Hao-Ran],
Roli, F.[Fabio],
Xie, L.[Lei],
Toward Effective Traffic Sign Detection via Two-Stage Fusion Neural
Networks,
ITS(25), No. 8, August 2024, pp. 8283-8294.
IEEE DOI
2408
Detectors, YOLO, Image resolution, Optimization,
Convolutional neural networks, Real-time systems, Fuses, lightweight
BibRef
Wang, Z.Q.[Zi-Qi],
Wang, X.F.[Xiao-Fei],
Li, J.[Jun],
Yao, J.B.[Jiang-Bei],
Evaluation of Traffic Sign Occlusion Rate Based on a 3D Point Cloud
Space,
RS(16), No. 16, 2024, pp. 2872.
DOI Link
2408
BibRef
Du, S.J.[Song-Jie],
Pan, W.G.[Wei-Guo],
Li, N.[Nuoya],
Dai, S.Y.[Song-Yin],
Xu, B.X.[Bing-Xin],
Liu, H.Z.[Hong-Zhe],
Xu, C.[Cheng],
Li, X.[Xuewei],
TSD-YOLO: Small traffic sign detection based on improved YOLO v8,
IET-IPR(18), No. 11, 2024, pp. 2884-2898.
DOI Link Code:
WWW Link.
2409
computer vision, convolutional neural nets, object detection
BibRef
Uikey, R.[Rishabh],
Lone, H.R.[Haroon R.],
Agarwal, A.[Akshay],
Indian Traffic Sign Detection and Classification Through a Unified
Framework,
ITS(25), No. 10, October 2024, pp. 14866-14875.
IEEE DOI
2410
Cameras, Image color analysis, Feature extraction,
Classification algorithms, Videos, Vehicles, Shape, traffic sign classification
BibRef
Sarwatt, D.S.[Doreen Sebastian],
Kulwa, F.[Frank],
Ding, J.G.[Jian-Guo],
Ning, H.S.[Huan-Sheng],
Adapting Image Classification Adversarial Detection Methods for
Traffic Sign Classification in Autonomous Vehicles: A Comparative
Study,
ITS(25), No. 11, November 2024, pp. 19046-19061.
IEEE DOI
2411
Perturbation methods, Safety, Autonomous vehicles,
Real-time systems, Image classification, Complexity theory,
traffic sign classification
BibRef
Yang, C.[Chuang],
Zhuang, K.[Kai],
Chen, M.[Mulin],
Ma, H.Z.[Hao-Zhao],
Han, X.[Xu],
Han, T.[Tao],
Guo, C.X.[Chang-Xing],
Han, H.[Han],
Zhao, B.X.[Bing-Xuan],
Wang, Q.[Qi],
Traffic Sign Interpretation via Natural Language Description,
ITS(25), No. 11, November 2024, pp. 18939-18953.
IEEE DOI
2411
Symbols, Task analysis, Semantics, Assistive technologies,
Natural languages, Logic, Text recognition, Traffic sign detection,
intelligent transportation
BibRef
Wang, T.T.[Ting-Ting],
Hu, Y.F.[Yun-Feng],
Fang, Q.[Qiang],
He, B.[Banben],
Gong, X.[Xun],
Wang, P.[Ping],
DK-Former: A Hybrid Structure of Deep Kernel Gaussian Process
Transformer Network for Enhanced Traffic Sign Recognition,
ITS(25), No. 11, November 2024, pp. 18561-18572.
IEEE DOI Code:
WWW Link.
2411
Kernel, Transformers, Feature extraction, Convolution,
Computational modeling, Autonomous vehicles, Accuracy,
traffic sign recognition
BibRef
An, F.[Fengping],
Wang, J.R.[Jiang-Rong],
Liu, R.[Ruijun],
Road Traffic Sign Recognition Algorithm Based on Cascade
Attention-Modulation Fusion Mechanism,
ITS(25), No. 11, November 2024, pp. 17841-17851.
IEEE DOI
2411
Feature extraction, Computational modeling, Accuracy,
Deep learning, Target recognition, Road traffic,
feature enhancement
BibRef
Shi, J.Y.[Jing-Yi],
Rao, H.[Huanle],
Jing, Q.[Qinyang],
Wen, Z.Q.[Zi-Qiang],
Jia, G.[Gangyong],
FlexibleCP: A data augmentation strategy for traffic sign detection,
IET-IPR(18), No. 12, 2024, pp. 3667-3680.
DOI Link
2411
intelligent transportation systems, object detection
BibRef
Peng, F.[Fei],
Zhang, Z.[Zhe],
Ding, Q.Y.[Qing-Yan],
Analysis of Guidance Signage Systems from a Complex Network Theory
Perspective: A Case Study in Subway Stations,
IJGI(13), No. 10, 2024, pp. 342.
DOI Link
2411
BibRef
Wang, R.[Runmin],
Zhu, Y.[Yanbin],
Chen, H.[Hua],
Zhu, Z.[Zhenlin],
Zhang, X.Y.[Xiang-Yu],
Ding, Y.J.[Ya-Jun],
Qian, S.[Shengyou],
Gao, C.X.[Chang-Xin],
Liu, L.[Li],
Sang, N.[Nong],
TTDNet: An End-to-End Traffic Text Detection Framework for Open
Driving Environments,
ITS(25), No. 12, December 2024, pp. 19770-19784.
IEEE DOI Code:
WWW Link.
2412
Text detection, Accuracy, Feature extraction, Shape,
Image segmentation, Intelligent transportation systems,
feature enhancement
BibRef
Wang, Y.J.[Yig-Jie],
Huang, W.G.[Wei-Guo],
Li, J.J.[Jia-Jie],
Du, G.F.[Gui-Fu],
Wang, X.[Xiang],
Wen-Juan, E.,
Shi, J.J.[Juan-Juan],
A More Balanced Loss-Reweighting Method for Long-Tailed Traffic Sign
Detection and Recognition,
ITS(25), No. 12, December 2024, pp. 20729-20740.
IEEE DOI
2412
Training, Tail, Accuracy, Adaptation models, Roads, Meteorology,
Intelligent transportation systems, loss reweighting
BibRef
Abdi, N.[Nariman],
Parvaresh, F.[Farzad],
Sabahi, M.F.[Mohamad Farzan],
SeqNet: Sequential Networks for One-Shot Traffic Sign Recognition
With Transfer Learning,
ITS(25), No. 12, December 2024, pp. 20435-20445.
IEEE DOI
2412
Feature extraction, Training, One shot learning, Image recognition,
Transfer learning, Few shot learning, Symbols, One-shot learning,
logo identification
BibRef
Li, Y.Q.[Yu-Qi],
Wang, Z.J.[Zi-Jian],
Zhang, H.[Han],
Yao, X.P.[Xin-Peng],
Zhou, Z.[Zhou],
Cheng, X.[Xin],
A small-target traffic sign detection algorithm based on partial conv
and atrous spatial pyramid,
IET-IPR(18), No. 14, 2024, pp. 4639-4652.
DOI Link
2501
object detection, object recognition, road traffic, small target detection
BibRef
Kherraki, A.[Amine],
El Ouazzani, R.[Rajae],
A Survey on Traffic Sign Classification using Artificial Intelligence
Techniques,
ISCV24(1-6)
IEEE DOI
2408
Surveys, Measurement, Technological innovation, Roads,
Transportation, Lighting, Intelligent Transportation Systems,
Traffic Sign Classification
BibRef
Hsiao, T.F.[Teng-Fang],
Huang, B.L.[Bo-Lun],
Ni, Z.X.[Zi-Xiang],
Lin, Y.T.[Yan-Ting],
Shuai, H.H.[Hong-Han],
Li, Y.H.[Yung-Hui],
Cheng, W.H.[Wen-Huang],
Natural Light Can Also be Dangerous: Traffic Sign Misinterpretation
Under Adversarial Natural Light Attacks,
WACV24(3903-3912)
IEEE DOI
2404
Training, Machine learning algorithms, Machine learning,
Robustness, Object recognition, Task analysis, Algorithms,
Image recognition and understanding
BibRef
Sharma, V.[Vinayak],
Kumar, V.[Vimal],
Aditya, H.[Harshvardhan],
Traffic Sign Detection and Classification,
ICCVMI23(1-6)
IEEE DOI
2403
Technological innovation, System performance,
Computer architecture, Prediction algorithms, Road safety, CNN
BibRef
Shi, W.J.[Wen-Jun],
Shi, Y.J.[Ying-Jun],
Zhu, D.C.[Dong-Chen],
Zhang, X.L.[Xiao-Lin],
Li, J.[Jiamao],
Traffic Sign Instances Segmentation Using Aliased Residual Structure
and Adaptive Focus Localizer,
ICPR22(3676-3685)
IEEE DOI
2212
Location awareness, Adaptation models, Image recognition,
Text recognition, Optical character recognition, Prototypes,
Assistive technologies
BibRef
Le, H.[Huy],
Nguyen, M.[Minh],
Yan, W.Q.[Wei Qi],
Lo, S.[Saide],
Training a convolutional neural network for transportation sign
detection using synthetic dataset,
IVCNZ21(1-6)
IEEE DOI
2201
Training, Annotations, Computational modeling, Neural networks,
Transportation, Graphics processing units, Training data,
Synthetic dataset generation
BibRef
Sanjeewani, P.[Pubudu],
Verma, B.[Brijesh],
Affum, J.[Joseph],
Multi-stage Deep Learning Technique for Improving Traffic Sign
Recognition,
IVCNZ21(1-6)
IEEE DOI
2201
Deep learning, Image recognition, Text recognition, Shape,
Image color analysis, Optical imaging, Character recognition,
optical character recognition
BibRef
Wang, C.L.[Cheng-Liang],
Xie, X.[Xin],
Liao, C.[Chao],
An Adaptive Fusion Model Based on Kalman Filtering and LSTM for Fast
Tracking of Road Signs,
ICPR21(1414-1421)
IEEE DOI
2105
Location awareness, Adaptation models, Image color analysis, Roads,
Detectors, Predictive models, ThunderNet,
road-sign detection and tracking
BibRef
Wang, Z.H.[Zhe-Hui],
Zhao, S.Y.[San-Yuan],
Shen, J.B.[Jian-Bing],
Lei, Z.C.[Zheng-Chao],
Efficient Light Deep Network for Street Scene Parsing,
VCIP20(42-45)
IEEE DOI
2102
feature extraction, image segmentation,
learning (artificial intelligence), object detection, real-time
BibRef
Wei, Z.,
Gu, H.,
Zhang, W.,
The Relation between the Arrangements of the Information on the Sign
and the Cognitive Levels of the Sign,
CVIDL20(431-441)
IEEE DOI
2102
cognitive systems, road safety, road traffic,
traffic engineering computing, information orientations,
destination
BibRef
Ertler, C.[Christian],
Mislej, J.[Jerneja],
Ollmann, T.[Tobias],
Porzi, L.[Lorenzo],
Neuhold, G.[Gerhard],
Kuang, Y.B.[Yu-Bin],
The Mapillary Traffic Sign Dataset for Detection and Classification on
a Global Scale,
ECCV20(XXIII:68-84).
Springer DOI
2011
BibRef
Ao, Y.,
Wang, J.,
Zhou, M.,
Lindenbergh, R.C.,
Yang, M.Y.,
Fully Convolutional Networks for Street Furniture Identification In
Panorama Images,
Semantics3D19(13-20).
DOI Link
1912
BibRef
Singh, P.[Pravendra],
Manikandan, R.,
Matiyali, N.[Neeraj],
Namboodiri, V.[Vinay],
Multi-Layer Pruning Framework for Compressing Single Shot MultiBox
Detector,
WACV19(1318-1327)
IEEE DOI
1904
Apply to traffic signs.
data compression, feature extraction, image classification,
image recognition, learning (artificial intelligence),
Training
BibRef
Wang, W.Z.[Wen-Zhe],
Wu, B.[Bin],
Lv, J.[Jinna],
Dai, P.[Pilin],
Regular and Small Target Detection,
MMMod19(II:453-464).
Springer DOI
1901
Traffic signs.
BibRef
Pon, A.D.,
Adrienko, O.,
Harakeh, A.,
Waslander, S.L.,
A Hierarchical Deep Architecture and Mini-batch Selection Method for
Joint Traffic Sign and Light Detection,
CRV18(102-109)
IEEE DOI
1812
Proposals, Graphics processing units, Object detection, Detectors,
Image color analysis, object detection, autonomous driving,
traffic light
BibRef
Luo, H.,
Kong, Q.,
Wu, F.,
Traffic Sign Image Synthesis with Generative Adversarial Networks,
ICPR18(2540-2545)
IEEE DOI
1812
Standards, Lighting, Training, Visualization,
Image generation, Generative adversarial networks
BibRef
Uittenbogaard, R.,
Sebastian, C.,
Viiverberg, J.,
Boom, B.J.,
de With, P.H.N.,
Conditional Transfer with Dense Residual Attention: Synthesizing
traffic signs from street-view imagery,
ICPR18(553-559)
IEEE DOI
1812
Generators, Decoding, Training, Convolution,
Generative adversarial networks, Iron
BibRef
Frejlichowski, D.[Dariusz],
Mikolajczak, P.[Piotr],
A System for Automatic Town Sign Recognition for Driver Assistance
Systems,
ICCVG18(115-124).
Springer DOI
1810
BibRef
El Ouadrhiri, A.A.[Abderrahmane Adoui],
Burian, J.[Jaroslav],
Andaloussi, S.J.[Said Jai],
El Morabet, R.[Rachida],
Ouchetto, O.[Ouail],
Sekkaki, A.[Abderrahim],
Fast-Tracking Application for Traffic Signs Recognition,
ICCVG18(385-396).
Springer DOI
1810
BibRef
Palummo, A.,
From The Road Sign To The Map: 3d Modeling In Support Of The Urban And
Rural Road Conditions,
GeomCultural17(77-80).
DOI Link
1805
BibRef
Cheng, P.[Peng],
Liu, W.[Wu],
Zhang, Y.F.[Yi-Fan],
Ma, H.D.[Hua-Dong],
LOCO: Local Context Based Faster R-CNN for Small Traffic Sign Detection,
MMMod18(I:329-341).
Springer DOI
1802
BibRef
Huang, H.,
Hou, L.Y.,
Speed Limit Sign Detection Based on Gaussian Color Model and Template
Matching,
ICVISP17(118-122)
IEEE DOI
1712
Signal processing, Gaussian color model, Image segmentation,
Thresholding segmentation, Traffic sign detection
BibRef
Song, J.R.[Jia-Rong],
Yang, Z.[Zhong],
Zhang, T.Y.[Tian-Yi],
Han, J.[Jia_Ming],
Design and Optimization of the Model for Traffic Signs Classification
Based on Convolutional Neural Networks,
CVS17(394-403).
Springer DOI
1711
BibRef
Bouti, A.,
Mahraz, M.A.,
Riffi, J.,
Tairi, H.,
Road sign recognition with Convolutional Neural Network,
ISCV18(1-7)
IEEE DOI
1807
BibRef
Earlier:
Robust system for road sign detection and recognition using template
matching,
ISCV17(1-4)
IEEE DOI
1710
feature extraction, image classification, neural nets,
object recognition, road traffic, traffic engineering computing,
Road Sign Recognition.
Image color analysis, Lighting,
Shape, Template Matching.
BibRef
Zhang, F.[Fan],
Ji, R.R.[Rui-Rui],
Jiao, S.B.[Shang-Bin],
Qi, K.J.[Kai-Jie],
A novel saliency computation model for traffic sign detection,
ICIVC17(31-35)
IEEE DOI
1708
Clustering algorithms, Computational modeling,
Feature extraction, Image color analysis, Image edge detection,
Neural networks, Visualization, clustering, saliency map,
self-organizing map neural network, traffic, sign, detection
BibRef
Ardianto, S.,
Chen, C.J.,
Hang, H.M.,
Real-time traffic sign recognition using color segmentation and SVM,
WSSIP17(1-5)
IEEE DOI
1707
Gabor filters, Histograms, Image color analysis,
Image segmentation, Real-time systems, Support vector machines,
Binary SVM, Color Segmentation, Gabor filter, HOG, Traffic, Sign, Recognition
BibRef
Hienonen, P.[Petri],
Lensu, L.[Lasse],
Melander, M.[Markus],
Kälviäinen, H.[Heikki],
Towards Condition Analysis for Machine Vision Based Traffic Sign
Inventory,
ACIVS17(212-224).
Springer DOI
1712
BibRef
Earlier:
Framework for Machine Vision Based Traffic Sign Inventory,
SCIA17(I: 197-208).
Springer DOI
1706
BibRef
Xiao, Z.,
Yang, Z.,
Geng, L.,
Zhang, F.,
Traffic Sign Detection Based on Histograms of Oriented Gradients and
Boolean Convolutional Neural Networks,
CMVIT17(111-115)
IEEE DOI
1704
Boolean functions
BibRef
Zhu, Z.,
Liang, D.,
Zhang, S.,
Huang, X.,
Li, B.,
Hu, S.,
Traffic-Sign Detection and Classification in the Wild,
CVPR16(2110-2118)
IEEE DOI
1612
BibRef
Youssef, A.[Ali],
Albani, D.[Dario],
Nardi, D.[Daniele],
Bloisi, D.D.[Domenico Daniele],
Fast Traffic Sign Recognition Using Color Segmentation and Deep
Convolutional Networks,
ACIVS16(205-216).
Springer DOI
1611
BibRef
Wiesemann, T.[Thomas],
Jiang, X.Y.[Xiao-Yi],
Fog Augmentation of Road Images for Performance Analysis of Traffic
Sign Detection Algorithms,
ACIVS16(685-697).
Springer DOI
1611
BibRef
Li, Y.H.,
Shinohara, T.,
Satoh, T.,
Tachibana, K.,
Road Signs Detection And Recognition Utilizing Images And 3d Point
Cloud Acquired By Mobile Mapping System,
ISPRS16(B1: 669-673).
DOI Link
1610
BibRef
Soilán, M.,
Riveiro, B.,
Martínez-Sánchez, J.,
Arias, P.,
Automatic Road Sign Inventory Using Mobile Mapping Systems,
ISPRS16(B3: 717-723).
DOI Link
1610
BibRef
Yao, Q.,
Tan, B.,
Huang, Y.,
Fast Drawing Of Traffic Sign Using Mobile Mapping System,
ISPRS16(B3: 937-944).
DOI Link
1610
BibRef
Li, Y.,
Fan, J.,
Huang, Y.,
Chen, Z.,
Lidar-incorporated Traffic Sign Detection From Video Log Images Of
Mobile Mapping System,
ISPRS16(B1: 661-668).
DOI Link
1610
BibRef
Tsai, V.J.D.[Victor J. D.],
Chen, J.H.[Jyun-Han],
Huang, H.S.[Hsun-Sheng],
Traffic Sign Inventory From Google Street View Images,
ISPRS16(B4: 243-246).
DOI Link
1610
BibRef
Tastimur, C.,
Karaköse, M.,
Çelik, Y.,
Akin, E.,
Image processing based traffic sign detection and recognition with
fuzzy integral,
WSSIP16(1-4)
IEEE DOI
1608
fuzzy set theory
BibRef
Agudo, D.,
Sánchez, Á.,
Vélez, J.F.,
Belén Moreno, A.,
Real-time railway speed limit sign recognition from video sequences,
WSSIP16(1-4)
IEEE DOI
1608
image sequences
BibRef
Ben Romdhane, N.[Nadra],
Mliki, H.[Hazar],
El Beji, R.[Rabii],
Hammami, M.[Mohamed],
A Comparative Study of Vision-Based Traffic Signs Recognition Methods,
ICIAR16(341-348).
Springer DOI
1608
See also Comparative Study of Vision-Based Lane Detection Methods, A.
BibRef
Gim, J.[JaWon],
Hwang, M.[MinCheol],
Ko, B.C.[Byoung Chul],
Nam, J.Y.[Jae-Yeal],
Real-Time Speed-Limit Sign Detection and Recognition Using Spatial
Pyramid Feature and Boosted Random Forest,
ICIAR15(437-445).
Springer DOI
1507
BibRef
Frejlichowski, D.[Dariusz],
Application of the Polar:
Fourier Greyscale Descriptor to the Automatic Traffic Sign Recognition,
ICIAR15(506-513).
Springer DOI
1507
BibRef
Belaroussi, R.[Rachid],
Gruyer, D.[Dominique],
Road sign-aided estimation of visibility conditions,
MVA15(202-205)
IEEE DOI
1507
Cameras; Detectors; Estimation; Radar; Roads; Vehicles; Visualization
BibRef
Pritt, C.,
Road sign detection on a smartphone for traffic safety,
AIPR14(1-6)
IEEE DOI
1504
computer vision
BibRef
Hazelhoff, L.[Lykele],
Creusen, I.M.[Ivo M.],
de With, P.H.N.[Peter H.N.],
Optimal Performance-Efficiency Trade-off for Bag of Words
Classification of Road Signs,
ICPR14(2996-3001)
IEEE DOI
1412
Dictionaries
BibRef
Varela-González, M.,
Riveiro, B.,
Arias-Sánchez, P.,
González-Jorge, H.,
Martínez-Sánchez, J.,
A CityGML extension for traffic-sign objects that guides the automatic
processing of data collected using Mobile Mapping technology,
LandImaging14(415-420).
DOI Link
1411
BibRef
Fernandes, K.[Kelwin],
Silva, P.F.B.[Pedro F. B.],
Ciobanu, L.[Lucian],
Fonseca, P.[Paulo],
Catalogue-Based Traffic Sign Asset Management:
Towards User's Effort Minimisation,
ICIAR14(I: 301-308).
Springer DOI
1410
BibRef
Tang, S.S.[Sui-Sui],
Huang, L.L.[Lin-Lin],
Traffic Sign Recognition Using Complementary Features,
ACPR13(210-214)
IEEE DOI
1408
feature extraction
BibRef
Zhu, Y.Y.[Ying-Ying],
Wang, X.G.[Xing-Gang],
Yao, C.[Cong],
Bai, X.[Xiang],
Traffic sign classification using two-layer image representation,
ICIP13(3755-3759)
IEEE DOI
1402
Locality-constrained Linear Coding
BibRef
Parra, A.[Albert],
Zhao, B.[Bin],
Haddad, A.[Andrew],
Boutin, M.[Mireille],
Delp, E.J.[Edward J.],
Hazardous material sign detection and recognition,
ICIP13(2640-2644)
IEEE DOI
1402
Hough Transform; Sign detection; saliency map; shape detection
BibRef
Zhang, T.[Tao],
Lv, J.Q.[Jing-Qin],
Yang, J.[Jie],
Road sign detection based on visual saliency and shape analysis,
ICIP13(3667-3670)
IEEE DOI
1402
Improved radial symmetry transform (IRST)
BibRef
Moiseev, B.[Boris],
Konev, A.[Artem],
Chigorin, A.[Alexander],
Konushin, A.[Anton],
Evaluation of Traffic Sign Recognition Methods Trained on Synthetically
Generated Data,
ACIVS13(576-583).
Springer DOI
1311
BibRef
Choi, C.W.[Chang-Won],
Choi, S.I.[Sung-In],
Park, S.Y.[Soon-Yong],
Efficient Detection and Tracking of Road Signs Based on Vehicle Motion
and Stereo Vision,
ACIVS13(608-619).
Springer DOI
1311
BibRef
Ellis, L.,
Pugeault, N.,
Ofjall, K.,
Hedborg, J.,
Bowden, R.,
Felsberg, M.,
Autonomous navigation and sign detector learning,
WORV13(144-151)
IEEE DOI
1307
control engineering computing
BibRef
Miyata, S.[Shigeharu],
Takehara, S.[Shin],
Sakai, H.[Hideki],
Ishikawa, T.[Takahiro],
Method for recognition of numbers on speed limit signs utilizing an
eigen space method based on the KL transform,
ICARCV12(377-382).
IEEE DOI
1304
BibRef
Liu, W.[Wei],
Wu, Y.H.[Yong-Hua],
Lv, J.[Jin],
Yuan, H.[Huai],
Zhao, H.[Hong],
U.S. speed limit sign detection and recognition from image sequences,
ICARCV12(1437-1442).
IEEE DOI
1304
BibRef
Li, C.[Ce],
Hu, Y.L.[Ya-Ling],
Xiao, L.[Limei],
Tian, L.H.[Li-Hua],
Salient traffic sign recognition based on sparse representation of
visual perception,
CVRS12(273-278).
IEEE DOI
1302
BibRef
Hu, X.,
Zhu, X.,
Li, D.,
Traffic Sign Detection Based On Biologically Visual Mechanism,
ISPRS12(XXXIX-B3:217-221).
DOI Link
1209
BibRef
Shahbazi, M.,
Sattari, M.,
Homayouni, S.,
Saadatseresht, M.,
Implementation And Evaluation Of A Mobile Mapping System Based On
Integrated Range And Intensity Images For Traffic Signs Localization,
ISPRS12(XXXIX-B5:51-56).
DOI Link
1209
BibRef
And:
ISPRS12(XXXIX-B5:505-510).
DOI Link
1209
BibRef
Vavilin, A.,
Deb, K.,
Kim, T.H.,
Jo, K.,
Road sign detection method based on fast HDR image generation technique,
IVCNZ10(1-8).
IEEE DOI
1203
BibRef
Hazelhoff, L.[Lykele],
Creusen, I.M.[Ivo M.],
de With, P.H.N.[Peter H.N.],
Robust classification system with reliability prediction for
semi-automatic traffic-sign inventory systems,
WACV13(125-132).
IEEE DOI
1303
BibRef
Earlier:
Robust classification of traffic signs using multi-view cues,
ICIP12(457-460).
IEEE DOI
1302
BibRef
And:
Robust detection, classification and positioning of traffic signs from
street-level panoramic images for inventory purposes,
WACV12(313-320).
IEEE DOI
1203
BibRef
Creusen, I.M.[Ivo M.],
Hazelhoff, L.[Lykele],
de With, P.H.N.[Peter H.N.],
Color transformation for improved traffic sign detection,
ICIP12(461-464).
IEEE DOI
1302
BibRef
Creusen, I.M.,
Wijnhoven, R.G.J.,
Herbschleb, E.,
de With, P.H.N.,
Color exploitation in hog-based traffic sign detection,
ICIP10(2669-2672).
IEEE DOI
1009
BibRef
Deguchi, D.[Daisuke],
Doman, K.[Keisuke],
Ide, I.[Ichiro],
Murase, H.[Hiroshi],
Improvement of a Traffic Sign Detector by Retrospective Gathering of
Training Samples from In-Vehicle Camera Image Sequences,
CVVT10(204-213).
Springer DOI
1109
BibRef
Chen, Z.X.[Zhi-Xie],
Yang, J.[Jing],
Kong, B.[Bin],
A Robust Traffic Sign Recognition System for Intelligent Vehicles,
ICIG11(975-980).
IEEE DOI
1109
BibRef
Ihara, A.[Arihito],
Fujiyoshi, H.[Hironobu],
Takagi, M.[Masanari],
Kumon, H.[Hiroaki],
Tamatsu, Y.[Yukimasa],
Improved Matching Accuracy in Traffic Sign Recognition by Using
Different Feature Subspaces,
MVA09(130-).
PDF File.
0905
BibRef
Ninot, J.[Jérôme],
Smadja, L.[Laurent],
Heggarty, K.[Kevin],
Road Sign Recognition Using A Hybrid Evolutionary Algorithm And
Primitives Fusion,
PCVIA10(A:287).
PDF File.
1009
BibRef
Belaroussi, R.[Rachid],
Foucher, P.[Philippe],
Tarel, J.P.[Jean-Philippe],
Soheilian, B.[Bahman],
Charbonnier, P.[Pierre],
Paparoditis, N.[Nicolas],
Road Sign Detection in Images: A Case Study,
ICPR10(484-488).
IEEE DOI
1008
BibRef
Li, Y.[Ying],
Pankanti, S.[Sharath],
Guan, W.G.[Wei-Guang],
Real-Time Traffic Sign Detection: An Evaluation Study,
ICPR10(3033-3036).
IEEE DOI
1008
BibRef
Muyan-Özçelik, P.[Pinar],
Glavtchev, V.[Vladimir],
Ota, J.M.[Jeffrey M.],
Owens, J.D.[John D.],
A Template-Based Approach for Real-Time Speed-Limit-Sign Recognition on
an Embedded System Using GPU Computing,
DAGM10(162-171).
Springer DOI
1009
BibRef
Chen, C.[Cheng],
Tian, Y.[Yingli],
Door detection via signage context-based Hierarchical Compositional
Model,
UCVP10(1-6).
IEEE DOI
1006
Not roads, but signs.
BibRef
Xu, Q.S.[Qing-Song],
Su, J.[Juan],
Liu, T.T.[Tian-Tian],
A detection and recognition method for prohibition traffic signs,
IASP10(583-586).
IEEE DOI
1004
BibRef
Li, Q.[Qi],
Tao, D.C.[Da-Cheng],
Detecting image points of general imbalance,
ICIP09(337-340).
IEEE DOI
0911
for road signs. In sparse textures.
BibRef
Khan, J.F.[Jesmin F.],
Bhuiyan, S.M.A.[Sharif M. A.],
Adhami, R.R.[Reza R.],
Distortion invariant road sign detection,
ICIP09(841-844).
IEEE DOI
0911
BibRef
Fifik, M.,
Turan, J.,
Ovsenik, L.,
Detection System for Traffic Road Signs in Surrounding Environment,
WSSIP09(1-4).
IEEE DOI
0906
BibRef
Ren, F.X.[Fei-Xiang],
Huang, J.S.[Jin-Sheng],
Jiang, R.[Ruyi],
Klette, R.,
General traffic sign recognition by feature matching,
IVCNZ09(409-414).
IEEE DOI
0911
BibRef
Belaroussi, R.[Rachid],
Tarel, J.P.[Jean-Philippe],
Angle vertex and bisector geometric model for triangular road sign
detection,
WACV09(1-7).
IEEE DOI
0912
BibRef
And:
A Real-Time Road Sign Detection Using Bilateral Chinese Transform,
ISVC09(II: 1161-1170).
Springer DOI
0911
See also Real Time Fingers Detection by Symmetry Transform Using a Two Cameras System, A.
BibRef
Cao, T.P.[Tam Phuong],
Deng, G.[Guang],
Real-Time Vision-Based Stop Sign Detection System on FPGA,
DICTA08(465-471).
IEEE DOI
0812
BibRef
Arlicot, A.,
Soheilian, B.,
Paparoditis, N.,
Circular Road Sign Extraction from Street Level Images using Colour,
Shape and Texture Database Maps,
CMRT09(205-210).
PDF File.
0909
BibRef
Muhammad, A.S.[Azam Sheikh],
Lavesson, N.[Niklas],
Davidsson, P.[Paul],
Nilsson, M.[Mikael],
Analysis of Speed Sign Classification Algorithms Using Shape Based
Segmentation of Binary Images,
CAIP09(1220-1227).
Springer DOI
0909
BibRef
Turan, J.,
Fifik, M.,
Ovsenik, L.,
Transform based system for traffic sign recognition,
WSSIP08(441-444).
IEEE DOI
0806
BibRef
Lopez, L.D.[Luis David],
Fuentes, O.[Olac],
Color-Based Road Sign Detection and Tracking,
ICIAR07(1138-1147).
Springer DOI
0708
BibRef
Cyganek, B.[Boguslaw],
Object Recognition with the HOSVD of the Multi-model Space-Variant
Pattern Tensors,
CAIP11(I: 435-442).
Springer DOI
1109
BibRef
Earlier:
An Analysis of the Road Signs Classification Based on the Higher-Order
Singular Value Decomposition of the Deformable Pattern Tensors,
ACIVS10(II: 191-202).
Springer DOI
1012
BibRef
And:
Traffic Scene Segmentation and Robust Filtering for Road Signs
Recognition,
ICCVG10(I: 292-299).
Springer DOI
1009
BibRef
Earlier:
A Real-Time Vision System for Traffic Signs Recognition Invariant to
Translation, Rotation and Scale,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Earlier:
Road-Signs Recognition System for Intelligent Vehicles,
RobVis08(219-233).
Springer DOI
0802
BibRef
Earlier:
Real-Time Detection of the Triangular and Rectangular Shape Road Signs,
ACIVS07(744-755).
Springer DOI
0708
BibRef
And:
Road Signs Recognition by the Scale-Space Template Matching in the
Log-Polar Domain,
IbPRIA07(I: 330-337).
Springer DOI
0706
Originally applied to OCR, but more issues for signs.
See also Computational Framework for Family of Order Statistic Filters for Tensor Valued Data.
BibRef
Vázquez-Reina, A.,
López-Sastre, R.J.,
Siegmann, P.,
Lafuente-Arroyo, S.,
Gómez-Moreno, H.,
An Approach to the Recognition of Informational Traffic Signs Based on
2-D Homography and SVMs,
ACIVS06(1163-1173).
Springer DOI
0609
BibRef
Lombardi, L.[Luca],
Marmo, R.[Roberto],
Toccalini, A.[Andrea],
Automatic Recognition of Road Sign Passo-Carrabile,
CIAP05(1059-1067).
Springer DOI
0509
BibRef
Ballerini, R.[Roberto],
Cinque, L.[Luigi],
Lombardi, L.[Luca],
Marmo, R.[Roberto],
Rectangular Traffic Sign Recognition,
CIAP05(1101-1108).
Springer DOI
0509
BibRef
Silapachote, P.,
Weinman, J.,
Hanson, A.R.,
Mattar, M.A.,
Weiss, R.,
Automatic Sign Detection and Recognition in Natural Scenes,
VisImpaired05(III: 27-27).
IEEE DOI
0507
BibRef
Silapachote, P.[Piyanuch],
Hanson, A.R.[Allen R.],
Weiss, R.[Richard],
A Hierarchical Approach to Sign Recognition,
WACV05(I: 22-28).
IEEE DOI
0502
BibRef
Mattar, M.A.,
Hanson, A.R.,
Learned-Miller, E.G.,
Sign Classification using Local and Meta-Features,
VisImpaired05(III: 26-26).
IEEE DOI
0507
BibRef
Oh, J.T.[Jun-Taek],
Kwak, H.W.[Hyun-Wook],
Sohn, Y.H.[Young-Ho],
Kim, W.H.[Wook-Hyun],
Segmentation and Recognition of Traffic Signs Using Shape Information,
ISVC05(519-526).
Springer DOI
0512
BibRef
Loy, G., and
Barnes, N.M.,
Fast Shape-based Road Sign Detection for a Driver Assistance System,
IROS04(xx-yy).
Road sign reader, as seen on CNN and elsewhere.
BibRef
0400
Paletta, L.,
Detection of traffic signs using posterior classifier combination,
ICPR02(II: 705-708).
IEEE DOI
0211
BibRef
Vitabile, S.,
Pollaccia, G.,
Pilato, G.,
Sorbello, E.,
Road signs recognition using a dynamic pixel aggregation technique in
the HSV color space,
CIAP01(572-577).
IEEE DOI
0210
BibRef
Vitabile, S.,
Pilato, G.,
Pullara, F.,
Sorbello, F.,
A navigation system for vision-guided mobile robots,
CIAP99(566-571).
IEEE DOI
9909
BibRef
Shaposhnikov, D.G.,
Podladchikova, L.N.,
Golovan, A.V.,
Shevtsova, N.A.,
Road Sign Recognition by Single Positioning of Space-Variant Sensor
Window,
VI02(213).
PDF File.
0208
BibRef
Bérubé Lauzičre, Y.[Yves],
Gingras, D.[Denis],
Ferrie, F.P.[Frank P.],
A Model-Based Road Sign Identification System,
CVPR01(I:1163-1170).
IEEE DOI
0110
Color, Shape and appearance.
BibRef
Schiekel, C.,
A Fast Traffic Sign Recognition Algorithm for Gray Value Images,
CAIP99(588-595).
Springer DOI
9909
BibRef
Janet, J.A.,
White, M.W.,
Chase, T.A.,
Luo, R.C.,
Sutto, J.C.,
Pattern analysis for autonomous vehicles with the
region- and feature-based neural network:
global self-localization and traffic sign recognition,
CRA96(IV: 3598-3604).
BibRef
9600
Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Traffic Lights, Objects along the Road, Inspections .