Ibanez, M.V.,
Simo, A.,
Bayesian detection of the fovea in eye fundus angiographies,
PRL(20), No. 2, February 1999, pp. 229-240.
BibRef
9902
Simó, A.,
de Ves, E.,
Segmentation of Macular Fluorescein Angiographies.
A Statistical Approach,
PR(34), No. 4, April 2001, pp. 795-809.
Elsevier DOI
0101
BibRef
Pedersen, L.,
Grunkin, M.,
Ersbřll, B.K.,
Madsen, K.,
Larsen, M.,
Christoffersen, N.,
Skands, U.,
Quantitative Measurement of Changes in Retinal Vessel Diameter in
Ocular Fundus Images,
PRL(21), No. 13-14, December 2000, pp. 1215-1223.
0011
BibRef
Earlier:
SCIA99(Biological Applications II).
BibRef
Hoover, A.D.,
Kouznetsova, V.,
Goldbaum, M.,
Locating blood vessels in retinal images by piecewise threshold probing
of a matched filter response,
MedImg(19), No. 3, March 2000, pp. 203-210.
IEEE Top Reference.
0110
BibRef
Hoover, A.D.,
Goldbaum, M.,
Locating the optic nerve in a retinal image using the fuzzy convergence
of the blood vessels,
MedImg(22), No. 8, August 2003, pp. 951-958.
IEEE Abstract.
0308
BibRef
Bouaoune, Y.,
Assogba, M.K.,
Nunes, J.C.,
Bunel, P.,
Spatio-temporal characterization of vessel segments applied to retinal
angiographic images,
PRL(24), No. 1-3, January 2003, pp. 607-615.
Elsevier DOI
0211
BibRef
Lowell, J.,
Hunter, A.,
Steel, D.,
Basu, A.,
Ryder, R.,
Kennedy, R.L.,
Measurement of Retinal Vessel Widths from Fundus Images Based on 2-D
Modeling,
MedImg(23), No. 10, October 2004, pp. 1196-1204.
IEEE Abstract.
0410
See also Optic Nerve Head Segmentation.
BibRef
Staal, J.,
Abramoff, M.D.,
Niemeijer, M.,
Viergever, M.A.,
van Ginneken, B.,
Ridge-based vessel segmentation in color images of the retina,
MedImg(23), No. 4, April 2004, pp. 501-509.
IEEE Abstract.
0406
BibRef
Grisan, E.,
Foracchia, M.,
Ruggeri, A.,
A Novel Method for the Automatic Grading of Retinal Vessel Tortuosity,
MedImg(27), No. 3, March 2008, pp. 310-319.
IEEE DOI
0803
BibRef
Stosic, T.,
Stosic, B.D.,
Multifractal Analysis of Human Retinal Vessels,
MedImg(25), No. 8, August 2006, pp. 1101-1107.
IEEE DOI
0608
BibRef
Soares, J.V.B.,
Leandro, J.J.G.,
Cesar, Jr., R.M.,
Jelinek, H.F.,
Cree, M.J.,
Retinal vessel segmentation using the 2-D Gabor wavelet and supervised
classification,
MedImg(25), No. 9, September 2006, pp. 1214-1222.
IEEE DOI
0609
BibRef
Sofka, M.,
Stewart, C.V.[Charles V.],
Retinal Vessel Centerline Extraction Using Multiscale Matched Filters,
Confidence and Edge Measures,
MedImg(25), No. 12, December 2006, pp. 1531-1546.
IEEE DOI
0701
BibRef
And:
Erratum:
MedImg(26), No. 1, January 2007, pp. 133-133.
IEEE DOI
0701
BibRef
Stewart, C.V.[Charles V.],
Computer Vision Algorithms for Retinal Image Analysis:
Current Results and Future Directions,
CVBIA05(31-50).
Springer DOI
0601
BibRef
Wang, L.[Li],
Bhalerao, A.H.,
Wilson, R.,
Analysis of Retinal Vasculature Using a Multiresolution Hermite Model,
MedImg(26), No. 2, February 2007, pp. 137-152.
IEEE DOI
0702
BibRef
Earlier:
Robust modelling of local image structures and its application to
medical imagery,
ICPR04(III: 534-537).
IEEE DOI
0409
BibRef
Thonnes, E.,
Bhalerao, A.H.,
Kendall, W.,
Wilson, R.,
A bayesian approach to inferring vascular tree structure from 2d
imagery,
ICIP02(II: 937-940).
IEEE DOI
0210
BibRef
Ricci, E.,
Perfetti, R.,
Retinal Blood Vessel Segmentation Using Line Operators and Support
Vector Classification,
MedImg(26), No. 10, October 2007, pp. 1357-1365.
IEEE DOI
0711
BibRef
Youssif, A.A.H.A.R.,
Ghalwash, A.Z.,
Ghoneim, A.A.S.A.R.,
Optic Disc Detection From Normalized Digital Fundus Images by Means of
a Vessels' Direction Matched Filter,
MedImg(27), No. 1, January 2008, pp. 11-18.
IEEE DOI
0712
BibRef
Adjeroh, D.A.[Donald A.],
Kandaswamy, U.[Umasankar],
Odom, J.V.[J. Vernon],
Texton-based segmentation of retinal vessels,
JOSA-A(24), No. 5, May 2007, pp. 1384-1393.
WWW Link.
0801
BibRef
Miura, M.[Masahiro],
Elsner, A.E.[Ann E.],
Cheney, M.C.[Michael C.],
Usui, M.[Masahiko],
Iwasaki, T.[Takuya],
Imaging polarimetry and retinal blood vessel quantification at the
epiretinal membrane,
JOSA-A(24), No. 5, May 2007, pp. 1431-1437.
WWW Link.
0801
BibRef
Rothaus, K.[Kai],
Jiang, X.Y.[Xiao-Yi],
Rhiem, P.[Paul],
Separation of the retinal vascular graph in arteries and veins based
upon structural knowledge,
IVC(27), No. 7, 4 June 2009, pp. 864-875.
Elsevier DOI
0904
BibRef
Earlier: A1, A3, A2:
Separation of the Retinal Vascular Graph in Arteries and Veins,
GbRPR07(251-262).
Springer DOI
0706
Retinal vascular graph; Artery; Vein; Constraint satisfaction problem;
Constraint propagation
See also Structural Performance Evaluation of Curvilinear Structure Detection Algorithms with Application to Retinal Vessel Segmentation.
BibRef
Jiang, X.Y.[Xiao-Yi],
Lambers, M.[Martin],
Bunke, H.[Horst],
Structural Performance Evaluation of Curvilinear Structure Detection
Algorithms with Application to Retinal Vessel Segmentation,
PRL(33), No. 15, 1 November 2012, pp. 2048-2056.
Elsevier DOI
1210
BibRef
Earlier:
Structure-Based Evaluation Methodology for Curvilinear Structure
Detection Algorithms,
GbRPR11(305-314).
Springer DOI
1105
Medical images. Not pixel level ground truth, but structure based.
See also Separation of the retinal vascular graph in arteries and veins based upon structural knowledge. Performance evaluation; Curvilinear structure; Vessel
network; Airway tree; Graph matching
BibRef
Jiang, X.Y.[Xiao-Yi],
Mojon, D.,
Supervised evaluation methodology for curvilinear structure detection
algorithms,
ICPR02(I: 103-106).
IEEE DOI
0211
BibRef
Al-Diri, B.,
Hunter, A.,
Steel, D.,
An Active Contour Model for Segmenting and Measuring Retinal Vessels,
MedImg(28), No. 9, September 2009, pp. 1488-1497.
IEEE DOI
0909
BibRef
Ng, J.,
Clay, S.T.,
Barman, S.A.,
Fielder, A.R.,
Moseley, M.J.,
Parker, K.H.,
Paterson, C.,
Maximum likelihood estimation of vessel parameters from scale space
analysis,
IVC(28), No. 1, Januray 2010, pp. 55-63.
Elsevier DOI
1001
Scale space; Maximum likelihood; Retinal blood vessels; Automatic segmentation
BibRef
Jlassi, H.[Hejer],
Hamrouni, K.[Kamel],
Detection of Blood Vessels in Retinal Images,
IJIG(10), No. 1, January 2010, pp. 57-72.
DOI Link
1003
BibRef
Lam, B.S.Y.,
Gao, Y.,
Liew, A.W.C.,
General Retinal Vessel Segmentation Using Regularization-Based
Multiconcavity Modeling,
MedImg(29), No. 7, July 2010, pp. 1369-1381.
IEEE DOI
1007
BibRef
Marin, D.,
Aquino, A.,
Gegundez-Arias, M.E.,
Bravo, J.M.,
A New Supervised Method for Blood Vessel Segmentation in Retinal Images
by Using Gray-Level and Moment Invariants-Based Features,
MedImg(30), No. 1, January 2011, pp. 146-158.
IEEE DOI
1101
BibRef
Gegundez-Arias, M.E.,
Aquino, A.,
Bravo, J.M.,
Marin, D.,
A Function for Quality Evaluation of Retinal Vessel Segmentations,
MedImg(31), No. 2, February 2012, pp. 231-239.
IEEE DOI
1202
BibRef
Azemin, M.Z.C.,
Kumar, D.K.,
Wong, T.Y.,
Kawasaki, R.,
Mitchell, P.,
Wang, J.J.,
Robust Methodology for Fractal Analysis of the Retinal Vasculature,
MedImg(30), No. 2, February 2011, pp. 243-250.
IEEE DOI
1102
BibRef
Goatman, K.A.,
Fleming, A.D.,
Philip, S.,
Williams, G.J.,
Olson, J.A.,
Sharp, P.F.,
Detection of New Vessels on the Optic Disc Using Retinal Photographs,
MedImg(30), No. 4, April 2011, pp. 972-979.
IEEE DOI
1104
BibRef
You, X.G.[Xin-Ge],
Peng, Q.[Qinmu],
Yuan, Y.[Yuan],
Cheung, Y.M.[Yiu-Ming],
Lei, J.J.[Jia-Jia],
Segmentation of retinal blood vessels using the radial projection and
semi-supervised approach,
PR(44), No. 10-11, October-November 2011, pp. 2314-2324.
Elsevier DOI
1101
Radial projection; Retinal images; Steerable complex wavelet
BibRef
Peng, Q.[Qinmu],
You, X.G.[Xin-Ge],
Zhou, L.[Long],
Cheung, Y.M.[Yiu-Ming],
Retinal Blood Vessels Segmentation Using the Radial Projection and
Supervised Classification,
ICPR10(1489-1492).
IEEE DOI
1008
BibRef
Xu, X.,
Niemeijer, M.,
Song, Q.,
Sonka, M.,
Garvin, M.K.,
Reinhardt, J.M.,
Abramoff, M.D.,
Vessel Boundary Delineation on Fundus Images Using Graph-Based Approach,
MedImg(30), No. 6, June 2011, pp. 1184-1191.
IEEE DOI
1101
See also Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search.
BibRef
Yin, Y.[Yi],
Adel, M.[Mouloud],
Bourennane, S.[Salah],
Retinal vessel segmentation using a probabilistic tracking method,
PR(45), No. 4, April 2012, pp. 1235-1244.
Elsevier DOI
1112
Retinal image; Edge detection; Vessel tracking; Bayesian segmentation
BibRef
Yin, Y.[Yi],
Adel, M.[Mouloud],
Guillaume, M.[Mireille],
Bourennane, S.[Salah],
A probabilistic based method for tracking vessels in retinal images,
ICIP10(4081-4084).
IEEE DOI
1009
BibRef
Perez-Rovira, A.,
Cabido, R.,
Trucco, E.,
McKenna, S.J.,
Hubschman, J.P.,
RERBEE: Robust Efficient Registration via Bifurcations and Elongated
Elements Applied to Retinal Fluorescein Angiogram Sequences,
MedImg(31), No. 1, January 2012, pp. 140-150.
IEEE DOI
1201
BibRef
Wang, Y.F.[Yang-Fan],
Ji, G.R.[Guang-Rong],
Lin, P.[Ping],
Trucco, E.[Emanuele],
Retinal vessel segmentation using multiwavelet kernels and multiscale
hierarchical decomposition,
PR(46), No. 8, August 2013, pp. 2117-2133.
Elsevier DOI
1304
Vessel detection; Retinal images; Segmentation; Matched filter;
Multiwavelet; Multiscale hierarchical decomposition
BibRef
Lupascu, C.A.[Carmen Alina],
Tegolo, D.[Domenico],
Trucco, E.[Emanuele],
A Comparative Study on Feature Selection for Retinal Vessel
Segmentation Using FABC,
CAIP09(655-662).
Springer DOI
0909
BibRef
Azegrouz, H.,
Trucco, E.,
Max-Min Central Vein Detection in Retinal Fundus Images,
ICIP06(1925-1928).
IEEE DOI
0610
BibRef
Esmaeili, M.[Mahdad],
Rabbani, H.[Hossein],
Mehri Dehnavi, A.[Alireza],
Dehghani, A.[Alireza],
Automatic detection of exudates and optic disk in retinal images using
curvelet transform,
IET-IPR(6), No. 7, 2012, pp. 1005-1013.
DOI Link
1211
BibRef
Earlier:
A new curvelet transform based method for extraction of red lesions in
digital color retinal images,
ICIP10(4093-4096).
IEEE DOI
1009
BibRef
Earlier:
Extraction of retinal blood vessels by curvelet transform,
ICIP09(3353-3356).
IEEE DOI
0911
BibRef
Nguyen, U.T.V.[Uyen T.V.],
Bhuiyan, A.[Alauddin],
Park, L.A.F.[Laurence A.F.],
Ramamohanarao, K.[Kotagiri],
An effective retinal blood vessel segmentation method using multi-scale
line detection,
PR(46), No. 3, March 2013, pp. 703-715.
Elsevier DOI
1212
Retinal image; Vessel extraction; Line detector; Central reflex
BibRef
Nguyen, U.T.V.[Uyen T. V.],
Ramamohanarao, K.[Kotagiri],
Park, L.A.F.[Laurence A. F.],
Wang, L.[Liang],
Bhuiyan, A.[Alauddin],
A Quantitative Measure for Retinal Blood Vessel Segmentation Evaluation,
IJCVSP(1), No. 1, 2012, pp. xx-yy.
WWW Link.
1212
BibRef
Earlier: A1, A5, A2, A3, Only:
An Effective Supervised Framework for Retinal Blood Vessel Segmentation
Using Local Standardisation and Bagging,
MLMI11(117-125).
Springer DOI
1109
BibRef
Bhuiyan, A.[Alauddin],
Nath, B.[Baikunth],
Ramamohanarao, K.[Kotagiri],
Detection and Classification of Bifurcation and Branch Points on
Retinal Vascular Network,
DICTA12(1-8).
IEEE DOI
1303
BibRef
Bhuiyan, A.[Alauddin],
Kawasaki, R.[Ryo],
Lamoureux, E.[Ecosse],
Wong, T.Y.[Tien Y.],
Ramamohanarao, K.[Kotagiri],
Vessel Segmentation from Color Retinal Images with Varying Contrast and
Central Reflex Properties,
DICTA10(184-189).
IEEE DOI
1012
BibRef
Bhuiyan, A.[Alauddin],
Nath, B.[Baikunth],
Chua, J.J.[Joselito J.],
Ramamohanarao, K.[Kotagiri],
Blood Vessel Segmentation from Color Retinal Images using Unsupervised
Texture Classification,
ICIP07(V: 521-524).
IEEE DOI
0709
BibRef
Azzopardi, G.[George],
Azzopardi, N.[Nicolai],
Trainable COSFIRE Filters for Keypoint Detection and Pattern
Recognition,
PAMI(35), No. 2, February 2013, pp. 490-503.
IEEE DOI
1301
BibRef
Earlier:
Detection of Retinal Vascular Bifurcations by Rotation- and
Scale-Invariant COSFIRE Filters,
ICIAR12(II: 363-371).
Springer DOI
1206
COSFIRE: Combination Of Shifted FIlter REsponses.
Selective for a local contour pattern specified by an example.
BibRef
Azzopardi, G.[George],
Petkov, N.[Nicolai],
Automatic detection of vascular bifurcations in segmented retinal
images using trainable COSFIRE filters,
PRL(34), No. 8, June 2013, pp. 922-933.
Elsevier DOI
1305
BibRef
Earlier:
Detection of Retinal Vascular Bifurcations by Trainable V4-Like Filters,
CAIP11(I: 451-459).
Springer DOI
1109
Gabor filters; Keypoint detection; Retinal fundus; Trainable filters;
Vascular bifurcation
BibRef
Guo, J.P.[Jia-Pan],
Shi, C.Y.[Chen-Yu],
Azzopardi, G.[George],
Petkov, N.[Nicolai],
Inhibition-augmented trainable COSFIRE filters for keypoint detection
and object recognition,
MVA(27), No. 8, November 2016, pp. 1197-1211.
Springer DOI
1612
BibRef
Gecer, B.[Baris],
Azzopardi, G.[George],
Petkov, N.[Nicolai],
Color-blob-based COSFIRE filters for object recognition,
IVC(57), No. 1, 2017, pp. 165-174.
Elsevier DOI
1702
BibRef
Earlier: A2, A3:
A Shape Descriptor Based on Trainable COSFIRE Filters for the
Recognition of Handwritten Digits,
CAIP13(II:9-16).
Springer DOI
1311
Object recognition
BibRef
Turior, R.[Rashmi],
Onkaew, D.[Danu],
Uyyanonvara, B.[Bunyarit],
PCA-Based Retinal Vessel Tortuosity Quantification,
IEICE(E96-D), No. 2, February 2013, pp. 329-339.
WWW Link.
1301
BibRef
Tang, L.,
Niemeijer, M.,
Reinhardt, J.M.,
Garvin, M.K.,
Abramoff, M.D.,
Splat Feature Classification With Application to Retinal Hemorrhage
Detection in Fundus Images,
MedImg(32), No. 2, February 2013, pp. 364-375.
IEEE DOI
1301
BibRef
Vázquez, S.G.,
Cancela, B.,
Barreira, N.,
Penedo, M.G.,
Rodríguez-Blanco, M.,
Pena Seijo, M.,
Coll de Tuero, G.,
Barceló, M.A.,
Saez, M.,
Improving retinal artery and vein classification by means of a minimal
path approach,
MVA(24), No. 5, July 2013, pp. 919-930.
Springer DOI
1306
BibRef
Odstrcilik, J.,
Kolar, R.,
Budai, A.,
Hornegger, J.,
Jan, J.,
Gazarek, J.,
Kubena, T.,
Cernosek, P.,
Svoboda, O.,
Angelopoulou, E.,
Retinal vessel segmentation by improved matched filtering: evaluation
on a new high-resolution fundus image database,
IET-IPR(7), No. 4, 2013, pp. 373-383.
DOI Link
1307
BibRef
Sulai, Y.N.[Yusufu N.],
Scoles, D.[Drew],
Harvey, Z.[Zachary],
Dubra, A.[Alfredo],
Visualization of retinal vascular structure and perfusion with a
nonconfocal adaptive optics scanning light ophthalmoscope,
JOSA-A(31), No. 3, March 2014, pp. 569-579.
DOI Link
1403
Ophthalmic optics and devices
BibRef
Zhao, Y.Q.[Yu Qian],
Wang, X.H.[Xiao Hong],
Wang, X.F.[Xiao Fang],
Shih, F.Y.[Frank Y.],
Retinal vessels segmentation based on level set and region growing,
PR(47), No. 7, 2014, pp. 2437-2446.
Elsevier DOI
1404
Retinal vessel segmentation
BibRef
Bekkers, E.[Erik],
Duits, R.[Remco],
Berendschot, T.[Tos],
ter Haar Romeny, B.M.[Bart M.],
A Multi-Orientation Analysis Approach to Retinal Vessel Tracking,
JMIV(49), No. 3, July 2014, pp. 583-610.
Springer DOI
1407
BibRef
Dizdarolu, B.[Bekir],
Ataer-Cansizoglu, E.[Esra],
Kalpathy-Cramer, J.[Jayashree],
Keck, K.[Katie],
Chiang, M.[Michael],
Erdogmus, D.[Deniz],
Structure-based level set method for automatic retinal vasculature
segmentation,
JIVP(2014), No. 1, 2014, pp. 39.
DOI Link
1408
BibRef
Sigurđsson, E.M.[Eysteinn Már],
Valero, S.[Silvia],
Benediktsson, J.A.[Jón Atli],
Chanussot, J.[Jocelyn],
Talbot, H.[Hugues],
Stefánsson, E.[Einar],
Automatic retinal vessel extraction based on directional mathematical
morphology and fuzzy classification,
PRL(47), No. 1, 2014, pp. 164-171.
Elsevier DOI
1408
Fundus image
BibRef
Cheng, E.[Erkang],
Du, L.[Liang],
Wu, Y.[Yi],
Zhu, Y.J.[Ying J.],
Megalooikonomou, V.[Vasileios],
Ling, H.B.[Hai-Bin],
Discriminative vessel segmentation in retinal images by fusing
context-aware hybrid features,
MVA(25), No. 7, October 2014, pp. 1779-1792.
Springer DOI
1410
BibRef
Gavet, Y.[Yann],
Fernandes, M.[Mathieu],
Debayle, J.[Johan],
Pinoli, J.C.[Jean-Charles],
Dissimilarity criteria and their comparison for quantitative evaluation
of image segmentation: application to human retina vessels,
MVA(25), No. 8, November 2014, pp. 1953-1966.
Springer DOI
1411
BibRef
Chakraborti, T.[Tapabrata],
Jha, D.K.[Dhiraj K.],
Chowdhury, A.S.[Ananda S.],
Jiang, X.Y.[Xiao-Yi],
A self-adaptive matched filter for retinal blood vessel detection,
MVA(26), No. 1, January 2015, pp. 55-68.
Springer DOI
1503
BibRef
Paripurana, S.[Sukritta],
Chiracharit, W.[Werapon],
Chamnongthai, K.[Kosin],
Saito, H.[Hideo],
Extraction of Blood Vessels in Retinal Images Using Resampling
High-Order Background Estimation,
IEICE(E98-D), No. 3, March 2015, pp. 692-703.
WWW Link.
1504
BibRef
Hassanien, A.E.[Aboul Ella],
Emary, E.,
Zawbaa, H.M.[Hossam M.],
Retinal blood vessel localization approach based on bee colony swarm
optimization, fuzzy c-means and pattern search,
JVCIR(31), No. 1, 2015, pp. 186-196.
Elsevier DOI
1508
Retinal blood vessel
BibRef
Estrada, R.,
Allingham, M.J.,
Mettu, P.S.,
Cousins, S.W.,
Tomasi, C.,
Farsiu, S.,
Retinal Artery-Vein Classification via Topology Estimation,
MedImg(34), No. 12, December 2015, pp. 2518-2534.
IEEE DOI
1601
biomedical optical imaging
BibRef
Li, Q.,
Feng, B.,
Xie, L.,
Liang, P.,
Zhang, H.,
Wang, T.,
A Cross-Modality Learning Approach for Vessel Segmentation in Retinal
Images,
MedImg(35), No. 1, January 2016, pp. 109-118.
IEEE DOI
1601
Accuracy
BibRef
De, J.,
Cheng, L.,
Zhang, X.,
Lin, F.,
Li, H.,
Ong, K.H.,
Yu, W.,
Yu, Y.,
Ahmed, S.,
A Graph-Theoretical Approach for Tracing Filamentary Structures in
Neuronal and Retinal Images,
MedImg(35), No. 1, January 2016, pp. 257-272.
IEEE DOI
1601
Biomedical imaging
BibRef
Krause, M.[Michael],
Alles, R.M.[Ralph Maria],
Burgeth, B.[Bernhard],
Weickert, J.[Joachim],
Fast retinal vessel analysis,
RealTimeIP(11), No. 2, February 2016, pp. 413-422.
Springer DOI
1602
BibRef
Gottemukkula, V.,
Saripalle, S.,
Tankasala, S.P.,
Derakhshani, R.,
Method for using visible ocular vasculature for mobile biometrics,
IET-Bio(5), No. 1, 2016, pp. 3-12.
DOI Link
1603
Gabor filters
BibRef
Lermé, N.[Nicolas],
Rossant, F.[Florence],
Bloch, I.[Isabelle],
Paques, M.[Michel],
Koch, E.[Edouard],
Benesty, J.[Jonathan],
A fully automatic method for segmenting retinal artery walls in
adaptive optics images,
PRL(72), No. 1, 2016, pp. 72-81.
Elsevier DOI
1604
Active contour model
BibRef
van Grinsven, M.J.J.P.,
van Ginneken, B.,
Hoyng, C.B.,
Theelen, T.,
Sánchez, C.I.,
Fast Convolutional Neural Network Training Using Selective Data
Sampling: Application to Hemorrhage Detection in Color Fundus Images,
MedImg(35), No. 5, May 2016, pp. 1273-1284.
IEEE DOI
1605
Biomedical imaging
BibRef
Favali, M.[Marta],
Abbasi-Sureshjani, S.[Samaneh],
ter Haar Romeny, B.M.[Bart M.],
Sarti, A.[Alessandro],
Analysis of Vessel Connectivities in Retinal Images by Cortically
Inspired Spectral Clustering,
JMIV(56), No. 1, September 2016, pp. 158-172.
Springer DOI
1605
BibRef
Abbasi-Sureshjani, S.[Samaneh],
Favali, M.[Marta],
Citti, G.,
Sarti, A.[Alessandro],
ter Haar Romeny, B.M.[Bart M.],
Curvature Integration in a 5D Kernel for Extracting Vessel
Connections in Retinal Images,
IP(27), No. 2, February 2018, pp. 606-621.
IEEE DOI
1712
Biomedical imaging, Blood vessels, Brain modeling, Junctions,
Mathematical model, Retina, Visualization,
spectral clustering
BibRef
Duits, R.[Remco],
Janssen, M.H.J.[Michiel H. J.],
Hannink, J.,
Sanguinetti, G.R.[Gonzalo R.],
Locally Adaptive Frames in the Roto-Translation Group and Their
Applications in Medical Imaging,
JMIV(56), No. 3, November 2016, pp. 367-402.
Springer DOI
1609
BibRef
Sanguinetti, G.R.[Gonzalo R.],
Bekkers, E.[Erik],
Duits, R.[Remco],
Janssen, M.H.J.[Michiel H. J.],
Mashtakov, A.[Alexey],
Mirebeau, J.M.[Jean-Marie],
Sub-Riemannian Fast Marching in SE(2),
CIARP15(366-374).
Springer DOI
1511
Apply to vessel tree extraction.
BibRef
Frucci, M.[Maria],
Riccio, D.[Daniel],
Sanniti di Baja, G.[Gabriella],
Serino, L.[Luca],
Severe: Segmenting vessels in retina images,
PRL(82, Part 2), No. 1, 2016, pp. 162-169.
Elsevier DOI
1609
Retina scan images
BibRef
Liskowski, P.,
Krawiec, K.,
Segmenting Retinal Blood Vessels With Deep Neural Networks,
MedImg(35), No. 11, November 2016, pp. 2369-2380.
IEEE DOI
1609
Biomedical imaging
BibRef
Strisciuglio, N.[Nicola],
Azzopardi, G.[George],
Vento, M.[Mario],
Petkov, N.[Nicolai],
Supervised vessel delineation in retinal fundus images with the
automatic selection of B-COSFIRE filters,
MVA(27), No. 8, November 2016, pp. 1137-1149.
Springer DOI
1612
BibRef
Earlier:
Multiscale Blood Vessel Delineation Using B-COSFIRE Filters,
CAIP15(II:300-312).
Springer DOI
1511
BibRef
Dash, J.[Jyotiprava],
Bhoi, N.[Nilamani],
Detection of retinal blood vessels from ophthalmoscope images using
morphological approach,
ELCVIA(16), No. 1, 2017, pp. 1-14.
DOI Link
1703
BibRef
Alkassar, S.[Sinan],
Woo, W.L.[Wai-Lok],
Dlay, S.S.[Satnam S.],
Chambers, J.A.[Jonathon A.],
Robust Sclera Recognition System With Novel Sclera Segmentation and
Validation Techniques,
SMCS(47), No. 3, March 2017, pp. 474-486.
IEEE DOI
1703
Active contours
BibRef
Alkassar, S.[Sinan],
Woo, W.L.[Wai-Lok],
Dlay, S.S.[Satnam S.],
Chambers, J.A.[Jonathon A.],
Sclera recognition: on the quality measure and segmentation of degraded
images captured under relaxed imaging conditions,
IET-Bio(6), No. 4, July 2017, pp. 266-275.
DOI Link
1707
BibRef
Guo, J.,
Zhu, W.,
Shi, F.,
Xiang, D.,
Chen, H.,
Chen, X.,
A Framework for Classification and Segmentation of Branch Retinal
Artery Occlusion in SD-OCT,
IP(26), No. 7, July 2017, pp. 3518-3527.
IEEE DOI
1706
Arteries, Image edge detection, Image segmentation, Retina, Shape,
Visualization, AdaBoost classifier,
Bayesian posterior probability,
Branch retinal artery occlusion, graph search-graph cut, segmentation
BibRef
Zhang, J.[Jiong],
Chen, Y.[Yuan],
Bekkers, E.[Erik],
Wang, M.[Meili],
Dashtbozorg, B.[Behdad],
ter Haar Romeny, B.M.[Bart M.],
Retinal vessel delineation using a brain-inspired wavelet transform
and random forest,
PR(69), No. 1, 2017, pp. 107-123.
Elsevier DOI
1706
Random forest
BibRef
Morales, S.,
Naranjo, V.,
Angulo, J.,
Legaz-Aparicio, A.G.,
Verdú-Monedero, R.,
Retinal network characterization through fundus image processing:
Significant point identification on vessel centerline,
SP:IC(59), No. 1, 2017, pp. 50-64.
Elsevier DOI
1711
Retinal, skeleton
BibRef
Colomer, A.,
Naranjo, V.,
Engan, K.,
Skretting, K.,
Assessment of sparse-based inpainting for retinal vessel removal,
SP:IC(59), No. 1, 2017, pp. 73-82.
Elsevier DOI
1711
Sparse-based, inpainting
BibRef
Huang, F.[Fan],
Dashtbozorg, B.[Behdad],
ter Haar Romeny, B.M.[Bart M.],
Artery/vein classification using reflection features in retina fundus
images,
MVA(29), No. 1, January 2018, pp. 23-34.
WWW Link.
1801
BibRef
Biswal, B.[Birendra],
Pooja, T.[Thotakura],
Subrahmanyam, N.B.[N. Bala],
Robust retinal blood vessel segmentation using line detectors with
multiple masks,
IET-IPR(12), No. 3, March 2018, pp. 389-399.
DOI Link
1802
BibRef
Karn, P.K.[Prakash Kumar],
Biswal, B.[Birendra],
Samantaray, S.R.[Subhransu Ranjan],
Robust retinal blood vessel segmentation using hybrid active contour
model,
IET-IPR(13), No. 3, February 2019, pp. 440-450.
DOI Link
1903
BibRef
Hassan, G.[Gehad],
Hassanien, A.E.[Aboul Ella],
Retinal fundus vasculature multilevel segmentation using whale
optimization algorithm,
SIViP(12), No. 2, February 2018, pp. 263-270.
WWW Link.
1802
BibRef
Pellegrini, E.,
Robertson, G.,
MacGillivray, T.,
van Hemert, J.,
Houston, G.,
Trucco, E.,
A Graph Cut Approach to Artery/Vein Classification in Ultra-Widefield
Scanning Laser Ophthalmoscopy,
MedImg(37), No. 2, February 2018, pp. 516-526.
IEEE DOI
1802
Biomedical imaging, Blood vessels, Cameras, Feature extraction,
Image resolution, Image segmentation, Retina, Retina,
ultra-widefield
BibRef
Costa, P.[Pedro],
Galdran, A.[Adrian],
Meyer, M.I.[Maria Ines],
Niemeijer, M.,
Abramoff, M.,
Mendonça, A.M.[Ana Maria],
Campilho, A.[Aurélio],
End-to-End Adversarial Retinal Image Synthesis,
MedImg(37), No. 3, March 2018, pp. 781-791.
IEEE DOI
1804
BibRef
Earlier: A1, A2, A3, A6, A7, Only:
Adversarial Synthesis of Retinal Images from Vessel Trees,
ICIAR17(516-523).
Springer DOI
1706
blood vessels, eye, image colour analysis, image segmentation,
learning (artificial intelligence), medical image processing,
retinal image analysis
BibRef
Meyer, M.I.[Maria Ines],
Costa, P.[Pedro],
Galdran, A.[Adrian],
Mendonça, A.M.[Ana Maria],
Campilho, A.[Aurélio],
A Deep Neural Network for Vessel Segmentation of Scanning Laser
Ophthalmoscopy Images,
ICIAR17(507-515).
Springer DOI
1706
BibRef
Shahid, M.[Muhammad],
Taj, I.A.[Imtiaz Ahmad],
Retracted: Robust Retinal Vessel Segmentation using Vessel's Location Map and
Frangi Enhancement Filter,
IET-IPR(12), No. 8, August 2018, pp. 1510.
DOI Link
BibRef
1808
And:
Original:
IET-IPR(12), No. 4, April 2018, pp. 494-501.
DOI Link
1804
The article published in IET Image Processing on 16th January 2018
has been retracted due to a breach of the IET's Policy in Relation to
Plagiarism, Infringement of Copyright and Infringement of Moral Rights
and Submission to Multiple Publications. Prof. Imtiaz Ahmed Taj was
unaware of and not complicit in any misconduct.
BibRef
Yan, Z.,
Yang, X.,
Cheng, K.T.,
A Skeletal Similarity Metric for Quality Evaluation of Retinal Vessel
Segmentation,
MedImg(37), No. 4, April 2018, pp. 1045-1057.
IEEE DOI
1804
Image segmentation, Manuals, Observers, Retinal vessels, Skeleton,
Thickness measurement, Retinal vessel segmentation,
skeletal similarity
BibRef
Thangaraj, S.[Sumathi],
Periyasamy, V.[Vivekanandan],
Balaji, R.[Ravikanth],
Retinal vessel segmentation using neural network,
IET-IPR(12), No. 5, May 2018, pp. 669-678.
DOI Link
1804
BibRef
Strisciuglio, N.[Nicola],
Learning audio and image representations with bio-inspired trainable
feature extractors,
ELCVIA(16), No. 2, 2017, pp. 17-20.
DOI Link
1804
Audio events in noise.
Detection of elongated and curvilinear patterns in images and apply
them to the delineation of blood vessels in retinal images.
COSFIRE descriptor.
BibRef
Strisciuglio, N.[Nicola],
Vento, M.[Mario],
Petkov, N.[Nicolai],
Learning representations of sound using trainable COPE feature
extractors,
PR(92), 2019, pp. 25-36.
Elsevier DOI
1905
Audio analysis, Event detection, Peaks of energy,
Representation learning, Trainable feature extractors
BibRef
Gou, D.D.[Duo-Duo],
Wei, Y.[Ying],
Fu, H.[Hong],
Yan, N.[Ning],
Retinal vessel extraction using dynamic multi-scale matched filtering
and dynamic threshold processing based on histogram fitting,
MVA(29), No. 4, May 2018, pp. 655-666.
WWW Link.
1805
BibRef
And:
Correction:
MVA(30), No. 3, April 2019, pp. 541.
WWW Link.
1906
BibRef
Argüello, F.[Francisco],
Vilarińo, D.L.[David L.],
Heras, D.B.[Dora B.],
Nieto, A.[Alejandro],
GPU-based segmentation of retinal blood vessels,
RealTimeIP(14), No. 4, April 2018, pp. 773-782.
Springer DOI
1805
BibRef
Bendaoudi, H.[Hamza],
Cheriet, F.[Farida],
Manraj, A.[Ashley],
Ben Tahar, H.[Houssem],
Langlois, J.M.P.[J.M. Pierre],
Flexible architectures for retinal blood vessel segmentation in
high-resolution fundus images,
RealTimeIP(15), No. 1, June 2018, pp. 31-42.
Springer DOI
1806
BibRef
Chen, D.[Da],
Cohen, L.D.[Laurent D.],
Fast Asymmetric Fronts Propagation for Image Segmentation,
JMIV(60), No. 6, July 2018, pp. 766-783.
WWW Link.
1806
BibRef
Earlier:
Fast Asymmetric Fronts Propagation for Voronoi Region Partitioning and
Image Segmentation,
EMMCVPR17(469-484).
Springer DOI
1805
BibRef
Chen, D.[Da],
Cohen, L.D.[Laurent D.],
Piecewise Geodesics for Vessel Centerline Extraction and Boundary
Delineation with Application to Retina Segmentation,
SSVM15(270-281).
Springer DOI
1506
BibRef
Yue, K.[Kejuan],
Zou, B.[Beiji],
Chen, Z.L.[Zai-Liang],
Liu, Q.[Qing],
Improved multi-scale line detection method for retinal blood vessel
segmentation,
IET-IPR(12), No. 8, August 2018, pp. 1450-1457.
DOI Link
1808
BibRef
Bhoopalan, R.[Ramasubramanian],
Sundaramoorthy, S.[Selvaperumal],
Efficient approach for the automatic detection of haemorrhages in
colour retinal images,
IET-IPR(12), No. 9, September 2018, pp. 1550-1554.
DOI Link
1809
BibRef
Sathananthavathi, V.[Vallikutti],
Indumathi, G.[Ganesan],
BAT algorithm inspired retinal blood vessel segmentation,
IET-IPR(12), No. 11, November 2018, pp. 2075-2083.
DOI Link
1810
BibRef
Khomri, B.[Bilal],
Christodoulidis, A.[Argyrios],
Djerou, L.[Leila],
Babahenini, M.C.[Mohamed Chaouki],
Cheriet, F.[Farida],
Retinal blood vessel segmentation using the elite-guided
multi-objective artificial bee colony algorithm,
IET-IPR(12), No. 12, December 2018, pp. 2163-2171.
DOI Link
1812
BibRef
Uslu, F.[Fatmatülzehra],
Bharath, A.A.[Anil Anthony],
A recursive Bayesian approach to describe retinal vasculature
geometry,
PR(87), 2019, pp. 157-169.
Elsevier DOI
1812
Particle filtering, Deep neural network, Deep Belief Net,
Fundus image, Width estimation, Tracking
BibRef
Sazak, Ç.[Çigdem],
Nelson, C.J.[Carl J.],
Obara, B.[Boguslaw],
The multiscale bowler-hat transform for blood vessel enhancement in
retinal images,
PR(88), 2019, pp. 739-750.
Elsevier DOI
1901
BibRef
And:
Erratum:
PR(91), 2019, pp. 404.
Elsevier DOI
1904
Image enhancement, Mathematical morphology,
Bowler-hat transform, Blood vessel enhancement
BibRef
Wang, X.H.[Xiao-Hong],
Jiang, X.D.[Xu-Dong],
Ren, J.F.[Jian-Feng],
Blood vessel segmentation from fundus image by a cascade
classification framework,
PR(88), 2019, pp. 331-341.
Elsevier DOI
1901
Fundus image, Retinal vessel segmentation,
Cascade classification, Dimensionality reduction
BibRef
Fan, Z.,
Lu, J.,
Wei, C.,
Huang, H.,
Cai, X.,
Chen, X.,
A Hierarchical Image Matting Model for Blood Vessel Segmentation in
Fundus Images,
IP(28), No. 5, May 2019, pp. 2367-2377.
IEEE DOI
1903
blood vessels, eye, feature extraction, image segmentation,
medical image processing, hierarchical image matting model,
vessel
BibRef
Khowaja, S.A.[Sunder Ali],
Khuwaja, P.[Parus],
Ismaili, I.A.[Imdad Ali],
A framework for retinal vessel segmentation from fundus images using
hybrid feature set and hierarchical classification,
SIViP(13), No. 2, March 2019, pp. 379-387.
WWW Link.
1904
BibRef
Srinidhi, C.L.,
Aparna, P.,
Rajan, J.,
Automated Method for Retinal Artery/Vein Separation via Graph Search
Metaheuristic Approach,
IP(28), No. 6, June 2019, pp. 2705-2718.
IEEE DOI
1905
biomedical optical imaging, blood vessels, diseases, eye,
feature extraction, graph theory, image classification,
vessel keypoints
BibRef
Han, M.[Myounghee],
Kim, Y.[Yongjoo],
Park, J.R.[Jang Ryul],
Vakoc, B.J.[Benjamin J.],
Oh, W.Y.[Wang-Yuhl],
Ryu, S.[Sukyoung],
Retinal Blood Vessel Caliber Estimation for Optical Coherence
Tomography Angiography Images Based on 3D Superellipsoid Modeling,
IJIG(19), No. 2 2019, pp. 1950011.
DOI Link
1906
BibRef
Dharmawan, D.A.,
Ng, B.P.,
Borijindargoon, N.,
Design of Optimal Adaptive Filters for Two-Dimensional Filamentary
Structures Segmentation,
SPLetters(26), No. 10, October 2019, pp. 1511-1515.
IEEE DOI
1909
Image segmentation, Training, Retinal vessels, Blood vessels,
Biomedical imaging, Image reconstruction,
regularization
BibRef
Motta, D.,
Casaca, W.,
Paiva, A.,
Vessel Optimal Transport for Automated Alignment of Retinal Fundus
Images,
IP(28), No. 12, December 2019, pp. 6154-6168.
IEEE DOI
1909
Retina, Biomedical imaging, Image registration, Feature extraction,
Optimization, Blood vessels, Retinal image registration,
optimal transport
BibRef
Wang, W.H.[Wei-Hua],
Wang, W.Q.[Wei-Qing],
Hu, Z.[Zhangping],
Retinal vessel segmentation approach based on corrected morphological
transformation and fractal dimension,
IET-IPR(13), No. 13, November 2019, pp. 2538-2547.
DOI Link
1911
BibRef
Yang, Y.[Yan],
Shao, F.[Feng],
Fu, Z.Q.[Zhen-Qi],
Fu, R.[Randi],
Discriminative dictionary learning for retinal vessel segmentation
using fusion of multiple features,
SIViP(13), No. 8, November 2019, pp. 1529-1537.
WWW Link.
1911
BibRef
Khan, M.A.U.[Mohammad A. U.],
Khan, T.M.[Tariq M.],
Naqvi, S.S.[Syed S.],
Khan, M.A.[M. Aurangzeb],
GGM classifier with multi-scale line detectors for retinal vessel
segmentation,
SIViP(13), No. 8, November 2019, pp. 1667-1675.
Springer DOI
1911
BibRef
Bibiloni, P.[Pedro],
González-Hidalgo, M.[Manuel],
Massanet, S.[Sebastia],
A real-time fuzzy morphological algorithm for retinal vessel
segmentation,
RealTimeIP(16), No. 6, December 2019, pp. 2337-2350.
Springer DOI
1912
BibRef
Zhao, Y.T.[Yi-Tian],
Xie, J.Y.[Jian-Yang],
Zhang, H.Z.[Huai-Zhong],
Zheng, Y.L.[Ya-Lin],
Zhao, Y.F.[Yi-Fan],
Qi, H.[Hong],
Zhao, Y.C.[Yang-Chun],
Su, P.[Pan],
Liu, J.[Jiang],
Liu, Y.H.[Yong-Huai],
Retinal Vascular Network Topology Reconstruction and Artery/Vein
Classification via Dominant Set Clustering,
MedImg(39), No. 2, February 2020, pp. 341-356.
IEEE DOI
2002
Retinal images, dominant set clustering, blood vessel,
vascular topology, Artery/vein classification
BibRef
Tan, Y.H.[Ying-Hui],
Liu, M.[Min],
Chen, W.X.[Wei-Xun],
Wang, X.P.[Xue-Ping],
Peng, H.C.[Han-Chuan],
Wang, Y.[Yaonan],
DeepBranch: Deep Neural Networks for Branch Point Detection in
Biomedical Images,
MedImg(39), No. 4, April 2020, pp. 1195-1205.
IEEE DOI
2004
Biomedical imaging,
Image reconstruction, Neurons, Image segmentation, Convolution,
convolutional neural networks cascade
BibRef
Rammy, S.A.[Sadaqat Ali],
Abbas, W.[Waseem],
Hassan, N.U.[Naqy-Ul],
Raza, A.[Asif],
Zhang, W.[Wu],
CPGAN: Conditional patch-based generative adversarial network for
retinal vessel segmentation,
IET-IPR(14), No. 6, 11 May 2020, pp. 1081-1090.
DOI Link
2005
BibRef
Ding, L.,
Bawany, M.H.,
Kuriyan, A.E.,
Ramchandran, R.S.,
Wykoff, C.C.,
Sharma, G.,
A Novel Deep Learning Pipeline for Retinal Vessel Detection In
Fluorescein Angiography,
IP(29), 2020, pp. 6561-6573.
IEEE DOI
2007
Pipelines, Deep learning, Retinal vessels, Angiography, Training,
Annotations, Fluorescein angiography,
deep learning
BibRef
Zhao, H.L.[Han-Li],
Qiu, X.Q.[Xia-Qing],
Lu, W.L.[Wang-Long],
Huang, H.[Hui],
Jin, X.G.[Xiao-Gang],
High-quality retinal vessel segmentation using generative adversarial
network with a large receptive field,
IJIST(30), No. 3, 2020, pp. 828-842.
DOI Link
2008
dilated convolution, generative adversarial network,
receptive field, retinal vessel segmentation
BibRef
Upadhyay, K.[Kamini],
Agrawal, M.[Monika],
Vashist, P.[Praveen],
Unsupervised multiscale retinal blood vessel segmentation using fundus
images,
IET-IPR(14), No. 11, September 2020, pp. 2616-2625.
DOI Link
2009
BibRef
Wang, Z.,
Jiang, X.,
Liu, J.,
Cheng, K.,
Yang, X.,
Multi-Task Siamese Network for Retinal Artery/Vein Separation via
Deep Convolution Along Vessel,
MedImg(39), No. 9, September 2020, pp. 2904-2919.
IEEE DOI
2009
Task analysis, Visualization, Image segmentation,
Feature extraction, Convolution, Retina, Machine learning,
multi-task learning
BibRef
Li, M.C.[Ming-Chao],
Chen, Y.R.[Ye-Rui],
Ji, Z.X.[Ze-Xuan],
Xie, K.[Keren],
Yuan, S.T.[Song-Tao],
Chen, Q.[Qiang],
Li, S.[Shuo],
Image Projection Network: 3D to 2D Image Segmentation in OCTA Images,
MedImg(39), No. 11, November 2020, pp. 3343-3354.
IEEE DOI
2011
BibRef
And:
Correction:
MedImg(42), No. 1, January 2023, pp. 329-329.
IEEE DOI
2301
Image segmentation,
Retinal vessels, Biomedical imaging,
optical coherence tomography angiography
BibRef
Dash, S.[Sonali],
Senapati, M.R.[Manas Ranjan],
Sahu, P.K.[Pradip Kumar],
Chowdary, P.S.R.,
Illumination normalized based technique for retinal blood vessel
segmentation,
IJIST(31), No. 1, 2021, pp. 351-363.
DOI Link
2102
CLAHE, homomorphic normalization, hysteresis thresholding, retinal vasculature
BibRef
Iqbal, M.[Mehwish],
Riaz, M.M.[Muhammad Mohsin],
Ghafoor, A.[Abdul],
Ahmad, A.[Attiq],
A vessel segmentation technique for retinal images,
IJIST(31), No. 1, 2021, pp. 160-167.
DOI Link
2102
B-COSFIRE filter, detail enhancement, vessel extraction
BibRef
Ma, Y.,
Hao, H.,
Xie, J.,
Fu, H.,
Zhang, J.,
Yang, J.,
Wang, Z.,
Liu, J.,
Zheng, Y.,
Zhao, Y.,
ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model,
MedImg(40), No. 3, March 2021, pp. 928-939.
IEEE DOI
2103
Measurement, Image segmentation, Statistical analysis,
Optical coherence tomography, Ultraviolet sources, Retina,
benchmark
BibRef
Kipli, K.[Kuryati],
Hoque, M.E.[Mohammed Enamul],
Lim, L.T.[Lik Thai],
Zulcaffle, T.M.A.[Tengku Mohd Afendi],
Sahari, S.K.[Siti Kudnie],
Mahmood, M.H.[Muhammad Hamdi],
Retinal image blood vessel extraction and quantification with Euclidean
distance transform approach,
IET-IPR(14), No. 15, 15 December 2020, pp. 3718-3724.
DOI Link
2103
BibRef
Chen, Z.Y.[Zhi-Yuan],
Jin, W.[Wei],
Zeng, X.B.[Xing-Bin],
Xu, L.[Liang],
Retinal vessel segmentation based on task-driven generative adversarial
network,
IET-IPR(14), No. 17, 24 December 2020, pp. 4599-4605.
DOI Link
2104
BibRef
Zhu, D.C.[Dong-Chen],
Li, J.M.[Jia-Mao],
Li, H.[Hang],
Peng, J.Q.[Jing-Quan],
Wang, X.S.[Xian-Shun],
Zhang, X.L.[Xiao-Lin],
A Less-constrained Sclera Recognition Method based on Stem-and-leaf
Branches Network,
PRL(145), 2021, pp. 43-49.
Elsevier DOI
2104
Biometrics, Sclera recognition, Vessels segmentation,
Recognition neural network, Feature aggregation
BibRef
Sun, M.[Muyi],
Li, K.Q.[Kai-Qi],
Qi, X.Q.[Xing-Qun],
Dang, H.[Hao],
Zhang, G.H.[Guan-Hong],
Contextual information enhanced convolutional neural networks for
retinal vessel segmentation in color fundus images,
JVCIR(77), 2021, pp. 103134.
Elsevier DOI
2106
Retinal vessel segmentation, Color fundus image analysis,
Semantic segmentation, Cascaded dilated module, Context fusion
BibRef
Sayed, M.A.[Md. Abu],
Saha, S.[Sajib],
Rahaman, G.M.A.[G. M. Atiqur],
Ghosh, T.K.[Tanmai K.],
Kanagasingam, Y.[Yogesan],
An innovate approach for retinal blood vessel segmentation using
mixture of supervised and unsupervised methods,
IET-IPR(15), No. 1, 2021, pp. 180-190.
DOI Link
2106
BibRef
Earlier: A4, A2, A3, A1, A5:
Retinal Blood Vessel Segmentation: A Semi-supervised Approach,
IbPRIA19(II:98-107).
Springer DOI
1910
BibRef
Liu, Y.P.[Yi-Peng],
Rui, X.[Xue],
Li, Z.Q.[Zhan-Qing],
Zeng, D.X.[Dong-Xu],
Li, J.[Jing],
Chen, P.[Peng],
Liang, R.H.[Rong-Hua],
Feature pyramid U-Net for retinal vessel segmentation,
IET-IPR(15), No. 8, 2021, pp. 1733-1744.
DOI Link
2106
BibRef
Tavakoli, M.[Meysam],
Mehdizadeh, A.[Alireza],
Shahri, R.P.[Reza Pourreza],
Dehmeshki, J.[Jamshid],
Unsupervised automated retinal vessel segmentation based on Radon
line detector and morphological reconstruction,
IET-IPR(15), No. 7, 2021, pp. 1484-1498.
DOI Link
2106
BibRef
Zou, B.[Beiji],
Fu, H.[Hongpu],
Chen, Z.L.[Zai-Liang],
Liu, Q.[Qing],
Ground truth free retinal vessel segmentation by learning from simple
pixels,
IET-IPR(15), No. 6, 2021, pp. 1210-1220.
DOI Link
2106
BibRef
Peng, Y.Y.[Yuan-Yuan],
Zhu, W.F.[Wei-Fang],
Chen, Z.Y.[Zhong-Yue],
Wang, M.[Meng],
Geng, L.[Le],
Yu, K.[Kai],
Zhou, Y.[Yi],
Wang, T.[Ting],
Xiang, D.M.[Dao-Man],
Chen, F.[Feng],
Chen, X.J.[Xin-Jian],
Automatic Staging for Retinopathy of Prematurity With Deep Feature
Fusion and Ordinal Classification Strategy,
MedImg(40), No. 7, July 2021, pp. 1750-1762.
IEEE DOI
2107
Feature extraction, Convolution, Blindness, Standards, Retinopathy,
Retinal vessels, Data mining, Retinopathy of prematurity,
fundus images
BibRef
Das, S.[Sumanta],
de Ghosh, I.[Ishita],
Chattopadhyay, A.[Abir],
An efficient deep sclera recognition framework with novel sclera
segmentation, vessel extraction and gaze detection,
SP:IC(97), 2021, pp. 116349.
Elsevier DOI
2107
DeepR, Gaze detection, Sclera biometric, Sclera recognition,
Sclera segmentation, Vasculature segmentation
BibRef
Hakim, L.[Lukman],
Kavitha, M.S.[Muthu Subash],
Yudistira, N.[Novanto],
Kurita, T.[Takio],
Regularizer based on Euler characteristic for retinal blood vessel
segmentation,
PRL(149), 2021, pp. 83-90.
Elsevier DOI
2108
Fundus image, Segmentation, Euler characteristic, Regularizer
BibRef
Liu, Y.P.[Yi-Peng],
Lv, Y.J.[Ya-Jun],
Li, Z.Q.[Zhan-Qing],
Li, J.[Jing],
Liu, Y.[Yan],
Chen, P.[Peng],
Liang, R.H.[Rong-Hua],
Blood vessel and background separation for retinal image quality
assessment,
IET-IPR(15), No. 11, 2021, pp. 2559-2571.
DOI Link
2108
BibRef
Sathananthavathi, V.,
Indumathi, G.,
Mahiya, R.[Rita],
Priyadarshini, S.,
Improvement of thin retinal vessel extraction using mean matting
method,
IJIST(31), No. 3, 2021, pp. 1455-1467.
DOI Link
2108
correlation, enhancement, extraction, features, fundus, trimap,
wavelet transform
BibRef
Zhao, R.[Ruohan],
Li, Q.[Qin],
Wu, J.R.[Jian-Rong],
You, J.[Jane],
A nested U-shape network with multi-scale upsample attention for
robust retinal vascular segmentation,
PR(120), 2021, pp. 107998.
Elsevier DOI
2109
Vascular segmentation, Retinal imaging, Dense U-Net,
Multi-scale attention, Deep learning
BibRef
Ding, L.[Li],
Kuriyan, A.E.[Ajay E.],
Ramchandran, R.S.[Rajeev S.],
Wykoff, C.C.[Charles C.],
Sharma, G.[Gaurav],
Weakly-Supervised Vessel Detection in Ultra-Widefield Fundus
Photography via Iterative Multi-Modal Registration and Learning,
MedImg(40), No. 10, October 2021, pp. 2748-2758.
IEEE DOI
2110
Noise measurement, Training, Photography, Training data,
Retinal vessels, Retinal vessel detection, noisy labels
BibRef
Yang, X.[Xin],
Li, Z.Q.[Zhi-Qiang],
Guo, Y.Q.[Ying-Qing],
Zhou, D.[Dake],
Retinal vessel segmentation based on an improved deep forest,
IJIST(31), No. 4, 2021, pp. 1792-1802.
DOI Link
2112
cascade forest, CNN, deep forest, model fusion,
retinal blood vessel segmentation
BibRef
Khan, T.M.[Tariq M.],
Robles-Kelly, A.[Antonio],
Naqvi, S.S.[Syed S.],
RC-Net: A Convolutional Neural Network for Retinal Vessel
Segmentation,
DICTA21(01-07)
IEEE DOI
2201
Image segmentation, Image color analysis, Digital images,
Benchmark testing, Information filters, Retinal vessels,
Residual Connections
BibRef
Wei, J.H.[Jia-Hong],
Zhu, G.J.[Gui-Jie],
Fan, Z.[Zhun],
Liu, J.C.[Jin-Chao],
Rong, Y.B.[Yi-Biao],
Mo, J.J.[Jia-Jie],
Li, W.J.[Wen-Ji],
Chen, X.J.[Xin-Jian],
Genetic U-Net: Automatically Designed Deep Networks for Retinal
Vessel Segmentation Using a Genetic Algorithm,
MedImg(41), No. 2, February 2022, pp. 292-307.
IEEE DOI
2202
Retinal vessels, Image segmentation, Computer architecture,
Genetic algorithms, Network architecture, Biomedical imaging,
neural architecture search (NAS)
BibRef
Pal, M.N.[Mahua Nandy],
Banerjee, M.[Minakshi],
Retinal vessel segmentation using a strip wise classification approach
with grid search-based parameter selection,
IJCVR(12), No. 2, 2022, pp. 194-218.
DOI Link
2203
BibRef
Fu, Y.H.[Ying-Hua],
Zhang, G.[Ge],
Li, J.[Jiang],
Pan, D.Y.[Dong-Yan],
Wang, Y.X.[Yong-Xiong],
Zhang, D.W.[Da-Wei],
Fovea localization by blood vessel vector in abnormal fundus images,
PR(129), 2022, pp. 108711.
Elsevier DOI
2206
Blood vessel vector (BVV), Fovea localization, Retinal raphe,
Probability bubble, Region search
BibRef
Mishra, S.[Suraj],
Zhang, Y.Z.[Yi-Zhe],
Chen, D.Z.[Danny Z.],
Hu, X.S.[X. Sharon],
Data-Driven Deep Supervision for Medical Image Segmentation,
MedImg(41), No. 6, June 2022, pp. 1560-1574.
IEEE DOI
2206
Image segmentation, Feature extraction,
Convolutional neural networks, Retinal vessels, Optical imaging,
2D and 3D images
BibRef
Xu, P.F.[Peng-Fei],
Zhao, G.[Gangjing],
Liu, J.P.[Jin-Ping],
Jahanshahi, H.[Hadi],
Tang, Z.H.[Zhao-Hui],
Gong, S.[Subo],
MCG&BA-Net: Retinal vessel segmentation using multiscale context
gating and breakpoint attention,
IET-IPR(16), No. 11, 2022, pp. 3039-3056.
DOI Link
2208
BibRef
Li, Y.[Yang],
Zhang, Y.[Yue],
Cui, W.G.[Wei-Gang],
Lei, B.[Baiying],
Kuang, X.[Xihe],
Zhang, T.[Teng],
Dual Encoder-Based Dynamic-Channel Graph Convolutional Network With
Edge Enhancement for Retinal Vessel Segmentation,
MedImg(41), No. 8, August 2022, pp. 1975-1989.
IEEE DOI
2208
Image edge detection, Biomedical imaging, Image segmentation,
Feature extraction, Deep learning, Convolution, Decoding,
deep learning
BibRef
Tan, Y.[Yubo],
Yang, K.F.[Kai-Fu],
Zhao, S.X.[Shi-Xuan],
Li, Y.J.[Yong-Jie],
Retinal Vessel Segmentation With Skeletal Prior and Contrastive Loss,
MedImg(41), No. 9, September 2022, pp. 2238-2251.
IEEE DOI
2209
Image segmentation, Retinal vessels, Lesions, Deep learning,
Skeleton, Feature extraction, Optical imaging, Fundus image,
contrastive loss
BibRef
Yang, X.[Xin],
Liu, L.[Li],
Li, T.[Tao],
MR-UNet: An UNet model using multi-scale and residual convolutions
for retinal vessel segmentation,
IJIST(32), No. 5, 2022, pp. 1588-1603.
DOI Link
2209
deep learning, improved UNet, multi-scale features, retinal vessel segmentation
BibRef
Mahapatra, S.[Sakambhari],
Jena, U.R.[Uma Ranjan],
Dash, S.[Sonali],
Agrawal, S.,
A modified Coye algorithm for retinal vessel segmentation,
IJCVR(13), No. 1, 2023, pp. 73-90.
DOI Link
2212
BibRef
Hao, J.[Jinkui],
Shen, T.[Ting],
Zhu, X.[Xueli],
Liu, Y.H.[Yong-Huai],
Behera, A.[Ardhendu],
Zhang, D.[Dan],
Chen, B.[Bang],
Liu, J.[Jiang],
Zhang, J.[Jiong],
Zhao, Y.T.[Yi-Tian],
Retinal Structure Detection in OCTA Image via Voting-Based Multitask
Learning,
MedImg(41), No. 12, December 2022, pp. 3969-3980.
IEEE DOI
2212
Task analysis, Image segmentation, Feature extraction,
Retinal vessels, Multitasking, Diseases, Bifurcation, OCTA,
classification
BibRef
Lyu, J.[Junyan],
Zhang, Y.Q.[Yi-Qi],
Huang, Y.J.[Yi-Jin],
Lin, L.[Li],
Cheng, P.[Pujin],
Tang, X.Y.[Xiao-Ying],
AADG: Automatic Augmentation for Domain Generalization on Retinal
Image Segmentation,
MedImg(41), No. 12, December 2022, pp. 3699-3711.
IEEE DOI
2212
Image segmentation, Task analysis, Training,
Medical diagnostic imaging, Testing, Retinal vessels, Lesions,
reinforcement learning
BibRef
Liu, Y.H.[Yi-Hao],
Carass, A.[Aaron],
Zuo, L.[Lianrui],
He, Y.F.[Yu-Fan],
Han, S.[Shuo],
Gregori, L.[Lorenzo],
Murray, S.[Sean],
Mishra, R.[Rohit],
Lei, J.Q.[Jian-Qin],
Calabresi, P.A.[Peter A.],
Saidha, S.[Shiv],
Prince, J.L.[Jerry L.],
Disentangled Representation Learning for OCTA Vessel Segmentation
With Limited Training Data,
MedImg(41), No. 12, December 2022, pp. 3686-3698.
IEEE DOI
2212
Image segmentation, Manuals, Training, Decoding, Faces,
Image reconstruction, Angiography, OCT, OCTA,
vessel segmentation
BibRef
Erwin,
Putra, H.K.[Hadrians Kesuma],
Suprihatin, B.[Bambang],
Fathoni,
Retinal Blood Vessel Extraction Using a New Enhancement Technique of
Modified Convolution Filters and Sauvola Thresholding,
IJIG(23), No. 1 2023, pp. 2350006.
DOI Link
2302
BibRef
Challoob, M.[Mohsin],
Gao, Y.S.[Yong-Sheng],
Busch, A.[Andrew],
Nikzad, M.[Mohammad],
Separable Paravector Orientation Tensors for Enhancing Retinal
Vessels,
MedImg(42), No. 3, March 2023, pp. 880-893.
IEEE DOI
2303
Tensors, Retinal vessels, Kernel, Lighting, Bandwidth,
Eigenvalues and eigenfunctions, Frequency-domain analysis,
tensor analysis
BibRef
Fhima, J.[Jonathan],
van Eijgen, J.[Jan],
Stalmans, I.[Ingeborg],
Men, Y.[Yevgeniy],
Freiman, M.[Moti],
Behar, J.A.[Joachim A.],
Pvbm: A Python Vasculature Biomarker Toolbox Based on Retinal Blood
Vessel Segmentation,
MCV22(296-312).
Springer DOI
2304
BibRef
Harish, B.S.,
Maheshan, M.S.,
Roopa, C.K.,
Rangan, R.K.[R. Kasturi],
An improved sclera recognition using kernel entropy component analysis
method,
IJCVR(13), No. 3, 2023, pp. 304-315.
DOI Link
2305
BibRef
Liu, Y.P.[Yi-Peng],
Zeng, D.X.[Dong-Xu],
Li, Z.Q.[Zhan-Qing],
Chen, P.[Peng],
Liang, R.H.[Rong-Hua],
SS-Norm: Spectral-spatial normalization for single-domain
generalization with application to retinal vessel segmentation,
IET-IPR(17), No. 7, 2023, pp. 2168-2181.
DOI Link
2305
convolutional neural nets, image segmentation, medical image processing
BibRef
van den Berg, N.J.[Nicky J.],
Zhang, S.[Shuhe],
Smets, B.M.N.[Bart M. N.],
Berendschot, T.T.J.M.[Tos T. J. M.],
Duits, R.[Remco],
Geodesic Tracking of Retinal Vascular Trees with Optical and TV-Flow
Enhancement in Se(2),
SSVM23(525-537).
Springer DOI
2307
BibRef
Li, Y.[Yang],
Zhang, Y.[Yue],
Liu, J.Y.[Jing-Yu],
Wang, K.[Kang],
Zhang, K.[Kai],
Zhang, G.S.[Gen-Sheng],
Liao, X.F.[Xiao-Feng],
Yang, G.[Guang],
Global Transformer and Dual Local Attention Network via Deep-Shallow
Hierarchical Feature Fusion for Retinal Vessel Segmentation,
Cyber(53), No. 9, September 2023, pp. 5826-5839.
IEEE DOI
2309
BibRef
Gao, W.W.[Wei-Wei],
Fan, B.[Bo],
Fang, Y.[Yu],
Shan, M.[Mingtao],
Song, N.[Nan],
Detection and location of microaneurysms in fundus images based on
improved YOLOv4 with IFCM,
IET-IPR(17), No. 11, 2023, pp. 3349-3357.
DOI Link
2310
fundus image, improved fuzzy C-means (IFCM), microaneurysm,
SENet, YOLOv4
BibRef
Chen, J.[Jian],
Wan, J.[Jiaze],
Fang, Z.[Zhenghan],
Wei, L.F.[Li-Fang],
LMSA-Net: A lightweight multi-scale aware network for retinal vessel
segmentation,
IJIST(33), No. 5, 2023, pp. 1515-1530.
DOI Link
2310
lightweight network, multi-scale awareness,
retinal vessel segmentation, semantic information
BibRef
Wang, X.C.[Xiao-Chen],
Ding, Y.H.[Yan-Hui],
Zheng, Y.J.[Yuan-Jie],
Multiscale attention network for retinal vein occlusion
classification with multicolor image,
IJIST(33), No. 6, 2023, pp. 2012-2022.
DOI Link
2311
convolutional neural networks, multicolor images,
multiscale attention, retinal image classification, retinal vein occlusion
BibRef
Das, S.[Sumanta],
Ghosh, I.D.[Ishita De],
Chattopadhyay, A.[Abir],
An investigation into automated age estimation using sclera images:
a novel modality,
IJCVR(14), No. 1, 2024, pp. 42-62.
DOI Link
2312
BibRef
Huang, L.Y.[Lin-Yuan],
Liu, F.[Feng],
Width measurement of retinal vessels using cubic spline fitting and
extended edge-searching mode,
IJIST(34), No. 2, 2024, pp. e22996.
DOI Link
2402
central light reflex, cubic spline fitting,
extended edge-searching mode, retinal vessel, width measurement
BibRef
Jalali, Y.[Yeganeh],
Fateh, M.[Mansoor],
Rezvani, M.[Mohsen],
VGA-Net: Vessel graph based attentional U-Net for retinal vessel
segmentation,
IET-IPR(18), No. 8, 2024, pp. 2191-2213.
DOI Link Code:
WWW Link.
2406
biomedical imaging, image processing, image segmentation,
medical image processing
BibRef
Bal, A.B.[Aditi Basu],
Guo, X.Y.[Xiao-Yang],
Needham, T.[Tom],
Srivastava, A.[Anuj],
Statistical Analysis of Complex Shape Graphs,
PAMI(46), No. 12, December 2024, pp. 8788-8805.
IEEE DOI
2411
Shape, Blood vessels, Biomedical imaging, Databases,
Analytical models, Topology, Mathematical models, shape models
BibRef
Zhang, W.Y.[Wei-Yi],
Shi, D.[Danli],
He, M.G.[Ming-Guang],
Improving Consistency in Cardiovascular Disease Risk Assessment:
Cross-Camera Adaptation for Retinal Images,
DEF-AI-MIA24(5194-5199)
IEEE DOI
2410
Adaptation models, Computational modeling, Medical services,
Retina, Cameras, Image-to-image Translation,
Cardiovascular Disease
BibRef
Mehmood, M.[Mehwish],
Alsharari, M.[Majed],
Iqbal, S.[Shahzaib],
Spence, I.[Ivor],
Fahim, M.[Muhammad],
RetinaLiteNet: A Lightweight Transformer based CNN for Retinal
Feature Segmentation,
WiCV24(2454-2463)
IEEE DOI
2410
Deep learning, Image segmentation, Biomedical optical imaging,
Image analysis, Drives, Blood vessels, Optical imaging,
Retinal blood vessel segmentation
BibRef
Dulau, I.[Idris],
Helmer, C.[Catherine],
Delcourt, C.[Cecile],
Beurton-Aimar, M.[Marie],
Ensuring a connected structure for Retinal Vessels Deep-Learning
Segmentation,
CVAMD23(2356-2365)
IEEE DOI
2401
BibRef
Bhati, A.[Amit],
Jain, S.[Samir],
Gour, N.[Neha],
Khanna, P.[Pritee],
Ojha, A.[Aparajita],
Werghi, N.[Naoufel],
A Shallow U-Net with Split-Fused Attention Mechanism for Retinal
Vessel Segmentation,
ICIP23(3205-3209)
IEEE DOI
2312
BibRef
Mohan, S.[Shikhar],
Bhattacharya, S.[Saumik],
Ghosh, S.[Sayantari],
Attention W-Net: Improved Skip Connections for Better Representations,
ICPR22(217-222)
IEEE DOI
2212
Training, Image segmentation, Neural networks, Performance gain,
Distortion, Retinal vessels, Decoding
BibRef
Cai, B.[Binke],
Ma, L.Y.[Li-Yan],
A Transformer-based Cascade Network with Boundary Enhancement Loss
for Retinal Vessel Segmentation,
ICPR22(4292-4298)
IEEE DOI
2212
Image segmentation, Sensitivity, Image databases, Neural networks,
Medical services, Manuals, Transformers
BibRef
Wang, J.[Jie],
Zhong, C.L.[Chao-Liang],
Feng, C.[Cheng],
Sun, J.[Jun],
Yokota, Y.[Yasuto],
Feature Disentanglement for Cross-Domain Retina Vessel Segmentation,
ICIP21(26-30)
IEEE DOI
2201
Degradation, Image segmentation, Neural networks, Retina,
Feature extraction, Task analysis, Feature disentanglement,
Unsupervised domain adaptation
BibRef
Li, C.X.[Chen-Xin],
Zhang, Y.L.[Yun-Long],
Liang, Z.H.[Zhe-Han],
Ma, W.[Wenao],
Huang, Y.[Yue],
Ding, X.H.[Xing-Hao],
Consistent Posterior Distributions Under Vessel-Mixing: A
Regularization for Cross-Domain Retinal Artery/Vein Classification,
ICIP21(61-65)
IEEE DOI
2201
Deep learning, Image segmentation, Protocols, Perturbation methods,
Supervised learning, Imaging, Cross-domain learning,
unsupervised domain adaptation
BibRef
Wang, J.[Jun],
Zhao, Y.[Yang],
Qian, L.L.[Ling-Long],
Yu, X.H.[Xiao-Han],
Gao, Y.S.[Yong-Sheng],
EAR-NET: Error Attention Refining Network for Retinal Vessel
Segmentation,
DICTA21(1-7)
IEEE DOI
2201
Training, Sensitivity, Retinopathy, Digital images, Refining, Focusing,
Blood vessels
BibRef
Saxena, S.[Suraj],
Lal, K.[Kanhaiya],
Joshi, S.[Sharad],
Retinal Vessel Segmentation Using Blending-Based Conditional Generative
Adversarial Networks,
CAIP21(I:135-144).
Springer DOI
2112
BibRef
Zeng, H.[HongWei],
Yi, X.[XingWen],
Liang, S.[ShanShan],
Mix: A Potential Image Augmentation Method on Retinal Vessel
Segmentation,
ICIVC21(140-143)
IEEE DOI
2112
Image segmentation, Costs, Magnetic resonance imaging,
Computed tomography, Robustness, Retinal vessels,
Image Augmentation
BibRef
Carrillo-Gomez, C.[Cesar],
Nakano, M.[Mariko],
Gonzalez-H.Leon, A.[Ana],
Romo-Aguas, J.C.[Juan Carlos],
Quiroz-Mercado, H.[Hugo],
Lopez-Garcia, O.[Osvaldo],
Neovascularization Detection on Optic Disc Region Using Deep Learning,
MCPR21(111-120).
Springer DOI
2108
BibRef
Reyes-Figueroa, A.[Alan],
Rivera, M.[Mariano],
W-net: A Convolutional Neural Network for Retinal Vessel Segmentation,
MCPR21(355-368).
Springer DOI
2108
BibRef
Guo, C.[Changlu],
Szemenyei, M.[Márton],
Yi, Y.[Yugen],
Wang, W.[Wenle],
Chen, B.[Buer],
Fan, C.Q.[Chang-Qi],
SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation,
ICPR21(1236-1242)
IEEE DOI
2105
Training, Image segmentation, Pediatrics, Image edge detection,
Neural networks, Blood vessels, Retinal vessels, Segmentation,
spatial attention
BibRef
Zhang, Y.[Yi],
Chen, Y.X.[Yi-Xuan],
Zhang, K.[Kai],
PCANet: Pyramid Context-aware Network for Retinal Vessel Segmentation,
ICPR21(2073-2080)
IEEE DOI
2105
Hypertension, Image segmentation, Adaptive systems, Navigation,
Arteriosclerosis, Retinal vessels,
integrated test-time augmentation
BibRef
Kamran, S.A.[Sharif Amit],
Hossain, K.F.[Khondker Fariha],
Tavakkoli, A.[Alireza],
Zuckerbrod, S.L.[Stewart Lee],
Attention2AngioGAN: Synthesizing Fluorescein Angiography from Retinal
Fundus Images using Generative Adversarial Networks,
ICPR21(9122-9129)
IEEE DOI
2105
Photography, Training, Angiography, Retina, Generators, Robustness,
Reproducibility of results, Generative Adversarial Networks,
Residual Attention
BibRef
Kamran, S.A.[Sharif Amit],
Hossain, K.F.[Khondker Fariha],
Tavakkoli, A.[Alireza],
Zuckerbrod, S.[Stewart],
Baker, S.A.[Salah A.],
Sanders, K.M.[Kenton M.],
Fundus2angio: A Conditional Gan Architecture for Generating Fluorescein
Angiography Images from Retinal Fundus Photography,
ISVC20(II:125-138).
Springer DOI
2103
BibRef
Badeka, E.,
Papadopoulou, C.I.,
Papakostas, G.A.,
Evaluation of LBP Variants in Retinal Blood Vessels Segmentation
Using Machine Learning,
ISCV20(1-7)
IEEE DOI
2011
biomedical optical imaging, blood vessels, decision trees, eye,
feature extraction, image classification, image segmentation,
computer vision
BibRef
Kushol, R.,
Salekin, M.S.,
Rbvs-Net: A Robust Convolutional Neural Network For Retinal Blood
Vessel Segmentation,
ICIP20(398-402)
IEEE DOI
2011
Biomedical imaging, Image segmentation, Blood vessels,
Retinal vessels, Machine learning, Feature extraction,
transfer learning
BibRef
Lahiri, A.,
Jain, V.,
Mondal, A.,
Biswas, P.K.,
Retinal Vessel Segmentation Under Extreme Low Annotation: A Gan Based
Semi-Supervised Approach,
ICIP20(418-422)
IEEE DOI
2011
Training, Generators, Image segmentation,
Biomedical imaging, Generative adversarial networks, adversarial learning
BibRef
Li, P.,
Deng, Q.,
Li, H.,
The Arteriovenous Classification in Retinal Images by U-net and
Tracking Algorithm,
ICIVC20(182-187)
IEEE DOI
2009
Retina, Image segmentation, Feature extraction,
Classification algorithms, Veins, Arteries, Biomedical imaging,
vessel tracking
BibRef
Li, L.,
Verma, M.,
Nakashima, Y.,
Nagahara, H.,
Kawasaki, R.,
IterNet: Retinal Image Segmentation Utilizing Structural Redundancy
in Vessel Networks,
WACV20(3645-3654)
IEEE DOI
2006
Image segmentation, Retina, Training, Biomedical imaging, Standards,
Task analysis, Machine learning
BibRef
Zhao, M.,
Hamarneh, G.,
Retinal Image Classification via Vasculature-Guided Sequential
Attention,
VRMI19(381-387)
IEEE DOI
2004
Retina, Retinopathy, Machine learning, Biomedical imaging,
Blood vessels, Feature extraction, deep learning, attention, lstm, retinal image
BibRef
Challoob, M.[Mohsin],
Gao, Y.S.[Yong-Sheng],
A Local Flow Phase Stretch Transform for Robust Retinal Vessel
Detection,
ACIVS20(251-261).
Springer DOI
2003
BibRef
Garifullin, A.[Azat],
Lensu, L.[Lasse],
Uusitalo, H.[Hannu],
On the Uncertainty of Retinal Artery-vein Classification with Dense
Fully-convolutional Neural Networks,
ACIVS20(87-98).
Springer DOI
2003
BibRef
Thanh, D.N.H.,
Sergey, D.,
Surya Prasath, V.B.,
Hai, N.H.,
Blood Vessels Segmentation Method for Retinal Fundus Images Based On
Adaptive Principal Curvature and Image Derivative Operators,
PTVSBB19(211-218).
DOI Link
1912
BibRef
Li, D.,
Dharmawan, D.A.,
Ng, B.P.,
Rahardja, S.,
Residual U-Net for Retinal Vessel Segmentation,
ICIP19(1425-1429)
IEEE DOI
1910
Deep learning, fundus images, residual blocks, vessel segmentation
BibRef
Trimeche, I.[Iyed],
Rossant, F.[Florence],
Bloch, I.[Isabelle],
Paques, M.[Michel],
Fully automatic CNN-based segmentation of retinal bifurcations in 2D
adaptive optics ophthalmoscopy images,
IPTA20(1-6)
IEEE DOI
2206
BibRef
Earlier:
Segmentation of Retinal Arterial Bifurcations in 2D Adaptive Optics
Ophthalmoscopy Images,
ICIP19(1490-1494)
IEEE DOI
1910
Image segmentation, Neural networks, Bifurcation, Adaptive optics,
Retinal vessels, Biomedical imaging, Active contours,
adaptive optics ophthalmoscopy images.
segmentation, retinal arterial bifurcations
BibRef
Cherukuri, V.,
Kumar B G, V.,
Bala, R.,
Monga, V.,
Multi-Scale Regularized Deep Network for Retinal Vessel Segmentation,
ICIP19(824-828)
IEEE DOI
1910
segmentation, deep learning, priors.
BibRef
Zhang, J.,
An, C.,
Dai, J.,
Amador, M.,
Bartsch, D.,
Borooah, S.,
Freeman, W.R.,
Nguyen, T.Q.,
Joint Vessel Segmentation and Deformable Registration on Multi-Modal
Retinal Images Based on Style Transfer,
ICIP19(839-843)
IEEE DOI
1910
Multi-Modal, Retinal Images, Deformable Registration,
Vessel Segmentation, Style Transfer
BibRef
Wargnier-Dauchelle, V.[Valentine],
Simon-Chane, C.[Camille],
Histace, A.[Aymeric],
Retinal Blood Vessels Segmentation: Improving State-of-the-Art Deep
Methods,
CAIPWS19(5-16).
Springer DOI
1909
BibRef
Araújo, R.J.[Ricardo J.],
Cardoso, J.S.[Jaime S.],
Oliveira, H.P.[Hélder P.],
A Single-Resolution Fully Convolutional Network for Retinal Vessel
Segmentation in Raw Fundus Images,
CIAP19(II:59-69).
Springer DOI
1909
BibRef
Sheng, B.,
Li, P.,
Mo, S.,
Li, H.,
Hou, X.,
Wu, Q.,
Qin, J.,
Fang, R.,
Feng, D.D.,
Retinal Vessel Segmentation Using Minimum Spanning Superpixel Tree
Detector,
Cyber(49), No. 7, July 2019, pp. 2707-2719.
IEEE DOI
1905
Image segmentation, Retinal vessels, Detectors, Feature extraction,
Image color analysis, Diabetes, Feature extraction,
vessel segmentation
BibRef
He, Q.,
Zou, B.,
Zhu, C.,
Liu, X.,
Fu, H.,
Wang, L.,
Multi-Label Classification Scheme Based on Local Regression for
Retinal Vessel Segmentation,
ICIP18(2765-2769)
IEEE DOI
1809
Image segmentation, Retinal vessels, Blood vessels,
Biomedical imaging, Training, Task analysis, neural network,
multi-label classification
BibRef
Hajabdollahi, M.,
Esfandiarpoor, R.,
Najarian, K.,
Karimi, N.,
Samavi, S.,
Reza-Soroushmeh, S.M.,
Low Complexity Convolutional Neural Network for Vessel Segmentation
in Portable Retinal Diagnostic Devices,
ICIP18(2785-2789)
IEEE DOI
1809
Quantization (signal), Image segmentation, Complexity theory,
Retinal vessels, Training, Convolutional neural networks,
network binarization
BibRef
Xu, D.,
Lim, G.,
Lee, M.L.[M. Li],
Hsu, W.,
A Differential-Based Approach for Vessel Type Classification in
Retinal Images,
ICIP18(2790-2794)
IEEE DOI
1809
Retina, Arteries, Veins, Optical imaging, Image color analysis,
Photonics, Blood, retinal image, artery-vein classification
BibRef
Ding, L.,
Kuriyan, A.,
Ramchandran, R.,
Sharma, G.,
Retinal Vessel Detection in Wide-Field Fluorescein Angiography with
Deep Neural Networks: A Novel Training Data Generation Approach,
ICIP18(356-360)
IEEE DOI
1809
Training data, Neural networks, Angiography, Image color analysis,
Generators, Retinal vessels, Fluorescein angiography,
retinal image analysis
BibRef
Krylov, A.[Andrey],
Nasonov, A.[Andrey],
Chesnakov, K.[Konstantin],
Nasonova, A.[Alexandra],
Jin, S.O.[Seung Oh],
Kang, U.[Uk],
Park, S.M.[Sang Min],
Vessel Preserving CNN-Based Image Resampling of Retinal Images,
ICIAR18(589-597).
Springer DOI
1807
BibRef
Meyer, M.I.[Maria Ines],
Galdran, A.[Adrian],
Costa, P.[Pedro],
Mendonça, A.M.[Ana Maria],
Campilho, A.[Aurélio],
Deep Convolutional Artery/Vein Classification of Retinal Vessels,
ICIAR18(622-630).
Springer DOI
1807
BibRef
AlBadawi, S.[Sufian],
Fraz, M.M.,
Arterioles and Venules Classification in Retinal Images Using Fully
Convolutional Deep Neural Network,
ICIAR18(659-668).
Springer DOI
1807
BibRef
Sehirli, E.,
Turan, M.K.,
Demiral, E.,
An Algorithm to Detect the Retinal Region of Interest,
GeoAdvances17(95-97).
DOI Link
1805
BibRef
Sabaz, F.,
Atila, U.,
ROI Detection and Vessel Segmentation in Retinal Image,
GeoAdvances17(85-89).
DOI Link
1805
BibRef
Welikala, R.A.,
Fraz, M.M.,
Habib, M.M.,
Daniel-Tong, S.,
Yates, M.,
Foster, P.J.,
Whincup, P.H.,
Rudnicka, A.R.,
Owen, C.G.,
Strachan, D.P.,
Barman, S.A.,
Automated quantification of retinal vessel morphometry in the UK
biobank cohort,
IPTA17(1-6)
IEEE DOI
1804
biomedical optical imaging, blood vessels, data analysis, diseases,
eye, image segmentation, medical image processing, UK Biobank Eye,
UK Biobank
BibRef
Soomro, T.A.,
Afifi, A.J.,
Gao, J.,
Hellwich, O.,
Khan, M.A.U.,
Paul, M.,
Zheng, L.,
Boosting Sensitivity of a Retinal Vessel Segmentation Algorithm with
Convolutional Neural Network,
DICTA17(1-8)
IEEE DOI
1804
blood vessels, diseases, eye, image segmentation,
medical image processing, neural nets,
Retinal vessels
BibRef
Feng, Z.,
Yang, J.,
Yao, L.,
Patch-based fully convolutional neural network with skip connections
for retinal blood vessel segmentation,
ICIP17(1742-1746)
IEEE DOI
1803
Biomedical imaging, Blood vessels, Computer architecture, Entropy,
Image segmentation, Retina, Training, Class-balancing Loss,
Retinal Blood Vessel Segmentation
BibRef
Riccio, D.[Daniel],
Brancati, N.[Nadia],
Frucci, M.[Maria],
Gragnaniello, D.[Diego],
An Unsupervised Approach for Eye Sclera Segmentation,
CIARP17(550-557).
Springer DOI
1802
BibRef
Pinheiro, J.F.[Jullyana Fialho],
de Almeida, J.D.S.[Joăo Dallyson Sousa],
Junior, G.B.[Geraldo Braz],
de Paiva, A.C.[Anselmo Cardoso],
Silva, A.C.[Aristófanes Corręa],
Sclera Segmentation in Face Images Using Image Foresting Transform,
CIARP17(229-236).
Springer DOI
1802
BibRef
Brancati, N.[Nadia],
Frucci, M.[Maria],
Gragnaniello, D.[Diego],
Riccio, D.[Daniel],
Retinal Vessels Segmentation Based on a Convolutional Neural Network,
CIARP17(119-126).
Springer DOI
1802
BibRef
Savelli, B.[Benedetta],
Marchesi, A.[Agnese],
Bria, A.[Alessandro],
Marrocco, C.[Claudio],
Molinara, M.[Mario],
Tortorella, F.[Francesco],
Retinal Vessel Segmentation Through Denoising and Mathematical
Morphology,
CIAP17(II:267-276).
Springer DOI
1711
BibRef
Lahiri, A.,
Ayush, K.,
Biswas, P.K.,
Mitra, P.,
Generative Adversarial Learning for Reducing Manual Annotation in
Semantic Segmentation on Large Scale Miscroscopy Images: Automated
Vessel Segmentation in Retinal Fundus Image as Test Case,
Microscopy17(794-800)
IEEE DOI
1709
Biomedical imaging, Generators,
Image segmentation, Manuals, Semantics, Training
BibRef
Challoob, M.[Mohsin],
Gao, Y.S.[Yong-Sheng],
Retinal Vessel Segmentation Using Matched Filter with Joint Relative
Entropy,
CAIP17(I: 228-239).
Springer DOI
1708
BibRef
Gou, D.D.[Duo-Duo],
Ma, T.[Tong],
Wei, Y.[Ying],
A novel retinal vessel extraction method based on dynamic scales
allocation,
ICIVC17(145-149)
IEEE DOI
1708
Biomedical imaging, Blood vessels, Image segmentation,
Matched filters, Resource management, Retinal vessels,
dynamic scales allocation, image sub-blocking,
multiscale matched filter, retinal, vessel, extraction
BibRef
Gu, B.,
Chen, B.,
Luo, L.,
Retinal vessel enhancement via sparse coding and dictionary learning,
MVA17(270-273)
DOI Link
1708
Biomedical imaging, Databases, Dictionaries, Encoding, Image coding,
Retinal vessels
BibRef
Farah, R.[Rana],
Belanger, S.[Samuel],
Jafari, R.[Reza],
Chevrefils, C.[Claudia],
Sylvestre, J.P.[Jean-Philippe],
Lesage, F.[Frédéric],
Cheriet, F.[Farida],
Retinal Vessel Segmentation from a Hyperspectral Camera Images,
ICIAR17(559-566).
Springer DOI
1706
BibRef
Khomri, B.[Bilal],
Christodoulidis, A.[Argyrios],
Djerou, L.[Leila],
Babahenini, M.C.[Mohamed Chaouki],
Cheriet, F.[Farida],
Particle Swarm Optimization Approach for the Segmentation of Retinal
Vessels from Fundus Images,
ICIAR17(551-558).
Springer DOI
1706
BibRef
Kushol, R.[Rafsanjany],
Kabir, M.H.[M. Hasanul],
Salekin, M.S.[M. Sirajus],
Rahman, A.B.M.A.[A.B.M. Ashikur],
Contrast Enhancement by Top-Hat and Bottom-Hat Transform with Optimal
Structuring Element: Application to Retinal Vessel Segmentation,
ICIAR17(533-540).
Springer DOI
1706
BibRef
Frucci, M.,
Riccio, D.,
Sanniti di Baja, G.[Gabriella],
Serino, L.,
Direction-Based Segmentation of Retinal Blood Vessels,
CIARP16(1-9).
Springer DOI
1703
BibRef
Soomro, T.A.[Toufique A.],
Khan, M.A.U.[Mohammad A.U.],
Gao, J.B.[Jun-Bin],
Khan, T.M.[Tariq M.],
Paul, M.[Manoranjan],
Mir, N.[Nighat],
Automatic Retinal Vessel Extraction Algorithm,
DICTA16(1-8)
IEEE DOI
1701
Biomedical imaging
BibRef
Soomro, T.A.[Toufique A.],
Paul, M.,
Gao, J.B.[Jun-Bin],
Zheng, L.,
Retinal blood vessel extraction method based on basic filtering
schemes,
ICIP17(4422-4426)
IEEE DOI
1803
Biomedical imaging, Blood vessels, Coherence, Histograms,
Image segmentation, Retinal vessels, Adpative filtering,
Retinal vessels
BibRef
Khan, M.A.U.[Mohammad A.U.],
Soomro, T.A.[Toufique A.],
Khan, T.M.[Tariq M.],
Bailey, D.G.,
Gao, J.B.[Jun-Bin],
Mir, N.[Nighat],
Automatic retinal vessel extraction algorithm based on
contrast-sensitive schemes,
ICVNZ16(1-5)
IEEE DOI
1701
Biomedical imaging
BibRef
Nougrara, Z.,
Kihal, N.,
Meunier, J.,
Semi-automated Extraction of Retinal Blood Vessel Network with
Bifurcation and Crossover Points,
ISVC16(II: 340-348).
Springer DOI
1701
BibRef
Zheng, H.,
Chang, L.,
Wei, T.,
Qiu, X.,
Lin, P.,
Wang, Y.,
Registering Retinal Vessel Images from Local to Global via Multiscale
and Multicycle Features,
WBIR16(490-497)
IEEE DOI
1612
BibRef
Lu, C.Y.,
Jing, B.Z.,
Chan, P.P.K.,
Xiang, D.,
Xie, W.,
Wang, J.,
Yeung, D.S.,
Vessel enhancement of low quality fundus image using mathematical
morphology and combination of Gabor and matched filter,
ICWAPR16(168-173)
IEEE DOI
1611
Biomedical imaging
BibRef
Zhou, L.,
Li, P.,
Yu, Q.,
Qiao, Y.,
Yang, J.,
Automatic hemorrhage detection in color fundus images based on
gradual removal of vascular branches,
ICIP16(399-403)
IEEE DOI
1610
Feature extraction
BibRef
Elbalaoui, A.,
Fakir, M.,
Taifi, K.,
Merbouha, A.,
Automatic Detection of Blood Vessel in Retinal Images,
CGiV16(324-332)
IEEE DOI
1608
diseases
BibRef
Alves, W.A.L.[Wonder A.L.],
Gobber, C.F.[Charles F.],
Araújo, S.A.[Sidnei A.],
Hashimoto, R.F.[Ronaldo F.],
Segmentation of Retinal Blood Vessels Based on Ultimate Elongation
Opening,
ICIAR16(727-733).
Springer DOI
1608
BibRef
Mapayi, T.,
Tapamo, J.R.,
Difference image and fuzzy c-means for detection of retinal vessels,
Southwest16(169-172)
IEEE DOI
1605
Databases
BibRef
Kurilová, V.,
Pavlovicová, J.,
Oravec, M.,
Rakár, R.,
Marcek, I.,
Retinal blood vessels extraction using morphological operations,
WSSIP15(265-268)
IEEE DOI
1603
biomedical optical imaging
BibRef
Riazifar, N.,
Saghapour, E.,
Retinal vessel segmentation using system fuzzy and DBSCAN algorithm,
IPRIA15(1-4)
IEEE DOI
1603
blood vessels
BibRef
Gu, L.,
Cheng, L.,
Learning to Boost Filamentary Structure Segmentation,
ICCV15(639-647)
IEEE DOI
1602
Biomedical imaging
BibRef
Dutta, T.[Tapash],
Dutta, N.[Nilanjan],
Bandyopadhyay, O.[Oishila],
Retinal Blood Vessel Segmentation and Bifurcation Point Detection,
IWCIA15(261-275).
Springer DOI
1601
BibRef
Roy, N.D.,
Biswas, A.,
Detection of bifurcation angles in a retinal fundus image,
ICAPR15(1-6)
IEEE DOI
1511
bifurcation
BibRef
Irshad, S.[Samra],
Akram, M.U.[M. Usman],
Ayub, S.[Sara],
Ayaz, A.[Anaum],
Retinal Blood Vessels Differentiation for Calculation of Arterio-Venous
Ratio,
ICIAR15(411-418).
Springer DOI
1507
BibRef
Chen, Z.[Zenghai],
Zhang, H.[Hui],
Chi, Z.[Zheru],
Fu, H.[Hong],
Hierarchical Local Binary Pattern for Branch Retinal Vein Occlusion
Recognition,
RoLoD14(687-697).
Springer DOI
1504
BibRef
Khitran, S.,
Akram, M.U.,
Usman, A.,
Yasin, U.,
Automated system for the detection of hypertensive retinopathy,
IPTA14(1-6)
IEEE DOI
1503
biomedical optical imaging
BibRef
Zhang, L.[Lei],
Fisher, M.[Mark],
Wang, W.J.[Wen-Jia],
Comparative performance of texton based vascular tree segmentation in
retinal images,
ICIP14(952-956)
IEEE DOI
1502
Accuracy
BibRef
Kar, S.S.[Sudeshna Sil],
Maity, S.P.[Santi P.],
Blood vessel extraction with optic disc removal in retinal images,
ICAPR15(1-6)
IEEE DOI
1511
blood vessels
BibRef
Kar, S.S.[Sudeshna Sil],
Maity, S.P.[Santi P.],
Delpha, C.[Claude],
On retinal blood vessel extraction using curvelet transform and
differential evolution based maximum fuzzy entropy,
ICIP14(872-876)
IEEE DOI
1502
Biomedical imaging
BibRef
Kar, S.S.[Sudeshna Sil],
Maity, S.P.[Santi P.],
Extraction of Retinal Blood Vessel Using Curvelet Transform and Fuzzy
C-Means,
ICPR14(3392-3397)
IEEE DOI
1412
Biomedical imaging
BibRef
Lermé, N.[Nicolas],
Rossant, F.[Florence],
Bloch, I.[Isabelle],
Paques, M.[Michel],
Koch, E.[Edouard],
Segmentation of Retinal Arteries in Adaptive Optics Images,
ICPR14(574-579)
IEEE DOI
1412
BibRef
Earlier:
Coupled Parallel Snakes for Segmenting Healthy and Pathological Retinal
Arteries in Adaptive Optics Images,
ICIAR14(II: 311-320).
Springer DOI
1410
Adaptive optics
BibRef
Pereira, C.[Carla],
Veiga, D.[Diana],
Gonçalves, L.[Luís],
Ferreira, M.[Manuel],
Automatic Arteriovenous Nicking Identification by Color Fundus Images
Analysis,
ICIAR14(II: 321-328).
Springer DOI
1410
BibRef
Akram, M.U.[M. Usman],
Khitran, S.A.[Sarmad Abbas],
Usman, A.[Anam],
ullah Yasin, U.[Ubaid],
Detection of Hemorrhages in Colored Fundus Images Using Non Uniform
Illumination Estimation,
ICIAR14(II: 329-336).
Springer DOI
1410
BibRef
Qureshi, T.A.[Touseef Ahmad],
Hunter, A.[Andrew],
Al-Diri, B.[Bashir],
A Probabilistic Model for the Optimal Configuration of Retinal
Junctions Using Theoretically Proven Features,
ICPR14(3304-3309)
IEEE DOI
1412
BibRef
And:
A Bayesian Framework for the Local Configuration of Retinal Junctions,
CVPR14(3105-3110)
IEEE DOI
1409
Retinal vessels configuration.
Bifurcation
BibRef
Felipe-Riveron, E.M.[Edgardo M.],
Castaldi, F.M.V.[Fabiola M. Villalobos],
Gómez, E.S.[Ernesto Suaste],
Vasconcellos, M.A.L.[Marcos A. Leiva],
Morato, C.A.[Cecilia Albortante],
A Semi-supervised Puzzle-Based Method for Separating the Venous and
Arterial Vascular Networks in Retinal Images,
MCPR14(251-260).
Springer DOI
1407
BibRef
Das, A.,
Pal, U.,
Blumenstein, M.,
Ferrer Ballester, M.A.,
Sclera Recognition: A Survey,
ACPR13(917-921)
IEEE DOI
1408
blood vessels
BibRef
Roy, N.D.[Nilanjana Dutta],
Someswar, M.[Milan],
Dalmia, H.[Harshit],
Biswas, A.[Arindam],
Identification of Distinct Blood Vessels in Retinal Fundus Images,
CompIMAGE14(106-114).
Springer DOI
1407
BibRef
Mapayi, T.[Temitope],
Tapamo, J.R.[Jules-Raymond],
SAHF: Unsupervised Texture-Based Multiscale with Multicolor Method for
Retinal Vessel Delineation,
ISVC16(I: 639-648).
Springer DOI
1701
BibRef
Mapayi, T.[Temitope],
Viriri, S.[Serestina],
Tapamo, J.R.[Jules-Raymond],
A New Adaptive Thresholding Technique for Retinal Vessel Segmentation
Based on Local Homogeneity Information,
ICISP14(558-567).
Springer DOI
1406
BibRef
Nguyen, U.T.V.,
Bhuiyan, A.,
Park, L.A.F.,
Kawasaki, R.,
Wong, T.Y.,
Ramamohanarao, K.,
Automatic detection of retinal vascular landmark features for colour
fundus image matching and patient longitudinal study,
ICIP13(616-620)
IEEE DOI
1402
Bifurcation
BibRef
De, J.[Jaydeep],
Ma, T.F.[Teng-Fei],
Li, H.Q.[Hui-Qi],
Dash, M.[Manoranjan],
Li, C.[Cheng],
Automated Tracing of Retinal Blood Vessels Using Graphical Models,
SCIA13(277-289).
Springer DOI
1311
BibRef
Dashtbozorg, B.[Behdad],
Mendonça, A.M.[Ana Maria],
Campilho, A.[Aurélio],
Automatic Classification of Retinal Vessels Using Structural and
Intensity Information,
IbPRIA13(600-607).
Springer DOI
1307
BibRef
Carreira, M.J.[María J.],
Espona, L.[Lucia],
Penedo, M.G.[Manuel G.],
Mosquera, A.[Antonio],
Fast Segmentation of Retinal Blood Vessels Using a Deformable Contour
Model,
ICIAR12(II: 355-362).
Springer DOI
1206
BibRef
Espona, L.,
Carreira, M.J.,
Penedo, M.G.,
Ortega, M.,
Retinal vessel tree segmentation using a deformable contour model,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
Comparison of Pixel and Subpixel Retinal Vessel Tree Segmentation Using
a Deformable Contour Model,
CIARP08(683-690).
Springer DOI
0809
BibRef
Earlier: A1, A2, A4, A3:
A Snake for Retinal Vessel Segmentation,
IbPRIA07(II: 178-185).
Springer DOI
0706
BibRef
Caderno, I.G.,
Penedo, M.G.,
Marińo, C.,
Carreira, M.J.,
Gomez-Ulla, F.,
González, F.,
Automatic Extraction of the Retina AV Index,
ICIAR04(II: 132-140).
Springer DOI
0409
BibRef
Dai, B.S.[Bai-Sheng],
Bu, W.[Wei],
Wu, X.Q.[Xiang-Qian],
Teng, Y.[Yan],
Retinal vessel segmentation via Iterative Geodesic Time Transform,
ICPR12(561-564).
WWW Link.
1302
BibRef
Oliveira, W.S.[Wendeson S.],
Ren, T.I.[Tsang Ing],
Cavalcanti, G.D.C.[George D.C.],
Retinal vessel segmentation using Average of Synthetic Exact Filters
and Hessian matrix,
ICIP12(2017-2020).
IEEE DOI
1302
BibRef
Fraz, M.M.,
Remagnino, P.,
Hoppe, A.,
Uyyanonvara, B.,
Rudnicka, A.R.,
Owen, C.G.,
Barman, S.A.,
Ensemble Classification System Applied for Retinal Vessel Segmentation
on Child Images Containing Various Vessel Profiles,
ICIAR12(II: 380-389).
Springer DOI
1206
BibRef
Agurto, C.[Carla],
Yu, H.G.[Hong-Gang],
Murray, V.[Victor],
Pattichis, M.S.[Marios S.],
Barriga, S.[Simon],
Soliz, P.[Peter],
Detection of hard exudates and red lesions in the macula using a
multiscale approach,
Southwest12(13-16).
IEEE DOI
1205
BibRef
Cao, S.S.Y.[Shearin Shuo-Ying],
Bharath, A.A.[Anil A.],
Parker, K.H.[Kim H.],
Ng, J.[Jeffrey],
Arnold, J.[John],
McGregor, A.[Alison],
Hill, A.[Adam],
Microvasculature Segmentation of Co-Registered Retinal Angiogram
Sequences,
BMVA(2012), No. 9, 2012, pp. 1-20.
PDF File.
1209
BibRef
Cao, S.S.Y.[Shearin Shuo-Ying],
Bharath, A.A.[Anil A.],
Parker, K.H.[Kim H.],
Ng, J.[Jeffrey],
Arnold, J.[John],
McGregor, A.[Alison],
Hill, A.[Adam],
Joint spatio-temporal registration and microvasculature segmentation
of retinal angiogram sequences,
EMBC11(2618-2621).
IEEE DOI
BibRef
1100
Chen, L.[Li],
Ju, Y.Y.[Yao-Yong],
Ding, S.[Sheng],
Liu, X.M.[Xiao-Ming],
Topological vascular tree segmentation for retinal images using
shortest path connection,
ICIP11(2137-2140).
IEEE DOI
1201
BibRef
Fraz, M.M.,
Remagnino, P.,
Hoppe, A.,
Uyyanonvara, B.,
Owen, C.G.[Christopher G.],
Rudnicka, A.R.[Alicja R.],
Barman, S.A.,
Retinal Vessel Extraction Using First-Order Derivative of Gaussian and
Morphological Processing,
ISVC11(I: 410-420).
Springer DOI
1109
BibRef
Zhou, Z.[Zhi],
Du, E.Y.,
Thomas, N.L.,
A comprehensive sclera image quality measure,
ICARCV10(638-643).
IEEE DOI
1109
BibRef
Salazar-Gonzalez, A.G.,
Li, Y.M.[Yong-Min],
Liu, X.H.[Xiao-Hui],
Retinal blood vessel segmentation via graph cut,
ICARCV10(225-230).
IEEE DOI
1109
BibRef
Cummings, A.H.[Alastair H.],
Nixon, M.S.[Mark S.],
Retinal Vessel Extraction with the Image Ray Transform,
ISVC10(II: 332-341).
Springer DOI
1011
BibRef
Oinonen, H.[Hannu],
Forsvik, H.[Heikki],
Ruusuvuori, P.[Pekka],
Yli-Harja, O.[Olli],
Voipio, V.[Ville],
Huttunen, H.[Heikki],
Identity verification based on vessel matching from fundus images,
ICIP10(4089-4092).
IEEE DOI
1009
BibRef
Mengko, T.R.[Tati Rajab],
Handayani, A.[Astri],
Valindria, V.V.[Vanya Vabrina],
Hadi, S.[Samekta],
Sovani, I.[Iwan],
Image Processing in Retinal Angiography: Extracting Angiographical
Features without the Requirement of Contrast Agents,
MVA09(451-).
PDF File.
0905
BibRef
Desai, M.,
Mangoubi, R.,
Danko, J.,
Aiello, L.P.,
Aiello, L.M.,
Sun, J.,
Cavallerano, J.,
Retinal venous caliber abnormality: Detection and analysis using matrix
edge fields-based simultaneous smoothing and segmentation,
AIPR09(1-6).
IEEE DOI
0910
BibRef
Condurache, A.P.[Alexandru Paul],
Muller, F.[Florian],
Mertins, A.[Alfred],
An LDA-based Relative Hysteresis Classifier with Application to
Segmentation of Retinal Vessels,
ICPR10(4202-4205).
IEEE DOI
1008
BibRef
Kaya, A.[Aydin],
Can, A.B.[Ahmet Burak],
Cakmak, H.B.[Hasan Basri],
Designing a Pattern Stabilization Method Using Scleral Blood Vessels
for Laser Eye Surgery,
ICPR10(698-701).
IEEE DOI
1008
BibRef
Joshi, G.D.[Gopal Datt],
Sivaswamy, J.[Jayanthi],
Karan, K.[Kundun],
Prashanth, R.,
Krishnadas, S.R.,
Vessel Bend-Based Cup Segmentation in Retinal Images,
ICPR10(2536-2539).
IEEE DOI
1008
BibRef
Youssef, D.[Doaa],
Solouma, N.[Nahed],
El-dib, A.[Amr],
Mabrouk, M.[Mai],
Youssef, A.B.[Abo-Bakr],
New feature-based detection of blood vessels and exudates in color
fundus images,
IPTA10(294-299).
IEEE DOI
1007
BibRef
Vázquez, S.G.,
Barreira, N.,
Penedo, M.G.[Manuel G.],
Rodríguez-Blanco, M.,
The Significance of the Vessel Registration for a Reliable Computation
of Arteriovenous Ratio,
ICIAR12(II: 347-354).
Springer DOI
1206
BibRef
Vazquez, S.G.,
Cancela, B.,
Barreira, N.,
Penedo, M.G.,
Saez, M.,
On the Automatic Computation of the Arterio-Venous Ratio in Retinal
Images: Using Minimal Paths for the Artery/Vein Classification,
DICTA10(599-604).
IEEE DOI
1012
BibRef
Vázquez, S.G.,
Barreira, N.,
Penedo, M.G.,
Saez, M.,
Pose-Reino, A.,
Using Retinex Image Enhancement to Improve the Artery/Vein
Classification in Retinal Images,
ICIAR10(II: 50-59).
Springer DOI
1006
BibRef
Hooshyar, S.[Sina],
Khayati, R.[Rasoul],
Retina Vessel Detection Using Fuzzy Ant Colony Algorithm,
CRV10(239-244).
IEEE DOI
1005
BibRef
Harangozo, R.[Roland],
Veres, P.[Péter],
Hajdu, A.[Andras],
Subsampling strategies to improve learning-based retina vessel
segmentation,
ICIP09(3349-3352).
IEEE DOI
0911
BibRef
Yedidya, T.,
Hartley, R.I.,
Tracking of Blood Vessels in Retinal Images Using Kalman Filter,
DICTA08(52-58).
IEEE DOI
0812
BibRef
Akram, M.U.[M. Usman],
Tariq, A.,
Nasir, S.,
Khan, S.A.,
Gabor wavelet based vessel segmentation in retinal images,
CIIP09(116-119).
IEEE DOI
0903
BibRef
Salem, N.M.[Nancy M.],
Nandi, A.K.[Asoke K.],
Unsupervised Segmentation of Retinal Blood Vessels Using a Single
Parameter Vesselness Measure,
ICCVGIP08(528-534).
IEEE DOI
0812
BibRef
Zhang, M.[Ming],
Liu, J.C.[Jyh-Charn],
Directional Local Contrast Based Blood Vessel Detection in Retinal
Images,
ICIP07(IV: 317-320).
IEEE DOI
0709
BibRef
Lian, N.X.[Nai-Xiang],
Zagorodnov, V.[Vitali],
Tan, Y.P.[Yap-Peng],
Retinal Vessel Detection using Self-Matched Filtering,
ICIP07(VI: 33-36).
IEEE DOI
0709
BibRef
Zhang, Y.P.[Yong-Ping],
Hsu, W.[Wynne],
Lee, M.L.[Mong Li],
Segmentation of Retinal Vessels Using Nonlinear Projections,
ICIP07(V: 541-544).
IEEE DOI
0709
BibRef
Felipe-Riveron, E.[Edgardo],
Garcia-Guimeras, N.[Noel],
Extraction of Blood Vessels in Ophthalmic Color Images of Human Retinas,
CIARP06(118-126).
Springer DOI
0611
BibRef
Xu, Z.W.[Zhi-Wen],
Guo, X.X.[Xiao-Xin],
Hu, X.Y.[Xiao-Ying],
Chen, X.[Xu],
Wang, Z.X.[Zheng-Xuan],
The Identification and Recognition Based on Point for Blood Vessel of
Ocular Fundus,
ICB06(770-776).
Springer DOI
0601
BibRef
Li, Q.[Qin],
You, J.,
Zhang, L.[Lei],
Bhattacharya, P.[Prabir],
Automated Retinal Vessel Segmentation Using Multiscale Analysis and
Adaptive Thresholding,
Southwest06(139-143).
IEEE DOI
0603
BibRef
Li, Q.[Qin],
Zhang, L.[Lei],
Zhang, D.[David],
Bhattacharya, P.[Prabir],
A New Approach to Automated Retinal Vessel Segmentation Using
Multiscale Analysis,
ICPR06(IV: 77-80).
IEEE DOI
0609
BibRef
Gao, X.,
Bharath, A.A.,
Stanton, A.D.,
Hughes, A.D.,
Chapman, N.,
Thom, S.A.,
A Method of Vessel Tracking for Vessel Diameter Measurement on Retinal
Images,
ICIP01(II: 881-884).
IEEE DOI
0108
BibRef
Martinez Perez, M.E.,
Hughes, A.D.,
Stanton, A.V.,
Thom, S.A.,
Bharath, A.A.[Anil A.],
Parker, K.H.[Kim H.],
Segmentation of Retinal Blood Vessels based on the Second
Directional Derivative and Region Growing,
ICIP99(II:173-176).
IEEE DOI
BibRef
9900
Lalonde, M.,
Gagnon, L.,
Boucher, M.C.,
Automatic Image Quality Assessment in Optical Fundus Images,
VI01(259-264).
PDF File.
BibRef
0100
Earlier:
Non-recursive paired tracking for vessel extraction from retinal images,
VI00(xx-yy).
PDF File.
BibRef
Thaďbaoui, A.,
Raji, A.,
Bunel, P.,
A Fuzzy Logic Approach to Drusen Detection in Retinal Angiographic
Images,
ICPR00(Vol IV: 748-751).
IEEE DOI
0009
BibRef
Bartsch, D.U.[Dirk-Uwe],
Müller, A.J.,
O'Connor, N.,
Holmes, T.,
Freeman, W.R.,
3D Reconstruction of Blood Vessels in the Ocular Fundus from
Confocal Scanning Laser Ophthalmoscope ICG Angiography,
ICIP96(III: 687-690).
IEEE DOI
9610
BibRef
Wood, S.L.,
Qu, G.Y.[Gong-Yuan],
Roloff, L.W.,
Detection and labeling of retinal vessels for longitudinal studies,
ICIP95(III: 164-167).
IEEE DOI
9510
BibRef
Kaupp, A.,
Dolemeyer, A.,
Wilzeck, R.,
Schlosser, R.,
Wolf, S.,
Meyer-Ebrecht, D.,
Measuring morphologic properties of the human retinal vessel system
using a two-stage image processing approach,
ICIP94(I: 431-435).
IEEE DOI
9411
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Retinal Microaneurysms, Detection .