21.5.3 Retinal Images, Angiography, Blood Vessels in the Eye

Chapter Contents (Back)
Retinal Images. Retinal Vessels. Blood Vessels. Retinal Angiogrphy. Vessels. Eye. Medical, Applications.
See also Retinal Microaneurysms, Detection.
See also Diabetic Retinopathy, Retinal Analysis Application.

Ibanez, M.V., Simo, A.,
Bayesian detection of the fovea in eye fundus angiographies,
PRL(20), No. 2, February 1999, pp. 229-240. BibRef 9902

Simó, A., de Ves, E.,
Segmentation of Macular Fluorescein Angiographies. A Statistical Approach,
PR(34), No. 4, April 2001, pp. 795-809.
Elsevier DOI 0101
BibRef

Pedersen, L., Grunkin, M., Ersbřll, B.K., Madsen, K., Larsen, M., Christoffersen, N., Skands, U.,
Quantitative Measurement of Changes in Retinal Vessel Diameter in Ocular Fundus Images,
PRL(21), No. 13-14, December 2000, pp. 1215-1223. 0011
BibRef
Earlier: SCIA99(Biological Applications II). BibRef

Hoover, A.D., Kouznetsova, V., Goldbaum, M.,
Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,
MedImg(19), No. 3, March 2000, pp. 203-210.
IEEE Top Reference. 0110
BibRef

Hoover, A.D., Goldbaum, M.,
Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels,
MedImg(22), No. 8, August 2003, pp. 951-958.
IEEE Abstract. 0308
BibRef

Bouaoune, Y., Assogba, M.K., Nunes, J.C., Bunel, P.,
Spatio-temporal characterization of vessel segments applied to retinal angiographic images,
PRL(24), No. 1-3, January 2003, pp. 607-615.
Elsevier DOI 0211
BibRef

Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Kennedy, R.L.,
Measurement of Retinal Vessel Widths from Fundus Images Based on 2-D Modeling,
MedImg(23), No. 10, October 2004, pp. 1196-1204.
IEEE Abstract. 0410

See also Optic Nerve Head Segmentation. BibRef

Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.,
Ridge-based vessel segmentation in color images of the retina,
MedImg(23), No. 4, April 2004, pp. 501-509.
IEEE Abstract. 0406
BibRef

Grisan, E., Foracchia, M., Ruggeri, A.,
A Novel Method for the Automatic Grading of Retinal Vessel Tortuosity,
MedImg(27), No. 3, March 2008, pp. 310-319.
IEEE DOI 0803
BibRef

Stosic, T., Stosic, B.D.,
Multifractal Analysis of Human Retinal Vessels,
MedImg(25), No. 8, August 2006, pp. 1101-1107.
IEEE DOI 0608
BibRef

Soares, J.V.B., Leandro, J.J.G., Cesar, Jr., R.M., Jelinek, H.F., Cree, M.J.,
Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,
MedImg(25), No. 9, September 2006, pp. 1214-1222.
IEEE DOI 0609
BibRef

Sofka, M., Stewart, C.V.[Charles V.],
Retinal Vessel Centerline Extraction Using Multiscale Matched Filters, Confidence and Edge Measures,
MedImg(25), No. 12, December 2006, pp. 1531-1546.
IEEE DOI 0701
BibRef
And: Erratum: MedImg(26), No. 1, January 2007, pp. 133-133.
IEEE DOI 0701
BibRef

Stewart, C.V.[Charles V.],
Computer Vision Algorithms for Retinal Image Analysis: Current Results and Future Directions,
CVBIA05(31-50).
Springer DOI 0601
BibRef

Wang, L.[Li], Bhalerao, A.H., Wilson, R.,
Analysis of Retinal Vasculature Using a Multiresolution Hermite Model,
MedImg(26), No. 2, February 2007, pp. 137-152.
IEEE DOI 0702
BibRef
Earlier:
Robust modelling of local image structures and its application to medical imagery,
ICPR04(III: 534-537).
IEEE DOI 0409
BibRef

Thonnes, E., Bhalerao, A.H., Kendall, W., Wilson, R.,
A bayesian approach to inferring vascular tree structure from 2d imagery,
ICIP02(II: 937-940).
IEEE DOI 0210
BibRef

Ricci, E., Perfetti, R.,
Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification,
MedImg(26), No. 10, October 2007, pp. 1357-1365.
IEEE DOI 0711
BibRef

Youssif, A.A.H.A.R., Ghalwash, A.Z., Ghoneim, A.A.S.A.R.,
Optic Disc Detection From Normalized Digital Fundus Images by Means of a Vessels' Direction Matched Filter,
MedImg(27), No. 1, January 2008, pp. 11-18.
IEEE DOI 0712
BibRef

Adjeroh, D.A.[Donald A.], Kandaswamy, U.[Umasankar], Odom, J.V.[J. Vernon],
Texton-based segmentation of retinal vessels,
JOSA-A(24), No. 5, May 2007, pp. 1384-1393.
WWW Link. 0801
BibRef

Miura, M.[Masahiro], Elsner, A.E.[Ann E.], Cheney, M.C.[Michael C.], Usui, M.[Masahiko], Iwasaki, T.[Takuya],
Imaging polarimetry and retinal blood vessel quantification at the epiretinal membrane,
JOSA-A(24), No. 5, May 2007, pp. 1431-1437.
WWW Link. 0801
BibRef

Rothaus, K.[Kai], Jiang, X.Y.[Xiao-Yi], Rhiem, P.[Paul],
Separation of the retinal vascular graph in arteries and veins based upon structural knowledge,
IVC(27), No. 7, 4 June 2009, pp. 864-875.
Elsevier DOI 0904
BibRef
Earlier: A1, A3, A2:
Separation of the Retinal Vascular Graph in Arteries and Veins,
GbRPR07(251-262).
Springer DOI 0706
Retinal vascular graph; Artery; Vein; Constraint satisfaction problem; Constraint propagation
See also Structural Performance Evaluation of Curvilinear Structure Detection Algorithms with Application to Retinal Vessel Segmentation. BibRef

Jiang, X.Y.[Xiao-Yi], Lambers, M.[Martin], Bunke, H.[Horst],
Structural Performance Evaluation of Curvilinear Structure Detection Algorithms with Application to Retinal Vessel Segmentation,
PRL(33), No. 15, 1 November 2012, pp. 2048-2056.
Elsevier DOI 1210
BibRef
Earlier:
Structure-Based Evaluation Methodology for Curvilinear Structure Detection Algorithms,
GbRPR11(305-314).
Springer DOI 1105
Medical images. Not pixel level ground truth, but structure based.
See also Separation of the retinal vascular graph in arteries and veins based upon structural knowledge. Performance evaluation; Curvilinear structure; Vessel network; Airway tree; Graph matching BibRef

Jiang, X.Y.[Xiao-Yi], Mojon, D.,
Supervised evaluation methodology for curvilinear structure detection algorithms,
ICPR02(I: 103-106).
IEEE DOI 0211
BibRef

Al-Diri, B., Hunter, A., Steel, D.,
An Active Contour Model for Segmenting and Measuring Retinal Vessels,
MedImg(28), No. 9, September 2009, pp. 1488-1497.
IEEE DOI 0909
BibRef

Ng, J., Clay, S.T., Barman, S.A., Fielder, A.R., Moseley, M.J., Parker, K.H., Paterson, C.,
Maximum likelihood estimation of vessel parameters from scale space analysis,
IVC(28), No. 1, Januray 2010, pp. 55-63.
Elsevier DOI 1001
Scale space; Maximum likelihood; Retinal blood vessels; Automatic segmentation BibRef

Jlassi, H.[Hejer], Hamrouni, K.[Kamel],
Detection of Blood Vessels in Retinal Images,
IJIG(10), No. 1, January 2010, pp. 57-72.
DOI Link 1003
BibRef

Lam, B.S.Y., Gao, Y., Liew, A.W.C.,
General Retinal Vessel Segmentation Using Regularization-Based Multiconcavity Modeling,
MedImg(29), No. 7, July 2010, pp. 1369-1381.
IEEE DOI 1007
BibRef

Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.,
A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features,
MedImg(30), No. 1, January 2011, pp. 146-158.
IEEE DOI 1101
BibRef

Gegundez-Arias, M.E., Aquino, A., Bravo, J.M., Marin, D.,
A Function for Quality Evaluation of Retinal Vessel Segmentations,
MedImg(31), No. 2, February 2012, pp. 231-239.
IEEE DOI 1202
BibRef

Azemin, M.Z.C., Kumar, D.K., Wong, T.Y., Kawasaki, R., Mitchell, P., Wang, J.J.,
Robust Methodology for Fractal Analysis of the Retinal Vasculature,
MedImg(30), No. 2, February 2011, pp. 243-250.
IEEE DOI 1102
BibRef

Goatman, K.A., Fleming, A.D., Philip, S., Williams, G.J., Olson, J.A., Sharp, P.F.,
Detection of New Vessels on the Optic Disc Using Retinal Photographs,
MedImg(30), No. 4, April 2011, pp. 972-979.
IEEE DOI 1104
BibRef

You, X.G.[Xin-Ge], Peng, Q.[Qinmu], Yuan, Y.[Yuan], Cheung, Y.M.[Yiu-Ming], Lei, J.J.[Jia-Jia],
Segmentation of retinal blood vessels using the radial projection and semi-supervised approach,
PR(44), No. 10-11, October-November 2011, pp. 2314-2324.
Elsevier DOI 1101
Radial projection; Retinal images; Steerable complex wavelet BibRef

Peng, Q.[Qinmu], You, X.G.[Xin-Ge], Zhou, L.[Long], Cheung, Y.M.[Yiu-Ming],
Retinal Blood Vessels Segmentation Using the Radial Projection and Supervised Classification,
ICPR10(1489-1492).
IEEE DOI 1008
BibRef

Xu, X., Niemeijer, M., Song, Q., Sonka, M., Garvin, M.K., Reinhardt, J.M., Abramoff, M.D.,
Vessel Boundary Delineation on Fundus Images Using Graph-Based Approach,
MedImg(30), No. 6, June 2011, pp. 1184-1191.
IEEE DOI 1101

See also Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search. BibRef

Yin, Y.[Yi], Adel, M.[Mouloud], Bourennane, S.[Salah],
Retinal vessel segmentation using a probabilistic tracking method,
PR(45), No. 4, April 2012, pp. 1235-1244.
Elsevier DOI 1112
Retinal image; Edge detection; Vessel tracking; Bayesian segmentation BibRef

Yin, Y.[Yi], Adel, M.[Mouloud], Guillaume, M.[Mireille], Bourennane, S.[Salah],
A probabilistic based method for tracking vessels in retinal images,
ICIP10(4081-4084).
IEEE DOI 1009
BibRef

Perez-Rovira, A., Cabido, R., Trucco, E., McKenna, S.J., Hubschman, J.P.,
RERBEE: Robust Efficient Registration via Bifurcations and Elongated Elements Applied to Retinal Fluorescein Angiogram Sequences,
MedImg(31), No. 1, January 2012, pp. 140-150.
IEEE DOI 1201
BibRef

Wang, Y.F.[Yang-Fan], Ji, G.R.[Guang-Rong], Lin, P.[Ping], Trucco, E.[Emanuele],
Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition,
PR(46), No. 8, August 2013, pp. 2117-2133.
Elsevier DOI 1304
Vessel detection; Retinal images; Segmentation; Matched filter; Multiwavelet; Multiscale hierarchical decomposition BibRef

Lupascu, C.A.[Carmen Alina], Tegolo, D.[Domenico], Trucco, E.[Emanuele],
A Comparative Study on Feature Selection for Retinal Vessel Segmentation Using FABC,
CAIP09(655-662).
Springer DOI 0909
BibRef

Azegrouz, H., Trucco, E.,
Max-Min Central Vein Detection in Retinal Fundus Images,
ICIP06(1925-1928).
IEEE DOI 0610
BibRef

Esmaeili, M.[Mahdad], Rabbani, H.[Hossein], Mehri Dehnavi, A.[Alireza], Dehghani, A.[Alireza],
Automatic detection of exudates and optic disk in retinal images using curvelet transform,
IET-IPR(6), No. 7, 2012, pp. 1005-1013.
DOI Link 1211
BibRef
Earlier:
A new curvelet transform based method for extraction of red lesions in digital color retinal images,
ICIP10(4093-4096).
IEEE DOI 1009
BibRef
Earlier:
Extraction of retinal blood vessels by curvelet transform,
ICIP09(3353-3356).
IEEE DOI 0911
BibRef

Nguyen, U.T.V.[Uyen T.V.], Bhuiyan, A.[Alauddin], Park, L.A.F.[Laurence A.F.], Ramamohanarao, K.[Kotagiri],
An effective retinal blood vessel segmentation method using multi-scale line detection,
PR(46), No. 3, March 2013, pp. 703-715.
Elsevier DOI 1212
Retinal image; Vessel extraction; Line detector; Central reflex BibRef

Nguyen, U.T.V.[Uyen T. V.], Ramamohanarao, K.[Kotagiri], Park, L.A.F.[Laurence A. F.], Wang, L.[Liang], Bhuiyan, A.[Alauddin],
A Quantitative Measure for Retinal Blood Vessel Segmentation Evaluation,
IJCVSP(1), No. 1, 2012, pp. xx-yy.
WWW Link. 1212
BibRef
Earlier: A1, A5, A2, A3, Only:
An Effective Supervised Framework for Retinal Blood Vessel Segmentation Using Local Standardisation and Bagging,
MLMI11(117-125).
Springer DOI 1109
BibRef

Bhuiyan, A.[Alauddin], Nath, B.[Baikunth], Ramamohanarao, K.[Kotagiri],
Detection and Classification of Bifurcation and Branch Points on Retinal Vascular Network,
DICTA12(1-8).
IEEE DOI 1303
BibRef

Bhuiyan, A.[Alauddin], Kawasaki, R.[Ryo], Lamoureux, E.[Ecosse], Wong, T.Y.[Tien Y.], Ramamohanarao, K.[Kotagiri],
Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties,
DICTA10(184-189).
IEEE DOI 1012
BibRef

Bhuiyan, A.[Alauddin], Nath, B.[Baikunth], Chua, J.J.[Joselito J.], Ramamohanarao, K.[Kotagiri],
Blood Vessel Segmentation from Color Retinal Images using Unsupervised Texture Classification,
ICIP07(V: 521-524).
IEEE DOI 0709
BibRef

Azzopardi, G.[George], Azzopardi, N.[Nicolai],
Trainable COSFIRE Filters for Keypoint Detection and Pattern Recognition,
PAMI(35), No. 2, February 2013, pp. 490-503.
IEEE DOI 1301
BibRef
Earlier:
Detection of Retinal Vascular Bifurcations by Rotation- and Scale-Invariant COSFIRE Filters,
ICIAR12(II: 363-371).
Springer DOI 1206
COSFIRE: Combination Of Shifted FIlter REsponses. Selective for a local contour pattern specified by an example. BibRef

Azzopardi, G.[George], Petkov, N.[Nicolai],
Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters,
PRL(34), No. 8, June 2013, pp. 922-933.
Elsevier DOI 1305
BibRef
Earlier:
Detection of Retinal Vascular Bifurcations by Trainable V4-Like Filters,
CAIP11(I: 451-459).
Springer DOI 1109
Gabor filters; Keypoint detection; Retinal fundus; Trainable filters; Vascular bifurcation BibRef

Guo, J.P.[Jia-Pan], Shi, C.Y.[Chen-Yu], Azzopardi, G.[George], Petkov, N.[Nicolai],
Inhibition-augmented trainable COSFIRE filters for keypoint detection and object recognition,
MVA(27), No. 8, November 2016, pp. 1197-1211.
Springer DOI 1612
BibRef

Gecer, B.[Baris], Azzopardi, G.[George], Petkov, N.[Nicolai],
Color-blob-based COSFIRE filters for object recognition,
IVC(57), No. 1, 2017, pp. 165-174.
Elsevier DOI 1702
BibRef
Earlier: A2, A3:
A Shape Descriptor Based on Trainable COSFIRE Filters for the Recognition of Handwritten Digits,
CAIP13(II:9-16).
Springer DOI 1311
Object recognition BibRef

Turior, R.[Rashmi], Onkaew, D.[Danu], Uyyanonvara, B.[Bunyarit],
PCA-Based Retinal Vessel Tortuosity Quantification,
IEICE(E96-D), No. 2, February 2013, pp. 329-339.
WWW Link. 1301
BibRef

Tang, L., Niemeijer, M., Reinhardt, J.M., Garvin, M.K., Abramoff, M.D.,
Splat Feature Classification With Application to Retinal Hemorrhage Detection in Fundus Images,
MedImg(32), No. 2, February 2013, pp. 364-375.
IEEE DOI 1301
BibRef

Vázquez, S.G., Cancela, B., Barreira, N., Penedo, M.G., Rodríguez-Blanco, M., Pena Seijo, M., Coll de Tuero, G., Barceló, M.A., Saez, M.,
Improving retinal artery and vein classification by means of a minimal path approach,
MVA(24), No. 5, July 2013, pp. 919-930.
Springer DOI 1306
BibRef

Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek, J., Kubena, T., Cernosek, P., Svoboda, O., Angelopoulou, E.,
Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database,
IET-IPR(7), No. 4, 2013, pp. 373-383.
DOI Link 1307
BibRef

Sulai, Y.N.[Yusufu N.], Scoles, D.[Drew], Harvey, Z.[Zachary], Dubra, A.[Alfredo],
Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope,
JOSA-A(31), No. 3, March 2014, pp. 569-579.
DOI Link 1403
Ophthalmic optics and devices BibRef

Zhao, Y.Q.[Yu Qian], Wang, X.H.[Xiao Hong], Wang, X.F.[Xiao Fang], Shih, F.Y.[Frank Y.],
Retinal vessels segmentation based on level set and region growing,
PR(47), No. 7, 2014, pp. 2437-2446.
Elsevier DOI 1404
Retinal vessel segmentation BibRef

Bekkers, E.[Erik], Duits, R.[Remco], Berendschot, T.[Tos], ter Haar Romeny, B.M.[Bart M.],
A Multi-Orientation Analysis Approach to Retinal Vessel Tracking,
JMIV(49), No. 3, July 2014, pp. 583-610.
Springer DOI 1407
BibRef

Dizdarolu, B.[Bekir], Ataer-Cansizoglu, E.[Esra], Kalpathy-Cramer, J.[Jayashree], Keck, K.[Katie], Chiang, M.[Michael], Erdogmus, D.[Deniz],
Structure-based level set method for automatic retinal vasculature segmentation,
JIVP(2014), No. 1, 2014, pp. 39.
DOI Link 1408
BibRef

Sigurđsson, E.M.[Eysteinn Már], Valero, S.[Silvia], Benediktsson, J.A.[Jón Atli], Chanussot, J.[Jocelyn], Talbot, H.[Hugues], Stefánsson, E.[Einar],
Automatic retinal vessel extraction based on directional mathematical morphology and fuzzy classification,
PRL(47), No. 1, 2014, pp. 164-171.
Elsevier DOI 1408
Fundus image BibRef

Cheng, E.[Erkang], Du, L.[Liang], Wu, Y.[Yi], Zhu, Y.J.[Ying J.], Megalooikonomou, V.[Vasileios], Ling, H.B.[Hai-Bin],
Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features,
MVA(25), No. 7, October 2014, pp. 1779-1792.
Springer DOI 1410
BibRef

Gavet, Y.[Yann], Fernandes, M.[Mathieu], Debayle, J.[Johan], Pinoli, J.C.[Jean-Charles],
Dissimilarity criteria and their comparison for quantitative evaluation of image segmentation: application to human retina vessels,
MVA(25), No. 8, November 2014, pp. 1953-1966.
Springer DOI 1411
BibRef

Chakraborti, T.[Tapabrata], Jha, D.K.[Dhiraj K.], Chowdhury, A.S.[Ananda S.], Jiang, X.Y.[Xiao-Yi],
A self-adaptive matched filter for retinal blood vessel detection,
MVA(26), No. 1, January 2015, pp. 55-68.
Springer DOI 1503
BibRef

Paripurana, S.[Sukritta], Chiracharit, W.[Werapon], Chamnongthai, K.[Kosin], Saito, H.[Hideo],
Extraction of Blood Vessels in Retinal Images Using Resampling High-Order Background Estimation,
IEICE(E98-D), No. 3, March 2015, pp. 692-703.
WWW Link. 1504
BibRef

Hassanien, A.E.[Aboul Ella], Emary, E., Zawbaa, H.M.[Hossam M.],
Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and pattern search,
JVCIR(31), No. 1, 2015, pp. 186-196.
Elsevier DOI 1508
Retinal blood vessel BibRef

Estrada, R., Allingham, M.J., Mettu, P.S., Cousins, S.W., Tomasi, C., Farsiu, S.,
Retinal Artery-Vein Classification via Topology Estimation,
MedImg(34), No. 12, December 2015, pp. 2518-2534.
IEEE DOI 1601
biomedical optical imaging BibRef

Li, Q., Feng, B., Xie, L., Liang, P., Zhang, H., Wang, T.,
A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images,
MedImg(35), No. 1, January 2016, pp. 109-118.
IEEE DOI 1601
Accuracy BibRef

De, J., Cheng, L., Zhang, X., Lin, F., Li, H., Ong, K.H., Yu, W., Yu, Y., Ahmed, S.,
A Graph-Theoretical Approach for Tracing Filamentary Structures in Neuronal and Retinal Images,
MedImg(35), No. 1, January 2016, pp. 257-272.
IEEE DOI 1601
Biomedical imaging BibRef

Krause, M.[Michael], Alles, R.M.[Ralph Maria], Burgeth, B.[Bernhard], Weickert, J.[Joachim],
Fast retinal vessel analysis,
RealTimeIP(11), No. 2, February 2016, pp. 413-422.
Springer DOI 1602
BibRef

Gottemukkula, V., Saripalle, S., Tankasala, S.P., Derakhshani, R.,
Method for using visible ocular vasculature for mobile biometrics,
IET-Bio(5), No. 1, 2016, pp. 3-12.
DOI Link 1603
Gabor filters BibRef

Lermé, N.[Nicolas], Rossant, F.[Florence], Bloch, I.[Isabelle], Paques, M.[Michel], Koch, E.[Edouard], Benesty, J.[Jonathan],
A fully automatic method for segmenting retinal artery walls in adaptive optics images,
PRL(72), No. 1, 2016, pp. 72-81.
Elsevier DOI 1604
Active contour model BibRef

van Grinsven, M.J.J.P., van Ginneken, B., Hoyng, C.B., Theelen, T., Sánchez, C.I.,
Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images,
MedImg(35), No. 5, May 2016, pp. 1273-1284.
IEEE DOI 1605
Biomedical imaging BibRef

Favali, M.[Marta], Abbasi-Sureshjani, S.[Samaneh], ter Haar Romeny, B.M.[Bart M.], Sarti, A.[Alessandro],
Analysis of Vessel Connectivities in Retinal Images by Cortically Inspired Spectral Clustering,
JMIV(56), No. 1, September 2016, pp. 158-172.
Springer DOI 1605
BibRef

Abbasi-Sureshjani, S.[Samaneh], Favali, M.[Marta], Citti, G., Sarti, A.[Alessandro], ter Haar Romeny, B.M.[Bart M.],
Curvature Integration in a 5D Kernel for Extracting Vessel Connections in Retinal Images,
IP(27), No. 2, February 2018, pp. 606-621.
IEEE DOI 1712
Biomedical imaging, Blood vessels, Brain modeling, Junctions, Mathematical model, Retina, Visualization, spectral clustering BibRef

Duits, R.[Remco], Janssen, M.H.J.[Michiel H. J.], Hannink, J., Sanguinetti, G.R.[Gonzalo R.],
Locally Adaptive Frames in the Roto-Translation Group and Their Applications in Medical Imaging,
JMIV(56), No. 3, November 2016, pp. 367-402.
Springer DOI 1609
BibRef

Sanguinetti, G.R.[Gonzalo R.], Bekkers, E.[Erik], Duits, R.[Remco], Janssen, M.H.J.[Michiel H. J.], Mashtakov, A.[Alexey], Mirebeau, J.M.[Jean-Marie],
Sub-Riemannian Fast Marching in SE(2),
CIARP15(366-374).
Springer DOI 1511
Apply to vessel tree extraction. BibRef

Frucci, M.[Maria], Riccio, D.[Daniel], Sanniti di Baja, G.[Gabriella], Serino, L.[Luca],
Severe: Segmenting vessels in retina images,
PRL(82, Part 2), No. 1, 2016, pp. 162-169.
Elsevier DOI 1609
Retina scan images BibRef

Liskowski, P., Krawiec, K.,
Segmenting Retinal Blood Vessels With Deep Neural Networks,
MedImg(35), No. 11, November 2016, pp. 2369-2380.
IEEE DOI 1609
Biomedical imaging BibRef

Strisciuglio, N.[Nicola], Azzopardi, G.[George], Vento, M.[Mario], Petkov, N.[Nicolai],
Supervised vessel delineation in retinal fundus images with the automatic selection of B-COSFIRE filters,
MVA(27), No. 8, November 2016, pp. 1137-1149.
Springer DOI 1612
BibRef
Earlier:
Multiscale Blood Vessel Delineation Using B-COSFIRE Filters,
CAIP15(II:300-312).
Springer DOI 1511
BibRef

Dash, J.[Jyotiprava], Bhoi, N.[Nilamani],
Detection of retinal blood vessels from ophthalmoscope images using morphological approach,
ELCVIA(16), No. 1, 2017, pp. 1-14.
DOI Link 1703
BibRef

Alkassar, S.[Sinan], Woo, W.L.[Wai-Lok], Dlay, S.S.[Satnam S.], Chambers, J.A.[Jonathon A.],
Robust Sclera Recognition System With Novel Sclera Segmentation and Validation Techniques,
SMCS(47), No. 3, March 2017, pp. 474-486.
IEEE DOI 1703
Active contours BibRef

Alkassar, S.[Sinan], Woo, W.L.[Wai-Lok], Dlay, S.S.[Satnam S.], Chambers, J.A.[Jonathon A.],
Sclera recognition: on the quality measure and segmentation of degraded images captured under relaxed imaging conditions,
IET-Bio(6), No. 4, July 2017, pp. 266-275.
DOI Link 1707
BibRef

Guo, J., Zhu, W., Shi, F., Xiang, D., Chen, H., Chen, X.,
A Framework for Classification and Segmentation of Branch Retinal Artery Occlusion in SD-OCT,
IP(26), No. 7, July 2017, pp. 3518-3527.
IEEE DOI 1706
Arteries, Image edge detection, Image segmentation, Retina, Shape, Visualization, AdaBoost classifier, Bayesian posterior probability, Branch retinal artery occlusion, graph search-graph cut, segmentation BibRef

Zhang, J.[Jiong], Chen, Y.[Yuan], Bekkers, E.[Erik], Wang, M.[Meili], Dashtbozorg, B.[Behdad], ter Haar Romeny, B.M.[Bart M.],
Retinal vessel delineation using a brain-inspired wavelet transform and random forest,
PR(69), No. 1, 2017, pp. 107-123.
Elsevier DOI 1706
Random forest BibRef

Morales, S., Naranjo, V., Angulo, J., Legaz-Aparicio, A.G., Verdú-Monedero, R.,
Retinal network characterization through fundus image processing: Significant point identification on vessel centerline,
SP:IC(59), No. 1, 2017, pp. 50-64.
Elsevier DOI 1711
Retinal, skeleton BibRef

Colomer, A., Naranjo, V., Engan, K., Skretting, K.,
Assessment of sparse-based inpainting for retinal vessel removal,
SP:IC(59), No. 1, 2017, pp. 73-82.
Elsevier DOI 1711
Sparse-based, inpainting BibRef

Huang, F.[Fan], Dashtbozorg, B.[Behdad], ter Haar Romeny, B.M.[Bart M.],
Artery/vein classification using reflection features in retina fundus images,
MVA(29), No. 1, January 2018, pp. 23-34.
WWW Link. 1801
BibRef

Biswal, B.[Birendra], Pooja, T.[Thotakura], Subrahmanyam, N.B.[N. Bala],
Robust retinal blood vessel segmentation using line detectors with multiple masks,
IET-IPR(12), No. 3, March 2018, pp. 389-399.
DOI Link 1802
BibRef

Karn, P.K.[Prakash Kumar], Biswal, B.[Birendra], Samantaray, S.R.[Subhransu Ranjan],
Robust retinal blood vessel segmentation using hybrid active contour model,
IET-IPR(13), No. 3, February 2019, pp. 440-450.
DOI Link 1903
BibRef

Hassan, G.[Gehad], Hassanien, A.E.[Aboul Ella],
Retinal fundus vasculature multilevel segmentation using whale optimization algorithm,
SIViP(12), No. 2, February 2018, pp. 263-270.
WWW Link. 1802
BibRef

Pellegrini, E., Robertson, G., MacGillivray, T., van Hemert, J., Houston, G., Trucco, E.,
A Graph Cut Approach to Artery/Vein Classification in Ultra-Widefield Scanning Laser Ophthalmoscopy,
MedImg(37), No. 2, February 2018, pp. 516-526.
IEEE DOI 1802
Biomedical imaging, Blood vessels, Cameras, Feature extraction, Image resolution, Image segmentation, Retina, Retina, ultra-widefield BibRef

Costa, P.[Pedro], Galdran, A.[Adrian], Meyer, M.I.[Maria Ines], Niemeijer, M., Abramoff, M., Mendonça, A.M.[Ana Maria], Campilho, A.[Aurélio],
End-to-End Adversarial Retinal Image Synthesis,
MedImg(37), No. 3, March 2018, pp. 781-791.
IEEE DOI 1804
BibRef
Earlier: A1, A2, A3, A6, A7, Only:
Adversarial Synthesis of Retinal Images from Vessel Trees,
ICIAR17(516-523).
Springer DOI 1706
blood vessels, eye, image colour analysis, image segmentation, learning (artificial intelligence), medical image processing, retinal image analysis BibRef

Meyer, M.I.[Maria Ines], Costa, P.[Pedro], Galdran, A.[Adrian], Mendonça, A.M.[Ana Maria], Campilho, A.[Aurélio],
A Deep Neural Network for Vessel Segmentation of Scanning Laser Ophthalmoscopy Images,
ICIAR17(507-515).
Springer DOI 1706
BibRef

Shahid, M.[Muhammad], Taj, I.A.[Imtiaz Ahmad],
Retracted: Robust Retinal Vessel Segmentation using Vessel's Location Map and Frangi Enhancement Filter,
IET-IPR(12), No. 8, August 2018, pp. 1510.
DOI Link BibRef 1808
And: Original: IET-IPR(12), No. 4, April 2018, pp. 494-501.
DOI Link 1804
The article published in IET Image Processing on 16th January 2018 has been retracted due to a breach of the IET's Policy in Relation to Plagiarism, Infringement of Copyright and Infringement of Moral Rights and Submission to Multiple Publications. Prof. Imtiaz Ahmed Taj was unaware of and not complicit in any misconduct. BibRef

Yan, Z., Yang, X., Cheng, K.T.,
A Skeletal Similarity Metric for Quality Evaluation of Retinal Vessel Segmentation,
MedImg(37), No. 4, April 2018, pp. 1045-1057.
IEEE DOI 1804
Image segmentation, Manuals, Observers, Retinal vessels, Skeleton, Thickness measurement, Retinal vessel segmentation, skeletal similarity BibRef

Thangaraj, S.[Sumathi], Periyasamy, V.[Vivekanandan], Balaji, R.[Ravikanth],
Retinal vessel segmentation using neural network,
IET-IPR(12), No. 5, May 2018, pp. 669-678.
DOI Link 1804
BibRef

Strisciuglio, N.[Nicola],
Learning audio and image representations with bio-inspired trainable feature extractors,
ELCVIA(16), No. 2, 2017, pp. 17-20.
DOI Link 1804
Audio events in noise. Detection of elongated and curvilinear patterns in images and apply them to the delineation of blood vessels in retinal images. COSFIRE descriptor. BibRef

Strisciuglio, N.[Nicola], Vento, M.[Mario], Petkov, N.[Nicolai],
Learning representations of sound using trainable COPE feature extractors,
PR(92), 2019, pp. 25-36.
Elsevier DOI 1905
Audio analysis, Event detection, Peaks of energy, Representation learning, Trainable feature extractors BibRef

Gou, D.D.[Duo-Duo], Wei, Y.[Ying], Fu, H.[Hong], Yan, N.[Ning],
Retinal vessel extraction using dynamic multi-scale matched filtering and dynamic threshold processing based on histogram fitting,
MVA(29), No. 4, May 2018, pp. 655-666.
WWW Link. 1805
BibRef
And: Correction: MVA(30), No. 3, April 2019, pp. 541.
WWW Link. 1906
BibRef

Argüello, F.[Francisco], Vilarińo, D.L.[David L.], Heras, D.B.[Dora B.], Nieto, A.[Alejandro],
GPU-based segmentation of retinal blood vessels,
RealTimeIP(14), No. 4, April 2018, pp. 773-782.
Springer DOI 1805
BibRef

Bendaoudi, H.[Hamza], Cheriet, F.[Farida], Manraj, A.[Ashley], Ben Tahar, H.[Houssem], Langlois, J.M.P.[J.M. Pierre],
Flexible architectures for retinal blood vessel segmentation in high-resolution fundus images,
RealTimeIP(15), No. 1, June 2018, pp. 31-42.
Springer DOI 1806
BibRef

Chen, D.[Da], Cohen, L.D.[Laurent D.],
Fast Asymmetric Fronts Propagation for Image Segmentation,
JMIV(60), No. 6, July 2018, pp. 766-783.
WWW Link. 1806
BibRef
Earlier:
Fast Asymmetric Fronts Propagation for Voronoi Region Partitioning and Image Segmentation,
EMMCVPR17(469-484).
Springer DOI 1805
BibRef

Chen, D.[Da], Cohen, L.D.[Laurent D.],
Piecewise Geodesics for Vessel Centerline Extraction and Boundary Delineation with Application to Retina Segmentation,
SSVM15(270-281).
Springer DOI 1506
BibRef

Yue, K.[Kejuan], Zou, B.[Beiji], Chen, Z.L.[Zai-Liang], Liu, Q.[Qing],
Improved multi-scale line detection method for retinal blood vessel segmentation,
IET-IPR(12), No. 8, August 2018, pp. 1450-1457.
DOI Link 1808
BibRef

Bhoopalan, R.[Ramasubramanian], Sundaramoorthy, S.[Selvaperumal],
Efficient approach for the automatic detection of haemorrhages in colour retinal images,
IET-IPR(12), No. 9, September 2018, pp. 1550-1554.
DOI Link 1809
BibRef

Sathananthavathi, V.[Vallikutti], Indumathi, G.[Ganesan],
BAT algorithm inspired retinal blood vessel segmentation,
IET-IPR(12), No. 11, November 2018, pp. 2075-2083.
DOI Link 1810
BibRef

Khomri, B.[Bilal], Christodoulidis, A.[Argyrios], Djerou, L.[Leila], Babahenini, M.C.[Mohamed Chaouki], Cheriet, F.[Farida],
Retinal blood vessel segmentation using the elite-guided multi-objective artificial bee colony algorithm,
IET-IPR(12), No. 12, December 2018, pp. 2163-2171.
DOI Link 1812
BibRef

Uslu, F.[Fatmatülzehra], Bharath, A.A.[Anil Anthony],
A recursive Bayesian approach to describe retinal vasculature geometry,
PR(87), 2019, pp. 157-169.
Elsevier DOI 1812
Particle filtering, Deep neural network, Deep Belief Net, Fundus image, Width estimation, Tracking BibRef

Sazak, Ç.[Çigdem], Nelson, C.J.[Carl J.], Obara, B.[Boguslaw],
The multiscale bowler-hat transform for blood vessel enhancement in retinal images,
PR(88), 2019, pp. 739-750.
Elsevier DOI 1901
BibRef
And: Erratum: PR(91), 2019, pp. 404.
Elsevier DOI 1904
Image enhancement, Mathematical morphology, Bowler-hat transform, Blood vessel enhancement BibRef

Wang, X.H.[Xiao-Hong], Jiang, X.D.[Xu-Dong], Ren, J.F.[Jian-Feng],
Blood vessel segmentation from fundus image by a cascade classification framework,
PR(88), 2019, pp. 331-341.
Elsevier DOI 1901
Fundus image, Retinal vessel segmentation, Cascade classification, Dimensionality reduction BibRef

Fan, Z., Lu, J., Wei, C., Huang, H., Cai, X., Chen, X.,
A Hierarchical Image Matting Model for Blood Vessel Segmentation in Fundus Images,
IP(28), No. 5, May 2019, pp. 2367-2377.
IEEE DOI 1903
blood vessels, eye, feature extraction, image segmentation, medical image processing, hierarchical image matting model, vessel BibRef

Khowaja, S.A.[Sunder Ali], Khuwaja, P.[Parus], Ismaili, I.A.[Imdad Ali],
A framework for retinal vessel segmentation from fundus images using hybrid feature set and hierarchical classification,
SIViP(13), No. 2, March 2019, pp. 379-387.
WWW Link. 1904
BibRef

Srinidhi, C.L., Aparna, P., Rajan, J.,
Automated Method for Retinal Artery/Vein Separation via Graph Search Metaheuristic Approach,
IP(28), No. 6, June 2019, pp. 2705-2718.
IEEE DOI 1905
biomedical optical imaging, blood vessels, diseases, eye, feature extraction, graph theory, image classification, vessel keypoints BibRef

Han, M.[Myounghee], Kim, Y.[Yongjoo], Park, J.R.[Jang Ryul], Vakoc, B.J.[Benjamin J.], Oh, W.Y.[Wang-Yuhl], Ryu, S.[Sukyoung],
Retinal Blood Vessel Caliber Estimation for Optical Coherence Tomography Angiography Images Based on 3D Superellipsoid Modeling,
IJIG(19), No. 2 2019, pp. 1950011.
DOI Link 1906
BibRef

Dharmawan, D.A., Ng, B.P., Borijindargoon, N.,
Design of Optimal Adaptive Filters for Two-Dimensional Filamentary Structures Segmentation,
SPLetters(26), No. 10, October 2019, pp. 1511-1515.
IEEE DOI 1909
Image segmentation, Training, Retinal vessels, Blood vessels, Biomedical imaging, Image reconstruction, regularization BibRef

Motta, D., Casaca, W., Paiva, A.,
Vessel Optimal Transport for Automated Alignment of Retinal Fundus Images,
IP(28), No. 12, December 2019, pp. 6154-6168.
IEEE DOI 1909
Retina, Biomedical imaging, Image registration, Feature extraction, Optimization, Blood vessels, Retinal image registration, optimal transport BibRef

Wang, W.H.[Wei-Hua], Wang, W.Q.[Wei-Qing], Hu, Z.[Zhangping],
Retinal vessel segmentation approach based on corrected morphological transformation and fractal dimension,
IET-IPR(13), No. 13, November 2019, pp. 2538-2547.
DOI Link 1911
BibRef

Yang, Y.[Yan], Shao, F.[Feng], Fu, Z.Q.[Zhen-Qi], Fu, R.[Randi],
Discriminative dictionary learning for retinal vessel segmentation using fusion of multiple features,
SIViP(13), No. 8, November 2019, pp. 1529-1537.
WWW Link. 1911
BibRef

Khan, M.A.U.[Mohammad A. U.], Khan, T.M.[Tariq M.], Naqvi, S.S.[Syed S.], Khan, M.A.[M. Aurangzeb],
GGM classifier with multi-scale line detectors for retinal vessel segmentation,
SIViP(13), No. 8, November 2019, pp. 1667-1675.
Springer DOI 1911
BibRef

Bibiloni, P.[Pedro], González-Hidalgo, M.[Manuel], Massanet, S.[Sebastia],
A real-time fuzzy morphological algorithm for retinal vessel segmentation,
RealTimeIP(16), No. 6, December 2019, pp. 2337-2350.
Springer DOI 1912
BibRef

Zhao, Y.T.[Yi-Tian], Xie, J.Y.[Jian-Yang], Zhang, H.Z.[Huai-Zhong], Zheng, Y.L.[Ya-Lin], Zhao, Y.F.[Yi-Fan], Qi, H.[Hong], Zhao, Y.C.[Yang-Chun], Su, P.[Pan], Liu, J.[Jiang], Liu, Y.H.[Yong-Huai],
Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering,
MedImg(39), No. 2, February 2020, pp. 341-356.
IEEE DOI 2002
Retinal images, dominant set clustering, blood vessel, vascular topology, Artery/vein classification BibRef

Tan, Y.H.[Ying-Hui], Liu, M.[Min], Chen, W.X.[Wei-Xun], Wang, X.P.[Xue-Ping], Peng, H.C.[Han-Chuan], Wang, Y.[Yaonan],
DeepBranch: Deep Neural Networks for Branch Point Detection in Biomedical Images,
MedImg(39), No. 4, April 2020, pp. 1195-1205.
IEEE DOI 2004
Biomedical imaging, Image reconstruction, Neurons, Image segmentation, Convolution, convolutional neural networks cascade BibRef

Rammy, S.A.[Sadaqat Ali], Abbas, W.[Waseem], Hassan, N.U.[Naqy-Ul], Raza, A.[Asif], Zhang, W.[Wu],
CPGAN: Conditional patch-based generative adversarial network for retinal vessel segmentation,
IET-IPR(14), No. 6, 11 May 2020, pp. 1081-1090.
DOI Link 2005
BibRef

Ding, L., Bawany, M.H., Kuriyan, A.E., Ramchandran, R.S., Wykoff, C.C., Sharma, G.,
A Novel Deep Learning Pipeline for Retinal Vessel Detection In Fluorescein Angiography,
IP(29), 2020, pp. 6561-6573.
IEEE DOI 2007
Pipelines, Deep learning, Retinal vessels, Angiography, Training, Annotations, Fluorescein angiography, deep learning BibRef

Zhao, H.L.[Han-Li], Qiu, X.Q.[Xia-Qing], Lu, W.L.[Wang-Long], Huang, H.[Hui], Jin, X.G.[Xiao-Gang],
High-quality retinal vessel segmentation using generative adversarial network with a large receptive field,
IJIST(30), No. 3, 2020, pp. 828-842.
DOI Link 2008
dilated convolution, generative adversarial network, receptive field, retinal vessel segmentation BibRef

Upadhyay, K.[Kamini], Agrawal, M.[Monika], Vashist, P.[Praveen],
Unsupervised multiscale retinal blood vessel segmentation using fundus images,
IET-IPR(14), No. 11, September 2020, pp. 2616-2625.
DOI Link 2009
BibRef

Wang, Z., Jiang, X., Liu, J., Cheng, K., Yang, X.,
Multi-Task Siamese Network for Retinal Artery/Vein Separation via Deep Convolution Along Vessel,
MedImg(39), No. 9, September 2020, pp. 2904-2919.
IEEE DOI 2009
Task analysis, Visualization, Image segmentation, Feature extraction, Convolution, Retina, Machine learning, multi-task learning BibRef

Li, M.C.[Ming-Chao], Chen, Y.R.[Ye-Rui], Ji, Z.X.[Ze-Xuan], Xie, K.[Keren], Yuan, S.T.[Song-Tao], Chen, Q.[Qiang], Li, S.[Shuo],
Image Projection Network: 3D to 2D Image Segmentation in OCTA Images,
MedImg(39), No. 11, November 2020, pp. 3343-3354.
IEEE DOI 2011
BibRef
And: Correction: MedImg(42), No. 1, January 2023, pp. 329-329.
IEEE DOI 2301
Image segmentation, Retinal vessels, Biomedical imaging, optical coherence tomography angiography BibRef

Dash, S.[Sonali], Senapati, M.R.[Manas Ranjan], Sahu, P.K.[Pradip Kumar], Chowdary, P.S.R.,
Illumination normalized based technique for retinal blood vessel segmentation,
IJIST(31), No. 1, 2021, pp. 351-363.
DOI Link 2102
CLAHE, homomorphic normalization, hysteresis thresholding, retinal vasculature BibRef

Iqbal, M.[Mehwish], Riaz, M.M.[Muhammad Mohsin], Ghafoor, A.[Abdul], Ahmad, A.[Attiq],
A vessel segmentation technique for retinal images,
IJIST(31), No. 1, 2021, pp. 160-167.
DOI Link 2102
B-COSFIRE filter, detail enhancement, vessel extraction BibRef

Ma, Y., Hao, H., Xie, J., Fu, H., Zhang, J., Yang, J., Wang, Z., Liu, J., Zheng, Y., Zhao, Y.,
ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model,
MedImg(40), No. 3, March 2021, pp. 928-939.
IEEE DOI 2103
Measurement, Image segmentation, Statistical analysis, Optical coherence tomography, Ultraviolet sources, Retina, benchmark BibRef

Kipli, K.[Kuryati], Hoque, M.E.[Mohammed Enamul], Lim, L.T.[Lik Thai], Zulcaffle, T.M.A.[Tengku Mohd Afendi], Sahari, S.K.[Siti Kudnie], Mahmood, M.H.[Muhammad Hamdi],
Retinal image blood vessel extraction and quantification with Euclidean distance transform approach,
IET-IPR(14), No. 15, 15 December 2020, pp. 3718-3724.
DOI Link 2103
BibRef

Chen, Z.Y.[Zhi-Yuan], Jin, W.[Wei], Zeng, X.B.[Xing-Bin], Xu, L.[Liang],
Retinal vessel segmentation based on task-driven generative adversarial network,
IET-IPR(14), No. 17, 24 December 2020, pp. 4599-4605.
DOI Link 2104
BibRef

Zhu, D.C.[Dong-Chen], Li, J.M.[Jia-Mao], Li, H.[Hang], Peng, J.Q.[Jing-Quan], Wang, X.S.[Xian-Shun], Zhang, X.L.[Xiao-Lin],
A Less-constrained Sclera Recognition Method based on Stem-and-leaf Branches Network,
PRL(145), 2021, pp. 43-49.
Elsevier DOI 2104
Biometrics, Sclera recognition, Vessels segmentation, Recognition neural network, Feature aggregation BibRef

Sun, M.[Muyi], Li, K.Q.[Kai-Qi], Qi, X.Q.[Xing-Qun], Dang, H.[Hao], Zhang, G.H.[Guan-Hong],
Contextual information enhanced convolutional neural networks for retinal vessel segmentation in color fundus images,
JVCIR(77), 2021, pp. 103134.
Elsevier DOI 2106
Retinal vessel segmentation, Color fundus image analysis, Semantic segmentation, Cascaded dilated module, Context fusion BibRef

Sayed, M.A.[Md. Abu], Saha, S.[Sajib], Rahaman, G.M.A.[G. M. Atiqur], Ghosh, T.K.[Tanmai K.], Kanagasingam, Y.[Yogesan],
An innovate approach for retinal blood vessel segmentation using mixture of supervised and unsupervised methods,
IET-IPR(15), No. 1, 2021, pp. 180-190.
DOI Link 2106
BibRef
Earlier: A4, A2, A3, A1, A5:
Retinal Blood Vessel Segmentation: A Semi-supervised Approach,
IbPRIA19(II:98-107).
Springer DOI 1910
BibRef

Liu, Y.P.[Yi-Peng], Rui, X.[Xue], Li, Z.Q.[Zhan-Qing], Zeng, D.X.[Dong-Xu], Li, J.[Jing], Chen, P.[Peng], Liang, R.H.[Rong-Hua],
Feature pyramid U-Net for retinal vessel segmentation,
IET-IPR(15), No. 8, 2021, pp. 1733-1744.
DOI Link 2106
BibRef

Tavakoli, M.[Meysam], Mehdizadeh, A.[Alireza], Shahri, R.P.[Reza Pourreza], Dehmeshki, J.[Jamshid],
Unsupervised automated retinal vessel segmentation based on Radon line detector and morphological reconstruction,
IET-IPR(15), No. 7, 2021, pp. 1484-1498.
DOI Link 2106
BibRef

Zou, B.[Beiji], Fu, H.[Hongpu], Chen, Z.L.[Zai-Liang], Liu, Q.[Qing],
Ground truth free retinal vessel segmentation by learning from simple pixels,
IET-IPR(15), No. 6, 2021, pp. 1210-1220.
DOI Link 2106
BibRef

Peng, Y.Y.[Yuan-Yuan], Zhu, W.F.[Wei-Fang], Chen, Z.Y.[Zhong-Yue], Wang, M.[Meng], Geng, L.[Le], Yu, K.[Kai], Zhou, Y.[Yi], Wang, T.[Ting], Xiang, D.M.[Dao-Man], Chen, F.[Feng], Chen, X.J.[Xin-Jian],
Automatic Staging for Retinopathy of Prematurity With Deep Feature Fusion and Ordinal Classification Strategy,
MedImg(40), No. 7, July 2021, pp. 1750-1762.
IEEE DOI 2107
Feature extraction, Convolution, Blindness, Standards, Retinopathy, Retinal vessels, Data mining, Retinopathy of prematurity, fundus images BibRef

Das, S.[Sumanta], de Ghosh, I.[Ishita], Chattopadhyay, A.[Abir],
An efficient deep sclera recognition framework with novel sclera segmentation, vessel extraction and gaze detection,
SP:IC(97), 2021, pp. 116349.
Elsevier DOI 2107
DeepR, Gaze detection, Sclera biometric, Sclera recognition, Sclera segmentation, Vasculature segmentation BibRef

Hakim, L.[Lukman], Kavitha, M.S.[Muthu Subash], Yudistira, N.[Novanto], Kurita, T.[Takio],
Regularizer based on Euler characteristic for retinal blood vessel segmentation,
PRL(149), 2021, pp. 83-90.
Elsevier DOI 2108
Fundus image, Segmentation, Euler characteristic, Regularizer BibRef

Liu, Y.P.[Yi-Peng], Lv, Y.J.[Ya-Jun], Li, Z.Q.[Zhan-Qing], Li, J.[Jing], Liu, Y.[Yan], Chen, P.[Peng], Liang, R.H.[Rong-Hua],
Blood vessel and background separation for retinal image quality assessment,
IET-IPR(15), No. 11, 2021, pp. 2559-2571.
DOI Link 2108
BibRef

Sathananthavathi, V., Indumathi, G., Mahiya, R.[Rita], Priyadarshini, S.,
Improvement of thin retinal vessel extraction using mean matting method,
IJIST(31), No. 3, 2021, pp. 1455-1467.
DOI Link 2108
correlation, enhancement, extraction, features, fundus, trimap, wavelet transform BibRef

Zhao, R.[Ruohan], Li, Q.[Qin], Wu, J.R.[Jian-Rong], You, J.[Jane],
A nested U-shape network with multi-scale upsample attention for robust retinal vascular segmentation,
PR(120), 2021, pp. 107998.
Elsevier DOI 2109
Vascular segmentation, Retinal imaging, Dense U-Net, Multi-scale attention, Deep learning BibRef

Ding, L.[Li], Kuriyan, A.E.[Ajay E.], Ramchandran, R.S.[Rajeev S.], Wykoff, C.C.[Charles C.], Sharma, G.[Gaurav],
Weakly-Supervised Vessel Detection in Ultra-Widefield Fundus Photography via Iterative Multi-Modal Registration and Learning,
MedImg(40), No. 10, October 2021, pp. 2748-2758.
IEEE DOI 2110
Noise measurement, Training, Photography, Training data, Retinal vessels, Retinal vessel detection, noisy labels BibRef

Yang, X.[Xin], Li, Z.Q.[Zhi-Qiang], Guo, Y.Q.[Ying-Qing], Zhou, D.[Dake],
Retinal vessel segmentation based on an improved deep forest,
IJIST(31), No. 4, 2021, pp. 1792-1802.
DOI Link 2112
cascade forest, CNN, deep forest, model fusion, retinal blood vessel segmentation BibRef

Khan, T.M.[Tariq M.], Robles-Kelly, A.[Antonio], Naqvi, S.S.[Syed S.],
RC-Net: A Convolutional Neural Network for Retinal Vessel Segmentation,
DICTA21(01-07)
IEEE DOI 2201
Image segmentation, Image color analysis, Digital images, Benchmark testing, Information filters, Retinal vessels, Residual Connections BibRef

Wei, J.H.[Jia-Hong], Zhu, G.J.[Gui-Jie], Fan, Z.[Zhun], Liu, J.C.[Jin-Chao], Rong, Y.B.[Yi-Biao], Mo, J.J.[Jia-Jie], Li, W.J.[Wen-Ji], Chen, X.J.[Xin-Jian],
Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel Segmentation Using a Genetic Algorithm,
MedImg(41), No. 2, February 2022, pp. 292-307.
IEEE DOI 2202
Retinal vessels, Image segmentation, Computer architecture, Genetic algorithms, Network architecture, Biomedical imaging, neural architecture search (NAS) BibRef

Pal, M.N.[Mahua Nandy], Banerjee, M.[Minakshi],
Retinal vessel segmentation using a strip wise classification approach with grid search-based parameter selection,
IJCVR(12), No. 2, 2022, pp. 194-218.
DOI Link 2203
BibRef

Fu, Y.H.[Ying-Hua], Zhang, G.[Ge], Li, J.[Jiang], Pan, D.Y.[Dong-Yan], Wang, Y.X.[Yong-Xiong], Zhang, D.W.[Da-Wei],
Fovea localization by blood vessel vector in abnormal fundus images,
PR(129), 2022, pp. 108711.
Elsevier DOI 2206
Blood vessel vector (BVV), Fovea localization, Retinal raphe, Probability bubble, Region search BibRef

Mishra, S.[Suraj], Zhang, Y.Z.[Yi-Zhe], Chen, D.Z.[Danny Z.], Hu, X.S.[X. Sharon],
Data-Driven Deep Supervision for Medical Image Segmentation,
MedImg(41), No. 6, June 2022, pp. 1560-1574.
IEEE DOI 2206
Image segmentation, Feature extraction, Convolutional neural networks, Retinal vessels, Optical imaging, 2D and 3D images BibRef

Xu, P.F.[Peng-Fei], Zhao, G.[Gangjing], Liu, J.P.[Jin-Ping], Jahanshahi, H.[Hadi], Tang, Z.H.[Zhao-Hui], Gong, S.[Subo],
MCG&BA-Net: Retinal vessel segmentation using multiscale context gating and breakpoint attention,
IET-IPR(16), No. 11, 2022, pp. 3039-3056.
DOI Link 2208
BibRef

Li, Y.[Yang], Zhang, Y.[Yue], Cui, W.G.[Wei-Gang], Lei, B.[Baiying], Kuang, X.[Xihe], Zhang, T.[Teng],
Dual Encoder-Based Dynamic-Channel Graph Convolutional Network With Edge Enhancement for Retinal Vessel Segmentation,
MedImg(41), No. 8, August 2022, pp. 1975-1989.
IEEE DOI 2208
Image edge detection, Biomedical imaging, Image segmentation, Feature extraction, Deep learning, Convolution, Decoding, deep learning BibRef

Tan, Y.[Yubo], Yang, K.F.[Kai-Fu], Zhao, S.X.[Shi-Xuan], Li, Y.J.[Yong-Jie],
Retinal Vessel Segmentation With Skeletal Prior and Contrastive Loss,
MedImg(41), No. 9, September 2022, pp. 2238-2251.
IEEE DOI 2209
Image segmentation, Retinal vessels, Lesions, Deep learning, Skeleton, Feature extraction, Optical imaging, Fundus image, contrastive loss BibRef

Yang, X.[Xin], Liu, L.[Li], Li, T.[Tao],
MR-UNet: An UNet model using multi-scale and residual convolutions for retinal vessel segmentation,
IJIST(32), No. 5, 2022, pp. 1588-1603.
DOI Link 2209
deep learning, improved UNet, multi-scale features, retinal vessel segmentation BibRef

Mahapatra, S.[Sakambhari], Jena, U.R.[Uma Ranjan], Dash, S.[Sonali], Agrawal, S.,
A modified Coye algorithm for retinal vessel segmentation,
IJCVR(13), No. 1, 2023, pp. 73-90.
DOI Link 2212
BibRef

Hao, J.[Jinkui], Shen, T.[Ting], Zhu, X.[Xueli], Liu, Y.H.[Yong-Huai], Behera, A.[Ardhendu], Zhang, D.[Dan], Chen, B.[Bang], Liu, J.[Jiang], Zhang, J.[Jiong], Zhao, Y.T.[Yi-Tian],
Retinal Structure Detection in OCTA Image via Voting-Based Multitask Learning,
MedImg(41), No. 12, December 2022, pp. 3969-3980.
IEEE DOI 2212
Task analysis, Image segmentation, Feature extraction, Retinal vessels, Multitasking, Diseases, Bifurcation, OCTA, classification BibRef

Lyu, J.[Junyan], Zhang, Y.Q.[Yi-Qi], Huang, Y.J.[Yi-Jin], Lin, L.[Li], Cheng, P.[Pujin], Tang, X.Y.[Xiao-Ying],
AADG: Automatic Augmentation for Domain Generalization on Retinal Image Segmentation,
MedImg(41), No. 12, December 2022, pp. 3699-3711.
IEEE DOI 2212
Image segmentation, Task analysis, Training, Medical diagnostic imaging, Testing, Retinal vessels, Lesions, reinforcement learning BibRef

Liu, Y.H.[Yi-Hao], Carass, A.[Aaron], Zuo, L.[Lianrui], He, Y.F.[Yu-Fan], Han, S.[Shuo], Gregori, L.[Lorenzo], Murray, S.[Sean], Mishra, R.[Rohit], Lei, J.Q.[Jian-Qin], Calabresi, P.A.[Peter A.], Saidha, S.[Shiv], Prince, J.L.[Jerry L.],
Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data,
MedImg(41), No. 12, December 2022, pp. 3686-3698.
IEEE DOI 2212
Image segmentation, Manuals, Training, Decoding, Faces, Image reconstruction, Angiography, OCT, OCTA, vessel segmentation BibRef

Erwin, Putra, H.K.[Hadrians Kesuma], Suprihatin, B.[Bambang], Fathoni,
Retinal Blood Vessel Extraction Using a New Enhancement Technique of Modified Convolution Filters and Sauvola Thresholding,
IJIG(23), No. 1 2023, pp. 2350006.
DOI Link 2302
BibRef

Challoob, M.[Mohsin], Gao, Y.S.[Yong-Sheng], Busch, A.[Andrew], Nikzad, M.[Mohammad],
Separable Paravector Orientation Tensors for Enhancing Retinal Vessels,
MedImg(42), No. 3, March 2023, pp. 880-893.
IEEE DOI 2303
Tensors, Retinal vessels, Kernel, Lighting, Bandwidth, Eigenvalues and eigenfunctions, Frequency-domain analysis, tensor analysis BibRef

Fhima, J.[Jonathan], van Eijgen, J.[Jan], Stalmans, I.[Ingeborg], Men, Y.[Yevgeniy], Freiman, M.[Moti], Behar, J.A.[Joachim A.],
Pvbm: A Python Vasculature Biomarker Toolbox Based on Retinal Blood Vessel Segmentation,
MCV22(296-312).
Springer DOI 2304
BibRef

Harish, B.S., Maheshan, M.S., Roopa, C.K., Rangan, R.K.[R. Kasturi],
An improved sclera recognition using kernel entropy component analysis method,
IJCVR(13), No. 3, 2023, pp. 304-315.
DOI Link 2305
BibRef

Liu, Y.P.[Yi-Peng], Zeng, D.X.[Dong-Xu], Li, Z.Q.[Zhan-Qing], Chen, P.[Peng], Liang, R.H.[Rong-Hua],
SS-Norm: Spectral-spatial normalization for single-domain generalization with application to retinal vessel segmentation,
IET-IPR(17), No. 7, 2023, pp. 2168-2181.
DOI Link 2305
convolutional neural nets, image segmentation, medical image processing BibRef

van den Berg, N.J.[Nicky J.], Zhang, S.[Shuhe], Smets, B.M.N.[Bart M. N.], Berendschot, T.T.J.M.[Tos T. J. M.], Duits, R.[Remco],
Geodesic Tracking of Retinal Vascular Trees with Optical and TV-Flow Enhancement in Se(2),
SSVM23(525-537).
Springer DOI 2307
BibRef

Li, Y.[Yang], Zhang, Y.[Yue], Liu, J.Y.[Jing-Yu], Wang, K.[Kang], Zhang, K.[Kai], Zhang, G.S.[Gen-Sheng], Liao, X.F.[Xiao-Feng], Yang, G.[Guang],
Global Transformer and Dual Local Attention Network via Deep-Shallow Hierarchical Feature Fusion for Retinal Vessel Segmentation,
Cyber(53), No. 9, September 2023, pp. 5826-5839.
IEEE DOI 2309
BibRef

Gao, W.W.[Wei-Wei], Fan, B.[Bo], Fang, Y.[Yu], Shan, M.[Mingtao], Song, N.[Nan],
Detection and location of microaneurysms in fundus images based on improved YOLOv4 with IFCM,
IET-IPR(17), No. 11, 2023, pp. 3349-3357.
DOI Link 2310
fundus image, improved fuzzy C-means (IFCM), microaneurysm, SENet, YOLOv4 BibRef

Chen, J.[Jian], Wan, J.[Jiaze], Fang, Z.[Zhenghan], Wei, L.F.[Li-Fang],
LMSA-Net: A lightweight multi-scale aware network for retinal vessel segmentation,
IJIST(33), No. 5, 2023, pp. 1515-1530.
DOI Link 2310
lightweight network, multi-scale awareness, retinal vessel segmentation, semantic information BibRef

Wang, X.C.[Xiao-Chen], Ding, Y.H.[Yan-Hui], Zheng, Y.J.[Yuan-Jie],
Multiscale attention network for retinal vein occlusion classification with multicolor image,
IJIST(33), No. 6, 2023, pp. 2012-2022.
DOI Link 2311
convolutional neural networks, multicolor images, multiscale attention, retinal image classification, retinal vein occlusion BibRef

Das, S.[Sumanta], Ghosh, I.D.[Ishita De], Chattopadhyay, A.[Abir],
An investigation into automated age estimation using sclera images: a novel modality,
IJCVR(14), No. 1, 2024, pp. 42-62.
DOI Link 2312
BibRef

Huang, L.Y.[Lin-Yuan], Liu, F.[Feng],
Width measurement of retinal vessels using cubic spline fitting and extended edge-searching mode,
IJIST(34), No. 2, 2024, pp. e22996.
DOI Link 2402
central light reflex, cubic spline fitting, extended edge-searching mode, retinal vessel, width measurement BibRef

Jalali, Y.[Yeganeh], Fateh, M.[Mansoor], Rezvani, M.[Mohsen],
VGA-Net: Vessel graph based attentional U-Net for retinal vessel segmentation,
IET-IPR(18), No. 8, 2024, pp. 2191-2213.
DOI Link Code:
WWW Link. 2406
biomedical imaging, image processing, image segmentation, medical image processing BibRef

Bal, A.B.[Aditi Basu], Guo, X.Y.[Xiao-Yang], Needham, T.[Tom], Srivastava, A.[Anuj],
Statistical Analysis of Complex Shape Graphs,
PAMI(46), No. 12, December 2024, pp. 8788-8805.
IEEE DOI 2411
Shape, Blood vessels, Biomedical imaging, Databases, Analytical models, Topology, Mathematical models, shape models BibRef


Cao, Y.X.[Yun-Xiang], Chen, L.[Li], Wang, Y.[Yubo], Feng, Z.[Zhida], Liu, X.M.[Xiao-Ming],
Unleashing Fine-Coarse Curve Perception Via Trunk-Branch Perturbation,
ICIP24(1113-1119)
IEEE DOI 2411
Measurement, Image segmentation, Fuses, Perturbation methods, Blood vessels, Retina, Robustness, Curve structure, Perturbation BibRef

Zhang, W.Y.[Wei-Yi], Shi, D.[Danli], He, M.G.[Ming-Guang],
Improving Consistency in Cardiovascular Disease Risk Assessment: Cross-Camera Adaptation for Retinal Images,
DEF-AI-MIA24(5194-5199)
IEEE DOI 2410
Adaptation models, Computational modeling, Medical services, Retina, Cameras, Image-to-image Translation, Cardiovascular Disease BibRef

Mehmood, M.[Mehwish], Alsharari, M.[Majed], Iqbal, S.[Shahzaib], Spence, I.[Ivor], Fahim, M.[Muhammad],
RetinaLiteNet: A Lightweight Transformer based CNN for Retinal Feature Segmentation,
WiCV24(2454-2463)
IEEE DOI 2410
Deep learning, Image segmentation, Biomedical optical imaging, Image analysis, Drives, Blood vessels, Optical imaging, Retinal blood vessel segmentation BibRef

Dulau, I.[Idris], Helmer, C.[Catherine], Delcourt, C.[Cecile], Beurton-Aimar, M.[Marie],
Ensuring a connected structure for Retinal Vessels Deep-Learning Segmentation,
CVAMD23(2356-2365)
IEEE DOI 2401
BibRef

Bhati, A.[Amit], Jain, S.[Samir], Gour, N.[Neha], Khanna, P.[Pritee], Ojha, A.[Aparajita], Werghi, N.[Naoufel],
A Shallow U-Net with Split-Fused Attention Mechanism for Retinal Vessel Segmentation,
ICIP23(3205-3209)
IEEE DOI 2312
BibRef

Mohan, S.[Shikhar], Bhattacharya, S.[Saumik], Ghosh, S.[Sayantari],
Attention W-Net: Improved Skip Connections for Better Representations,
ICPR22(217-222)
IEEE DOI 2212
Training, Image segmentation, Neural networks, Performance gain, Distortion, Retinal vessels, Decoding BibRef

Cai, B.[Binke], Ma, L.Y.[Li-Yan],
A Transformer-based Cascade Network with Boundary Enhancement Loss for Retinal Vessel Segmentation,
ICPR22(4292-4298)
IEEE DOI 2212
Image segmentation, Sensitivity, Image databases, Neural networks, Medical services, Manuals, Transformers BibRef

Wang, J.[Jie], Zhong, C.L.[Chao-Liang], Feng, C.[Cheng], Sun, J.[Jun], Yokota, Y.[Yasuto],
Feature Disentanglement for Cross-Domain Retina Vessel Segmentation,
ICIP21(26-30)
IEEE DOI 2201
Degradation, Image segmentation, Neural networks, Retina, Feature extraction, Task analysis, Feature disentanglement, Unsupervised domain adaptation BibRef

Li, C.X.[Chen-Xin], Zhang, Y.L.[Yun-Long], Liang, Z.H.[Zhe-Han], Ma, W.[Wenao], Huang, Y.[Yue], Ding, X.H.[Xing-Hao],
Consistent Posterior Distributions Under Vessel-Mixing: A Regularization for Cross-Domain Retinal Artery/Vein Classification,
ICIP21(61-65)
IEEE DOI 2201
Deep learning, Image segmentation, Protocols, Perturbation methods, Supervised learning, Imaging, Cross-domain learning, unsupervised domain adaptation BibRef

Wang, J.[Jun], Zhao, Y.[Yang], Qian, L.L.[Ling-Long], Yu, X.H.[Xiao-Han], Gao, Y.S.[Yong-Sheng],
EAR-NET: Error Attention Refining Network for Retinal Vessel Segmentation,
DICTA21(1-7)
IEEE DOI 2201
Training, Sensitivity, Retinopathy, Digital images, Refining, Focusing, Blood vessels BibRef

Saxena, S.[Suraj], Lal, K.[Kanhaiya], Joshi, S.[Sharad],
Retinal Vessel Segmentation Using Blending-Based Conditional Generative Adversarial Networks,
CAIP21(I:135-144).
Springer DOI 2112
BibRef

Zeng, H.[HongWei], Yi, X.[XingWen], Liang, S.[ShanShan],
Mix: A Potential Image Augmentation Method on Retinal Vessel Segmentation,
ICIVC21(140-143)
IEEE DOI 2112
Image segmentation, Costs, Magnetic resonance imaging, Computed tomography, Robustness, Retinal vessels, Image Augmentation BibRef

Carrillo-Gomez, C.[Cesar], Nakano, M.[Mariko], Gonzalez-H.Leon, A.[Ana], Romo-Aguas, J.C.[Juan Carlos], Quiroz-Mercado, H.[Hugo], Lopez-Garcia, O.[Osvaldo],
Neovascularization Detection on Optic Disc Region Using Deep Learning,
MCPR21(111-120).
Springer DOI 2108
BibRef

Reyes-Figueroa, A.[Alan], Rivera, M.[Mariano],
W-net: A Convolutional Neural Network for Retinal Vessel Segmentation,
MCPR21(355-368).
Springer DOI 2108
BibRef

Guo, C.[Changlu], Szemenyei, M.[Márton], Yi, Y.[Yugen], Wang, W.[Wenle], Chen, B.[Buer], Fan, C.Q.[Chang-Qi],
SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation,
ICPR21(1236-1242)
IEEE DOI 2105
Training, Image segmentation, Pediatrics, Image edge detection, Neural networks, Blood vessels, Retinal vessels, Segmentation, spatial attention BibRef

Zhang, Y.[Yi], Chen, Y.X.[Yi-Xuan], Zhang, K.[Kai],
PCANet: Pyramid Context-aware Network for Retinal Vessel Segmentation,
ICPR21(2073-2080)
IEEE DOI 2105
Hypertension, Image segmentation, Adaptive systems, Navigation, Arteriosclerosis, Retinal vessels, integrated test-time augmentation BibRef

Kamran, S.A.[Sharif Amit], Hossain, K.F.[Khondker Fariha], Tavakkoli, A.[Alireza], Zuckerbrod, S.L.[Stewart Lee],
Attention2AngioGAN: Synthesizing Fluorescein Angiography from Retinal Fundus Images using Generative Adversarial Networks,
ICPR21(9122-9129)
IEEE DOI 2105
Photography, Training, Angiography, Retina, Generators, Robustness, Reproducibility of results, Generative Adversarial Networks, Residual Attention BibRef

Kamran, S.A.[Sharif Amit], Hossain, K.F.[Khondker Fariha], Tavakkoli, A.[Alireza], Zuckerbrod, S.[Stewart], Baker, S.A.[Salah A.], Sanders, K.M.[Kenton M.],
Fundus2angio: A Conditional Gan Architecture for Generating Fluorescein Angiography Images from Retinal Fundus Photography,
ISVC20(II:125-138).
Springer DOI 2103
BibRef

Badeka, E., Papadopoulou, C.I., Papakostas, G.A.,
Evaluation of LBP Variants in Retinal Blood Vessels Segmentation Using Machine Learning,
ISCV20(1-7)
IEEE DOI 2011
biomedical optical imaging, blood vessels, decision trees, eye, feature extraction, image classification, image segmentation, computer vision BibRef

Kushol, R., Salekin, M.S.,
Rbvs-Net: A Robust Convolutional Neural Network For Retinal Blood Vessel Segmentation,
ICIP20(398-402)
IEEE DOI 2011
Biomedical imaging, Image segmentation, Blood vessels, Retinal vessels, Machine learning, Feature extraction, transfer learning BibRef

Lahiri, A., Jain, V., Mondal, A., Biswas, P.K.,
Retinal Vessel Segmentation Under Extreme Low Annotation: A Gan Based Semi-Supervised Approach,
ICIP20(418-422)
IEEE DOI 2011
Training, Generators, Image segmentation, Biomedical imaging, Generative adversarial networks, adversarial learning BibRef

Li, P., Deng, Q., Li, H.,
The Arteriovenous Classification in Retinal Images by U-net and Tracking Algorithm,
ICIVC20(182-187)
IEEE DOI 2009
Retina, Image segmentation, Feature extraction, Classification algorithms, Veins, Arteries, Biomedical imaging, vessel tracking BibRef

Li, L., Verma, M., Nakashima, Y., Nagahara, H., Kawasaki, R.,
IterNet: Retinal Image Segmentation Utilizing Structural Redundancy in Vessel Networks,
WACV20(3645-3654)
IEEE DOI 2006
Image segmentation, Retina, Training, Biomedical imaging, Standards, Task analysis, Machine learning BibRef

Zhao, M., Hamarneh, G.,
Retinal Image Classification via Vasculature-Guided Sequential Attention,
VRMI19(381-387)
IEEE DOI 2004
Retina, Retinopathy, Machine learning, Biomedical imaging, Blood vessels, Feature extraction, deep learning, attention, lstm, retinal image BibRef

Challoob, M.[Mohsin], Gao, Y.S.[Yong-Sheng],
A Local Flow Phase Stretch Transform for Robust Retinal Vessel Detection,
ACIVS20(251-261).
Springer DOI 2003
BibRef

Garifullin, A.[Azat], Lensu, L.[Lasse], Uusitalo, H.[Hannu],
On the Uncertainty of Retinal Artery-vein Classification with Dense Fully-convolutional Neural Networks,
ACIVS20(87-98).
Springer DOI 2003
BibRef

Thanh, D.N.H., Sergey, D., Surya Prasath, V.B., Hai, N.H.,
Blood Vessels Segmentation Method for Retinal Fundus Images Based On Adaptive Principal Curvature and Image Derivative Operators,
PTVSBB19(211-218).
DOI Link 1912
BibRef

Li, D., Dharmawan, D.A., Ng, B.P., Rahardja, S.,
Residual U-Net for Retinal Vessel Segmentation,
ICIP19(1425-1429)
IEEE DOI 1910
Deep learning, fundus images, residual blocks, vessel segmentation BibRef

Trimeche, I.[Iyed], Rossant, F.[Florence], Bloch, I.[Isabelle], Paques, M.[Michel],
Fully automatic CNN-based segmentation of retinal bifurcations in 2D adaptive optics ophthalmoscopy images,
IPTA20(1-6)
IEEE DOI 2206
BibRef
Earlier:
Segmentation of Retinal Arterial Bifurcations in 2D Adaptive Optics Ophthalmoscopy Images,
ICIP19(1490-1494)
IEEE DOI 1910
Image segmentation, Neural networks, Bifurcation, Adaptive optics, Retinal vessels, Biomedical imaging, Active contours, adaptive optics ophthalmoscopy images. segmentation, retinal arterial bifurcations BibRef

Cherukuri, V., Kumar B G, V., Bala, R., Monga, V.,
Multi-Scale Regularized Deep Network for Retinal Vessel Segmentation,
ICIP19(824-828)
IEEE DOI 1910
segmentation, deep learning, priors. BibRef

Zhang, J., An, C., Dai, J., Amador, M., Bartsch, D., Borooah, S., Freeman, W.R., Nguyen, T.Q.,
Joint Vessel Segmentation and Deformable Registration on Multi-Modal Retinal Images Based on Style Transfer,
ICIP19(839-843)
IEEE DOI 1910
Multi-Modal, Retinal Images, Deformable Registration, Vessel Segmentation, Style Transfer BibRef

Wargnier-Dauchelle, V.[Valentine], Simon-Chane, C.[Camille], Histace, A.[Aymeric],
Retinal Blood Vessels Segmentation: Improving State-of-the-Art Deep Methods,
CAIPWS19(5-16).
Springer DOI 1909
BibRef

Araújo, R.J.[Ricardo J.], Cardoso, J.S.[Jaime S.], Oliveira, H.P.[Hélder P.],
A Single-Resolution Fully Convolutional Network for Retinal Vessel Segmentation in Raw Fundus Images,
CIAP19(II:59-69).
Springer DOI 1909
BibRef

Sheng, B., Li, P., Mo, S., Li, H., Hou, X., Wu, Q., Qin, J., Fang, R., Feng, D.D.,
Retinal Vessel Segmentation Using Minimum Spanning Superpixel Tree Detector,
Cyber(49), No. 7, July 2019, pp. 2707-2719.
IEEE DOI 1905
Image segmentation, Retinal vessels, Detectors, Feature extraction, Image color analysis, Diabetes, Feature extraction, vessel segmentation BibRef

He, Q., Zou, B., Zhu, C., Liu, X., Fu, H., Wang, L.,
Multi-Label Classification Scheme Based on Local Regression for Retinal Vessel Segmentation,
ICIP18(2765-2769)
IEEE DOI 1809
Image segmentation, Retinal vessels, Blood vessels, Biomedical imaging, Training, Task analysis, neural network, multi-label classification BibRef

Hajabdollahi, M., Esfandiarpoor, R., Najarian, K., Karimi, N., Samavi, S., Reza-Soroushmeh, S.M.,
Low Complexity Convolutional Neural Network for Vessel Segmentation in Portable Retinal Diagnostic Devices,
ICIP18(2785-2789)
IEEE DOI 1809
Quantization (signal), Image segmentation, Complexity theory, Retinal vessels, Training, Convolutional neural networks, network binarization BibRef

Xu, D., Lim, G., Lee, M.L.[M. Li], Hsu, W.,
A Differential-Based Approach for Vessel Type Classification in Retinal Images,
ICIP18(2790-2794)
IEEE DOI 1809
Retina, Arteries, Veins, Optical imaging, Image color analysis, Photonics, Blood, retinal image, artery-vein classification BibRef

Ding, L., Kuriyan, A., Ramchandran, R., Sharma, G.,
Retinal Vessel Detection in Wide-Field Fluorescein Angiography with Deep Neural Networks: A Novel Training Data Generation Approach,
ICIP18(356-360)
IEEE DOI 1809
Training data, Neural networks, Angiography, Image color analysis, Generators, Retinal vessels, Fluorescein angiography, retinal image analysis BibRef

Krylov, A.[Andrey], Nasonov, A.[Andrey], Chesnakov, K.[Konstantin], Nasonova, A.[Alexandra], Jin, S.O.[Seung Oh], Kang, U.[Uk], Park, S.M.[Sang Min],
Vessel Preserving CNN-Based Image Resampling of Retinal Images,
ICIAR18(589-597).
Springer DOI 1807
BibRef

Meyer, M.I.[Maria Ines], Galdran, A.[Adrian], Costa, P.[Pedro], Mendonça, A.M.[Ana Maria], Campilho, A.[Aurélio],
Deep Convolutional Artery/Vein Classification of Retinal Vessels,
ICIAR18(622-630).
Springer DOI 1807
BibRef

AlBadawi, S.[Sufian], Fraz, M.M.,
Arterioles and Venules Classification in Retinal Images Using Fully Convolutional Deep Neural Network,
ICIAR18(659-668).
Springer DOI 1807
BibRef

Sehirli, E., Turan, M.K., Demiral, E.,
An Algorithm to Detect the Retinal Region of Interest,
GeoAdvances17(95-97).
DOI Link 1805
BibRef

Sabaz, F., Atila, U.,
ROI Detection and Vessel Segmentation in Retinal Image,
GeoAdvances17(85-89).
DOI Link 1805
BibRef

Welikala, R.A., Fraz, M.M., Habib, M.M., Daniel-Tong, S., Yates, M., Foster, P.J., Whincup, P.H., Rudnicka, A.R., Owen, C.G., Strachan, D.P., Barman, S.A.,
Automated quantification of retinal vessel morphometry in the UK biobank cohort,
IPTA17(1-6)
IEEE DOI 1804
biomedical optical imaging, blood vessels, data analysis, diseases, eye, image segmentation, medical image processing, UK Biobank Eye, UK Biobank BibRef

Soomro, T.A., Afifi, A.J., Gao, J., Hellwich, O., Khan, M.A.U., Paul, M., Zheng, L.,
Boosting Sensitivity of a Retinal Vessel Segmentation Algorithm with Convolutional Neural Network,
DICTA17(1-8)
IEEE DOI 1804
blood vessels, diseases, eye, image segmentation, medical image processing, neural nets, Retinal vessels BibRef

Feng, Z., Yang, J., Yao, L.,
Patch-based fully convolutional neural network with skip connections for retinal blood vessel segmentation,
ICIP17(1742-1746)
IEEE DOI 1803
Biomedical imaging, Blood vessels, Computer architecture, Entropy, Image segmentation, Retina, Training, Class-balancing Loss, Retinal Blood Vessel Segmentation BibRef

Riccio, D.[Daniel], Brancati, N.[Nadia], Frucci, M.[Maria], Gragnaniello, D.[Diego],
An Unsupervised Approach for Eye Sclera Segmentation,
CIARP17(550-557).
Springer DOI 1802
BibRef

Pinheiro, J.F.[Jullyana Fialho], de Almeida, J.D.S.[Joăo Dallyson Sousa], Junior, G.B.[Geraldo Braz], de Paiva, A.C.[Anselmo Cardoso], Silva, A.C.[Aristófanes Corręa],
Sclera Segmentation in Face Images Using Image Foresting Transform,
CIARP17(229-236).
Springer DOI 1802
BibRef

Brancati, N.[Nadia], Frucci, M.[Maria], Gragnaniello, D.[Diego], Riccio, D.[Daniel],
Retinal Vessels Segmentation Based on a Convolutional Neural Network,
CIARP17(119-126).
Springer DOI 1802
BibRef

Savelli, B.[Benedetta], Marchesi, A.[Agnese], Bria, A.[Alessandro], Marrocco, C.[Claudio], Molinara, M.[Mario], Tortorella, F.[Francesco],
Retinal Vessel Segmentation Through Denoising and Mathematical Morphology,
CIAP17(II:267-276).
Springer DOI 1711
BibRef

Lahiri, A., Ayush, K., Biswas, P.K., Mitra, P.,
Generative Adversarial Learning for Reducing Manual Annotation in Semantic Segmentation on Large Scale Miscroscopy Images: Automated Vessel Segmentation in Retinal Fundus Image as Test Case,
Microscopy17(794-800)
IEEE DOI 1709
Biomedical imaging, Generators, Image segmentation, Manuals, Semantics, Training BibRef

Challoob, M.[Mohsin], Gao, Y.S.[Yong-Sheng],
Retinal Vessel Segmentation Using Matched Filter with Joint Relative Entropy,
CAIP17(I: 228-239).
Springer DOI 1708
BibRef

Gou, D.D.[Duo-Duo], Ma, T.[Tong], Wei, Y.[Ying],
A novel retinal vessel extraction method based on dynamic scales allocation,
ICIVC17(145-149)
IEEE DOI 1708
Biomedical imaging, Blood vessels, Image segmentation, Matched filters, Resource management, Retinal vessels, dynamic scales allocation, image sub-blocking, multiscale matched filter, retinal, vessel, extraction BibRef

Gu, B., Chen, B., Luo, L.,
Retinal vessel enhancement via sparse coding and dictionary learning,
MVA17(270-273)
DOI Link 1708
Biomedical imaging, Databases, Dictionaries, Encoding, Image coding, Retinal vessels BibRef

Farah, R.[Rana], Belanger, S.[Samuel], Jafari, R.[Reza], Chevrefils, C.[Claudia], Sylvestre, J.P.[Jean-Philippe], Lesage, F.[Frédéric], Cheriet, F.[Farida],
Retinal Vessel Segmentation from a Hyperspectral Camera Images,
ICIAR17(559-566).
Springer DOI 1706
BibRef

Khomri, B.[Bilal], Christodoulidis, A.[Argyrios], Djerou, L.[Leila], Babahenini, M.C.[Mohamed Chaouki], Cheriet, F.[Farida],
Particle Swarm Optimization Approach for the Segmentation of Retinal Vessels from Fundus Images,
ICIAR17(551-558).
Springer DOI 1706
BibRef

Kushol, R.[Rafsanjany], Kabir, M.H.[M. Hasanul], Salekin, M.S.[M. Sirajus], Rahman, A.B.M.A.[A.B.M. Ashikur],
Contrast Enhancement by Top-Hat and Bottom-Hat Transform with Optimal Structuring Element: Application to Retinal Vessel Segmentation,
ICIAR17(533-540).
Springer DOI 1706
BibRef

Frucci, M., Riccio, D., Sanniti di Baja, G.[Gabriella], Serino, L.,
Direction-Based Segmentation of Retinal Blood Vessels,
CIARP16(1-9).
Springer DOI 1703
BibRef

Soomro, T.A.[Toufique A.], Khan, M.A.U.[Mohammad A.U.], Gao, J.B.[Jun-Bin], Khan, T.M.[Tariq M.], Paul, M.[Manoranjan], Mir, N.[Nighat],
Automatic Retinal Vessel Extraction Algorithm,
DICTA16(1-8)
IEEE DOI 1701
Biomedical imaging BibRef

Soomro, T.A.[Toufique A.], Paul, M., Gao, J.B.[Jun-Bin], Zheng, L.,
Retinal blood vessel extraction method based on basic filtering schemes,
ICIP17(4422-4426)
IEEE DOI 1803
Biomedical imaging, Blood vessels, Coherence, Histograms, Image segmentation, Retinal vessels, Adpative filtering, Retinal vessels BibRef

Khan, M.A.U.[Mohammad A.U.], Soomro, T.A.[Toufique A.], Khan, T.M.[Tariq M.], Bailey, D.G., Gao, J.B.[Jun-Bin], Mir, N.[Nighat],
Automatic retinal vessel extraction algorithm based on contrast-sensitive schemes,
ICVNZ16(1-5)
IEEE DOI 1701
Biomedical imaging BibRef

Nougrara, Z., Kihal, N., Meunier, J.,
Semi-automated Extraction of Retinal Blood Vessel Network with Bifurcation and Crossover Points,
ISVC16(II: 340-348).
Springer DOI 1701
BibRef

Zheng, H., Chang, L., Wei, T., Qiu, X., Lin, P., Wang, Y.,
Registering Retinal Vessel Images from Local to Global via Multiscale and Multicycle Features,
WBIR16(490-497)
IEEE DOI 1612
BibRef

Lu, C.Y., Jing, B.Z., Chan, P.P.K., Xiang, D., Xie, W., Wang, J., Yeung, D.S.,
Vessel enhancement of low quality fundus image using mathematical morphology and combination of Gabor and matched filter,
ICWAPR16(168-173)
IEEE DOI 1611
Biomedical imaging BibRef

Zhou, L., Li, P., Yu, Q., Qiao, Y., Yang, J.,
Automatic hemorrhage detection in color fundus images based on gradual removal of vascular branches,
ICIP16(399-403)
IEEE DOI 1610
Feature extraction BibRef

Elbalaoui, A., Fakir, M., Taifi, K., Merbouha, A.,
Automatic Detection of Blood Vessel in Retinal Images,
CGiV16(324-332)
IEEE DOI 1608
diseases BibRef

Alves, W.A.L.[Wonder A.L.], Gobber, C.F.[Charles F.], Araújo, S.A.[Sidnei A.], Hashimoto, R.F.[Ronaldo F.],
Segmentation of Retinal Blood Vessels Based on Ultimate Elongation Opening,
ICIAR16(727-733).
Springer DOI 1608
BibRef

Mapayi, T., Tapamo, J.R.,
Difference image and fuzzy c-means for detection of retinal vessels,
Southwest16(169-172)
IEEE DOI 1605
Databases BibRef

Kurilová, V., Pavlovicová, J., Oravec, M., Rakár, R., Marcek, I.,
Retinal blood vessels extraction using morphological operations,
WSSIP15(265-268)
IEEE DOI 1603
biomedical optical imaging BibRef

Riazifar, N., Saghapour, E.,
Retinal vessel segmentation using system fuzzy and DBSCAN algorithm,
IPRIA15(1-4)
IEEE DOI 1603
blood vessels BibRef

Gu, L., Cheng, L.,
Learning to Boost Filamentary Structure Segmentation,
ICCV15(639-647)
IEEE DOI 1602
Biomedical imaging BibRef

Dutta, T.[Tapash], Dutta, N.[Nilanjan], Bandyopadhyay, O.[Oishila],
Retinal Blood Vessel Segmentation and Bifurcation Point Detection,
IWCIA15(261-275).
Springer DOI 1601
BibRef

Roy, N.D., Biswas, A.,
Detection of bifurcation angles in a retinal fundus image,
ICAPR15(1-6)
IEEE DOI 1511
bifurcation BibRef

Irshad, S.[Samra], Akram, M.U.[M. Usman], Ayub, S.[Sara], Ayaz, A.[Anaum],
Retinal Blood Vessels Differentiation for Calculation of Arterio-Venous Ratio,
ICIAR15(411-418).
Springer DOI 1507
BibRef

Chen, Z.[Zenghai], Zhang, H.[Hui], Chi, Z.[Zheru], Fu, H.[Hong],
Hierarchical Local Binary Pattern for Branch Retinal Vein Occlusion Recognition,
RoLoD14(687-697).
Springer DOI 1504
BibRef

Khitran, S., Akram, M.U., Usman, A., Yasin, U.,
Automated system for the detection of hypertensive retinopathy,
IPTA14(1-6)
IEEE DOI 1503
biomedical optical imaging BibRef

Zhang, L.[Lei], Fisher, M.[Mark], Wang, W.J.[Wen-Jia],
Comparative performance of texton based vascular tree segmentation in retinal images,
ICIP14(952-956)
IEEE DOI 1502
Accuracy BibRef

Kar, S.S.[Sudeshna Sil], Maity, S.P.[Santi P.],
Blood vessel extraction with optic disc removal in retinal images,
ICAPR15(1-6)
IEEE DOI 1511
blood vessels BibRef

Kar, S.S.[Sudeshna Sil], Maity, S.P.[Santi P.], Delpha, C.[Claude],
On retinal blood vessel extraction using curvelet transform and differential evolution based maximum fuzzy entropy,
ICIP14(872-876)
IEEE DOI 1502
Biomedical imaging BibRef

Kar, S.S.[Sudeshna Sil], Maity, S.P.[Santi P.],
Extraction of Retinal Blood Vessel Using Curvelet Transform and Fuzzy C-Means,
ICPR14(3392-3397)
IEEE DOI 1412
Biomedical imaging BibRef

Lermé, N.[Nicolas], Rossant, F.[Florence], Bloch, I.[Isabelle], Paques, M.[Michel], Koch, E.[Edouard],
Segmentation of Retinal Arteries in Adaptive Optics Images,
ICPR14(574-579)
IEEE DOI 1412
BibRef
Earlier:
Coupled Parallel Snakes for Segmenting Healthy and Pathological Retinal Arteries in Adaptive Optics Images,
ICIAR14(II: 311-320).
Springer DOI 1410
Adaptive optics BibRef

Pereira, C.[Carla], Veiga, D.[Diana], Gonçalves, L.[Luís], Ferreira, M.[Manuel],
Automatic Arteriovenous Nicking Identification by Color Fundus Images Analysis,
ICIAR14(II: 321-328).
Springer DOI 1410
BibRef

Akram, M.U.[M. Usman], Khitran, S.A.[Sarmad Abbas], Usman, A.[Anam], ullah Yasin, U.[Ubaid],
Detection of Hemorrhages in Colored Fundus Images Using Non Uniform Illumination Estimation,
ICIAR14(II: 329-336).
Springer DOI 1410
BibRef

Qureshi, T.A.[Touseef Ahmad], Hunter, A.[Andrew], Al-Diri, B.[Bashir],
A Probabilistic Model for the Optimal Configuration of Retinal Junctions Using Theoretically Proven Features,
ICPR14(3304-3309)
IEEE DOI 1412
BibRef
And:
A Bayesian Framework for the Local Configuration of Retinal Junctions,
CVPR14(3105-3110)
IEEE DOI 1409
Retinal vessels configuration. Bifurcation BibRef

Felipe-Riveron, E.M.[Edgardo M.], Castaldi, F.M.V.[Fabiola M. Villalobos], Gómez, E.S.[Ernesto Suaste], Vasconcellos, M.A.L.[Marcos A. Leiva], Morato, C.A.[Cecilia Albortante],
A Semi-supervised Puzzle-Based Method for Separating the Venous and Arterial Vascular Networks in Retinal Images,
MCPR14(251-260).
Springer DOI 1407
BibRef

Das, A., Pal, U., Blumenstein, M., Ferrer Ballester, M.A.,
Sclera Recognition: A Survey,
ACPR13(917-921)
IEEE DOI 1408
blood vessels BibRef

Roy, N.D.[Nilanjana Dutta], Someswar, M.[Milan], Dalmia, H.[Harshit], Biswas, A.[Arindam],
Identification of Distinct Blood Vessels in Retinal Fundus Images,
CompIMAGE14(106-114).
Springer DOI 1407
BibRef

Mapayi, T.[Temitope], Tapamo, J.R.[Jules-Raymond],
SAHF: Unsupervised Texture-Based Multiscale with Multicolor Method for Retinal Vessel Delineation,
ISVC16(I: 639-648).
Springer DOI 1701
BibRef

Mapayi, T.[Temitope], Viriri, S.[Serestina], Tapamo, J.R.[Jules-Raymond],
A New Adaptive Thresholding Technique for Retinal Vessel Segmentation Based on Local Homogeneity Information,
ICISP14(558-567).
Springer DOI 1406
BibRef

Nguyen, U.T.V., Bhuiyan, A., Park, L.A.F., Kawasaki, R., Wong, T.Y., Ramamohanarao, K.,
Automatic detection of retinal vascular landmark features for colour fundus image matching and patient longitudinal study,
ICIP13(616-620)
IEEE DOI 1402
Bifurcation BibRef

De, J.[Jaydeep], Ma, T.F.[Teng-Fei], Li, H.Q.[Hui-Qi], Dash, M.[Manoranjan], Li, C.[Cheng],
Automated Tracing of Retinal Blood Vessels Using Graphical Models,
SCIA13(277-289).
Springer DOI 1311
BibRef

Dashtbozorg, B.[Behdad], Mendonça, A.M.[Ana Maria], Campilho, A.[Aurélio],
Automatic Classification of Retinal Vessels Using Structural and Intensity Information,
IbPRIA13(600-607).
Springer DOI 1307
BibRef

Carreira, M.J.[María J.], Espona, L.[Lucia], Penedo, M.G.[Manuel G.], Mosquera, A.[Antonio],
Fast Segmentation of Retinal Blood Vessels Using a Deformable Contour Model,
ICIAR12(II: 355-362).
Springer DOI 1206
BibRef

Espona, L., Carreira, M.J., Penedo, M.G., Ortega, M.,
Retinal vessel tree segmentation using a deformable contour model,
ICPR08(1-4).
IEEE DOI 0812
BibRef
And:
Comparison of Pixel and Subpixel Retinal Vessel Tree Segmentation Using a Deformable Contour Model,
CIARP08(683-690).
Springer DOI 0809
BibRef
Earlier: A1, A2, A4, A3:
A Snake for Retinal Vessel Segmentation,
IbPRIA07(II: 178-185).
Springer DOI 0706
BibRef

Caderno, I.G., Penedo, M.G., Marińo, C., Carreira, M.J., Gomez-Ulla, F., González, F.,
Automatic Extraction of the Retina AV Index,
ICIAR04(II: 132-140).
Springer DOI 0409
BibRef

Dai, B.S.[Bai-Sheng], Bu, W.[Wei], Wu, X.Q.[Xiang-Qian], Teng, Y.[Yan],
Retinal vessel segmentation via Iterative Geodesic Time Transform,
ICPR12(561-564).
WWW Link. 1302
BibRef

Oliveira, W.S.[Wendeson S.], Ren, T.I.[Tsang Ing], Cavalcanti, G.D.C.[George D.C.],
Retinal vessel segmentation using Average of Synthetic Exact Filters and Hessian matrix,
ICIP12(2017-2020).
IEEE DOI 1302
BibRef

Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.,
Ensemble Classification System Applied for Retinal Vessel Segmentation on Child Images Containing Various Vessel Profiles,
ICIAR12(II: 380-389).
Springer DOI 1206
BibRef

Agurto, C.[Carla], Yu, H.G.[Hong-Gang], Murray, V.[Victor], Pattichis, M.S.[Marios S.], Barriga, S.[Simon], Soliz, P.[Peter],
Detection of hard exudates and red lesions in the macula using a multiscale approach,
Southwest12(13-16).
IEEE DOI 1205
BibRef

Cao, S.S.Y.[Shearin Shuo-Ying], Bharath, A.A.[Anil A.], Parker, K.H.[Kim H.], Ng, J.[Jeffrey], Arnold, J.[John], McGregor, A.[Alison], Hill, A.[Adam],
Microvasculature Segmentation of Co-Registered Retinal Angiogram Sequences,
BMVA(2012), No. 9, 2012, pp. 1-20.
PDF File. 1209
BibRef

Cao, S.S.Y.[Shearin Shuo-Ying], Bharath, A.A.[Anil A.], Parker, K.H.[Kim H.], Ng, J.[Jeffrey], Arnold, J.[John], McGregor, A.[Alison], Hill, A.[Adam],
Joint spatio-temporal registration and microvasculature segmentation of retinal angiogram sequences,
EMBC11(2618-2621).
IEEE DOI BibRef 1100

Chen, L.[Li], Ju, Y.Y.[Yao-Yong], Ding, S.[Sheng], Liu, X.M.[Xiao-Ming],
Topological vascular tree segmentation for retinal images using shortest path connection,
ICIP11(2137-2140).
IEEE DOI 1201
BibRef

Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Owen, C.G.[Christopher G.], Rudnicka, A.R.[Alicja R.], Barman, S.A.,
Retinal Vessel Extraction Using First-Order Derivative of Gaussian and Morphological Processing,
ISVC11(I: 410-420).
Springer DOI 1109
BibRef

Zhou, Z.[Zhi], Du, E.Y., Thomas, N.L.,
A comprehensive sclera image quality measure,
ICARCV10(638-643).
IEEE DOI 1109
BibRef

Salazar-Gonzalez, A.G., Li, Y.M.[Yong-Min], Liu, X.H.[Xiao-Hui],
Retinal blood vessel segmentation via graph cut,
ICARCV10(225-230).
IEEE DOI 1109
BibRef

Cummings, A.H.[Alastair H.], Nixon, M.S.[Mark S.],
Retinal Vessel Extraction with the Image Ray Transform,
ISVC10(II: 332-341).
Springer DOI 1011
BibRef

Oinonen, H.[Hannu], Forsvik, H.[Heikki], Ruusuvuori, P.[Pekka], Yli-Harja, O.[Olli], Voipio, V.[Ville], Huttunen, H.[Heikki],
Identity verification based on vessel matching from fundus images,
ICIP10(4089-4092).
IEEE DOI 1009
BibRef

Mengko, T.R.[Tati Rajab], Handayani, A.[Astri], Valindria, V.V.[Vanya Vabrina], Hadi, S.[Samekta], Sovani, I.[Iwan],
Image Processing in Retinal Angiography: Extracting Angiographical Features without the Requirement of Contrast Agents,
MVA09(451-).
PDF File. 0905
BibRef

Desai, M., Mangoubi, R., Danko, J., Aiello, L.P., Aiello, L.M., Sun, J., Cavallerano, J.,
Retinal venous caliber abnormality: Detection and analysis using matrix edge fields-based simultaneous smoothing and segmentation,
AIPR09(1-6).
IEEE DOI 0910
BibRef

Condurache, A.P.[Alexandru Paul], Muller, F.[Florian], Mertins, A.[Alfred],
An LDA-based Relative Hysteresis Classifier with Application to Segmentation of Retinal Vessels,
ICPR10(4202-4205).
IEEE DOI 1008
BibRef

Kaya, A.[Aydin], Can, A.B.[Ahmet Burak], Cakmak, H.B.[Hasan Basri],
Designing a Pattern Stabilization Method Using Scleral Blood Vessels for Laser Eye Surgery,
ICPR10(698-701).
IEEE DOI 1008
BibRef

Joshi, G.D.[Gopal Datt], Sivaswamy, J.[Jayanthi], Karan, K.[Kundun], Prashanth, R., Krishnadas, S.R.,
Vessel Bend-Based Cup Segmentation in Retinal Images,
ICPR10(2536-2539).
IEEE DOI 1008
BibRef

Youssef, D.[Doaa], Solouma, N.[Nahed], El-dib, A.[Amr], Mabrouk, M.[Mai], Youssef, A.B.[Abo-Bakr],
New feature-based detection of blood vessels and exudates in color fundus images,
IPTA10(294-299).
IEEE DOI 1007
BibRef

Vázquez, S.G., Barreira, N., Penedo, M.G.[Manuel G.], Rodríguez-Blanco, M.,
The Significance of the Vessel Registration for a Reliable Computation of Arteriovenous Ratio,
ICIAR12(II: 347-354).
Springer DOI 1206
BibRef

Vazquez, S.G., Cancela, B., Barreira, N., Penedo, M.G., Saez, M.,
On the Automatic Computation of the Arterio-Venous Ratio in Retinal Images: Using Minimal Paths for the Artery/Vein Classification,
DICTA10(599-604).
IEEE DOI 1012
BibRef

Vázquez, S.G., Barreira, N., Penedo, M.G., Saez, M., Pose-Reino, A.,
Using Retinex Image Enhancement to Improve the Artery/Vein Classification in Retinal Images,
ICIAR10(II: 50-59).
Springer DOI 1006
BibRef

Hooshyar, S.[Sina], Khayati, R.[Rasoul],
Retina Vessel Detection Using Fuzzy Ant Colony Algorithm,
CRV10(239-244).
IEEE DOI 1005
BibRef

Harangozo, R.[Roland], Veres, P.[Péter], Hajdu, A.[Andras],
Subsampling strategies to improve learning-based retina vessel segmentation,
ICIP09(3349-3352).
IEEE DOI 0911
BibRef

Yedidya, T., Hartley, R.I.,
Tracking of Blood Vessels in Retinal Images Using Kalman Filter,
DICTA08(52-58).
IEEE DOI 0812
BibRef

Akram, M.U.[M. Usman], Tariq, A., Nasir, S., Khan, S.A.,
Gabor wavelet based vessel segmentation in retinal images,
CIIP09(116-119).
IEEE DOI 0903
BibRef

Salem, N.M.[Nancy M.], Nandi, A.K.[Asoke K.],
Unsupervised Segmentation of Retinal Blood Vessels Using a Single Parameter Vesselness Measure,
ICCVGIP08(528-534).
IEEE DOI 0812
BibRef

Zhang, M.[Ming], Liu, J.C.[Jyh-Charn],
Directional Local Contrast Based Blood Vessel Detection in Retinal Images,
ICIP07(IV: 317-320).
IEEE DOI 0709
BibRef

Lian, N.X.[Nai-Xiang], Zagorodnov, V.[Vitali], Tan, Y.P.[Yap-Peng],
Retinal Vessel Detection using Self-Matched Filtering,
ICIP07(VI: 33-36).
IEEE DOI 0709
BibRef

Zhang, Y.P.[Yong-Ping], Hsu, W.[Wynne], Lee, M.L.[Mong Li],
Segmentation of Retinal Vessels Using Nonlinear Projections,
ICIP07(V: 541-544).
IEEE DOI 0709
BibRef

Felipe-Riveron, E.[Edgardo], Garcia-Guimeras, N.[Noel],
Extraction of Blood Vessels in Ophthalmic Color Images of Human Retinas,
CIARP06(118-126).
Springer DOI 0611
BibRef

Xu, Z.W.[Zhi-Wen], Guo, X.X.[Xiao-Xin], Hu, X.Y.[Xiao-Ying], Chen, X.[Xu], Wang, Z.X.[Zheng-Xuan],
The Identification and Recognition Based on Point for Blood Vessel of Ocular Fundus,
ICB06(770-776).
Springer DOI 0601
BibRef

Li, Q.[Qin], You, J., Zhang, L.[Lei], Bhattacharya, P.[Prabir],
Automated Retinal Vessel Segmentation Using Multiscale Analysis and Adaptive Thresholding,
Southwest06(139-143).
IEEE DOI 0603
BibRef

Li, Q.[Qin], Zhang, L.[Lei], Zhang, D.[David], Bhattacharya, P.[Prabir],
A New Approach to Automated Retinal Vessel Segmentation Using Multiscale Analysis,
ICPR06(IV: 77-80).
IEEE DOI 0609
BibRef

Gao, X., Bharath, A.A., Stanton, A.D., Hughes, A.D., Chapman, N., Thom, S.A.,
A Method of Vessel Tracking for Vessel Diameter Measurement on Retinal Images,
ICIP01(II: 881-884).
IEEE DOI 0108
BibRef

Martinez Perez, M.E., Hughes, A.D., Stanton, A.V., Thom, S.A., Bharath, A.A.[Anil A.], Parker, K.H.[Kim H.],
Segmentation of Retinal Blood Vessels based on the Second Directional Derivative and Region Growing,
ICIP99(II:173-176).
IEEE DOI BibRef 9900

Lalonde, M., Gagnon, L., Boucher, M.C.,
Automatic Image Quality Assessment in Optical Fundus Images,
VI01(259-264).
PDF File. BibRef 0100
Earlier:
Non-recursive paired tracking for vessel extraction from retinal images,
VI00(xx-yy).
PDF File. BibRef

Thaďbaoui, A., Raji, A., Bunel, P.,
A Fuzzy Logic Approach to Drusen Detection in Retinal Angiographic Images,
ICPR00(Vol IV: 748-751).
IEEE DOI 0009
BibRef

Bartsch, D.U.[Dirk-Uwe], Müller, A.J., O'Connor, N., Holmes, T., Freeman, W.R.,
3D Reconstruction of Blood Vessels in the Ocular Fundus from Confocal Scanning Laser Ophthalmoscope ICG Angiography,
ICIP96(III: 687-690).
IEEE DOI 9610
BibRef

Wood, S.L., Qu, G.Y.[Gong-Yuan], Roloff, L.W.,
Detection and labeling of retinal vessels for longitudinal studies,
ICIP95(III: 164-167).
IEEE DOI 9510
BibRef

Kaupp, A., Dolemeyer, A., Wilzeck, R., Schlosser, R., Wolf, S., Meyer-Ebrecht, D.,
Measuring morphologic properties of the human retinal vessel system using a two-stage image processing approach,
ICIP94(I: 431-435).
IEEE DOI 9411
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Retinal Microaneurysms, Detection .


Last update:Nov 26, 2024 at 16:40:19